

Sensores inteligentes

ZX-E Series

GUÍA DE INSTALACIÓN

Advanced Industrial Automation

OMRON

Prólogo	Tabla de contenidos y precauciones	Prólogo
Sección 1	Prestaciones	Sección 1
Sección 2	Preparativos para la medición	Sección 2
Sección 3	Funcionamiento básico	Sección 3
Sección 4	Principales aplicaciones y métodos de configuración	Sección 4
Sección 5	Configuración detallada	Sección 5
Sección 6	Funciones auxiliares	Sección 6
Apéndices	Detección y corrección de errores, especificaciones, datos característicos, etc.	Apéndices
Índice		Índice

Manual de operación

Sensores inteligentes serie ZX-E

Prólogo

Tabla de contenidos

Tabla de contenidos	3
Precauciones	7
Uso correcto	8
Uso de este manual	9

Sección 1 Prestaciones	11
Prestaciones del modelo ZX-E	12

Sección 2 Preparativos para la medición	17
Configuración básica	18
Denominaciones y funciones de los componentes	19
Instalación del amplificador	22
Instalación de sensores	24
Conexiones	27
Cableado	31

Sección 3 Operación básica	35
Esquema de funcionamiento	36
Conocimientos básicos de operación	38
Esquemas de funciones	43
Ajuste de la linealidad	46

Sección 4	Principales aplicaciones y métodos de configuración	53
Detec	ción del punto muerto inferior	54
Medic	ión de la altura	59
Medic	ión de la excentricidad y la vibración	63
Medic	ión del espesor	66

ección 5 Configuración detallada	71
Configuración del número de muestras a promediar	72
Uso de las funciones de retención	73
Comparación de los valores medidos (comparación de valores anteriores)	80
Cambio de escala del display	82
Introducción de valores umbrales	89
Salida lineal	95
Configuración del tiempo de salida de discriminación (temporizador)	104

Sección 6 Funciones auxiliares	107
Medición con múltiples amplificadores	108
Cambio del número de dígitos en el display	115
Inversión del display	116
Ajuste de la luminosidad del display (display ECO)	118
Uso de la función de puesta a cero	119
Función Protección de teclado	124
Inicialización de la configuración	125

Prólogo Tabla de contenidos

Apéndices	127
Detección y corrección de errores	128
Mensajes de error y soluciones	129
Preguntas y respuestas	130
Glosario	131
Especificaciones y dimensiones	132
Datos característicos	139
Referencia rápida de displays	144

Índice 147

Historial de revisiones 151

PRÓLOGO

Observe siempre las siguientes precauciones para garantizar la seguridad.

Información ambiental

- No use el sensor inteligente en sitios expuestos a gases explosivos o inflamables.
- Para garantizar la seguridad en el funcionamiento y mantenimiento, no instale el sensor inteligente cerca de equipos de alta tensión o dispositivos eléctricos.

Fuente de alimentación y cableado

- No aplique tensiones superiores a la nominal (de 12 a 24 Vc.c. ±10%).
- Al suministrar corriente al sensor, asegúrese de que la polaridad de la corriente es correcta y no lo conecte a una fuente de alimentación de c.a.
- No cortocircuite la carga de la salida del colector abierto.
- No tienda el cable de alimentación del sensor inteligente en las proximidades de líneas de alta tensión o líneas eléctricas. Si lo hace o coloca los cables en el mismo conducto, puede causar inducción y provocar averías o daños.
- Desconecte siempre la alimentación antes de realizar el cableado y antes de conectar o desconectar los conectores.

■ Configuración

• Al configurar el valor umbral con el sensor inteligente conectado a un dispositivo externo, conecte la entrada de retención de la salida de discriminación del amplificador para impedir la salida de discriminación al dispositivo externo.

Otros

- Los sensores inteligentes serie ZX-E (tipo inductivo) y serie ZX-L (tipo láser) no son compatibles. No utilice juntos los sensores inteligentes serie ZX-E y serie ZX-L.
- No intente desmontar, reparar o modificar el sensor inteligente.
- Al desechar el sensor inteligente, trátelo como desecho industrial.

Uso correcto

Siga en todo momento las instrucciones que se indican a continuación para garantizar la máxima fiabilidad y funcionalidad del sistema de sensor inteligente.

Instalación del sensor inteligente

Información ambiental

El sensor inteligente no debe instalarse en los siguientes lugares:

- Lugares donde la temperatura ambiental sea superior al intervalo de temperatura nominal.
- Lugares sometidos a rápidos cambios de temperatura (que causan condensación).
- Lugares en los que la humedad relativa sobrepase el intervalo entre 35% y 85%.
- Lugares expuestos a gases corrosivos o inflamables.
- Lugares en los que se pueda acumular polvo, sal o polvillo metálico en el sensor.
- Lugares sometidos a vibraciones o impactos directos.
- Lugares sometidos a la luz directa del sol.
- Lugares expuestos al contacto con agua, aceite, productos químicos, etc.
- Lugares expuestos a campos eléctricos o electromagnéticos potentes.

Instalación y manipulación de componentes

Fuente de alimentación y cableado

- No alargue el cable del sensor más de 8 m. Utilice un cable de extensión ZX-XC□A (no incluido) para alargarlo.
- Para extender el cable del amplificador debe utilizarse un cable apantallado. Este cable apantallado deberá tener las mismas especificaciones que el cable del amplificador.
- Si se utiliza una fuente de alimentación conmutada, ponga a tierra el terminal FG (tierra del bastidor).
- Si la línea de fuente de alimentación está expuesta a sobretensiones, conecte un supresor de sobrecargas compatible con las condiciones del entorno de aplicación.
- Si conecta varios amplificadores, conecte la tierra de salida lineal de todos ellos.

Calentamiento

Después de conectar la alimentación, espere como mínimo 30 minutos a que el sensor inteligente se caliente antes de utilizarlo. La estabilidad de los circuitos no es inmediata tras conectar la alimentación y los valores cambian gradualmente hasta que el sensor se calienta por completo.

Mantenimiento e inspección

- Antes de ajustar o desmontar el sensor, desconéctelo siempre de la fuente de alimentación eléctrica.
- No utilice disolventes, bencina, acetona o queroseno para limpiar el sensor o el amplificador.

Uso de este manual

Formato de las páginas

* Ésta no es una página real de este manual.

Notación

Menús

Los elementos que aparecen en las pantallas digitales se indican en MAYÚSCULAS.

Procedimientos

El orden de los procedimientos se indica mediante pasos numerados.

Ayudas visuales

Explica los pasos que se deben seguir para garantizar un rendimiento y uso óptimos de las funciones del sensor inteligente. Si el sensor inteligente no se utiliza correctamente, se pueden perder datos y provocar averías. Lea cuidadosamente todas las notas y siga las precauciones.

Proporciona información acerca de procedimientos operativos importantes, ofrece consejos sobre cómo utilizar las funciones y destaca información de rendimiento importante.

Indica páginas con información relevante.

Indica información útil en el caso de que surjan problemas.

Sección 1 PRESTACIONES

Prestaciones del modelo ZX-E

Prestaciones del modelo ZX-E

El sensor inteligente ZX-E mide la distancia entre el sensor y el objeto detectado.

Ejemplo: detección del punto muerto inferior en una prensa

Muchas funciones sencillas

Medida lista al conectar la alimentación

Para utilizar el sensor inteligente, simplemente debe instalarlo y cablearlo. Sólo tiene que conectar la alimentación y está listo para funcionar.

La distancia de medida se muestra en el amplificador.

■ Ajuste sencillo de la linealidad

Coloque el objeto detectable a intervalos especificados y simplemente pulse la tecla ENT para ejecutar el ajuste preciso de la linealidad. No son necesarios ajustes de compensación e intervalo que consumen tiempo.

El ajuste preciso también es posible para objetos detectables no ferrosos.

Configuración sencilla de cálculos

Puede utilizar una unidad de cálculo para medir el espesor y sumar y restar cálculos de dos medidas.

🛵 pág. 108

Prevención de interferencias mutuas en sensores montados en proximidad

El sensor inteligente dispone de una función de prevención de interferencias mutuas que permite montar varios sensores próximos entre sí. Esta función admite hasta cinco sensores con el uso de unidades de cálculo ZX-CAL2.

Compatibilidad entre sensores y amplificadores

No es necesario cambiar los amplificadores al cambiar los sensores para realizar mantenimiento o cambiar a nuevos productos.

Cables de sensor extensibles

Se puede conectar un cable de extensión con una longitud máxima de 8 m. El cable de extensión ZX-XC-A es necesario para extender el cable del sensor.

Supervisión del estado de la medición

Display de resolución del objeto detectado

La resolución se puede mostrar en un display, lo que permite realizar discriminaciones sobre los márgenes de detección al ver el valor de resolución.

pág. 43

Confirmación del estado de las medidas en un ordenador

Puede utilizar una unidad de interfaz y Smart Monitor V2 para ver formas de onda de las medidas y registrar datos de las medidas en un ordenador. Esta función es útil para llevar a cabo ajustes de medición in situ y para el control de calidad diario.

Sección 2 PREPARATIVOS PARA LA MEDICIÓN

Configuración básica	18
Denominaciones y funciones de los componentes	19
Instalación del amplificador	22
Instalación de sensores	24
Conexiones	27
Cableado	31

Configuración básica

A continuación se muestra la configuración básica de los sensores inteligentes serie ZX-E.

NOTE

Los sensores inteligentes serie ZX-L (tipo láser) y serie ZX-E (tipo inductivo) no son compatibles. No utilice juntos los sensores inteligentes serie ZX-L y serie ZX-E.

Denominaciones y funciones de los componentes

- (1) El cable de entrada conecta el sensor.
- (2) Con el interruptor de corriente/tensión se selecciona una salida lineal de corriente o tensión.

Al cambiar la salida también es necesario configurar el enfoque del monitor. / j pág. 95

- (3) Los conectores conectan las unidades de la interfaz.
- (4) El cable de salida se conecta a la fuente de alimentación y los dispositivos externos, como los sensores de sincronización o los controladores programables.
- (5) El indicador de encendido (ON) se ilumina al conectar la alimentación.
- (6) El indicador de puesta a cero se ilumina si está activada la función de puesta a cero.
- (7) El indicador ENABLE se ilumina si el resultado de la medición se encuentra dentro del margen de medición.
- (8) El indicador HIGH se ilumina si el resultado de discriminación es HIGH.
- (9) El indicador PASS se ilumina si el resultado de discriminación es PASS.
- (10) El indicador LOW se ilumina si el resultado de discriminación es LOW.
- (11) En el display principal se muestran los valores medidos y el nombre de las funciones.
- (12) En el sub-display se muestra información adicional y la configuración de funciones para las medidas.
 Lectura de displays, pág. 39
- (13) Con el interruptor de umbral se selecciona el ajuste (y presentación) del umbral HIGH o LOW.
- (14) Con el interruptor de modo se selecciona el modo de funcionamiento.
 - Conmutación de modos, pág. 38
- (15) Con las teclas de control se ajustan las condiciones de medición y otras opciones.

 (15) Operaciones con las teclas, pág. 40

Sensores

Unidades de cálculo

Conectores (uno a cada lado, dos en total) Se conecta al amplificador.

⋬

Unidades de interfaz

* Detalle del display

(5) Indicadores de comunicaciones de terminal externo (BUSY y ERR)

- (1) El conector de comunicaciones conecta el cable de comunicaciones al ordenador.
- (2) El conector del amplificador se conecta al amplificador.
- (3) El indicador de fuente de alimentación se ilumina al conectar la alimentación.
- (4) BUSY: se ilumina durante la comunicación con el sensor inteligente.
 - ERR: se ilumina si se produce un error durante la comunicación con el sensor inteligente.
- (5) BUSY: se ilumina durante la comunicación con el ordenador.
 - ERR: se ilumina si se produce un error durante la comunicación con el ordenador.

Instalación del amplificador

Los amplificadores se pueden montar de forma sencilla en un carril DIN de 35 mm.

Instalación

Conecte el extremo del conector del amplificador en el carril DIN y presione en la parte inferior hasta que la unidad quede encajada.

NOTE

Conecte siempre en primer lugar el extremo del conector del amplificador en el carril DIN. Si se conecta primero el cable de salida en el carril DIN, la resistencia de montaje puede disminuir.

Método de extracción

Empuje hacia arriba el amplificador y extráigalo del extremo del conector.

Instalación de sensores

En esta sección se describe cómo instalar los sensores y preamplificadores.

Sensores

Instalación

■ Sensores ZX-ED□□T (tipo no roscado)

Soporte de montaje (no incluido)

Y92E-F5R4 (para diámetro de 5,4 mm)

Si se utiliza un tornillo de presión, ajuste el tornillo con un par de apriete de 0,2 N·m o menor. Monte el sensor como se muestra en el siguiente diagrama.

	(Unidad: m	
Modelo	Α	
ZX-EDR5T	De 9 a 18	
ZX-ED01T	De 9 a 18	
ZX-ED02T	De 11 a 22	

■ Sensores ZX-EM□□T (tipo roscado)

El par de apriete del tipo roscado (ZX-EMDDT) es de 15 N·m máximo.

Distancia de detección

Monte el sensor de forma que la distancia entre el sensor y el objeto detectable sea de aproximadamente la mitad de la distancia de medida.

Ejemplo: sensor ZX-ED01T

Distancia de medida: de 0 a 1 mm

Objeto detectable: objeto ferroso de 18 x 18 mm o mayor

Influencia de metales próximos

Separe el sensor de los metales próximos con una distancia al menos equivalente a las que se indican en el siguiente diagrama.

		(Unidad: m	nm)
Modelo	Diámetro A	В	
ZX-EDR5T	8	9	
ZX-ED01T	10	9	
ZX-ED02T	12	9	
ZX-EM02T	12	9	
ZX-EM07MT	55	20	

Interferencia mutua

Si se utilizan varios sensores, separe cada uno de ellos con una distancia mínima equivalente a las que se indican en el siguiente diagrama.

La distancia entre los sensores se puede reducir aún más cuando los sensores se encuentran uno junto a otro si se utiliza la función de prevención de interferencia mutua.

パミ Realización de cálculos, pág. 108

• Enfrentado

(Unidad: mm)

		B Función de prevención de interferencia mutua	
Modelo	Α		
		Utilizado	No se utiliza
ZX-EDR5T	5	3.1	20
ZX-ED01T	10	5.4	50
ZX-ED02T	20	8	50
ZX-EM02T	20	10	50
ZX-EM07MT	100	30	150

Preamplificadores

Instalación

Utilice el soporte de montaje de preamplificador que se adjunta.

El preamplificador también se puede montar en un carril DIN de 35 mm.

Utilice el soporte de montaje para carril DIN de preamplificador ZX-XBE2 (no incluido) si el CHECK! preamplificador se va a montar en un carril DIN.

1. Utilice tornillos M3 para fijar el soporte de montaje de preamplificador que se adjunta.

- 2. Inserte un extremo del preamplificador en el soporte.
- 3. Después, inserte el otro extremo del preamplificador en el soporte.

Método de extracción

Sujete el preamplificador por el centro y levántelo.

