Cat. No. [232E-EN-01A

SCARA Robots

YRCX Robot Controller

Infroduction

Our sincere thanks for your purchase of this OMRON YRCX robot controller.

This manual describes robot program commands and related information for using OMRON YRCX
robot controllers. Be sure to read this manual carefully as well as related manuals and comply with
their instructions for using the OMRON robot controllers safely and correctly.

For details on how to operate OMRON robot controllers, refer to the separate controller user's
manual that comes with the OMRON robot controller.

Applicable controllers: YRCX

Safety precautions

Be sure to read before using

Before using the OMRON robot controller, be sure to read this manual and related manuals, and
follow their instructions to use the robot controller safely and correctly.

Warning and caution items listed in this manual relate to OMRON robot controllers.

When this robot controller is used in a robot controller system, please take appropriate safety
measures as required by the user’s individual system.

This manual classifies safety caution items and operating points into the following levels, along with
symbols for signal words “CAUTION” and “NOTE".

/\ cauTion

"CAUTION" indicates a potentially hazardous situation which, if not avoided, could
result in minor or moderate injury or damage to the equipment or software.

Il;i NOTE

Primarily explains function differences, etc., between software versions.

Explains robot operation procedures in a simple and clear manner.

Note that the items classified into “CAUTION” might result in serious injury depending on the
situation or environmental conditions.
Keep this manual carefully so that the operator can refer to it when needed. Also make sure that this

manual reaches the end user.

CONTENTS

YRCX
Programming Manual

Introduction

Safety precautions

Chapter 1 Writing Programs

1 The OMRON Robot Language 1-1
2 Characters 11
3 Program Basics 11
4 Program Names 1-2
5 Identifiers 1-4
6 LABEL Statement 1-4
7 Comment 1-5
8 Command Statement Format 1-5
Chapter 2 Constants
1 Outline 2-1
2 Numeric constants 2-1
2.1 Integer constants 2-1
2.2 Real constants 2-1
3 Character constants 2-2
Chapter 3 Variables
1 Outline 3-1
2 User Variables & System Variables 3-2
21 User Variables 3-2
2.2 System Variables 3-2
3 Variable Names 3-3
3.1 Dynamic Variable Names 3-3
3.2 Static Variable Names 3-3
4 \Variable Types 3-4

C O NT ENT S Programming I\Y/Ivilctllﬁ

41 Numeric variables 3-4
4.2 Character variables 3-4
5 Array variables 3-5
6 Value Assignments 3-5
7 Type Conversions 3-6
8 Value Pass-Along & Reference Pass-Along 3-6
9 System Variables 3-7
9.1 Point variable 3-7
9.2 Shift variable 3-8
9.3 Parallel input variable 3-8
9.4 Parallel output variable 3-9
9.5 Internal output variable 3-10
9.6 Arm lock output variable 3-11
9.7 Timer output variable 3-12
9.8 Serial input variable 3-13
9.9 Serial output variable 3-14
9.10 Serial word input 3-15
9.11 Serial double word input 3-15
9.12 Serial word output 3-16
9.13 Serial double word output 3-16
10 Bit Settings 3-17
11 Valid range of variables 3-18
11.1 Valid range of dynamic (array) variables 3-18
11.2 Valid range of static variables 3-18
12 Clearing variables 3-19
121 Clearing dynamic variables 3-19
12.2 Clearing static variables 3-19

Chapter 4 Expressions and Operations

1 Arithmetic operations 4-1
1.1 Arithmetic operators 41
1.2 Relational operators 4-1
1.3 Logic operations 4-2
1.4 Priority of arithmetic operation 4-3
1.5 Data format conversion 4-3

CONTENTS

YRCX
Programming Manual

2 Character string operations 4-4
2.1 Character string connection 4-4
2.2 Character string comparison 4-4

3 Point data format 4-5

4 DI/DO conditional expressions 4-6

Chapter 5 Multiple Robot Control

1 Overview 5-1

2 Command list with a robot setting 5-2

Chapter 6 Multi-tasking

1 Outline 6-1

2 Task definition method 6-1

3 Task status and transition 6-2
3.1 Starting tasks 6-2
3.2 Task scheduling 6-3
3.3 Condition wait in task 6-4
3.4 Suspending tasks (SUSPEND) 6-5
3.5 Restarting tasks (RESTART) 6-5
3.6 Deleting tasks 6-6
3.7 Stopping tasks 6-7

4 Multi-task program example 6-8

5 Sharing the data 6-8

6 Cautionary ltems 6-9

Chapter 7 Sequence fnction

1 Sequence function 71

2 Creating a sequence program 71
2.1 Programming method 7-1
2.2 Compiling 7-3

3 Executing a sequence program 7-4
3.1 Sequence program STEP execution 7-4

C O NT ENT S Programming I\Y/Ivilctllﬁ

4 Programming a sequence program 7-5
41 Assignment statements 7-5
4.2 Input/output variables 7-5

4.21 Input variables 7-5
4.2.2 Output variables 7-6
4.3 Timer definition statement 7-7
4.4 Logical operators 7-7
4.5 Priority of logic operations 7-8
4.6 Sequence program specifications 7-8

Chapter 8 Robot Language Lists

How to read the robot language table 8-1
Command list in alphabetic order 8-2
Operation-specific 8-7
Functions: in alphabetic order 8-13
Functions: operation-specific 8-16
1 ABS Acquires absolute values 8-18
2 ABSRPOS Acquires the machine reference value (axes: mark method) 8-19
3 ACCEL Specifies/acquires the acceleration coefficient parameter 8-20
4 ARCHP1/ARCHP2 Specifies/acquires the arch position parameter 8-21
5 ARMCND Acquires the current arm status 8-23
6 ARMSEL Sets/acquires the current hand system selection 8-24
7 ARMTYP Sets/acquires the hand system selection during program reset 8-25
8 ASPEED Sets/acquires the AUTO movement speed of a specified robot 8-26
9 ATN/ATN2 Acquires the arctangent of the specified value 8-27
10 AXWGHT Sets/acquires the axis tip weight 8-28
11 CALL Calls a sub-procedure 8-29
12 CHANGE Switches the hand 8-30
13 CHGPRI Changes the priority ranking of a specified task 8-31
14 CHR$ Acquires a character with the specified character code 8-32
15 CLOSE Closes the specified General Ethernet Port 8-33
16 COS Acquires the cosine value of a specified value 8-34
17 CURTQST Acquires the current torque value of a specified axis
to the rated torque 8-35
18 CURTRQ Acquires the current torque of the specified axis 8-36

CONTENTS

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38

39
40
4
42
43
44

45
46
47

48
49

CUT
DATE$
DECEL
DEF FN
DEGRAD
DELAY

DI

DIM

DIST

DO

DRIVE
DRIVEI
END SELECT
END SUB
ERR/ERL
ETHSTS
EXIT FOR
EXIT SUB

EXIT TASK
FOR to NEXT

GEPSTS

GOSUB to RETURN
GOTO

HALT

HALTALL

HAND

441 For SCARA Robots
HOLD

HOLDALL
IF

47.1 Simple IF statement
47.2 Block IF statement
INPUT

INT

YRCX
Programming Manual

Terminates another task which is currently being executed 8-37

Acquires the date

Specifies/acquires the deceleration rate parameter
Defines functions which can be used by the user
Angle conversion (degree — radian)

Program execution waits for a specified period of time

Acquires the input status from the parallel port

Declares array variable

Acquires the distance between 2 specified points
Outputs to parallel port or acquires the output status
Executes absolute movement of specified axes
Moves the specified robot axes in a relative manner
Ends the SELECT CASE statement

Ends the sub-procedure definition

Acquires the error code / error line number
Acquires the Ethernet port status

Terminates the FOR to NEXT statement loop

8-38
8-39
8-40
8-41
8-42
8-43
8-44
8-45
8-46
8-48
8-52
8-57
8-58
8-59
8-60
8-61

Terminates the sub-procedure defined by the SUB to END SUB

statement

Terminates its own task which is in progress

Performs loop processing until the variable exceeds

the specified value

Acquires the General Ethernet Port status

Jumps to a subroutine

Executes an unconditional jump to the specified line
Stops the program and performs a reset

Stops all programs and performs reset

Defines the hand

Temporarily stops the program
Temporality stops all programs

Evaluates a conditional expression value, and executes
the command in accordance with the conditions

8-62
8-63

8-64
8-65
8-66
8-67
8-68
8-69
8-70
8-70
8-73
8-74

8-75
8-75
8-76

Assigns a value to a variable specified from the programming box 8-77

Truncates decimal fractions

8-79

CONTENTS

50
51
52
53
54
55
56

57
58

59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

JTOXY
LEFT$
LEFTY
LEN
LET
LO
LOCx

LSHIFT
MCHREF

MID$
MO

MOTOR
MOVE
MOVEI
MOVET
MTRDUTY
OFFLINE

ON ERROR GOTO
ON to GOSUB
ON to GOTO
ONLINE
OPEN

ORD
ORGORD
ORIGIN

ouT
OUTPOS
PATH

PATH END
PATH SET
PATH START
PDEF
PGMTSK

YRCX

Programming Manual

Performs axis unit system conversions (pulse — mm)
Extracts character strings from the left end

Sets the SCARA robot hand system as a left-handed system
Acquires a character string length

Assigns values to variables

Arm lock output or acquires the output status

Specifies/acquires point data for a specified axis or shift data
for a specified element

Left-shifts a bit

Acquires the machine reference value
(axes: sensor method / stroke-end method)

Acquires a character string from a specified position

Outputs a specified value to the MO port
or acquires the output status

Controls the motor power status

Performs absolute movement of robot axes

Performs relative movement of robot axes

Performs relative movement of all robot axes in tool coordinates
Acquires the motor load factor of the specified axis

Sets a specified communication port to the "offline" mode
Jumps to a specified label when an error occurs

Executes the subroutine specified by the <expression> value
Jumps to the label specified by the <expression> value
Sets the specified communication port to the "online" mode
Opens the specified General Ethernet Port

Acquires a character code

Specifies/acquires the robot's return-to-origin sequence
Performs return-to-origin

Turns ON the specified port output

Specifies/acquires the OUT enable position parameter of the robot
Specifies the motion path

Ends the path setting

Starts the path setting

Starts the PATH motion

Defines the pallet

Acquires the task number
in which a specified program is registered

8-80
8-81
8-82
8-83
8-84
8-87

8-89
8-91

8-92
8-93

8-94
8-96
8-97

8-112

8-122

8-132

8-133

8-134

8-135

8-136

8-137

8-138

8-139

8-140

8-141

8-142

8-143

8-145

8-151

8-152

8-155

8-159

8-160

CONTENTS

83 PGN

84 PMOVE
85 Pn

86 PPNT

87 PRINT

88 PSHFRC
89 PSHJGSP
90 PSHMTD
91 PSHRSLT
92 PSHSPD
93 PSHTIME
94 PUSH

95 RADDEG
96 REM

97 RESET
98 RESTART
99 RESUME
100 RETURN

101 RIGHT$

102 RIGHTY
103 RSHIFT
104 SELECT CASE to END SELECT

105 SEND
106 SERVO
107 SET

108 SETGEP
109 SGI

110 SGR

111 SHARED
112 SHIFT
113 SI

114 SID

115 SIN

Acquires the program number from a specified program name
Executes a pallet movement command for the robot

Defines points within a program

Creates pallet point data

Displays the specified expression value at the programming box
Specifies/acquires the pushing force parameter
Specifies/acquires the push judge speed parameter
Specifies/acquires a pushing type parameter

Acquires the status when PUSH statement ends
Specifies/acquires the push speed parameter
Specifies/acquires the push time parameter

Executes a pushing operation for specified axes

Performs a unit conversion (radians — degrees)

Inserts a comment

Turns OFF the bits of specified ports, or clears variables
Restarts another task during a temporary stop

Resumes program execution after error recovery processing

Processing which was branched by GOSUB, is returned
to the next line after GOSUB

Extracts a character string
from the right end of another character string

Sets the SCARA robot hand system as a right-handed system
Shifts a bit value to the right

Executes the specified command block in accordance with the
<expression> value

Sends readout file data to the write file
Controls the servo status

Turns the bit at the specified output port ON
Sets the General Ethernet Port

Assigns /acquires the value
to a specified integer type static variable

Assigns /acquires the value to a specified real type static variable
Enables sub-procedure referencing without passing on the variable
Sets the shift coordinates

Acquires specified Sl status

Acquires a specified serial input's double-word information

Acquires the sine value for a specified value

YRCX
Programming Manual

8-161
8-162
8-166
8-168
8-169
8-170
8-171
8-172
8-173
8-174
8-175
8-176
8-181
8-182
8-183
8-184
8-185

8-186

8-187
8-188
8-189

8-190
8-191
8-193
8-194
8-195

8-196
8-197
8-198
8-199
8-200
8-201
8-202

CONTENTS

116 SIW
117 Sn
118 SO

119 SOD

120 SOW

121 SPEED

122 SQR

123 START

124 STR$

125 SUB to END SUB
126 SUSPEND
127 SWI

128 TAN

129 TCOUNTER
130 TIMES$

131 TIMER

132 TO

133 TOLE
134 TORQUE
135 TSKPGM

136 VAL

137 WAIT

138 WAIT ARM

139 WEIGHT

140 WEND

141 WHERE

142 WHILE to WEND
143 WHRXY

144 XYTOJ

Acquires a specified serial input's word information
Defines the shift coordinates in the program

Outputs a specified value
to serial port or acquires the output status

Outputs a specified serial output's double-word information
or acquires the output status

Outputs a specified serial output's word information
or acquires the output status

Changes the program movement speed
Acquires the square root of a specified value
Starts a new task

Converts a numeric value to a character string
Defines a sub-procedure

Temporarily stops another task which is being executed
Switches the program being executed

Acquires the tangent value for a specified value
Timer & counter

Acquires the current time

Acquires the current time

Outputs a specified value to the TO port
or acquires the output status

Specifies/acquires the tolerance parameter
Specifies/acquires the maximum torque command value

Acquires the program number
which is registered in a specified task number

Converts character strings to numeric values

Waits until the conditional expression is met

Waits until the robot axis operation is completed
Specifies/acquires the tip weight parameter

Ends the WHILE statement's command block

Acquires the arm's current position (pulse coordinates)
Repeats an operation for as long as a condition is met
Acquires the arm's current position in Cartesian coordinates

Converts the Cartesian coordinate data ("mm")
to joint coordinate data ("pulse")

YRCX

Programming Manual

8-203
8-204

8-205

8-207

8-208
8-209
8-210
8-211
8-212
8-213
8-215
8-216
8-217
8-218
8-219
8-220

8-221
8-222
8-223

8-225
8-226
8-227
8-228
8-229
8-230
8-231
8-232
8-233

8-234

CONTENTS

YRCX
Programming Manual

Chapter 9 PATH Statements

1 Overview 9-1
2 Features 9-1
3 How to use 9-1
4 Cautions when using this function 9-2
Chapter 10 Data file description
1 Overview 10-1
1.1 Data file types 10-1
1.2 Cautions 10-2
2 Program file 10-3
2.1 All programs 10-3
2.2 One program 10-4
3 Pointfile 10-5
3.1 All points 10-5
3.2 One point 10-7
4 Point comment file 10-8
41 All point comments 10-8
4.2 One point comment 10-9
5 Point name file 10-10
51 All point names 10-10
5.2 One point name 10-11
6 Parameter file 10-12
6.1 All parameters 10-12
6.2 One parameter 10-14
7 Shift coordinate definition file 10-16
7.1 All shift data 10-16
7.2 One shift definition 10-17
8 Hand definition file 10-18
8.1 All hand data 10-18
8.2 One hand definition 10-19

C O NT ENT S Programming I\Y/Ivilctllﬁ

9 Pallet definition file 10-20
9.1 Al pallet definitions 10-20
9.2 One pallet definition 10-22

10 General Ethernet port file 10-24

11 Input/output name file 10-26
11.1 All input/output name data 10-26
11.2 One input/output type 10-27
11.3 One input/output port 10-28
11.4 One input/output bit 10-29

12 Area check output file 10-30
12.1 All area check output data 10-30
12.2 One area check output definition 10-31

13 All file 10-32

13.1 Allfile 10-32

14 Program directory file 10-34
14.1 Entire program directory 10-34
14.2 One program directory 10-35

15 Parameter directory file 10-36
15.1 Entire parameter directory 10-36

16 Machine reference file 10-37
16.1 Machine reference (axes: sensor method, stroke-end method) 10-37
16.2 Machine reference (axes: mark method) 10-38

17 System configuration information file 10-39

18 Version information file 10-40

19 Option board file 10-41

20 Self check file 10-42

21 Alarm history file 10-43

22 Remaining memory size file 10-45

23 Variable file 10-46

T-10

CONTENTS

YRCX

Programming Manual

24 Constant file 10-52
241 One character string 10-52
25 Array variable file 10-53
25.1 All array variables 10-53
25.2 One array variable 10-54
26 DI file 10-55
26.1 All Dl information 10-55
26.2 One DI port 10-56
27 DO file 10-57
27.1 All DO information 10-57
27.2 One DO port 10-58
28 MO file 10-59
28.1 All MO information 10-59
28.2 One MO port 10-60
29 LO file 10-61
29.1 All LO information 10-61
29.2 One LO port 10-62
30 TO file 10-63
30.1 All TO information 10-63
30.2 One TO port 10-64
31 Slfile 10-65
31.1 All Sl information 10-65
31.2 One Sl port 10-66
32 SO file 10-67
32.1 All SO information 10-67
32.2 One SO port 10-68
33 SIW file 10-69
33.1 All SIW data 10-69
33.2 One SIW data 10-70
34 SOW file 10-71
34.1 Al SOW 10-71
34.2 One SOW data 10-72

T-11

C O NT ENT S Programming I\Y/Ivilctllﬁ

35 EOF file 10-73
35.1 EOF data 10-73
36 Serial port communication file 10-74
36.1 Serial port communication file 10-74
37 Ethernet port communication file 10-75
37.1 Ethernet port communication file 10-75

Chapter 11 User program examples

1 Basic operation 111
1.1 Directly writing point data in program 111
1.2 Using point numbers 11-2
1.3 Using shift coordinates 11-3
1.4 Palletizing 11-4

1.41 Calculating point coordinates 11-4
1.4.2 Utilizing pallet movement 11-6
1.5 DI/DO (digital input and output) operation 11-7

2 Application 11-8
21 Pick and place between 2 points 11-8
2.2 Palletizing 11-10
2.3 Pick and place of stacked parts 1112
2.4 Parts inspection (Multi-tasking example) 11-14
2.5 Sealing 11-17
2.6 Connection to an external device through RS-232C (example 1) 11-18
2.7 Connection to an external device through RS-232C (example 2) 11-19

Chapter 12 Online commands

1 Online Command List 12-1
1.1 Online command list: Operation-specific 12-2
1.2 Online command list: In alphabetic order 12-6

2 Operation and setting commands 12-9
2.1 Program operations 12-9
2.2 MANUAL mode operation 12-17
2.3 Alarm reset 12-18
2.4 Clearing output message buffer 12-19
2.5 Setting input data 12-20
2.6 Change access level 12-21
2.7 Setting input data 12-22

T-12

CONTENTS

YRCX
Programming Manual

3 Reference commands 12-23
3.1 Acquiring return-to-origin status 12-23
3.2 Acquiring the servo status 12-24
3.3 Acquire motor power status 12-24
3.4 Acquiring the access level 12-25
3.5 Acquiring the break point status 12-25
3.6 Acquiring the mode status 12-26
3.7 Acquiring the communication port status 12-26
3.8 Acquiring the main program number 12-27
3.9 Acquiring the sequence program execution status 12-27
3.10 Acquiring the version information 12-28
3.11 Acquiring the tasks in RUN or SUSPEND status 12-28
3.12 Acquiring the tasks operation status 12-29
3.13 Acquiring the task end condition 12-29
3.14 Acquiring the shift status 12-30
3.15 Acquiring the hand status 12-30
3.16 Acquiring the remaining memory capacity 12-31
3.17 Acquiring the alarm status 12-31
3.18 Acquiring the emergency stop status 12-32
3.19 Acquiring the manual movement speed 12-32
3.20 Acquiring the inching movement amount 12-33
3.21 Acquiring the last reference point number (current point number) 12-33
3.22 Acquiring the output message 12-34
3.23 Acquiring the input data 12-34
3.24 Acquiring various values 12-35

4 Operation commands 12-37
41 Absolute reset 12-37
4.2 Return-to-origin operation 12-38
4.3 Manual movement: inching 12-39
4.4 Manual movement: jog 12-40

5 Data file operation commands 12-41
51 Copy operations 12-41
5.2 Erase 12-42
5.3 Rename program 12-47
5.4 Changing the program attribute 12-47
5.5 Initialization process 12-48
5.6 Data readout processing 12-50
5.7 Data write processing 12-51

T-13

C O NT ENT S Programming I\Y/Ivilctllﬁ

6 Utility commands 12-52
6.1 Setting the sequence program execution flag 12-52
6.2 Setting the date 12-52
6.3 Setting the time 12-53

7 Individual execution of robot language 12-54

8 Control codes 12-55

Chapter 13 Appendix

1 Reserved word list 13-1

2 Changes from conventional models 13-3
1 Program name 13-8
A) FUNCTION 13-3
B) _SELECT 13-3
2 Multiple Robot Control 13-3
3 Multi-tasking 13-4
4 Robot Language 13-4
5 Online commands 13-5
6 Data file 13-5

Index

T-14

Chapter 1
Writing Programs

1 The OMRON Robot Language.................. 1-1
2 Characters........ccccceeeeeiiiccccccnneeeeeeeeeenns 1-1
3 Program BasSiCS.........cccccrerrinimereninsinneennns 1-1
4 Program NAmes..........cccceiiiiimmmnnnnnnnnnnnns 1-2
5 Identifiers........cccooiiiiiiiie 1-4
6 LABEL Statement..........c.ooccccmereeeeeee, 1-4
7 Comment........ e 1-5
8 Command Statement Format 1-5

_ The OMRON Robot Language

The OMRON robot language is similar to BASIC (Beginner’s All-purpose Symbolic Instruction Code)
and makes even complex robot movements easy to program. This manual explains how to write
robot control programs with the OMRON robot language, including actual examples on how its
commands are used.

n Characters

The characters and symbols used in the OMRON robot language are shown below.
Only 1-byte characters can be used.
¢ Alphabetic characters
AtoZ atoz
e Numbers
0to9
¢ Symbols
OI1+-*/N=<>&|~_%14#$:;,."" {}1@2
¢ katakana (Japanese phonetic characters)

e Katakana (Japanese phonetic characters) cannot be entered from a programming box. Katakana
can be used when communicating with a host computer (if it handles katakana).
¢ Spaces are also counted as characters (1 space =1 character).

“ Program Basics

I-_l/-' NOTE

e For details regarding sub-
procedure, refer to "11
CALL" and "125 SUB to
END SUB" in Chapter 8.

It' NOTE

e For details regarding user
defined functions, refer to
"22 DEF FN" in Chapter 8.

Programs are written in a "1 line = T command" format, and every line must contain a command.
Blank lines (lines with no command) will cause an error when the program is executed. A line-feed

on the program's final line creates a blank line, so be careful not to do so.

To increase the program's efficiency, processes which are repeated within the program should be
written as subroutines or sub-procedures which can be called from the main routine. Moreover,
same processing items which occurs in multiple programs should be written as common routines
within a program named [COMMON], allowing those processing items to be called from multiple
programs.

User functions can be defined for specific calculations. Defined user functions are easily called,

allowing even complex calculations to be easily performed.

Multi-task programs can also be used to execute multiple command statements simultaneously in a
parallel processing manner.

Using the above functions allows easy creation of programs which perform complex processing.

The OMRON Robot Language @ 1-1 I

n Program Names

Each program to be created in the robot controller must have its own name.

Programs can be named as desired provided that the following conditions are satisfied:
= Program names may contain no more than 32 characters, comprising a combination of
alphanumeric characters and underscores (_).

= Each program must have a unique name (no duplications).

The 2 program names shown below are reserved for system operations, and programs with these

names have a special meaning.

A) SEQUENCE
B) COMMON

The functions of these programs are explained below.

| A) SEQUENCE

Unlike standard robot programs, the YRCX Controller allows the execution of high-
speed processing programs (sequence programs) in response to robot inputs and outputs
(DI, DO, MO, LO, TO, SI, SO). Specify a program name of "SEQUENCE" to use this
function, thus creating a pseudo PLC within the controller.

When the controller is in the AUTO or MANUAL mode, a SEQUENCE program can
be executed in fixed cycles (regardless of the program execution status) in response to
dedicated DI10 (sequence control input) input signals, with the cycle being determined
by the program capacity. For details, refer to "4.6 Sequence program specifications" in
Chapter 7.

This allows sensors, push-button switches, and solenoid valves, etc., to be monitored
and operated by input/output signals.

Moreover, because the sequence programs are written in robot language, they can
easily be created without having to use a new and unfamiliar language.

DO (20)=~DTI (20)
DO (25)=DI(21) AND DI (22)
MO (26)=DO(26) OR DO(25)

LEFREAN@S For details, refer to "4.6 Sequence program specifications" in Chapter 7.

I 1-2 @ Chapter 1 Writing Programs

J B COMMON

A separate "COMMON" program can be created to perform the same processing in
multiple robot programs. The common processing routine which has been written in the

COMMON program can be called and executed as required from multiple programs.
This enables efficient use of the programming space.

The sample COMMON program shown below contains two processing items (obtaining
the distance between 2 points (SUB *DISTANCE), and obtaining the area (*AREA))
which are written as common routines, and these are called from separate programs
(SAMPLE 1 and SAMPLE 2).
When SAMPLE1 or SAMPLE2 is executed, the SUB *DISTANCE (A!,B!,C!) and the
*AREA routine are executed.

SAMPLE

Program name: SAMPLE1
X!1=2.5
Y!=1.2
CALL *DISTANCE (X!,Y!,REF C!)
GOSUB *AREA
PRINT C!,Z!
HALT

Program name: SAMPLE2
X!=5.5
Y!=0.2
CALL *DISTANCE (X!,Y!,REF C!)
GOSUB *AREA
PRINT C!,Z!
HALT

Program name: COMMON =« oo Common routine
SUB *DISTANCE(A!,B!,C!)
C!=SQR (A!"2+B!"2)
END SUB
*AREA:
Z1=X!1*Y!
RETURN

EFANEN® For details, refer to the command explanations given in this manual.

Program Names @ 1-3 I

“ Identifiers

"Identifiers" are a combination of characters and numerals used for label names, variable names,

and procedure names. Identifiers can be named as desired provided that the following conditions

are satisfied:

Identifiers must consist only of alphanumeric characters and underscores (). Special symbols
cannot be used, and the identifier must not begin with an underscore ().

The identifier length must not exceed 32 characters (all characters beyond the 32th character are
ignored).

The maximum number of usable identifiers varies depending on the length of the identifiers.
When all identifier length is 32 characters, the number is at the maximum. Local variables can be
used up to 128 (in one program task) and global variables can be used up to 512.

Variable names must not be the same as a reserved word, or the same as a name defined as
a system variable. Moreover, variable name character strings must begin with an alphabetic
character. For label names, however, the "*" mark may be immediately followed by a numeric
character.

LOOP, SUBROUTINE, GET_DATA

LEFNEAN®S For details regarding reserved words, refer to Chapter 13 "1. Reserved word list",

regarding system variables, refer to Chapter 3 "9 System Variables".

“ LABEL Statement

Defines a label on a program line.

*label:

A label must always begin with an asterisk (*), and it must be located at the beginning of the line.

Although a colon (:) is required at the end of the label when defining it, this mark is not required

when writing a jump destination in a program.

1. A label must begin with an alphabetic or numeric character.

. Alphanumeric and underscore (_) can be used as the remaining label characters. Special
symbols cannot be used.
The label must not exceed 32 characters (all characters beyond the 32th character are ignored).

ol L P Y *ST Jlabel is defined.
MOVE P, PO

DO(20) = 1

MOVE P, P1

DO(20) = 0

GOTO S L T I Y Jumps to *ST.

HALT

I 1-4 @ Chapter 1 Writing Programs

Comment

Characters which follow REM or an apostrophe (') are processed as a comment. Comment

statements are not executed. Moreover, comments may begin at any point in the line.

SAMPLE

REM *** MAIN PROGRAM ***
(Main program)

x*% SQUBROUTINE *
(Subroutine)

HALT "HALT COMMAND -+ e-- This comment may begin at any point in

n Command Statement Format

label: statement operand

the line.

One robot language command must be written on a single line and arranged in the format shown

below:

¢ The shaded section can be omitted.

e The italic items should be written in the specific format.

e Items surrounded by | | are selectable.

e The label can be omitted. When using a label, it must always be preceded by an asterisk (*),
and it must end with a colon (:) (the colon is unnecessary when a label is written as a branching
destination).

For details regarding labels, refer to "6 LABEL Statement" in this Chapter.

e Operands may be unnecessary for some commands.
¢ Programs are executed in order from top to bottom unless a branching instruction is given.

1 line may contain no more than 255 characters.

Comment @ 1-5

Chapter 2

Constants
1 Outline.......coovieeeccer e 2-1
2 Numeric constantsccccceevrveeceniinnnnn. 2-1

3 Character constantsccceevveveeenirennns 2-2

_ Outline

Constants can be divided into two main categories: "numeric types" and "character types". These

categories are further divided as shown below.

Category Type Details/Range
Numeric Integer Decimal constants
type type -2,147,483,648 to 2,147,483,647

Binary constants
&BO0 to &B11111111

Hexadecimal constants
&H80000000 to &H7FFFFFFF

Real type Single-precision real numbers
-999,999.9 to +999,999.9

Exponential format single-precision real numbers
-1.0x10%* to +1.0x10%

Character Character Alphabetic, numeric, special character, or katakana (Japanese)
type string character string of 255 bytes or less.

n Numeric constants

2.1

B Integer constants

2.2

1.

Decimal constants

Integers from -2,147,483,648 to 2,147,483,647 may be used.

Binary constants

Unsigned binary numbers of 8 bits or less may be used. The prefix "&B" is attached to the
number to define it as a binary number.

Range: &BO (decimal: 0) to &B11111111 (decimal: 255)

Hexadecimal constants

Signed hexadecimal numbers of 32 bits or less may be used. The prefix "&H" is attached to the
number to define it as a hexadecimal number.

Range: &H80000000 (decimal: -2,147,483,648) to &H7FFFFFFF (decimal: 2,147,483,647)

Real constants

Single-precision real numbers
Real numbers from -999999.9 to +999999.9 may be used.
e 7 digits including integers and decimals. (For example, ".0000001" may be used.)
Single-precision real numbers in exponent form
Numbers from -1.0x10% to +1.0x10* may be used.
¢ Mantissas should be 7 digits or less, including integers and decimals.
Examples: -1. 23456E-12
3. 14E0
1. E5

e An integer constant range of —1,073,741,824 to 1,073,741,823 is expressed in signed

hexadecimal number as &H80000000 to &H7FFFFFFF.

Outline @ 2-1 I

“ Character constants

Character type constants are character string data enclosed in double quotation marks ("). The

character string must not exceed 255 bytes in length, and it may contain upper-case alphabetic
characters, numerals, special characters, or katakana (Japanese) characters.
To include a double quotation mark (") in a string, enter two double quotation marks in succession.

"OMRON ROBOT"

"EXAMPLE OF " "A""" e eueeneeneannnnn. EXAMPLE OF "A"
PRINT "COMPLETED"

"OMRON ROBOT"

2-2 @ Chapter 2 Constants

Chapter 3

Variables
1 OUHIN@ ... 3-1
2 User Variables & System Variables.......... 3-2
3 Variable Names.........cccccoeeeciciimmereeennnnnnnes 3-3
4 Variable TYpesccccommmmremcccciieeeeeeeeeennns 3-4
5 Array variables..........ccccooiiiiiinnnninnnninnnnns 3-5
6 Value Assignments............cccoeeimrrnnennnnnnne 3-5
7 Type Conversions...........ccccecervrrsrnssssssnnnns 3-6
8 \Value Pass-Along & Reference Pass-Along.......... 3-6
9 System Variablesccccoiviiiiiiiiiiiiicinnn, 3-7
10 BitSethingsccceeiiieeee 3-17
11 Valid range of variables......................... 3-18
12 Clearing variables..............ccccviiiiieennn. 3-19

_ Outline

There are "user variables" which can be freely defined, and "system variables" which have pre-

defined names and functions.

User variables consist of "dynamic variables" and "static variables". "Dynamic variables" are cleared
at program editing, program resets, and program switching. "Static variables" are not cleared unless
the memory is cleared. The names of dynamic variables can be freely defined, and array variables
can also be used.

Variables can be used simply by specifying the variable name and type in the program. A
declaration is not necessarily required. However, array variables must be pre-defined by a DIM
statement.

User variables & system variables

Dynamic variables Numeric type Integer variables >

Real variables (single—precision))

Character type Character string variables >
Numeric type

Integer variables >

Static variables

User variables

Real variables (single-precision)>
(Input variables
Output variables)

33301-R9-00

/

anut—output variables

(Point variables

N

)
8
]
©
=
o
>
£
[
i
®
>
(]

<Shift variables

EAFANENE®) For details regarding array variables, refer to "5 Array variables" in this Chapter.

Outline @ 3-1

n User Variables & System Variables

2.1 I User Variables

Numeric type variables consist of an "integer type" and a "real type", and these two types have
different usable numeric value ranges. Moreover, each of these types has different usable variables
(character string variables, array variables, etc.), and different data ranges, as shown below.

Category Variable Type Details/Range

Dynamic Numeric type Integer type variables

variables -2,147,483,648 to 2,147,483,647
(Signed hexadecimal constants: &H80000000 to
&H7FFFFFFF)

Real variables (single-precision)
-1.0x10%® to +1.0x10%

Character type Character string variables
Alphabetic, numeric, special character, or katakana
(Japanese) character string of 255 bytes or less.

Static Numeric type Integer type variables
variables -2,147,483,648 to 2,147,483,647

Real variables (single-precision)
-1.0x10%* to +1.0x10%

Array Numeric type Integer array variables
M NOTE variables -2,147,483,648 to 2,147,483,647
*Array variables are Real array variables (single-precision)
dynamic variables. -1.0x10% to +1.0x10%

Character type Character string array variables
Alphabetic, numeric, special character, or katakana
(Japanese) character string of 255 bytes or less.

2.2 | System Variables

As shown below, system variables have pre-defined names which cannot be changed.

Category Type Details Specific Examples
Input/output Inputvariables External signal / status inputs DI, SI, SIW, SID
variables

Output variables External signal / status outputs DO, SO, SOW, SOD
Point variables Handles point data Pnnnn
Shift variables Specifies the shift coordinate No. as Sn

a numeric constant or expression

LEFREAN®S For details, refer to "9 System Variables" in this Chapter.

I 3-2 @ Chapter 3 Variables

“ Variable Names

3.1 B Dynamic Variable Names

Dynamic variables can be named as desired, provided that the following conditions are satisfied:

= The name must consist only of alphanumeric characters and underscores (_). Special symbols
cannot be used.

= The name must not exceed 32 characters (all characters beyond the 32th character are ignored).

= The name must begin with an alphabetic character.

COUNT s e e eoeeeeeeseoscscacsoess Use is permitted
COUNTIL123 = et eccooscooccocnsosconssse Use is permitted
2COUNT e e e e e oo e eoceecsenceeeses Use is not permitted

= Variable names must not be the same as a reserved word.

= Variable names must not begin with characters used for system variable names (pre-defined
variables) and user-defined function. These characters include the following:
FN, DIn, DOn, MOn, LOn, TOn, SIn, SOn, Pn, Sn, Hn ("n" denotes a numeric value)

COWMNAE = 0000000000000 00000000G00 Use is permitted
ABS 0 e e et Use is not permitted
(Reserved word)
DNAMIZE 0 0000000000000 0000000000 Use is not permitted
(FN: user-defined function)
91 = 00000000000000000G000000 Use is not permitted
(Sn: pre-defined variable)

NA7aNAN@3 For details regarding reserved words, refer to Chapter 13 "1 Reserved word list".

3.2 I Static Variable Names

Static variable names are determined as shown below, and these names cannot be changed.

Variable Type Variable Name

Integer variable SGiIn (n:0to 31)
Real variable SGRn (n: 0 to 31)

Static variables are cleared only when initializing is executed by online command.

EFANEN@ For details regarding clearing of static variables, refer to "12 Clearing variables" in
this Chapter.

Variable Names @ 3-3 I

n Variable Types

4.1

The type of variable is specified by the type declaration character attached at the end of the variable
name.

However, because the names of static variables are determined based on their type, no type

declaration statement is required.

Type Declaration Character Variable Type Specific Examples
$ Character variables STR1$
% Integer variables CONTO0%, ACT%(1)
! Real variables CNT1!, CNT1

If no type declaration character is attached, the variable is viewed as a real type.

Variables using the same identifier are recognized to be different from each other by the type of
each variable.

* ASP_DEF%............. Integer variable

« ASP_DEF Real variable — ASP_DEF% and ASP_DEF are different variables.
e ASP_DEF!............. Real variable

¢ ASP_DEF oo Real variable — ASP_DEF! and ASP_DEF are the same variables.

I Numeric variables

Il/l NOTE

e When a real number is
assigned to an integer
type variable, the
decimal value is rounded
off to the nearest whole
number. For details, refer
to Chapter 4 "1.5 Data
format conversion".

Il;i NOTE

e The "I" used in real variables
may be omitted .

4.2

B Integer variables

Integer variables and integer array elements can handle an integer from -2,147,483,648 to
2,147,483,647 (in signed hexadecimal, this range is expressed as &H80000000 to &H7FFFFFFF).

Examples: R1% = 10
R2%(2) = R1% + 10000

I Real variables

Real variables and real array elements can handle a real number from —1.0x10" to 1.0x10%.

Examples: R1! = 10.31
R2!(2)= R1% + 1.98E3

I Character variables

Character variables and character array elements can handle a character string of up to 255
characters.

Character strings may include alphabetic characters, numbers, symbols and katakana (Japanese
phonetic characters).

Examples: R1$ = "OMRON"
R2$(2) = R1S + "MOTOR" =+ +cccveenn "OMRON MOTOR"

I 3-4 @ Chapter 3 Variables

“ Array variables

Both numeric and character type arrays can be used at dynamic variables.

Using an array allows multiple same-type continuous data to be handled together.

Each of the array elements is referenced in accordance with the parenthesized subscript which
appears after each variable name. Subscripts may include integers or expressions in up to 3
dimensions.

In order to use an array, Array variables must be declared by DIM statement in advance, and the
maximum number of elements which can be used is the declared subscripts + 1 (0 ~ number of
declared subscripts).

e All array variables are dynamic variables. (For details regarding dynamic variables, refer to "11

Valid range of variables" in this Chapter.)
e The length of an array variable that can be declared with the DIM statement depends on the
program size.

variable name % |(expression, expression, expression)

| |

SAMPLE
A%L) = 000000000000000000000000 Integer array variable
DATA! (1,10,3) v cceeeeeeeeeeeennnn. Single-precision real array variable

(3-dimension array)

STRINGS (10) v o e e e v eeeeeeeeeeennnnn. Character array variable

Value Assignments

An assignment statement (LET) can also be used to assign a value to a variable.

o "LET" directly specifies an assignment statement, and it can always be omitted.

LET variable = expression

Write the value assignment target variable on the left side, and write the assignment value or
the expression on the right side. The expression may be a constant, a variable, or an arithmetic
expression, etc.

NEFANEN@ For details, refer to Chapter 8 "54 LET (Assignment Statement)"

Array variables @ 3-5

Type Conversions

When different-type values are assigned to variables, the data type is converted as described below.

e When a real number is assigned to an integer type:
The decimal value is rounded off to the nearest whole number.
e When an integer is assigned to a real type:
The integer is assigned as it is, and is handled as a real number.
e When a numeric value is assigned to a character string type:
The numeric value is automatically converted to a character string.

* When a character string is assigned to numeric type:
This assignment is not possible,and an error will occur at the program is execution. Use the "VAL"
command to convert the character string to a numeric value, and that value is then assigned.

“ Value Pass-Along & Reference Pass-Along

A variable can be passed along when a sub-procedure is called by a CALL statement. This pass-

along can occur in either of two ways: as a value pass-along, or as a reference pass-along.

B Value pass-along

With this method, the variable's value is passed along to the sub-procedure. Even if this value is
changed within the sub-procedure, the content of the call source variable is not changed.
A value pass-along occurs when the CALL statement's actual argument specifies a constant, an

expression, a variable, or an array element (array name followed by (subscrip?).

B Reference pass-along

With this method, the variable's reference (address in memory) is passed along to the sub-
procedure. If this value is changed within the sub-procedure, the content of the call source variable
is also changed.

A reference pass-along occurs when the CALL statement's actual argument specifies an entire array
(an array named followed by parenthetical content), or when the actual argument is preceded by
"REF".

Value pass-along & reference pass-along

Value pass-along Reference pass-along

X%=5 X%=5

CALL *TEST(X%) CALL *TEST(REF X%)

PRINT X% PRINT X%

HALT HALT

" SUB ROUTINE ’ SUB ROUTINE

SUB *TEST(A%) SUB *TEST(A%)

A%=A%*10 A%=A%*10

END SUB END SUB
\ J J
The X% value remains as "5". The X% value becomes "50".

33302-R7-00

3-6 @ Chapter 3 Variables

n System Variables

The following system variables are pre-defined, and other variable names must not begin with the

characters used for these system variable names.

Variable Type Format Meaning

Point variable Pnnn / P [expression] Specifies a point number

Shift variable Sn / S [expression] Specifies the shift number as a constant
or as an expression

Parallel input variable DI(mb), DIm(b) Parallel input signal status

Parallel output variable DO(mb), DOm(b) Parallel output signal setting and status

Internal output variable MO(mb), MOm(b) Controller's internal output signal setting
and status

Arm lock output variable LO(mb), LOm(b) Axis-specific movement prohibit

Timer output variable TO(mb), TOm(b) For sequence program's timer function

Serial input variable Sl(mb), Sim(b) Serial input signal status

Serial output variable SO(mb), SOm(b) Serial output signal setting and status

Serial word input SIW(m) Serial input's word information status

Serial double-word input SID(m) Serial input's double-word information
status

Serial word output SOW(m) Serial output's word information status

Serial double-word output SOD(m) Serial output's double-word information
status

9.1 I Point variable

This variable specifies a point data number with a numeric constant or expression.

Pnnnnn or P[expression]

n: Point number 0to9

A point data number is expressed with a "P" followed by a number of 5 digits or less, or
an expression surrounded by brackets ([expression])

Point numbers from 0 to 29999 can be specified with point variables.

Examples: PO
P110
P[A]
P[START_POINT]
P[A(10)]

System Variables @ 3-7 I

9.2 I Shift variable

This variable specifies a shift coordinate number with a numeric constant or expression.

Snn or S|[expression]

n: Shift number 0to9

A shift number is expressed with an "S" followed by a 2-digits number or an expression
surrounded by brackets ([expression]). As a shift number, 0 to 39 can be specified.

Examples: S1
S[A]
S [BASE]
S[A(10)]

9.3 B Parallel input variable

This variable is used to indicate the status of parallel input signals.

DIm(b,-:-,b)

DI (mb, - - -, mb)

m : port number0to7,10t0 17,20to0 27
b : bit definitionccc....... Oto7
If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

Examples: A%=DI1 ()
->Input status of ports DI(17) to DI(10)
is assigned to variable A%.
0 to 255 integer can be assigned to A%.
A%=DI5(7,4,0)
-Input status of DI(57), DI(54) and
DI(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)
A%=DI (27,15,10)
-Input status of DI(27), DI(1l5) and
DI(10) is assigned to variable A%.
(If all above signals except DI(10) are 1 (ON), then A%=6.)
WAIT DI(21)=1
-Waits for DI(21) to change to 1(ON).

¢ When specifying multiple bits, specify them from left to right in descending order (high to low).

e A'"0"is input if an input port does not actually exist.

I 3-8 @ Chapter 3 Variables

9.4 B Pardllel output variable

Specifies the parallel output signal or indicates the output status.

DOm (b, - - -,b)

DO (mb, - - -, mb)

m : port number
b : bit definition

If the bit definition is omitted in Format 1, bits O to 7 are all selected.

Examples: A%=DO02 ()
—Output status of DO(27) to DO(20) is
assigned to variable A%.
A%=D0O5(7,4,0)
-Output status of DO(57), DO(54) and
DO(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)
A%=DO(37,25,20)
-0utput status of DO(37), DO(25) and
DO(20) is assigned to variable A%.
(If all above signals except DO(20) are 1
(ON), then A%=6.)
DO3 () =B%
-Changes to a status in which the DO(37)
to DO(30) output can be indicated by B%.
For example, if B% is "123": If a binary
number is used, "123" will become
"01111011", DO(37) and DO(32) will become
"0", and the other bits will become "1".
DO4 (5,4,0)=&B101
-D0(45) and DO(40) become "1", and DO(44) becomes "0".

* When specifying multiple bits, specify them from left to right in descending order (high to low).

e If an output port does not actually exist, the data is not output externally.

System Variables @ 3-9 I

9.5 J Internal output variable

Specifies the controller's internal output signals and indicates the signal status.

MOm (b, - - -,Db)

MO (mb, - - -, mb)
m : port numberc..occ.... Oto7,10to 17,20to 27, 30 to 33
b : bit definition Oto7

e [f the bit definition is omitted in Format 1, bits O to 7 are all selected.

Internal output variables which are used only in the controller, can set the status and refer.
These variables are used for signal communications, etc., with the sequence program.
Ports 30 to 33 are for dedicated internal output variables which can only be referenced

(they cannot be changed).

1. Port 30 indicates the status of origin sensors for axes 1 to 8 (in order from bit 0). Port
31 indicates the status of origin sensors for axes 9 to 16 (in order from bit 0).
Each bit sets to "1" when the origin sensor turns ON, and to "0" when OFF.