Conexiones

En esta sección se describe cómo conectar los componentes del sensor inteligente.

NOTE

Desconecte la alimentación del amplificador antes de conectar o extraer los componentes. El sensor inteligente se puede averiar si se conectan o extraen componentes mientras está conectada la alimentación.

Sensores

No toque los terminales del interior del conector.

Método de conexión

Empuje el conector del sensor en el conector del amplificador hasta que encaje.

Método de extracción

Para desconectar el sensor, sujete el anillo conector y el conector del amplificador, y tire de ellos para extraerlos.

No tire sólo del anillo conector, ya que podría dañarse el cable de entrada del amplificador.

La configuración del amplificador se borrará si se reemplaza el sensor por un modelo diferente.

Unidades de cálculo

Utilice una unidad de cálculo para conectar los amplificadores al realizar cálculos entre los amplificadores y para impedir la interferencia mutua entre los sensores.

El número de amplificadores que se pueden conectar depende de las funciones que se utilicen.

Función	Nº de amplificadores conectables
Cálculo	2
Prevención de interferencia mutua	5

Conecte la alimentación de todos los amplificadores.

Método de conexión

- Abra la tapa del conector de los amplificadores.
 Para abrir la tapa del conector, levántela y deslícela.
- 2. Monte la unidad de cálculo en el carril DIN.
- **3.** Deslice la unidad de cálculo para conectarla al conector del amplificador.
- **4.** Deslice el segundo amplificador para conectarlo al conector de la unidad de cálculo.

Para extraer las unidades de cálculo, lleve a cabo la operación anterior en orden inverso.

Números de canal de los amplificadores

En el siguiente diagrama se indican los números de canal si se conectan varios amplificadores.

Unidades de interfaz

Utilice una unidad de interfaz para conectar un ordenador al sistema de sensor inteligente.

Método de conexión

- **1.** Abra la tapa del conector del amplificador. Para abrir la tapa del conector, levántela y deslícela.
- 2. Monte la unidad de interfaz en el carril DIN.
- **3.** Deslice la unidad de interfaz para conectarla al conector del amplificador.

Para extraer las unidades de interfaz, lleve a cabo la operación anterior en orden inverso.

Si se utilizan varios amplificadores, conecte la unidad de interfaz al amplificador que tenga el número de canal más alto.

Cableado

En el siguiente diagrama se muestran los hilos del cable de salida.

NOTE

Conecte el cable de salida correctamente. El cableado incorrecto puede dañar el sensor inteligente.

(1) La fuente de alimentación eléctrica de 12 a 24 Vc.c. (±10%) se conecta a los terminales de alimentación. Si se utiliza un amplificador con salida PNP, el terminal de alimentación será también el terminal común de todas las E/S, a excepción de la salida lineal.

Utilice una fuente de alimentación estabilizada independiente de otros dispositivos y sistemas de alimentación para el amplificador, en particular si se requiere alta resolución.

- (2) El terminal GND es el terminal de alimentación de 0 V. Si se utiliza un amplificador con salida NPN, el terminal GND será también el terminal común de todas las E/S, a excepción de la salida lineal.
- (3) La salida de discriminación HIGH produce resultados de discriminación HIGH.
- (4) La salida de discriminación PASS produce resultados de discriminación PASS.
- (5) La salida de discriminación LOW produce resultados de discriminación LOW.
- (6) La salida lineal genera una salida de corriente o tensión de acuerdo con el valor medido.
- (7) El terminal GND de salida lineal es el terminal 0 V de la salida lineal.

• Utilice una línea de tierra diferente de la normal para la salida lineal.

• Ponga siempre a tierra el terminal de salida lineal incluso si no se utiliza la salida lineal.

(8) Si la entrada de retención de salida de discriminación está activada, las salidas de discriminación quedan retenidas y no llegan a los dispositivos externos. Active la entrada de retención de salida de discriminación al configurar los valores de umbral.

Si configura los valores de umbral mientras hay conexión a los dispositivos externos, active la entrada de retención de salida de discriminación del amplificador para impedir la modificación de las salidas a los dispositivos externos.

- (9) La entrada de puesta a cero se utiliza para ejecutar y borrar la puesta a cero.
- (10) La entrada de temporización es para la entrada de señal de los dispositivos externos. Utilícela para la temporización de la función de retención.
- (11) La entrada de reset restablece el procesamiento de medidas y las salidas.

Diagramas de circuitos de E/S

Amplificador NPN

Amplificador PNP

Sección 2 PREPARATIVOS PARA LA MEDICIÓN

Sección 3 OPERACIÓN BÁSICA

📕 Esquema de funcionamiento	36
Conocimientos básicos de operación	38
Conmutación de modos	38
Lectura de displays	39
Operaciones con las teclas	40
Configuración de condiciones	41
Introducción de valores numéricos	42
Esquemas de funciones	43
Ajuste de la linealidad	46
Selección del material del objeto detectable	46
Introducción de valores de ajuste	48
Ejecución del ajuste	50
Inicialización de la configuración	51
Esquema de funcionamiento

Conocimientos básicos de operación

Conmutación de modos

El modelo ZX-E dispone de tres modos. Para cambiar de un modo a otro, utilice el interruptor de modo del amplificador. Cambie al modo que desee antes de iniciar la operación.

Modo	Descripción
RUN	Modo de operación normal
Т	Modo de configuración de valores de umbral
FUN	Modo de configuración de condiciones de medida

戊国 Esquemas de funciones, pág. 43

Lectura de displays

Los datos que se muestran en el display principal y el sub-display dependen del modo seleccionado. Al conectar la alimentación por primera vez tras recibir el producto, se muestran los datos en modo RUN.

Modo	Display principal	Sub-display
RUN	Muestra el valor medido (el valor después de que se hayan espe- cificado la condiciones de medida). Por ejemplo, si está configurada la función de retención se mos- trará el valor de retención.	Cambia entre la presentación del valor actual (valor medido real), valor de umbral, valor de salida y resolución, por este orden, si se pulsan las teclas de control. Display del valor de umbral Muestra el valor de umbral HIGH o LOW, en función de la posición del interruptor de umbral. H L La configuración de enfoque del monitor determina si el valor se da como tensión o corriente.
Т	Muestra el valor medido (el valor después de que se hayan espe- cificado las condiciones de medida). Por ejemplo, si está configurada la función de retención se mos- trará el valor de retención.	Muestra el valor del umbral que se configura. Muestra el valor de umbral HIGH o LOW, en función de la posición del interruptor de umbral. H
FUN	Muestra el nombre de las funcio- nes en orden si se pulsan las teclas de control.	Muestra la configuración de la función que aparece en el dis- play principal.

Esquemas de funciones, pág. 43

Presentación de las letras del alfabeto en el display

El alfabeto aparece en el display principal y en el sub-display como se indica en la siguiente tabla.

А	В	С	D	E	F	G	н	Ι	J	К	L	М
8	Ь	c	d	E	F	5	h	ł	1	۲		ñ
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
n	٥	9	9	r	5	٤	L	L	ų	ū	4	-

Operaciones con las teclas

Utilice las teclas de control para cambiar el display y configurar las condiciones de medida.

Las funciones de las teclas vienen determinadas por el modo seleccionado.

Conmutación de modos, pág. 38

Tecla			Función	
		Modo RUN	Modo T	Modo FUN
	Tecla IZQUIERDA	Cambia el contenido del sub-display.	Se utiliza para seleccionar dígitos numéricos.	La función cambia depen- diendo de la configuración.
	Tecla			 Cambia el display de la función.
Teclas	DERECHA			 Selecciona un dígito numérico.
con flecha				 Finaliza la configuración.
neena	Tecla ARRIBA	Ejecuta la salida de temporización.	Se utiliza para cambiar valo- res numéricos.	La función cambia depen- diendo de la configuración.
				Cambia entre selecciones.
	Tecla ABAJO	Restablece la entrada.		 Cambia los valores numéricos.
Tecla ENT		Ejecuta la puesta a	La función cambia depen-	Confirma la condición o
		cero.	diendo de la operación.	valor establecidos.
			 Confirma el valor de umbral. 	
			 Ejecuta teaching. 	

Configuración de condiciones

Muestre la función objetivo en el display principal y seleccione el valor deseado en el sub-display para establecer las condiciones de medida.

En esta sección se utiliza el ejemplo de configuración de una retención de pico como condición de retención para explicar cómo se configuran las condiciones de medida.

	Cambio a modo FUN y HOLD		
1.	Sitúe el interruptor de modo en la posición FUN.	RUN T FUN	
2.	Utilice las teclas IZQUIERDA y DERECHA para mostrar HOLD en el display principal.		POWER ZERO ENABLE
_	Configuración de condiciones de retención		
3.	Pulse la tecla ARRIBA o ABAJO. El valor actualmente seleccionado parpadeará en el sub- display.	$\triangle/ abla$	SUB
4.	Utilice las teclas ARRIBA y ABAJO para seleccionar P-H.	$\hat{\Box} / \nabla$	SUB
	Pulse la tecla IZQUIERDA o DERECHA para cancelar la opción seleccionada. El display volverá a la configura- ción actual (OFF en este ejemplo).		
5.	Una vez que haya terminado de configurar el valor seleccionado, pulse la tela ENT para confirmarlo.		SUB
	La configuración quedará registrada.		

Introducción de valores numéricos

En esta sección se describe cómo introducir valores numéricos de configuración de umbral y salida. Se utilizará el ejemplo de entrada directa del valor de umbral bajo (Low).

Esquemas de funciones

Lectura de cuadros de transición

La sección superior es el display principal y la sección inferior es el sub-display.

Modo RUN

Valor medido (ver nota). (En el display principal siempre aparece el valor medido).

Nota: en el modo FUN, el valor medido y el valor actual aparecen en primer lugar.

Los valores numéricos indicados en el diagrama anterior son sólo ilustrativos. El display real puede ser diferente.

Valores actuales y valores medidos LE pág. 131

Modo T

En el modo T no hay esquema de función.

Los valores numéricos indicados en el diagrama anterior son sólo ilustrativos. El display real puede ser diferente.

En los modos RUN y T, la posición del interruptor de umbral determinará si se muestra el umbral HIGH o LOW.

Si se selecciona ALL, se muestran todas las funciones especiales.

Ajuste de la linealidad

La linealidad del sensor ZX-E se ajusta en fábrica, pero se puede obtener una linealidad más precisa si se ajusta de nuevo para los objetos detectables y el entorno operativo reales.

Ajuste la linealidad antes de configurar las condiciones de medida. La linealidad debe volver a ajustarse también al sustituir los sensores.

Esquema de funcionamiento

Selección del material del objeto detectable

En esta sección se describe cómo seleccionar el material del objeto detectable.

Selección	Material
FE (predetermi- nado)	Hierro
SUS	Acero inoxidable (SUS340)
AL	Aluminio

Linealidad en función del material

心
到
Datos característicos, pág. 139

Para utilizar el ajuste predeterminado de linealidad después de cambiar el material, seleccione el material y lleve a cabo las instrucciones que se proporcionan en **3** *Ejecución del ajuste.*

_	Cambio a modo FUN y LINER		
1.	Sitúe el interruptor de modo en la posición FUN.	RUN T FUN	
2.	Utilice la tecla IZQUIERDA o DERECHA para mostrar LINER en el display principal.		POWER ZERO ENABLE
-	Selección del material del objeto detectable		
3.	Pulse la tecla ENT. Aparecerá METAL.		POWER ZERO ENABLE
4.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\nabla$	SUB
5.	Utilice la tecla ARRIBA o ABAJO para selec- cionar el material.	$\hat{\Box} / \nabla$	SUB
6.	Pulse la tecla ENT para confirmar la selec- ción. La configuración quedará registrada.		SUB

Introducción de valores de ajuste

Ajuste el objeto detectable en las posiciones de 0%, 50% y 100% de la distancia de medida nominal y registre los valores medidos como valores de ajuste.

Distancia de medida nominal

Distancia de medida, pág. 135

Lleve a cabo el registro por orden, comenzando por 0%, después 50% y finalmente 100% de la distancia de medida.

Para reemplazar solamente el material del objeto detectable y utilizar el ajuste de linealidad predeterminado, omita esta operación y lleve a cabo las instrucciones que se proporcionan en 👩 Ejecución del CHECK! ajuste.

Introducción del valor de ajuste de la posición 0%

1. Ajuste el objeto detectable en la posición 0%.

SUB

3. Pulse la tecla ENT.

En el sub-display aparecerá OK y el valor de ajuste quedará registrado.

CHECK!

Introducción del valor de ajuste de la posición 50%

Ejecución del ajuste

En esta sección se describe cómo ejecutar el ajuste en función de la configuración realizada en los pasos 1 y 2.

Ejecución del ajuste

1. Utilice las teclas IZQUIERDA y DERECHA para que aparezca TABLE en el display principal y START en el sub-display.
2. Pulse la tecla ENT.

Se ejecutará el ajuste lineal.

Una vez registrados los datos del ajuste, se mostrará OK en el sub-display.

Si en el sub-display se muestra ERRTB significa que se ha producido un error en la configuración. Compruebe el material seleccionado para el objeto detectable y las posiciones establecidas, y vuelva a registrar la configuración.

Cancelación del ajuste

La configuración del ajuste se borrará si se cancela el ajuste.

 Utilice las teclas IZQUIERDA y DERECHA para que aparezca TABLE en el display principal y CANCL en el sub-display.

La configuración del ajuste actual se cancelará y en el display aparecerá LINER.

Inicialización de la configuración

Inicialice la configuración del ajuste de linealidad para regresar a la configuración predeterminada.

En esta sección únicamente se describe cómo inicializar la configuración del ajuste de linealidad. Para inicializar otra configuración, utilice la función INIT.

Inicialización de la configuración, pág. 125

Combin o mode EUN VI INED		
1. Sitúe el interruptor de modo en la posición FUN.	RUN T FUN	
2. Utilice las teclas IZQUIERDA y DERECHA para mostrar LINER en el display principal.		POWER ZERO ENABLE
Inicialización de la configuración		
3. Pulse la tecla ENT. En el display aparecerá METAL.		POWER ZERO ENABLE
4. Utilice las teclas IZQUIERDA y DERECHA para que aparezca LINIT.		POWER ZERO ENABLE
5. Pulse y mantenga pulsada la tecla ENT. En el sub-display aparecerá un guión (–) cada vez.		POWER ZERO ENABLE (mm)
 6. Suelte la tecla ENT cuando aparezca OK en el sub-display. La configuración del ajuste se ha inicializado. 		SUB

Sección 3 OPERACIÓN BÁSICA

Sección 4 PRINCIPALES APLICACIONES Y MÉTODOS DE CONFIGURACIÓN

Detección del punto muerto inferior	54
Medición de la altura	59
Medición de la excentricidad y la vibración	63
Medición del espesor	66

Detección del punto muerto inferior

En esta sección se describe, como ejemplo, la forma de detectar el punto muerto inferior de una prensa.

CHECK!

Si lleva a cabo ajustes mientras tiene conexión a un dispositivo externo, configure en ON la entrada de retención de salida de discriminación del amplificador, de forma que la salida al dispositivo externo permanezca sin cambios.

Esquema de funcionamiento

Montaje del sensor en la prensa

Monte el sensor y el objeto detectable en la prensa. Consulte el siguiente diagrama para ver la estructura de montaje necesaria.

/(国 Instalación de sensores, pág. 24

Utilice un objeto detectable ferroso y otro que sea del mismo tamaño o mayor que el objeto detectable estándar.

Objeto detectable, pág. 135 1111

Ajuste de la posición de detección

Ajuste la posición del sensor de forma que cuando la prensa se encuentre en la posición de punto muerto inferior, la distancia entre el sensor y el objeto detectable sea aproximadamente la mitad de la distancia de medida. Consulte el display del amplificador mientras ajusta la posición del sensor.

/(国 Distancia de medida, pág. 135

1. Ponga la prensa en el modo de avance lento y baje el descargador (o molde superior) hasta el punto muerto inferior.

2. Ajuste la posición del sensor de forma que se sitúe aproximadamente a la mitad de la distancia de medida.

El valor medido aparecerá en el display del amplificador. Consulte ese display mientras ajusta el sensor.

3 Ajuste de la temporización de medida

La función de retención se utiliza para detectar el punto muerto inferior.

Para omitir los límites al medir durante la operación de la prensa, especifique un retardo desde la señal de temporización hasta el comienzo del muestreo.

Si no es posible introducir la señal de temporización desde el dispositivo, establezca un autodisparador de bajada.

Consulte la *sección 5, Configuración detallada,* para obtener más información acerca de la configuración.

Uso de las funciones de retención, pág. 73

Ajuste de la posición del punto muerto inferior

Establezca el punto muerto inferior como valor de referencia 0.

Consulte la sección 6, Funciones auxiliares, para obtener detalles acerca de la configuración.

Uso de la función de puesta a cero, pág. 119

CHECK!

Configure la comparación de valores anteriores para omitir la ligera fluctuación del punto muerto inferior al inicio de la prensa y la influencia de desvío de temperatura.

Comparación de los valores medidos (comparación de valores anteriores), pág. 80

Puede configurar un valor distinto de 0.

Configuración de valores de compensación, pág. 120

Ajuste de los valores de discriminación de tolerancia

Configure los límites superior e inferior (los valores de umbral HIGH y LOW) para el

intervalo PASS (OK) del valor de referencia establecido en el paso 4.

Configuración	Descripción
Umbral HIGH	Especifique el umbral superior de elevación causado por desechos o residuos.
Umbral LOW	Especifique el umbral inferior de sobrepresión causado por prensar sin pieza de trabajo.

Los resultados de discriminación HIGH, PASS y LOW se producirán en función de los valores de umbral especificados.

Resultado de medida	Discriminación
Resultado de medida > Umbral HIGH	HIGH
Umbral LOW \leq Resultado de medida \leq Umbral HIGH	PASS
Umbral LOW > Resultado de medida	LOW

Consulte la sección 5, Configuración detallada, para obtener más información acerca de la operación.

Introducción de valores umbrales, pág. 89

Medición de la altura

En esta sección se describe cómo medir la altura de un objeto utilizando como ejemplo un remache.

Esquema de funcionamiento

Coloque en posición un objeto detectable real. Prepare con antelación una muestra de referencia.

Montaje en el dispositivo

Monte el sensor en el dispositivo de inspección.

Consulte el siguiente diagrama y prepare una estructura de montaje.

Instalación de sensores, pág. 24

Ajuste de las distancias de medida

Coloque en posición la muestra de referencia y ajuste la posición del sensor. Consulte el display del amplificador y ajuste la posición del sensor de forma que los límites superior e inferior de la altura (H) que se medirá estén dentro de la distancia de medida.

0

En el display del amplificador se muestra la distancia (H) desde la muestra de referencia (predeterminada).

CHECK! El display se puede configurar también para que muestre la altura de la muestra de referencia.

Cambio de escala del display, pág. 82

Ajuste del tiempo de medida

La función de retención se utiliza para la medida de la altura. El valor mínimo (inferior) se conserva durante el período de muestreo.

Si no es posible introducir la señal de temporización desde el dispositivo, establezca un autodisparador de bajada.

La siguiente configuración es necesaria cuando la altura de la muestra de referencia se visualiza utilizando la función de escala:

Diaparador de medida: Autodisparador de subida CHECK! Condición de retención: Retención de pico

Consulte la *sección 5, Configuración detallada*, para obtener más información acerca de la configuración.

Uso de las funciones de retención, pág. 73

Medición de muestras de referencia

La altura de la muestra de referencia se mide mediante teaching de posición y el resultado se registra como el valor de umbral HIGH.

El valor registrado se convierte en la referencia del valor de umbral establecido en el paso 5.

Consulte la sección 5, Configuración detallada, para obtener más información acerca de la configuración.

/(三) Teaching de posición, pág. 91

La altura de la muestra de referencia también se puede establecer en 0.

Uso de la función de puesta a cero, pág. 119

Ajuste de los valores de discriminación de tolerancia

Consulte el umbral HIGH registrado en el paso 4 y configure los límites superior e inferior (umbrales HIGH y LOW) para una discriminación PASS (OK).

Los resultados de discriminación HIGH, PASS y LOW se producirán en función de los valores de umbral especificados.

Resultado de medida	Discriminación
Resultado de medida > Umbral HIGH	HIGH
Umbral LOW \leq Resultado de medida \leq Umbral HIGH	PASS
Umbral LOW > Resultado de medida	LOW

Consulte la sección 5, Configuración detallada, para obtener más información acerca de la operación.

Medición de la excentricidad y la vibración

En esta sección se describe, como ejemplo, la forma de medir la excentricidad de un eje.

Si lleva a cabo ajustes mientras tiene conexión a un dispositivo externo, configure en ON la entrada de retención de salida de discriminación del amplificador, de forma que la salida al dispositivo externo permanezca sin cambios.

Ajuste la linealidad antes de llevar a cabo esta operación.

🗎 Ajuste de la linealidad, pág. 46

Esquema de funcionamiento

Montaje en el dispositivo

Monte el sensor en el dispositivo de inspección.

Consulte el siguiente diagrama y prepare una estructura de montaje.

Instalación de sensores, pág. 24

Ajuste de las distancias de medida

Ajuste la posición del sensor de forma que la distancia (H) entre el sensor y el objeto detectable sea aproximadamente la mitad de la distancia de medida, como se muestra en el diagrama. Consulte el display del amplificador mientras ajusta la posición del sensor.

Distancia de medida, pág. 135

Medición de la deflexión

Utilice la función de retención de pico a pico para medir la deflexión normal. Gire el eje, introduzca una señal de temporización desde un dispositivo externo y mida la deflexión. La diferencia entre los resultados de medida máximo y mínimo (deflexión) se utilizará como referencia al configurar las tolerancias

Consulte la sección 5, Configuración detallada, para obtener más información acerca de la configuración.

Uso de las funciones de retención, pág. 73

Ajuste de los valores de discriminación de tolerancia

Consulte la deflexión medida en el paso 3 y configure el límite superior (umbral HIGH) o el límite inferior (umbral LOW) para una discriminación PASS (OK).

El resultado de discriminación se producirá en función del valor de umbral establecido. La salida dependerá del tipo de umbral configurado.

Salida cuando está configurado el límite superior: PASS o HIGH Salida cuando está configurado el límite inferior: PASS o LOW

Resultado de medida	Discriminación
Resultado de medida > Umbral HIGH	HIGH
Umbral LOW \leq Resultado de medida \leq Umbral HIGH	PASS
Umbral LOW > Resultado de medida	LOW

Consulte la *sección 5, Configuración detallada,* para obtener más información acerca de la configuración.

Introducción directa de los valores umbrales, pág. 90

Medición del espesor

En esta sección se describe cómo medir el espesor, utilizando como ejemplo el espesor de una placa de acero.

Si lleva a cabo ajustes mientras tiene conexión a un dispositivo externo, configure en ON la entrada de retención de salida de discriminación del amplificador, de forma que la salida al dispositivo externo permanezca sin cambios.

Ajuste la linealidad antes de llevar a cabo esta operación.

🗈 Ajuste de la linealidad, pág. 46

Esquema de funcionamiento

Montaje en el dispositivo

Conexión de amplificadores

Conecte dos amplificadores mediante la colocación de una unidad de cálculo entre ellos como se muestra en el diagrama.

El resultado de cálculo se muestra en el amplificador CH2. Conecte el cable de salida CH2 en el dispositivo externo para habilitar el control externo.

En el amplificador CH1 se mostrará el resultado de medida únicamente para el sensor CH1.

Montaje de sensores en el dispositivo de inspección

Consulte el siguiente diagrama y prepare estructuras de montaje. Monte los sensores uno frente a otro.

/ Instalación de sensores, pág. 24

Ajuste de las distancias de configuración

Configure una muestra de referencia con un espesor (T) conocido.

Ajuste los sensores de forma que cada distancia entre la muestra de referencia y los sensores (A y B) sea de aproximadamente la mitad de la distancia de medida. Consulte el display del amplificador cuando ajuste los sensores.

Prevención de interferencia mutua

La configuración de prevención de interferencia mutua es necesaria si la distancia entre los sensores es menor que la distancia de interferencia mutua.

Esta configuración no es necesaria si la separación de los sensores es mayor que la distancia de interferencia mutua.

rencia mutua, pág. 25

La configuración se lleva a cabo en el amplificador CH1. Consulte la sección 6, Funciones auxiliares, para obtener detalles acerca de la configuración.

/(] Prevención de interferencia mutua entre sensores, pág. 112

Configuración de expresiones

Coloque la muestra de referencia y configure la expresión para calcular el espesor de la muestra de referencia.

La configuración se lleva a cabo en el amplificador CH2. Seleccione THICK como tipo de expresión y especifique el espesor (T) de la muestra de referencia.

Al especificar el espesor, quedará registrada la relación de posición entre los sensores en ese punto. El espesor se mide en función de la relación de posición de los sensores.

Consulte la sección 6, Funciones auxiliares, para obtener detalles acerca de la configuración.

Realización de cálculos, pág. 108 /[]]

Ajuste de los valores de discriminación de tolerancia

Configure los límites superior e inferior (umbrales HIGH y LOW) del espesor para una discriminación PASS (OK).

Los resultados de discriminación HIGH, PASS y LOW se producirán en función de los valores de umbral especificados.

Resultado de medida	Discriminación
Resultado de medida > Umbral HIGH	HIGH
Umbral LOW \leq Resultado de medida \leq Umbral HIGH	PASS
Umbral LOW > Resultado de medida	LOW

Consulte la sección 5, Configuración detallada, para obtener más información acerca de las operaciones.

ル国 Introducción directa de los valores umbrales, pág. 90

Sección 5 CONFIGURACIÓN DETALLADA

Configuración del número de muestras a promediar	72
Uso de las funciones de retención	73
Comparación de los valores medidos (comparación de valores anteriores)	80
Cambio de escala del display	82
Introducción de valores umbrales	89
Salida lineal	95
Configuración del tiempo de salida de discriminación (temporizador)	104
Configuración del número de muestras a promediar

El número de muestras a promediar es el número de datos puntuales utilizados para calcular la media de los datos medidos por el sensor. Se obtendrá el valor promedio.

Utilice la función de número de muestras a promediar para omitir las variaciones repentinas en los valores medidos. No obstante, si se incrementa el número de muestras, aumentará el tiempo de respuesta de las salidas de discriminación y de la salida lineal.

Selección del nº de muestras a promediar	Tiempo de respuesta
1	0.3 ms
2	0.5 ms
4	0.8 ms
8	1.5 ms
16	2.5 ms
32	5 ms
64 (predeterminado)	10 ms
128	20 ms
256	40 ms
512	75 ms
1024	150 ms
2048	300 ms
4096	600 ms

Cambio a modo FUN y AVE

Uso de las funciones de retención

Las funciones de retención retienen datos puntuales específicos durante el período de medición, como el valor máximo o mínimo, y producen la salida de dichos valores al final del período de medición.

Esquema de funcionamiento

Selección de la condición de retención de valores medidos

El período de tiempo desde el inicio de las medidas de retención hasta el final de las mismas se denomina período de muestreo.

Aquí se selecciona el valor a retener durante dicho período de muestreo.

El valor CLAMP aparece hasta que finaliza el primer período de muestreo.

Como valor a retener se puede seleccionar cualquiera de las 5 configuraciones que se indican en la tabla.

Selección	Descripción		
OFF (Predeterminado)	No se realiza la retención de medida. Siempre se produce la salida del valor medido.		
P-H (retención de pico)	Retiene el valor máximo durante el período de muestreo. La salida cambia cuando el período de muestreo finaliza y, después, se retiene hasta el final del siguiente período de muestreo.		
	Valor medido actual Periodo de muestreo		
B-H (retención de mínimo)	Retiene el valor mínimo durante el período de muestreo. La salida cambia al final del período de muestreo y se retiene hasta el final del siguiente período de muestreo.		
	Valor medido actual Periodo de muestreo		

Selección	Descripción
PP-H (retención de pico a pico)	Retiene la diferencia entre los valores máximo y mínimo. Esta opción se selec- ciona principalmente al detectar vibración. La salida cambia al final del período de muestreo y se retiene hasta el final del siguiente período de muestreo.
	Valor medido actual
S-H (retención de mues- tra)	Retiene el valor medido al comienzo del período de muestreo. La salida cambi al comienzo del período de muestreo y se retiene hasta el comienzo del siguiente período de muestreo.
	Valor medido actual Periodo de muestreo
AVE-H (retención pro- medio)	Retiene el valor medido promedio durante el período de muestreo. La salida cambia al final del período de muestreo y se retiene hasta el final del siguiente período de muestreo.
	Valor medido actual Periodo de muestreo
l Cambio a modo FUN y HC	
Sitúe el interruptor FUN. Utilice las teclas IZ para mostrar HOLD Selección de la condición de	de modo en la posición RUN T FUN QUIERDA y DERECHA en el display principal.
Puise la tecla ARRIE El sub-display parpadeará	
Utilice las teclas A seleccionar la condic	RRIBA y ABAJO para
Pulse la tecla ENT ción.	para confirmar la selec-

La configuración quedará registrada.

2

Configuración del disparador de medida en el modo de retención

Seleccione el método de entrada para la temporización de inicio y fin del período de medición.

Selección	Descripción		
TIMIG (Entrada de temporiza- ción)	Especifique el activador de inicio del muestreo mediante la entrada de tempori- zación. El período durante el que la señal de temporización está en ON es el período de muestreo.		
	Entrada ^{ON} Temporización _{OFF} Periodo de muestreo		
(Predeterminado)	Si hay un retardo configurado, el tiempo OFF de entrada y el final del período de muestreo no serán sincrónicos. El muestreo terminará cuando haya finalizado el período de muestreo especificado.		
UP (Autodisparador de subida)	El período de muestreo es el período durante el que el valor medido es mayor que el nivel de disparo especificado. La retención de medida es posible sin una entrada de sincronización.		
	Nivel de disparo Valor medido Período de muestreo Nivel de (para disparo) • Valor de operación • Valor de operación • Valor de anulación		
	Si hay configurado un retardo, no coincidirá el momento en el que el valor medido sea menor que el nivel de autodisparo y el momento en que finalice el periodo de muestreo. El muestreo terminará cuando haya finalizado el período de muestreo especificado.		
DOWN (Abajo) (Autodisparador de bajada)	El período de muestreo es el período durante el que el valor medido es menor que el nivel de disparo especificado. La retención de medida es posible sin una entrada de sincronización.		
	Valor medido Nivel de disparo Nivel de muestreo Ancho de histéresis (para disparo) • Valor de operación • Valor de anulación		
	Si hay configurado un retardo, el tiempo durante el que el valor medido es mayor que el nivel de disparo y el final del período de muestreo no CHECK! coincidirán.		