2. Port 34 indicates the HOLD status of axes 1 to 8 (in order from bit 0). Port 35 indicates

the HOLD status of axes 9 to 16 (in order from bit 0).
Each bit sets to "1" when the axis is in HOLD status, and to "0" when not.

Bit 7 6 5 4 3 2 1 0
Port 30 Axis8 Axis7 Axis6 Axis5 Axis4 Axis3 Axis2 Axis1
Port 31 Axis 16 Axis 15 Axis 14 Axis 13 Axis12 Axis11 Axis10 Axis9

Origin sensor status 0: OFF / 1: ON (Axis 1 is not connected)
Port 34 Axis8 Axis7 Axis6 Axis5 Axis4 Axis3 Axis2 Axis1
Port 35 Axis 16 Axis 15 Axis 14 Axis 13 Axis12 Axis11 Axis10 Axis9
Hold status 0: RELEASE / 1: HOLD (Axis 1 is not connected)

¢ Axes where no origin sensor is connected are always ON.

¢ Being in HOLD status means that the axis movement is stopped and positioned within the target
point tolerance while the servo is still turned ON.

e When the servo turns OFF, the HOLD status is released.

¢ Axes not being used are set to "1" (HOLD).

¢ The status of each axis in order from the smallest axis number used by robot 1 is maintained.
Example) In the case of a configuration where robot 1 has 5 axes and robot 2 has 4 axes, bits
0 to 4 of port 30 indicate the status of axes 1 to 5 of robot 1, bits 5 to 7 of port 30 indicate the
status of axes 1 to 3 of robot 2, and bit 0 of port 31 indicates the status of axis 4 of robot 2.

I 3-10 @ Chapter 3 Variables

Examples: A%=MO2 ()
-Internal output status of MO(27) to
MO (20) is assigned to variable A%.
A%=MO5(7,4,0)
->Internal output status of MO(57), MO(54)
and MO (50) is assigned to variable A%.
(If all above signals are 1 (ON), then A%=7.)
A%=MO (37,25,20)
—-Internal output status of MO(37), MO(25)
and MO (20) is assigned to variable A%.

(If all above signals except MO(25) are 1 (ON), then A%=5.)

9.6 B Arm lock output variable

Specifies axis-specific movement prohibit settings.

LOom(b, - --,b)

LO (mb, - - -, mb)

m : port number 0,1

b : bit definitioncc....... Oto7
e |f the bit definition is omitted in Format 1, bits O to 7 are all selected.

FILTEINT) The contents of this variable can be set the status and referred to as needed.
Of Port 0, bits 0 to 7 respectively correspond to axes 1 to 8, and of port 1, bits O to
respectively correspond to axes 9 to 16.
When this bit is ON, movement on the corresponding axis is prohibited.

Examples:
A%=L00 ()
—Arm lock status of LO(07) to LO(00) is assigned to variable A%.
A%=L00(7,4,0)
—Arm lock status of LO(07), LO(04) and LO(00) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)
A%=L00 (06,04, 01)
—Arm lock status of LO(06), LO(04) and LO(01) is assigned to variable A%.
(If all above signals except LO(01) are 1(ON), then A%=6.)
LO1 () =&B0010
-LO(11) is set to 1(ON),then movement of axis 10 is prohibited.
L01(2,0)=3
-LO(12) and LO(10) are set to 1(ON),

then movements of axes 11 and 9 are prohibited.

System Variables @ 3-11 I

¢ When specifying multiple bits, specify them from left to right in descending order (high to low).

e Servo OFF to ON switching is disabled if an arm lock is in effect at even 1 axis.

* When performing JOG movement in the MANUAL mode, axis movement is possible at axes
where an arm lock status is not in effect, even if an arm lock status is in effect at another axis.

¢ When executing movement commands from the program, etc., the "12.401 Arm locked" error
will occur if an arm lock status is in effect at the axis in question.

* Arm locks sequentially correspond to axes in order from the axis with the smallest axis number
used by robot 1.
Example) In the case of a configuration where robot 1 has 5 axes and robot 2 has 4 axes, the
status of axes 1 to 5 of robot 1 is set by bits 0 to 4 of port 0, the status of axes 1 to 3 of robot 2
is set by bits 5 to 7 of port 0, and the prohibition of motion of axis 4 of robot 2 is set by bit 0 of
port 1.

9.7 J Timer output variable

This variable is used in the timer function of a sequence program.

TOm (b, ---,b)

TO (mb, - - -, mb)

m : port numberc..coceee. 0,1

b : bit definitionc........ Oto7

e |f the bit definition is omitted in Format 1, bits O to 7 are all selected.

The contents of this variable can be changed and referred to as needed.
Timer function can be used only in the sequence program. If this variable is output in a
normal program, it is an internal output.

For details regarding sequence program usage examples, refer to the timer usage examples given in
"4.2 Input/output variables" in Chapter 7.

Examples: A%=TOO0 ()
—-Status of TO(07) to TO(00) is assigned
to variable A%.
A%=T00(7,4,0)
—Status of TO(07), TO(04) and TO(00) is
assigned to variable A%.
(If all above signals are 1 (ON), then A%=7.)
A%=TO (06,04,01)
->Status of TO(06), TO(04) and TO(01l) is
assigned to variable A%.
(If all above signals except TO(01l) are 1
(ON) , then A%=6.)

I 3-12 @ Chapter 3 Variables

9.8 B Serial input variable

This variable is used to indicate the status of serial input signals.

SIm(b, ---,b)

SI(mb, - - -,mb)

m : port numbercc.c..... Oto7,10to 17,20to 27
b : bit definitionc.......... Oto7
o |f the bit definition is omitted in Format 1, bits O to 7 are all selected.

Examples: A%=STI1()
-Input status of ports SI(17) to SI(10)
is assigned to variable A%.
A%=SI5(7,4,0)
->Input status of SI(57), SI(54) and
SI(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)
A%=SI(27,15,10)
->Input status of SI(27), SI(15) and
SI(10) is assigned to variable A%.
(If all above signals except SI(10) are 1"
(ON), then A%=6.)
WAIT SI(21)=1
SWaits until SI(21) sets to 1 (ON).

* When specifying multiple bits, specify them from left to right in descending order (high to law).

e A"0"is input if a serial port does not actually exist.

System Variables @ 3-13 I

9.9 B Serial output variable

This variable is used to define the serial output signals and indicate the output status.

SOm (b, = --,b)

SO (mb, - - -, mb)
m : port numberc..occ.... Oto7,10to 17,20to 27

b : bit definition
e [f the bit definition is omitted in Format 1, bits O to 7 are all selected.

Examples: A%=S02 ()
-0utput status of SO(27) to SO(20) is

assigned to variable A%.

A%=S05(7,4,0)
-0utput status of SO(57), SO(54) and
SO (50) is assigned to variable A%.

(If all above signals turn 1(ON), then A%=7.)

A%=S0(37,25,20)
-0utput status of SO(37), SO(25) and
SO(20) is assigned to variable A%.

(If all above signals except SO(25) turn 1(ON), then A%=5.)

S0O3 () =B%

—Changes the output status of SO(37) to
SO(30) to one indicated by B%.

(If B is 123, 123 is expressed B01111011 as a binary number,
that means SO(37) and SO(32) turn 0(OFF), the other bits turn 1(ON).)

S04 (5,4,0)=&B101
-D0O(45) and DO(40) turn 1(ON), DO(44) turns O (OFF).

¢ When specifying multiple bits, specify them from left to right in descending order (high to law).

e If a serial port does not actually exist, the data is not output externally.

I 3-14 @ Chapter 3 Variables

9.10 B Serial word input

This variable indicates the status of the serial input word information.

SIW (m)

m : port number 2to 15
The acquisition range is 0 (&H0000) to 65,535 (&HFFFF).

Examples: A%=SIW(2)

-The input status from SIW (2) is
assigned to variable A%.

A%=SIW(15)

-The input status from SIW (15) is

assigned to variable A%.

e The information is handled as unsigned word data.

¢ "0" is input if a serial port does not actually exist.

9.1 B Serial double word input

This variable indicates the state of the serial input word information as a double word.

SID(m)

m : port number 2,4,6,8,10,12, 14
The acquisition range is -2,147,483,648(&H80000000) to 2,147,483,647(&H7FFFFFFF).

Examples: A%=SID(2)
-The input status from SIW (2) , SIW (3)
is assigned to variable A%.
A%=SID(14)
-The input status from SIW (14), SIW (15)

is assigned to variable A%.

¢ The information is handled as signed double word data.

¢ "0" is input if a serial port does not actually exist.

e The lower port number data is placed at the lower address.
For example, if SIW(2) =&H2345, SIW(3) =&HO0001, then SID(2) =&H00012345.

System Variables @ 3-15 I

9.12 J Serial word output

Outputs to the serial output word information or indicates the output status.

SOW (m)

m : port number 2to 15
The output range is 0 (&H0000) to 65,535 (&HFFFF).

Note that if a negative value is output, the low-order word information will be output

after being converted to hexadecimal.

Examples: A%=SOW(2)
-The output status of SOW (2) is
assigned to variable A%.
SOW (15) =A%
-The contents of variable A% are
assigned in SOW (15).
If the variable A% value exceeds the output range,
the low-order word information will be assigned.
SOW (15) =-255
-The contents of -255 (&HFFFFFF01l) are
assigned to SOW (15).
-255 is a negative value, so the low-order

word information (&HFF01l) will be assigned.

e The information is handled as unsigned word data.

e If a serial port does not actually exist, the data is not output externally.
e If a value exceeding the output range is assigned, the low-order 2-byte information is output.

9.13 J Serial double word output

Output the status of serial output word information in a double word, or indicates the output status.

SOD (m)

m : port number 2,4,6,8,10,12, 14
The output range is -2,147,483,648(&H80000000) to 2,147,483,647(&H7FFFFFFF).

Examples: A%=S0OD(2)
-The output status of SOD (2) is assigned to variable A%.
SOD (14) =A%
-The contents of variable A% are assigned in SOD (14).

e The information is handled as signed double word data.

e If a serial port does not actually exist, the data is not output externally.
e The lower port number data is placed at the lower address.
For example, if SOW(2) =&H2345, SOW(3) =&HO0001, then SOD(2) =&H00012345.

I 3-16 @ Chapter 3 Variables

n Bit Settings

Bits can be specified for input/output variables by any of the following methods.

l 1.Single bit

To specify only 1 of the bits, the target port number and bit number are specified in parentheses.

The port number may also be specified outside the parentheses.

Programming example: DOm(b)DOm(b)
Example: DO(25) Specifies bit 5 of port 2.
DO2 (5)

B 2.Same-port multiple bits

To specify multiple bits at the same port, those bit numbers are specified in parentheses (separated
by commas) following the port number.
The port number may also be specified in parentheses.

Programming example: DOm(b,b,...,b) DO(mb,mb,...,mb)
Example: DO2(7,5,3) Specifies DO(27), DO(25), DO(23)

DO (27,25,23)

| 3.Different-port multiple bits

To specify multiple bits at different ports, 2-digit consisting of the port number and the bit number
must be specified in parentheses and must be separated by commas. Up to 8 bits can be written.

Programming example: DO(mb,mb,...,mb)
Example: DO(37,25,20) Specifies DO(37), DO(25), DO(20) .

B 4.All bits of 1 port

To specify all bits of a single port, use parentheses after the port number. Methods 2 and 3 shown
above can also be used.

Programming example: DOm()
Example: DO2 () Specifies all the DO(27) to DO(20) bits
->The same result can be obtained by the following:
DO(27,26,25,24,23,22,21,20)
or,

D02 (7,6,5,4,3,2,1,0)

Bit Settings @ 3-17 I

n Valid range of variables

11.1 B Vdlid range of dynamic (array) variables

Dynamic (array) variables are divided into global variables and local variables, according to their
declaration position in the program. Global and local variables have different valid ranges.

Variable Type Explanation

Global variables Variables are declared outside of sub-procedures (outside of
program areas enclosed by a SUB statement and END SUB
statement). These variables are valid throughout the entire program.

Local variables Variables are declared within sub-procedures and are valid only in
these sub-procedures.

e For details regarding arrays, refer to Chapter 3 "5 Array variables".

e A variable declared at the program level can be referenced from a sub-procedure without

being passed along as a dummy argument, by using the SHARED statement (for details, refer to
Chapter 8 "111 SHARED").

11.2 B Valid range of static variables

Static variable data is not cleared when a program reset occurs. Moreover, variable data can be
changed and referenced from any program.
The variable names are determined as shown below (they cannot be named as desired).

Variable type Variable name

Integer variable SGIn (n:0to 31)
Real variable SGRn (n: 0 to 31)

I 3-18 @ Chapter 3 Variables

n Clearing variables

2.1 B Clearing dynamic variables

In the cases below, numeric variables are cleared to zero, and character variables are cleared to a

null string. The array is cleared in the same manner.

= When a program reset occurs.

= When dedicated input signal DI15 (program reset input) was turned on while the program was
stopped in AUTO mode.

= When either of the following is initialized by an initialization operation.

1. Program memory
2. Entire memory
= When any of the following online commands was executed.
@RESET, @INIT PGM, @INIT MEM, @INIT ALL
= When the HALTALL statement was executed in the program (HALT statement does not clear
dynamic variables).

12.2 B Clearing static variables

In the cases below, integer variables and real variables are cleared to zero.

= When the following is initialized by an initialization operation.
Entire memory

= When any of the following online commands was executed.
@INIT MEM, @INIT ALL

Clearing variables @ 3-19 I

Chapter 4

Expressions and Operations

1 Arithmetic operationsccccceeeeeeee. 4-1
2 Character string operations..................... 4-4
3 Point data format.............cccciieeeee. 4-5
4 DI/DO conditional expressions 4-6

_ Arithmetic operations

B Arithmetic operators

1.2

Operators Usage Example = Meaning

+ A+B Adds Ato B

- A-B Subtracts B from A

* A*B Multiplies A by B

/ A/B Divides Aby B

A A"B Obtains the B exponent of A (exponent operation)
- -A Reverses the sign of A

MOD A MOD B Obtains the remainder A divided by B

When a "remainder" (MOD) operation involves real numbers, the decimal value is rounded off to

the nearest whole number which is then converted to an integer before the calculation is executed.
The result represents the remainder of an integer division operation.

Examples: A=15 MOD 2 - A=1(15/2=7....1)
A=17.34 MOD 5.98 - A=2(17/5=3....2)

B Relational operators

Relational operators are used to compare 2 values. If the result is "true", a "-1" is obtained. If it is
"false", a "0" is obtained.

Operators Usage Example Meaning

= A=B "-1" if A and B are equal, "0" if not.

<, >< A<>B "-1"if A and B are unequal, "0" if not.

< A<B "-1" if Ais smaller than B, "0" if not.

> A>B "-1"if Ais larger than B, "0" if not.

<=, =< A<=B "-1"if Ais equal to or smaller than B, "0" if not.
>=, => A>=B "-1"if A is equal to or larger than B, "0" if not.
Examples: A=10>5 — Since 10 > 5 is "true", A = -1.

* When using equivalence relational operators with real variables and real arrays, the desired
result may not be obtained due to the round-off error.
Examples:......ccoovevieinrennnns A=2
B=SQR(A!)
IF Al=B!*B! THEN...
— In this case, A! will be unequal to B!*B!.

Arithmetic operations @ 4-1 I

1.3 I Logic operations

Logic operators are used to manipulate 1 or 2 values bit by bit. For example, the status of an 1/O
port can be manipulated.

= Depending on the logic operation performed, the results generated are either 0 or 1.
= Logic operations with real numbers convert the values into integers before they are executed.

Operators Functions Meaning

NOT, ~ Logical NOT Reverses the bits.

AND, & Logical AND Becomes "1" when both bits are "1".

OR, | Logical OR Becomes "1" when either of the bits is "1".
XOR Exclusive OR Becomes "1" when both bits are different.

Logical equivalence

EQV operator

Becomes "1" when both bits are equal.

Logical implication ~ Becomes "0" when the first bit is "1" and the second bit

IMP operator is "0".

Examples: A%=NOT 13.05 — "-14"is assigned to A% (reversed after being rounded off to 13).

Bit 4 (] 5 4 3 2 1 0
13 0 0 0 0 1 1 0
NOT 13=-14 1 1 1 1 0 0 1 0

Examples: A%=3 AND 10 — "2"is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1
10 0 0 0 0 1 0 1 0
3AND 10=2 0 0 0 0 0 0 1 0

Examples: A%=3 OR 10 — "11"is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1
10 0 0 0 0 1 0 1 0
30R10=11 0 0 0 0 1 0 1 1
Examples: A%=3 XOR 10 — "9"is assigned to A%
Bit 7 6 5 4 3 2 1]
3 0 0 0 0 0 0 1 1
10 0 0 0 0 1 0 1 0
3XOR10=9 0 0 0 0 1 0 0 1

I 4-2 @ Chapter 4 Expressions and Operations

1.4 I Priority of arithmetic operation

Operations are performed in the following order of priority. When two operations of equal priority
appear in the same statement, the operations are executed in order from left to right.

Priority Rank Arithmetic Operation

1 Expressions included in parentheses
2 Functions, variables
3 A (exponents)
4 Independent "+" and "-" signs (Monominal operators)
5 * (Multiplication), / (Division)
6 MOD
7 + (Addition), - (Subtraction)
8 Relational operators
9 NOT, ~ (Logical NOT)
10 AND, & (Logical AND)
11 OR, |, XOR (Logical OR, exclusive OR)
12 EQV (Logical equivalence)
13 IMP (Logical implication)
1.5 B Data format conversion

Data format is converted in cases where two values of different formats are involved in the same

operation.
1. When a real number is assigned to an integer, decimal places are rounded off.
Examples: A%=125.67 — A%=126

2. When integers and real numbers are involved in the same operation, the result
becomes a real number.

Examples: A(0)=125 * 0.25 — A(0)=31.25

3. When an integer is divided by an integer, the result is an integer with the remainder
discarded.

Examples: A(0)=100/3 — A(0)=33

Arithmetic operations @ 4-3 I

n Character string operations

2, B Character string connection

Character strings may be combined by using the "+" sign.

AS$="OMRON"
BS="ROBOT"
C$S="LANGUAGE"
D$="MOUNTER"
E$=AS+" "+BS+" "+CS
F$=AS+" "+D$

PRINT ES$
PRINT F$S
Results: OMRON ROBOT LANGUAGE
OMRON MOUNTER
2.2 I Character string comparison

Characters can be compared with the same relational operators as used for numeric values.
Character string comparison can be used to find out the contents of character strings, or to sort
character strings into alphabetical order.

= In the case of character strings, the comparison is performed from the beginning of each string,
character by character.

= |f all characters match in both strings, they are considered to be equal.

= Even if only one character in the string differs from its corresponding character in the other string,
then the string with the larger (higher) character code is treated as the larger string.

= When the character string lengths differ, the longer of the character strings is judged to be the
greater value string.

All examples below are "true".
Examples: "AA"<"AB"

llx& II>IIX# n
"DESK"<"DESKS"

I 4-4 @ Chapter 4 Expressions and Operations

“ Point data format

There are two types of point data formats: joint coordinate format and Cartesian coordinate format.
|!| NOTE

Point numbers are in the range of 0 to 29999.

eThe data format is
common for axes 1

to 6 for both the joint Coordinate Format Data Format Explanation
coordinate format and Joint coordinate + nnnnnnn This is a decimal integer constant of 8 digits
the Carfesian coordinate format or less with a plus or minus sign, and can be
format. specified from 99999999 to 99999999.
*Plus (+) signs can be Unit: [pulses]
omitted.
Cartesian +nnn.nn to = nnnnnnn This is a decimal fraction of a total of 7 digits
coordinate including 3 or less decimal places.
format Unit: [mm] or [degrees]

When setting an extended hand system flag for SCARA robots, set either "1" or "2" at the end of the
data. If a value other than "1" or "2" is set, or if no value is designated, "0" will be set to indicate that
no hand system flag is set.

Hand System Data Value

RIGHTY (right-handed system) 1
LEFTY (left-handed system) 2

Point data format @ 4-5 I

n DI/DO conditional expressions

DI/DO conditional expressions may be used to set conditions for WAIT statements and STOPON

options in MOVE statements.
Numeric constants, variables and arithmetic operators that may be used with DI/DO conditional

expressions are shown below.

¢ Constant
Decimal integer constant, binary integer constant, hexadecimal integer constant
e Variables
Global integer type, global real type, input/output type
* Operators
Relational operators, logic operators
e Operation priority

1. Relational operators
2. NOT, ~

3. AND, &

4. OR, |, XOR

Examples: WAIT DI(31)=1 OR DI(34)=1

— The program waits until either DI31 or

DI34 turns ON.

I 4-6 @ Chapter 4 Expressions and Operations

Chapter 5
Multiple Robot Control

1 OVEIVIEW ... e 5-1
2 Command list with a robot setting.......... 5-2

_ Overview

YRCX can be used to control multiple robots (up to 4).

The multi-task function also enables multiple robots to move asynchronously.

To use this function, settings for multiple robots or settings for auxiliary axes must be made in the

system prior to shipment.

The following settings are possible to the axes of robots.

= Robot 1 (4 axes)

= Robot 1 (4 axes) + robot 2 (4 axes) (when using the YC-LINK/E option)
= Robot 1 (4 axes) + robot 2 (4 axes) + robot 3 (4 axes) + robot 4 (4 axes)
(when using the YC-LINK/E option)

Each robot consists of normal axes and auxiliary axes.

When using one robot without auxiliary axes, the setting is made only to normal axes.

Axes configuration

1. For robot 1

Main group

Robot 1 normal axis

(Number of axes: 4)

2. For 1 robot with no auxiliary axes used

Robot 1 auxiliary axis

(Number of axes: 4)

Robot 1 Robot 1 robot

(Number of axes: 4)

Robot 1 auxiliary axis

(None)

33501-R9-00

Overview @ 5-1

n Command list with a robot setting

The special commands and functions for robot movements and coordinate control are common

for all robots. A robot can be specified with an option of a command. Main commands are shown

below.
Operator Command name
Robot movement DRIVE DRIVEI
MOVE MOVEI
MOVET PATH
PMOVE SERVO
WAIT ARM
Coordinate control CHANGE HAND
LEFTY PATH
RIGHTY SHIFT
Status change ACCEL ARCHP1
ARCHP2 ARMSEL
ARMTYP ASPEED
AXWGHT DECEL
MSPEED ORGORD
OUTPOS SPEED
TOLE WEIGHT
Point operation JTOXY WHERE
XYTOJ WHRXY
Parameter reference ACCEL ARCHP1
ARCHP2 ARMTYP
AXWGHT DECEL
ORGORD OUTPOS
TOLE WEIGHT
Status reference ABSRPOS ARMCND
ARMSEL ARMTYP
CURTQST CURTRQ
MCHREF WHERE
WHRXY
Torque control TORQUE TRQSTS
TRQTIME CURTRQ

= An axis specified as an auxiliary axis cannot be moved with the MOVE, MOVEI, MOVET and
PMOVE commands. Use the DRIVE or DRIVEI command to move it.

I 5-2 @ Chapter 5 Multiple Robot Control

Chapter 6
Multi-tasking

1 Outline....ooee e 6-1
2 Task definition method............cccccveeeennee. 6-1
3 Task status and transition.......................... 6-2
4 Multi-task program example 6-8
5 Sharing the data.........ccccoiiiiiiiniiciieenn. 6-8
6 Cautionary ltems.........cccocveiiiiiiiiiiiiccicnnnnn. 6-9

_ Outline

The multi-task function performs multiple processing simultaneously in a parallel manner, and can

be used to create programs of higher complexity. Before using the multi-task function, read this
section thoroughly and make sure that you fully understand its contents.

Multi-tasking allows executing two or more tasks in parallel. However, this does not mean that
multiple tasks are executed simultaneously because the controller has only one CPU to execute the
tasks. In multi-tasking, the CPU time is shared among multiple tasks by assigning a priority to each
task so that they can be executed efficiently.

= A maximum of 16 tasks (task 1 to task 16) can be executed in one program.

Tasks can be prioritized and executed in their priority order (higher priority tasks are executed first).
= The priority level can be set to any level between 1 and 64.

Smaller values have higher priority, and larger values have lower priority
(High priority: 1 < 64: low priority).

n Task definition method

A task is a set of instructions which are executed as a single sequence. As explained below, a task is
defined by assigning a label to it.

1. Create one program that describes a command which is to be defined as a task.
2. In the START statement of the program that will be a main task, specify the program created at
Step 1 above. Task numbers are then assigned, and the program starts.

'MAIN TASK (TASK1)
START <SUB_PGM>, T2 =+ eccceeceeeeens <SUB_PGM> is started as Task 2
@il ¢
MOVE P, P1,PO

IF DO(20)= 1 THEN

HALTALL

ENDIF
GOTO *ST
HALTALL

Program name:SUB_PGM

’SUB TASK (TASK2)
FTOTASK: e e e o e eoeeesceesencseess Task 2 begins here
IF DI(21)=1 THEN
DO (30)=1
ELSE
DO (30)=0
ENDIF
GOTO *TOTASK v eeccceeeneeeeeen Task 2 processing ends here

EXIT TASK

Outline @ 6-1

n Task status and transition

There are 6 types of task status.
1. STOP status
A task is present but the task processing is stopped.
2. RUN status
A task is present and the task processing is being executed by the CPU.
3. READY status
A task is present and ready to be allocated to the CPU for task processing.
4. WAIT status
A task is present and waiting for an event to begin the task processing.
5. SUSPEND status
A task is present but suspended while waiting to begin the task processing.
6. NON EXISTENT status
No tasks exist in the program. (The START command is used to perform a call.)

Task state transition
CPU assignment

‘ Wait for CPU assignment l

Restart Cancel waiting Wait condmon

Suspend

Stop Stop 1 tStart 1 Stop Stop

(STOP)
Delete‘ t Call

(NON EXISTENT)

33601-R9-00

3.1 Starting tasks

When the START command is executed, a specified program is registered in the task and placed in
RUN status. If the task number (1 to 16) is not specified by the START command, the task with the
smallest number among the tasks yet to be started is automatically specified. For details regarding
the START command, refer to "123 START" in Chapter 8.

¢ When the LOAD command is executed, a specified program is registered in the task and placed

in a STOP status. For details of the LOAD command, refer to "1. Register task" of "2.1 Program

operations" in Chapter 12.

e If another program is already registered in the task number specified by the START command or
the LOAD command, the "6.215: Task running" error will occur.

* When programs are registered in all task numbers and the START command or the LOAD command
is executed without specifying the task number, the "6.263: Too many Tasks" error will occur.

e When the HALTALL command is executed, all tasks termitate and the task enters the NON
EXISTENT (no task registration) status. When the main program is specified, the HALTALL
command registers the main program in the task 1 and stops at the beginning line. When the
main program is not specified, the HALTALL command registers the program that has been
executed last (current program) in the task 1 and stops at the beginning line.

For details regarding the main program, refer to "Setting the main program" of YRCX operator's

manual.

I 6-2 @ Chapter 6 Multi-tasking

3.2 B Task scheduling

Task scheduling determines the priority to be used in allocating tasks in the READY (execution
enabled) status to the CPU and executing them.

When there are two or more tasks which are put in the READY status, ready queues for CPU
allocation are used to determine the priority for executing the tasks. One of these READY status
tasks is then selected and executed (RUN status).

Only tasks with the same priority ranking are assigned to a given ready queue. Therefore, where
several tasks with differing priority rankings exist, a corresponding number of ready queues are
created. Tasks within a given ready queue are handled on a first come first serve (FCFS) basis. The
task where a READY status is first established has priority. The smaller the number, the higher the
task priority level.

Task scheduling

Priority level

I The head of the task with the highest priority
High Task 1 is put in RUN status.
T o3
Task 1 — Task 3 1 Task 4 Ready queue 1
33
Task 5 Ready queue 2
34
. B Task 2 Ready queue 3
Low v
Order in which tasks are put in READY status.
33602-R7-00

A RUN status task will be moved to the end of the ready queue if placed in a READY status by any
of the following causes:

o 1) A WAIT status command was executed.
Il/' NOTE 2)

* When the prescribed CPU 3)
occupation time elapses,
the active command is
ended, and processing
moves to the next task.

The CPU occupation time exceeds a specified time.
A task with a higher priority level is put in READY status.

Ready queue

However, if there are no RUN status READY status
other tasks of the same / / \
or higher priority (same , ,

or higher ready queue), Task1 |— Task3 F— Task4
the same task will be [[

executed again.

Moves to the end of the ready queue, and Task 3 is executed.

v

Task 1 —

Task3 |—

Task 4

|—E Task 1

Moves to the end of the ready queue, and Task 4 is executed.

v

Task 3 —

Task 4

— Task

— Task3

Execution sequence

33603-R7-00

Task status and transition @ 6-3

3.3 I Condition wait in task

A task is put in the WAIT status (waiting for an event) when a command causing WAIT status is
executed for that task. At this time, the transition to READY status does not take place until the wait

condition is canceled.

1. When a command causing WAIT status is executed, the following transition happens.
= Task for which a command causing WAIT status is executed — WAIT status
= Task at the head of the ready queue with higher priority — RUN status

e For example, when a MOVE statement (a command that establishes WAIT status)

is executed, the CPU sends a "MOVE" instruction to the driver, and then waits for
a "MOVE COMPLETED" reply from the driver. This is "waiting for an event" status.
In this case, WAIT status is established at the task which executed the MOVE command, and that
task is moved to the end of the ready queue. RUN status is then established at the next task.

|17| NOTE 2. When an event waited by the task in the WAIT status occurs, the following status
«If multiple tasks are in transition takes place by task scheduling.

WAIT status awaiting the = Task in the WAIT status for which the awaited event occurred — READY status

same condition event, or However, if the task put in the READY status was at the head of the ready queue with the

different condition events . o . B

occur simultaneously, all highest priority, the following transition takes place.

fasks for which the waited 1) Task that is currently in RUN status — READY status

E\E/,i[r;:(ss’roo(frﬁsur are put in 2) Task at the head of the ready queue with higher priority — RUN status

¢ |n the above MOVE statement example, the task is moved to the end of the ready queue. Then,
p Y9
when a "MOVE COMPLETED" reply is received, this task is placed in READY status.

Tasks are put in WAIT status by the following commands.

Event Command

Wait for axis Axis movement MOVE MOVEI MOVET DRIVE
movement to command DRIVEI PMOVE PATH MOTOR
complete SERVO WAIT ARM
Parameter ACCEL ARCHP1 ARCHP2 AXWGHT
command DECEL OUTPOS TOLE ORGORD
WEIGHT
Robot status CHANGE SHIFT LEFTY ASPEED
change command MSPEED SPEED
Wait for time to elapse DELAY, SET (Time should be specified.), WAIT ARM
(Time should be specified.)
Wait for condition to be met WAIT
Wait for data to send or to be received SEND
Wait for print buffer to become empty PRINT
Wait for key input INPUT

e The tasks are not put in WAIT status if the event has been established before the above

commands are executed.

I 6-4 @ Chapter 6 Multi-tasking

3.4 B Suspending tasks (SUSPEND)

The SUSPEND command temporarily stops tasks other than task 1 and places them in SUSPEND
status.
When the SUSPEND command is executed, the status transition takes place as follows.

= Task that executed the SUSPEND command — RUN status
= Specified task — SUSPEND status

Suspending tasks (SUSPEND)

/'\ SUSPEND

Task1 |—{ Task2 |— Task3) Task 1 Task 3
RUN READY READY RUN READY
| i Task2
IO
The task is placed in a SUSPEND status, SUSPEND
and is removed from the ready queue.
33604-R7-00
3.5 I Restarting tasks (RESTART)
Tasks in the SUSPEND status can be restarted with the RESTART command.
When the RESTART command is executed, the status transition takes place as follows.
= Task for which the RESTART command was executed — RUN status
= Specified task — READY status
Restarting tasks (RESTART)
RESTART
Task1 |— Task3 » Task1 |— Task3 |— Task2
RUN READY TR RUN READY READY
+ Task 2 A
SUSPEND The task is placed in a READY status,
and is assigned to a ready queue.
33605-R7-00

Task status and transition @ 6-5 I

3.6 B Deleting tasks
B Task self-delete (EXIT TASK)

Tasks can delete themselves and set to the NON EXISTENT (no task registration) status by using the
EXIT TASK command.
When the EXIT TASK command is executed, the status transition takes place as follows.

= Task that executed the EXIT TASK command — NON EXISTENT status
= Task at the head of the ready queue with higher priority =~ — RUN status

Task self-delete (EXIT TASK)

r EXIT TASK
Task2 |— Task3 [|— Task4 » Task3 p— Task4
RUN READY READY Y 4 . W RUN READY
| > Pl Task 2l i

The task is placed in a NON EXISTENT status,

h NON EXISTENT
and is removed from a ready queue.

33606-R7-00

I Other-task delete (CUT)

Tasks can also delete the other tasks and put in the NON EXISTENT (no task registration) status by
using the CUT command.

When the CUT command is executed, the status transition takes place as follows.

= Task that executed the CUT command — RUN
= Specified task — NON EXISTENT

Other-task delete (CUT)

/'\ cuT

Task2 | Task3 [—] Task4) Task 2 Task 4
RUN READY READY RUN Y 4 . W READY
| v (Task 3 i
> . L
The task is placed in a NON EXISTENT status, NON EXISTENT

and is removed from the ready queue.
33607-R7-00

e If a SUSPEND command is executed for a WAIT-status task, the commands being executed by

that task are ended.

I 6-6 @ Chapter 6 Multi-tasking

3.7 J Stopping tasks

All tasks stop if any of the following cases occurs.

1. HALTALL command is executed. (stop & reset)
All programs are reset and task is put in the NON EXISTENT status. When the main
program is specified, the HALTALL command registers the main program in the task 1 and all
tasks are put in the STOP status at the beginning line. When the main program is not specified,
the HALTALL command registers the program that has been executed last (current program) in
the task 1 and all tasks are put in the STOP status at the beginning line.

2. HOLDALL command is executed. (temporary stop)
All tasks are put in the STOP status. When the program is restarted, the tasks in the STOP status
set to the READY or SUSPEND status.

3. STOP key on the programming box is pressed or the interlock signal is cut off.
Just as in the case where the HOLD command is executed, all tasks are put in the STOP status.
When the program is restarted, the tasks in the STOP status set to the READY status (or, the task
is placed the SUSPEND status after being placed in the READY status).

4. When the emergency stop button on the programming box is pressed
or the emergency stop signal is cut off.
All tasks are put in the STOP status. At this point, the power to the robot is shut off and the
servo sets to the non-hold state.
After the canceling emergency stop, when the program is restarted, the tasks in the STOP status
are set to the READY or SUSPEND status. However, a servo ON is required in order to restart

the robot power supply.

e When the program is restarted without being reset after the tasks have been stopped by a cause

other than 1., then each task is processed from the status in which the task stopped. This holds
true when the power to the controller is turned off and then turned on.

Task status and transition @ 6-7 I

n Multi-task program example

Tasks are executed in their scheduled order. An example of a multi-task program is shown below.

'TASK1

START <SUB_TSK2>,T2
START <SUB_TSK3>,T3

“EIril ¢
DO(20) =1
WAIT MO(20) = 1

MOVE P,P1,P2,7Z=0
IF MO(21)=1 THEN *FIN
GOTO *ST1
*FIN:
CUT T2
HALTALL

Program name:SUB_TSK2
ITAEKD 2 000000000000000000000 Task 2 begins here.
HENA ¢
IF DI(20) =1
MO(20) =1
DELAY 100
ELSE
MO(20) = 0
ENDIF
GOTO *ST2
EXIT TASK Ends here.

Program name:SUB_TSK3
TTASKS3 00 e e e e e e e e e Task 3 begins here.
RISIEE:
IF DI
IF DI
IF DI
MO (21
EXTIT TASK Ends here.

“ Sharing the data

All global variables, static variables, input/output variables, point data, shift coordinate definition

1) = 0 THEN *ST3
0) = 0 THEN *ST3
3 0 THEN *ST3

data, hand definition data, and pallet definition data are shared between all tasks.
Execution of each task can be controlled while using the same variables and data shared with the

other tasks.

e In this case, however, use sufficient caution when rewriting the variable and data because

improper changes may cause trouble in the task processing. Take great care when sharing the
same variables and data.

6-8 @ Chapter 6 Multi-tasking

n Cautionary ltems

A freeze may occur if subtasks are continuously started (START command) and ended (EXIT TASK

command) by a main task in an alternating manner.

This occurs for the following reason: if the main task and subtask priority levels are the same, a task
transition to the main task occurs during subtask END processing, and an illegal task status then
occurs when the main task attempts to start a subtask.

Therefore, in order to properly execute the program, the subtask priority level must be set higher
than that of the main task. This prevents a task transition condition from occurring during execution
of the EXIT TASK command.

In the sample program shown below, the priority level of task 1 (main task) is set as 32, and the
priority level of task 2 is set as 31 (the lower the value, the higher the priority).

SAMPLE

FLAGL = 0
*MAIN_TASK:
IF FLAG1=0 THEN

FLAGL =1
START <SUB_PGM>,T2,31 «« o= <SUB_PGM> 1is started as task 2
at the priority level of 31.
ENDIF

GOTO *MAIN_TASK

HALTALL

Program name:SUB_PGM

*TASK2 :
DRIVE(1,P1)
WAIT ARM(1)
DRIVE (1, P2)
WAIT ARM(1)
FLAGL = 0

EXIT TASK

Cautionary ltems @ 6-9

Chapter 7

Sequence function

Sequence function

A W N =

Creating a sequence program...............

Executing a sequence program
Programming a sequence program

_ Sequence function

|1’| NOTE

¢ While the "DI10: sequence
control input" is ON, a
seguence program runs
according to its own
cycle, regardless of robot
program starts and stops.

eThe "DO12: Sequence
program running" dedicated
signal oufput occurs while
a sequence program is
being executed.

Besides normal robot programs, the YRCX controller can execute high-speed processing programs
(sequence programs) in response to the robot input/output (DI, DO, MO, LO, TO, SI, SO) signals.

This function allows to monitor the input/output signals of sensors, push button switches, solenoid
valves, etc. and move them. The sequence program starts running simultaneously the controller is
turned on.

The sequence program can be written in the same robot language used for robot programs. (The
ladder logic are not necessary).

Naming the program "SEQUENCE" makes the controller recognize as sequence program.

For details regarding conditions to execute a sequence program, refer to "3 Executing a sequence

program" in this Chapter.

* General-purpose outputs are not reset by the program reset while the sequence function is running.

program compile.
e Set a sequence flag value of the controller parameter at "3".
e Select "Output Reset Enable" on the sequence execution flag dialogue in the support software
"SCARA-YRCX Studio".

2.1 J Programming method

Step 1 Select (Program Edit) from (Edit) p Step 1
menus on the "MENU" screen of

the programming box.

Program edit

34701-R9-00

Shift Coordinate
Hard Disf inition

Wouk Dl init hon

Palette Def init ion

Parpmetear

Aras Check Qutpet

Sterndard Coordimate
' Sell ing

Cal ibrat ion

p Step2 Program selection

Step 2 Press the F1 key (NEW) on the
"PROGRAM SELECTION" screen.

34702-R9-00

Sequence function @ 7-1 I

Step 3 Enter "SEQUENCE" on the [Step3 Creating new program
program name entry screen, and
press the (OK) button.

34703-R9-00

CEULENCE [

Step 4 i
step 4 Use the cursor keys (A /V) to > P Program selection

select "SEQUENCE" on the
"PROGRAM SELECTION" screen,
and then press the F2 key (EDIT).

34704-R9-00

o Step 5 "3.220: Program step doesn't P Step5 “Program step doesn'texist’ message
Ill NOTE exist" message appears when
creating a new program, and

e When creating a new
9 press (Close).

program, the alarm
occurs since no program
is written. This alarm does
not occur when the robot

language exists already in 3.220:Program step dossn't exist
a program.

34705-R9-00

Step 6 Input a program on "PROGRAM
SELECTION" screen. P Step6 Program edit

Although usable commands are
resricted, editing method is same
as the standard robot program.

Commands which can be input
are explained at "4 Programming
a sequence program" in this
Chapter.

.’ﬂ'_rlIIllfﬂFﬂmﬂ ({70 AMD DL(ZF2)E

34706-R9-00

I 7-2 @ Chapter 7 Sequence function

2.2 B Compiling

Compile and create an executable sequence program.

Step 1 Press the F3 key (SEQ CMP) on P Step1
the "PROGRAM SELECTION"
screen.

Program selection

34707-R9-00

Step 2 The confirmation message will P Step2 Sequence compiling
appear whether you execute
sequence compile.

Press (OK) to compile the
program.

34708-R9-00

Execute sequence comoi |e.

e |f there is a syntax error in the program, an » MEMO Success of compiling
error message appears. When the compiling
ends without any error, the display returns to
the "PROGRAM SELECTION" screen and the

letter "s" appears in "Flag". This means that

the sequence program has been compiled

successfully and is ready for use.

34709-R9-00

e The sequence execution program is erased and the Flag's letter "s" disappears in the following

cases. In these cases the sequence function cannot be used.

1. When the sequence program was erased.

2. When the sequence program was edited.

3. When the program data was initialized.

4. When the "9.729: Sequence object destroyed." alarm occured.

Creating a sequence program @ 7-3 I

7 n Executing a sequence program

All the following conditions must be satisfied to execute a sequence program.

1. The sequence program has been compiled.
2. The sequence program execution flag is enabled.

(For details regarding the sequence program execution flag, refer to the YRCX operator’s
manual.)

3. The external sequence control input (DI10) contact is ON.

I Sequence program execution in progress

Indicated during execution

34710-R9-00

3.1 I Sequence program STEP execution

The sequence program may be executed line by line while checking one command line at a time.
This step execution can be executed in the same way as normal programs.
For details, refer to the YRCX operator’s manual.

When the step is executed, satisfying the conditions described in the previous section is not
required.

I 7-4 @ Chapter 7 Sequence function

n Programming a sequence program

4.1

When programming a sequence program, you may use only assignment statements comprised of
input/output variables and logical operators.

I Assignment statements

4.2

output variable = expression

EXPIESSION ...cuvevivriiierinn, Any one of the following can be used.
e Parallel input/output variables
e Internal output variables
e Arm lock output variables
¢ Timer output variables
e Serial input/output variable
¢ The logic operation expression shown above

B Input/output variables

Each variable must be specified in a 1-bit format

-Correct examples DO (35)
MO (24)
DI(16)

-Incorrect examples DO (37, 24)
DI3 (4)
MO3 ()

B 4.2.1 Input variables

@ Parallel input variables

DI (mb) m: Port number -+« 0 to 7, 10 to 17, 20 to 27
b: bit definition «::+cceveen- 0 to 7

These variables show the status of the parallel input signal.

@ Serial input variables

ST (mb) m: Port number «---::cceee... 0 to 7, 10 to 17, 20 to 27
b: bit definition «:++«------- 0 to 7

Indicates a serial input signal status. Only referencing can occur. No controls are possible.

Programming a sequence program @ 7-5 I

B 4.2.2 Output variables

@ Parallel output variables

DO (mb) m: Port number -:-:ccecen. 0 to 7, 10 to 17, 20 to 27
b: bit definition ««:++ceee--- 0 to 7

A parallel output is specified, or the output status is referenced. Ports 0 and 1 are for referencing

only, and no outputs can occur there.

@ Internal output variables

MO (mb) m: Port number =« -« 0 to 7, 10 to 17, 20 to 27, 30 to 37

b: bit definition ««:++c------ 0 to 7

These variables are used within the controller. Ports 30 to 37 are for referencing only

and ON/OFF can not be controlled.

® Arm lock output variables

LO (mb) m: port number - - 0, 1
b: bit definition «««++cceeeeeee.. 0 to 7

These variables are used to prohibit the arm (axis) movement. Movement is prohibited when ON.
LO(00) to LO(07) corresponds to arm 1 to arm 8, LO(10) to LO(17) corresponds to arm 9 to

arm 16, respectively.

® Timer output variables

TO (mb) m: port number -« 0, 1
b: bit definition «:««cccee... 0 to 7

There are a total of 16 timer output variables: TO(00) to TO(17). The timer of each variable is
defined by the timer definition statement TIM0O to 17.

@ Serial output variables

SO (mb) m: Port number --:::cceeee... 0 to 7, 10 to 17, 20 to 27

b: bit definition «-+:++c------ 0 to 7

Control or reference serial output signal status. Port O is for referencing only,

and no controls are possible.

I 7-6 @ Chapter 7 Sequence function

l Timer usage example

SAMPLE
TIMO2 = 2500 v ceeeeeeneeeennn Timer 02 is set to 2.5 seconds.
TO(02) = DI(23) ccvcceecencennnn Timer starts when DI (23) switches ON.

e When DI(23) is ON, after 2.5 seconds, TO(02) is set ON.
e When DI(23) is OFF, TO(02) is also OFF.
e When DI(23) isn’t ON after 2.5 second or more, TO(02) does not change to ON.

Timer usage example: Timing chart

Dl(23) — |

2.5sec

1.6sec

H

TO(02)
33701-R7-00

4.3 B Timer definition statement
TIMmb=time m: Port number-:--:--- 0, 1
b: bit definition-:--- 0 to 7
HME v 100 to 999,900ms (0.1 to 999.9 second)
The timer definition statement sets the timer value of the timer output variable. This
definition statement may be anywhere in the program.
When the timer definition statement is omitted, the timer setting value of the variable is 0.
TIMOO to 17 correspond to the timer output variables TO(00) to (17).
However, since the units are set every 100ms, values less than 99ms are truncated.
4.4 B Logical operators
Operators Functions Meaning
NOT, ~ Logical NOT Reverses the bits.
AND, & Logical AND Becomes "1" when both bits are "1".
OR, | Logical OR Becomes "1" when either of the bits is "1".
XOR Exclusive OR Becomes "1" when both bits are different.
EQV Logical equivalence Becomes "1" when both bits are equal.
operator
IMP Logical implication Becomes "0" when the first bit is "1" and the second
operator bit is "0".