Histéresis (ancho de histéresis)

Configure la histéresis en función de la fluctuación de los valores medidos sobre el nivel de disparo. La histéresis se aplicará desde el inicio del período de muestreo e impedirá la vibración de entrada de temporización.

Sección 5 CONFIGURACIÓN DETALLADA

Selección del tipo de activador

Configuración de niveles de activación (si está seleccionado UP o DOWN)

Configuración del ancho de histéresis (si está seleccionado UP o DOWN)

9. Utilice las teclas IZQUIERDA y DERECHA para mostrar H-HYS en el display principal. H-HYS no aparecerá si la entrada de temporización (TIMIG) está seleccionada como activador. **10.** Pulse la tecla ARRIBA o ABAJO. El dígito situado más a la izquierda en el sub-display parpadeará. 11. Utilice las teclas de flecha para configurar el Desplazarse entre dígitos ancho de histéresis para el nivel de disparo. Aumentar y disminuir el valor numérico 12. Pulse la tecla ENT para confirmar la configuración.

El ancho de histéresis quedará registrado.

Configuración del retardo

El retardo se configura para omitir las medidas inmediatamente después de la entrada de temporización. Esto resulta útil para evitar los límites durante el inicio del dispositivo y la influencia de la vibración de la máquina.

Se pueden configurar el retardo (retraso entre la entrada de temporización y el inicio del muestreo) y el período de muestreo.

La configuración predeterminada de retardo es OFF.

La suma del retardo y el período de muestreo debe ser menor que el intervalo a ON de entrada de temporización.

Si la siguiente entrada de temporización de medida se recibe antes de que hayan transcurrido el CHECK! retardo y el período de muestreo, la entrada de temporización se omitirá y no se reflejará en el muestreo.

Cambio a retención de retardo (H-DLY)

1.	Utilice las teclas IZQUIERDA y DERECHA para mostrar H-DLY en el display principal. H-DLY no aparecerá si las condiciones de retención están configuradas en OFF.		POWER ZEROJ ENABLE (mm)
2.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\overline{\Box}$	SUB
3.	Utilice las teclas ARRIBA y ABAJO para que en el display aparezca ON.	$\hat{\Box}/ \nabla$	SUB
4.	Pulse la tecla ENT. Se habilita el modo de configuración de la función H- DLY.		SUB

Comparación de los valores medidos (comparación de valores anteriores)

Utilice la función de comparación de valores anteriores para omitir los cambios graduales en los valores medidos a través del tiempo, debido a factores como el desvío de temperatura, así como detectar y discriminar únicamente los cambios repentinos.

La función de retención debe estar configurada para que se pueda configurar la comparación de valores anteriores. La diferencia del valor de retención anterior con una discriminación PASS se convierte en el valor medido. Por ejemplo, si la discriminación de dicha medida anterior es HIGH o LOW, la comparación se realiza con el valor de retención anterior a ése.

La configuración del ancho de histéresis se desactivará si se utiliza la función de comparación de valores anteriores.

Ajuste de la histéresis, pág. 94

2. Utilice las teclas IZQUIERDA y DERECHA para mostrar SPCL en el display principal.

Cambio de escala del display

Cambie la escala del display si desea mostrar en el display principal un valor diferente del valor medido real.

Coloque el objeto detectable en posición y lleve a cabo la configuración de escala de un punto o dos puntos.

Esta configuración de escala sólo se refleja en el display. La salida no cambia.

El valor visualizado mínimo es -19,999 y el máximo es 59,999. Si el resultado de medida es menor que el valor visualizado mínimo después de ejecutar la escala, el valor visualizado será -19,999. Si el resultado de CHECK! medida es mayor que el máximo, el valor visualizado será 59,999.

Ejemplo de aplicación de escala

NOTE

La configuración que se indica a continuación revierte a los valores predeterminados al configurar la escala. Lleve a cabo la configuración de estos elementos después de completar la configuración de escala.

/[三] Nivel de autoactivación, pág. 75

Configuración de salida (ajuste de la salida monitor), pág. 95

Uso de la función de puesta a cero, pág. 119

Cálculo de espesores, pág. 110

Escalado de un punto

Con el escalado de un punto, la medida se realiza para una posición y se establece un valor de compensación para dicha medida. Se puede configurar la inversión de los valores de compensación y visualizado (cambio de la relación entre los valores de aumento y disminución).

En esta sección se describe cómo llevar a cabo la configuración del escalado de un punto, utilizando un ejemplo diferente.

Ejemplo: visualización de la altura del objeto detectado

- 6. Utilice las teclas IZQUIERDA y DERECHA para mostrar SCALE en el display principal.

Ejecución de la escala

- Pulse la tecla ARRIBA o ABAJO. SUB El sub-display parpadeará. 8. Utilice las teclas ARRIBA y ABAJO para que en el display aparezca ON. SUB 9. Pulse la tecla ENT para confirmar la configuración. En el sub-display aparecerá P1SCL.
- 10. Coloque el objeto detectable en la posición donde se requiere el cambio del valor visualizado.
 - Coloque el objeto detectable dentro de la distancia de medida. El indicador ENABLE se iluminará NOTE cuando el objeto detectable se encuentre dentro de la distancia de medida. La escala no es posible si el objeto detectable no se encuentra dentro de la distancia.
- **11.** Pulse una de las teclas de flecha. El valor medido actual aparecerá en el display principal. El dígito situado más a la izquierda en el sub-displav parpadeará.

12. Utilice las teclas de flecha para configurar la compensación del valor medido en el subdisplay.

> La posición del punto decimal se puede cambiar mediante los siguientes pasos.

13. Pulse la tecla ENT para confirmar la configuración.

El punto decimal parpadeará.

14. Utilice las teclas IZQUIERDA y DERECHA para cambiar la posición del punto decimal si es necesario.

Sección 5 CONFIGURACIÓN DETALLADA

Confirmación de que la escala se ha completado

Si la escala se ha completado correctamente, en el display aparecerá OK.

Si la escala no se ha podido completar, en el display aparecerá NG.

Compruebe que el objeto detectable se encuentra dentro de la distancia medida y ejecute de nuevo la escala.

Escalado de dos puntos

La medida se realiza en dos posiciones y se establecen los valores de compensación para dichas medidas. Se puede configurar una compensación general y se puede cambiar el intervalo. En esta sección se describe cómo configurar la escala de dos puntos, utilizando como ejemplo la corrección de valores visualizados para que coincidan con las distancias reales. Ejemplo: corrección de los valores visualizados para adaptarlos a las distancias reales

NOTE

Coloque los dos puntos especificados con una separación mínima del 1% de la distancia de medida nominal del sensor conectado.

Por ejemplo, la distancia de medida nominal del sensor ZX-ED01T es 1 mm. Por lo tanto, los dos puntos especificados deben tener una separación de 10 μ m como mínimo.

Configuración del primer punto

 Para configurar el primer punto, siga los pasos del 1. al 15. del procedimiento para escala de un punto.

pág. 84

El intervalo de la escala de dos puntos se configura automáticamente en función de los valores especificados para los dos puntos. La configuración de display invertido se omite.

Configuración del segundo punto

NOTE

El objeto detectable debe configurarse en una distancia de al menos el 1% de la distancia de medida nominal con respecto al primer punto y también a una distancia dentro del margen de medición.

- 3. Pulse una de las teclas de flecha. El valor medido actual aparecerá en el display principal. El dígito situado más a la izquierda en el sub-display parpadeará.
 4. Utilice las teclas de flecha para configurar la compensación del valor medido. La posición del punto decimal se puede cambiar mediante los siguientes pasos.
 5. Pulse la tecla ENT para confirmar la configu-
- Pulse la tecla ENT para confirmar la configuración.

El punto decimal parpadeará.

- Utilice las teclas IZQUIERDA y DERECHA para mover el punto decimal.
- Pulse la tecla ENT para confirmar la configuración.

Confirmación de que se ha completado la configuración de escala

Si la escala se ha completado correctamente, en el display aparecerá OK.

Si la escala no se ha completado, en el display aparecerá NG. Realice las siguientes comprobaciones y, después, ejecute de nuevo la escala.

- ¿Se encuentra el objeto detectable dentro de la distancia de medida?
- ¿La separación entre los dos puntos es de al menos el 1% de la distancia de medida nominal?

Introducción de valores umbrales

Los valores umbrales se establecen para determinar el intervalo de discriminación PASS. Se configuran los valores de umbral HIGH y LOW. Existen tres salidas de discriminación: ALTO (HIGH), PASO (PASS) y BAJO (LOW).

En la siguiente tabla se describen los tres métodos para configurar los valores umbrales.

Método	Descripción
Entrada directa	Configura los valores umbrales mediante la entrada directa de valores numéricos. La entrada directa es útil si se conocen las dimensiones de una discriminación OK o si se desea ajustar los valores umbrales después del teaching.
Teaching de posición	Realiza la medida y utiliza los resultados de medida para configurar los valores umbrales. El teaching de posición es útil si se pueden obtener con antelación muestras de umbral, es decir, con los límites superior e inferior.
Teaching automático	Realiza la medida de forma continua mientras se mantienen pulsadas las teclas y establece las medidas máxima y mínima durante dicho período como los valores umbrales. El teaching automático es útil si se desea establecer los valores umbrales arrancando el dispositivo y obteniendo medidas reales.

La histéresis (ancho de histéresis) también se puede configurar para los valores umbrales. Configure la histéresis cuando la discriminación sea inestable para impedir la vibración. / () pág. 94

NOTE

Si lleva a cabo ajustes mientras tiene conexión a un dispositivo externo, configure en ON la entrada de retención de salida de discriminación del amplificador, de forma que la salida al dispositivo externo permanezca sin cambios. Las salidas de discriminación en el modo T serán las mismas que en el modo RUN, es decir, HIGH, PASS y LOW.

Introducción directa de los valores umbrales

Los valores umbrales se pueden configurar mediante la introducción directa de los valores numéricos.

La entrada directa es útil si las dimensiones de una discriminación OK se conocen con antelación o si se ajustan los valores umbrales después del teaching.

Teaching de posición

Al ejecutar el teaching, se realiza la medida y los valores medidos se establecen como los valores umbrales.

El teaching de posición es útil si se pueden obtener con antelación muestras de umbral, es decir, con los límites superior e inferior.

Los valores de umbral configurados con teaching de posición se pueden cambiar mediante entrada directa.

Esto es útil al configurar tolerancias de discriminación para los valores medidos.

(三) pág. 90

Teaching automático

Cuando se ejecuta el teaching automático, la medición se realiza mientras se mantienen pulsadas las teclas y las medidas máxima y mínima durante dicho período se establecen como los valores umbrales.

El teaching automático es útil si se desea establecer valores umbrales arrancando el dispositivo y obteniendo medidas reales.

La configuración de retención, modo de activación y escala realizada antes del teaching se refleja en las medidas de teaching.

El interruptor de umbral se puede configurar en cualquier posición. Se configurarán los umbrales HIGH y LOW, con independencia de la posición del interruptor.

Configuración de los valores de umbral

3. Inicie la medición.

La medición continuará mientras se mantengan pulsadas las teclas ENT y DERECHA.

AUTOT parpadeará en el sub-display cuando las teclas se hayan mantenido pulsadas durante un segundo.

4. Suelte las teclas ENT y DERECHA para finalizar la medición.

El valor de medida máximo durante el período de medición se configurará como el valor umbral HIGH y el mínimo se configurará como el valor umbral LOW.

El nuevo valor umbral (HIGH o LOW, en función de la posición del interruptor de umbral) aparecerá en el subdisplay.

CHECK!

Los valores umbrales configurados con teaching de posición se pueden cambiar mediante entrada directa.

Esto es útil al configurar tolerancias de discriminación para los valores medidos.

Ajuste de la histéresis

Configure el ancho de histéresis para los límites superior e inferior de la discriminación si los valores de discriminación HIGH, PASS o LOW son inestables cuando están próximos a los valores umbrales

Si aparece un error, los valores umbrales no se han actualizado. Configúrelos de nuevo o cámbielos.

Salida lineal

Configuración de salida (ajuste de la salida monitor)

La salida lineal hace referencia a la conversión de los resultados de medida en una salida de corriente de 3 a 21 mA o una salida de tensión de –5 a 5 V. En esta sección se describe cómo elegir la salida de corriente o tensión, y cómo configurar el intervalo de salida lineal. Ajuste la configuración para que coincida con la del dispositivo externo conectado.

Especifique los valores de salida para dos valores actuales o valores de tensión cualesquiera para configurar el intervalo de salida.

Ejemplo:

Configuración de salida 0.2 mm a 4 mA y salida de 0.8 mm a 20 mA (para salida de corriente)

Coloque los dos puntos especificados con una separación mínima del 1% de la distancia de medida nominal para el sensor conectado.

Por ejemplo, la distancia de medida nominal para el sensor ZX-ED01T es 1 mm. Por lo tanto, los dos puntos especificados deben tener una separación de 10 μ m como mínimo.

Si se utiliza la función de puesta a cero,

la puesta a cero se anula al configurar la salida monitor. Ejecute de nuevo la puesta a cero después de configurar la salida monitor.

En esta sección se describe cómo configurar el intervalo de salida, utilizando como ejemplo la salida de corriente con un intervalo con las siguientes conversiones: de 0.2 mm a 4 mA y de 0.8 mm a 20 mA.

Cambie los valores del ejemplo para ajustarlos a una salida de tensión según sea necesario.

- 1. Desconecte la alimentación del amplificador.
- 2. Sitúe el interruptor de corriente/tensión en la posición de salida de corriente. El interruptor se encuentra en la parte inferior del amplificador.

Cambio a modo FUN y SPCL

3. Conecte la alimentación y sitúe el interruptor de modo en la posición FUN.

RUN т FUN

4. Utilice las teclas IZQUIERDA y DERECHA para mostrar SPCL en el display principal.

Cambio a FOCUS

- 5. Pulse la tecla AR El sub-display parpad
- 6. Utilice las teclas A trar SET o ALL.
- 7. Pulse la tecla EN

RIBA o ABAJO. leará.	\triangle / \Box	
ARRIBA y ABAJO para mos-	$\hat{\Box}/\overline{\Box}$	SUB
Т.		SUB

8. Utilice las teclas IZQUIERDA y DERECHA para mostrar FOCUS en el display principal.

Selección de salida de corriente (mA) o tensión (V)

9. Pulse la tecla ARRIBA o ABAJO.

El sub-display parpadeará.

10. Muestre mA.

CHECK!

Seleccione siempre la misma salida que la posición del interruptor de corriente/tensión situado en la parte inferior del amplificador.

Configuración del primer punto (A)

11. Pulse la tecla ENT.

El display cambiará para permitir la configuración del primer punto. El valor de corriente de salida aparecerá en el display principal, el valor medido correspondiente aparecerá en el sub-display y el dígito situado más a la izquierda parpadeará.

12. Configure el valor de corriente de salida y el valor medido correspondiente para el primer punto.

Configure un valor medido dentro del margen de medición. Si se ha configurado la escala o el cálculo, configure un valor que refleje dicha configuración.

El dígito intermitente, es decir, el dígito para el que se puede especificar un valor, cambiará como se indica en el diagrama.

Se confirmará la configuración del primer punto. Después, aparecerá la pantalla para configurar el segundo punto.

Configuración del segundo punto (B)

- **14.** Utilice el mismo procedimiento que para el primer punto para configurar el valor de corriente de salida y el resultado de medida correspondiente para el segundo punto.
- **15.** Pulse la tecla ENT para confirmar la configuración.

Confirmación de que se ha completado la configuración la salida monitor

Si la salida monitor se ha configurado correctamente, en el display aparecerá OK.

Si la configuración es incorrecta, en el display aparecerá NG.

Si la configuración es incorrecta, realice las siguientes comprobaciones y configure de nuevo la salida monitor.

- ¿Se encuentra el valor medido configurado en el subdisplay dentro del margen de medición (con la configuración de escala y cálculo si se han configurado)?
- ¿La separación entre el primer punto y el segundo es de al menos el 1% de la distancia de medida nominal?
- ¿Son iguales los valores de corriente (o tensión) de ambos puntos?

Corrección de los valores de salida lineal

Pueden producirse discrepancias entre los valores de corriente (o tensión) de salida lineal configurados en el amplificador y los valores de corriente (o tensión) actuales reales medidos debido a las condiciones del dispositivo externo conectado, entre otros factores. Para corregir esta discrepancia se puede utilizar la función de corrección de salida lineal.

Los valores de salida se corrigen mediante la introducción del valor de corrección para los valores de corriente o tensión de dos puntos cualesquiera.

Configure la función de la salida monitor y seleccione previamente la salida de corriente o tensión.

En esta sección se utiliza una salida de corriente como ejemplo. Cambie los valores de este ejemplo para la salida de tensión según sea necesario.

1. Conecte la salida lineal a un amperímetro externo.

Cambio a modo FUN y SPCL

	l	
UN	т	FUN

3. Utilice las teclas IZQUIERDA y DERECHA para mostrar SPCL en el display principal.

	Cambio a LEFT-ADJ		
4.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\overline{\Box}$	
5.	Utilice las teclas ARRIBA y ABAJO para mos- trar SET o ALL.	$\hat{\Box}/ \overline{\Box}$	SUB

6. Pulse la tecla ENT.

7. Utilice las teclas IZQUIERDA y DERECHA para mostrar L-ADJ en el display principal.

Las unidades de la configuración de la salida monitor (mA o V) aparecerán en el sub-display.

8. Pulse la tecla ENT.

0 CHECK!

El display cambiará a la configuración del primer punto (A). El valor de corriente de salida aparecerá en el display principal, la corrección aparecerá en el sub-display y el dígito situado más a la izquierda parpadeará.

Configuración del primer punto (A)

9. Configure los valores de corriente de salida y corrección del primer punto.

Ajuste el valor de corrección que aparece en el sub-display de forma que la lectura del amperímetro y la corriente de salida que se muestran en el display principal sean iguales. Cuanto mayor sea el valor de corrección, mayor será la corriente de salida.

El valor de corrección se puede configurar en el intervalo entre -999 y 999. Para especificar un valor negativo, haga que parpadee el dígito situado más a la izquierda en el sub-display y cambie el valor.

> El dígito intermitente, es decir, el dígito para el que se puede especificar un valor, cambiará como se indica en el diagrama.

> > Se desplaza

un díaito

ada vez

SUB

Desplazamiento

de dígitos en el

sub-display

SUB

SUB

SUB

Sección 5

10. Pulse la tecla ENT para confirmar la configuración.

Se confirmará el valor de corrección del primer punto.

Después, aparecerá la pantalla para configurar el valor de corrección del segundo punto.

Configuración del segundo punto (B)

11. Para configurar el valor de corrección del segundo punto, utilice el mismo procedimiento que para el primer punto.

12. Pulse la tecla ENT.

Confirmación de los resultados de la configuración

Si la corrección de salida lineal se ha registrado correctamente, en el sub-display aparecerá OK.

Si la corrección no se registra correctamente, en el display aparecerá NG.

Compruebe que el valor de corriente (o tensión) de ambos puntos no es igual y ejecute de nuevo el procedimiento.

Configuración de salida para no medición

Se puede configurar el método de salida lineal para el caso de introducir un reset.

Soloosión	Salidas		
Seleccion	Salidas de discriminación	Salida lineal	
KEEP (predetermi- nado)	Se mantiene y se produce la salida del estado inmediatamente anterior a la interrup- ción de la medición.		
CLAMP	Todas OFF.Produce la salida del valor CLAMP establecido.Están disponibles las siguientes opciones.		
		 Para salida de corriente: de 3 a 21 mA o máximo (aprox. 23 mA) 	
		 Para salida de tensión: de -5 a 5 V o máximo (aprox. 5.5 V) 	

Para medidas de retención

Incluso si se configura KEEP, la salida anterior a la obtención del primer valor de retención será la CHECK! misma que CLAMP.

	Cambio a modo FUN y SPCL		
1.	Sitúe el interruptor de modo en la posición FUN.	RUN T FUN	
2.	Utilice las teclas IZQUIERDA y DERECHA para mostrar SPCL en el display principal.		POWER ZERO ENABLE
_	Cambio a RESET		
3.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\overline{\Box}$	
4.	Utilice las teclas ARRIBA y ABAJO para que en el display aparezca ETC o ALL.	$\hat{\Box}/ \overline{\lor}$	SUB
5.	Pulse la tecla ENT.		SUB

6. Utilice las teclas IZQUIERDA y DERECHA para mostrar RESET en el display principal.

Selección del estado de salida para no medición

7.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\nabla$	SUB
8.	Utilice las teclas ARRIBA y ABAJO para seleccionar KEEP o CLAMP.	$\hat{\Box}/\overline{\Box}$	
9.	Pulse la tecla ENT para confirmar la selec- ción. El estado de salida quedará registrado. Después, configure el valor de fijación si está seleccio- nado CLAMP.		
•	Configuración de valores de fijación (si CLAMP está seleco	ionado)	
10.	Utilice las teclas IZQUIERDA y DERECHA para mostrar CLAMP en el display principal. CLAMP no se puede mostrar si se ha seleccionado KEEP.		POWER ZERO ENABLE
11.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\overline{\Box}$	SUB
12.	Seleccione el valor de fijación.	$\hat{\Box}/\nabla$	SUB

13. Pulse la tecla ENT para confirmar la configuración.

El valor de fijación quedará registrado.

2

SUB

Configuración del tiempo de salida de discriminación (temporizador)

El tiempo de las salidas de discriminación se puede ajustar al funcionamiento de los dispositivos externos.

Selección		Descripción
OFF (predeterminado)	Produce la salida de discriminación en cuanto se confirma el resultado de discriminación.	Valor umbral HIGH
		Valor umbral LOW
		Salida HIGH ON
		Salida PASS ON
		Salida LOW OFF
OFF-D (Temporizador de retardo a OFF)	Después de confirmar el resultado de medida, retrasa la desactivación (OFF) de la salida PASS durante el tiempo del temporizador.	Valor medido Valor umbral HIGH
	También retrasa la activación (ON) de las salidas HIGH y LOW durante el tiempo del temporizador.	Valor umbral LOW
		Salida HIGH ON OFF
		Salida PASS ON
		Salida LOW OFF
		Tiempo del temporizador
ON-D (Temporizador de retardo a ON)	Después de confirmar el resultado de medida, retrasa la activación (ON) de la salida PASS durante el tiempo del temporizador.	Valor medido Valor umbral HIGH
	También retrasa la desactivación (OFF) de las salidas HIGH y LOW durante el tiempo del temporizador.	Valor umbral LOW
		Salida HIGH ON OFF
		Salida PASS ON OFF
		Salida LOW ON OFF
		Tiempo del temporizador
1-Sht (Temporizador de un impulso)	Cuando el valor medido cambia de HIGH a PASS o de LOW a PASS, activa (ON) la salida PASS con una duración de impulso equivalente al tiempo seleccionado.	Valor medido Valor umbral HIGH
	No se produce la salida de HIGH ni LOW.	Valor umbral LOW
		Salida HIGH ON
		Salida PASS ON
		Salida LOW OFF
		Tiempo del temporizador

En la siguiente descripción se utiliza el temporizador de retardo a OFF como ejemplo. Realice los ajustes necesarios si se utilizan otros temporizadores.

7. Pulse la tecla ARRIBA o ABAJO. El dígito situado más a la izquierda en el sub-display parpadeará.
8. Utilice las teclas de flecha para configurar el tiempo del temporizador (ms).
9. Pulse la tecla ENT para confirmar la configurar la configurar el valor numérico

El tiempo del temporizador quedará registrado.

Sección 6 FUNCIONES AUXILIARES

Medición con múltiples amplificadores	108
Cambio del número de dígitos en el display	115
Inversión del display	116
Ajuste de la luminosidad del display (display ECO)	118
Uso de la función de puesta a cero	119
Función Protección de teclado	124
Inicialización de la configuración	125
Medición con múltiples amplificadores

En esta sección se describe la configuración cuando se utilizan unidades de cálculo para conectar varios amplificadores.

Realización de cálculos

Se pueden calcular resultados de medida entre 2 amplificadores. La expresión se configura en el amplificador CH2 y la salida de los resultados del cálculo también se produce desde el amplificador CH2. Se pueden realizar cálculos también entre sensores con diferentes distancias de medida.

En la siguiente tabla se describen los 3 tipos de expresiones.

Tipo de expresión	Descripción
A+B	Suma los resultados de medida de dos amplificadores.
A–B	Resta los resultados de medida de dos amplificadores. (A: amplificador CH2; B: amplificador CH1).
THICK	Calcula el espesor de un objeto detectable fijado entre dos sensores.

El tiempo de respuesta de los amplificadores CH2 para los que se han configurado expresiones se incrementa en 1.0 ms. El tiempo de respuesta también se ve afectado por la configuración del número de muestras a promediar, por lo que el tiempo de respuesta estará basado en el número seleccionado de muestras a promediar + 1.0 ms.

Configuración del número de muestras a promediar, pág. 72

Los amplificadores serie ZX-L (tipo láser) no pueden realizar cálculos.

Suma y resta de resultados de medida

Se utiliza la expresión A+B o A–B. La configuración se lleva a cabo en el amplificador CH2.

_	Cambio a FUN y CALC		
1.	Sitúe el interruptor de modo en la posición FUN en el amplificador CH2.	RUN T FUN	
2.	Utilice las teclas IZQUIERDA y DERECHA para mostrar CALC en el display principal.		POWER ZERO ENABLE
_	Selección de expresiones		
3.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\overline{\Box}$	SUB
4.	Utilice las teclas ARRIBA y ABAJO para seleccionar el tipo de expresión.	$\hat{\Box}/\nabla$	SUB
5.	Pulse la tecla ENT para confirmar la selec- ción. La expresión quedará registrada.		SUB

Cálculo de espesores

Se utiliza la expresión THICK. Prepare con antelación un objeto detectable de espesor conocido (objeto detectable estándar). La configuración se lleva a cabo en el amplificador CH2.

Cambio a FUN y CALC

- **1**. Coloque el objeto detectable estándar en posición.
- 2. Sitúe el interruptor de modo en la posición FUN en el amplificador CH2.

	l	
UN	Т	FUN

3. Utilice las teclas IZQUIERDA y DERECHA para mostrar CALC en el display principal.

Selección de expresiones

Soluciones para los errores de configuración

1 Espesor

А

В

Ajuste la posición del objeto de referencia hasta que el indicador ENABLE se ilumine en ambos amplificadores y ejecute de nuevo la medida.

Prevención de interferencia mutua entre sensores

Los sensores se pueden instalar uno junto a otro si se utiliza la función de prevención de interferencia mutua. La prevención de interferencia mutua se puede aplicar a un máximo de 5 amplificadores.

Configure el mismo número de muestras a promediar para todos los amplificadores.

/(国) Configuración del número de muestras a promediar, pág. 72

El tiempo de respuesta es mayor cuando se utiliza la función de prevención de interferencia mutua.

- Tiempo de respuesta = (15 ms + tiempo de respuesta basado en el número seleccionado de muestras a promediar) × número de amplificadores
- Si se utiliza también la función de cálculo, el tiempo de respuesta de nuevo será mayor en aproximadamente 15 ms.
- Los tiempos de respuesta de las señales de entrada externas también son mayores en la misma cantidad.

Tiempo de respuesta, pág. 131

Distancia entre sensores si no se utiliza la función de prevención de interferencia mutua

La configuración de prevención de interferencia mutua se lleva a cabo en el amplificador CH1.

Sección 6 FUNCIONES AUXILIARES

Selección del número de unidades instaladas

Configuración del número de muestras a promediar

14. Configure el mismo número de muestras a promediar para todos los amplificadores.

Configuración del número de muestras a promediar, pág. 72

Cambio del número de dígitos en el display

Seleccione el número de dígitos para el display principal y el sub-display en el modo RUN. La configuración predeterminada es 5 dígitos. Si se configuran 4 dígitos o menos, los dígitos se deshabilitan comenzando por el situado más a la derecha.

	Cambio a FUN y SPCL		
1. 2.	Sitúe el interruptor de modo en la posición FUN. Utilice las teclas IZQUIERDA y DERECHA para mostrar SPCL en el display principal.	RUN T FUN	FOWER ZERG ENABLE
3.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/ \overline{\Box}$	
4.	Utilice las teclas ARRIBA y ABAJO para que en el display aparezca DISP o ALL.	$\hat{\Box}/\overline{\Box}$	SUB
5.	Pulse la tecla ENT.		SUB SP
6.	Utilice las teclas IZQUIERDA y DERECHA para mostrar DIGIT en el display principal.		POWER ZERO ENABLE
	Selección del número de dígitos		
7.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/ \nabla$	
8.	Utilice las teclas ARRIBA y ABAJO para seleccionar el número de dígitos del display.	$\hat{\Box}/ \overline{\Box}$	
9.	Pulse la tecla ENT para confirmar la configu- ración.		

Inversión del display

El display principal y el sub-display se pueden invertir, es decir, colocar boca abajo. El funcionamiento de las teclas de flecha también se invertirá. Esta función es útil si se monta el amplificador boca abajo en un dispositivo.