Programming a sequence program @ 7-7 I

4.5 I Priority of logic operations

Priority Ranking Operation Content

1 Expressions in parentheses

NOT, ~ (Logical NOT)

AND, & (Logical AND)

OR, | (Logical OR)

XOR (Exclusive OR)

EQV (Logical equivalence operator)

N o o~ WON

IMP (Logical implication operator)

® Example with a ladder statement substitution

SAMPLE

DO (23)=DI(16)&DO(35)
MO (34)=DO(25) | ~DI(24)
DO(31)=(DI(20) | DO(31))&~DI(21)

Ladder diagram

DI(16) DO(35) DO(23)
] L] L N\

1 I 1 \J
DO(25) MO(34)
] L N\

1 I \J
~DI(24)

| /|

DI(20) ~DI(21) DO(31)
| | | /| O
DO(31) (Self-hold circuit)

1 I

33702-R7-00

¢ "NOT" cannot be used prior to the first parenthesis " (" or on the left of an expression. For

example, the following commands cannot be used.
*DO(21)=~(DI(30) | DI(32))
*~DO((30)=DI(22)&DI(27)
¢ Numeric values cannot be assigned on the right of an expression.
*MO@35)=1
*DO(26)=0
e There is no need to define a "HALT" or "HOLD" statement at the end of the program.

e The variables used in sequence programs are shared with robot programs, so be careful not to
make improper changes when using the same variables between them.

4.6 I Sequence program specifications
Commands Logical NOT, AND, OR, XOR, EQV, IMP
I/0 Same as robot language
Program capacity 16,384 bytes (A maximum of 2,048 variables can be specified.)
Scan time 1 to 4ms depending on the number of steps (This changes

automatically.)

I 7-8 @ Chapter 7 Sequence function

Chapter 8
Robot Language Lists

How to read the robot language table 8-1
Command list in alphabetic order.................. 8-2
Operation-specifiCccccvvvriiiriiiiicriicssisciennns 8-7
Functions: in alphabetic orderccc...... 8-13
Functions: operation-specific.......cccccccvrrreeens 8-16
1 ABS ... 8-18
2 ABSRPOS ..o 8-19
3 ACCEL ... 8-20
4 ARCHP1 / ARCHP2........ccocccerrerernnen 8-21
5 ARMCND. ... 8-23
6 ARMSEL.......c.cceereereceee e 8-24
7 ARMTYP ... 8-25
8 ASPEED ... 8-26
9 ATN / ATN2........oorereeccceer e 8-27
10 AXWGHT......coo e 8-28
11 CALL.......o e 8-29
12 CHANGE..........ccererrreee e 8-30
13 CHGPRI......cooeeeeeerceeeccee e 8-31
14 CHRS ...t 8-32

—h
o1
0
[y
O
(2]
m
@
W
[9Y)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

(G111 23 [1) [8-35
CURTRQ.......o et 8-36
CUT e 8-37
DATES ...ttt 8-38
DECELooieeeceeereee e 8-39
DEF FN....ooeiierriere e 8-40
DEGRADcooiirererecee e 8-41
DELAY ...oorriirertre e 8-42
DI e 8-43
DIM ... 8-44
DIST .. 8-45
DO .. 8-46
DRIVE ... 8-48
DRIVEL ..o 8-52
END SELECT.......cceiiceeeeee e 8-57
END SUB.......ccoiirrrrrre e 8-58
ERR /ERL....coerieire e 8-59
ETHSTS ... 8-60
EXITFOR ... 8-61
EXITSUB......ccoiiireirere e 8-62
EXITTASK ... 8-63
FOR tO NEXTccviiiiriiee e 8-64
GEPSTS ... 8-65
GOSUB to RETURN..........cccverieeeinnn 8-66
1C1] [8-67
1 8 8-68
HALTALL ... 8-69
HAND.....ooiirrrre e 8-70
HOLD ... 8-73
HOLDALL........coecereire e 8-74
| 8-75
INPUT...orriirre e, 8-77
INT . 8-79

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

LEFTY e 8-82
LEN ..o, 8-83
0 8-84
LO s 8-87
0 10 N 8-89
K] o] 8-91
MCHREF.........oo e 8-92
MIDS ...t 8-93
MO 8-94
MOTOR ...t 8-96
MOVE.......oo e 8-97
MOVEL.....ooiiiiitrre e 8-112
MOVET ... 8-122
MTRDUTY ...t 8-132
OFFLINE ...t 8-133
ON ERROR GOTO........ccvvmrrrrnrerrnnn 8-134
ON to GOSUB..........cococerrmeerrneeeeae 8-135
ON to GOTO.......cccerrmrrrrrrernee e 8-136
ONLINE ..o 8-137
OPEN ...t 8-138
ORD ... 8-139
ORGORDccovrrrmrrirnerisre e 8-140
ORIGIN ..o 8-141
OUT ... e 8-142
OUTPOS ... 8-143
o I 8-145
PATH END.......ooriiiireeiceee e 8-151
PATH SET......cceiiriieecre e 8-152
PATH START ... 8-155
PDEF ...t 8-159
PGMTSK ... 8-160
PGN ... 8-161
PMOVE........ccoee e 8-162
PN 8-166

86 PPNT...ori e, 8-168

87 PRINT ...t ses e 8-169
88] 5 [L 8-170
89 PSHUIGSP ..o 8-171
90 PSHMTDocovreereereeeeeee e 8-172
91] 2 [T 8-173
92 PSHSPDoovrreeeerreereeeeeee s 8-174
93 PSHTIMEcoviiieeeee e 8-175
94 PUSH ... 8-176
95 RADDEGoovrreerrerreeneeeeeeseesenenes 8-181
96 REM....oooeeeeeeeceeeee e eesas e snsseanas 8-182
97 2 55] = 8-183
98 RESTART ... eee e 8-184
99 RESUME........coomiueeereereieereees s 8-185
100 RETURN......ocoorrrerereeereere e ene e 8-186
101 RIGHTS ... 8-187
102 RIGHTY...ooiieeeeeeeeeeeee e 8-188
103 RSHIFT ..ot 8-189
104 SELECT CASE to END SELECT............. 8-190
105 SEND ..o 8-191
106 SERVO ..o e 8-193
8 [0 - 8-194
108 SETGEP.....ooeerreeecreeceere e 8-195
109 SOl 8-196
110 SGR...ooeceeeceeeete e 8-197
111 SHARED......coeeeeeeeceere e 8-198
112 SHIFT e 8-199
0 < T 8-200
£ S [o T 8-201
115 SIN o 8-202
116 SIW.occeeeeecee e 8-203
L I A Y o WO 8-204
118 SO . 8-205

119 SOD....iirerre e 8-207

120 SOW...oir e 8-208

121 SPEED ... 8-209
122 SQR.....oor 8-210
123 START ... 8-211
124 STRS...ooirereererr e 8-212
125 SUBTOEND SUB.........ccoiiereeeee 8-213
126 SUSPEND.......cccoiiirriernee e 8-215
127 SWleeee e 8-216
128 TAN . 8-217
129 TCOUNTER.......ooooeerceeeeee e 8-218
130 TIMES ... 8-219
131 TIMER ... 8-220
132 TO.r 8-221
133 TOLE..... e 8-222
134 TORQUE ... 8-223
135 TSKPGM ... 8-225
136 VAL 8-226
137 WA 8-227
138 WAITARM.....ooririree e, 8-228
139 WEIGHT ... 8-229
140 WEND.......occiiierre e 8-230
141 WHERE..........ccoirereee e, 8-231
142 WHILE 1o WENDcoorviiiiiieeeee 8-232
143 WHRXY....ooiree e 8-233

144 XYTOJ .o 8-234

How to read the robot language table

The key to reading the following robot language table is explained below.

(1) @) ©) (4)
| | | |

Description Online Type

26 DIM Declares array variable - Command

Indicates the Item No. where this robot language is explained in detail.

Example of "No." column

No.

DIM

Declares array variable

DIM array definition , array definition ,--

name (constant , constant . constant)

%
!
$

@™ constant ..o Aty subscript: 0 to 32,767 (positive integer)

GYIIEED Directly declares the name and length (number of elements) of an array variable. A
maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can
be declared in a single line by using comma (,) to separate.

9 MEMO * Array subscripts can be "0 to a specified value", with their total number being the constant + 1.
« A "9.300: Memory full" error may occur depending on the size of each dimension defined in an
array.

SAMPLE

DT 28 (1L)) eososeseacesensesossazos Defines a integer array
variable A% (0) to A% (10).
(Number of elements: 11).

DIM B(2,3,4) eeeeeereeenrenccnees Defines a real array variable
B (0, 0, 0) to B (2, 3, 4).
(Number of elements: 60) .

DIM C%(2,2),D! (10) seerevceeees Defines an integer array C%
(0,0) to C% (2,2) and a real
array D! (0) to D! (10).

(2) Description
Explains the function of the robot language.
(3) Online
If "v" is indicated at this item, online commands can be used.
If "-"is indicated at this item, commands containing operands that cannot partially be
executed by online command.
(4) Type
Indicates the robot language type as "Command" or "Function".
When a command is used as both a "Command" and "Function", this is expressed as follows:
Command/Function

How to read the robot language table @ 8-1

- Command list in alphabetic order

No. Name Description Online Type
A
1 ABS Acquires the absolute value of a specified value. v Function
Acquires the machine reference value for specified robot
2 | ABSRPOS axes. (Valid only for axes whose return-to-origin method is v Function
set as "mark".)
3 | ACCEL Spemﬂ_e_s/acquwes the acceleration coefficient parameter of v Comme_lnd /
a specified robot. Function
4 | ARCHP1 Spec_:ilfies/acquires the arch position 1 parameter of a v Comma_lnd/
specified robot. Function
4 | ARCHP?2 Spec_:llfles/acqwres the arch position 2 parameter of a Comme_md/
specified robot. Function
5 | ARMCND Acquires the current arm status of a specified robot. v Function
6 | ARMSEL Spegnﬁes/acquwes the current "hand system" setting of a v Comma_lnd/
specified robot. Function
7 | ARMTYP Specifies/acquires the "hand system" setting of a specified v Comma_lnd/
robot. Function
8 | ASPEED Speqﬂes/acqwres the AUTO movement speed of a v Commgnd/
specified robot. Function
ATN Acquires the arctangent of the specified value. 4 Function
ATN2 Acquires the arctangent of the specified X-Y coordinates. v Function
10 | AXWGHT Spe(':llfles/acqwres the axis tip weight parameter of a v Comma_lnd/
specified robot. Function
C
11 | CALL Calls a sub-procedure. - Command
12 | CHANGE Switches the hand of a specified robot. v Command
13 | CHGPRI Changes the priority ranking of a specified task. v Command
14 | CHR$ Acquires a character with the specified character code. v Function
15 | CLOSE Close the specified General Ethernet Port. v Command
16 | COS Acquires the cosine value of a specified value. v Function
17 | CURTQST Acquires the current torque value ratio of a specified axis to v Function
the rated torque.
18 | CURTRQ Acqu_lres the current torque value of the specified axis of a v Function
specified robot.
19 | cut Termma.tes another task currently being executed or v Command
temporarily stopped.
D
20 | DATE$ Acquires the date as a "yy/mm/dd" format character string. Function
Specifies/acquires the deceleration rate parameter of a Command /
21 | DECEL - .
specified robot. Function
22 | DEFFN Defines the functions that can be used by the user. - Command
23 | DEGRAD Converts a specified value to radians (<=RADDEG). v Function
24 | DELAY Waits for the specified period (units: ms). - Command
25 | DI Acquires the specified DI status. v Function
26 | DIM Declares the array variable name and the number of elements. - Command
27 | DIST Acquires the distance between 2 specified points. v Function
Outputs a specified value to the DO port or acquires the DO Command /
28 | DO v -
status. Function
29 | DRIVE Moves a specified axis of a specified robot to an absolute position. v Command

I 8-2 @ Chapter 8 Robot Language Lists

Description

Online

Type

30 | DRIVEI Moves a specified axis of a specified robot to a relative position. v Command
E
31 | END SELECT Terminates the SELECT CASE statement. - Command
32 | END SUB Terminates the sub-procedure definition. - Command
33 | ERR/ERL Acquires the error code number of an error which has / Function
occurred / the line number where an error occurred.
34 | ETHSTS Acquires the Ethernet port status. v Function
35 | EXIT FOR Terminates the FOR to NEXT statement loop. - Command
36 | EXIT SUB Terminates the sub-procedure defined by the SUB to END _ Command
statement.
37 | EXIT TASK Terminates its own task which is in progress. - Command
F
38 | FORto NEXT Exegqtes the EOR to NEXT statement repeatedly until a B Command
specified value is exceeded.
G
39 | GEPSTS Acquires the General Ethernet Port status. v Function
GOSUB to Jumps to a subroutine with the label specified by GOSUB
40 RETURN statement, and executes that subroutine. - Command
41 | GOTO Unconditionally jumps to the line specified by a label. - Command
H
42 | HALT Stops the program and performs a reset. - Command
43 | HALTALL Stops and resets all programs. - Command
44 | HAND Defines the hand of a specified robot. v Command
45 | HOLD Temporarily stops the program. - Command
46 | HOLDALL Temporarily stops all programs. - Command
|
47 | IF Allows control flow to branch according to conditions. - Command
48 | INPUT Assigns a value to a variable specified from the programming box. v Command
49 | INT Acq.mres an '|nteger for a specified value by truncating all v Function
decimal fractions.
J
Converts joint coordinate data to Cartesian coordinate data .
50 | JTOXY of a specified robot. («>XYTOJ) v Function
L
Extracts a character string comprising a specified number .
51 | LEFTS of digits from the left end of a specified character string. / Function
50 | LEFTY Sets the hand system of a specified robot to the left-handed v Command
system.
53 | LEN Acquires the length (byte count) of a specified character string. v Function
54 | LET Executes a specified assignment statement. v Command
Outputs a specified value to the LO port to enable/disable Command /
55 | LO . . v/ .
axis movement or acquires the LO status. Function
56 | LOCx Specifies/acquires point data for a specified axis or shift v Command /
data for a specified element. Function
57 | LSHIFT Shifts a value to the left by the specified bit count. (<=RSHIFT) v Function

Command list in alphabetic order @ 8-3 I

\[o} Name Description Online Type
M
Acquires the return-to-origin or absolute-search machine
58 | MCHREF reference value for. s.pecmed ropot axes. "(Valld o"nly f'f)r axes v Function
whose return-to-origin method is set as "sensor" or "stroke-
end".)
59 | MID$ Extrggts a character. string of a desired length from a v Function
specified character string.
Outputs a specified value to the MO port or acquires the Command /
60 | MO v .
MO status. Function
61 | MOTOR Controls the motor power status. v Command
62 | MOVE Performs absolute movement of all axes of a specified robot. v Command
63 | MOVEI Performs relative movement of all axes of a specified robot. v Command
64 | MOVET Performs relative movement of all axes of a specified robot v Command
when the tool coordinate is selected.
65 | MTRDUTY Acquires the motor load factor of the specified axis. v Function
(o)
66 | OFFLINE Sets a specified communication port to the "offline" mode. v Command
This command allows the program to jump to the error
67 ON ERROR processing routine specified by the label without stopping Command
GOTO the program, or it stops the program and displays the error -
message.
Jumps to a subroutine with labels specified by a GOSUB
68 | ONto GOSUB statement in accordance with the conditions, and executes - Command
that subroutine.
69 | ONto GOTO Jumps to label-specified lines in accordance with the conditions. - Command
70 | ONLINE Sets the specified communication port to the "online" mode. v Command
71 | OPEN Opens the specified General Ethernet Port. v Command
72 | ORD Acqqllres the charac.ter code of the first character in a v Function
specified character string.
Specifies/acquires the axis sequence parameter for Command /
73 | ORGORD performing return-to-origin and an absolute search v i
S o Function
operation in a specified robot.
74 | ORIGIN Performs return-to-origin. v Command
75 | ouT Turrys ON the bits of the specified output ports and _ Command
terminates the command statement.
76 | ouTPOS Speclzllfles/acqwres the "OUT position" parameter of a v Commgnd/
specified robot. Function
P
77 | PATH Specifies the PATH motion path. - Command
78 | PATH END Ends the path setting for PATH motion. - Command
79 | PATH SET Starts the path setting for PATH motion. - Command
80 | PATH START Starts the PATH motion. - Command
81 | PDEF Defines the pallet used to execute pallet movement commands. v Command
82 | PGMTSK Acq_unres the task number in which a specified program is Function
registered.
83 | PGN Acquires the program number from a specified program v Function
name.
84 | PMOVE Executes the pallet movement command of a specified robot. v Command
85 | Pn Defines points within a program. v Command
86 | PPNT Creates pomt.c_iata specified by a pallet definition number v Function
and pallet position number.
87 | PRINT Displays a character string at the programming box screen. - Command

I 8-4 @ Chapter 8 Robot Language Lists

No. Name Description Online Type
88 | PSHFRC Specifies/acquires the "Push force" parameter. v/ Cgmma}nd /
unction
89 | PSHJGSP Specifies/acquires the push judge speed threshold v Commgnd/
parameter. Function
90 | PSHMTD Specifies/acquires the push method parameter. v Clc:)mmgnd /
unction
91 | PSHRSLT Acquires the status at the end of the PUSH statement. v Function
. . Command /
92 | PSHSPD Specifies/acquires the push speed parameter. v Function
o . . Command /
93 | PSHTIME Specifies/acquires the push time parameter. v Function
94 | PUSH Executes a pushing operation in the axis unit. v Command
R
95 | RADDEG Converts a specified value to degrees. (<=DEGRAD) v Function
96 | REM Expresses a comment statement. - Command
97 | RESET Turns the bit of a specified output port OFF. v Command
98 | RESTART Restarts another task during a temporary stop. v Command
99 | RESUME Resumes program execution after error recovery processing. - Command
100 | RETURN Beturns the processing branching with GOSUB to the next B Command
line of GOSUB.
Extracts a character string comprising a specified number .
101 | RIGHTS of digits from the right end of a specified character string. / Function
102 | RIGHTY Sets the hand system of a specified robot to the right- v Command
handed system.
103 | RSHIFT Shifts a value to the right by the specified bit count. (<=LSHIFT) v Function
S
SELECT CASE . -
104 to END SELECT Allows control flow to branch according to conditions. - Command
105 | SEND Sends a file. v Command
106 | SERVO Contro]g the servo ON/OFF of a specified axis or all axes of v Command
a specified robot.
107 | SET Turns the bit at the specified output port ON. - Command
108 | SETGEP Sets the General Ethernet Port. v Command
Assigns the value to a specified integer type static variable / Command /
109 | SGI ; e - . v/ .
acquires the value of a specified integer type static variable. Function
Assigns the value to a specified real type static variable / Command /
110 | SGR ! e . ; v/ .
acquires the value of a specified real type static variable. Function
111 | SHARED Enables reference with a sub-procedure without transferring a variable. - Command
Sets the shift coordinate for a specified robot by using the
112 | SHIFT shift data specified by a shift variable. v | Command
113 | SI Acquires a specified Sl status. v Function
114 | sSID Acquires a specified serial input's double-word information v Function
status.
115 | SIN Acquires the sine value for a specified value. v Function
116 | SIW Acquires a specified serial input's word information status. v Function
117 | Sn Defines the shift coordinates within the program. v Command
Outputs a specified value to the SO port or acquires the SO Command /
118 | SO v .
status. Function
Outputs a specified serial output's double-word information Command /
119 | SOD . v .
or acquires the output status. Function
120 | sow Outpluts a specified serial output's word information or v Comma}nd/
acquires the output status. Function

Command list in alphabetic order @ 8-5 I

No. Name Description Online Type
121 | SPEED Changes the program movement speed of a specified robot. v Command
122 | SQR Acquires the square root of a specified value. v Function
123 | START Specifies the task number and priority ranking of a specified v Command
program, and starts that program.
124 | STR$ Converts a specified value to a character string (<=VAL). v Function
125 | SUBto END SUB | Defines a sub-procedure. - Command
126 | SUSPEND Temporarily stops another task which is being executed. - Command
Switches the program being executed, then begins
1271 SWI execution from the first line. - Command
T
128 | TAN Acquires the tangent value for a specified value. v Function
Outputs count-up values at 1ms intervals starting from the .
129 | TCOUNTER point when the TCOUNTER variable is reset. v Function
130 | TIME$ Acquires the current time as an "hh:mm:ss" format character string. v Function
131 | TIMER Acquires the current time in seconds, counting from midnight. v Function
Outputs a specified value to the TO port or acquires the TO Command /
132 | TO v -
status. Function
133 | TOLE Specifies/acquires the tolerance parameter of a specified v Comma_md/
robot. Function
Specifies/acquires the maximum torque command value Command /
134 | TORQUE which can be set for a specified axis of a specified robot. v Function
Acquires the program number which is registered in a .
135 | TSKPGM specified task. v Function
\'
Converts the numeric value of a specified character string .
136 | VAL to an actual numeric value. (<>STR$) v Function
w
137 | WAIT Waits gntll the conQ|t|pns of the DI/DO conditional _ Command
expression are met (with time-out).
138 | WAIT ARM Waits until the axis operation of a specified robot is completed. - Command
Specifies/acquires the tip weight parameter of a specified Command /
139 | WEIGHT robot. v Function
140 | WEND Terminates the command block of the WHILE statement. - Command
Reads out the current position of the arm of a specified .
141 | WHERE robot in joint coordinates (pulse). v Function
142 | WHILE to WEND | Controls repeated operations. - Command
Reads out the current position of the arm of a specified .
143 | WHRXY robot as Cartesian coordinates (mm, degrees). v Function
X
Converts the point variable Cartesian coordinate data to the .
1441 XYTOJ joint coordinate data of a specified robot. («<=JTOXY). v Function

I 8-6 @ Chapter 8 Robot Language Lists

- Operation-specific

Program commands

General commands

No. Command Description Online Type

26 | DIM Declares the array variable name and the number of _ Command
elements.

54 | LET Executes a specified assignment statement. 4 Command

96 | REM Expresses a comment statement. - Command

Arithmetic commands

No. Command Description Online Type
1 ABS Acquires the absolute value of a specified value. v Function
9 | ATN Acquires the arctangent of the specified value. 4 Function
ATN2 Acquires the arctangent of the specified X-Y coordinates. v Function
16 | COS Acquires the cosine value of a specified value. v Function
23 | DEGRAD Converts a specified value to radians (<~ RADDEG). v Function
27 | DIST Acquires the distance between 2 specified points. v Function
49 | INT Acq_unres an .lnteger for a specified value by truncating all v Function
decimal fractions.
Shifts a value to the left by the specified bit count. .
57 | LSHIFT (<RSHIFT) v Function
95 | RADDEG Converts a specified value to degrees. (<=DEGRAD) v Function
Shifts a value to the right by the specified bit count. .
103 | RSHIFT (<>LSHIFT) v Function
115 | SIN Acquires the sine value for a specified value. v Function
122 | SQR Acquires the square root of a specified value. v Function
128 | TAN Acquires the tangent value for a specified value. 4 Function
Date / time
No. Command Description Online
20 | DATE $ Acquires the date as a "yy/mm/dd" format character string. v Function
Outputs count-up values at 1ms intervals starting from the .
129 | TCOUNTER point when the TCOUNTER variable is reset. / Function
130 | TIME $ Acquires the current time as an "hh:mm:ss" format v Function
character string.
131 | TIMER A(_:qqlres the current time in seconds, counting from v Function
midnight.

Character string operation

Command Description Online

14 | CHR $ Acquires a character with the specified character code. v Function
Extracts a character string comprising a specified number .

51 | LEFTS of digits from the left end of a specified character string. v Function

53 | LEN Acguires the length (byte count) of a specified character v Function
string.

50 | MID$ Extr:_apts a character. string of a desired length from a v Function
specified character string.

Operation-specific @ 8-7

No. Command Description Online Type

72 | ORD Acqgllres the charac?er code of the first character in a v Function
specified character string.
Extracts a character string comprising a specified number .

101 | RIGHT $ of digits from the right end of a specified character string. Function

124 | STR $ Converts a specified value to a character string (<>VAL). v Function

136 | VAL Converts the numeric value of a specified character string Function
to an actual numeric value. («<>STRS$)

Point, coordinates, shift coordinates

No. Command Description Online Type

12 | CHANGE Switches the hand of a specified robot. v Command

44 | HAND Defines the hand of a specified robot. v Command
Converts joint coordinate data to Cartesian coordinate data .

50 | JTOXY of a specified robot. (<>XYTOJ) v Function

50 | LEFTY Sets the hand system of a specified robot to the left-handed v Command
system.
Specifies/acquires point data for a specified axis or shift Command /

56 | LOCx - v >
data for a specified element. Function

77 | PATH Sets the movement path. - Command

85 | Pn Defines points within a program. v Command

86 | PPNT Creates point.cliata specified by a pallet definition number v Function
and pallet position number.

102 | RIGHTY Sets the hand system of a specified robot to the right- v Command
handed system.

117 | Sn Defines the shift coordinates within the program. v Command
Sets the shift coordinate for a specified robot by using the

112 | SHIFT shift data specified by a shift variable. v | Command
Converts the point variable Cartesian coordinate data to the .

144 | XYTOJ joint coordinate data of a specified robot. (<JTOXY). v Function

Branching commands

No. Command Description Online Type

35 | EXIT FOR Terminates the FOR to NEXT statement loop. - Command

38 | FORto NEXT Exegqtes the FQR to NEXT statement repeatedly until a B Command
specified value is exceeded.

40 GOSUB to Jumps to a subroutine with the label specified by GOSUB Command

RETURN statement, and executes that subroutine. -

41 | GOTO Unconditionally jumps to the line specified by a label. - Command

47 | IF Allows control flow to branch according to conditions. - Command
Jumps to a subroutine with labels specified by a GOSUB

68 | ONto GOSUB statement in accordance with the conditions, and executes - Command
that subroutine.

69 [ONto GOTO Jumps to label-specified lines in accordance with the conditions. - Command

SELECT CASE . .
104 to END SELECT Allows control flow to branch according to conditions. - Command
142 | WHILE to WEND | Controls repeated operations. - Command

I 8-8 @ Chapter 8 Robot Language Lists

Error control

No. Command Description Online Type
Acquires the error code number of an error which has .

33 | ERR/ERL occurred / the line number where an error occurred. v Function
This command allows the program to jump to the error

67 ON ERROR processing routine specified by the label without stopping Command

GOTO the program, or it stops the program and displays the error -

message.

99 | RESUME Resum_es program execution after error recovery _ Command
processing.

Program & task control
Program control

No. Command Description Online Type

11 | CALL Calls a sub-procedure. - Command

42 | HALT Stops the program and performs a reset. - Command

43 | HALTALL Stops and resets all programs. - Command

45 | HOLD Temporarily stops the program. - Command

46 | HOLDALL Temporarily stops all programs. - Command

82 | PGMTSK Acqunres the task number in which a specified program is v Function
registered.

83 | PGN Acquires the program number from a specified program v Function
name.
Assigns/acquires the value to a specified integer type static Command /

109 | SGI . v -
variable. Function

110 | sGR Asgngns/acqunres the value to a specified real type static v Comma_lnd/
variable. Function
Switches the program being executed, then begins

1271 Swi execution from the first line. - Command
Acquires the program number which is registered in a .

135 | TSKPGM specified task. v Function

Task control

Command

Description

Online

13 | CHGPRI Changes the priority ranking of a specified task. v Command

19 | cut Termlna_tes another task currently being executed or v Command
temporarily stopped.

37 | EXIT TASK Terminates its own task which is in progress. - Command

98 | RESTART Restarts another task during a temporary stop. 4 Command

123 | START Specifies the task number and priority ranking of a specified v Command
program, and starts that program.

126 | SUSPEND Temporarily stops another task which is being executed. - Command

Operation-specific @ 8-9 I

Robot control

Robot operations

No. Command Description Online Type
29 | DRIVE Moves a specified axis of a specified robot to an absolute position. v/ Command
30 | DRIVEI Moves a specified axis of a specified robot to a relative position. v Command
61 | MOTOR Controls the motor power status. v Command
62 | MOVE Performs absolute movement of all axes of a specified robot. v Command
63 | MOVEI Performs relative movement of all axes of a specified robot. v Command
64 | MOVET Performs relative mpvemgnt of all axes of a specified robot Y Command
when the tool coordinate is selected.
74 | ORIGIN Performs return-to-origin. v Command
84 | PMOVE E))E)eociutes the pallet movement command of a specified v Command
94 | PUSH Executes a pushing operation in the axis unit. v Command
106 | SERVO Contro]; the servo ON/OFF of a specified axis or all axes of v Command
a specified robot.
Status acquisition
No. Command Description Online Type
Acquires the machine reference value for specified robot
2 | ABSRPOS axes. (Valid only for axes whose return-to-origin method is v Function
set as "mark".)
5 | ARMCND Acquires the current arm status of a specified robot. Function
6 | ARMSEL Speqlfles/acqmres the current "hand system" setting of a Commgnd/
specified robot. Function
7 | ARMTYP Specifies/acquires the "hand system" setting of a specified v Commgnd/
robot. Function
17 | cURTQST Acquires the current torque value ratio of a specified axis to v Function
the rated torque.
Acquires the return-to-origin or absolute-search machine
58 | MCHREF reference value for_ specmed ropot axes.“(Valld o"nly f"or axes v Function
whose return-to-origin method is set as "sensor" or "stroke-
end".)
65 | MTRDUTY Acquires the motor load factor of the specified axis. v Function
91 | PSHRSLT Acquires the status at the end of the PUSH statement. v Function
. . Command /
92 | PSHSPD Specifies/acquires the push speed parameter. v Function
o . . Command /
93 | PSHTIME Specifies/acquires the push time parameter. v Function
138 | WAIT ARM Waits until the axis operation of a specified robot is completed. - Command
141 | WHERE Read§ out the current position of the arm of a specified v Function
robot in joint coordinates (pulse).
143 | WHRXY Reads out the.current posmon of the arm of a specified v Function
robot as Cartesian coordinates (mm, degrees).
Status change
No. Command Description Online Type
3 | ACCEL Spemfl_e.s/acquwes the acceleration coefficient parameter of v Commgnd /
a specified robot. Function
4 | ARCHP1 Speqﬁes/acquwes the arch position 1 parameter of a v Commgnd/
specified robot. Function

I 8-10 @ Chapter 8 Robot Language Lists

No. Command Description Online Type
4 | ARCHP2 Spe(_:l_fles/acqwres the arch position 2 parameter of a v Commgnd/
specified robot. Function
8 | ASPEED Spec_n_ﬂes/acqunres the AUTO movement speed of a v Commgnd/
specified robot. Function
Specifies/acquires the axis tip weight parameter of a Command /
10 | AXWGHT specified robot. / Function
12 | CHANGE Switches the hand of a specified robot. v Command
o1 | DECEL Speql_fles/acquwes the deceleration rate parameter of a v Commgnd/
specified robot. Function
44 | HAND Defines the hand of a specified robot. v Command
50 | LEFTY Sets the hand system of a specified robot to the left-handed v Command
system.
Specifies/acquires the axis sequence parameter for Command /
73 | ORGORD performing return-to-origin and an absolute search 4 .
L o Function
operation in a specified robot.
76 | ouTPOS Spec_:l_fles/acqwres the "OUT position" parameter of a v Commgnd/
specified robot. Function
81 | PDEF Defines the pallet used to execute pallet movement v Command
commands.
88 | PSHFRC Specifies/acquires the "Push force" parameter. v/ Cgmm?‘”d /
unction
89 | PSHJGSP Specifies/acquires the push judge speed threshold v Comma_lnd/
parameter. Function
90 | PSHMTD Specifies/acquires the push method parameter. v/ Cgmmgnd /
unction
102 | RIGHTY Sets the hand system of a specified robot to the right- v Command
handed system.
108 | SETGEP Sets the General Ethernet Port. v Command
121 | SPEED Changes the program movement speed of a specified robot. v Command
133 | TOLE Specifies/acquires the tolerance parameter of a specified v Commgnd/
robot. Function
139 | WEIGHT Specifies/acquires the tip weight parameter of a specified v Comma_lnd/
robot. Function

PATH control

Command

Description

Online

Type

77 | PATH Specifies the PATH motion path. - Command
78 | PATH END Ends the path setting for PATH motion. - Command
79 | PATH SET Starts the path setting for PATH motion. - Command
80 | PATH START Starts the PATH motion. - Command

Torque control

Command

Description

Online

Type

17 | cURTQST Acquires the current torque value ratio of a specified axis to v Function
the rated torque.

18 | CURTRQ Acqu_lfes the current torque value of the specified axis of a v Function
specified robot.

94 | PUSH Executes a pushing operation in the axis unit. v/ Command
Specifies/acquires the maximum torque command value Command /

134 | TORQUE which can be set for a specified axis of a specified robot. v Function

Operation-specific @ 8-11 I

Input/output & communication control

Input/output control

No. Command Description Online Type
24 | DELAY Waits for the specified period (units: ms). - Command
Outputs a specified value to the DO port or acquires the DO Command /
28 | DO v .
status. Function
55 | LO Outputs a specified value to the LO port to enable/disable v Command /
axis movement or acquires the LO status. Function
Outputs a specified value to the MO port or acquires the Command /
60 | MO v .
MO status. Function
75 | ouT Turqs ON the bits of the specified output ports and _ Command
terminates the command statement.
97 | RESET Turns the bit of a specified output port OFF. v Command
107 | SET Turns the bit at the specified output port ON. - Command
113 | SI Acquires a specified Sl status. v Function
114 | sID Acquires a specified serial input's double-word information v Function
status.
116 | SIW Acquires a specified serial input's word information status. v Function
Outputs a specified value to the SO port or acquires the SO Command /
108 | SO v .
status. Function
Outputs a specified serial output's double-word information Command /
119 | SOD . v .
or acquires the output status. Function
120 | sow Outpluts a specified serial output's word information or v Commgnd/
acquires the output status. Function
Outputs a specified value to the TO port or acquires the TO Command /
132 | TO v .
status. Function
137 | WAIT Waits gntll the con_dltlpns of the DI/DO conditional B Command
expression are met (with time-out).
Communication control
No. Command Description Online Type
15 | CLOSE Close the specified General Ethernet Port. v/ Command
34 | ETHSTS Acquires the Ethernet port status. v Function
39 | GEPSTS Acquires the General Ethernet Port status. v Function
66 | OFFLINE Sets a specified communication port to the "offline" mode. v Command
70 | ONLINE Sets the specified communication port to the "online" mode. v Command
71 | OPEN Opens the specified General Ethernet Port. v Command
105 | SEND Sends a file. v Command

I 8-12 @ Chapter 8 Robot Language Lists

- Functions: in alphabetic order

Function

Description

1 ABS Arithmetic function | Acquires the absolute value of a specified value.
Acquires the machine reference value for specified robot axes.
2 ABSRPOS Arithmetic function | (Valid only for axes whose return-to-origin method is set as
"mark".)
3 ACCEL Arithmetic function | Acquires the acceleration coefficient parameter of a specified robot.
4 ARCHP1 Arithmetic function | Acquires the arch position 1 parameter of a specified robot.
4 ARCHP2 Arithmetic function | Acquires the arch position 2 parameter of a specified robot.
5 ARMCND Arithmetic function | Acquires the current arm status of a specified robot.
6 ARMSEL Arithmetic function | Acquires the current “hand system” setting of a specified robot.
7 ARMTYP Arithmetic function | Acquires the “hand system” setting of a specified robot.
8 ASPEED Arithmetic function | Acquires the AUTO movement speed of a specified robot.
9 ATN Arithmetic function | Acquires the arctangent of the specified value.
9 ATN2 Arithmetic function | Acquires the arctangent of the specified X-Y coordinates.
10 | AXWGHT Arithmetic function | Acquires the axis tip weight parameter of a specified robot.
C
14 | CHR$ ﬁzizie;c;er string Acquires a character with the specified character code.
16 | COS Arithmetic function | Acquires the cosine value of a specified value.
17 | cuRTQST Arithmetic function Acquires the current torque value ratio of a specified axis to the
rated torque.
. . . Acquires the current torque value of the specified axis of a
18 | CURTRQ Arithmetic function specified robot.
D
19 | DATE$ gzi;i?r:er string Acquires the date as a "yy/mm/dd" format character string.
21 DECEL Arithmetic function | Acquires the deceleration rate parameter of a specified robot.
23 | DEGRAD Arithmetic function | Converts a specified value to radians (<=RADDEG).
27 | DIST Arithmetic function | Acquires the distance between 2 specified points.
E
. . . Acquires the error code number of an error which has occurred /
33 | ERR/ERL Arithmetic function the line number where an error occurred.
34 | ETHSTS Arithmetic function | Acquires the Ethernet port status.
G
39 | GEPSTS Arithmetic function | Acquires the General Ethernet Port status.
|
49 | INT Arithmetic function Acq_mres an integer for a specified value by truncating all
decimal fractions.
J
. . Converts joint coordinate data to Cartesian coordinate data of a
50 | JTOXY Point function specified robot. (<>XYTOL)
L
51 LEFTS Character string | Extracts a character string comprising a specified number of
function digits from the left end of a specified character string.
53 | LEN Arithmetic function | Acquires the length (byte count) of a specified character string.

Functions: in alphabetic order @ 8-13 I

No. Function Type Description
56 | Locx Point function Acqql_res point data for a specified axis or shift data for a
specified element.
57 | LSHIFT Arithmetic function | Shifts a value to the left by the specified bit count. («=RSHIFT)
M
Acquires the return-to-origin or absolute-search machine
58 | MCHREF Arithmetic function | reference for specified robot axes. (Valid only for axes whose
return-to-origin method is set as "sensor" or "stroke-end".)
Character string | Extracts a character string of a desired length from a specified
59 | MID$; .
function character string.
65 | MTRDUTY fCu:i;;cger string Acquires the motor load factor of the specified axis.
o
72 | oRD Arithmetic function Acquires thel character code of the first character in a specified
character string.
73 | ORGORD Arithmetic function Aqq_uwes the axis sequence parameter for perfor_rr_nng return-to-
origin and an absolute search operation of a specified robot.
76 | OUTPOS Arithmetic function | Acquires the "OUT position" parameter of a specified robot.
P
82 | PGMTSK Arithmetic function Acquwes the task number in which a specified program is
registered.
83 | PGN Arithmetic function | Acquires the program number from a specified program name.
86 | PPNT Point function Creates pqlnt data specified by a pallet definition number and
pallet position number.
88 | PSHFRC Arithmetic function | Acquires the "Push force" parameter.
89 | PSHJGSP Arithmetic function | Acquires the push judge speed threshold parameter.
90 | PSHMTD Arithmetic function | Acquires the push method parameter.
91 | PSHRSLT Arithmetic function | Acquires the status at the end of the PUSH statement.
92 | PSHSPD Arithmetic function | Acquires the push speed parameter.
93 | PSHTIME Arithmetic function | Acquires the push time parameter.
R
95 | RADDEG Arithmetic function | Converts a specified value to degrees. (<>=DEGRAD)
101 | RIGHTS Character string | Extracts a character string comprising a specified number of
function digits from the right end of a specified character string.
103 | RSHIFT Arithmetic function | Shifts a value to the right by the specified bit count. (<>LSHIFT)
S
109 | SGI Arithmetic function | Acquires the value of a specified integer type static variable.
110 | SGR Arithmetic function | Acquires the value of a specified real type static variable.
113 | SI Arithmetic function | Acquires a specified Sl status.
114 | siD Arithmetic function Acquires a specified serial input's double-word information
status.
115 | SIN Arithmetic function | Acquires the sine value for a specified value.
116 | SIW Arithmetic function | Acquires a specified serial input's word information status.
122 | SQR Arithmetic function | Acquires the square root of a specified value.
124 | STR$ g:}i;;cger string Converts a specified value to a character string (<>VAL).
T
108 | TAN Arithmetic function | Acquires the tangent value for a specified value.
. . . Outputs count-up values at 1ms intervals starting from the point
109 | TCOUNTER Arithmetic function when the TCOUNTER variable is reset.

I 8-14 @ Chapter 8 Robot Language Lists

No. Function Type Description
130 | TIMES Char_acter string Acgunres the current time as an "hh:mm:ss" format character
function string.
131 | TIMER Arithmetic function | Acquires the current time in seconds, counting from midnight.
133 | TOLE Arithmetic function | Acquires the tolerance parameter of a specified robot.
. ' . Acquires the maximum torque command value which can be set
134 | TORQUE Arithmetic funcion for a specified axis of a specified robot.
135 | TSKPGM Arithmetic function gcsiuwes the program number which is registered in a specified
\'
136 | VAL Arithmetic function Converts the numeric value of a specified character string to an
actual numeric value. («<>STR$)
w
139 | WEIGHT Arithmetic function | Acquires the tip weight parameter of a specified robot.
141 | WHERE Point function Bf_aads out.the current position of the arm of a specified robot in
joint coordinates (pulse).
143 | WHRXY Point function Reads.out the cyrrent position of the arm of a specified robot as
Cartesian coordinates (mm, degrees).
X
. . Converts the point variable Cartesian coordinate data to the joint
144 1 XYTOJ Point function coordinate data of a specified robot. (<=JTOXY).

Functions: in alphabetic order @ 8-15 I

- Functions: operation-specific

Point related functions

No. Function name

Description

50 | JTOXY Converts joint coordinate data to Cartesian coordinate data of a specified robot.
(«<XYTOJ)

56 | LOCx Acquires point data for a specified axis or shift data for a specified element.

86 | PPNT Creates point data specified by a pallet definition number and pallet position number.

141 | WHERE Reads out the current position of the arm of a specified robot in joint coordinates
(pulse).

143 | WHRXY Readg out the current position of the arm of a specified robot as Cartesian
coordinates (mm, degrees).

144 | xyTOU Converts the point variable Cartesian coordinate data to the joint coordinate data
of a specified robot. («=JTOXY).

Parameter related functions

No. Function name

Description

5 ABSRPOS Acquires the machine r.eference va_Iue for S'E)ecifi?d robot axes. (Valid only for
axes whose return-to-origin method is set as "mark".)
3 ACCEL Acquires the acceleration coefficient parameter of a specified robot.
4 ARCHP1 Acquires the arch position 1 parameter of a specified robot.
4 ARCHP2 Acquires the arch position 2 parameter of a specified robot.
5 ARMCND Acquires the current arm status of a specified robot.
6 ARMSEL Acquires the current "hand system" setting of a specified robot.
7 ARMTYP Acquires the "hand system" setting of a specified robot.
10 | AXWGHT Acquires the axis tip weight parameter of a specified robot.
17 | CURTQST Acquires the current torque value ratio of a specified axis to the rated torque.
18 | CURTRQ Acquires the current torque value of the specified axis of a specified robot.
21 DECEL Acquires the deceleration rate parameter of a specified robot.
53 | LEN Acquires the length (byte count) of a specified character string.
Acquires the return-to-origin or absolute-search machine reference for specified
58 | MCHREF robot axes. (Valid only for axes whose return-to-origin method is set as "sensor"
or "stroke-end".)
65 | MTRDUTY Acquires the motor load factor of the specified axis.
72 | ORD Acquires the character code of the first character in a specified character string.
73 | ORGORD Absoluto search operation of & spactied robot oo A A
76 | OUTPOS Acquires the "OUT position" parameter of a specified robot.
88 | PSHFRC Acquires the "Push force" parameter.
89 | PSHJGSP Acquires the push judge speed threshold parameter.
90 | PSHMTD Acquires the push method parameter.
91 PSHRSLT Acquires the status at the end of the PUSH statement.
92 | PSHSPD Acquires the push speed parameter.
93 | PSHTIME Acquires the push time parameter.
133 | TOLE Acquires the tolerance parameter of a specified robot.
134 | TORQUE :)c(;guci);e: Stggcmggi:r;%?ttorque command value which can be set for a specified
139 | WEIGHT Acquires the tip weight parameter of a specified robot.

I 8-16 @ Chapter 8 Robot Language Lists

Program related functions

No. Function name

Description

82 | PGMTSK Acquires the task number in which a specified program is registered.
83 | PGN Acquires the program number from a specified program name.
135 | TSKPGM Acquires the program number which is registered in a specified task.

Numeric calculation related functions

No. Function name

Description

1 ABS Acquires the absolute value of a specified value.
9 ATN Acquires the arctangent of the specified value.
9 ATN2 Acquires the arctangent of the specified X-Y coordinates.
16 | COS Acquires the cosine value of a specified value.
23 | DEGRAD Converts a specified value to radians (<=RADDEG).
27 | DIST Acquires the distance between 2 specified points.
49 | INT Acquires an integer for a specified value by truncating all decimal fractions.
57 | LSHIFT Shifts a value to the left by the specified bit count. (<=RSHIFT)
95 | RADDEG Converts a specified value to degrees. (<~=DEGRAD)
103 | RSHIFT Shifts a value to the right by the specified bit count. (<=LSHIFT)
115 | SIN Acquires the sine value for a specified value.
122 | SQR Acquires the square root of a specified value.
128 | TAN Acquires the tangent value for a specified value.
136 | VAL Converts the numeric value of a specified character string to an actual numeric value. (<>STR$)

Character string calculation related functions

No. Function name

Description

14 | CHR $ Acquires a character with the specified character code.
20 | DATE $ Acquires the date as a "yy/mm/dd" format character string.
Extracts a character string comprising a specified number of digits from the left
51 | LEFT $ e .
end of a specified character string.
59 | MID $ Extracts a character string of a desired length from a specified character string.
Extracts a character string comprising a specified number of digits from the right
101 | RIGHT $ - .
end of a specified character string.
124 | STR $ Converts a specified value to a character string (<>VAL).
130 | TIME $ Acquires the current time as an "hh:mm:ss" format character string.