Cambio a FUN y SPCL

1. Sitúe el interruptor de modo en la posición FUN. RUN FUN 2. Utilice las teclas IZQUIERDA y DERECHA POWER para mostrar SPCL en el display principal. Cambio a DREV **3.** Pulse la tecla ARRIBA o ABAJO. SUB _ El sub-display parpadeará. 4. Utilice las teclas ARRIBA y ABAJO para que en el display aparezca DISP o ALL. SUB 5. Pulse la tecla ENT. SUB 6. Utilice las teclas IZQUIERDA y DERECHA para mostrar DREV en el display principal.

Selección de si se invierte o no el display

- 7. Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.
- 8. Seleccione OFF u ON. OFF: display no invertido (predeterminado) ON: display invertido

La configuración del display quedará registrada. Si se selecciona ON, el display se invertirá.

ción.

Sección 6 Inversión del display

Ajuste de la luminosidad del display (display ECO)

Si se utiliza la función de display ECO, los displays no se iluminan, lo que reduce el consumo eléctrico.

Sección 6 Ajuste de la luminosidad del display (display ECO)

Uso de la función de puesta a cero

Si se utiliza la función de puesta a cero, el valor de referencia "0" se registra como la altura y el valor medido se puede mostrar y obtener como una desviación positiva o negativa (tolerancia) con respecto al valor de referencia.

En el modo RUN, el valor medido se puede poner a 0 en cualquier tiempo durante la medición.

Ejemplo 1: uso de la altura del objeto detectable registrado como valor de referencia y la salida de tolerancia como valor medido

Ejemplo 2: uso de la altura del objeto detectable como valor medido con una compensación de 10

Ejemplo 3: uso de la puesta a cero para medir pasos en el objeto detectable (puesta a cero en cada medida)

Si se utiliza la puesta a cero en cada medida, cambie la configuración para desactivar la memoria de puesta a cero. $\eta = 1$ pág. 122

Configuración de valores de compensación

Configure un valor de compensación si el valor de referencia de puesta a cero es distinto de 0.

Ejecución de la puesta a cero

Cuando se utiliza la función de puesta a cero, el valor medido se puede restablecer a un valor de referencia de 0 si se pulsa la tecla ENT o se introduce una señal externa.

Si ya se ha ejecutado la puesta a cero, ese valor se sobrescribirá. La configuración se guarda incluso si se desconecta la alimentación (predeterminado). Esta configuración de memoria se puede modificar para que no se guarde la configuración de puesta a cero al desconectar la alimentación.

🗐 Memoria de puesta a cero, pág. 122

Salida lineal

El valor medido cuando se ejecuta la puesta a cero será el valor central del intervalo de salida lineal. Si la salida monitor está configurada, el valor medido será el valor central entre los dos puntos configurados para el enfoque del monitor. salida monitor), pág. 95

El valor visualizado mínimo es -19,999 y el máximo es 59,999. Si el resultado de medida tras la puesta a cero es menor que el mínimo, el valor visualizado será -19,999. Si el resultado de medida es mayor que el máximo, el valor visualizado será 59,999. La puesta a cero sólo se puede ejecutar si el valor medido es $\pm 10\%$ de la distancia de medida nominal.

- **1**. Coloque el objeto detectable de referencia en posición.
- 2. Sitúe el interruptor de modo en la posición RUN.

3. Pulse la tecla ENT durante más de un segundo o introduzca la señal de puesta a cero de un dispositivo externo (durante 800 ms máx.).

El valor de referencia quedará registrado y el indicador de puesta a cero se iluminará. La tolerancia del valor de referencia registrado aparecerá en el display principal.

Anulación de la puesta a cero

- **1.** Sitúe el interruptor de modo en la posición RUN.
- 2. Mantenga pulsadas las teclas ENT y DERE-CHA simultáneamente durante unos tres segundos.

Para anular la puesta a cero de un dispositivo externo, introduzca la señal de puesta a cero durante un segundo como mínimo.

La puesta a cero se anulará y el indicador de puesta a cero se desactivará.

Memorización del nivel de puesta a cero

Seleccione si desea conservar el nivel de puesta a cero del valor medido al desconectar la alimentación.

Selección	Descripción
ON (predeterminado)	Memoriza el nivel de puesta a cero al desconectar la alimentación.
OFF	La puesta a cero se anula al desconectar la alimentación.

NOTE

Desactive la memoria de puesta a cero si, como en el ejemplo siguiente, el punto cero se restablece en cada medida. Si se activa la memoria de puesta a cero, los datos de nivel de puesta a cero se escribirán en la memoria no volátil (EEPROM) del amplificador en cada puesta a cero. La EEPROM puede escribirse un máximo de 100.000 veces. Por lo tanto, la escritura del nivel de puesta a cero para cada medida puede agotar la vida de la memoria y provocar averías.

Ejemplo: medición de pasos en objetos detectables

Incluso si la memoria de puesta a cero está desactivada, el nivel de puesta a cero se memorizará si se han cambiado los valores de umbral u otras funciones. La puesta a cero continuará al iniciar después de que estas funciones se hayan cambiado.

	Cambio a FUN y SPCL		
1.	Sitúe el interruptor de modo en la posición FUN.	RUN T FUN	
2.	Utilice las teclas IZQUIERDA y DERECHA para mostrar SPCL en el display principal.		POWER ZERO ENABLE
	Cambio a ZRMEM		
3.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	$\hat{\Box}/\overline{\Box}$	
4.	Utilice las teclas ARRIBA y ABAJO para que en el display aparezca ETC o ALL.	$\hat{\Box} / \nabla$	SUB
5.	Pulse la tecla ENT.		SUB
6.	Utilice las teclas IZQUIERDA y DERECHA para mostrar ZRMEM en el display principal.		POWER ZERO ENABLE
	Selección de si se desea activar o no la memoria de puesta	a a cero	
7.	Pulse la tecla ARRIBA o ABAJO. El sub-display parpadeará.	\triangle / \bigcirc	SUB
8.	Utilice las teclas ARRIBA y ABAJO para seleccionar ON u OFF.	$\hat{\Box}/\nabla$	SUB
~	ON: memoria de puesta a cero activada (predetermi- nado) OFF: memoria de puesta a cero desactivada		
9.	Pulse la tecla ENT para confirmar la selec- ción.		SUB
	La configuración de memoria de puesta a cero quedará registrada.		

ZX-E | Manual de operación |123

Función Protección de teclado

La función de protección del teclado desactiva todas las teclas del amplificador. Una vez desactivadas las teclas, no podrán utilizarse para introducir datos hasta que la protección no sea desactivada. Esta función es útil para impedir que se realicen cambios inadvertidos en la configuración.

Los interruptores de modo y umbral siguen activados incluso con la función de protección del teclado activada.

Anulación de Protección del teclado

- **1.** Sitúe el interruptor de modo en la posición FUN.
- 2. Mantenga pulsadas las teclas ARRIBA, ABAJO, DERECHA e IZQUIERDA al mismo tiempo.

т

RUN

Aparecerá FREE en el display principal y aparecerá "----" en el sub-display.

3. Suelte las teclas cuando aparezca OK en el sub-display.

La protección del teclado se anulará.

Inicialización de la configuración

Esta función devuelve la configuración a sus valores predeterminados.

Sin embargo, los ajustes de linealidad no se inicializan con esta función. Para inicializar los datos de ajuste de linealidad, lleve a cabo la inicialización en el modo de ajuste de linealidad.

Inicialización de la configuración, pág. 51

Función	Valor predeterminado
Nº de muestras a promediar	64
Ancho de histéresis	El valor predeterminado varía en función del sensor conectado.
	• ZX-EDR5T: 0.0003
	• ZX-ED01T: 0.0004
	• ZX-ED02T: 0.0008
	• ZX-EM02T: 0.0008
	• ZX-EM07MT: 0.003
Retenidas	OFF
Temporizador	OFF
Funciones especiales	CLOSE (cerrada)
Escala	OFF
Salida monitor	A 0 mm: 4 (mA)
	A la distancia de medida nominal: 20 (mA)
Corrección de salida lineal	Sin corrección
Visualización inversa	OFF
Display ECO	OFF
Nº de dígitos visualizados	5 dígitos (todo)
Configuración para no medi- ción	KEEP
Memoria de puesta a cero	ON
Umbral HIGH	El valor predeterminado varía en función del sensor conectado.
	• ZX-EM07MT: 59.999 (mm)
	• Otros sensores: 5.9999 (mm)
Umbral LOW	El valor predeterminado varía en función del sensor conectado.
	• ZX-EM07MT: –19.999 (mm)
	• Otros sensores: -1.9999 (mm)

Sección 6 FUNCIONES AUXILIARES

1. Sitúe el interruptor de modo en la posición FUN.

RUN	Т	FUN

2. Utilice las teclas IZQUIERDA y DERECHA para mostrar INIT en el display principal.

3. Pulse y mantenga pulsada la tecla ENT. En el sub-display aparecerá "-----".

4. Suelte la tecla ENT cuando aparezca OK en el sub-display.

La configuración se inicializará.

ZX-E Manual de operación 127

APÉNDICES

Detección y corrección de errores	128
Mensajes de error y soluciones	129
🖌 Preguntas y respuestas	130
Glosario	131
Especificaciones y dimensiones	132
Datos característicos	139
Referencia rápida de displays	144

Detección y corrección de errores

En esta sección se describen las soluciones para los problemas temporales del equipo. Compruebe la avería en esta sección antes de enviar el equipo para su reparación.

Problema	Causa probable y posible solución	Páginas
El indicador POWER no está encendido.	 ¿Está el dispositivo de fuente de alimentación conectado correctamente? ¿La tensión de alimentación está por debajo del intervalo nominal (de 12 a 24 Vc.c. ±10%)? 	pág. 31
El dispositivo se reinicia durante la operación.	 ¿Está el dispositivo de fuente de alimentación conectado correctamente? ¿Están las unidades de interfaz y cálculo conectadas correctamente? 	pág. 31 pág. 27
No se produce la salida de discriminaciones al dispo- sitivo externo.	 ¿Están todos los cables conectados correctamente? ¿Está desconectada la línea de señal? ¿Se han cortocircuitado las entradas de retención o reset de discriminación? 	pág. 31
No se recibe señal de entrada.	¿Están todos los cables conectados correctamente?¿Está desconectada la línea de señal?	pág. 31
No hay comunicación con el ordenador.	 ¿Está el cable conectado correctamente? ¿Está la unidad de interfaz conectada correctamente? ¿Está el conmutador debajo de la unidad de interfaz en el lateral que no tiene lengüeta? ¿Es correcta la disposición de pines del conector? 	pág. 27 pág. 137
Niveles extraños de salida lineal.	 ¿Se encuentra el interruptor de la parte inferior del amplificador en la posición correcta? ¿Se ha realizado la selección correcta (tensión/corriente) en la configuración de enfoque del monitor? Los niveles de salida lineal se pueden ajustar. 	pág. 95
No aparece nada en el display principal ni en el sub-display.	 ¿Se ha configurado en cero el número de dígitos visualizados? 	pág. 115
El display principal perma- nece en "".	 ¿Se ha realizado una entrada de temporización con la retención habilitada y se ha configurado el tipo de activador en TIMIG? Si la función de retención está habilitada y el tipo de activador es UP o DOWN, ¿se ha configurado el nivel de autoactivación en un valor adecuado? 	pág. 73

Mensajes de error y soluciones

En esta sección se describen los mensajes de error que aparecen en el display principal y las soluciones para ellos.

Pantalla	Error	Medida preventiva	Páginas
E-CHL	Hay dos sensores pero sólo un amplificador conectado	 Si se han conectado dos amplificadores, desconecte la fuente de alimentación y compruebe que el amplificador y la unidad de cálculo están conectados correctamente. 	pág. 19 pág. 27
		• Si sólo se utiliza un amplificador, conecte otro temporalmente y desactive el funcionamiento con dos sensores, o inicialice los datos de configuración.	pág. 108 pág. 125
E-DAT	Error en la comunicación de datos del funcionamiento de dos senso- res	 Cambie el modo del amplificador CH1 a RUN. Desconecte la alimentación y compruebe que el amplificador y la unidad de cálculo están conectados correctamente. Reemplace el amplificador o la unidad de cálculo si el problema no se soluciona con las medidas anteriores. 	pág. 19 pág. 27
E-EEP	Error de datos de EEPROM	Mantenga pulsada la tecla ENT durante tres segundos o más. Cuando se hayan borrado los datos, conecte la alimentación. Si de este modo no consigue solucionar el problema, sustituya el amplificador.	pág. 19
E-HED	El sensor está desconectado.	Desconecte la alimentación, compruebe que el sensor está conectado correctamente y, después, vuelva a conectar la alimentación. Si de este modo no consigue solucionar el problema, sustituya el sensor.	pág. 24
E-SEN	El sensor está desconectado u otros factores están provocando un funcionamiento incorrecto.	Desconecte la alimentación, compruebe la conexión del sensor y, después, vuelva a conectar la alimentación. Si de este modo no consigue solucionar el problema, sustituya el sensor.	pág. 24
E-SHT	Cortocircuito de una o de todas las salidas de discriminación.	Desconecte la alimentación, compruebe que no se han cortocircuitado las líneas de salida HIGH, PASS y LOW, y vuelva a conectar la alimentación.	pág. 31
E-THK	El espesor T no está configurado para la operación de espesor.	Configure un espesor T adecuado.	pág. 66
ERRLH	Se ha intentado especificar como valor umbral LOW un valor numérico mayor que el valor umbral HIGH.	Especifique valores de umbral correctos.	pág. 89
	Umbral HIGH – Umbral LOW < Ancho de histéresis		
ERRHL	Se ha intentado especificar como valor umbral HIGH un valor numérico menor que el valor umbral LOW.	Especifique valores de umbral correctos.	pág. 89
	Umbral HIGH – Umbral LOW < Ancho de histéresis		
ERROV	El valor numérico especificado es demasiado grande.	Especifique un valor numérico correcto.	pág. 42
	Umbral HIGH – Umbral LOW < Ancho de histéresis		
ERRTB	Error al ajustar la linealidad.	Compruebe el material seleccionado y la posición del objeto detectable, y vuelva a realizar el ajuste.	pág. 46
ERRUD	El valor numérico especificado es demasiado pequeño.	Especifique un valor numérico correcto.	pág. 42