Other functions

No. Function name

Description

33 | ERR/ERL Qﬁcél}j‘iariitgﬁoe,;rglrcﬁ?rcgi’.number of an error which has occurred / the line number
34 | ETHSTS Acquires the Ethernet port status.

39 | GEPSTS Acquires the General Ethernet Port status.

109 | SGI Acquires the value of a specified integer type static variable.

110 | SGR Acquires the value of a specified real type static variable.

129 | TCOUNTER ?Clzj(tDleJJ:\IST(I:E?RUC;rliJapr\éai!sufessg 1ms intervals starting from the point when the
131 | TIMER Acquires the current time in seconds, counting from midnight.

Functions: operation-specific @ 8-17 I

ABS

Acquires absolute values

ABS (expression)

DYJELENN) Returns a value specified by an <expression> as an absolute value.

A=ABS(-326.55) ccececeecnccncnn The absolute value of -362.54 (=362.54)

is assigned to variable A.

8-18 @ Chapter 8 Robot Language Lists

ABSRPOS

Acquires the machine reference value (axes: mark method)

ABSRPOS [robot number] (axis number)

Robot number 1 to 4 (If not input, robot 1 is specified.)
Axis number.............c........... 1t06

BIENELN) Acquires the machine reference value of axes specified by an <axis number>.
This function is valid only for axes whose return-to-origin method is set as "Mark", not
for "Sensor" or "Stroke-end".

¢ At axes where return-to-origin method is set to "mark" method, absolute reset is possible when

the machine reference value is in a 44 to 56% range.

SAMPLE

A=ABSRPOS (4) e, The machine reference value for axis 4

of robot 1 is assigned to variable A.

ABSRPOS @ 8-19

ACCEL

Specifies/acquires the acceleration coefficient parameter

1. ACCEL ' [robot number] expression
2. ACCEL [robot number] (axis number)=expression

robot number 1 to 4 (If not input, robot 1 is specified.)
axis numbercccc.c.c..... Tto6
EXPresSioN...........cccuevvueeeueennne. 1 to 100 (units: %)

Changes the acceleration coefficient parameter of the robot axis specified by the
<robot number> to the value specified by the <expression>.
In format 1, the change occurs at all axes specified with a specified robot.
In format 2, the change occurs at the axis specified in <axis number>.

I Functions

ACCEL [robot number] (axis number)

robot number........................ 1 to 4 (If not input, robot 1 is specified.)
axis NUMDErcocuvencneen. 1t06

BYJELENN) The acceleration coefficient parameter value is acquired for the axis specified by the
<axis number> among the robot axes specified by the <robot number>.

A=50
ACCEL A The acceleration coefficient of all axes of robot 1 becomes 50%.
ACCEL(3)=100 ««cccceeeeecceecennnn. Only axis 3 of robot 1 becomes 100%.
'CYCLE WITH INCREASING ACCELERATION
FOR A=10 TO 100 STEP 10 ==+« The acceleration coefficient parameter
is increased from 10% to 100% in 10%
increments.
ACCEL A
MOVE P, PO
MOVE P, P1
NEXT A

A=ACCEL(3) The acceleration coefficient parameter of axis 3 of robot 1 is
assigned to variable A.
HALT "END TEST"

8-20 @ Chapter 8 Robot Language Lists

ARCHP1 /ARCHP2

Specifies/acquires the arch position parameter

1. ARCHP1 [robot number] expression

2. ARCHP1 [robot number] (axis number)=expression .

1. ARCHP2 [robot number] expression
2. ARCHP2 [robot number] (axis number)=expression

robot numberc....c........ 1 to 4 (If not input, robot 1 is specified.)
axis NUMDETc.cccevvueveeene, 1t06
EXPression...........ccccoveeueenne.. 0 t0 99999999 (Unit: pulses)

ARCHP1 corresponds to the arch position 1 parameter; ARCHP2 corresponds to the
arch position 2 parameter, respectively. Changes the parameter’s arch position to the
value indicated in the <expression>.

Format 1 changes all axes specified by <robot number>.
Format 2 changes the only axis specified by <axis number> to the value indicated in
the <expression>.

I Functions

ARCHP1 [robot number] (axis number)

ARCHP2 [robot number] (axis number)

robot number 1 to 4 (If not input, robot 1 is specified.)
axis NUMbBErcccccccueene. 1to6

SRJELEGDN) ARCHP1 corresponds to the arch position 1 parameter; ARCHP2 corresponds to the

arch position 2 parameter, respectively.
Acquires the arch position parameter value of the axis specified at <axis number>.

ARCHP1/ARCHP2 @ 8-21 I

_ ARCHP1 / ARCHP2

ARCHP1 3 =10 =« ccoeee-

ARCHP2 3 =20 =+ ccoeee-

FOR B=1 TO 4
SAV B-1 =ARCHP1 B

NEXT

The arch position 1 parameter value
the 3rd axis of robot 1 changes to
pulses.

The arch position 2 parameter value
the 3rd axis of robot 1 changes to

pulses.

of
10

of
20

The arch position parameters ARCHPI1 (1)

to (4) are assigned to array variables

SAV(0) to (3)

8-22 @ Chapter 8 Robot Language Lists

ARMCND

Acquires the current arm status

ARMCND = [robot number]

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

BELEUDY) This function acquires the current arm status of the SCARA robot. The robot to
acquire an arm status is specified by the <robot number>.
The arm status is "1" for a right-handed system and "2" for a left-handed system.

SAMPLE

A=ARMCND @ e ccccccncen. The current arm status of robot 1 1is
assigned to variable A.

IF A=1 THEN -+ -ccccceeceeeceeenn. Right-handed system status.

MOVE P, P100, Z=0

ELSE =~ sttt Left-handed system status.

MOVE P, P200, Z=0

ENDIF

ARMCND @ 8-23

ARMSEL

Sets/acquires the current hand system selection

ARMSEL [robot number] expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPIeSSION.......c.ceuevuiriainicnens 1: right hand system; 2: left hand system

BYJELEND) This function sets the current hand system selection of the SCARA robot. A robot to
set a hand system is specified by the <robot number>.

ARMSEL[2] 2 ccccceeeeeeecceeennn. Sets the left-handed system for the

hand system selection of the robot 2.

I Functions

ARMSEL [robot number]

robot number..............c........ 1 to 4 (If not input, robot 1 is specified.)

This function acquires the hand system currently selected for the SCARA robot. The
robot to acquire a hand system is specified by the <robot number>.
The arm type is "1" for a right-handed system, and "2" for a left-handed system.

A=ARMSEL = st The current hand system selection of
robot 1 is assigned to the variable A.
IF A=1 THEN -« ¢t cceeveeetennennn. The hand system selection is
a right-handed system.
MOVE P,P100,Z=0
ELSE =~ ceececctttittttiennn The hand system selection is
a left-handed system.
MOVE P,P200,2z=0
ENDIF

8-24 @ Chapter 8 Robot Language Lists

ARMTYP

Sets/acquires the hand system selection during program reset

ARMTYP [robot number] expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPIeSSION.......cvvueeuieiaianianns 1: right hand system; 2: left hand system

SRJELEGD) This function sets the hand system at program reset of the SCARA robot. A robot to set
a hand system selection is specified by the <robot number>.

ARMTYP[2] 2 cccccceeeeeeeeeenn Sets the left-handed system for the
hand system of the robot 2.

I Functions

ARMTYP [robot number]

robot number-.............ccc........ 1 to 4 (If not input, robot 1 is specified.)

This function provides the hand system at program reset of the SCARA robot. The
robot to acquire a hand system is specified by the <robot number>.
The arm type is "1" for a right-handed system, and "2" for a left-handed system.

SAMPLE

A=ARMTYP The arm type value of robot 1 is assigned to the variable A.
IF A=1 THEN - ccceeceeecene.n. The arm type is a right-handed system.
MOVE P,P100,2z=0

ELSE =~ seeeeccciiiiiiien The arm type is a left-handed system.
MOVE P,P200,Z=0

ENDIF

HALTALL Program reset

ARMTYP @ 8-25

ASPEED

Sets/acquires the AUTO movement speed of a specified robot

ASPEED [robot number] expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPresSioN........cc.cccuvvvueeeeenne. 1 to 100 (units: %)
M NOTE SYJENEND) Changes the automatic movement speed of the robot specified by the <robot

number> to the value indicated in the <expression>.
e Automatic movement . .
This speed change applies to all axes.

speed
Specified by programming
box operation or by the The operation speed is determined by the product of the automatic movement speed
ASPEED command. (specified by programming box operation and by the ASPEED command), and the
* sppr:egdm m movement program movement speed (specified by SPEED command, etc.).
Specified by SPEED commands
or MOVE, DRIVE speed Operation speed = automatic movement speed x program movement speed.
settings. Example:
Automatic movement speed 80%
Program movement speed 50%

Movement speed = 40% (80% x 50%)

I Functions

ASPEED [robot number]

robot number........................ 1 to 4 (If not input, robot 1 is specified.)

OIENEGD) Acquires the automatic movement speed value of the robot specified by the <robot

number>.
| sawPLE

SPEED 70

ASPEED 100

MOVE P,PO s cccveeeeeeneeeeeeenn. Movement from the current position to PO
occurs at 70% speed (=100 * 70) of the
robot 1.

ASPEED 50

MOVE P,Pl s ccc e Movement from the current position to P1
occurs at 35% speed (=50 * 70) of the robot 1.

MOVE P,P2,S=10 « et eeceeceeecnn. Movement from the current position to P2
occurs at 5% speed (=50 * 10) of the robot 1.

HALT

Related commands SIS

I 8-26 @ Chapter 8 Robot Language Lists

ATN / ATN2

Acquires the arctangent of the specified value

ATN (expression)

ATN2 (expression 1, expression 2)

SUJELEGDN) ATN: Acquires the arctangent values of the specified <expression> values. The
acquired values are radians within the following range: -/ 2 to +x / 2
ATN2: Acquires the arctangent values of the specified <expression 1> and
<expression 2> X-Y coordinates. The acquired values are radians within
the following range: i to +xt

SAMPLE

A(Q)=A*ATN (Y/X) o ccecceeceeceens The product of the expression (Y/X)
arctangent value and variable A is
assigned to array A (0).

A(O)=ATN(0.5) v, The 0.5 arctangent value is assigned
to array A (0).

A(0)=ATN2(B,C)-D =+ ecccccen. The difference between the X-Y
coordinates (B,C) arctangent value and
variable D is assigned to array A (0).

A (1) =RADDEG (ATN2 (B,C)) =+ ve--- The X-Y coordinates (B,C) arctangent
value is converted to degrees, and is

then assigned to array A (1).

TGO N I ElieE COS, DEGRAD, RADDEG, SIN, TAN

ATN /ATN2 @ 8-27

AXWGHT

Sets/acquires the axis tip weight

AXWGHT [robot number] (axis number)=expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMbErcccecceene. 1t06
EXPIeSSION.......ceuvieveiiareann. Varies according to the specified robot.

Changes the axis tip weight parameter for the specified axis to the <expression>
value.
This statement is valid in systems with "MULTI" axes and auxiliary axes (the robot
type and auxiliary axes are factory set prior to shipment).

I Functions

AXWGHT = [robot number] (axis number)

robot number........................ 1 to 4 (If not input, robot 1 is specified.)

axis number

SUUETELIN) Acquires the axis tip weight parameter value for the specified axis.
This statement is valid in systems with "MULTI" axes and auxiliary axes.

A=5

B=0

C=AXWGHT (1) = eeeeeeeeeenenannnn. Axis tip weight value of the axis 1 of
the robot 1 is acquired (the current
value is saved to variable C).

AXWGHT (1) =A

DRIVE (1, PO)

AXWGHT (1) =B

DRIVE(1,P1)

AXWGHT (1) =C « v e v v eeeeeceeeeeneen. The axis tip weight value of the axis
1 of the robot 1 is set again.
HALT

REIEICo Nl nln-lgleill WEIGHT

8-28 @ Chapter 8 Robot Language Lists

CALL

Calls a sub-procedure

M NOTE

e \When a value is passed
on to a sub-procedure,
the original value of the
actual argument will not
be changed even if it
is changed in the sub-
procedure.

*When a reference is
passed on to a sub-
procedure, the original
value of the actual
argument will also be
changed if it is changed
in the sub-procedure.

eFor details, refer to
Chapter 3 "8 Value Pass-
Along & Reference Pass-

Along".

CALL label (actual argument , actual argument..)

This statement calls up sub-procedures defined by the SUB to END SUB statements.

The <label> specifies the same name as that defined by the SUB statement.

1. When a constant or expression is specified as an actual argument, its value is
passed on to the sub-procedure.

2. When a variable or array element is specified as an actual argument, its value
is passed on to the sub-procedure. It will be passed on as a reference if "REF" is
added at the head of the actual argument.

3. When an entire array (array name followed by parentheses) is specified as an
actual argument, it is passed along as a reference.

e CALL statements can be used up to 120 times in succession. Note that this number is reduced
if commands which use stacks such as an FOR or GOSUB statement are used, or depending on
the use status of identifiers.

e Always use the END SUB or EXT SUB statement to end a sub-procedure which has been called
with the CALL statement. If another statement such as GOTO is used to jump out of the sub-
routine, a "5.212: Stack overflow" error, etc., may occur.

SAMPLE 1

X%=4
Y%=5
CALL *COMPARE (REF X%, REF Y%)
HALT
’SUB ROUTINE: COMPARE
SUB *COMPARE (A%, B%)
IF A% < B% THEN
TEMP%=A%
A%=B%
B%=TEMP$%
ENDIF
END SUB
I =1
CALL *TEST(I)
HALT
’SUB ROUTINE: TEST
SUB *TEST
X =X+1
IF X < 15 THEN
CALL *TEST(X)
ENDIF
END SUB

Related commands

SUB, END SUB, EXIT SUB, SHARED ‘

CALL @ 8-29 I

CHANGE

Switches the hand

CHANGE @ [robot number]

Values robot numbercccc.........

n: hand number

CHANGE is used to switch the robot hand specified by the <robot number>. If OFF is
C specified, the hand setting is not enabled.
Before hand switching can occur, the hands must be defined at the HAND statement,
the programming box, or the SCARA-YRCX Studio.
For details, refer to section "44 HAND". If the hand data with another robot setting is
specified, "6.258: Illegal robot no" error occurs.

HAND H1= 0 150.000 0.000
HAND H2= -5000 20.0000 0.000
P1=150.000 300.000 0.000 0.000 0.000 0.000

CHANGE H2 s e eeecccceenennnens Changes the hand of the robot 1 to hand 2.
MOVE P,Pl cccccceeeeeceenn Moves the hand 2 tip of the robot 1 to
P1 (1).

CHANGE Hl Changes to hand 1'
MOVE P,Pl cccccceeeeceennnnns Moves the hand 1 tip to P1 (2).
HALT

I 8-30 @ Chapter 8 Robot Language Lists

CHGPRI

Changes the priority ranking of a specified task

CHGPRI Tn D
<program name>
PGm
m: Program number 0to 100
n: Task number 1to16
p: Task priority ranking 1 to 64

Directly changes the priority ranking of the specified task ("n") to "p".
The smaller the priority number, the higher the priority (high priority: 1 < low
priority: 64).
When a READY status occurs at a task with higher priority, all tasks with lower
priority also remain in a READY status.

SAMPLE

START <SUB_PGM>, T2,33
HE's
MOVE P,PO,P1
IF DI(20) = 1 THEN
CHGPRI T2,32
ELSE
CHGPRI T2,33
ENDIF
GOTO *ST
HALTALL
Program name:SUB_PGM
' SUBTASK ROUTINE

*SUBTASK:
IF LOC3 (WHERE) > 10000 THEN
DO(20) =1
GOTO *SUBTASK
ENDIF
DO(20) = 0
GOTO *SUBTASK
EXIT TASK

REIEIC N It CUT, EXIT TASK, RESTART, SUSPEND, START

CHGPRI @ 8-31 I

n n Acquires a character with the specified character code

CHRS (expression)

E€XPresSioN.....ccc.covueeeveniennnen. 0 to 255

BYJENEND) Acquires a character with the specified character code. An error occurs if the
<expression> value is outside the 0 to 255 range.

| sawPLE |

AS=CHRS (65) v e v veemeneeennnnn. "A" is assigned to AS.

Related commands [Eelzi{»] ‘

I 8-32 @ Chapter 8 Robot Language Lists

CLOSE

Closes the specified General Ethernet Port

CLOSE GPm
m: General Ethernet Port number Oto7

SYYENEGDN) Closes the communication port of the specified General Ethernet Port.

SAMPLE

OPEN GP1l W e Opens the General Ethernet Port 1.
SEND "123" TO GPLl =« cceccceeennn. Sends the character strings "123" from

the General Ethernet Port 1.

SEND GP1 TO AS$ -+ ceceeecenceeenn Receives the data from the General
Ethernet Port 1 and Saves the received
data in the variable AS.

CLOSE GP1l --:ccccccccccccencoe.n Closes the General Ethernet Port 1.

REIEICO N I ElseE OPEN, SEND, SETGEP, GEPSTS

CLOSE @ 8-33

COS

Acquires the cosine value of a specified value

COS (expression)

EXPression........c..cccueveueeeneen.. Angle (units: radians)

SYJELEND) Acquires a cosine value for the <expression> value.

C A(O0)=B*COS(C) ++rvevveencceceeenn The product of the C variable's cosine
value and variable B is assigned to array

A (0).
A(1)=COS(DEGRAD (20)) ==+ ==cceece-- The 20.0° cosine value is assigned to array

A (1).

REIEICO NIl ATN, DEGRAD, RADDEG, SIN, TAN

I 8-34 @ Chapter 8 Robot Language Lists

17 CURTQST

Acquires the current torque value of a specified axis to the rated torque

CURTQST [robot number] (axis number)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis number 1to6

BELEUD) Acquires the current torque value (-1000 to 1000) to the rated torque value of the
specified axis .
The value is expressed as a percentage of the rated torque value. Plus/minus signs

indicate the direction.

SAMPLE

A = CURTQST(3) s+t The current torque value against the
rated torque of the axis 3 of robot 1

is assigned to variable A.

CURTQST @ 8-35 I

CURTRQ

Acquires the current torque of the specified axis

CURTRQ [robot number] (expression)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPresSioN........cc.cccuvvvueeeeenne. 1to6

Acquires the current torque value (-100 to 100) of the axis specified by the
<expression>.
C The value is expressed as a percentage of the maximum torque command value. Plus/
minus signs indicate the direction.

A = CURTRQ(3) =+t ccccecceecennceens The current torque value of the axis 3

of robot 1 is assigned to variable A.

I 8-36 @ Chapter 8 Robot Language Lists

CUT

Terminates another task which is currently being executed

cuT Tn
<program name>
PGm
m: Program number 0to 100
n: Task numbercoceeee.. 1to16

BYJELETD) Terminates another task which is currently being executed or which is temporarily
stopped. A task can be specified by the name or the number of a program in

execution.
This statement cannot terminate its own task.

e If a task (program) not active is specified for the execution, an error occurs.
SAMPLE

'TASK1 ROUTINE

*ST:
MO(20) = 0
START <SUB_PGM>, T2
MOVE P, PO
MOVE P, P1l
WAIT MO(20) = 1
CUT T2

GOTO *ST

HALTALL

Program name:SUB_PGM
'TASK2 ROUTINE
*SUBTASK2 :
P100=JTOXY (WHERE)
IF LOC3(P100) >= 100.0 THEN
MO(20) =1
ELSE
DELAY 100
ENDIF
GOTO *SUBTASK2
EXIT TASK

REIEICEO NIl EXIT TASK, RESTART, START, SUSPEND

CUT @ 8-37

DATES

Acquires the date

DATES

Acquires the date as a "yyyy/mm/dd" format character string.
"yyyy" indicates the year, "mm" indicates the month, and "dd" indicates the day.
Date setting is performed from an operation terminal such as a programming box.

AS$S=DATES
PRINT DATES

n —

REEICO NI nintElel TIMES

I 8-38 @ Chapter 8 Robot Language Lists

DECEL

Specifies/acquires the deceleration rate parameter

1. DECEL [robot number] expression

2. DECEL [robot number] (axis number)=expression
robot number 1 to 4 (If not input, robot 1 is specified.)
axis NUMbBErccccccceeeni. 1to6
EXPression...........cccccovveeueenne.. 1 to 100 (units: %)

Change the deceleration rate parameter of the specified robot axis to the <expression>
value.
In format 1, the change occurs at all axes of a specified robot.
In format 2, the change occurs at the axis specified in <axis number>.

e The acceleration parameter can be changed by using the ACCEL statement.

I Functions

DECEL [robot number] (axis number)

robot number 1 to 4 (If not input, robot 1 is specified.)
axis NUMDBErccccvveeeueenn. 1to6

SUJENEGD) Acquires the deceleration rate parameter value for the specified axis.

SAMPLE

A =50

DECEL A s cccceeeccceceennnn. Specifies 50 in the deceleration
rate paramet¢ter f or
all axes of robot 1

DECEL (3)=100 « e ceeeeceeenns Specifies 100 as the deceleration

rate parameter for the axis 3 of
robot 1
'CYCLE WITH INCREASING DECELERATION
FOR A =10 TO 100 STEP 10
DECEL A s cccctseoeecoccens Specifies the variable A value in
the deceleration rate parameter for

all axes of robot 1

MOVE P ,PO
MOVE P ,P1
NEXT A
A=DECEL (3) secccccceeneeeecenn The deceleration rate parameter for

the axis 3 of robot 1 is assigned to
variable A.
HALT "END TEST "

DECEL @ 8-39

DEF FN

Defines functions which can be used by the user

DEF FN name |%| (dummy argument, dummy argument..)=function definition expression
|

$
NAME ..ot Function name. Max. of 16 characters including "FN".
dummy argument Numeric or character string variable.

BYJELENTN) Defines the functions which can be used by the user. Defined functions are called in
the FN <name> (<variable>) format.

e The <dummy argument> names are the same as the variable names used in the <function

definition expression>. The names of these variables are valid only when the <function

definition expression> is evaluated. There may be other variables with the same name in the
program.

e When calling a function that uses a <dummy argument>, specify the constant, variable, or
expression type which is the same as the <dummy argument> type. The <dummy argument>
can be omitted. If <dummy arguments> are the same type, the difference of variable names
does not affect.

e If a variable used in the <function definition expression> is not included in the <dummy
argument> list, the current value of that particular variable is used for the calculation.

e A space must be entered between "DEF" and "FN". If no space is entered, DEFFN will be
handled as a variable.

¢ The DEF FN statement cannot be used in sub-procedures.

¢ Definition by the DEF FN statement must be declared before statements which use functions.

DEF FNPAI=3.141592
DEF FNASIN (X)=ATN (X/SQR(-X"2+1))

--------------------- Both the <dummy argument> and <function

definition expression> use "X".

A=FNASIN (B) *10 ++cccvoeeereeencen. "X" is not required for calling.

8-40 @ Chapter 8 Robot Language Lists

DEGRAD

Angle conversion (degree — radian)

DEGRAD (expression)

EXPression...........cccocveeeueenn... Angle (units: degrees)

SUYENEGDN) The <expression> value is converted to radians.

e To convert radians to degrees, use RADDEG.

A=COS (DEGRAD (30)) «ccccveeeceece.. A cosine value which is converted 30°

to radians is assigned to variable A.

REIEICO N Ikl ATN, COS, RADDEG, SIN, TAN ‘

DEGRAD @ 8-41 I

DELAY

Program execution waits for a specified period of time

DELAY expression

EXPresSion........c..cccueeueeeneen.. 0 to 3600000 (units: ms)

SUJENEND) A "program wait" status is established for the period of time specified by the

<expression>. The minimum wait period is Tms.

DELAY 3500 3,500ms (3.5 secs) wait
n A-50

DELAY A*10 500ms (0,5 secs) wait

I 8-42 @ Chapter 8 Robot Language Lists

DI

Acquires the input status from the parallel port

1. LET expression = DIm(b,:-:,b)
2. LET expression = DI (mb, :--,mb)

m: port numberccc..... Oto7,10to 17,20to 27
b: bit definition.........ccccvvveeo. 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).

SRJELEGDN) Indicates the parallel input signal status.
Enter "0" if no input port exists.

SAMPLE

AZ=DI2 () = ceccccceeeenn The input status from DI (27) to DI (20)

is assigned to variable A%.

A%=DI5(7,4,0) s The DI (57), DI (54), DI (50) input
status is assigned to variable A% (when
all the above signals are "1" (ON), A% = 7).

A%=DI(37,25,20) cccccccccccceec.. The DI (37), DI (25), DI (20) input
status is assigned to variable A% (when
all the above signals except DI (20)
are "1" (ON), A% = 6).

For details, refer to Chapter 3 "9.3 Parallel input variable".

DI @ 8-43

DIM

Declares array variable

DIM array definition , array definition,..

Array definition

name % | (constant , constant, constant)
|

$

constant : Array subscript....... 0to 32,767 (positive integer)

SUIETELIN) Declares the name and length (number of elements) of an array variable. A maximum
of 3 dimensions may be used for the array subscripts. Multiple arrays can be declared
in a single line by using comma (,) breakpoints to separate the arrays.

e The total number of array elements is <constant> + 1.

e A "9.300: Memory full" error may occur depending on the size of each dimension defined in an

array.
 sawpe
DIM A% (10) +oceeeeeeeeeneeeeeenn Defines a integer array variable A% (0)
to A% (10). (Number of elements: 11).
DIM B(2,3,4) «ccteeeeeeeeeeenennn Defines a real array variable B (0, 0, 0)
to B (2, 3, 4). (Number of elements: 60).
DIM C%(2,2),D! (10) «cceeeeeeeeen. Defines an integer array C% (0,0) to C%

(2,2) and a real array D! (0) to D! (10).

8-44 @ Chapter 8 Robot Language Lists

27 DIST

Acquires the distance between 2 specified points

DIST (point expression 1, point expression 2)

point expression 1................ Cartesian coordinate system point
point expression 2.................. Cartesian coordinate system point

SUJENEGNNY) Acquires the distance (units: mm) between the 2 points (X,Y,Z) specified by <point
expression 1> and <point expression 2>. An error occurs if the 2 points specified by
each <point expression> do not have Cartesian coordinates.

SAMPLE

A=DIST(PO,PL) +ccvcveveecceeennneen. The distance between PO and Pl is

assigned to variable A.

DIST @ 8-45

DO

Outputs to parallel port or acquires the output status

1. LET DOm (b,:::,b) =expression
2. LET DO (mb,--:,mb) =expression

m: port numbercccoccee. 2to7,10to 17,20to 27
b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).

BRJELEIDG) Outputs the specified value to the DO port.
No output will occur if a nonexistent DO port is specified.
Outputs are not possible to DOO() and DO1(). These ports are for referencing only.

DO2 () = &B10111000 «« v oeeeeeenn DO (27, 25, 24, 23) are turned ON, and
DO (26, 22, 21, 20) are turned OFF.

DO2(6,5,1) = &B010 -:-cccccecece.. DO (25) are turned ON, and DO (26, 21)
are turned OFF.

DO3() = 15 cccceccceccecconcen.. DO (33, 32, 31, 30) are turned ON, and
DO (37, 36, 35, 34) are turned OFF.

DO(37,35,27,20) = A « oo The contents of the 4 lower bits

acquired when variable A is converted
to an integer are output to DO (37,

35, 27, 20) respectively.

8-46 @ Chapter 8 Robot Language Lists

KN

I Functions

LET DOm (b, ---,Db)
LET DO (mb, ---,mb)

Values m: port number

b: bit definition

Oto7,10to 17,20to 27
0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

SYJENEGDN) References the parallel port signal status.

SAMPLE

A%= DO2 () seceeceeiiiiien Output status of ports DO(27) to DO(20)

is assigned to variable A%.

A%= DO0(6, 5, 1) =cceeeeeeceneens Output status of DO(06), DO(05) and
DO(01) is assigned to variable A%.
(If all above signals are 1(ON), then
A%=7.)

A%=DO(37,35,27,10) «cccceceecen.. Output status of DO (37),
DO (35) , DO(27) and DO (10)
is assigned to variable A%.
(If all above signals except DO0(27)
are 1 (ON), then A%=13.)

Related commands EEzISSISINSI=a)

DO @ 8-47

DRIVE

Executes absolute movement of specified axes

DRIVE [robot number] (axis number, expression)
, (axis number, expression)..., option, option
robot number 1 to 4 (If not input, robot 1 is specified.)
axis nuUMberccccccc..... 1t06
EXPresSioN........c..cccuevvuieeeenne. Motor position (mm, degrees, pulses) or point
expression

Executes absolute movement command for the specified axis
This command is also used in the same way for the auxiliary axes.
* Movement type: PTP movement of specified axis.
e Point setting method: Direct numeric value input, point definition.
e Options: Speed setting, STOPON conditions setting, XY setting.

Movement type

@ PTP (Point to Point) movement of specified axis:
PTP movement begins after positioning of all axes specified at <axis number> is complete (within

the tolerance range), and the command terminates when the specified axes enter the OUT
position range. When two or more axes are specified, they will reach their target positions
simultaneously.

If the next command following the DRIVE command is an executable command such as a
signal output command, that next command will start when the movement axis enters the OUT
position range. In other words, that next command starts before the axis arrives within the
target position tolerance range.

Example:

Signal output (DO, etc.) | Signal is output when axis enters within OUT position range.

DELAY command is executed and standby starts, when axis enters the
DELAY I

OUT position range.

Program stops and is reset when axis enters the OUT position range.
HALT -

Therefore, axis movement also stops.

All programs in execution stop when axis enters the OUT position range, task
HALTALL . .

1 is reset, and other tasks terminate. Therefore, the movement also stops.

Program temporarily stops when axis enters the OUT position range.
HOLD .

Therefore, axis movement also stops.

All programs in execution temporarily stop when axis enters the OUT
HOLDALL s

position range. Therefore, the movement also stops.
WAIT WAIT command is executed when axis enters the OUT position range.

8-48 @ Chapter 8 Robot Language Lists

The WAIT ARM statement is used to execute the next command after the axis enters the
tolerance range.

DRIVE command
4 I
DRIVE(1,P1) Tarast ositon PRIVE(LP1)
DO(20)=1 . getp \ISVSIT/)\RM
R (20)=1 .~ N

OUT position
DO(20) turns ON DO(20) turns ON
- J
4)
DRIVE(1,P1) - DRIVE(1,P1)
HOLD Target position WAIT ARM [P
HOLD I .

- Tolerance RN e
OUT position
HOLD execution HOLD execution
Y (program temporarily stops) (program temporarily stops))
33819-R7-00
DRIVE (1,P0) s o coveeeeeececennn Axis 1 of robot 1 moves from its

current position to the position
specified by PO.

Point data setting types

® Direct numeric value input
The target posotion is specified directly in <expression>.

If the numeric value is an integer, this is interpreted as "pulse" units. If the numeric value is
a real number, this is interpreted as "mm/degrees" units, and each axis will move from the
0-pulse position to a pulse-converted position.

However, when using the optional XY setting, movement occurs from the Cartesian coordinate
origin position.

DRIVE (1,10000) «ccceecececens Axis 1 of robot 1 moves from its
current position to the 10000 pulses
position.

DRIVE 2 (2,90.00) =++ccceveeenn Axis 2 of robot 2 moves from 1its
current position to a position which
is 90° in the plus-direction from the

O-pulse position.

DRIVE @ 8-49

@ Point definition
Point data is specified in <expressions>. The axis data specified by the <axis number> is
used. If the point expression is in "mm/degrees" units, movement for each axis occurs from the
0-pulse position to the pulse-converted position. However, when using the optional XY setting,
movement occurs from the Cartesian coordinate origin position.

SAMPLE
M NOTE
) ’ - DRIVE(1,Pl) cccecvececcccennn. Axis 1 of robot 1 moves from its current position to
o If point data is specified
with both integers and the position specified by P1.
real numbers in the same DRIVE (4,P90) = v vovvevenneennnn Axis 4 of robot 1 moves from its current position to the

statement, all values are

X position specified by P90 (deg) relative to the 0 pulse
handled in "mm/degrees"

position. (When axis 4 is a rotating axis.)

units.
Option types
® Speed setting
1. SPEED =expression
2. S =expression
M NOTE
))) VL) expression.......ccevveeeenennce. 1 to 100 (units: %
« This defines the maximum Values JECY ()
speed, and does not
guarantee that all [BJELETNT) The program's movement speed is specified as an <expression>.
movement will occur at The actual d is determined hown bel
specified speed. e actual speed is determined as shown below.
¢ Robot's max. speed (mm/sec, or deg/sec) x automatic movement speed (%) x
value of expression (%)
This option is enabled only for the specified DRIVE statement.

DRIVE 2 (1,10000),S=10::+«---- Axis 1 of robot 2 moves from its current position to
the 10000 pulses position at 10% of the automatic
movement speed.

1. DSPEED =expression

2. DS =expression

M NOTE) .
EXPreSSiON........ecevueeeeeniennne. 0.01 to 100.00 (units: %)

* SPEED option and DSPEED
option cannot be used
together DOENEUDG) The axis movement speed is specified in <expression>.

The actual speed is determined as shown below.

¢ Robot's max. speed (mm/sec, or deg/sec) x value of expression (%)

This option is enabled only for the specified DRIVE statement.

* Movement always occurs at the DSPEED <expression> value (%) without being
affected by the automatic movement speed value (%).

DRIVE 2 (1,10000),DS=0.1------ Axis 1 of robot 2 moves from its current position to
the 10000 pulses position at 0.1% of the maximum speed.

8-50 @ Chapter 8 Robot Language Lists

® STOPON condition setting

STOPON conditional expression

Stops movement when the conditions specified by the <conditional expression>
are met. Because this is a deceleration type stop, there will be some movement
(during deceleration) after the conditions are met.
If the conditions are already met before movement begins, no movement occurs,
and the command is terminated.
This option is enabled only during program execution.

DRIVE (1,10000),STOPON DI (20)=1

----------- Axis 1 of robot 1 moves from its current

position toward the "10000 pulses" position and
stops at an intermediate point if the "DI (20)
= 1" condition is met. The next step is then

executed.

e When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and "0" indicates a FALSE
status.

® XY sefting

|
19

Moves multiple specified axes to a position specified by Cartesian coordinates.
All the specified axes arrive at the target position at the same time.
If all axes which can be moved by MOVE statement have been specified,
operation is identical to that which occurs when using MOVE statement.
The following restrictions apply to this command:
1. Axes specified by <axis number> must include the axis 1 and 2.
2. This command can be specified at SCARA robots with X and Y- axes.
3. Point settings must be in "'mm" or "deg" units (real number setting).

DRIVE(1,P100), (2,P100), (4,P100) ,XY
----------- The axis 1, 2 and 4 of robot 1 move from their
current positions to the Cartesian coordinates

position specified by P100.

DRIVE @ 8-51

DRIVEI

Moves the specified robot axes in a relative manner

DRIVEI [robot number] (axis number, expression),
(axis number, expression)..., option, option
robot number 1 to 4 (If not input, robot 1 is specified.)
axis nuUMbercccccccc.... 1to6
EXPresSiONc..cccuevvuieeeenne. Target position (mm, deg, pulses) or point expression

Executes relative movement, including the auxiliary axes.
* Movement type : PTP movement of a specified axis
e Point data setting : Direct coordinate data input, point definition
e Options : Speed setting, STOPON conditions setting

¢ When DRIVEI motion to the original target position is interrupted and then restarted, the target

position for the resumed movement can be selected as the "MOVEI/DRIVEI start position" in the

controller's parameters. (For details, refer to the YRCX user's/ operator's manual.)

1) KEEP (default setting) Continues the previous (before interruption) movement. The original
target position remains unchanged.

2) RESET Relative movement begins anew from the current position. The target
position before interruption is reset.

Movement type

@® PTP (point-to-point) of specified axis
PTP movement begins after positioning of all axes specified at <axis number> is complete (within

the tolerance range), and the command terminates when the specified axes enter the OUT
position range. When two or more axes are specified, they will reach their target positions
simultaneously.

If the next command following the DRIVElI command is an executable command such as a
signal output command, that next command will start when the movement axis enters the OUT
position range. In other words, that next command starts before the axis arrives within the
target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY command is executed and standby starts, when axis enters the
DELAY o

OUT position range.

Program stops and is reset when axis enters the OUT position range.
HALT ;

Therefore, axis movement also stops.

All programs in execution stop when axis enters the OUT position range,
HALTALL task 1 is reset, and other tasks terminate. Therefore, the movement also

stops.

Program temporarily stops when axis enters the OUT position range.
HOLD ;

Therefore, axis movement also stops.

All programs in execution temporarily stop when axis enters the OUT
HOLDALL -

position range. Therefore, the movement also stops.
WAIT WAIT command is executed when axis enters the OUT position range.

8-52 @ Chapter 8 Robot Language Lists

The WAIT ARM statement are used to execute the next command after the axis enters the

tolerance range.

DRIVEI command
WAIT ARM statement

OUT position
HOLD execution
(program temporarily stops)

.

4)
DRIVEI(1,P1) T t it DRIVEI(1,P1)
DO(20)=1 arget posttion AT ARM JURCEEN .
DO(20)=1 . .
I i . E I ‘o ’.' '
‘»\Tolerance RN .
OUT position
DO(20) turns ON DO(20) turns ON
& J
4)
DRIVEI(1,P1) . DRIVEI(1,P1)
HOLD Target position WAIT ARM JUPe
HOLD e S

,
4
’ ,’\ A}
o) @ |
. Lt)
>

PN kY

~ae

HOLD execution
(program temporarily stops))

Limitless motion related cautions

33820-R7-00

e When the "limitless motion" parameter is enabled, the DRIVEI statement soft limit

check values are as follows:
Plus-direction soft limit:
Minus-direction soft limit:

99,999,999 [pulse]
-99,999,999 [pulse]

*When using the DRIVEI statement, the above values represent the maximum movement distance

per operation.

SAMPLE

DRIVEI (1, PO)

The axis 1 of robot 1 moves from its

current position to the amount of

distance specified by PO.

DRIVEl @ 8-53

[Z NOTE

e |f point data is specified
with both integers and
real numbers in the same
statement, all values are
handled in "mm/degrees"
units.

Point data setting types

@ Direct numeric value input
The target position is specified in <expression>.
If the target position's numeric value is a real number, this is interpreted as a "mm/ deg" units,
and each axis will move from its current position to a pulse-converted position.

DRIVEI (1,10000) ++cccvveeeennn From its current position, the axis 1
of robot 1 moves a distance of "+10000
pulses".

DRIVEI (4,90.00) e vcvcececens From its current position, the axis 4

of robot 1 moves +90° (when axis 4 is a

rotating axis) .

@ Point definition
Point data is specified in <expression>. The axis data specified by the <axis number> is used.
From its current position, the axis moves the distance specified by the point in a relative
manner.
If the point expression is in "mm/ degrees" units, movement for each axis occurs from the
0-pulse position to the pulse-converted position.

SAMPLE

DRIVEI (1,P1l) e The axis 1 of robot 1 moves from its
current position the distance specified
by P1.

DRIVEI (4,P90) <« ccvveeeennnnnn. The axis 4 of robot 1 moves from its
current position the number of degrees
specified by P90 (when axis 4 1is a

rotating axis) .

8-54 @ Chapter 8 Robot Language Lists

M NOTE

e This defines the maximum
speed, and does noft
guarantee that all
movement will occur at
specified speed.

M NOTE

e SPEED option and DSPEED
option cannot be used
together.

Option types

@ Speed setting

1. SPEED=expression
2. S=expression
EXPresSSioN.........cccveeveuievnnnnn. 1 to 100 (units: %)

SUIETELIN)) The program's movement speed is specified by the <expression>.
The actual speed is as follows:

* Robot's max. speed (mm/sec, or deg/sec) x automatic movement speed (%) x
program movement speed (%)
This option is enabled only for the specified DRIVEI statement.

DRIVEI (1,10000),S=10 +««=cc----- The axis 1 of robot 1 moves from
its current position to the +10000
pulses position at 10% of the program

movement speed.

1. DSPEED=expression
2. DS=expression
EXPression...........cccoovveveueenne.. 0.01 to 100.00 (units: %)

The axis movement speed is specified as an <expression>.
The actual speed is determined as shown below.
* Robot's max. speed (mm/sec, or deg/sec) x axis movement speed (%)
This option is enabled only for the specified DRIVEI statement.
* Movement always occurs at the DSPEED <expression> value (%) without being
affected by the automatic movement speed value (%).

DRIVEI (1,10000),DS=0.1-=------ The axis 1 of robot 1 moves from its
current position to the +10000 pulses

position at 0.1% of the maximum speed.

DRIVEI @ 8-55 I

@ STOPON condition setting

STOPON conditional expression

Stops movement when the conditions specified by the <conditional expression>
are met. Because this is a deceleration type stop, there will be some movement
(during deceleration) after the conditions are satisfied.
If the conditions are already satisfied before movement begins, no movement
occurs, and the command is terminated.
This option is enabled only by program execution.

* When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE

status.

SAMPLE

DRIVEI(1,10000),STOPON DI (20)=1
----------- Axis 1 of robot 1 moves from its current
position toward the "+10000 pulses" position
and stops at an intermediate point if the "DI
(20) = 1" condition become satisfied. The next

step is then executed.

8-56 @ Chapter 8 Robot Language Lists

END SELECT

Ends the SELECT CASE statement

SELECT CASE expression
CASE expression's list 1

command block 1
CASE expression's list 2
command block 2

CASE ELSE
command block n
END SELECT

SUIENENNGY) Directly ends the SELECT CASE command block.
For details, refer to section "104 SELECT CASE to END SELECT".

S 3

WHILE -1
SELECT CASE DI3 ()
CASE 1,2,3
CALL *EXEC(1,10)
CASE 4,5,6,7,8,9,10
CALL *EXEC(11,20)
CASE ELSE
CALL *EXEC(21,30)
END SELECT
WEND
HALT

REIEICTo Nl ig-lsle 6 SELECT CASE

END SELECT @ 8-57 I

END SUB

Ends the sub-procedure definition

SUB label (dummy argument, dummy argument..)

command block
END SUB

BUUETELI) Ends the sub-procedure definition which begins at the SUB statement.
For details, refer to section "125 SUB to END SUB".

I=1

CALL *TEST
PRINT I
HALT

'SUB ROUTINE: TEST
SUB *TEST
I=50

END SUB

REIEICON Il CALL, EXIT SUB, SUB to END SUB

I 8-58 @ Chapter 8 Robot Language Lists

ERR/ERL

Acquires the error code / error line number

ERR (task number)
ERL (task number)

task numberccccc....... 1to4

Variables ERR and ERL are used in error processing routines specified by the ON
ERROR GOTO statement.
ERR of the task specified by the <task number> gives the error code of the error that
has occurred and ERL gives the line number in which the error occurred.

SAMPLE 1

IF ERR 1 <> &H604 THEN HALT
IF ERL 1 =20 THEN RESUME NEXT

REIEICO N e ON ERROR GOTO, RESUME ‘

ERR/ERL @ 8-59 I

ETHSTS

Acquires the Ethernet port status

ETHSTS

BUJENETT) Acquires the Ethernet port status.

2 e Ethernet port is not opened yet.
o [LAN cable is not connected.
0........ The connection is not established.
Tooee The connection is established.
2, The connection is established / the data is stored in the reception buffer.
savpe
A=ETHSTS @ cccctccceeecctecencencs Assigns the the Ethernet port

status to the variable A

I 8-60 @ Chapter 8 Robot Language Lists

EXIT FOR

Terminates the FOR to NEXT statement loop

EXIT FOR

BYJENEGDN) Terminates the FOR to NEXT statement loop, then jumps to the command which
follows the NEXT statement.
This statement is valid only between the FOR to NEXT statements.

* The FOR to NEXT statement loop will end when the FOR statement condition is satisfied or
when the EXIT FOR statement is executed. A "5.212: Stack overflow" error, etc., will occur if
another statement such as GOTO is used to jump out of the loop.

SAMPLE

s

WAIT DI(20)=1

FOR A%=101 TO 109
MOVE P,P100,z=0
DO (20)=1
MOVE P,P[A%],Z=0
DO (20) =0
IF DI(20)=0 THEN EXIT FOR

NEXT A%

GOTO *ST

HALT

REIEICo N gl FOR, NEXT

EXIT FOR @ 8-61 I

EXIT SUB

Terminates the sub-procedure defined by the SUB to END SUB statement

EXIT SUB

BYJENEGD) The EXIT SUB statement terminates the sub-procedure defined by the SUB to END
SUB statements, then jumps to the next command in the CALL statement that called

up the sub-procedure.
This statement is valid only within the sub-procedure defined by the SUB to END

SUB statements.

e To end the sub-procedure defined by the SUB to END SUB statements, use the END SUB

statement or EXIT SUB statement. A "5.212: Stack overflow" error, etc., will occur if another
statement such as GOTO is used to jump out of the loop.

n | saPLE
"MAIN ROUTINE
CALL *SORT2 (REF X%,REF Y%)
HALT
'SUB ROUTINE: SORT
SUB *SORT2 (X%, Y%)
IF X%>=Y% THEN EXIT SUB
TMP%=Y%
Y$=X%
X%=TMP%
END SUB

REIEICo N nlnklleS CALL, SUB to END SUB, END SUB

I 8-62 @ Chapter 8 Robot Language Lists

37 EXIT TASK

Terminates its own task which is in progress

EXIT TASK

BYJENETD) Terminates its own task which is currently being executed.

SAMPLE

'TASK1 ROUTINE

RESHg
MO (20) =0
START <SUB_PGM>, T2
MOVE P, PO, P1
WAIT MO(20)=1
GOTO *ST

HALTALL

Program name:SUB_PGM
"TASK2 ROUTINE
*SUBTASK2 :
P100=JTOXY (WHERE)
IF LOCZ(P100)>=100.000 THEN
MO (20)=1
EXIT TASK
ENDIF
DELAY 100
GOTO *SUBPTASK2
EXIT TASK

REIEICO Ryl CUT, RESTART, START, SUSPEND, CHGPRI

EXIT TASK @ 8-63

FOR to NEXT

Performs loop processing until the variable exceeds the specified value

FOR control variable = start value TO end value STEP step

command block
NEXT control variable

These statements repeatedly execute commands between the FOR to NEXT
statements for the <start value> to <end value> number of times, while changing the
<control variable> value in steps specified by <STEP>.

If <STEP> is omitted, its value becomes "1".
The <STEP> value may be either positive or negative.
The <control variable> must be a numeric <simple variable> or <array variable>.

The FOR and NEXT statements are always used as a set.

'CYCLE WITH CYCLE NUMBER OUTPUT TO DISPLAY
FOR A=1 TO 10
MOVE P, PO
MOVE P, Pl
MOVE P, P2
PRINT"CYCLE NUMBER=";A
NEXT A
HALT

REIEICO N Inlnklglesl EXIT FOR

8-64 @ Chapter 8 Robot Language Lists

GEPSTS

Acquires the General Ethernet Port status

GEPSTS (General Ethernet Port number)

General Ethernet Port number-.................... Oto7

Acquires the specified General Ethernet port status.
-2The specified General Ethernet port is not opened yet.
-1.....LAN cable is not connected.
0The connection is not established.
1 The connection is established.
2 The connection is established / the data is stored in the reception buffer.

OPEN GP1 s s cecceeeeoeeneeenenn Opens the port which is specified at
the General Ethernet port 1
IF GEPSTS(1) > O THEN -« -- Confirms i1if the connection 1is
established.
SEND “ABC” TO GPLl:::cccecccene. Sends the character string "123".
IF GEPSTS(1)=2 THEN-: -+« Confirms if the data is stored in the
reception buffer.
SEND GP1 TO RETS -+ -- Receives the data and assigns the
received to the variable RETS.
ENDIF
ENDIF
CLOSE GP1l c e Closes the port which is specified at
the General Ethernet port 1.
HALT

REIEICO Nl Else 8 OPEN, CLOSE, SEND, SETGEP

GEPSTS @ 8-65

GOSUB to RETURN

Jumps to a subroutine

GOSUB label * GOSUB can also be expressed as "GO SUB".

label:

RETURN

SUUETELIN) Jumps to the </abel> subroutine specified by the GOSUB statement.
A RETURN statement within the subroutine causes a jump to the next line of the
GOSUB statement.

e The GOSUB statement can be used up to 120 times in succession. Note that this number of

times is reduced if commands containing a stack such as an FOR statement or CALL statement

are used.

* When a jump to a subroutine was made with the GOSUB statement, always use the RETURN
statement to end the subroutine. If another statement such as GOTO is used to jump out of the
subroutine, an error such as "5.212: Stack overflow" may occur.

*ST:

MOVE P, PO

GOSUB *CLOSEHAND

MOVE P, P1

GOSUB *QOPENHAND

GOTO *ST

HALT

'SUB ROUTINE

*CLOSEHAND:
DO(20) =1

RETURN

*OPENHAND :
DO (20)

RETURN

REIEICO N n[-laleEl RETURN

1l
o

I 8-66 @ Chapter 8 Robot Language Lists

GOTO

Executes an unconditional jump to the specified line

GOTO label* GOTO can also be expressed as "GO TO".

BYJENEGDN) Executes an unconditional jump to the line specified by </abel>.

'MAIN ROUTINE
RIS
MOVE P,PO,P1
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT

GOTO @ 8-67

HALT

Stops the program and performs a reset

HALT ‘ expression ‘

character string

Stops the program and resets it. If restarted after a HALT, the program runs from its
beginning.
If an <expression> or a <character string> is written, the operation result of
<expression> or the contents of <character string> are displayed on the programming
box screen, respectively

e Variables are not reset by execution of HALT statement. HALTALL is available to reset variables.

e HALT is effective only in the executed task. The programs executed in other tasks continue
execution.

"MAIN ROUTINE
RIS
MOVE P, PO,P1
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT "PROGRAM FIN"

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's
command is executed when the axis enters the OUT position range.

Therefore, if a HALT command exists immediately after a PTP movement command, that HALT
command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C)
command, the next command is executed immediately after movement starts. Therefore, if a HALT
command exists immediately after the interpolation movement command during MOVE (L or C)
command with CONT options, a HALT command is executed immediately after starting movement.
In either of the above cases, use the WAIT ARM command as shown below if desiring to execute
the HALT command after the axis arrives within the target position tolerance range.

HALT command
p N
DRIVE(1,P1) - DRIVE(1,P1)
AT Target position WAIT ARM USRI .
HALT e 0

.
G

.
p 3
_: [
- of . et
\ . = ’
"4 . .
. Tolerance) ’

ouT poson ¥
HALT execution HALT execution

- J

33821-R7-00

Sema

8-68 @ Chapter 8 Robot Language Lists

HALTALL

Stops all programs and performs reset

HALTALL expression
character string

SUJENENN) Stops and resets all programs. Dynamic variables, array variables, output variables
are also rest.

If a program is restarted after a HALTALL, the program runs from its beginning of the
main program or of the last program executed at task 1.

If an <expression> or a <character string> is written, the calculation result of
<expression> or the contents of <character string> are displayed on the programming
box screen, respectively (if variable is written in an <expression>, the previous value
before clearing is displayed).

Output variables (DO/SO/MO/LO/TO/SOW) are reset under the condition as shown below.
¢ |O parameter "DO output at Program reset" is "IO_RESET".
e Sequence program is in execution and the sequence program execution flag is enabled.

SAMPLE

'MAIN ROUTINE
*ST:
MOVE P, PO, Pl
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT "PROGRAM FIN"

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's
command is executed when the axis enters the OUT position range.

Therefore, if a HALTALL command exists immediately after a PTP movement command, that
HALTALL command is executed before the axis arrives in the target position tolerance range.
Likewise, when specifying CONT options in interpolation movement during MOVE (L or C) command,
the next command is executed immediately after movement starts. Therefore, if a HALTALL command
exists immediately after the interpolation movement command during MOVE (L or C) command with
CONT options, a HALTALL command is executed immediately after starting movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute
the HALTALL command after the axis arrives within the target position tolerance range.

HALTALL command
DRIVE(1,P1) DRIVE(1,P1) h
, T: iti ’
HALTALL GetpOSIion \yArT ARM JUURERN .
HALTALL
"~.____i»\TOIerance ... -
OUT position
HALTALL execution HALTALL execution
- J
33701-R9-00

HALTALL @ 8-69

HAND

Defines the hand

Definition statement:

HAND [robot number] Hn = 1st parameter 2nd parameter 3rd parameter R
Selection statement:
CHANGE [robot number] Hn

robot numberccc......... 1to4
n: hand number 0to 31
R: Indicates whether a hand is attached to the R-axis.

The HAND statement only defines the hand. To actually change hands, the CHANGE
statement must be used.
For CHANGE statement details, refer to section "12 CHANGE".
If "R" is specified, the hands that are offset from the R-axis rotating center are selected.

e If a power OFF occurs during execution of the hand definition statement, the "9.707 Hand data

destroyed" error may occur.
e If specifying the hand data that was defined by specifying other robots in the CHANGE
statement, “6.258: lllegal robot no” error may occur.

n 44.1 J For SCARA Robots

B 1.When the <4th parameter> "R" is not specified

Hands installed on the second arm tip are selected (see below).

1st parameter Number of offset pulses between the standard second arm position
and the virtual second arm position of hand "n". "+" indicates the
counterclockwise direction [pulse].
2nd parameter Difference between the hand "n" virtual second arm length and the
standard second arm length. [mm]
3rd parameter Z-axis offset value for hand "n". [mm]
Hand 1 Hand 2

20.00mm

33803-R9-00

I 8-70 @ Chapter 8 Robot Language Lists

SAMPLE
HAND Hl= 0 150.000 0.0000
HAND H2= -5000 20.000 0.000
Pl= 150.000 300.000 0.000 0.000 0.000 0.000
CHANGE H2 ccceeecccceeeecenn Hand of robot 1 changes to hand 2.
MOVE P,Pl cccceerecnnenennenn.. Tip of hand 2 of robot 1 moves to Pl. @
CHANGE H1 s Hand of robot 1 changes to hand 1.
MOVE P, Pl scceeeeennnnnnnnnnenn Tip of hand 1 of robot 1 moves to Pl. @
HALT

SAMPLE:HAND

o 2] Y

Hand 2 (150.00, 300.00)
£ "
I > P
~._Hand 1
(150.00, 300.00)

N\

33802-R7-00

HAND @ 8-71

B 2.When the <4th parameter> "R" is specified

The hands that are offset from the R-axis rotating center are selected (see below).

1st parameter When the current position of R-axis is 0.00, this parameter shows
the angle of hand "n" from the X-axis plus direction in a Cartesian
coordinate system. ("+"indicates the counterclockwise direction.)

[degree]
2nd parameter Length of hand "n". [mm] (>0)
3rd parameter Z-axis offset amount for hand "n". [mm]
Y
Standard 2nd arm 150.00mm
/'\
S ans 1
- <—-90.00 deg.
100.00mm \\ Hand 2
33804-R9-00
HAND H1l= 0.00 150.0 0.0 R
HAND H2= -90.00 100.00 0.0 R
Pl= 150.00 300.00 0.00 0.00 0.00 0.00
CHANGE H1 e ceeeccceennnnenn. Hand of robot 1 changes to hand 1.
MOVE P,Pl +eceteeenenenenennnnn Tip of hand 1 moves to Pl1. @
CHANGE H2 cccccccccccccccncceens Hand of robot 1 changes to hand 2.
MOVE P,Pl ccccevcenconcnceneennn Tip of hand 2 moves to Pl. @
HALT
SAMPLE:HAND

©

N\

Hand 1]\ Hand 2
— A 1~ f—

(150.00, 300.00) / (150.00, 300.00)

iV

RS,

33804-R7-00

I 8-72 @ Chapter 8 Robot Language Lists

HOLD

Temporarily stops the program

HOLD ‘ expression ‘

character string

Temporarily stops the program. When restarted, processing resumes from the next
line after the HOLD statement. If an <expression> or <character string> is written in
the statement, the contents of the <expression> or <character string> display on the
programming box screen.

e HOLD is effective only in the task executed. The programs executed in other tasks continue
execution.

SAMPLE

"MAIN ROUTINE
IS H:
MOVE P, PO, P1
IF DI(20)=1 THEN
HOLD "PROGRAM STOP"
ENDIF
GOTO *ST
HALT

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's
command is executed when the axis enters the effective OUT position range.

Therefore, if a HOLD command exists immediately after a PTP movement command, that HOLD
command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C)
command, the next command is executed immediately after movement starts. Therefore, if a
HOLD command exists immediately after the interpolation movement command during MOVE
(L or C) command with CONT options, a HOLD command is executed immediately after starting
movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute
the HOLD command after the axis arrives within the target position tolerance range.

HOLD command

4 I

DRIVE(1,P1) i DRIVE(1,P1)

HOLD Target position WAIT ARM e .

HOLD B¢ .
o JC @ —‘ o
‘\._____'»\Tolerance RN i
OUT position
HOLD execution HOLD execution
o J
33822-R7-00

HOLD @ 8-73

HOLDALL

Temporality stops all programs

HOLD ‘ expression ‘

character string

Temporality stops all programs. When restarted, the program that has executed
HOLDALL is executed from the next line after the statement, and other programs
are resumed from the line that has interrupted execution. If an <expression> or
<character sting> is written in the statement, the contents of <expression> or
<character string> displays on the programming box screen.

'MAIN ROUTINE

*ST:
MOVE P, PO, P1l
IF DI(20)=1 THEN
HOLD "PROGRAM STOP"
ENDIF
GOTO *ST
HALT

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's
command is executed when the axis enters the effective OUT position range.

Therefore, if a HOLDALL command exists immediately after a PTP movement command, that
HOLDALL command is executed before the axis arrives in the target position tolerance range.
Likewise, when specifying CONT options in interpolation movement during MOVE (L or C)
command, the next command is executed immediately after movement starts. Therefore, if a
HOLDALL command exists immediately after the interpolation movement command during MOVE (L
or C) command with CONT options, a HOLDALL command is executed immediately after starting
movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute
the HOLDALL command after the axis arrives within the target position tolerance range.

HOLDALL command
@ N
DRIVE(1,P1) .. DRIVE(1,P1)
HOLDALL Target positon a1t ARM U, .
HOLDALL N

OUT position
HOLDALL execution HOLDALL execution

- J

33702-R9-00

8-74 @ Chapter 8 Robot Language Lists

IF

Evaluates a conditional expression value, and executes the command in accordance with the conditions

47.1 B Simple IF statement

label 1 ELSE label 2

command statement 1 command statement 2

IF conditional expression THEN

If the condition specified by the <conditional expression> is met (true), processing
jumps either to the </abel 7> which follows THEN, or to the next line after
<command statement 1> is executed.

If the condition specified by the <conditional expression> is not met (false), the

following processing occurs:

1. Processing either jumps to the <label 2> specified after the ELSE statement, or to
the next line after <command statement 2> is executed.

2. If nothing is specified after the ELSE statement, no action is taken, and processing
simply jumps to the next line.

* When the conditional expression used to designate the IF statement condition is a numeric

expression, an expression value other than "0" indicates a TRUE status, and "0" indicates a
FALSE status.

SAMPLE

"MAIN ROUTINE

*ST:
MOVE P,PO,P1
IF DI(20)=1 THEN *Ll-:::------ If DI (20) 4is "1", a Jjump to *L1
occurs.
DO(20)=1
DELAY 100
Sl g
IF DI(21)=1 THEN *ST ELSE *FIN
..................... If DI (21) 4is "1", a jump to *ST
occurs. If other than "1", a Jjump to
*FIN occurs.
*FIN:
HALT

IF @ 875

KA -

47.2

I Block IF statement

IF conditional expression 1 THEN

command block 1

ELSEIF conditional expression 2 THEN

command block 2
ELSE

command block n
ENDIF

BYJELETTNY) If the condition specified by <conditional expression 1> is met (true), this statement
executes the instructions specified in <command block 1>, then jumps to the next

line after ENDIF.

When an ELSEIF statement is present and the condition specified by <conditional
expression 2> is met (true), the instructions specified in <command block 2> are

executed.

If all the conditions specified by the conditional expression are not met (false),
<command block n> is executed.

e When the conditional expression used to designate the IF statement condition is a numeric
expression, an expression value other than “0” indicates a TRUE status, and "0" indicates a

FALSE status.

'MAIN ROUTINE
*ST:
MOVE P, PO, Pl
IF DI(21,20)=1 THEN
DO(20)= 1
DELAY 100
WAIT DI(20)=0
ELSEIF DI(21,20)=2 THEN
DELAY 100
ELSE
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT

8-76 @ Chapter 8 Robot Language Lists

INPUT

Assigns a value to a variable specified from the programming box

INPUT prompt statement ; | variable , | variable P
, | point variable point variable
shift variable shift variable

SUJENEGDN) Assigns a value to the variable specified from the programming box.
The input definitions are as follows:

1. When two or more variables are specified by separating them with a comma (,),
the specified input data items must also be separated with a comma (,).

2. Atthe <prompt statement>, enter a character string enclosed in double quotation
marks (") that will appear as a message requiring data input. When a semicolon (
;) is entered following the <prompt statement>, a question mark (?) and a space
will appear at the end of the message. When a comma (,) is entered, nothing will
be displayed following the message.

3. When the <prompt statement> is omitted, only a question mark (¢) and a space
will be displayed.

4. The input data type must match the type of the corresponding variables. When
data is input to a point variable or shift variable, insufficient elements are set to
"0".

5. If only the ENTER key is pressed without making any entry, the program interprets
this as a "0" or "null string" input. However, if specifying two or more variables, a
comma (,) must be used to separate them.

6. If the specified variable is a character type and a significant space is to be entered

before and after a comma (,), double quotation mark (") or character string, the

character string must be enclosed in double quotation marks ("). Note that in this
case, you must enter two double quotation marks in succession so that they will
be identified as a double quotation mark input.

Input _ Contents of A$

ABC ABC
(space)ABC(space) ABC: space is not entered before and after ABC
" ABC " ABC : space is entered before and after ABC

ABC is entered, and XYZ is entered when the next INPUT

ABC,XYZ statement is executed.
"ABC,XYZ" ABC,XYZ
IIIIIIABCIIIIII IIABCII

7. Pressing the ESC key skips this command.

e If the variable and the value to be assigned are different types, the specified message displays,

and a “waiting for input” status is established.

* When assigning alphanumeric characters to a character variable, it is not necessary to enclose
the character string in double quotation marks (").

e When using INPUT statement, the value is assigned to the variable from the channel specified
in cotroller parameter "INPUT/PRINT using channel".

INPUT @ 8-77 I

INPUT A

INPUT "INPUT POINT NUMBER";Al

INPUT "INPUT STRING",BS$(0),BS$(1)

INPUT P100

HALT

Converts the enterered character
string to a real number and assigns to

variable A!.

Displays INPUT POINT NUMBER on a prompt
of programming box, etc. and converts
the enterered character string to a

real number and assigns to variable A!.

Displays INPUT STRING on a prompt of
programming box, etc. If commas are
contained in the enterered character
string, the first character string is
assigned to 0 element of the array
variable BS$ and the second character
string is assigned to its 1 element.
Assigns the enterered character string
to P100.

8-78 @ Chapter 8 Robot Language Lists

INT

Truncates decimal fractions

INT (expression)

BYJENEGD) This function acquires an integer value with decimal fractions truncated. The
maximum integer value which does not exceed the <expression> value is acquired.

SAMPLE

A=INT(A(0))
B=INT (-1. 233) ccccccceecencenncnn "-2" is assigned to B.

INT @ 8-79

JTOXY

Performs axis unit system conversions (pulse — mm)

JTOXY [robot number] (point expression)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

SYJELENTN) Converts the joint coordinate data (unit: pulse) specified by the <point expression>
into Cartesian coordinate data (unit: mm, degree) of the robot specified by the <robot

number>.
P10=JTOXY (WHERE) =+t ceceeen. Current position data of robot 1 is

converted to Cartesian coordinate data
and assigned to P10.

REEICTONInInERGEN XYTOJ

8-80 @ Chapter 8 Robot Language Lists

LEFT$

Extracts character strings from the left end

LEFTS (<character string expression> , <expression>)

EXPressioN.........ccovvevcuneeinnnen. 0 to 255

This function extracts a character string with the digits specified by the <expression>
from the left end of the character string specified by <character string expression>.
The <expression> value must be between 0 and 255, otherwise an error will occur.
If the <expression> value is 0, then extracted character string will be a null string
(empty character string).
If the <expression> value has more characters than the <character string expression>,
extracted character string will become the same as the <character string expression>.

SAMPLE

BS=LEFTS (AS,4) =« ccceeeeeceeeennn. 4 characters from the left end of AS

are assigned to BS.

SEEICO Nt MIDS, RIGHT$S ‘

LEFT$ @ 8-81

LEFTY

Sets the SCARA robot hand system as a left-handed system

LEFTY [robot number]

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

Specifies the robot as a left-handed system.
This statement only specifies the hand system, and does not move the robot. If
executed while the robot arm is moving, execution waits until movement is complete
(positioned within tolerance range).

RIGHTY = ccceeeeeccccceneeceen Specifies the hand system of robot 1 as
a right-handed system.

MOVE P,Pl cccceeeneneeteennnnns (1)

LEFTY = s Specifies the hand system of robot 1 as
a left-handed system.

MOVE P,Pl +ceeeeneeneenneennnn. (2)

RIIGIEMY ~ cocococcoccooccocoocooo Specifies the hand system of robot 1 as

a right-handed system.
HALT

SAMPLE:LEFTY/RIGHTY

Left-handed system Right-handed system

SCARA robot
33809-R7-00

REIEIC N il RIGHTY

8-82 @ Chapter 8 Robot Language Lists

LEN

Acquires a character string length

LEN (character string expression)

BUJENEGDNY) Returns the character string length of the <character string expression> as a number
of bytes.

SAMPLE

A$="OMRON”"

B$="OMRON MOTOR”

C$="OMRON CO., LTD.”

PRINT LEN(AS) «ccteeeeoeeeeennnnn Indicates “6”.
PRINT LEN(BS) «ccteeeeeeeeeennnn. Indicates “12”.
PRINT LEN(CS) «ccveeeeeneeeennnnn Indicates “16”.

LEN @ 8-83

LET

Assigns values to variables

LET arithmetic assignment statement

character string assignment statement
point assignment statement
shift assignment statement

DIENEGD) Executes the specified assignment statement. The right-side value is assigned to the
left side. An assignment statement can also be directly written to the program without

using a LET statement.

e If the controller power is turned off during execution of a <point assignment statement> or

<shift assignment statement>, a memory-related error such as the "9.702: Point data destroyed"
or the "9.706: Shift data destroyed" may occur.

I 1. Arithmetic assignment statement

LET integer variable —expression

real variable

parallel output variable
internal output variable
arm lock output variable
timer output variable
serial output variable

serial word output variable

serial double-word output variable

EXPIesSioNccccveurnenn Variables (except character string variables, point
data variables, shift variables)

Function

Numeric value

ISIEUEL) The expression value is assigned to the left-side variable.

Al=B!+1
B%(1,2,3)=INT(10.88)
DO2 ()=&B00101101

MO (21,20)=2
LO(00)=1
TO(01)=0
S012 () =255

8-84 @ Chapter 8 Robot Language Lists

B 2.Character string assignment statement

LET character string variable = character string expression

DIENEGD) The <character string expression> value is assigned to the character string variable.
Only the plus (+) arithmetic operator can be used in the <character string
expression>. Other arithmetic operators and parentheses cannot be used.

AS$ ="OMRON"
B$S ="ROBOT"
DS = AS + "-" + BS

Execution result: OMRON-ROBOT

e The "+" arithmetic operator is used to link character strings.

I 3.Point assignment statement

LET point variable = point expression

Assigns <point expression> values to point variables.

Only 4 arithmetic operators (+, -, *, /) can be used in the <point expression>.

Multiplication and division are performed only for constant or variable arithmetic

operations.

e Addition / Subtraction Addition / subtraction is performed for each element
of each axis.

e Multiplication / Division..... Multiplication / division by a constant or variable is
performed for each element of each axis.

Multiplication results vary according to the point data type.

e For "pulse" units Assigned after being rounded to an integer.

e For "mm" units Assigned a real number after being rounded off to
two decimal places.

LET @ 8-85

SAMPLE
Pl =P10 «cccceeeeeeeecennn. Point 10 is assigned to P1.
P20=P20+P5 « ¢+ e e v Each element of point 20 and point 5
is summed and assigned to P20.
P30=P30-P3 :ccccveeceeccnenn.. Each element of point 3 is subtracted
from point 30 and assigned to P30.
P80=P70%4 «-ccvceeceeecn.n. Each element of point 70 is multiplied

by 4 and assigned to P80.
P60=P5/3 cccceeceeeccennen. Each element of point 5 is divided by
3 and assigned to P60.

¢ Multiplication & division examples are shown below.

* Permissible examples P15 * 5, P[EJ/A, etc.
e Prohibited examples P10 * P11, 3/P10, etc.

B 4.5hift assignment statement

LET shift variable = shift expression

ISCIENELIN) Assigns <shift expression> values to shift variables.
Only shift elements can be used in <shift expressions>, and only addition and
subtraction arithmetic operators are permitted. Parentheses cannot be used.

¢ Addition/subtraction Addition/subtraction is performed for each element
of each axis.
SAMPLE
S1=S0 "shift 0" is assigned to "shift 1".
€2=E14+60 covcccccconccoccnng Each element of "shift 1" and "shift 0"

is summed and assigned to "shift 2".

e Examples of <shift expression> addition/subtraction:

e Permissible examples ST +5S2
e Prohibited examples ST+3

8-86 @ Chapter 8 Robot Language Lists

LO

Arm lock output or acquires the output status

1. LET IOm (b,--:,b) =expression
2. LET 1LO (mb,---,mb) =expression

REFERENCE
« For details regarding bit m: port numberc.cccc.e... 0,1
definitions, see Chapter 3 b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)

"10 Bif Setfings” If multiple bits are specified, they are expressed from the

left in descending order (high to low).

EXPIeSSiONcceveueueeucnnn. Integer value (If real number is specified, rounds to an
integer.)
Bits beyond the number of bit whom a assignment
destination is required are ignored. (If the port number
is specified, the lower 8 bits are valid. if the number of
bit specified on bit definition is 1 to 8, the lower 1 to 8
bit corresponding to the bits specified on the left side are
valid.)

This statement outputs the specified value to the LO port to either prohibit or allow
axis movement.
LO(00) to LO(07) correspond to axes 1 to 8, LO(10) to LO(17) correspond to axes 9
to 16, respectively. An arm lock ON status occurs at axes where bits are set, and axis
movement is prohibited.

¢ This statement is valid at axes where movement is started.
SAMPLE

LOO () =&B00001010 =« ««ccveeveeeeeenn Prohibits movement at axes 2 and 4.
LOO(2,1)=&B1l0 ««cccceeeeeneeeennn Prohibits movement at axis 3, Permits

movement at axis 2.

LO @ 8-87 I

KN o

I Functions

LET LOm (b,---,b)
LET LO (mb,---,mb)

m: port numbercccoceee. Oto7,10to 17,20to 27
b: bit definition........cc............ 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the

left in descending order (high to low).

Acquires the output status of the specified LO port.
LO(00) to LO(07) correspond to axes 1 to 8, LO(10) to LO(17) correspond to axes 9
to 16, respectively. An arm lock ON status occurs at axes where bits are set, and axis
movement is prohibited.

A%= LOO () seccceeeeeeneeeeenn Output status of ports DO(07) to LO(00)
is assigned to variable A%.

A%= LO0(6, 5, 1) e Output status of LO(06), LO(05) and
LO(01l) is assigned to variable A%.
(If all above signals are 1(ON), then
A%=T7.)

A%=LO(17,15,00) =cceeeeeeeeeeen. Output status of LO(17), LO(1l5) and
LO(00) is assigned to variable A%.
(If all above signals except LO(15)
are 1 (ON), then A%=5.)

REIEIGCoNeo I -lsle bl RESET, SET

I 8-88 @ Chapter 8 Robot Language Lists

LOCx

Specifies/acquires point data for a specified axis or shift data for a specified element

1. LOCx (point expression) =expression

2. LOCx (shift expression) =expression

Format T: X..oooeiiiiiiiiin, 1 to 6 (axis setting)
F (hand system flag setting)
F1 (first arm rotation information)

F2 (second arm rotation information)

Format 2: X..ooovevveeiieiieeinnn, 1 to 4 (element setting)
EXPIeSSiONccceceeceenueenecnne. Axis or element setting coordinate value
Hand system flag setting........ 1 (right-handed system)

2 (left-handed system)
0 (no setting)
First / second arm rotation
information(*1)ccoeveveennnn. 0,1,-1
*1: For details regarding the first arm and the second arm rotation information, refer
to Chapter 4 "3. Point data format".

SUIENELING) Format 1: Changes the value of the point data specified axis, the hand system flag,
and the first arm and the second arm rotation information.
Format 2: Changes the value of a specified element from the shift data value.

e Points where data is to be changed must be registered in advance. An error will occur if a value

change is attempted at an unregistered point (where there are no coordinate values).

LOCx @ 8-89 I

e

I Functions

1. LOCx (point expression)

2. LOCx (shift expression)

Values

Format 1: x

1 to 6 (axis setting)
F (hand system flag setting)
F1 (first arm rotation information)

F2 (second arm rotation information)

BYJELENTN) Format 1: Acquires the value of the point data specified axis, the hand system flag,
and the first arm and the second arm rotation information.

Format 2: Acquires a specified axis element from the shift data.

LOC1 (P10)=A(1)

LOC2 (S1)=B

A(1)=LOC1(P10)

B(2)=LOC1(S1)

Axis 1 data of P10 is changed to the
array A (1) value.
Axis 2 data of S1 is changed to the B

value.

Axis 1 data of P10 is assigned to array
A (1).
The first element

(X direction) of S1

is assigned to array B (2).

Related commands

Point variable, shift variable

8-90 @ Chapter 8 Robot Language Lists

57 LSHIFT

Left-shifts a bit

LSHIFT (expression 1, expression 2)

Shifts the <expression 1> bit value to the left by the amount of <expression 2>.
Spaces left blank by the shift are filled with zeros (0).

SAMPLE

A=LSHIFT (&B10111011,2) «cccevee-- The 2-bit-left-shifted &B10111011 value
(&B11101100) is assigned to A.

Related commands szl ‘

LSHIFT @ 8-91 I

MCHREF

Acquires the machine reference value (axes: sensor method / stroke-end method)

MCHREF @ [robot number] (axis number)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis numbercc........... 1to6

BJEUETTN) This function returns the return-to-origin or absolute-search machine reference value
(unit:%) of axes specified by an <axis number>.
This function is valid only for axes whose return-to-origin method is set as "Sensor" or

"Stroke-end".
A=MCHREF (1) =+t ceeeeeeeceeeeenn. The machine reference of axis 1 of

robot 1 is assigned to variable A.

8-92 @ Chapter 8 Robot Language Lists

MID$

Acquires a character string from a specified position

MIDS (character string expression, expression 1, expression 2)

expression T.........c.ccccoeeeene. 1to 255
expression 2............ccccoeeeenen. 0to 255

This function extracts a character string of a desired length (number of characters)
from the character string specified by <character string expression>. <expression 1>
specifies the character where the extraction is to begin, and <expression 2> specifies
the number of characters to be extracted.

An error will occur if the <expression 1> and <expression 2> values violate the
permissible value ranges.

If <expression 2> is omitted, or if the number of characters to the right of the
character of <expression 1> is less than the value of <expression 2>, then all
characters to the right of the character specified by <expression 1> will be extracted.
If <expression 1> is longer than the character string, the exracted value will be a null
string (empty character string).

SAMPLE

BS=MIDS (AS,2,4) «ceeeeeeennnnnnn. The 2nd to 4th characters (up to the 5th

characters) of AS are assigned to BS.

EEEICE N it LEFTS, RIGHTS ‘

MID$ @ 8-93

MO

Outputs a specified value to the MO port or acquires the output status

1. LET MOm(b,:::,b) =expression
2. LET MO (mb,-::,mb) =expression

REFERENCE
« For details regarding bit M: Port UMD ..., 2t07,10t0 17, 20 to 27, 30 to 37
definitions, see Chapter 3 b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)
"10Bit Seffings”. If multiple bits are specified, they are expressed from the
left in descending order (high to low).
EXPIessioncccccccveeiunnnns Integer value (If real number is specified, rounds to an
integer.)

Bits beyond the number of bit whom a assignment
destination is required are ignored. (If the port number is
specified, the lower 8 bits are valid. if the number of bit
specified on bit definition is 1 to 8, the lower 1 to 8 bit
corresponding to the bits specified on the left side are valid.)

Outputs a specified value to the MO port.
In order to maintain the origin sensor status and axis HOLD status at each axis, ports
"30" to "37" cannot be used as output ports (these ports are for referencing only). (ports
32, 33, 36, and 37 are reserved by the system)

Ports “30”, “31”, “34”, and “35” outputs

Bit 7 6 5 4 K] 2 1 0
Port 30 Axis8 Axis7 Axis6 Axis5 Axis4 Axis3 Axis2 Axis1
Port 31 Axis 16 Axis 15 Axis 14 Axis13 Axis12 Axis11 Axis10 Axis9

Origin sensor status 0: ON; 1: OFF (Axis 1 is not connected)
Port 34 Axis8 Axis7 Axis6 Axis5 Axis4 Axis3 Axis2 Axis1
Port 35 Axis 16 Axis 15 Axis 14 Axis13 Axis12 Axis11 Axis10 Axis9
HOLD status 0: No HOLD / 1: HOLD (Axis 1 is not connected)

e For details regarding MO ports "30" to "37", refer to Chapter 3 "9.5 Internal output variable".

MO2 () =&B10111000 - -ccccccvcecece.. MO (27,25,24,23) are turned ON, and
MO(26,22,21,20) are turned OFF.

MO2(6,5,1)=&B010 «:cccccececece.n MO (25) are turned ON, and MO (26,21)
are turned OFF.

MO3 () = 15 ceeceeeeeeeeneeaneen, MO (33,32,31,30) are turned ON, and
MO(37,36,35,34) are turned OFF.

MO(37,35,27,20)=A « e, The contents of the 4 lower bits

acquired when variable A is converted
to an 1integer are output to
MO (37,35,27,20), respectively.

REIEICo Nl l-lsle bl RESET, SET

I 8-94 @ Chapter 8 Robot Language Lists

KN

I Functions

MOm (b, ---,b)
MO (mb, ---,mb)

2to7,10to 17,20to 27,30 to 37
0 to 7 (If omitted, all 8 bits are processed.)

Values m: port number

b: bit definition

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

Acquires the output status of the specified MO port.

SAMPLE

A%= MOO () coeeeeeeeeeeeeceneenn Output status of ports MO(07) to MO(00)
is assigned to variable A%.

A%= MOO (6, 5, 1) ccvcecceceeeneen. Output status of MO(06), MO(05) and
MO(01l) is assigned to variable A%.
(If all above signals are 1(ON), then
A%=7.)

A%=MO(17,15,00) ccccceccceeeeeee.. Output status of MO(17), MO(1l5) and
MO (00) is assigned to variable A%.
(If all above signals except MO (15)
are 1 (ON), then A%=5.)

A%=MO(377,365,255,123) «-ccceee-e Output status of MO0(377),
MO (365), MO(255) and MO (123)
is assigned to variable A%.
(If all above signals except MO0 (15)
are 1 (ON), then A%=15.)

Related commands EEzISSISINSI=aN

MO @ 8-95

MOTOR

Controls the motor power status

MOTOR ON
OFF
PWR

BYJELEND) This command controls the motor power on/off. The servo on/off of all robots can
also be controlled at the same time.

*ON......... Turns on the motor power. All robot servos are also turned on at the
same time.
e OFF.......... Turns off the motor power. All robot servos are also turned off at the

same time to apply the dynamic brake. For the axis with the brake, the
brake is applied to lock it.

e PWR Turns on only the motor power.
MOTOR ON =~ cccccceeeenccceeeenn Turns on the motor power and all robot
servos.

8-96 @ Chapter 8 Robot Language Lists

MOVE

Performs absolute movement of robot axes

MOVE [robot number] (axis number,...) PTP , point definition,option,option...
P
L
C
robot number 1 to 4 (If not input, robot 1 is specified.)
axis number................c......... 1 to 6 (* Multiple axes specifiable

e If not input, all axes are specified.)

SYJENEGDY) Executes absolute movement of the specified axes.
It is not enabled for axes of other robots or for auxiliary axes.

* Movement type : PTP, linear interpolation, circular interpolation

e Point data setting : Direct coordinate data input, point definition

e Options :

Speed setting, arch motion setting, STOPON condition setting,
CONT setting, acceleration setting, deceleration setting, plane
coordinate setting, port output setting (multiple ports outputs
specifiable), merged level setting

Linear Arch
interpolation | interpolation

Speed setting Enabled only for specified

(SPEED, DSPEED) MOVE statement
Speed setting B Y v Enabled only for specified

(VEL) MOVE statement
. Enabled only for specified

Arch motion v - N MOVE statement
STOPON condition v v _ Enabled only by program

setting execution

. Enabled only for specified

CONT setting v v v MOVE statement
. . Enabled only for specified

Acceleration setting v v - MOVE statement
. . Enabled only for specified

Deceleration setting v/ v - MOVE statement
Plane coordinate v Enabled only for specified

setting N - MOVE statement
. Enabled only for specified

Port output setting - v v MOVE statement

MOVE @ 8-97 I

Movement type

® PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: All specified axes have entered the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously. The
movement path of the axes is not guaranteed.

® Caution regarding commands which follow the MOVE P command:
If the next command following the MOVE P command is an executable command such as
a signal output command, that next command will start when the movement axis enters the
OUT position range. In other words, that next command starts before the axis arrives within the
target position tolerance range.
Example:

Signal output (DO, etc.) | Signal is output when the axis enters within OUT position range.

DELAY command is executed and standby starts, when the axis enters the
DELAY o
OUT position range.

Program stops and is reset when the axis enters the OUT position range.
HALT .
Therefore, the axis movement also stops.

All programs in execution stop when the axis enters the OUT position range,

HALTALL task 1 is reset, and other tasks terminate. Therefore, the movement also
stops.
HOLD Program temporarily stops when the axis enters the OUT position range.

Therefore, the axis movement also stops.

All programs in execution temporarily stop when the axis enters the OUT

HOLDALL position range. Therefore, the movement also stops.

WAIT WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

e The OUT position value is specified by parameter setting.

This value can be changed within the program by using the OUTPOS command.

MOVE command
4 I
MOVE P,P1 Taraet position MOVE P.P1
DO(20)=1 arget position \wa T ARM SO .
DO(20)=1 N

- " - Tolerance) N
OUT position
DO(20) turns ON DO(20) turns ON
- J
4 N
MOVE P,P1 i MOVE P,P1
HOLD Target position WAIT ARM PR .
HOLD . ’\
- Tolerance ... -
OUT position
HOLD execution HOLD execution
_ (program temporarily stops) (program temporarily stops))

8-98 @ Chapter 8 Robot Language Lists

MOVE P,PO + e Robot 1 moves from its current position
to the position specified by PO. (the
same occurs for MOVE PTP, PO).

e PTP movement is faster than interpolation movement, but when executing continuous

movement to multiple points, a positioning stop occurs at each point.
A CAUTION

eIn YRCX, the motion of @ Linear interpolation movement
interpolation movement Execution START condition: Movement of all specified axes is complete (within the tolerance range).

d d END . o L i,
ggr:gmg: org gifferen’r Execution END condition: Movement of all specified axes has begun (within the tolerance range).

from conventional model. All movement axes arrive at the same time.
Addition of the CONT

setting fo the movement

command allows to the

equivalent movement

and END condition in

conventional model.

e On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

MOVE L,PO,PL ccccceececcceecen. The robot 1 moves (linear interpolation

movement) from its current position to

the position specified by PO, P1.

SAMPLE:MOVE L

P1

-
. Tolerance range

Current position
33810-R7-00

MOVE @ 8-99

® Circular interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

*|n YRCX, the motion of
interpolation movement
command and END All movement axes arrive at the same time.

Execution END condition: Movement of all specified axes has begun.

condition are different
from conventional model.
Addition of the CONT intermediate position, and the target position. Therefore, circular interpolation must be
setting fo the movement specified by an even number of points.

command allows fo the
equivalent movement
and END condition in

In circular interpolation, an arc is generated based on 3 points: the current position, an

conventional model. MOVE L,P20 ««ccccvvoeeeneeenonn Linear interpolation movement of robot 1
occurs from the current position to P20.
MOVE C,P21,P22,P23,P20 =+« -« Circular interpolation movement occurs
through points P21, P22, P23, P20.
MOVE L,P24 «cccvcvvveeeeeeeenn Linear interpolation movement occurs
to P24.

SAMPLE:MOVE C poo

P23 P21

Current position P20 P24

33811-R7-00

e Circular interpolation is possible within the following range: radius 0.100mm to 5,000.000mm.

e Circle distortion may occur, depending on the speed, acceleration, and the distance between points.

¢ On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending
on the R-axis movement distance.

Movement command types and the corresponding movement

1. PTP movement

. OUT position range .
Current position P 9 Target position

P4 Tolerance range

N - The command ends when the axis AN e
enters the OUT position range, and
the next command is then executed.

2. Linear interpolation movement

OUT position range

Current position Target position

Sl The next command is executed when S
the axis arrives in the tolerance range.

33703-R9-00

8-100 @ Chapter 8 Robot Language Lists

|17' NOTE

e|f both infegers and
real numbers are used
together (mixed), all
coordinate values will
be handled in "mm/deg"
units.

/\ cauTioN

* When performing linear
intferpolation with a hand
system flag specified,
be sure that the same
hand system is used at
the current position and
target position. If the
hand system are different,
an error will occur and
robot movement will be
disabled.

* When performing a linear
intferpolation, the current
position's first arm and
second arm rotation
informatfion must be the
same as the movement
destination's first arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

Point data setting types
® Direct numeric value input (PTP X Linear interpolation

pl P2 p3 pd p5 p6 £

PTEOPO e, Space-separated coordinate values for each axis
f e Hand system flag)

Directly specifies coordinate values by a numeric value. If an integer is used,
this is interpreted as "pulse" units, and if a real number (with decimal point)
is used, this is interpreted as "mm/deg" units, with movement occurring
accordingly. If both integers and real numbers are used together (mixed), all
coordinate values will be handled in "mm/deg" units.

The types of movements in which this specification is possible are the PTP

movement and the linear interpolation movement.

Hand system flags can be specified for SCARA robots when directly specifying
the coordinate values in "mm" units.
To specify an extended hand system flag for SCARA robots, set either 1 or 2 at
"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be
set to indicate that there is no hand system flag.

1: Right-handed system is used to move to a specified position.

2: Left-handed system is used to move to a specified position.

¢ At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

MOVE @ 8-101 I

/\ cauTioN

* When moving the robot
by linear or circular
interpolation to a point
where a hand system flag
is specified, be sure that
the same hand system is
used at both the current
and target positions. If the
hand system are different,
an error will occur and
robot movement will be

disabled.
A CAUTION

* When performing a linear
and circular interpolation,
the current position's
first arm and second
arm rotation information
must be the same as the
movement destination's
first arm and second arm
rotation information. If the
two are different, an error
will occur and movement
will be disabled.