Preguntas y respuestas

Pregunta	Respuesta
¿Se puede extender el cable entre los sensores y los preamplificadores?	No. Si se extiende el cable se pierde la precisión de medida.
¿Es posible realizar cálculos con los sensores inteligentes serie ZX-L (tipo láser)?	No. Los Sensores inteligentes serie ZX-E (tipo inductivo) y serie ZX-L (tipo láser) no son compatibles.
¿La unidad de interfaz ZX-SF11 utilizada con los sensores inteligentes serie ZX-L (tipo láser) se puede utilizar en combinación con los sensores	Sí, si la unidad de interfaz es la versión 2.0 o posterior. Si la uni- dad de interfaz es una versión anterior, póngase en contacto con su representante de OMRON.
inteligentes serie ZX-E (tipo desplazamiento inductivo)?	(La versión de la unidad de interfaz se puede comprobar con Smart Monitor).
¿La unidad de cálculo ZX-CAL utilizada con los sen- sores inteligentes serie ZX-L (tipo láser) se puede utilizar en combinación con los sensores inteligentes serie ZX-E (tipo inductivo)?	Sí. Sin embargo, sólo es posible conectar dos amplificadores.
¿Por qué se produce un error y no se puede rea- lizar la configuración mediante teaching o intro- ducción diracta de los valores de umbral?	Los valores de umbral no se pueden configurar mediante tea- ching o entrada directa si no se cumple la siguiente condición:
	•valor umbrai HIGH – valor umbrai LOW > Ancho de histeresis
Al ejecutar la escala, aparece un error en el sub- display y no se puede realizar la configuración.	La escala no se puede configurar por una de las siguientes razones: • Se ha intentado configurar la escala con el valor medido fuera del marzon de distancia de medición
	 Después de ejecutar la escala de dos puntos, la distancia entre los valores medidos de los dos puntos no es el 1% o más de la distancia de medida.
	山王 pág. 87
Al ejecutar el enfoque del monitor, ¿por qué apa- rece un error en el sub-display y no es posible realizar la configuración?	La configuración de enfoque del monitor no se puede realizar si la distancia entre los dos puntos especificados no es el 1% o más de la distancia de medida. 1/ = 1 pág. 95
Al especificar el espesor para el cálculo de espe- sor, ¿por qué aparece un error en el sub-display y no es posible realizar la configuración?	El valor actual está fuera de la distancia de medida. Coloque el objeto detectable dentro del margen de distancia de medición y, después, especifique el espesor.
	<u>⊥</u> pag. 66
¿Se pueden realizar cálculos con 3 o más ampli- ficadores?	Consulte al representante de OMRON.
¿Se pueden realizar cálculos si se conectan sensores con diferentes distancias de medida a 2 amplificadores?	Sí, si ambos son sensores inteligentes serie ZX-E (tipo inductivo).
El objeto detectable es de cobre. ¿Qué material debo seleccionar para el ajuste de linealidad?	Utilice el predeterminado, aluminio (AL).
Cuando se ejecuta el ajuste de linealidad, ¿por qué se produce un error y no se ajusta la lineali- dad?	En ocasiones, la linealidad no se puede ajustar debido al estado de la superficie del objeto detectable que se utiliza, por ejemplo, la superficie es desigual o ha sido tratada. Inicialice los datos de ajuste de linealidad y utilice la configuración predeterminada.
El display principal no cambia a cero aunque los objetos detectables estén en contacto con el sensor.	Algunas veces, el estado de la superficie del objeto detectable, por ejem- plo, la superficie es desigual o ha sido tratada, impide que el display cambie a cero aunque los objetos detectables estén en contacto si se utilizan los valores predeterminados de ajuste de linealidad. Ejecute el ajuste de linealidad o ejecute una puesta a cero primero.

Glosario

Término	Explicación
Tiempo de respuesta	El tiempo de respuesta es el tiempo que transcurre desde que el sensor mide una distancia hasta que se produce la salida del valor (ya sea como salida lineal o salida de discriminación). El tiempo de respuesta cambia en función de la configuración del número de muestras a promediar
	los cálculos y la prevención de interferencia mutua.
Valor medido	El valor medido es el resultado de medida que aparece en el display principal del amplificador en los modos RUN y T.
	El valor medido es el valor resultante cuando se ha llevado a cabo todo el procesamiento configu- rado, por ejemplo, el ajuste de linealidad, número de muestras a promediar, escala, cálculos, reten- ción y comparación de valores anteriores.
Valor actual	El valor actual es el resultado de medida actual del amplificador objetivo.
	Determinados procesos configurados, como el ajuste de linealidad, el número de muestras a prome- diar y la escala, se han llevado a cabo para el valor medido actual, pero no se refleja la configura- ción de cálculo, retención y comparación de valores anteriores. Pulse la tecla IZQUIERDA o DERECHA en el modo RUN para mostrar el valor actual en el sub-display.
	↓ 〕 pág. 43
Linealidad	La linealidad expresa el error del desplazamiento de la salida sobre una línea recta ideal al medir el objeto detectable estándar. La linealidad indica con qué proximidad la salida lineal mantiene una relación lineal con el desplazamiento del objeto detectable (es decir, indica la precisión de la salida lineal).
	Con los sensores inteligentes ZX-E se puede obtener mayor precisión en la linealidad mediante el ajuste de ésta.
	↓ [1] pág. 46
Salida lineal	La salida lineal es una salida analógica de datos de la línea de salida lineal. Se puede seleccionar una salida de corriente o tensión.
	La salida lineal se produce en funcion del valor visualizado y la configuración de enfoque del monitor. Para mostrar la salida del valor real (el valor de salida) en el sub-display se puede pulsar la tecla IZQUIERDA o DERECHA en el modo RUN.
	La pay. +5
Salidas de discriminación	"Salidas de discriminación" es un término general que se aplica a las salidas HIGH, PASS y LOW. Las salidas de discriminación se producen en el modo RUN y T en función de los valores visualiza- dos y la configuración de umbral, ancho de histéresis y temporizador. La salida de discriminación se retiene mientras la entrada de retención de salida de discriminación está activada (ON).
Smart Monitor	Smart Monitor es software (no incluido) para Windows 98 o 2000. Se utiliza para la comunicación, mediante una unidad de interfaz, con los sensores inteligentes serie ZX-E. Esto permite llevar a cabo la configuración de medición en un ordenador personal, guardar los datos de configuración, mostrar los resultados de medida como gráficos y registrar los datos. Con los sensores inteligentes serie ZX-E debe utilizarse Smart Monitor versión 2 o posterior.
	(上記 pág. 18
Distancia de medida	La distancia de medida es el margen (distancia) en que la medición es posible para el sensor conectado.
Periodo de muestreo	El período de muestreo es el tiempo durante el cual se mide el objeto detectable cuando se utiliza la función de retención.
	El periodo de muestreo viene determinado por el modo de activación y el tiempo de retardo.

Especificaciones y dimensiones

Amplificadores ZX-EDA11 y ZX-EDA41

	ZX-EDA11	ZX-EDA41	
Período de medi- ción	150 μs		
Configuración posi- ble para el número de muestras a pro- mediar (Ver nota 1).	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1.024, 2.048 o 4.096		
Salida lineal (Ver nota 2).	Salida de corriente: de 4 hasta 20 mA/F.S.; Re Salida de tensión: ±4 V (± 5 V, 1 a 5 V, ver nota	sistencia de carga máx.: 300 Ω a 3.); Impedancia de salida: 100 Ω	
Salidas de discrimi- nación (3 salidas: HIGH/PASS/LOW)	Salidas de colector abierto NPN 30 Vc.c., 50 mA máx. Tensión residual: 1,2 V máx.	Salidas de colector abierto PNP 30 Vc.c., 50 mA máx. Tensión residual: 2 V máx.	
Entrada de reten- ción de salida de discriminación	ON: Cortocircuitado con terminal de 0 V, o bien 1,5 V o menos OFF: Abierto (corriente de fuga: 0,1 mA máx.)	ON: Tensión de alimentación cortocircuitada o dentro de la tensión de alimentación de 1,5 V máx. OFF: Abierto (corriente de fuga: 0,1 mA máx.)	
Entrada Puesta a cero			
Entrada Temporiza- ción			
Entrada Reset			

	ZX-EDA11		ZX-EDA41	
Funciones	Display del valor medido Display del valor actual Display del valor de salida Display de valor seleccionado Display de resolu- ción Indicador ENABLE Indicador de Puesta a cero Indicador de encendido (ON) Indicador de discri- minación Modo ECO Visualización inversa	Límite de dígitos en el display Puesta a cero Memoria de puesta a cero Comparación de valores anteriores Inicialización Inicialización de lineali- dad Teaching Configuración directa del valor de umbral Configuración del ancho de histéresis Escala Ajuste de linealidad	Enfoque del monitor Corrección de salida lineal Retención de pico Retención de mues- tra Retención de pico a pico Retención de pico a pico Retención promedio Retención de retardo Configuración del tiempo de retardo Temporizador de retardo a ON Temporizador de retardo a OFF	Temporizador de un impulso Entradas de tempori- zación Activador de subida automática Activador de bajada automática Cálculos (A-B) (ver nota 4). Cálculos (A+B) (ver nota 4). Cálculo de espesor (ver nota 4). Prevención de interfe- rencia mutua (ver nota 4). Protección del teclado Configuración del valor de fijación
Indicadores	Indicadores de discriminación: HIGH (naranja), PASS (verde), LOW (amarillo), display princi- pal de 7 segmentos (rojo), sub-display de 7 segmentos (amarillo), encendido ON (verde), puesta a cero (verde), enable (verde)			
Tensión de alimentación	De 12 a 24 Vc.c. ± 10%, Fluctuación (p-p): 10% máx.			
Consumo	Máximo 3,4 W (sensor conectado) (Tensión de alimentación: 24 V; Consumo: 140 mA máx.)			
Temperatura ambiente	En servicio y almacenamiento: de 0 a 50 °C (sin escarcha ni condensación)			
Humedad ambiente	En servicio y almacenamiento: 35% a 85% (sin condensación)			
Resistencia de aislamiento	20 MΩ mín. a 500 Vc.c.			
Rigidez dieléctrica	1.000 V c.a., 50/60	Hz durante 1 min.		
Resistencia a vibraciones (destrucción)	de 10 hasta 150 Hz, 0,7 mm de amplitud p-p durante 80 minutos en las direcciones X, Y y Z			
Resistencia a golpes (destrucción)	300 m/s ² 3 veces en cada una de las seis direcciones (arriba/abajo, izquierda/derecha, ade- lante/atrás)			
Método de conexión	Con cable (longitud	estándar de cable: 2 m)		
Peso (embalado)	Aprox. 350 g			
Materiales	Carcasa: PBT (teraftalato de polibutileno); cubierta: policarbonato			
Accesorios	Hoja de instrucciones			

Notas: 1. La velocidad de respuesta de la salida lineal se calcula como el período de medición x (configuración de Nº de muestras a promediar + 1).

La velocidad de respuesta de las salidas de discriminación se calcula como el período de medición x (configuración de N $^{\circ}$ de muestras a promediar + 1).

- 2. La salida puede alternarse entre la salida de corriente y la salida de tensión utilizando el interruptor situado en la parte inferior del amplificador.
- 3. La configuración se puede realizar mediante la función de enfoque del monitor.
- 4. Se requiere una unidad de cálculo.

Apéndices Especificaciones y dimensiones

Sensores ZX-ED T y ZX-EM T

Apéndices Especificaciones y dimensiones

		ZX-EDR5T	ZX-ED01T	ZX-ED02T	ZX-EM02T	ZX-EM07MT	
Forma		3 diám.	5.4 diám.	8 diám.	M10	M18	
Objeto detectable		Objetos ferrosos	Objetos ferrosos				
Distan	cia de medida	de 0 a 0.5 mm	de 0 a 1 mm	de 0 a 2 mm	de 0 a 2 mm	de 0 a 7 mm	
Objeto	detectable	$18 \times 18 \text{ mm}$	$18 \times 18 \text{ mm}$	$30 \times 30 \text{ mm}$	$30 \times 30 \text{ mm}$	$60 \times 60 \text{ mm}$	
estándar		T = 3 mm, materi	al: S50C	•	•		
Precis	ión (ver nota 1).	(1.0 μm)					
Lineali	dad (ver nota 2).	±0,5% F.S. (ver r	iota 3).				
Influencia de la tempe- ratura (ver nota 4)		0,15% F.S./°C	0,07% F.S./°C	0,07% F.S./°C			
Temperatura ambiente		En servi- cio/almacena- miento: de 0 a 50°C	En servicio: –10 a 60°C Almacenamiento: –20 a 70°C				
		Sin escarcha ni condensación					
Hume	dad ambiente	En servicio/almacenamiento: 35% a 85% (sin condensación)					
Rigide	z dieléctrica	1.000 V c.a., 50/60 Hz durante 1 min.					
Resistencia a vibracio- nes		de 10 hasta 55 H	e 10 hasta 55 Hz; 1,5 mm de amplitud p-p durante 2 horas en las direcciones X, Y y Z				
Grado de protección (sólo sensor)		IP65	IP67				
Mate- riales	Sensor	Latón	Acero inoxida- ble (SUS)	Latón			
Superficie de detección		ABS resistente a	BS resistente al calor				
Preamplificador		PES					
Peso (embalado)		Aprox. 120 g	Aprox. 140 g	Aprox. 140 g	Aprox. 140 g	Aprox. 160 g	

F.S.: fondo de escala de medición

- Notas: 1. La precisión es la desviación (±3σ) en la salida lineal cuando está conectada al amplificador. (La precisión se mide con el objeto detectable estándar en la mitad del margen de medición, con el amplificador configurado para un número de muestras a promediar de 4.096 por período).
 - 2. La linealidad expresa el error del desplazamiento de la salida sobre una línea recta ideal al medir el objeto detectable estándar (varía con el objeto que se mide).
 - 3. El valor siguiente al ajuste de linealidad.
 - 4. Características de temperatura: a la misma temperatura que el amplificador y con el objeto detectable estándar en la mitad del margen de medición.

Unidad de cálculo ZX-CAL2

(Unidad: mm)

Amplificadores compatibles	Serie ZX
Consumo	12 mA máx. (suministrado por el amplificador del sensor inteligente)
Temperatura ambiente	En servicio: 0 a 50°C; almacenamiento: -15 a 60°C (sin escarcha ni condensación)
Humedad ambiente	En servicio y almacenamiento: 35% a 85% (sin condensación)
Método de conexión	Conector
Rigidez dieléctrica	1.000 V c.a., 50/60 Hz durante 1 min.
Resistencia de aislamiento	100 M Ω (a 500 Vc.c.)
Resistencia a vibraciones (destrucción)	de 10 hasta 150 Hz, 0,7 mm de amplitud p-p durante 80 minutos en las direcciones X, Y y Z
Resistencia a golpes (destrucción)	300 m/s ² 3 veces en cada una de las seis direcciones (arriba/abajo, izquierda/derecha, adelante/atrás)
Materiales	Display: acrílico; Carcasa resina ABS
Peso (embalado)	Aprox. 50 g

(Unidad: mm)

Asignación de pines del conector

N° de patilla	Nombre
1	N.C.
2	RD
3	SD
4	N.C.
5	SG
6	N.C.
7	N.C.
8	N.C.
9	N.C.