SAMPLE

MOVE P,10000 10000 1000 1000 0 0
-------------------- PTP movement of robot 1 occurs from
current position to the specified
position.
MOVE P,100.0 100.0 50.0 45.0 0.0 0.0 2
~~~~~~~~~~~~~~~~~~~~ PTP movement of robot 1 occurs from
current position to the specified
position with Left-handed system.
MOVE P,-180.0 -430.0 50.0 180.0 0.0 0.0 1 -1 1
-------------------- PTP movement of robot 1 occurs from
current position to the specified
position (first arm: -180°to 360°,
second arm: 180° to 360°) with right-
handed system.

@® Point definition

[PTP X Linear interpolation X Circular interpolation

point expression , point expression.. .

RCJEUETI)  Specifies a <point expression>. Two or more data items can be designated by

separating them with a comma (, ).
Circular interpolation must be specified by an even number of points.

¢ At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

MOVE P,Pl ccccccceeeennceeenns Robot 1 moves from the current position
to the position specified by P1.

MOVE P,P20,P0,P100 ¢« ««cccceee Robot 1 moves in sequence from the
current position to positions specified
by P20, PO, P100.

8-102 @ Chapter 8 Robot Language Lists




M NOTE

¢ This option specifies only
the maximum speed
and does not guarantee
movement at the specified
speed.

M NOTE

e SPEED option and DSPEED
option cannot be used
together.

Option types

@ Speed setting 1 [PTP X Linear interpolation X Circular interpolation

1. SPEED =expression
2. S =expression
EXPression...........cccceveevueenne.. 1 to 100 (units: %)

BYJEUETN)  Specifies the program speed in an <expression>.
The actual speed will be as follows:

* [Robot max. speed (mm/sec)] x [automatic movement speed (%)] x [program
movement speed (%)].
This option is enabled only for the specified MOVE statement.

MOVE P,P10,S=10 ¢t cceeeeee.s Robot 1 moves from the current position
to the position specified by P10, at

10% of the program movement speed.

® Speed setting 2 [PTP X Linear interpolation X Circular interpolation

1. DSPEED =expression
2. DS =expression
EXPressioN...........ccccooveeeuienne.. 0.01 to 100.00 (units: %)

BYJEUENN)  Specifies the program speed in an <expression>.
The actual speed will be as follows:

e [Robot max. speed (mm/sec or deg/sec)] x [movement speed (%)].

This option is enabled only for the specified MOVE statement.

* Movement always occurs at the DSPEED <expression> value (%)
without being affected by the automatic movement speed value (%).

MOVE P,P10,DS=0.1 -« cceen- Robot 1 moves from the current position
to the position specified by P10, at 0.1%

of the Robot maximum speed.

MOVE @ 8-103 I



® Speed setting 3 Linear interpolation M Circular interpolation

VEL =expression

M NOTE EXPressioN...........cccceeveieennns 1 to maximum speed depending on the model (units: mm/sec)
¢ This option specifies only I . S ifi h . . d (in " /sec" uni f th
the maximum composite pecifies the maximum composite speed (in "mm/sec" units) of the XYZ axes
speed and does not in an <expression>. This option is specifiable when movement type is linear
guarantee movement at

- interpolation or circular interpolation movements.
the specified speed. . L .
This option is enabled only for the specified MOVE statement.

MOVE L, P10,VEL=100 + =« ««cccco.. Robot 1 moves from the current position
to the position specified by P10 at the
maximum composite speed of 100 mm/sec.
of the XYZ axis.

8-104 @ Chapter 8 Robot Language Lists



@ NOTE

e The axis arch distance
parameters can be
changed using ARCHP1/
ARCHP2. The smaller the
value, the shorter the
movement execution
time.

® Arch motion setting @

X =expression {expression , expression2}

Xeeutemeeneenneeeeeieenene et Specifies an axis from A1 to A6
Arch position

expression
Integer value: "pulse" units.
Real number (with decimal point): "mm/deg" units.
expressioni, expression?....... Arch distance 1, Arch distance 2
Integer value: "pulse" units.
Real number (with decimal point): "mm/deg" units.

e When there is a real value in any of the <expression>, <expression 1>, and <expression 2>, all
expressions are handed as real value.

1. The "x" specified axis begins moving toward the position specified by the
<expression> ("1" shown in the Fig. below).

2. When the axis specified by "x" moves the arch distance 1 or more, other axes
move to their target positions ("2" shown in the figure below).

3. The axis specified by "x" moves to the target position so that the remaining
movement distance becomes the arch distance 2 when the movement of
other axes is completed ("3" shown in the figure below).

4. The command ends when all axis enter the OUT position range.

This option can be used only for PTP movement.

When the axis specified by "x" is the first arm or second arm of the SCARA
robot or the axis 1 or axis 2 of the XY robot, the <expression> and target
position value are limited to an integer (pulse units).

MOVE P,P1,A3=0{150,100} «--=«c:.- The A3-axis moves from the current position
to the "0 pulse" position. After that, other
axes move to Pl. Finally, the A3-axis moves

to P1.

SAMPLE:MOVE A3

2. Other axes movement

AB=0-nmmmemmnsy

Arch distance 1
Arch distance 2

1. AB-axis movement N 3. A3-axis movement

Current position Target position
33704-R9-00

MOVE @ 8-105



e When multiple points are specified in PTP movement, the axis in arch motion setting also
moves to the target position.

PTP movement
MOVE P, P10, P11,A3 =0
A3=0==mmmmmnns

1 All axes move to P10.
0

P1 P11

@ STOPON condition settin
/\ cauTion ° @D -

condition setting disables
the CONT setting in the STOPON conditional expression

PTP movement and

the linear interpolation

movement. Stops movement when the conditions specified by the conditional expression
are met. Because this is a deceleration type stop, there will be some movement
(during deceleration) after the conditions are met.
If the conditions are already met before movement begins, no movement
occurs, and the command is terminated.
This option can only be used for PTP movement and linear interpolation
movement.
This option is only possible by program execution.

MOVE P,P100,STOPON DI (20)=1
-------------------- Robot 1 moves from the current
position to the position specified by
P100. If the "DI (20) = 1" condition
is met during movement, a deceleration
and stop occurs, and the next step is

then executed.

e When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE
status.

8-106 @ Chapter 8 Robot Language Lists



/\ cauTioN

*|n YRCX, the motion of
interpolation movement
command and END
condition are different
from conventional model.
Addition of the CONT
setfting to the movement
command allows to the
equivalent movement
and END condition in
conventional model.

It' NOTE

*The CONT setting can
be used to reduce
the movement END
positioning fime. The path
to the target point is not
guaranteed.

® CONT setting

(PTP X Linear interpolation X Circular interpolation

CONT

Explanation

When movement is executed with CONT setting option, Movable axes will

begin to execute the next command without waiting the completion their

movement (entering the tolerance range). If the next command is a movement

command, the 2 movement paths are linked by connecting the deceleration

and acceleration sections, enabling continuous movement without intermediate

stops.

This option is enabled only for the specified MOVE statement.

® Caution regarding MOVE L / MOVE C command with CONT setting:
If the next command following the MOVE L / MOVE C command with CONT setting is
an executable command such as a signal output command, that next command will start

immediately after axis movement begins. In other words, that next command starts before the

axis arrives within the target position tolerance range.

Example:

Signal output (DO, etc.) | Signal is output immediately after movement along the final path begins.

DELAY command is executed and standby starts immediately after
DELAY . .

movement along the final path begins.

Program stops and is reset immediately after movement along the final path
HALT » ;

begins. Therefore, axis movement also stops.

All programs in execution stop immediately after movement along the
HALTALL final path begins, task 1 is reset, and other tasks terminate. Therefore, the

movement also stops.

Program temporarily stops immediately after movement along the final path
HOLD » )

begins. Therefore, axis movement also stops.

All programs in execution temporarily stop immediately after movement
HOLDALL ) .

along the final path begins. Therefore, the movement also stops.

WAIT command is executed immediately after movement along the final
WAIT ;

path begins.

MOVE command

4 N

MOVE L,P1 MOVE L,P1

DO(20)=1 Final target position CONT

/ DO(20)=1
o—) ¢ | op—— > o
\ Tolerance
DO(20) turns ON DO(20) turns ON
o J
33808-R9-00

MOVE @ 8-107




SAMPLE

MOVE P,P10,P11,CONT

-------------------- Robot 1 Moves from the current position

to the position specified by P10, and
then moves to Pll without waiting
for the moving axes to arrive in the

tolerance range.

SAMPLE:MOVE P CONT *1:“CONT pulse range”

—— OUT position range (*1) if the value is specified in the
With CONT setting: /, P10 \\‘ CONT pulse parameter.
]
. @ P11
7

S--°" Next movement begins after
entering the OUT position range

Current position

OUT position range
Without CONT setting: _.---

- ~.  Tolerance range

’ \
! P10TN T
\ - @ P11

Next movement begins after
entering the tolerance range

Current position

33814-R7-00

SAMPLE

MOVE L, P10, CONT
MOVE L, P11
-------------------- Robot 1 Moves from the current position to the
position specified by P10, and then moves (linear
interpolation movement) to P11 without waiting for
the moving axes to arrive in the tolerance range, and

completes the movement within the tolerance range.

¢ The interpolation movement with CONT setting doesn't stop at intermediate points in the

continuous movement.

SAMPLE:MOVE L CONT

With CONT setting:

Deceleration zones P10

N @ Pi1

Next movement begins after
entering the deceleration zones

Without CONT setting:
Tolerance range P10
R
$ 2 @ P11

Next movement begins after
entering the tolerance range

33810-R9-00

8-108 @ Chapter 8 Robot Language Lists



® Acceleration setting (PTP X Linear interpolation

ACC =expression

EXPresSsioN.........ccovivveuneiinnnnn. 1 to 100 (units: %)

Specifies the robot acceleration rate in the <expression>. The actual robot
acceleration is determined by the acceleration coefficient parameter setting.
This option can only be used for PTP movement and linear interpolation
movement and is enabled only for the specified MOVE statement.

MOVE L,P100,ACC=10 ¢+ veec . Robot 1 moves at an acceleration rate of
10% from the current position to the

position specified by P100.

@ Deceleration setting (PTP X Linear interpolation

DEC =expression

EXPression...........ccccceveeeucenne.. 1 to 100 (units: %)

Specifies the robot deceleration rate in an <expression>. The actual robot
deceleration is determined by the acceleration coefficient parameter setting (the
setting is specified as a percentage of the acceleration setting value (100%)).
This option can only be used for PTP movement and linear interpolation
movement and is enabled only for the specified MOVE statement.

MOVE L,P100,DEC=20 =« -- Robot 1 moves at a deceleration rate of
20% from the current position to the

position specified by P100.

MOVE @ 8-109




® Coordinate plane setting Circular interpolation

XY
Y7
ZX
XY ot XY coordinate plane
YZ oo YZ coordinate plane
ZX it ZX coordinate plane
m NOTE BYJELETD)  When circular interpolation is executed by setting coordinates, this option

executes circular interpolation so that the projection on the specified coordinate
¢ If no coordinate plane is

specified, the robot moves
along a 3-dimensional This option can be used for circular interpolation movement and is enabled only

circle. for the specified MOVE statement.
*When a 2-axis robot is

used, the robot moves SAMPLE

along a circle on the XY

plane becomes a circle.

plane. P10 = 100.000 100.000 20.000 0.000 0.000 0.000
P11 = 150.000 100.000 0.000 0.000 0.000 0.000
P12 = 150.000 150.000 20.000 0.000 0.000 0.000
P13 = 100.000 150.000 40.000 0.000 0.000 0.000
MOVE P,P10 «+cccceeeenneeeeeenn Robot 1 moves from the current position to the

position specified by P10.
MOVE C,P11,P12

MOVE C,P13,P10 = ¢ ¢t vceeveeeeenn Moves continuously along a 3-dimensional
circle generated at P10, P11, P12, and P12,
@13, Pi@ ccccoooo (1)

MOVE C,P11,P12,XY

MOVE C,P13,P10,XY ¢+ ccevveccees Moves continuously along a circle on an XY
plane generated at P10, P11, P12, and P12, P13,
P10. Z-axis moves to the position specified by
P12 and P10 (the circle's target position)
(2)

SAMPLE: MOVE C coordinate plane

(1)

100 D- —X +

33822-R9-00

8-110 @ Chapter 8 Robot Language Lists



@ Port output setting Linear interpolation M Circular interpolation

DO |m(b,:-:,b)=expression 1 @ expression 2

DO | (mb,---,mb)=expression 1 @ expression 2
MO
SO
m: port number ..................... 2to7,10to17,20to 27
b: bit definition..................... 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from
the left in descending order (high to low).

expression 1.......cccceceieune Value which is output to the specified port (only
integers are valid).

EXPression 2 ........cceuveeeeacnn. Position where the port output occurs. This position
can be specified in "mm" units down to the 3rd decimal

position.
During linear interpolation or circular interpolation movement, this command

A CAUTION option outputs the value of <expression 1> to the specified port when the robot
* Output fo ports "0" and "1" reaches the <expression 2> distance (units: "mm") from the start position.

is not allowed at DO, MO,

and 50. The <expression 2> numeric value represents a circle radius (not arc length)

centered on the movement START point.

REFERENCE This command option can only be used with linear or circular interpolation
* For bit seffing defails, see movement, and it can be specified no more than 2 times per MOVE statement.

Chapter 3 "10 Bif Seffings'. If no hardware port exists, nothing is output.

SAMPLE 1

MOVE P, PO
MOVE L,P1,D0O2()=105@25.85
----------- During linear interpolation movement of robot 1
to P1, 105 (&B01101001) is output to DO2 () when
the robot reaches a distance of 25.85mm from
PO.

A!=10
B!=20
MOVE L, P2,MO(22)=1@A!,MO(22)=0EB!

----------- After the 1 starts toward P2, MO (22)
switches ON when robot 1 leaves a distance of
10mm, and switches OFF when robot 1 leaves a

distance of 20mm.

REIEIC Rl eEN  MOVEI, MOVET, DRIVE, DRIVEI, WAIT ARM

MOVE @ 8-111



MOVEI

Performs relative movement of robot axes

MOVEI [robot number](axis number, ...) |PTP |,point definition , option, option..

P
I
robot number ....................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMDEr........c.ccccvcereinucn. 1 to 6 (¢ Multiple axes specifiable

e If not input, all axes are specified.)

SYELEID) Executes relative position movement of the specified robot.
It is not enabled for axes of other robots or for auxiliary axes.

e Movement type :  PTP, linear interpolation

e Point data setting : Direct coordinate data input, point definition

* Options : Speed setting, STOPON condition setting, CONT setting,
acceleration setting, deceleration setting

Linear
interpolation

Speed setting Enabled only for specified
(SPEED, DSPEED) MOVEI statement
Speed setting B v Enabled only for specified
(VEL) MOVEI statement
STOPON condition v v Enabled only by program
setting execution
. Enabled only for specified
CONT setting v / MOVEI statement
. . Enabled only for specified
Acceleration setting v v MOVEI statement
. . Enabled only for specified
Deceleration setting - v MOVEI statement

¢ If the MOVEI statement is interrupted and then re-executed, the movement target position can

be selected at the "MOVEI/DRIVEI start position" setting in the controller parameter. For details,

refer to the YRCX user's or operator's manual.

1) KEEP (default setting) Continues the previous (before interruption) movement. The original
target position remains unchanged.

2) RESET Relative movement begins anew from the current position. The new
target position is different from the original one (before interruption).
(Backward compatibility)

I 8-112 @ Chapter 8 Robot Language Lists



Movement type

@ PITP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: All specified axes have entered the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously. The
movement path of the axes is not guaranteed.

@ Caution regarding commands which follow the MOVEI P command:
If the next command following the MOVEI P command is an executable command such as
a signal output command, that next command will start when the movement axis enters the
OUT position range. In other words, that next command starts before the axis arrives within the
target position tolerance range.

Example:

Signal output (DO, etc.) | Signal is output when axis enters within OUT position range.

DELAY command is executed and standby starts, when axis enters the
DELAY o

OUT position range.

Program stops and is reset when axis enters the OUT position range.
HALT )

Therefore, axis movement also stops.

All programs in execution stop when axis enters the OUT position range, task
HALTALL ) .

1 is reset, and other tasks terminate. Therefore, the movement also stops.

Program temporarily stops when axis enters the OUT position range.
HOLD .

Therefore, axis movement also stops.

All programs in execution temporarily stop when axis enters the OUT
HOLDALL o

position range. Therefore, the movement also stops.
WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

e The OUT position value is specified by parameter setting.

This value can be changed within the program by using the OUTPOS command.

MOVEI command

~N
MOVEI P,P1 Target position MOVEI P,P1
DO(20)=1 getp WAIT ARM JU ..
DO(20)=1
~c>. — o .
Tolerance B 7
OUT position
DO(20) turns ON DO(20) turns ON
o J
MOVEI P,P h
MOVEI P,P1 P P1
HOLD Target position WAIT ARM e .
HOLD
o 3 @ o—) @ |
’~._____»v‘\\ToIerance o .
OUT position
HOLD execution HOLD execution
(program temporarily stops) (program temporarily stops)
o J
33826-R7-00

MOVE! @ 8-113



SAMPLE

MOVEL P,PO ¢ cvcceveeeeneceennn From its current position, the axis
of robot 1 moves (PTP movement) the

amount specified by PO.

e PTP movement is faster than interpolation movement, but when executing continuous

movement to multiple points, a positioning stop occurs at each point.
A CAUTION

eIn YRCX, the motion of @ Linear interpolation movement

interpolation movement Execution START condition: Movement of all specified axes is complete (within the tolerance range).
command and END . - s L

condition are different Execution END condition: Movement of all specified axes has begun (within the tolerance range).
from conventional model. All movement axes arrive at the same time.

Addition of the CONT
setting to the movement
command allows to the
equivalent movement
and END condition in
conventional model.

¢ On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

SAMPLE

MOVE L,PO,PL «cccceceeeceeenn. From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by PO, P1.

SAMPLE:MOVEI L

P

-
. Tolerance range

Current position
33810-R7-00

8-114 @ Chapter 8 Robot Language Lists



M NOTE

°|f both infegers and
real numbers are used
together (mixed), all
coordinate values will
be handled in "mm/deg"
units.

/\ cAuTioN

* When performing linear
interpolation with a hand
system flag specified,
be sure that the same
hand system is used at
the current position and
target position. If the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

* When performing a linear
interpolation, the current
position's first arm and
second arm rotation
informatfion must be the
same as the movement
destination's first arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

Point data setting types

@ Direct numeric value input (PTP X Linear interpolation

pl p2 p3 pd p5 pb6 £

PTLO PO o, Space-separated coordinate values for each axis
f e Hand system flag

Directly specifies coordinate values by a numeric value. If an integer is
used, this is interpreted as "pulse" units, and if a real number is used, this is
interpreted as "mm/deg" units, with movement occurring accordingly.

Hand system flags can be specified for SCARA robots when directly specifying
the coordinate values in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at
"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be
set to indicate that there is no hand system flag.

1: Right-handed system is used to move to a specified position.
2: Left-handed system is used to move to a specified position.

¢ At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

MOVEI P, 10000 10000 1000 1000 0 O

........... From its current position, the axis of robot 1

moves (PTP movement) the specified amount (pulse

units) .

MOVE! @ 8-115 I



/\ cauTioN

* When moving the robot
by linear interpolation to
a point where a hand
system flag is specified,
be sure that the same
hand system is used at
both the current and
target positions. If the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

/\ cAuTION

* When performing a linear
interpolation, the current
position's first arm and
second arm rotation
information must be the
same as the movement
destination's first arm
and second arm rotation
information. If the fwo
are different, an error will
occur and movement will
be disabled.

® Point definition

@ Linear interpolatio

point expression , point expression...

CJEUET)  Specifies a <point expression>. Two or more data items can be designated by

separating them with a comma (, ).

¢ At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P,P1

From its current position,
(PTP movement) the

of robot 1 moves

amount specified by P1.

the axis

I 8-116 @ Chapter 8 Robot Language Lists




Option types

® Speed sefting 1 (PTP)

1. SPEED =expression

2. S =expression

EXPression .........cccceeeeeennen. 1 to 100 (units: %)
NOTE

This option specifies onl : - . .
’ ’rhle rgcljximpu m spee?j/ BYJEUETN)  Specifies the program speed in an <expression>.

and does not guarantee The actual speed will be as follows:
g}z\’e%mem atthe specified * [Robot max. speed (mm/sec)] x [automatic movement speed (%)] x [program

movement speed (%)].
This option is enabled only for the specified MOVEI statement.

MOVEI P,P10,S=10 ««c«cccceveeee s From its current position, the axis
of robot 1 moves (PTP movement) the
amount specified by P10, at 10% of the

program movement speed.

® Speed setting 2 [PTP X Linear interpolation

1. DSPEED =expression
2. DS =expression
EXPreSSioN........ccccvveveveevnnnen. 0.01 to 100.00 (units: %)
NOTE

e SPEED option and DSPEED Specifies th di .
option cannot be used xplanation pecifies the program speed in an <expression>.

fogether. The actual speed will be as follows:
e [Robot max. speed (mm/sec or deg/sec)] x [movement speed (%)].
This option is enabled only for the specified MOVEI statement.
* Movement always occurs at the DSPEED <expression> value (%)
without being affected by the automatic movement speed value (%).

MOVEI P,P10,DS=0.1 +¢«««ccce.. From its current position, the axis
of robot 1 moves (PTP movement) the
amount specified by P10, at 0.1% of the

robot maximum speed.

MOVE| @ 8-117 I



@ Speed setting 3

Linear interpolation

VEL =expression

Values

exp

M NOTE

¢ This option specifies only
the maximum composite
speed and does not
guarantee movement at

the specified speed. SAMPLE

MOVEI L,P10,VEL=100

ression

interpolation movements.

1 to maximum speed depending on the model
(units: mm/sec)

Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in
an <expression>. This option is specifiable when the movement type is linear

This option is enabled only for the specified MOVEI statement.

From its current position, the axis of

robot 1 moves (linear interpolation
movement) the amount specified by P10,
at the maximum composite speed of 100

mm/sec. of the XYZ axis.

® STOPON con
A CAUTION
¢ Addition of the STOPON
condition setting disables
the CONT sefting.

dition setting

(PTP X Linear interpolation

STOPON conditional expression

SCJELEL)  Stops movement when the conditions specified by the conditional expression
are met. Because this is a deceleration type stop, there will be some movement

(during deceleration) after the conditions are met.

If the conditions are already met before movement begins, no movement

occurs, and the command is terminated.

This option is only possible by program execution.

MOVEI P,P100,STOPON DI (20)=1

the axis
the
(20)

condition is met during movement,

From its current position,
(PTP movement)
If the "DI

of robot 1 moves
amount specified by P100.
= 1"
a deceleration and stop occurs, and

the next step is then executed.

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

* When the conditional expression used to designate the STOPON condition is a numeric

8-118 @ Chapter 8 Robot Language Lists




® CONT setting (PTP]

CONT

AUTION . . . . . . .
A CAUTIO BYJENEN)  When movement is executed with CONT setting option, Movable axes will begin
*In YRCX, the motion of

interpolation movement
command and END (entering the tolerance range). If the next command is a movement command, the
condition are different
fromn conventional model.
Addition of the CONT sections, enabling continuous movement without intermediate stops.
seffing fo the movement This option is enabled only for the specified MOVEI statement.
command allows to the

equivalent movement

and END condition in @ Caution regarding MOVEI L command with CONT setting:

conventional model. If the next command following the MOVEI L command with CONT setting is an executable

command such as a signal output command, that next command will start immediately after

to execute the next command without waiting the completion their movement

2 movement paths are linked by connecting the deceleration and acceleration

It' NOTE axis movement begins. In other words, that next command starts before the axis arrives within

«The CONT setting can the target position tolerance range.

be used to reduce Example:
the movement START
positioning time.

Signal output (DO, etc.) | Signal is output immediately after movement along the final path begins.

DELAY command is executed and standby starts immediately after

DELAY movement along the final path begins.

Program stops and is reset immediately after movement along the final path

HALT begins. Therefore, axis movement also stops.

All programs in execution stop immediately after movement along the
HALTALL final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.

Program temporarily stops immediately after movement along the final path

HOLD begins. Therefore, axis movement also stops.

All programs in execution temporarily stop immediately after movement
HOLDALL ) .

along the final path begins. Therefore, the movement also stops.
WAIT WAIT command is executed immediately after movement along the final path begins.

MOVEI command

( MOVEI L,P1 MOVEI L,P1 )

DO(20)=1 Final target position
/ DO(20)=1
—) & op———> o
\Tolerance

DO(20) turns ON DO(20) turns ON

- J
( MOVEI L,P1 MOVEI L,P1 h
HOLD Final target position CONT
/ HOLD
o—) & | op— > e
\Tolerance
HOLD execution HOLD execution
L (program temporarily stops) (program temporarily stops) )
33814-R9-00

MOVE! @ 8-119



SAMPLE

MOVEI P,P10,P11,CONT
-------- From its current position, the axis of robot 1 moves
(PTP movement) the amount specified by P10, and then
moves the amount specified by Pll without waiting for

the moving axes to arrive in the tolerance range.

*1:“CONT pulse range”
SAMPLE:MOVEI P CONT OUT position range (*1)  if the value is specified in the
. ~.~ CONT pulse parameter.

With CONT setting: ¢ P10 %
i e : @ P11

Next movement begins after
entering the OUT position range

Current position
OUT position range

Without CONT setting: .-~~~~4_ _ Tolerance range

! -
U ’

PO §
\

; @ P11
II
N Next movement begins after
entering the tolerance range

Current position

33815-R9-00

MOVEI L,P10,CONT
MOVEI L, P11
-------- From its current position, the axis of robot 1 moves
(linear interpolation movement) the amount specified by
P10. and then moves the amount specified by P11l without
waiting for the moving axes to arrive in the tolerance
range, and completes the movement within the tolerance

range.

e The interpolation movement with CONT setting doesn't stop at intermediate points in the

continuous movement.

SAMPLE:MOVEI L CONT

With CONT setting: P10

Deceleration zones @ P11
Zecelerafion zones

Next movement begins after
entering the deceleration zones

Without CONT setting: P10
Tolerance range (@} ® Pii

Next movement begins after
entering the tolerance range

33810-R9-00

8-120 @ Chapter 8 Robot Language Lists



® Acceleration setting Linear interpolation

ACC =expression

EXPresSsioN.........ccovvevcuneiinnnnn. 1 to 100 (units: %)

SYJENEND)  Specifies the robot acceleration rate in an <expression>. The actual robot
acceleration is determined by the acceleration coefficient parameter setting.
This option is enabled only for the specified MOVEI statement.

MOVEI L,P100,ACC=10 + v vee.e From its current position, the axis of
robot 1 moves (linear interpolation
movement) the amount specified by P100

at an acceleration rate of 10%.

@ Deceleration setting (PTP X Linear interpolation

DEC =expression

EXPression...........cccceeveeeucenne.. 1 to 100 (units: %)

Specifies the robot deceleration rate in an <expression>. The actual robot
deceleration is determined by the acceleration coefficient parameter setting (the
setting is specified as a percentage of the acceleration setting value (100%)).
This option is enabled only for the specified MOVEI statement.

MOVEI L,P100,DEC=20 «+++++coo=- From its current position, the axis of
robot 1 moves (linear interpolation
movement) the amount specified by P100

at a deceleration rate of 20%.

REIEICON e  MOVE, MOVET, DRIVE, DRIVEI, WAIT ARM

MOVE| @ 8-121




MOVET

Performs relative movement of all robot axes in tool coordinates

MOVET [robot number] (axis number, ...) PTP|, point definition , option, option...

P
L
robot number ....................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMDEr........c.ccccvceveinann. 1 to 6 (¢ Multiple axes specifiable

e If not input, all axes are specified.)

SUUETELING) Executes relative position movement of the specified axes in the tool coordinates.
It is not enabled for axes of other robots or for auxiliary axes.

e Movement type :  PTP, linear interpolation

e Point data setting : Direct coordinate data input, point definition

* Options : Speed setting, STOPON condition setting, CONT setting,
acceleration setting, deceleration setting

Linear
interpolation

Speed setting Enabled only for specified
(SPEED, DSPEED) MOVET statement
Speed setting B v Enabled only for specified
(VEL) MOVET statement
STOPON condition Y Y Enabled only by program
setting execution
. Enabled only for specified
CONT setting v / MOVET statement
. . Enabled only for specified
Acceleration setting v v MOVET statement
. . Enabled only for specified
Deceleration setting - v/ MOVET statement

I 8-122 @ Chapter 8 Robot Language Lists



Movement type

® PITP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: All specified axes have entered the OUT position range.

When two or more axes are specified, they will reach their target positions simultaneously. The
movement path of the axes is not guaranteed.

® Caution regarding commands which follow the MOVET P command:
If the next command following the MOVET P command is an executable command such as
a signal output command, that next command will start when the movement axis enters the
OUT position range. In other words, that next command starts before the axis arrives within the
target position tolerance range.
Example:

Signal output (DO, etc.) | Signal is output when the axis enters within OUT position range.

DELAY command is executed and standby starts, when the axis enters the
DELAY -
OUT position range.

Program stops and is reset when the axis enters the OUT position range.
HALT .
Therefore, the axis movement also stops.

All programs in execution stop when the axis enters the OUT position range,

HALTALL task 1 is reset, and other tasks terminate. Therefore, the movement also
stops.
HOLD Program temporarily stops when the axis enters the OUT position range.

Therefore, the axis movement also stops.

All programs in execution temporarily stop when the axis enters the OUT
HOLDALL -
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

e The OUT position value is specified by parameter setting.

This value can be changed within the program by using the OUTPOS command.

MOVET command
(" MoveT PP1 Taraet vosition  MOVET PP1 h
DO(20)=1 argetposttion — \wa it ARM JUUCTENG .
DO(20)=1

~C{>Q _.. .

...........

OUT position
DO(20) turns ON DO(20) turns ON
& J
4 )
MOVET P,P1 " MOVET P,P1
HOLD Target position WAIT ARM e, .
HOLD

. . Q [ - A
o . @ 1
. ’

------------

OUT position
HOLD execution HOLD execution
\_ (program temporarily stops) (program temporarily stops) )

33826-R7-00

MOVET @ 8-123



SAMPLE

MOVET P,P0 ¢ cvccvveeeeneeeennn From its current position, the axis
of robot 1 moves (PTP movement) the
amount specified by PO in the tool

coordinates.

e PTP movement is faster than interpolation movement, but when executing continuous

movement to multiple points, a positioning stop occurs at each point.

@ Linear interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance
range).
Execution END condition: Movement of all specified axes has begun (within the tolerance
range).
All movement axes arrive at the same time.

¢ On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

SAMPLE

MOVET L,PO,PLl ++cccvceecceeeenn From its current position, the axis of

robot 1 moves (linear interpolation
movement) the amount specified by PO,

Pl in the tool coordinates.

SAMPLE:MOVET L

P1

-
Tolerance range

Current position
33810-R7-00

8-124 @ Chapter 8 Robot Language Lists



M NOTE

e|f both integers and
real numbers are used
together (mixed), all
coordinate values will
be handled in "mm/deg"
units.

/\ cauTioN

e When performing linear
interpolation with a hand
system flag specified,
be sure that the same
hand system is used at
the current position and
target position. If the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

¢ When performing a linear
interpolation, the current
position's first arm and
second arm rotation
informatfion must be the
same as the movement
destination's first arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

Point data setting types

@ Direct numeric value input @ Linear interpolation

pl p2 p3 pd p5 p6 £

PT O PO e Space-separated coordinate values for each axis
f Hand system flag

Directly specifies coordinate values by a numeric value. If an integer is
used, this is interpreted as "pulse" units, and if a real number is used, this is
interpreted as "mm/deg" units, with movement occurring accordingly.
Hand system flags can be specified for SCARA robots when directly specifying
the coordinate values in "mm" units.
To specify an extended hand system flag for SCARA robots, set either 1 or 2 at
"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be
set to indicate that there is no hand system flag.

1: Right-handed system is used to move to a specified position.

2: Left-handed system is used to move to a specified position.

e At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

MOVET P, 10.000 10.000 10.000 10.000 0.000 0.000

-------------------- From its current position,

the axis
the
in the tool

of robot 1 moves (PTP movement)

specified amount (mm units)

coordinates.

MOVET @ 8-125 I



/\ cAuTioN

* When moving the roboft
by linear interpolation to
a point where a hand
system flag is specified,
be sure that the same
hand system is used at
both the current and
target positions. If the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

/\ cauTioN

* When performing a linear
interpolation, the current
position's first arm and
second arm rotation
information must be the
same as the movement
destination's first arm
and second arm rotation
information. If the fwo
are different, an error will
occur and movement will
be disabled.

® Point definition

polint expression ,

@ Linear interpolation

point expression...

CIEUET)  Specifies a <point expression>. Two or more data items can be designated by
separating them with a comma (, ).

e At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

MOVET P, P1

From its current position,

of robot 1 moves
amount specified by P1

coordinates.

(PTP movement)

the axis
the
in the tool

I 8-126 @ Chapter 8 Robot Language Lists




Option types

® Speed setting 1 (PTP X Linear interpolation

1. SPEED =expression

2. S =expression

EXPression .......ccccoeevveeennen. 1 to 100 (units: %)
NOTE

¢ This option specifies only S ifies th di .
the maximum speed xplanation pecifies the program speed in an <expression>.

and does not guarantee The actual speed will be as follows:
;P)Z\(/%edmen’r at the specified * [Robot max. speed (mm/sec)] x [automatic movement speed (%)]
' x [program movement speed (%)].
This option is enabled only for the specified MOVET statement.

MOVET P,P10,S=10 =« eeenn. From its current position, the axis
of robot 1 moves (PTP movement) the
amount specified by P10 in the tool
coordinates, at 10% of the program
movement speed.

@ Speed setting 2 (PTP X Linear interpolation

1. DSPEED =expression

2. DS =expression

EXPreSSioN........ccccuveevevecnnnnen. 0.07 to 100.00 (units: %)
NOTE

e SPEED option and DSPEED S ifies th di .
option cannot be used xplanation pecifies the program speed in an <expression>.

together. The actual speed will be as follows:
e [Robot max. speed (mm/sec or deg/sec)] x [movement speed (%)].
This option is enabled only for the specified MOVET statement.
* Movement always occurs at the DSPEED <expression> value (%)

without being affected by the automatic movement speed value (%).

MOVET P,P10,DS=0.1 ¢+ ++cce-- From its current position, the axis
of robot 1 moves (PTP movement) the
amount specified by P10 in the tool
coordinates, at 0.1% of the robot

maximum speed.

MOVET @ 8-127 I



® Speed setting 3

VEL =expression

M NOTE EXPIessioN...........ccccevveieucnnns 1 to maximum speed depending on the model
(units: mm/sec)
¢ This option specifies only
the maximum composite
speed and does noft Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in
guarantee movement at

> an <expression>. This option is specifiable when the movement type is linear
the specified speed.

interpolation movements.
This option is enabled only for the specified MOVET statement.

SAMPLE

MOVEI L,P10,VEL=100 -+« -- From its current position, the axis of
robot 1 moves (linear interpolation
movement) the amount specified by
P10 in the tool coordinates, at the
maximum composite speed of 100 mm/sec.
of the XYZ axes.

® STOPON condition settin
/\ cauTioN ° @D -

* Addition of the STOPON

condition setting disables
the CONT setting. STOPON conditional expression

Stops movement when the conditions specified by the conditional expression
are met. Because this is a deceleration type stop, there will be some movement
(during deceleration) after the conditions are met.
If the conditions are already met before movement begins, no movement
occurs, and the command is terminated.
This option is only possible by program execution.

MOVET P,P100,STOPON DI (20)=1
-------------------- From its current position, the axis of
robot 1 moves (PTP movement) the amount
specified by P100 in the tool coordinates.
If the "DI (20) = 1" condition is met
during movement, a deceleration and stop

occurs, and the next step is then executed.

e When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE
status.

8-128 @ Chapter 8 Robot Language Lists



It' NOTE

*The CONT setting can
be used to reduce
the movement START
positioning time.

® CONT setting

(PTP X Linear interpolation

CONT

Explanation

When movement is executed with CONT setting option, Movable axes will

begin to execute the next command without waiting the completion their

movement (entering the tolerance range). If the next command is a movement

command, the 2 movement paths are linked by connecting the deceleration

and acceleration sections, enabling continuous movement without intermediate

stops.

This option is enabled only for the specified MOVET statement.

® Caution regarding MOVET L command with CONT setting:
If the next command following the MOVET L command with CONT setting is an executable
command such as a signal output command, that next command will start immediately after

axis movement begins. In other words, that next command starts before the axis arrives within

the target position tolerance range.

Example:
Signal output (DO, etc.) | Signal is output immediately after movement along the final path begins.
DELAY command is executed and standby starts immediately after
DELAY . .
movement along the final path begins.
Program stops and is reset immediately after movement along the final path
HALT » )
begins. Therefore, the axis movement also stops.
All programs in execution stop immediately after movement along the
HALTALL final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.
Program temporarily stops immediately after movement along the final path
HOLD » ;
begins. Therefore, the axis movement also stops.
All programs in execution temporarily stop immediately after movement
HOLDALL ) .
along the final path begins. Therefore, the movement also stops.
WAIT WAIT command is executed immediately after movement along the final path begins.
MOVET command
~N
MOVET L,P1 MOVET L,P1
DO(20)=1 Final target position CONT
/ DO(20)=1
o— ¢ | op——> e
\Tolerance
DO(20) turns ON DO(20) turns ON
& J
( MOVET L,P1 MOVET L,P1 h
HOLD Final target position CONT
/ HOLD
om——) & op——> e
\Tolerance
HOLD execution HOLD execution
S (program temporarily stops) (program temporarily stops) )
33814-R9-00

MOVET @ 8-129




SAMPLE

MOVET P,P10,P11,CONT
----- From its current position, the axis of robot 1 moves

(PTP movement) the amount specified by P10 in the tool
coordinates, and then moves the amount specified by P11 in
the tool coordinates without waiting for the moving axes

to arrive in the tolerance range.

*1:“CONT pulse range”
SAMPLE:MOVET P CONT OUT position range (*1) if the value is specified in the

,/'"\\\z CONT pulse parameter.
With CONT setting: ¢ P10 %
I e @ Fi
/’

Next movement begins after
entering the OUT position range

Current position
OUT position range

Without CONT setting: -~~~~4 _ Tolerance range
P.']OG" L @ P11

X Next movement begins after
entering the tolerance range

Current position
33820-R9-00

MOVET L,P10,CONT

MOVET L,P11
----- From its current position, the axis of robot 1 moves

(linear interpolation movement) the amount specified by
P10 in the tool coordinates, and then moves the amount
specified by P11l in the tool coordinates without waiting
for the moving axes to arrive in the tolerance range, and

completes the movement within the tolerance range.

¢ The interpolation movement with CONT setting doesn't stop at intermediate points in the

continuous movement.

SAMPLE:MOVET L CONT P10
@ Pi1

With CONT Setting: Deceleration zones 7,

Next movement begins after
entering the deceleration zones

Without CONT setting:

! \
"9 @ P11
Tolerance range Vi

Next movement begins after
entering the tolerance range

33821-R9-00

8-130 @ Chapter 8 Robot Language Lists




® Acceleration setting (PTP X Linear interpolation

ACC =expression

EXPressioN.........ccovvvveuneiinnnnn. 1 to 100 (units: %)

SYJENEND)  Specifies the robot acceleration rate in an <expression>. The actual robot
acceleration is determined by the acceleration coefficient parameter setting.
This option is enabled only for the specified MOVET statement.

MOVET L,P100,ACC=10 + ¢ cvvee.e From its current position, the axis of
robot 1 moves (linear interpolation
movement) the amount specified by
P100 in the tool coordinates at an

acceleration rate of 10%.

® Deceleration setting (PTP X Linear interpolation

DEC =expression

EXPreSSioN........coccuveeveuveevnnnen. 1 to 100 (units: %)

Specifies the robot deceleration rate in an <expression>. The actual robot
deceleration is determined by the acceleration coefficient parameter setting (the
setting is specified as a percentage of the acceleration setting value (100%)).
This option is enabled only for the specified MOVET statement.

MOVET L, P100,DEC=20 + + e c.- From its current position, the axis of
robot 1 moves (linear interpolation
movement) the amount specified by
P100 in the tool coordintes at a

deceleration rate of 20%.

REIEICO N kRl MOVE, MOVEI DRIVE, DRIVEI, WAIT ARM

MOVET @ 8-131



MTRDUTY

Acquires the motor load factor of the specified axis

MTRDUTY [robot number] (axis number)
robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMDET .........ccccovveeeennn.. 1to6

BYJEUETTN) Acquires the motor load factor (1 to 100) of the axis specified by the <axis number>.

A=MTRDUTY (1) cccccceeeeeeeeceenen The motor load factor of axis 1 of

robot 1 is assigned to variable A.

I 8-132 @ Chapter 8 Robot Language Lists



OFFLINE

Sets a specified communication port to the "offline" mode

OFFLINE ETH

CMU

Changes the communication mode parameter in order to switch the communication
mode to OFFLINE.
ETH oo Changes the Ethernet communication mode parameter to
OFFLINE and clears the transmission and reception buffers.
CMU i Changes the RS-232C communication mode parameter to
OFFLINE, resets the communication error, and clears the
transmission and reception buffers.
No setting.......ccccceeee Changes the Ethernet and RS-232C communication mode
parameter to OFFLINE, resets the communication error

(RS-232C only), and clears the transmission and reception
buffers.

SAMPLE

OFFLINE

SEND CMU TO AS
SEND CMU TO P10
ONLINE

HALT

OFFLINE @ 8-133 I



67 ON ERROR GOTO

Jumps to a specified label when an error occurs

1. ON ERROR GOTO label
2. ON ERROR GOTO 0

Error output information ........ ERR: Error code number
ERL: Line number where error occurred

Even if an error occurs during execution of the robot language, this statement allows
the program to jump to the error processing routine specified by the </label>, allowing
the program to continue without being stopped (this is not possible for some serious
errors.)

If "0" is specified instead of the </abel>, the program stops when an error occurs, and
an error message displays.

If ON ERROR GOTO "0" is executed at any place other than an error processing
routine, the ON ERROR GOTO command is canceled (interruption canceled).

The error processing routine can process an error using the RESUME statement and
the error output information (ERR, ERL).

e If a serious error such as "17.800: Motor overload" occurs, the program execution stops.

e The most recently executed "ON ERROR GOTO </abel>" statement is valid.
e If an error occurs during an error processing routine, the program will stop.

* "ON ERROR GOTO </abel>" statements cannot be used within error processing routines.

ON ERROR GOTO *ERI1
FOR A = 0 TO 9

P[A+10] = P[A]
NEXT A
*L99: HALT
'ERROR ROUTINE
*ER1:
IF ERR = &H000600CC THEN *NEXT1 - Checks to see if a "Point doesn't

exist" error has occurred.

IF ERR = &HO000600CE THEN *NEXT2 - Checks to see if a "Subscript out of
range" error has occurred.
ON ERROR GOTO 0 =« cceeennns Displays the error message and stops
the program.
*NEXT1 :
RESUME NEXT : «cccveeeccecceenen Jumps to the next line after the error
line and resumes program execution.
*NEXT2 :
RESUME *LO9 ::cceveeeeeeeenn Jumps to label *L99 and resumes program

execution.

Related commands EEEISS{ELYIS

8-134 @ Chapter 8 Robot Language Lists



ON to GOSUB

Executes the subroutine specified by the <expression> value

ON expression GOSUB label 1, label 2...
* GOSUB can also be expressed as "GO SUB".

Values EXPIeSSION.......cvvuveuieuiaianinins Expression whose result is O or positive integer

The <expression> value determines the program's jump destination.
An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to
<label 2>, etc.
Likewise, (<expression> value "n" specifies a jump to <label n>.)
If the <expression> value is "0" or if the <expression> value exceeds the number of
existing labels, no jump occurs, and the next command is executed.
After executing a jump destination subroutine, the next command after the ON to
GOSUB statement is executed.

SAMPLE

"MAIN ROUTINE
WS
ON DI3 () GOSUB *SUBL, *SUB2, *SUB3 *SUB1 to *SUB3 are
executed.
GOTO *ST e oo oot o oot oo eoeeoeons Returns to *ST.
HALT
’SUB ROUTINE
*SUB1:
MOVE P,P10,Z=0
RETURN
RISUEZE
DO (30)
RETURN
*SUB3:
DO (30)
RETURN

REIEICO N e EN  GOSUB, RETURN

1l
=

1l
o

ON to GOSUB @ 8-135



ON to GOTO

Jumps to the label specified by the <expression> value

ON expression GOTO label 1, label 2...
* GOTO can also be expressed as "GO TO".

Values EXPIeSSION......ccveuvvuireiaiacaens Expression whose result is 0 or positive integer

The <expression> value determines the program's jump destination.
An <expression> value of "1" specifies a jump to <label 7>, "2" specifies a jump to
<label 2>, etc.
Likewise, (<expression> value "n" specifies a jump to <label n>.)
If the <expression> value is "0" or if the <expression> value exceeds the number of
existing labels, no jump occurs, and the next command is executed.

'MAIN ROUTINE

*ST:

ON DI3 () GOTO *L1,*L2,*L3 «cccceveeeceees Jumps to *L1 to *L3 in
accordance with the DI3 ()
value.

GOTO *ST e o e oo oo oo oeeeocesesan Returns to *ST.

HALT

'SUB ROUTINE

*Ll:

MOVE P,P10,Z=0
GOTO *ST

#1028
DO(30) =1
GOTO *ST

3 3
DO(30) = 0
GOTO *ST

REIEICTONInINERGEN GOTO

8-136 @ Chapter 8 Robot Language Lists



70 ONLINE

Sets the specified communication port to the "online" mode

ONLINE ETH
CMU

BYJELENT) Changes the communication mode parameter in order to switch the communication

mode to ONLINE.
ETH o Changes the Ethernet communication mode parameter to

ONLINE and clears the transmission and reception buffers.
CMU i Changes the RS-232C communication mode parameter to
ONLINE, resets the communication error, and clears the
transmission and reception buffers.
No setting.......ccccceeee Changes the Ethernet and RS-232C communication mode
parameter to ONLINE, resets the communication error

(RS-232C only), and clears the transmission and reception
buffers.

SAMPLE

OFFLINE

SEND CMU TO AS
SEND CMU TO P10
ONLINE

HALT

ONLINE @ 8-137 I



ral OPEN

Opens the specified General Ethernet Port

OPEN GPm
m: General Ethernet Port number .............. Oto7

SYJELEID) Opens the communication port of the specified General Ethernet Port.

OPEN GP1l s, Opens the General Ethernet Port 1.

SEND "123" TO GPl - v Sends the character strings "123" from
the General Ethernet Port 1.

SEND GP1 TO AS -+ cccvevceecennnn Receives the data from the General

Ethernet Port 1 and Saves the received
data in the variable AS.
CLOSE GP1 Closes the General Ethernet Port 1.

REIEICONelninkElleEN CLOSE, SEND, SETGEP, GEPSTS

8-138 @ Chapter 8 Robot Language Lists



72 ORD

Acquires a character code

ORD (character string expression)

BYJENEGD) Acquires the character code of the first character in a <character string expression>.

SAMPLE n

A=ORD("B") ccccceeeecteeneneeen 66 (=&H42) is assigned to A.

Related commands [eiglzh) ‘

ORD @ 8-139 I



73 ORGORD

Specifies/acquires the robot's return-to-origin sequence

ORGORD = [robot number] expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPresSioN........cc.cccevveueeeeenne. n to nnnnnn (n : 0 to 6)

BUJENEIDNT) Sets the axis sequence parameter for return-to-origin and absolute search operation of
the robot specified by the <robot number>.

The 1 to 6 axes are expressed as "1 to 6" values, respectively, and the <expression>
value must be 1-digit to 6-digit integer.

The same axis cannot be specified twice.

After the specified axes are returned to their origin points in sequence, from left to
right, the remaining axes return to their origin points simultaneously.

If the <expression> value is "0", all axes will be returned to their origin points
simultaneously.

I Functions

ORGORD [robot number]

robot number ........................ 1 to 4 (If not input, robot 1 is specified.)

DIENEGD) Acquires the axis sequence parameter for return-to-origin and absolute search
operation of the robot specified by the <robot number>.

A=3

ORGORD A cecccccceceenecceennn Return-to-origin is executed first for
axis 3 of robot 1.

ORIGIN”®  ecceeceececncnnen After the return-to-origin of axis 3 of
robot 1 is completed, return-to-origin
is executed for the remaining axes.

MOVE P, PO

A=0RGORD @ =+ cccecccecccccccneen. Return-to-origin sequence parameter of
robot 1 is assigned to variable A.

HALT

Related commands Eelile1l\

8-140 @ Chapter 8 Robot Language Lists



74 ORIGIN

Performs return-to-origin

ORIGIN [robot number], motor type

robot number ...................... 0: all robots
1 to 4: specified robot only
MOLOr LYPE..eeeieiiireiieiee 0: all types

1: incremental motor only

2: absolute motor only

9: incomplete return-to-origin axis only

(If omitted, 0 (all types) is specified.)

This statement performs return-to-origin of a robot

If the movement is stopped at an intermediate point, "incomplete return-to-origin"
status will occur.
If <robot number> is omitted or "0" is specified during multiple robots setting, the
return-to-origin and absolute search are first performed for the robot 1 and then for
the robots 2 to 4.

SAMPLE

ORIGIN 0, 1 cccvcvceeeceeeeeennnn Performs return-to-origin for
incremental motor axes only of all
robots.

REIEICONe RN ORGORD, MCHREF

ORIGIN @ 8-141



75 ouT

Turns ON the specified port output

/\ cauTioN

e Output to ports "0" and

"1" are not allowed at DO,

and SO.

REFERENCE

e For bit setting details, see
Chapter 3 "10 Bit Settings".

OUT DOm (b, =+« ,b) ,expression
DO (mb, -+ -, mb)
MOm (b, = -+ ,Db)
MO (mb, - - -, mb)
Som (b, - -+ ,b)
SO (mb, - - -, mb)
LOO (b, ---,Db)
LO(0b, - - -, 0Db)
TOO (b, = - -,b)
TO (0b, - - -, 0b)

m: port number ..................... 2to7,10to17,20to 27
b: bit definition..................... 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).
EXPresSSioNn ........cccveeevueienennenn. 0 to 3600000 (units: ms)

This statement turns ON the specified port output and terminates the command.
(The program proceeds to the next line.) Output to that port is then turned OFF
after the time specified by the <expression> has elapsed. If the operation is stopped
temporarily at an intermediate point and then restarted, that port's output is turned
OFF when the remaining <expression> specified time has elapsed.

If this <expression> is omitted, the specified port's output remains ON.

Up to 16 OUT statements using <expressions> can be executed at the same time.
Attempting to execute 17 or more OUT statements will activate error "6.225: No
sufficient memory for OUT".

If no hardware port exists, nothing is output.

OUT DO2(),200 =« eeeeennnn Turns DO(27 to 20) ON, then turns them
OFF 200ms later.
OUT DO(37,35,27,20) «ccvceeecen. Turns DO(37, 35, 27, 20) ON.

REIEICO NS uEReEN DO, MO, SO, TO, LO

I 8-142 @ Chapter 8 Robot Language Lists



76 OUTPOS

Specifies/acquires the OUT enable position parameter of the robot

1. OUTPOS @ [robot number] expression
2. OUTPOS [robot number] (axis number) =expression

robot number ......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMbBEr ...........cccccccueenie. 1to6
EXPresSioN.......ccveveeieieann, 1 t0 9999999 (Unit: pulses)

BYJENETDN) Changes the "OUT position" parameter of the specified axis to the value indicated in
the <expression>.

Format 1: The change is applied to all axes of the specified robot.
Format 2: The change is applied only to the axis specified by <axis number>.

I Functions

OUTPOS [robot number] (axis number)

robot number ..........c............. 1 to 4 (If not input, robot 1 is specified.)
axis NUMDBET ........c.ccccvecvenunn. 1t06

BYJENEGD) Acquires the "OUT position" parameter's value for the specified axis.

OUTPOS @ 8-143 I



OUTPOS

"CYCLE WITH DECREASING OUTPOS

DIM SAV(3)

GOSUB *SAVE_OUTPOS

FOR A=1000 TO 10000 STEP 1000
GOSUB *CHANGE_OUTPOS

MOVE P, PO

DO3 (0) =1

MOVE P, P1

DO3 (0) =0
NEXT A
GOSUB *RESTORE_OUTPOS
HALT

*CHANGE_OUTPOS :
FOR B=1 TO 4
OUTPOS (B) =A
NEXT B
RETURN
*SAVE_OUTPOS:
FOR B=1 TO 4
SAV (B-1) =OUTPOS (B)
NEXT B
RETURN
*RESTORE_OUTPOS :
FOR B=1 TO 4
OUTPOS (B) =SAV (B-1)
NEXT B
RETURN

8-144 @ Chapter 8 Robot Language Lists



PATH

Specifies the motion path

PATH [robot number] (axis number, ...) L |, point definition , option, option...
C
robot number ....................... 1 to 4 (If not input, robot 1 is specified.)

It' NOTE axis NUMDBE............ccvvvuenn. 1 to 6 (» Multiple axes specifiable n

«When "R" axis only e If not input, all axes are specified.)
is specified in the
coordir)roTe Oﬁ”buf‘i ROUELUEULT) Sets the motion path for the specified axis. This command can only be executed
arameter, an error wi
P between the PATH SET and PATH END commands. If execution is attempted

occur.
elsewhere, an error will occur.

e Movement type: Linear interpolation, circular interpolation
e Point setting: Direct numeric value input, point definition
* Options: Speed setting, coordinate plane setting (for circular interpolation

only), port output setting

PATH motion types

@ Linear interpolation movement
"PATH L..." is set for linear interpolation movement.

@ Circular interpolation movement
"PATH C..." is set for circular interpolation movement.

Only the X, Y and Z coordinate values of the specified points are valid for PATH motion. Any
other coordinates use the coordinate values of the PATH motion START point.

The motion path can be connected by repeated PATH commands ("PATH L", "PATH C") to
allow movement without stopping.

PATH @ 8-145 I



Point data setting types

® Direct numeric value input Linear interpolation

pl P2 pP3 pd p5 o f

n PT O PO v Space-separated coordinate values for each axis
f

............................................. Hand system flag

Directly specifies coordinate data by a numeric value. If an integer is used, this
is interpreted as "pulse" units, and if a real number (with decimal point) is used,
this is interpreted as "mm" units. If both integers and real numbers are used
together (mixed), all coordinate values will be handled in "mm" units.

With this format, only 1 point can be specified as the movement destination
coordinates. The only type of movement specified by this point data setting is linear

interpolation.

Hand system flags can be specified for SCARA robots when directly specifying the
/\ cauTioN Y 8 P Y spectlying

eThe hand system used

coordinate data in "mm" units.

during PATH motion must
be the same as the hand
system used at the path
motion route's start point.
The same applies if the
path is fo pass through
points where hand system
flags are set. Differing
hand systems will cause
an error and disable
motion.

The first arm and second
arm rotation information
during PATH movement
must be the same as the
first arm and second arm
rotation information at
the PATH movement's
START point. If the two are
different, an error will occur
and movement will be
disabled.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If
a number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that
there is no hand system flag.

1 : Right-handed system is used to move to a specified position.

2 : Left-handed system is used to move to a specified position.

The same hand system must always be used between a motion path's START and END points.
The hand system cannot be changed between these points.

Moreover, the first arm and second arm rotation information must be the same
throughout the movement path, from the path's START to END points. The first arm
and second arm rotation information cannot be changed at any point along the path.

o At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

I 8-146 @ Chapter 8 Robot Language Lists



/\ cauTioN

eThe hand system used
during PATH motion must
be the same as the hand
system used at the path
motion route's start point.
The same applies if the
path is to pass through
points where hand system
flags are set. Differing
hand systems will cause
an error and disable
motion.

/\ cauTion

¢ The first arm and second
arm rotation information
during PATH movement
must be the same as
the first arm and second
arm rotation information
at the PATH movement's
START point. If the two
are different, an error will
occur and movement will
be disabled.

PATH L,10000 10000 1000 1000 0 O

Sets the linear interpolation movement

path of robot 1 in "pulse" units.

PATH L,150.000 250.000 10.000 30.000 0.000 0.000 1

The linear interpolation movement path
of robot 1 is set in the coordinate

values specified by the right-handed

system in "mm" units.

@ Point definition

Linear interpolation M Circular interpolation

point definition ,

point definition...

BUJELET)  Specifies the movement destination as <point expression> value. Two or more

data items can be designated by separating them with a comma (, ).

For circular interpolation movement, 2 points must be specified for each arc.

* At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

PATH L,P1,P2,P3

PATH C P5,P6,P7,P8

Specifies sequential linear
interpolation movement of robot 1 from
its current position to the positions
specified by P1, P2 and P3 from its
current position.

Specifies circular interpolation
movement of robot 1 through the
following points:

P5, P6, and P6, P7,

current position,
P8.

PATH @ 8-147



Option types

® Speed setting Linear interpolation X Circular interpolation

1. SPEED =expression
2. S =expression
EXPressioN........ccccuveveuviennenn. 1 to 100 (units: %)
NOTE

e This defines the maximum Th \ di ified as th . | its: %
speed, and does not xplanation e program's movement speed is specified as the <expression> value (units: %).

guarantee that all The actual speed is determined as shown below.
movement will occur at

® Robot's max. d (mm/ tomatic movement d (% m
specified speed. obot's max. speed ( sec) x automatic movement speed (%)x progra

movement speed (%).
This option is enabled only for the specified PATH statement.

SAMPLE

PATH L,P5,S=40 « v Movement of robot 1 from its current
position to the position specified by P5
occurs at 40% of the program movement

speed.

VEL =expression

M NOTE EXPIeSSION ......ccuevuereiaeiaiinieains The permissible setting range varies according to the
robot type (units: mm/sec).
¢ This option specifies only
the maximum composite
speed and does not The movement speed is specified by the <expression> value (units: mm/sec). An
guarantee movement at

28 error will occur if the speed is too fast.
the specified speed.

This command is enabled only for the specified PATH statement.

PATH L,P10,VEL=150 ¢+« +ccccee.- Movement of robot 1 from its current
position to the position specified by P10

occurs at a speed of 150mm/sec.

8-148 @ Chapter 8 Robot Language Lists



® Coordinate plane setting Circular interpolation

XY
YZ
ZX

Values JE.Q Rru e srrssssssssvsosen XY coordinate plane
YZ coordinate plane

ZX coordinate plane

Specifies the coordinate plane on which to draw a circular arc for circular
interpolation movement. If no coordinate plane is specified, 3-dimensional
circular interpolation movement is used.

Only circular interpolation movement can be specified by this coordinate plane
setting.
This command is enabled only for the specified PATH statement.

PATH C,P1,P2,XY =+t cveeeececenn From its current position, circular
interpolation movement of robot 1
occurs within the XY plane, with
the Z-axis moving to the P2 Z-axis

coordinates position.

PATH @ 8-149



® Port output setting Linear interpolation M Circular interpolation

DO m(b,--:,b)=expression 1 @ expression 2
MO

SO

DO (mb, - -+, mb) =expression 1 @ expression 2
MO
SO
A CAUTION
m: port number ..................... 2to7,10to 17,2010 27
e Output to ports "0" and "1" . L . .
is not allowed at DO, MO, b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)
and SO. If multiple bits are specified, they are expressed from
(mn) the left in descending order (high to low).
REFERENCE expression T......cccecevceencnne. Value which is output to the specified port (only
e For details regarding bit integers are valid).
definitions, see Chapter 3 . .. . -
"10 Bit Setfings". EXPression 2 ........cccecceeeuene. Position where the port output occurs. This position

can be specified in "mm" units down to the 3rd decimal

position.

During PATH motion, this command option outputs the value of <expression 1>
to the specified port when the robot reaches the <expression 2> distance from the
start position.

The <expression 2> numeric value represents a circle radius (not arc length)
centered on the movement START point.

If no hardware port exists, nothing is output.

PATH SET

PATH L,P1,DO(20)=1@10 ¢+« vvv--- Specifies to output "1" to DO(20) at a
10mm radius position from the START
position during linear interpolation
movement of robot 1 from its current
position to P1.

PATH L,P2,D0(21)=1@12.5 <« «=---: Specifies to output "1" to DO(21) at a
12.5mm radius position from Pl during
linear interpolation movement of robot
1 from its current position to P2.

PATH END

PATH START

SEIEICONeInlnElles PATH SET, PATH END, PATH START

For PATH function details, refer to Chapter 9 "PATH Statements".

I 8-150 @ Chapter 8 Robot Language Lists



78 PATH END

Ends the path setting

PATH [robot number] END

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

SRJELEGD) Ends the path setting of specified robot's PATH motion.
The PATH END command must always be paired with a PATH SET command. The

PATH motion path end-point is the final point specified by the final PATH command
(PATH L, PATH C) which exists between the PATH SET and PATH END commands. n

Attempting to execute a PATH END command when no PATH SET command has
been executed will result in an error.

PATH END  +cccceveeecccceeenn Ends the path setting of robot
1's PATH motion

REIEICHONo il ElleEl  PATH, PATH SET, PATH START ‘

For PATH function details, see Chapter 9 "PATH Statements".

PATH END @ 8-151 I



79 PATH SET

Starts the path setting

7 wore  FPmat

e The PATH SET statement PATH [point definition] SET point definition

is available in software
ion 1.11 ds. . . "
version onwardas Values robot number......................... 1 to 4 (If not input, robot 1 is specified.)

Starts the path setting of specified robot's PATH motion.

Specifies the <point definition> position as the PATH motion start-point. (This only

sets the PATH motion start point and does not actually begin robot motion.) If the
n <point definition> value is omitted, the current robot position is set as the start point.

However, if robot movement is in progress, the target position of that movement

becomes the start point. (Example: The OUT position range is wider for the MOVE

command which precedes the PATH SET command, so the robot is still moving when

the PATH SET command is executed, etc.)

The PATH SET command must always be paired with a PATH END.

When a PATH SET command is executed, the previously set PATH motion path data

is deleted.

e Point data setting : Direct numeric value input, point definition

I 8-152 @ Chapter 8 Robot Language Lists



PATH SET

M NOTE

e|f both integers and
real numbers are used
together (mixed), all
coordinate values will
be handled in "mm/deg"
unifs.

/\ cauTioN

*The hand system used
during PATH motion
must be the same hand
system as that at the PATH
motion's start-point. An
error will occur if the hand
systems are different.

e The first arm and second
arm rotation information
during PATH movement
must be the same as the
first arm and second arm
rotation information at
the PATH movement's
START point. If the two are
different, an error will occur
and movement will be
disabled.

@ Direct numeric value input

pl p2 p3 p4 p5 o f

PTLOP6 v Space-separated coordinate values for each axis.
f o Hand system flag.

BJEUETI)  Directly specifies the path's start-point coordinates for PATH motion. If an integer

is used, this is interpreted as "pulse" units, and if a real number is used, this is

interpreted as "mm" units (valid down to the 3rd decimal position).

Hand system flags can be specified for SCARA robots when directly specifying the
coordinate data in "mm" units.
To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f".
If a number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate
that there is no hand system flag.
1: Indicates that a right-handed system is specified for the PATH motion's start-point.
2: Indicates that a left-handed system is specified for the PATH motion's start-point.

¢ At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

PATH SET 120 250.000 55.2 20.33 0 0
-------------------- The PATH motion's start-point of robot

1 is specified in "mm" units as follows:

120.000 250.000 55.200 20.330 0.000

0.000.

PATH SET -51200 80521 7045 204410 0 0
-------------------- The PATH motion's start-point of robot

1 is specified in "pulse" units.

PATH SET @ 8-153 I



PATH SET

/\ cauTioN

eThe hand system used
during PATH motion must
be the same as the hand
system used at the path
motion route's start point.
Differing hand systems
will cause an error and
disable motion.

/\ cAuTioN

e The first arm and second
arm rotation information
during PATH movement
must be the same as
the first arm and second
arm rotation information
at the PATH movement's
START point. If the two
are different, an error will
occur and movement will
be disabled.

@ Point definition

point expression

RCJEUET)  The PATH motion's start-point is specified by the <point expression>.

e At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

PATH SET P10 ccccccccccccceee.. The PATH motion's start-point of
robot 1 is set as P10.

PATH SET WHERE - = = ¢ ¢ o v o eeeeeen The PATH motion's start-point of
robotl is set as the robot 1's current

position.

REIEICONelinElleEN PATH, PATH END, PATH START

For PATH function details, see Chapter 9 "PATH Statements".

I 8-154 @ Chapter 8 Robot Language Lists



PATH START

Starts the PATH motion

PATH [robot number] START, option, option...

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

Starts PATH motion of specified robot.
Before PATH START can be executed, the PATH motion path must be specified by
the PATH SET command, PATH commands (PATH L, PATH C) and the PATH END
command. The robot must also be positioned at the motion path's start-point which n
was specified by the PATH SET command.

The robot's PATH motion speed is the automatic movement speed (%) which was in
effect when the PATH START was executed, multiplied by the program movement
speed (%) specified by the SPEED command or the (SPEED or S) option of the PATH
command. A speed specified by the "VEL" option of the PATH command does not
rely on the automatic movement speed.

After PATH motion begins, the PATH START command is terminated when the robot
reaches the PATH motion end-point, or when movement is stopped by a stop input,

etc.

e Options : STOPON condition setting, CONT setting

PATH START @ 8-155 I



“ PATH START

@ STOPON condition setting
/\ cauTioN

¢ Addition of the STOPON

condition setting disables
the CONT setting. STOPON conditional expression

Stops movement when the conditions specified by the conditional expression are
met. Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

If the conditions are already met before movement begins, no movement occurs,
and the command is terminated.
This option is only possible by program execution.

PATH START, STOPON DI (20)=1
-------------------- Robot 1 starts PATH movement, 1f the
"DI (20) = 1" condition is met during
movement, a deceleration and stop
occurs, and the next step 1s then

executed.

¢ When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

I 8-156 @ Chapter 8 Robot Language Lists



“ PATH START

® CONT setting

CONT

It' NOTE

*The CONT setting can
be used to reduce
the movement START
positioning fime.

Explanation

e The path to the target
point is not guaranteed.

When PATH movement is executed with CONT setting option, after all movable

axes begin to execute the final movement specified by PATH statement, movable

axes will begin to execute the next command without waiting the completion their

movement (entering the tolerance range). If the next command is a movement

command, the 2 movement paths are linked by connecting the deceleration and
acceleration sections, enabling continuous movement without intermediate stops.
This option is enabled only for the specified PATH START statement.

® Caution regarding PATH START command with CONT setting:
If the next command following the PATH START command with CONT setting is an executable

command such as a signal output command, that next command will start immediately after

axis movement begins. In other words, that next command starts before the axis arrives within

the target position tolerance range.

Example:

Signal output (DO, etc.)

Signal is output immediately after movement along the final path begins.

DELAY

DELAY command is executed and standby starts immediately after
movement along the final path begins.

HALT

Program stops and is reset immediately after movement along the final path
begins. Therefore, axis movement also stops.

HALTALL

All programs in execution stop immediately after movement along the
final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.

HOLD

Program temporarily stops immediately after movement along the final path
begins. Therefore, axis movement also stops.

HOLDALL

All programs in execution temporarily stop immediately after movement
along the final path begins. Therefore, the movement also stops.

WAIT

WAIT command is executed immediately after movement along the final
path begins.

PATH START command

4 N

PATH START PATH START,

DO(20)=1 Final target position CONT

/ DO(20)=1
o—) ¢ | op—— > o
\ Tolerance
DO(20) turns ON DO(20) turns ON
o J
33808-R9-00

PATH START @ 8-157




“ PATH START

SAMPLE

PATH START, CONT
MOVE P, P10
-------------------- PATH motion starts, and movement to
P10 begins after the moving axes enter

the deceleration zone of final PATH

motion.
SAMPLE:PATH START, CONT
With CONT setting:
PATH motion
Deceleration zones target position
@ FPi0
Next movement begins after
entering the deceleration zones
Without CONT setting:
Tolerance range PATH motion
AN Y target position
L0 @ P10

-

Next movement begins after
entering the tolerance range

33812-R9-00

REIEVCoNonInElgle  PATH, PATH SET, PATH END

For PATH function details, see Chapter 9 "PATH Statements".

8-158 @ Chapter 8 Robot Language Lists



PDEF

Defines the pallet

PDEF (Pallet definition number) =expression 1, expression 2

, expression 3, point definition

Pallet definition number ..... 0to 39

expression T .......ccceceeeeun. Number of elements (NX) between P[1] and P[2].
expression 2 ...........cc....... Number of elements (NY) between P[1] and P[3].
expression 3 ..........cceeeu.. Number of elements (NZ) between P[1] and P[5].

Total number of elements: must be 32767 or less

<expression 1> x <expression 2> x <expression 3>
P[1] to P[5] definition: see the figure below.

point definition................... The point used for a pallet definition. Continuous 5
points starting with the specified point are used.

Defines the pallets to permit execution of the pallet movement command: changes
the contents of definition for previously defined pallet data.
After specifying the number of points per axis, the equally-spaced points for each axis
are automatically calculated and defined in the sequence shown in the figure below.
If <expression 3> (Z-axis direction) is omitted, the value becomes "1".
The total number of elemnts defined for a single pallet must not exceed 32,767.

Automatic point calculation

o) o\ f)
Ny 7 22 ~ 23 24
19 O20 21
PI5] 16 O17 18
ya\
S £E 14 Y15
P3] P[4]
Ay O Vd
NZ 10 11 12
NY 7 Os 9
4 Os 6
' A o Va
\J1 A\ 2 AV 3
P[1] = > P[2
[ NX [2]
33815-R7-00
SAMPLE
iy Il =3, 4, 20128000 coco000000000 Pallet definition 1 is defined as 3 x 4

x 2 by using P3991 to P3995.

PDEF @ 8-159 I



PGMTSK

Acquires the task number in which a specified program is registered

PGMTSK (program number)

program number .................... 1 to 100

Acquires the task number in which the program specified by <program number> is
registered.

n e |If the program number which is not registered in the task is specified, "3.203: Program doesn't exist"

error occurs

A = PGMTSK (1) Assigns the task number in which

the program number 1's program is

registered to variable A.

REIEICO N e EN  PGN, TSKPGM

I 8-160 @ Chapter 8 Robot Language Lists



PGN

Acquires the program number from a specified program name

PGN ("program name")

program name........................ 32 characters or less
consisting of alphanumeric characters and underscore ( _)

Acquires the program number of the program specified by <program name>.

The program name must be enclosed in double quotation marks (" ).
- I

A = PGN("PG_SUB") =« eeececeenen The program number of PG_SUB is

assigned to variable A.

REIEICo Nl ElsleE8  PGMTSK, TSKPGM

PGN @ 8-161 I



PMOVE

Executes a pallet movement command for the robot

PMOVE = [robot number]

(pallet definition number,
pallet position number) ,option,

option...

robot number

Values

pallet definition number
pallet position number

BYJEUET) Executes "pallet move" com

It is not enabled for axes of

* Movement type:

e Pallet definition number:
e Pallet position number:
* Options:

1 to 4 (If not input, robot 1 is specified.)
Oto 39
11032767

mand of the specified axes. (The specified pallet numbers

must be registered in advance.)

other robots or for auxiliary axes.

PTP

Numeric expression

Numeric expression

Speed setting, arch motion setting,
STOPON condition setting

The position numbers for each pallet definition are shown below.

Position numbers for each pallet definition

NX*NY*NZ
L @
NY
o o
NX*NY*(NZ-1)+1 NX*NY(NZ-1)+NZ
@
P[5]
il o o Pl4]
NZ NX*(NY-1)+1 NX'NY
wot O O NX*2
L @ P[2]
P[1]
NX

33816-R7-00

e Acquires the XYZ axes move to the position determined by calculated values, the R attribute

axis moves to the position specified by pallet point data P [1].

Enabled only for specified PMOVE statement

Enabled only for specified PMOVE statement

Speed setting (SPEED) @)
Arch motion O
STOPON condition setting @)

Enabled only by program execution

PMOVE (1, 16)

Robot 1 moves from its current position
to the position specified by pallet
position number 16 of pallet definition
number 1.

I 8-162 @ Chapter 8 Robot Language Lists



Movement type

® PTP (point-to-point) movement
PTP movement begins after positioning of all movement axes is complete (within the tolerance
range), and the command terminates when the movement axes enter the OUT position range.

Although the movement axes reach their target positions simultaneously, their paths are not
guaranteed.

® Caution regarding commands which follow the PMOVE command:
If the next command following the PMOVE command is an executable command such as a
signal output command, that next command will start when the movement axis enters the OUT
position range. In other words, that next command starts before the axis arrives within the
target position OUT position range.

Example:

Signal output (DO, etc.) | Signal is output when the axis enters within OUT position range.

DELAY command is executed and standby starts, when the axis enters the
DELAY o
OUT position range.

Program stops and is reset when the axis enters the OUT position range.
HALT }
Therefore, the axis movement also stops.

All programs in execution stop when axis enters the OUT position range, task
HALTALL . .
1 is reset, and other tasks terminate. Therefore, the movement also stops.

Program temporarily stops when the axis enters the OUT position range.
HOLD -
Therefore, the axis movement also stops.

All programs in execution temporarily stop when the axis enters the OUT
HOLDALL -
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the
tolerance range.

PMOVE command

4 )
PMOVE(0,1) Taraet oosition PMOVE(©.1)
DO(20)=1 arget positio Wé\IT ARM JUPTTEN .
DO(20)=1 K N

Tolerance it S .’
OUT position
DO(20) turns ON DO(20) turns ON
- J
4 )
PMOVE(0,1) . PMOVE(0,1)
HOLD Target position WAIT ARM e .
HOLD X

. . g . . [}
~ '* . . —‘ U 3 .
i3 . 1 1

S [ g '

0

.

g Seae 9 ¥ Seaet

A3 ’ . ’

. 3 A 4
. R . ‘
. . .

o e \Tolerance ... .
OUT position
HOLD execution HOLD execution
S (program temporarily stops) (program temporarily stops) )

33827-R7-00

PMOVE @ 8-163



M NOTE

¢ This option specifies only
the maximum speed
and does not guarantee
movement at the
specified speed.

Option types

6

® Speed setting

1. SPEED =expression
2. S =expression
EXPresSioN........c..ccvuevvuieeeenne. 1 to 100 (units: %)

(RJEUETI)  Specifies the program speed in an <expression>. The movement speed is the
automatic movement speed multiplied by the program movement speed.
This option is enabled only for the specified PMOVE statement.

SAMPLE

PMOVE (1,3),S=10 Robot 1 moves from its current position
to the position specified by pallet
position number 3 of pallet definition
number 1, at 10% of the program speed.

@ Arch motion setting

X =expression, X =expression...

X et eeeeee e e e et e e Specifies the Z,R,A,B axis.
EXPIeSSION ......cuvvuvveiainiincnannn An integer value is processed in "pulse" units.
A real number (with decimal point) is process

in "'mm/deg" units.

1. The "x" specified axis begins moving toward the position specified by the
<expression> ("1" shown in the figure below).

2. When the axis specified by "x" moves the arch distance 1 or more, other axes
move to their target positions ("2" shown in the figure below).

3. The axis specified by "x" moves to the target position so that the remaining
movement distance becomes the arch distance 2 when the movement of other
axes is completed ("3" shown in the figure below).

4. The command ends when all axis enter the OUT position range.

SAMPLE

PMOVE (1,A),7Z=0 First the Z-axis of robot 1 moves from the current
position to the "0 pulse" position. Then the other
axes of robot 1 move to the position specified by
pallet position number A of pallet definition number
1. Finally the Z-axis of robot 1 moves to the
position specified by pallet position number A.

8-164 @ Chapter 8 Robot Language Lists



SAMPLE: PMOVE Z

2. Other axes movement

Arch distance 1
Arch distance 2

1. Z-axis movement N 3. Z-axis movement

Current position Target position
33704-R9-00

@ STOPON condition setting a

STOPON conditional expression

Stops movement when the conditions specified by the conditional expression are
met. Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

If the conditions are already met before movement begins, no movement occurs,
and the command is terminated.
This option is only possible by program execution.

PMOVE (A,16) , STOPON DI (20)=1
-------------------- Robot 1 moves from the current
position to the position specified by
pallet position number 16 of pallet
definition number A, then decelerates
and stops when the condition "DI(20) =

1" is met.

e When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE
status.

PMOVE @ 8-165



Pn

Defines points within a program

LET Pn = pl p2 p3 p4 pb5 p6 £

N e Point number: 0 to 29999.
PT O PO v Point data: the range varies according to the format.
f o Hand system flag: 1 or 2.

n SYJELEUD) Defines the point data.

1. "n"indicates the point number.
- 2. Input data for "p1" to "p6" must b ted with blank).
Il/' NOTE nput data for "p1" to "p6" must be separated with a space (blank)

If all input data for "p1" to "p6" are integers (no decimal points), the movement
e|f both infegers and

real numbers are used

units are viewed as "pulses". "p1" through "p6" then correspond to axis 1 through

together (mixed), all axis 6.

coordinate values will . . . . . . e
4. If th 1 I b th I t th t data f 1

be handled in "mm/deg" ere is even 1 real number (with decimal point) in the input data for "p

units. through "p6", the movement units are recognized as "mm".
5. The input data ranges are as follows:
For "pulse" units: -6,144,000 to 6,144,000 range
For "mm" units:  -99,999.99 to 99,999.99 range

Hand system flags can be specified for SCARA robots when specifying point definition
data in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a
number other than 1 or 2 is set, or if no number is designated, O will be set, indicating

that there is no hand system flag.

1: Indicates a right-handed system point setting.
2: Indicates a left-handed system point setting.

I 8-166 @ Chapter 8 Robot Language Lists



B -

M NOTE

. Pl = 0 0 0 0 0 0
e All input values are
handled as constants. P2 = 100.000 200.000  50.000 0.000 0.000 0.000
«If controller power P3 = 10.000 0.000 0.000 0.000 0.000 0.000
is furned off during P10= P2
execution of a point FOR A=10 TO 15

definition statement, a B
memory-related error P[A+1]=P[A]+P3
such as "9.702: Point data NEXT A
destroyed" may occur. FOR 2=10 TO 16
MOVE P,P1,P[A]
NEXT A
HALT

REEICONenintERGEN  Point assignment statement (LET)

Pn @ 8-167



PPNT

Creates pallet point data

PPNT (pallet definition number,pallet position number)

Creates the point data specified by the pallet definition number and the pallet position

number.
PLO=PPNT (1,24) =« ccceeceecenencnn Creates, at P10, the point data

specified by pallet position number 24
of pallet definition number 1.

REIEICO N lntElileEN PDEF, PMOVE

8-168 @ Chapter 8 Robot Language Lists



87 PRINT

Displays the specified expression value at the programming box

PRINT expression , expression.. . ‘ , ‘
i ;
Values EXPIeSSION.......cvvuveuieiaiainnns character string, numeric value, variable

BYJELEGDY) Displays a specified variable on the programming box screen.
Output definitions are as follows:

1. If numbers or character strings are specified in an <expression>, they display as
they are. If variables or arrays are specified, the values assigned to the specified
variables or arrays display.

If no <expression> is specified, only a line-feed occurs.

3. If the data length exceeds the screen width, a line-feed occurs, and the data is
displayed on the next line.

4. If acomma (, ) is used as a display delimiter, a space (blank) is inserted between
the displayed items.

5. If a semicolon (; ) is used as a display delimiter, the displayed items appear in
succession without being separated.

6. If the data ends with a delimiter, a line-feed does not occur. When not ended with

a display delimiter, a line-feed occurs.

e Data communication to the programming box screen occurs in order for the PRINT statement

to be displayed there. Therefore, program execution may be delayed when several PRINT

statements are executed consecutively.
¢ On the programming box, the PRINT statement is displayed on "Message" space in "Automatic
Operation (ALL TASK) screen.

SAMPLE

PRINT A sccecceeceeecencenenn Displays the value of variable A.

PRINT "Al =";Al ccccceecceccen.n Displays the value of variable Al after
"Al =".

PRINT "B(O0),B(l1) = ";B(0);",";B(1)

PRINT P100 cocccveeeeeeceeennnn. Displays the P100 value.

Related commands ERINIVAR

PRINT @ 8-169



88 PSHFRC

Specifies/acquires the pushing force parameter

1. PSHFRC [robot number] expression

2. PSHFRC [robot number] (axis number) =expression

robot number ........................ 1 to 4 (If not input, robot 1 is specified.)
axis number ............c.c.ccc....... 1t06
EXPresSioN...........cccuevvueeeueennne. -1000 to 1000 (unit: %)

BYJELENTN) Changes the "push force" parameter of the specified axis to the value of <expression>.
If the "F" option is omitted in the PUSH statement, the pushing control is executed
with the setting of the pushing thrust parameter.

Actual pushing thrust is as follows.
e Rated thrust x <expression>/ 100

In format 1, the change occurs at all axes.
In format 2, the change occurs at parameter of the axis specified by the <axis

number>.
PSHFRC (1) = 10 «cceeveeeeeeeeenn Changes the pushing thrust parameter

of axis 1 of robot 1 to 10%.

I Functions

PSHFRC [robot number] (axis number)

Values robot number

axis NUMbBEr ........cccc.coevene.... 1to6

...1to 4 (If not input, robot 1 is specified.)

BYJELETTN) Acquires the value of "push force" parameter of the specified axis.

A=PSHFRC (1) +ctseeevccereecnnnnn. The pushing thrust parameter of axis 1

of robot 1 is assigned to variable A.

I 8-170 @ Chapter 8 Robot Language Lists



PSHJGSP

Specifies/acquires the push judge speed parameter

1. PSHJGSP [robot number] expression
2. PSHJIGSP [robot number] (axis number) =expression

robot number ......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMbBEr ...........ccccccceeeni. 1to6b
EXPIeSSION......ccuveuveuieuiaiainins 0: Invalid, 1 to 100 (units: %)
BYJENEUD) Changes the "push judge speed" parameter of the specified axis to the value of the n
<expression>.

If the push judge speed parameter is enabled, a pushing operation is detected only
when the movement speed is below <expression> with the pushing thrust in the
PUSH statement at the specified value.

The setting of <expression> can be specified as follows.

0: A pushing operation is detected if the pushing thrust reaches the specified value
with the threshold setting invalid.

1 to 100: The movement speed in the PUSH statement is 100% to specify thresholds
with a rate.

PSHJIGSP (1) = 50 e Changes the push judge speed parameter
of axis 1 of robot 1 to 50%.

I Functions

PSHJGSP [robot number] (axis number)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMDBEr ........cccccvevvvenn... 1to6

Acquires the value of "push judge speed" parameter of the axis specified by <axis

number>.

SAMPLE

A=PSHJIGSP (1) +ccvveeccceeeneecee. The pushing detection speed threshold
parameter of axis 1 of robot 1 1is

assigned to variable A.

PSHJGSP @ 8-171 I



PSHMTD

Specifies/acquires a pushing type parameter

1. PSHMTD @ [robot number] expression
2. PSHMTD [robot number] (axis number) =expression

robot number ........................ 1 to 4 (If not input, robot 1 is specified.)
axis number ............c.ccccccc..... 1to6
EXPIeSSION......ccuveueeuereianinieaens 0: Totalizing method, 1: Resetting method

Changes the "push method" parameter of the specified axis to the value of the

<expression>.

The pushing type in the PUSH statement can be specified as follows by the
<expression>.
0: The time for the pushing thrust to reach the specified value is totalized to execute
the pushing control end detection.
1: The pushing control end detection is executed only when the pushing thrust
continuously reaches the specified value. If the pushing thrust is lower than the
specified value, the elapsed time is reset to 0.

In format 1, the change occurs at all axes.
In format 2, the change occurs at the parameter of the axis specified by <axis
number>.

PSHMTD (1) = 1 «ccvvevecececeenn. Changes the push method parameter of
axis 1 of robot 1 to the resetting
method.

B Functions

PSHMTD [robot number] (axis number)

robot number ... 1 to 4 (If not input, robot 1 is specified.)
axis NUMbEr ...........cccceceeeee. 1t06

DIENEGD) Acquires the value of "push method" parameter of the axis specified by <axis
number>.

A=PSHMTD (1) «cccceeveccceennnnn. The pushing method parameter of axis 1

of robot 1 is assigned to variable A.

I 8-172 @ Chapter 8 Robot Language Lists



PSHRSLT

Acquires the status when PUSH statement ends

PSHRSLT @ [robot number] (axis number)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis number ........................... 1to6

BYJELEUD) Acquires the end status of PUSH statement executed for the axis specified by <axis

number>.
0 o The PUSH statement was ended for a reason other than the arrival of the
pushing time.
T e, The PUSH statement was ended by the arrival of the pushing time.
PUSH(3,P1l) v, Moves the axis 3 of robot 1 is under
the pushing control to the position
specified with P1.
IF PSHRSLT(3) = 1 THEN =« Ended by the arrival of the pushing
time.
GOTO *OK
ELSE =~ ceccesceciiiiitn Ended for a reason other than the
arrival of the pushing time.
GOTO *NG
ENDIF

PSHRSLT @ 8-173



PSHSPD

Specifies/acquires the push speed parameter

1. PSHSPD @ [robot number] expression
2. PSHSPD [robot number] (axis number) =expression

robot number ........................ 1 to 4 (If not input, robot 1 is specified.)
axis number ..............c.ccc....... Tto6
EXPresSioN.........c..ccceevvuieeeenne. 1 to 100 (units: %)

n Changes the "push speed" parameter of the axis specified by <robot number> to the

value indicated in <expression>.

The motion speed in the PUSH statement is as follows.

e Neither "S" nor "DS" is set as an option in the PUSH statement:
Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (%)
x Automatic movement speed (%) x Program movement speed (%)

¢ "S" s set as an option in the PUSH statement:
Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (%)
x Automatic movement speed (%) x Program movement speed specified by S (%)

e "DS" is set as an option in the PUSH statement:
Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (%)
x Movement speed of an axis specified by DS (%)
* Refer to ("94 PUSH" in this Chapter/ the YRCX programming manual) for details
regarding the option settings of the PUSH statement.

PSHSPD (1) = 50 ccceeeveeeeeceennn Changes the push speed parameter of
axis 1 of robot 1 to 50%.

I Functions

PSHSPD @ [robot number] (axis number)

robot number........................ 1 to 4 (If not input, robot 1 is specified.)
axis NUMDEr ...........cccevceecec. 1t06

OIENEGD) Acquires the "push speed" parameter value of the axis specified by <axis number>.

A=PSHSPD (1) -ccccccccccccccccc.. The push speed parameter of axis 1 of

robot 1 is assigned to variable A.

I 8-174 @ Chapter 8 Robot Language Lists



PSHTIME

Specifies/acquires the push time parameter

1. PSHTIME [robot number] expression
2. PSHTIME [robot number] (axis number) =expression

robot number ......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMbBEr ...........cccccccueenie. 1to6b
EXPression...........cccccevveeeueenne.. 1 to 32767 (unit: ms)

BUIENELING) Changes the "push time" parameter of the specified axis to the value indicated in
<expression>.

If the TIM option is omitted in the PUSH statement, the pushing control is executed
with the setting of the push time parameter.

In format 1, the change occurs at all axes.

In format 2, the change occurs at the axis specified by the <axis number>.

PSHTIME (1) = 1000 e eeeeens Changes the push time parameter of
axis 1 of robot 1 to 1000ms

I Functions

PSHTIME [robot number] (axis number)

robot number ........................ 1 to 4 (If not input, robot 1 is specified.)
axis number ...........cccccoce.. 1tob

BUJENEGD) Acquires the value of "push time" parameter of the axis specified by the <axis
number>.

SAMPLE

A=PSHTIME (1) «++ccceooeenneeenenn The push time parameter of axis 1 of

robot 1 is assigned to variable A.

PSHTIME @ 8-175



PUSH

Executes a pushing operation for specified axes

PUSH [robot number] (axis number, expression), option, option

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMbEr ...........cccccceeeee. 1t06
EeXPresSioN........coceueeeveiiennnen. Motor position (mm, degree, pulse) or point expression

Executes an absolute position movement of the specified axis with controlling the
n pushing thrust in the forwarding direction.
* Movement type :  Pushing PTP movement of specified axis
e Point data setting : Direct coordinate data input, point definition
¢ Options : Pushing thrust setting, pushing time, pushing speed setting,
STOPON setting

Movement type

@ PTP (point-to-point) of specified axis
PTP movement begins after the operation of the axis specified by the <axis number> is

completed (within the tolerance range), controlling the pushing thrust in the forwarding
direction of the axis.

The conditions to start the pushing control are as follows.

* Immediately after the start of movement of an axis by the PUSH statement

e After the merge operation is completed (when the PUSH statement is specified in the line
next to the movement command with CONT specified)

The conditions to terminate the command are as follows.

e The axis arrives within the tolerance range of the target position.

e The status where the pushing thrust of the axis reaches <pushing thrust value> elapses the
time specified to <pushing time value>.

The end status for the PUSH statement can be confirmed with the PSHRSLT statement.

The conditions to cancel the pushing thrust are as follows.

e When a movement command is executed after the PUSH command including STOP is
finished

¢ When a servo off occurs

¢ When the power source to the controller is interrupted and restarted

I 8-176 @ Chapter 8 Robot Language Lists



I PusH

If the next command following to the PUSH statement is an executable command such as a

signal output command, the next command will start when the pushing conditions of an axis to

be moved are satisfied, or when an axis arrives within the tolerance range of the target position.

Example:

Signal output (DO, etc.)

Signal is output when the pushing conditions are satisfied or within the
tolerance range.

DELAY

DELAY command is executed and standby starts, when the pushing
conditions are satisfied or within the tolerance range.

HALT

Program stops and is reset when the axis enters the OUT position
range. Therefore, the axis movement also stops.

HALTALL

When the pushing conditions are satisfied or within the tolerance range,
the programs in execution are all stopped, task 1 is reset, and other
tasks are terminated. Therefore, the axis movement also stops.

HOLD

Program temporarily stops when the axis enters the OUT position
range. Therefore, the axis movement also stops.

HOLDALL

When the pushing conditions are satisfied or within the tolerance range,
the programs in execution are all temporarily stopped. Therefore, the
axis movement also stops.

WAIT

WAIT command is executed, when the pushing conditions are satisfied
or within the tolerance range.

PUSH(l,PO) ........

------------ Axis 1 of robot 1 moves from its current position

to the position specified by PO.

Point data setting types

® Direct numeric value input
The motor position is specified directly in <expression>.

If the motor position's numeric value is an integer, this is interpreted as a "pulse" unit. If the

motor position's numeric value is a real number, this is interpreted as a "mm/degrees" unit, and

each axis will move from the 0-pulse position to a pulse-converted position.

SAMPLE

PUSH(1,10000) - - - - -

PUSH[2] (2,90.000)

------------ Axis 1 of robot 1 moves from its current position

to the 100000 pulse position.

------------- Axis 2 of robot 2 moves from its current

position to the 90° position (when axis 2 is a

rotating axis.)

@ Point definition

Point data is specified in <expression>. The axis data specified by the <axis number> is used. If

the point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse

position to the pulse-converted position.

BUEE (L, @) ccoooooo

PUSH[2] (2,P90) - - - -

------------ Axis 1 of robot 1 moves from its current position to

the position specified by P1.