Tensión de alimentación		de 12 a 24 Vc.c. ±10%, Fluctuación (p-p) 10% máx. Suministrado por el amplificador	
Consumo		Tensión de alimentación: 12 V; Consumo: 60 mA máx. (Sin incluir el consumo del amplificador y la corriente de salida).	
Amplificadores	conectables	Serie ZX	
Nº de amplificadores conectables		Hasta 5 (dos unidades de cálculo máx.)	
Funciones de comunicacio- nes ciones		Puerto RS-232C (conector D-sub de 9 patillas)	
	Protocolos	CompoWay/F	
	Velocidad de transmisión	38.400 bps	
	Configura- ción de datos	Bits de datos: 8; paridad: ninguna; bits de inicio: 1 Bits de stop: 1; control de flujo: Ninguno	
Indicadores		Encendido (verde), comunicación con el sensor (verde), error de comunicaciones del sensor (rojo)	
		Comunicación con terminal externo (verde), error de comunicaciones de terminal externo (rojo)	
Circuitos de pro	otección	Protección contra inversión de polaridad de la alimentación	
Temperatura ar	nbiente	En servicio: 0 a 50°C; almacenamiento: -15 a 60°C (sin escarcha ni condensación)	
Humedad ambiente		En servicio y almacenamiento: 35% a 85% (sin condensación)	
Rigidez dieléctrica		1.000 V c.a., 50/60 Hz durante 1 min.	
Resistencia de aislamiento		20 M Ω mín. (a 500 V c.c.)	
Materiales de la carcasa		Carcasa: PBT (teraftalato de polibutileno); cubierta: policarbonato	
Peso (embalad	0)	Aprox. 350 g	

Datos característicos

Linealidad de los sensores (después del ajuste de linealidad con objeto detectable estándar)

ZX-ED01T

ZX-ED02T/EM02T

ZX-EM07MT

Medición de objetos detectables de diferente tamaño después del ajuste de linealidad con objeto detectable estándar

 S50C	3×3
 S50C	8×8
 S50C	12×12
 S50C	18×18
 S50C	30 × 30
 S50C	45×45

ZX-ED01T

 S50C	3×3
 S50C	8 × 8
 S50C	12×12
 S50C	18×18
 S50C	30×30
 S50C	45×45

ZX-ED02T/EM02T

 2200	3×3
 S50C	8×8
 S50C	12×12
 S50C	18×18
 S50C	30×30
 S50C	45×45

 3000	40 ^	40
 S50C	$60 \times$	60

Ajuste de linealidad para cada objeto detectable

(El objeto detectable medido es el mismo que el objeto para el que se ajustó la linealidad).

----- S50C 12×12 ----- S50C 18×18 ---- S50C 30×30 ---- S50C 45×45

ZX-ED02T/EM02T

 S50C	8×8
 S50C	12×12
 S50C	18×18
 S50C	30×30
 S50C	45×45

ZX-EM07MT

 S50C	30×30
 S50C	45×45
 S50C	60×60

Medición de objetos detectables de diferentes materiales (hierro, acero inoxidable y aluminio) tras seleccionar hierro como material y ajustar la linealidad

0,7 0,6 Valor visualizado (mm) 0,5 0,4 0,3 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 Distancia de medida (mm) S50C 18×18 -----

ZX-EDR5T

A5052

SUS304 18×18

18×18

 SUS304	30×30
 A5052	30×30

18×18

A5052

 A5052	60×60
 SUS304	60×60
 S50C	60×60

Selección de material para cada objeto detectable (hierro, acero inoxidable o aluminio) y ajuste de la linealidad

ZX-ED01T

(El objeto detectable medido es el mismo que el objeto para el que se ajustó la linealidad). 1/2 pág. 46

ZX-EDR5T

18×18

 S50C	18×18
 SUS304	18×18
 A5052	18×18

ZX-ED02T/EM02T

A5052

ZX-EM07MT

 S50C	60×60
 SUS304	60×60
 A5052	60 imes 60
Referencia rápida de displays

Uso de la referencia rápida

Los elementos de la columna *Display* que tienen un asterisco (*) aparecen en el sub-display. Los demás elementos aparecen en el display principal.

Display			Descripción	Páginas
1	1-5he (*)	1-SHT	Temporizador/Temporizador de un impulso	pág. 104
A	82028	A20mA	El significado de este elemento del display depende de las funciones seleccionadas. Configuración de enfoque del monitor/primer punto (para salida de corriente) Corrección de salida lineal/Compensación del primer punto (para salida de corriente)	pág. 95 pág. 99
	8 40	A 4V	El significado de este elemento del display depende de las funciones seleccionadas. Configuración de enfoque del monitor/primer punto (para salida de tensión) Corrección de salida lineal/Compensación del primer punto (para salida de tensión)	pág. 95 pág. 99
	<mark>Я-</mark> Ь (*)	A-B	Funcionamiento con 2 sensores/A-B	pág. 108
	R :b (*)	AIB	Funcionamiento con 2 sensores/A+B	pág. 108
	RL (*)	AL	Ajuste de linealidad/Material del objeto detectable/Aluminio, cobre	pág. 46
	RLL (*)	ALL	Muestra todo el menú especial.	pág. 43
	RUtot (*)	AUTOT	Modo T/Ejecución de teaching automático	pág. 92
	8.8	AVE	Configuración del número de muestras a promediar	pág. 72
	ጸ⊔{-ኑ (*)	AVE-H	Retención/Retención promedio	pág. 73
В	6 488	B 4mA	El significado de este elemento del display depende de las funciones seleccionadas. Configuración de enfoque del monitor/segundo punto (para salida de corriente) Corrección de salida lineal/Compensación del segundo punto (para salida de corriente)	pág. 95 pág. 99
	6 40	B4V	El significado de este elemento del display depende de las funciones seleccionadas. Configuración de enfoque del monitor/segundo punto (para salida de tensión) Corrección de salida lineal/Compensación del segundo punto (para salida de tensión)	pág. 95 pág. 99
	<u> ከ</u> (*)	B-H	Retención/Retención de mínimo	pág. 73
С	cRLc	CALC	Configuración del cálculo para sensores adyacentes	pág. 108
	cl878	CLAMP	Configuración del valor de fijación para no medición	pág. 102
	cl878 (*)	CLAMP	Configuración para no medición/Salida de retorno al valor de fijación	pág. 102
	cLoSE (*)	CLOSE (cerrada)	Oculta el menú especial.	pág. 43
	coñP	COMP	Compara con el valor de retención anterior.	pág. 80

Display			Descripción	Páginas
D	9000	D000	Entrada del valor de ajuste de linealidad en 0% de la posición de distan- cia de medida	pág. 48
	d050	D050	Entrada del valor de ajuste de linealidad en 50% de la posición de distan- cia de medida	pág. 48
	9 :00 9	D100	Entrada del valor de ajuste de linealidad en 100% de la posición de dis- tancia de medida	pág. 48
	ቫ-፻፵ ፭ (*)	D-FWD	Dirección del display para los valores medidos si se utiliza la función de escala (display no invertido)	pág. 82
	d - ing (*)	D-INV	Dirección del display para los valores medidos si se utiliza la función de escala (display invertido)	pág. 82
	31 21 6	DIGIT	Configuración del número de dígitos para el display principal y el sub-display	pág. 115
	do¥n (*)	DOWN	Retención/Modo de activación/Activador de bajada automática	pág. 75
	drEu	DREV	Invierte la posición del display principal y el sub-display.	pág. 116
	d (58 (*)	DISP	Muestra funciones del menú especial relacionadas con el display.	pág. 43
Е	εςο	ECO	Reduce el consumo al reducir la iluminación del display principal y el sub-display.	pág. 118
	Etc (*)	ETC	Muestra funciones del menú especial distintas de las funciones relacio- nadas con el display y la salida.	pág. 43
F	FE (*)	FE	Ajuste de linealidad/Material del objeto detectable/Hierro, acero inoxida- ble (SUS410)	pág. 46
	FocUS	FOCUS	Configuración del intervalo de salida del valor medido	pág. 95
н	h-dly	H-DLY	Retención/retardo de retención	pág. 78
	h-d-2	H-D-T	Configuración de retención/retardo de retención/tiempo de retardo	pág. 78
	h-hY5	H-HYS	Configuración de retención/modo de activación/ancho de histéresis de autoactivación	pág. 75
	H-LVL Configuración de retención/modo de activación/nivel de autoactivad		pág. 75	
	h - 5 - E H-S-T Configuración de retención/retardo de retención/período de muestr		pág. 78	
	h-trū	H-TRG	Configuración de retención/modo de activación	pág. 75
	hold	HOLD	Configuración de retención	pág. 73
	h¥5	HYS	Configuración del ancho de histéresis	pág. 94
I	(n (E	INIT	Inicialización de configuración	pág. 127
к	¥887 (*)	KEEP	Configuración para no medición/salida de retención	pág. 102
L	1-800	L-ADJ	Configuración del valor de compensación de salida lineal	pág. 99
	L InEr	LINER	Ajuste de linealidad	pág. 46
	L in 12	LINIT	Inicialización de datos de ajuste de linealidad	pág. 51
М	ă8 <u>.</u> (*)	MAX	Configuración para no medición/valor de fijación/máximo	pág. 102
	7888r	METAL	Ajuste de linealidad/material del objeto detectable	pág. 46
0	۵۶۶-₫ (*)	FF-d (*) OFF-D Temporizador/Retardo a OFF		pág. 104
	on-d (*)	ON-D	Temporizador/Retardo a ON	pág. 104

Display			Descripción	Páginas
Ρ	P (ScL (*)	P1SCL	Escala/Escala de primer punto	pág. 82
	P25cL (*)	P2SCL	Escala/Escala de segundo punto	pág. 82
	ጆ-እ (*)	P-H	Retención/Retención de pico	pág. 73
	PP-h (*)	PP-H	Retención/Retención de pico a pico	pág. 73
R	r8588	RESET	Configuración de datos de salida para no medición	pág. 102
	r 858£ (*)	RESET	Modo RUN o T/Reset de entrada	pág. 31
S	Stch	S-CH	Prevención de interferencia mutua/Nº de unidades	pág. 112
	5-h (*)	S-H	Retención/Retención de muestra	pág. 73
	ScRLE	SCALE	Configuración de escala	pág. 82
	58£ (*)	SET	El significado de este elemento depende del display principal. SPCL : Muestra funciones del menú especial relacionadas con la salida. LINE : Ajuste de linealidad	pág. 43 pág. 46
	SPel	SPCL	Menú especial Muestra funciones de escala, enfoque del monitor y otras funciones especiales.	pág. 43
	585 (*)	SUS	Ajuste de linealidad/Material del objeto detectable/Acero inoxidable (SUS340)	pág. 46
	Sync	SYNC	Configuración de prevención de interferencia mutua	pág. 112
Т	<u> </u>	T-TIM	Tiempo del temporizador	pág. 104
	88668	TABLE	El significado de este elemento depende del sub-display. SER E : Ejecución del ajuste de linealidad CR C : Cancelación del ajuste de linealidad	pág. 50
	th ic M	THICK	Configuración de funcionamiento con 2 sensores/espesor	pág. 108
	£ (887	TIMER	Configuración de tiempo de salida de discriminación	pág. 104
	£ 17 16 (*)	TIMIG	El significado de este elemento del display depende del modo seleccio- nado. Modo FUN: retención/modo de activación/entrada de temporización Modo RUN o T: temporización de entrada	pág. 75 pág. 31
U	₩₽ (*)	UP	Retención/Modo de activación/Activador de subida automática	pág. 75
Z	EndSP	ZRDSP	Entrada de valor de compensación para puesta a cero	pág. 119
	irā£ā	ZRME M	Configuración para guardar o borrar los valores medidos en puesta a cero	pág. 122

Índice

Α

Altura
medición 59
Amplificadores
dimensiones 132
especificaciones 132
instalación22
medición con múltiples unidades108
nombres de los componentes19
Ancho de histéresis75, 94
Autodisparador de subida75

С

Cable de salida	.31
cableado	.31
Cálculos	108
espesor	110
nº de unidades conectables	.28
suma o resta	.65
suma y resta	109
CLAMP	102
CLAMP, valor	102
Comparación de valores anteriores	.80
Compensación de salida	.99
Configuración	
inicialización	125
Configuración básica	.18
Configuración de condiciones	
selección	.41
Configuración de salida	.95
Configuración para no medición	102
Cuadros de transición de funciones	.43

D

Datos característicos139	9
detección y corrección de errores128	8
Diagramas de circuitos	
amplificadores NPN	2
amplificadores PNP33	3
Diagramas de circuitos de E/S32	2
Dimensiones132	2
Display ECO118	8
Display principal	9
Displays	
ajuste de la luminosidad118	8
cambio del número de dígitos115	5
inversión116	ô
Distancia de medida138	5

Е

-	
Entrada de teclado	
inhabilitación	124
Entrada directa	90
Escala	
cambio	
Escala de dos puntos	87
Escala de un punto	
Especificaciones	
Espesor	
medición	66
Excentricidad	
medición	63

F

Formato de display de alfabeto39

Н

HIGH, línea de s	salida de
discriminación	

I

Indicador de encendido (ON)19
Indicador ENABLE
inicialización
linealidad51
Inicializar
datos de configuración125
Interferencia mutua
prevención14
regulación de distancia25
Interruptor de corriente/tensión 19
interruptor de modo

Κ

L

Línea de entrada de reset3	1
Línea de entrada de retención	
de salida de discriminación3	1
Línea de salida lineal3	1
Línea de tierra3	1
Línea de tierra de salida lineal3	1
Linealidad	
ajuste5	0
inicialización de la configuración	
del ajuste5	1
Longitud de cable1	5
LOW, línea de salida de	
discriminación3	1

Índice

Μ

Materiales	
selección	46
Mensajes de error1	29
Modo de activación	
selección	75
Modo FUN	
descripción	38
displays	39
transiciones de funciones	44
modo RUN	
descripción	38
displays	39
transiciones de funciones	43
Modo T	
descripción	38
displays	39
transiciones de funciones	43
Modos	38
Conmutación	38

Ν

Nº de muestras a promediar	72
Números de canal	29

0

Operaciones con	las teclas	40
-----------------	------------	----

Ρ

PASS, línea de salida de	
discriminación	31
Preamplificadores	26
Preguntas y respuestas	130
Protección del teclado	
anulación	124
configuración	124
Puesta a cero	119
anulación	122
configuración de valores de	
compensación	120
ejecución	121
línea de entrada	31
Memorizar	122
Punto muerto	
detección	54

R

Regulación de distancia	25
Retardos	
configuración	78
retención	78
Retención	
configuración de condiciones	73
funciones	73
mínimo	73
Modo operativo	73
muestra	74
pico	73
pico a pico	74
promedio	74

S

Salida lineal	95 99
Interruptor de	19
Sensores	24
conexiones	27
dimensiones	134
especificaciones	135
influencia de metales próximos	25
instalación	24
Interferencia mutua	25
Nombres de los componentes	20
prevención de interferencia mutua	112
Sub-display	39

Т

Teaching89
automático92
Teaching de posición91
Teclas con flecha40
temporización
de enclavamiento75
línea de entrada31
Temporizador de retardo a OFF 104
Temporizador de retardo a ON 104
Temporizador de un impulso104
Temporizadores104
Terminología131
Tiempo de respuesta 108, 112, 131
Tiempo de salida de discriminación 104

U

V

Valor actual131	
Valor medido131	
Valores de referencia	
configuración de valores	
de compensación120)
visualización119)
Valores numéricos	
cambio42	2
Valores predeterminados	
datos de configuración125	5
Vibración	
medición63	3

Historial de revisiones

En la parte inferior de la portada y contraportada de este manual aparece un código de revisión de manual como sufijo del número de catálogo. En la contraportada aparece un código de impresión a la derecha del número de catálogo.

1

Cát. No. Z166-ES1-01

Código de revisión Código de impresión

Código de revisión	Código de impresión	Fecha	Contenido revisado
01	1	Septiembre de 2002	Versión original