~~~~~~~~~~~~ Axis 2 of robot 2 moves from its current position to

the position specified by P90 (deg.) (when axis 2 is

a rotating axis.)

PUSH @ 8-177

I PusH

Option types

@ Pushing thrust setting

F =expression

EXPresSioN........c..cccuevueeeueeane. -1000 to 1000 (units: %)

Explanation

The pushing thrust in the forwarding direction of an axis is specified as an
<expression>.

The actual pushing thrust is determined as shown below.

e Rated thrust x <expression>/100

If <expression> is omitted, pushing thrust value specified with the parameter is

used.

SAMPLE

PUSH(1,10000) ,F=10 <<« cceee-- Axis 1 of robot 1 moves from its

current position to the 100000 pulse
position with the pushing thrust at
10% of the rated thrust.

® Pushing time setting

TIM =expression

eXPresSioN.....cc..covvvveeveneennn.. 1 to 32767 (units: ms)

Explanation

SAMPLE

The time to keep pushing with the specified pushing thrust is specified as an
<expression>.

When the status where the pushing thrust reaches the specified value exceeds
<expression>, the PUSH statement terminates.

If this option is omitted, the setting of the parameter is used.

PUSH(1,10000),TIM=5000 « -« Axis 1 of robot 1 moves from its

current position to the 100000 pulse
position with keeping pushing for 5

seconds.

8-178 @ Chapter 8 Robot Language Lists

I PusH

® Speed setting

1. SPEED =expression

2. S =expression

EXPression...........ccccoveveueeane.. 1 to 100 (units: %)

BYJEUENN)) The program movement speed is specified in <expression>.
The actual speed is determined as shown below.
* Max. speed of a robot (mm/s or deg./s) x Pushing movement speed (%) x

automatic. movement speed (%) x <expression> (%)
This option is enabled only for the specified PUSH statement.

PUSH(1,10000) ,S=10 «:c-cccceee.. Axis 1 robot 1 moves from its
current position to the 100000 pulse
position with the speed at 10% of the
multiplication of the pushing movement
speed and the automatic movement

speed.

1. DSPEED =expression
2. DS =expression

EXPression...........ccccooveeueenne.. 0.01 to 100.00 (units: %)

The axis movement speed is specified in <expression>.
The actual speed is determined as shown below.
* Max. speed of a robot (mm/s or deg./s) x Pushing movement speed (%) x
<expression> (%)
This option is enabled only for the specified PUSH statement.
* Movement always occurs at the DSPEED <expression> value (%) without being
affected by the automatic movement speed value (%).

PUSH(1,10000) ,DS=0.1 +«=«ccec--- Axis 1 moves of robot 1 from its
current position to the 100000 pulse
position with the speed at 0.1% of the

pushing movement speed.

PUSH @ 8-179

I PusH

@® STOPON conditions setting

STOPON conditional expression

Stops movement when the conditions specified by the conditional expression
are met. Because this is a deceleration type stop, there will be some movement
(during deceleration) after the conditions are met.
If the conditions are already met before movement begins, no movement occurs,
and the command is terminated.
This option is enabled only by program execution.

PUSH(1,10000),STOPON DI (20) = 1
-------------------- Axis 1 of robot 1 moves from its current
position toward the "10000 pulses"
position and stops at an intermediate
point if the "DI (20) = 1" condition is

met. The next step is then executed.

e When the conditional expression used to designate the STOPON conditions is a numeric

expression, an expression value other than “0” indicates a TRUE status, and “0” indicates a
FALSE status.

REIEICoRelgInEekN PSHFRC, PSHTIME, PSHMTD, PSHSPD, PSHRSLT, CURTRQ, CURTQST

I 8-180 @ Chapter 8 Robot Language Lists

RADDEG

Performs a unit conversion (radians — degrees)

RADDEG (expression)

EXPIesSiON..........ccccveveuieunnnns Angle (units: radians)

BRYELEGDN) Converts the <expression> value to degrees.

SAMPLE
LOC4 (PO) =RADDEG (ATN (B)) =+ ===« Converts the variable B arctangent n

value to degrees, and assigns it to
4th-axis data of PO.

REIEICO NIkt ATN, COS, DEGRAD, SIN, TAN ‘

RADDEG @ 8-181 I

REM

Inserts a comment

1. REM character string

2. ' character string

SENEID) All characters which follow REM or an apostrophe (') are handled as a comment. This
comment statement is used only to insert comments in the program, and it does not
execute any command. REM or an apostrophe (') can be entered at any point in the
line.

REM *** MAIN PROGRAM ***
! **% SUBROUTINE ***
HALT "HALT COMMAND

8-182 @ Chapter 8 Robot Language Lists

97 RESET

Turns OFF the bits of specified ports, or clears variables

RESET DOm (b, = - -

DO (mb, - - -
MOm (b, « - -
MO (mb, - - -
TOn (b, « -+

LOn (b, = .-
LO(nb, - - -
SOm (b, =« -
SO (mb, - - -

TO (n-b, - - -

/D)
,mb)
o)
,mb)
)
,nb)
/D)
,nb)
/o)
,mb)

RESET TCOUNTER

Values

m: port number ..2t07,10t0 17,20 to 27
n: port numberc..oocceeene 0,1

b: bit definition..........c.ccc...... 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the
left in descending order (high to low).

SUIENENNG) Format 1: Turns the bits of specified ports OFF.
Format 2: Clears the 1ms counter variables (Tms counter variables are used to

/\ cauTioN

e Output fo ports "0" and "1" . . .
is not allowed at DO, and measure the time in Tms units).

SO‘ | savPLE |

[I] RESET DO2 () scccccccccccecccn.n. Turns OFF DO (27 to 20).
REFERENCE
RESET DO2 (6,5,1) ccccecceceeens Turns OFF DO (26, 25, 21).
e For details regarding bit
definitions, see Chapter 3 RESET (37,35,27,20) Turns OFF DO(37, 35, 27, 20).
"10 Bit Settings". RESET TCOUNTER - - --------..-.... Clears the 1lms counter variables.

REIEICO N InnEREN SET, DO, MO, SO, TO, LO

RESET @ 8-183 I

RESTART

Restarts another task during a temporary stop

RESTART Tn

<program name>

PGm
n: Task number 1to16
m: Program number 1 to 100

DOIENEGD) Restarts another task that has been temporarily stopped (SUSPEND status).
A task can be specified by the name or the number of a program in execution.
The program name must be enclosed in < > (angle brackets).

e If a task (program) not temporarily stopped is specified and executed, an error occurs.

START <SUB_PGM>, T2
FLAG=1
#1040 3
IF FLAG=1 AND DI2(0)=1 THEN
SUSPEND T2
FLAG=2
WAIT DI2(0)=0
ENDIF
IF FLAG=2 AND DI2(0)=1 THEN
RESTART T2
FLAG=1
WAIT DI2(1)=0
ENDIF
MOVE P, PO
MOVE P, P1
GOTO *LO
HALTALL

Program name:SUB_PGM
' SUBTASK ROUTINE
*SUBTASK:

DO2 (0) =1

DELAY 1000

DO2 (0) =0

DELAY 1000

GOTO *SUBPGM

EXIT TASK

REIEICHNeInlgEReEN CUT, EXIT TASK, START, SUSPEND

For details, refer to the "Multi-Task" item.

8-184 @ Chapter 8 Robot Language Lists

RESUME

Resumes program execution after error recovery processing

1. RESUME
2. RESUME NEXT
3. RESUME label

SOIETELIN) Resumes program execution after recovery from an error.

REFERENCE
« For details, refer to "67 ON Depending on its location, a program can be resumed in the following 3 ways:
ERROR GOTO".
1. RESUME The program resumes from the command which caused the
error.

2. RESUME NEXT The program resumes from the next command after the
command which caused the error.
3. RESUME label The program resumes from the command specified by the

<label>. “

e The RESUME statement can also be executed in an error processing routine.

e Error recovery processing is not possible for serious errors such as "17.800 : Motor overload".

S e ONERROR GOTO ‘

RESUME @ 8-185 I

RETURN

Processing which was branched by GOSUB, is returned to the next line after GOSUB

GOSUB label * GOSUB can also be expressed as "GO SUB".

label:

RETURN

Ends the subroutine and returns to the next line after the jump source GOSUB
statement.
All subroutines (jump destinations) specified by a GOSUB statement must end with a
RETURN statement. Using the GOTO statement, etc., to jump from a subroutine will
cause an error such as "5.212: Stack overflow".

MOVE P, PO
GOSUB *CLOSEHAND
MOVE P, P1
GOSUB *OPENHAND
GOTO *ST
HALT
"SUB ROUTINE
*CLOSEHAND :
DO (20)
RETURN
*OPENHAND :
DO (20)
RETURN

Related commands EEIoR{v]=]

1]
=

1l
o

I 8-186 @ Chapter 8 Robot Language Lists

RIGHT$

Extracts a character string from the right end of another character string

RIGHTS (character string expression, expression)

EXPresSsioN.........ccovvvvcuneiinnnen. 0 to 255

This function extracts a character string with the digits specified by the <expression>
from the right end of the character string specified by <character string expression>.
The <expression> value must be between 0 and 255, otherwise an error will occur.
If the <expression> value is 0, then extracted character string will be a null string
(empty character string).
If the <expression> value has more characters than the <character string expression>,
extracted character string will become the same as the <character string expression>.

SAMPLE

BS=RIGHTS (AS,4) e eeeeeennnn. 4 characters from the right end of AS

are assigned to BS.

Related commands [RSEERY ‘

RIGHT$ @ 8-187

RIGHTY

Sets the SCARA robot hand system as a right-handed system

RIGHTY [robot number]

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

Specifies the robot as a roght-handed system. The robot moves to a point specified in
the Cartesian coordinates.
This statement only selects the hand system, and does not move the robot. If
executed while the robot arm is moving, execution waits until movement is complete
(positioned within tolerance range).

RIGHTY ~ ccceeeeeccccennceees Specifies a Robot 1 “right-handed
system” setting. (see Fig.l below) .

MOVE P, P1

LEFTY = s Specifies a Robot 1 “left-handed
system” setting. (see Fig.2 below) .

MOVE P, P1

RIGHTY

HALT

SAMPLE:LEFTY/RIGHTY

P1
(®)
N o

Left-handed system Right-handed system

SCARA robot
33818-R7-00

Related commands JRRSEINE

8-188 @ Chapter 8 Robot Language Lists

RSHIFT

Shifts a bit value to the right

RSHIFT (expression 1, expression 2)

Shifts the <expression 1> bit value to the right by the amount of <expression 2>.
Spaces left blank by the shift are filled with zeros (0).

SAMPLE

A=RSHIFT (&B10111011,2) v ee-- The 2-bit-right-shifted &B10111011
value (&B00101110) is assigned to A.

Related commands il

RSHIFT @ 8-189 I

SELECT CASE to END SELECT

Executes the specified command block in accordance with the <expression> value

SELECT CASE expression
CASE expression list 1

command block 1
CASE expression list 2
command block 2

CASE ELSE
command block n
END SELECT

SUUETELIN) These statements execute multiple command blocks in accordance with the
<expression> value. The setting method is as follows.

1. The <expression list> following CASE statement comprises multiple numerical
expressions and character expressions separated from each other by a comma (,).

2. If the <expression> value matches one of expressions contained in the
<expression list>, the specified command block is executed. After executing the
command block, the program jumps to the next command which follows the
END SELECT statement.

3. If the <expression> value does not match any of the expressions contained in the
<expression list>, the command block indicated after the CASE ELSE statement
is executed. After executing the command block, the program jumps to the next
command which follows the END SELECT statement.

4. If the <expression> value does not match any of the expressions contained in
<expression list> and no CASE ELSE statement exists, the program jumps to the
next command following the END SELECT statement.

WHILE -1
SELECT CASE DI3 ()
CASE 1,2,3
CALL *EXEC(1,10)
CASE 4,5,6,7,8,9,10
CALL *EXEC(11,20)
CASE ELSE
CALL *EXEC(21,30)
END SELECT
WEND
HALT

8-190 @ Chapter 8 Robot Language Lists

SEND

Sends readout file data to the write file

SEND read-out file TO write file

It' NOTE SYJENEGDN) Sends <read-out file> data to the <write file>.
An entire DO, MO, TO, LO, SO, or SOW port (DO(), MO(), etc.), cannot be specified

e Examples of erroneous .
as a write file.

writing to a read-only file:

SEND CMU TO DIR Moreover, some individual files (DOn(), MOn(), etc.) cannot be specified as a write
SEND PNTTO SI0) file. For details, refer to Chapter 10 "Data file description".
« Examples of data format Writing to read-only files (indicated by a "-" in the "Write" column of the table shown
mismatches: below) is not permitted.
SEND PGM TO PNT Even if the read-out/write files are specified correctly, it may not be possible to
SEND SIQ TO SFT execute them if there is a data format mismatch between the files.
Type File Name Definition !:(.)rmat - Read- Write
All Individual File out
User All file ALL v v
Program PGM <bbt::::bb> v/ 4
Point PNT Pn v/ v
Point comment PCM PCn v v
Point name PNM PNn v v
Parameter /eceeeeec/
PRM #cccececc# v 4
\cceeeeee\
Shift definition SFT Sn v/ v
Hand definition HND Hn v 4
Pallet definition PLT PLn v 4
General Ethernet Port GEP GPn v v
Input/output name ION iNMn(n) v v
Area check output ACO ACn v v
Variable, | Variable VAR ab...by v v
Constant Array variable ARY ab...by(x) v v
Constant _— “cc...c” v -
Status Program directory DIR <<bbbbbbbb>> v -
Parameter directory DPM v -
Machine reference sensor, stroke-end | MRF Em— v -
mark ARP —_— v -
System configuration information CFG _ v -
Version information VER —_— v -
Option board OPT _ v -
Self check SCK —_— v -
Alarm history LOG —_— v -
Remaining memory size MEM _ v -

SEND @ 8-191 I

) Definition Format Read- .
Type File Name — : Write
All Individual File out

Device DI port DI() Din() v -

DO port DO() DOnN() v v

MO port MO() MOn() v v

TO port TO() TON() v v/

LO port LO() LOnN() v v/

Sl port SI() Sin() v -

SO port SO() SOn() v v

SIW port SIW() SIWn() v -

SOW port SOW() SOWN() v v

RS-232C CMU v v

Ethernet ETH _ v v

Other File END code EOF — v -
n: number a: Alphabetic character b: Alphanumeric character or underscore (_)

c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type

i: Input/output type
v Permitted —: Not Permitted

¢ The following cautions apply when a restart is performed after a stop occurred during execution

of the SEND statement:
1. When reading from RS-232C / Ethernet (SEND CMU TO XXX, SEND ETH TO XXX):
When the SEND statement is stopped during data reading from the reception buffer, the data

acquired up to that point is discarded.

2. When writing to RS-232C / Ethernet (SEND XXX TO CMU, SEND XXX TO ETH):
When the SEND statement is stopped during data writing to the transmission buffer, the data
is written from the beginning.

SEND PGM TO CMU +«c v Outputs all user programs from the RS-
232C port.

SEND <PRG1> TO CMU =« =« cceeeeeenne Outputs the PRGl program from the RS-
232C port.

SEND CMU TO PNT «cccvvvvececeeenen Inputs a point data file from the RS-
232C port.

SEND "T1" TO CMU ¢« ccvvveeeecceenen Outputs the "T1" character string from
the RS-232C port.

SEND CMU TO AS =+ cccceeceeceeeeen Inputs character string data to

variable AS from the RS-232C port.

For details, refer to Chapter 10 "Data file description".

SN nlnlslsE OPEN, CLOSE, SETGEP, GEPSTS

I 8-192 @ Chapter 8 Robot Language Lists

SERVO

Controls the servo status

SERVO | [robot number] ON (axis number)
OFF
FREE
& CAUTION robot number 1 to 4 (If not input, robot 1 is specified.)
e Always check that the . . -
Emergency Stop is ON axis number................c......... 1to 6 (» Multiple axes not specifiable

and Servo is OFF when e If not input, all axes are specified.)
working within the robot

movement range.

i . BYJENEGD) This command controls the servo ON/OFF at the specified axes or all axes.
e Electromagnetic brake is

the brake to prevent the ‘
vertical axis from sliding SERVO Dynamic
downward. The vertical L Motor power

axis will slide downward it

when the servo is FREE, ON OFF

Electromagnetic
brake brake

causing a hazardous OFF
situation. - OFF - OFF (In the case of all axes servo OFF) ON ON
FREE OFF Continues the previous status OFF OFF

e This command is executed after the operation of all axes of the specified robot has been

complete (after positioned within the tolerance).

e The motor power is a power supply unit for robot (motor) in the controller.

e The dynamic brake controls the motor by using the electric power which is generated in the
motor when the servo is turned OFF.

SERVO ON @ ccccccecceeecccecnnns Turns servos ON at all axes
of robot 1.
SERVO OFF s ccccceecceccecnn.n Turns the servo OFF and applies

the dynamic brake at all axes
of robot 1. Axes equipped with brakes are
all locked by the brake.

SERVO FREE(3) +cccv e ceeeenn. Turns servos OFF at axis 3

of robot 1, and releases the brake.

SERVO @ 8-193 I

g SET

Turns the bit at the specified output port ON

SET DOm (b, =« -,b) , time
DO (mb, ---,mb)
MOm(b, - --,b)
MO (mb, ---,mb)
TOn (b, =« - ,b)
TO (nb, :--,nb)
Lon (b, -:-,b)
LO (nb,:--,nb)
SOm (b, = --,b)
SO (mb, ---,mb)

m: port number 2to7,10to17,20to 27
n: port numberccceeuee. 0,1
b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the
n left in descending order (high to low).

HMe..cooiiiiiiii 10 to 3600000 (units: ms)

Turns ON the bits of specified ports.

/\ cauTion

The pulse output time (unit: ms) is specified by the <time> value.
e Output to ports "0" and

"1" are not allowed at DO,
and SO. time elapses, the output is turned OFF, and the execution ends.

The program execution is WAIT status while the output is ON. When the specified

If no hardware port exists, nothing is output.

e For bit sefting details, see

SET DO2(6,5,1),200 ««ccveeeeeeenn. DO(26,25,21) switches ON for 200ms.
ST DO (37,35,27,20) ccccccocccoos Turns DO(37, 35, 27, 20) ON.

REIEICONS lgtEle N RESET, DO, MO, SO, TO, LO

I 8-194 @ Chapter 8 Robot Language Lists

SETGEP

Sets the General Ethernet Port

SETGEP m, n, "IP adress", ppppp, €, t

m: General Ethernet Port number....0 to 7

N:MOAE v 0: server, 1: client

IP AdreSS. ... 0.0.0.0 to 255.255.255.255
pppPpPpP: port number..........ccccceene. 0to 65535

e: Termination code..........cccoooverenenn... 0: CRLF, 1: CR

t: port type

Sets the specified General Ethernet Port. The General Ethernet Port can open/ close
the communication port by OPEN/ CLOSE commands.
<IP adress> must be enclosed in " " (double quotation marks).
When "0: server" is selected at "n: mode", although <IP adress> can be omitted, " "
(double quotation marks) must be written.

When Server mode is selected,

e [P address: IP address already set on the controller is used to communicate, so IP address setting
is unnecessary. (The IP address set by <IP address> is invalid in this case.)

e Port number: Set a port number which differs from the one on the controller.

When Client mode is selected,

e |P address and port number: Set the IP address and port number of the connection destination

server.
SAMPLE
IPADRSS="192.168.0.100" e+ -- Assigns the IP adress(192.168.0.100) of the

server to connect to variable IPADRSS.
SETGEP 1, 1, IPADRSS, 100, 0, O
--------------------- Sets the conditions below on General

Ethernet Port 1.

B mode: client
B the IP adress of the server to connect to: 192.168.0.100
B the port number of the server to connect to: 100
B Termination code : CRLF
OPEN GP1l = cccceeccceeeenneeeenn Connects the server specified at
General Ethernet Port 1.
SEND “123” TO GPLl =« eeeennn Sends the character strings "123" from

General Ethernet Port 1.
CLOSE GPLl = + e e ceeceeeneeneeennnn Disconnects from the server specified

at General Ethernet Port 1.

REIEICo Nl gElsleE8 OPEN, CLOSE, SEND, GEPSTS

SETGEP @ 8-195

SGl

Assigns /acquires the value to a specified integer type static variable

SGIN=XXXXXX

n: integer type static variable number..... 0 to 31
XXXXXX 1eteennnieeinieeeeneee e integer of -2147483648 to 2147483647

DOIENEGDN) Assigns xxxxxx to the integer type static variable (SGI) specified by "n". If a real
number with decimal point is specified at xxxxxx, assigns a value with decimal
fractions truncated.

SGI1=300 @ et ceeeneecennnnnn Assigns 300 to SGI1.

l Functions

SGIn

n: integer type static variable number..... 0 to 31

Acquires the value of the integer type static variable (SGI) specified by "n".

AZ=SGI1 sttt Assigns the value of SGI1 to variable A%.

Related commands i€l

I 8-196 @ Chapter 8 Robot Language Lists

SGR

Assigns /acquires the value to a specified real type static variable

SGRN=xXXXXXX

n: real type static variable number-.... 0 to 31
XXXXXX cvvveeveetenneseeeneeneneesneenesaeneenene 1. Single-precision real numbers

-999999.9 to +999999.9

e 7 digits including integers and decimals.
(For example, ".0000001" may be used.)

2. Single-precision real numbers in exponent form

-1.0x10% to +1.0x10%

e Mantissas should be 7 digits or less,
including integers and decimals.

Assigns xxxxxx to the real type static variable (SGR) specified by "n".

SAMPLE n

SCRI=1320,355 cocccoococococnocooo Assigns 1320.355 to SGRI.

I Functions

SGRn

n: real type static variable number 0to 31

Acquires the value of the real type static variable (SGR) specified by "n".

SAMPLE

A!I=SGR1 cecceeteeaian Assigns the value of SGR1 to variable A!.

Related commands i€l

SGR @ 8-197 I

SHARED

Enables sub-procedure referencing without passing on the variable

SHARED variable(), variable()...

M NOTE SUUETELIN) This statement allows variables declared with a program level code to be referenced
with a sub-procedure without passing on the variables as dummy arguments.

*Th level code i
© program Sve coce ° The program level variable used by the sub-procedure is specified by the <variable>

a program written outside
the sub-procedure. value.

A simple variable or an array variable followed by parentheses is specified. If an array
is specified, that entire array is selected.

e Normally, a dummy argument passes along the variable to a sub-procedure, but the SHARED

statement allows referencing to occur without passing along the dummy argument.
e The SHARED statement allows variables to be shared only between a program level code and
sub-procedure which are within the same program level.

DIM Y! (10)
X!=2. 5
Y!(10)=1. 2

CALL *DISTANCE
CALL *AREA

HALT
SUB *DISTANCE
SHARED X!, Y! () ceceeeeceeeenn Variable referencing is declared by
SHARED.
PRINT X!"24Y! (10)"2««cceeeen. The variable is shared.
END SUB
SUB *AREA
DIM Y! (10)
PRINT X!*Y! (10) ccvcevceeeeen. The variable is not shared.
END SUB

REIEICO N N SUB, END SUB

8-198 @ Chapter 8 Robot Language Lists

SHIFT

Sets the shift coordinates

SHIFT = [robot number] shift variable ‘
OFF

robot number 1 to 4 (If not input, robot 1 is specified.)

Sets the shift coordinates specified by <shift variable> to the robot specified by
<robot number>.
When OFF is specified, the coordinates shift by <shift variable> does not occur.

e This statement is executed after axis positioning is complete (within the tolerance range).

e When OFF is specified, it is the same as the setting: 0.000 at each X, Y, Z and rotation
direction-offset by the <shift variable>.

SAMPLE

SHIFT S1 W ccececececeeeeeeenens Shifts the coordinate of robot 1 to
the "shift 1" coordinate.

MOVE P, P10

SHIFT S[A] e, Shifts the coordinate of robot 1 to
the coordinate specified by variable A.

MOVE P, P20

HALT

REIEICHONo I EeEl Shift definition statement, shift assignment statement

SHIFT @ 8-199 I

Sl

Acquires specified S status

LET expression = SIm(b,:--,b)
LET expression = SI(mb, ---,mb)

m: port numberc.cocc.e.. Oto7,10to 17,20to 27
b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).

SRELEGD) Acquires S| port input status specified by "m".

A=ST2 () = ceeceeeteeean The input status from SI (27) to SI (20)
is assigned to variable A%.

A%=ST0(6,5,1) cocceceececenen.n The SI (06), SI (05), SI (01) input
status is assigned to variable A% (when
all the above signals are "1" (ON), A% = 7).

A%=SI(37,35,27,10) e The SI (37), SI (35), SI (27) SI(10) input status
is assigned to variable A% (when all the above
signals except SI (27) are "1" (ON), A% = 13).

8-200 @ Chapter 8 Robot Language Lists

SID

Acquires a specified serial input's double-word information

LET SID(m)
m: port number...................... 2,4,6,8,10,12, 14

SYYELEGDN) Acquires the value at the SID port specified by "m".
The acquisition range is -2,147,483,648 (&H80000000) to 2,147,483,647 (&H7FFFFFFF).

e The information is handled as signed double word data.

¢ "0" is input if the specified port does not exist.

e The lower port number data is placed at the lower address.
For example, if SIW(2) =&H2345,SIW(3) =&HO0001, then SID(2) =&H00012345.

SAMPLE

AZ=SID(2) ccceeeeeectceennen The input status of SIW(2), SIW(3) is

assigned to variable A%.
A%=STID(14) +cccceeceeceecceneens The input status of SIW(14), SIW(15)

is assigned to variable A%.

Related commands RS\

SID @ 8-201 I

SIN

Acquires the sine value for a specified value

SIN (expression)

EXPresSioN.......ocuvvvieiiiienne, Angle (units: radians)

SYJELEND) This function gives the sine value for the <expression> value.

A(0)=SIN(B*2+C) +ccvveeecceceeenn Assigns the expression B*2+C sine
value to array A (0).

A(1l)=SIN(DEGRAD(30)) == cce---- Assigns a 30.0° sine value to array A
(1) .

SEIEICO N nlnEle ATN, COS, DEGRAD, RADDEG, TAN

I 8-202 @ Chapter 8 Robot Language Lists

SIW

Acquires a specified serial input's word information

LET SIW (m)
m: port number...................... 2to 15

SRUELEGDN) Acquires the value at the SIW port specified by "m".
The acquisition range is 0 (&H0000) to 65535 (&HFFFF).

e The information is handled as unsigned word data

¢ "0" is input if the specified port does not exist.

SAMPLE

AF=STW(2) = ceeeeeeeonnnanaeeeenn The input status of SIW (2) is assigned

to variable A%.
AS=STIW (L15) ccccevceeceencencnn. The input status of SIW (15) is
assigned to variable A%.

Related commands [siIn]

SIW @ 8-203 I

117 By

Defines the shift coordinates in the program

Sn = Xy zZ«r

Nl e 0to39

DO -99,999.99 t0 99,999.99

M NOTE [BYJEUETTN) Defines shift coordinate values in order to shift the coordinates for robot movement.
*All input values are Only "mm" units can be used for these coordinate values ("pulse" units cannot be

handled as constants.

used).

e |f the controller power is

turned off during execution o)

of a shift coordinate 1. "n"indicates the shift number.

definition statement. a 2. The "x" to "r" input data must be separated with spaces (blanks).

memory-related error 3. The "x" to "r" inout data i ized as "mm" unit dat

such as "9.706: Shift data . e xtwor lnpu ata 1s I‘eCOgnlze as ‘'mm- uni ata.

destroyed" may occur. 4. "x" to "z" correspond to the Cartesian coordinate system's X, y, z coordinate shift

values, and "r" corresponds to the xy coordinates' rotational shift values.

S0 = 0.000 0.000 0.000 0.000

S1 = 100.000 200.000 50.000 90.000

P3 = 100.000 0.000 0.000 0.000 0.000 0.000
SHIFT SO

MOVE P, P3

SHIFT S1

MOVE P, P3

HALT

REIEIC NIl El Shift assignment statement, SHIFT

I 8-204 @ Chapter 8 Robot Language Lists

SO

Outputs a specified value to serial port or acquires the output status

1. LET SOm(b,:-:,b) =expression
2. LET SO (mb, ---,mb) =expression

m: port numberc..cc..... 2to7,10to 17,20to 27
b: bit definition.........ccccveveee. 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).

Outputs a specified value to the SO port.
A CAUTION

Only the <value> data's integer-converted lower bits corresponding to the bits
e Qutputs to SOO0() and

SO1(Q are not possible. defined at the left side can be output.

If the port which does not exist is specified, nothing is output.

@

*For bif setfting defails, G0 () =SBILOIAIE00 cooonoacooasoco SO (27, 25, 24, 23) are turned ON, and
refer to Chapter 3 "10 Bif , o ol
Settings". SO (26, , , 20) are turned OFF.
S02(6,5,1)=&B010 e, SO (25) are turned ON, and SO (26, 21)
are turned OFF.
SO3 ()=15 W e SO (33, 32, 31, 30) are turned ON, and
SO (37, 36, 35, 34) are turned OFF.
SO(37,35,27,20)=A « e The lower 4 bits of integer-converted
variable A are output to SO (37, 35,
27, 20).

REIEICo N nlElsleEll RESET, SET

SO @ 8-205 I

TN <

l Functions

LET SOm (b, ::-,b)
LET SO (mb, ---,mb)

m: port numbercccoccee. Oto7,10to 17,20to 27
b: bit definition...................... 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the
left in descending order (high to low).

BYJELENT) Indicates SO port output status.

A%= SO02 () ceeceer ettt Output status of ports S0(27) to
S0 (20) is assigned to variable A%.

A%= SO0(6, 5, 1) ccvcevecceeeennn. Output status of SO(06), SO(05) and
SO(01) is assigned to variable A%.
(If all above signals are 1(ON), then
A%=T7.)

A%= SO(37,35,27,10) =cccveeeeeen. Output status of S0 (37),
SO (35) , SO0(27) and S0(10)
is assigned to variable A%.
(If all above signals except S0(27)
are 1 (ON), then A%=13.)

REIE GO N I -lsle bl RESET, SET

8-206 @ Chapter 8 Robot Language Lists

SOD

Outputs a specified serial output's double-word information or acquires the output status

LET SOD(m)=expression

m: port number...................... 2,4,6,8,10,12, 14

SRUELEGDN) Outputs the value to the SOD port specified by "m".
The output range is -2,147,483,648 (&H80000000) to 2,147,483,647 (&H7FFFFFFF).

e The information is handled as signed double word data.

e If a serial port does not actually exist, the information is not output externally

e The lower port number data is placed at the lower address.
For example, if SOW(2) =&H2345,SOW(3) =&H0001, then SOD(2) =&H00012345.

SOD(2)=&H12345678 «cccccecececn. Outputs &H12345678 to SOD(2) .

SOD(4)=1048575 e, Outputs 1048575 (&HFFFFF) to SOD(4) .

SOD(2) =A% c e Outputs the wvalue of wvariable A% to n
SOD(2) .

I Functions

LET SOD (m)
m: port number.......c..ccceeeee. 2,4,6,8,10,12, 14

Acquires the SOD port output status specified by "m".

SAMPLE

AZ=SOD(2) ettt The output status of SOD(2) is assigned

to variable A%.

REIEICTO NI nInERGEN SOW

SOD @ 8-207 I

SOW

Outputs a specified serial output's word information or acquires the output status

LET SOW (m)=expression

m: port numberc....... 2to 15

Outputs the value to the SOW port specified by "m".
The output range is 0 (&H0000) to 65535 (&HFFFF).
Note that if a negative value is output, the low-order word information will be output
after being converted to hexadecimal.
Example: SOW(2)=-255
The contents of -255 (&HFFFFFFOT) are assigned to SOW (2).
-255 is a negative value, so the low-order word information (&HFFOT) is assigned.

e The information is handled as unsigned word data.

e If a serial port does not actually exist, the information is not output externally.

e If a value exceeding the output range is assigned, the low-order 2-byte information is output.

SOW (2) =&HO00L ccccvcvevecceeeennn. Outputs &HO0001 to SOW(2) .
SOW (3) =255 e Outputs 255 (&HOOFF) to SOW(3) .
SOW(15)=A% -ccccccceceeccccccnn. The contents of variable A% are

assigned in SOW (15). If the variable
A% value exceeds the output range, the
low-order word information will be

assigned.

l Functions

LET SOW (m)
m: port number.......c.ccocceeee 2to 15

Acquires the SOW port output status specified by "m".

AZ=SOW (2) =c et veeeeeceteennnnns The output status of SOW (2) 1is

assigned to variable A%.

REEICO N InInERGEN SOW

I 8-208 @ Chapter 8 Robot Language Lists

SPEED

Changes the program movement speed

SPEED = [robot number] expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPression...........ccccoeeeeueenne.. 1 to 100 (units: %)
M NOTE SYYENEGD) Changes the program movement speed to the value indicated by <expression>.

This speed change applies to all robot axes and auxiliary axes of the specified robot.
¢ Aufomatic movement speed

Specified by programming

box operation or by the The operation speed is determined by multiplying the automatic movement speed
ASPEED command. (specified from the programming box and by the ASPEED command), by the program
* Program movement speed movement speed (specified by SPEED command).

Specified by SPEED
commands or MOVE, DRIVE
speed options.

Operation speed = automatic movement speed x program movement speed
Example:
Automatic movement speed ... 80%
Program movement speed ... 50%
Movement speed = 40% (80% x 50%)

SAMPLE

ASPEED 100 s Changes the Automatic movement speed
of robot 1 to 100%

SPEED 70 @+ Changes the Program movement speed of
robot 1 to 70%

MOVE P,PO -« e eeeeneneaeenn Moves robot 1 from current position to
PO at a speed of 70% (=100 x 70).

SPEED 50 @ st Changes the Program movement speed of
robot 1 to 50%

MOVE P, Pl cccceeeeecteennnnee. Moves robot 1 from current position to
Pl at a speed of 50% (=100 x 50).

MOVE P,P2, S=10 ++ccceveeccncecnn. Moves robot 1 from current position to

P2 at a speed of 10% (=100 x 10).
HALT

Related commands EEASI=Sb]

SPEED @ 8-209

SQR

Acquires the square root of a specified value

SOR (expression)

EXPresSioN........c..cccueeueeeneen.. 0 or positive number.

BYJENEID) Gives the square root of the <expression> value. An error occurs if the <expression>

value is a negative number.

A=SQR (X"24Y"2) + s e eeeecereennnnn. The square root of X"2+Y"2 is assigned

to variable A.

8-210 @ Chapter 8 Robot Language Lists

START

Starts a new task

START <program name> ,Tn, p
PGm
m: Program number 1to 100
n: Task number 1to16
p: Task priority ranking 1to 64

BUJENEGDNYY Starts task “n” specified by the program with the “p” priority ranking.
If task number “n” is omitted, the task with the smallest number among the tasks yet
to be started is automatically specified.
If a priority ranking is not specified, "32" is adopted as the priority ranking for this
task.
The smaller the priority number, the higher the priority (high priority: 1 < low
priority: 64).
When RUNNING status occurs at a task with higher priority, all tasks with lower
priority also remain in READY status.
The program name must be enclosed in < > (angle brackets).

SAMPLE

START <SUB_PGM>,T2,33
SIS s
MOVE P, PO, P1
GOTO *ST
HALT

Program name:SUB_PGM
‘*SUBTASK ROUTINE
*SUBTASK:
P100 = WHERE
IF LOCZ(P100) > 10000 THEN
DO(20) =1
ELSE
DO(20) = 0
ENDIF
GOTO *SUBTASK
EXIT TASK

SEIEICO N ninEREN CUT, EXIT TASK, RESTART, SUSPEND, CHGPRI

START @ 8-211 I

STR$

Converts a numeric value to a character string

STRS (expression)

BYJELENN) Converts the value specified by the <expression> to a character string. The

<expression> specifies an integer or real value.

B$S=STRS$ (10.01)

Related commands RS

I 8-212 @ Chapter 8 Robot Language Lists

SUB to END SUB

Defines a sub-procedure

SUB label (dummy argument, dummy argument...)

command block
END SUB

SUYENEGDN) Defines a sub-procedure.

The sub-procedure can be executed by a CALL statement. When the END SUB
statement is executed, the program jumps to the next command after the CALL
statement that was called. Definitions are as follows.

1. All variables declared within the sub-procedure are local variables, and these are
valid only within the sub-procedure. Local variables are initialized each time the
sub-procedure is called up.

Use a SHARED statement in order to use global variables (program level).
Use a <dummy argument> when variables are to be passed on. If two or more
dummy arguments are used, separate them by a comma (,).

4. A valid <dummy argument> consists of a name of variable and an entire array

(array name followed by parentheses). An error will occur if array elements (a
<subscript> following the array name) are specified.

e Sub-procedures cannot be defined within a sub-procedure.

e A label can be defined within a sub-procedure, but it cannot jump (by a GOTO or GOSUB
statement) to a label outside the sub-procedure.
e Local variables cannot be used with PRINT and SEND statements.

A=1
CALL *TEST
PRINT A
HALT
’SUB ROUTINE: TEST
SUB *TEST
A=50 = et Handled as a different variable than

the "A" shown above.
END SUB

e In the above example, the program level variable "A" is unrelated to the variable "A" within the

sub-procedure. Therefore, the value indicated in the 3rd line PRINT statement becomes "1".

SUB to END SUB @ 8-213 I

m SUB to END SUB

X% = 4
Y% = 5
CALL *COMPARE(REF X%, REF Y%)
PRINT X%, Y%
2% =7
W = 2
CALL *COMPARE(REF Z%, REF W%)
PRINT Z%,W%
HALT
'SUB ROUTINE: COMPARE
SUB *COMPARE(A%, B%)
IF A% < B% THEN

TEMP% = A%

A% = B%

B% = TEMP%
ENDIF

END SUB

e In the above example, different variables are passed along as arguments to call the sub-

procedure 2 times.

REIEIC NIl CALL, EXIT SUB, SHARED

8-214 @ Chapter 8 Robot Language Lists

SUSPEND

Temporarily stops another task which is being executed

SUSPEND Tn

<program name>

PGm
n: Task number 1to16
m: Program number 1to 100

Temporarily stops (suspends) another task which is being executed. A task can be
specified by the name or the number of a program in execution.
This statement can also be used for tasks with a higher priority ranking than this task
itself.
The program name must be enclosed in < > (angle brackets).

e If a task (program) not active is specified for the execution, an error occurs.
SAMPLE

START <SUB_PGM>, T2
SUSFLG=0
10 8
MOVE P, PO
MOVE P, P1
WAIT SUSFLG=1
SUSPEND T2
SUSFLG=0
GOTO *LO
HALT

Program name:SUB_PGM
" SUBTASK ROUTINE
*SUBTASK :
WAIT SUSFLG=0
D02 (0)=1
DELAY 1000
DO2 (0) =0
DELAY 1000
SUSFLG=1
GOTO *SUBPGM
EXIT TASK

REIEIC N IR CUT, EXIT TASK, RESTART, SUSPEND

SUSPEND @ 8-215

Pra SWI

Switches the program being executed

SWI <program name>

This statement switches from the current program to the specified program, starting
from the first line.
Although the output variable status is not changed when the program is switched, the
dynamic variables and array variables are cleared.
The program name must be enclosed in < > (angle brackets).

e If the program specified as the switching target does not exist, a "3.203: Program doesn't exist"
(code: &H0003 &HOOCB) error occurs and operation stops.

SWI <ABC> +cevteeeeencaneennnnn Switches the execution program to

n —

I 8-216 @ Chapter 8 Robot Language Lists

TAN

Acquires the tangent value for a specified value

TAN (expression)

EXPIesSiON..........ccccveveuieunnnns Angle (units: radians)

BUJENEGD) Gives a tangent value for the <expression> value. An error will occur if the

<expression> value is a negative number.

A(0)=B-TAN(C) ccccccccccccccccc.. The difference between the tangent
values of variable B and variable C is
assigned to array A (0).

A(1)=TAN(DEGRAD(20)) ==t vccen- The 20.0° tangent value is assigned to
array A (1).

REIEIC RN ATN, COS, DEGRAD, RADDEG, SIN

TAN @ 8-217

TCOUNTER

Timer & counter

TCOUNTER

BYJELETI) Outputs count-up values at Tms intervals starting from the point when the
TCOUNTER variable is reset.
After counting up to 2,147,483,647, the count is reset to 0.

MOVE P, PO

WAIT ARM

RESET TCOUNTER

MOVE P, P1

WAIT ARM

A = TCOUNTER

PRINT TCOUNTER =« ccceeccecceenen Displays the PO to Pl movement time
until the axis enters the tolerance

range on the programming box.

Related commands JEzISSI=N

8-218 @ Chapter 8 Robot Language Lists

TIMES$

Acquires the current time

TIMES

BYJENEGD) Acquires the current time in an hh:mm:ss format character string. "hh" is the hour,
"mm" is the minutes, and "ss" is the seconds. The clock can be set in the SYSTEM
mode's initial processing.

SAMPLE

AS=TIMES$
PRINT TIMES

REEICEO Nt DATES, TIMER

TIME$ @ 8-219 I

TIMER

Acquires the current time

A\ caution | fmat

TIMER

*The fime indicated by
the internal clock may
differ somewhat from the
actual fime.

Acquires the current time in seconds, counting from midnight. This function is used to
measure a program's run time, etc.
The clock can be set in the SYSTEM mode's initial processing.

A%=TIMER

FOR B=1 TO 10

MOVE P, PO

MOVE P, Pl

NEXT

A%=TIMER-A%

PRINT A%/60;" ";A% MOD 60
HALT

REEICO NI nintElel TIMES

I 8-220 @ Chapter 8 Robot Language Lists

TO

Outputs a specified value to the TO port or acquires the output status

1. LET TOm(b,:-:,b) =expression
2. LET TO (mb, ---,mb) =expression

Values m: port number

b: bit definition

0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).

Outputs the specified value to the TO port. The output value is the <expression>'s
integer-converted lower bits corresponding to the bit definition specified at the left
side.

The OFF/ON settings for bits which are being used in a SEQUENCE program have
priority while the SEQUENCE program is running.

SAMPLE

TOO () = &B00000110

I Functions

LET TOm (b, ::-,b)
LET TO (mb, ---,mb)

m: port number 0,1

b: bit definition.........cccccuve.... 0 to 7 (If omitted, all 8 bits are processed.)
If multiple bits are specified, they are expressed from the
left in descending order (high to low).

BRUENEGDN) Indicates the parallel port signal status.

SAMPLE

A%= TOO () ceeeee e Output status of ports TO(07) to
TO(00) is assigned to variable A%.

A%= TOO(6, 5, 1) e Output status of TO(06), TO(05) and
TO(01) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)

A%S=TO (17, 15, 00) +cceoceeceeceeno. Output status of TO0(17), TO(1l5) and
TO(00) is assigned to variable A%.
(If all above signals except TO0(15)
are 1 (ON), then A%=5.)

Related commands EEzISSISINSI=S)

TO @ 8-221 I

TOLE

Specifies/acquires the tolerance parameter

1. TOLE [robot number] expression

2. TOLE [robot number] (axis number) =expression

robot number 1 to 4 (If not input, robot 1 is specified.)
axis number 1t0o6
EXPression.................. Varies according to the motor which has been specified (unit: pulse)

Change the "tolerance" parameter of the specified axis to the <expression> value (unit:
pulse).
Format 1: The change is applied to all axes of the specified robot.
Format 2: The change is applied to only the axis specified by the <axis number> of
the specified robot.

e This statement is executed after positioning of the specified axes is complete (within the tolerance range).

l Functions

TOLE [robot number] (axis number)

robot number 1 to 4 (If not input, robot 1 is specified.)
axis numberc..ccccc..... 1t06

SUUETELIN) Acquires the "tolerance" parameter values for the axis specified by <axis number>.

'CYCLE WITH DECREASING TOLERANCE
DIM TOLE(5)
FOR A=200 TO 80 STEP -20

GOSUB *CHANGE_TOLE

MOVE P, PO
MOVE P, P1
NEXT A
C=TOLE (2) s eeccenecce. The tolerance parameter of axis 2 of robot 1
is assigned to variable C.
HALT

*CHANGE_TOLE:
FOR B=1 TO 4
TOLE (B) =A
NEXT B
RETURN

8-222 @ Chapter 8 Robot Language Lists

TORQUE

Specifies/acquires the maximum torque command value

/\ cauTioN

o |f the specified forque
limit is too small, the axis
may not move. Never
enter within the robot
movement range to avoid
danger even though the
roboft is in stop status.
In this case, press the
emergency stop bufton
before proceeding with
the operation.

If the specified value
is less than the rated
torque, an error may not
occur even if the robot
strikes an obstacle.

TORQUE = [robot number] (axis number) =expression
robot number 1 to 4 (If not input, robot 1 is specified.)
axis NUMDBErcccccveeevenn... 1to6
EXPression...........cccocveeeueenn... 1 to 100 (units: %)

BRJENEGD) Changes the maximum torque command value of the specified axis to the
<expression> value. The new value is valid when the next movement command

(MOVE or DRIVE statement, etc.) is executed. The parameter value does not change.

The conditions to cancel a torque limit are as follows.

e The TORQUE command for the same axis is executed.

e The controller power turned off and then on again.

e The axis polarity parameter is changed or the parameter is initialized.

e The servo is turned off.

The maximum torque command value becomes temporarily invalid in execution
below.

e Return- to-origin is in execution.

e The PUSH statement is in execution.

(only the torque value in the moving direction is changed to the value specified by
the PUSH statement, the value in the opposite direction is hold and not changed.)

After these movements, the value backs to the maximum torque command value
when a next movement command (MOVE statement, for example) is executed.

e The TORQUE statement limits the torque in the both (rotation and opposite) direction of axis,
whereas the PUSH statement limits the torque in its rotation direction only.

l Functions

TORQUE = [robot number] (axis number)
robot number......................... 1 to 4 (If not input, robot 1 is specified.)
axis NUMDBErcccccuveeevenn... 1to6

SUJENEGNN) Acquires the maximum torque command value for the axis specified by <axis

number>.

TORQUE @ 8-223 I

m TORQUE

TORQUE (1) = 50 ccccceeeeeeeeee.. Changes the max. torque of axis 1 of
robot 1 to 50%.
DRIVE (1,Pl) e eeeeeeeenanann. Moves the axis 1 of robot 1 from its

current position to the point specified
by P1.
(Changes the max. torque at the same
time with the start of the movement.)
WAIT ARM = scctseeeveccteenneens Waits for the completion of an
operation of axis 1 of robot 1.
TORQUE (1) = 100 «cccceeeeeeeee.. Returns the max. torque of axis 1 of
robot 1 to the original value (100%) .
MOVE P,P0 ccccceeceeceeeeencen. Moves the robot 1 from its current position
to the point specified with PO.
(Returns the max. torque of axis 1 to
the original value (100%) at the same

time with the start of a movement.)

REEICONenntERENl CURTRQ, PUSH

8-224 @ Chapter 8 Robot Language Lists

TSKPGM

Acquires the program number which is registered in a specified task number

TSKPGM (task number)

task numbercccoc.... Task number which acquires the program number

Acquires the program number which is registered in the task specified by the task

number.
A=TSKPGM (1) «cccceeeeeeceeeeeneee. Assignes a program number registered

in task 1 to variable A.

REIEICO N el PGMTSK, PGN

TSKPGM @ 8-225 I

VAL

Converts character strings to numeric values

VAL (character string expression)

Converts the numeric value of the character string specified in the <character string
expression> into an actual numeric value.
The value may be expressed in integer format (binary, decimal, hexadecimal), or real
number format (decimal point format, exponential format).
The VAL value becomes "0" if the first character of the character string is "+", "-", "&"
or anything other than a numeric character.
If there are non-numeric characters or spaces elsewhere in the character string, all
subsequent characters are ignored by this function.
However, for hexadecimal expressions, "A" to "F" are considered numeric characters.

Hexadecimal number.................... &Hnnnn

Decimal number......... ..nnnn

Binary number&Bnnnn
Decimal point.........ccccocevivencnene. nnn.nnn
Exponents...........ccccooiii nnEmm

A=VAL ("&B100001")

8-226 @ Chapter 8 Robot Language Lists

WAIT

Waits until the conditional expression is met

WAIT conditional expression , expression

EXPressioN.........ccoevvvcuniiinnnnn. 0to 2147483647 (units: ms)

BRYENEGDN) Establishes "wait" status until the condition specified by the <conditional expression>
is met. Specify the time-out period (unit: ms) in the <expression>.
This command terminates if the time-out period elapses before the WAIT condition is
met. The minimum wait time is Tms but changes depending on the execution status
of other tasks.

e When the conditional expression is a numeric expression, an expression value other than "0"

indicates TRUE status, and "0" indicates FALSE status.

SAMPLE

WATIT A=10 ccccceeeeeeecteennnn. Wait status continues until variable A

becomes 10.

WAIT DI2()=&B01010110 «=«:vcvcv-- Waits until DI(21),(22),(24),(26) are
turned on, and DI(20), (23), (25), (27) 1is
turned off.

WAIT DI2(4,3,2)=&B101 «-«cccceee.. Waits until DI(22) and DI (24) are
turned on, and DI(23) is turned off.

WAIT DI(31)=1 OR DO(21)=1 «-«----- Wait status continues until either DI
(31) or DO(21) turns ON.

WAIT DI(20)=1,1000 e ceeeenenn Wailt status continues until DI(20) turns

ON. If DI(20) fails to turn ON within 1

second, the command is terminated.

REIEICHONe e DRIVE, DRIVEI, MOVE, MOVEI, MOVET

WAIT @ 8-227

WAIT ARM

Waits until the robot axis operation is completed

WAIT ARM [robot number] (axis number)

robot number 1 to 4 (If not input, robot 1 is specified.)
axis NUMDEr...........cccocevcuin. 1 to 6 (* Multiple axes not specifiable
e If not input, all axes are specified.)

SUETELING) Establishes "wait" status until the axis movement is completed (is positioned within
the tolerance range).

WATIT ARM =~ ccocceeceeceeceeneens Waits for the movement completion of
robot 1.
WAIT ARM[2] (2) ccceeeeeeeeceeeenn Waits for the movement completion of

axis 2 of robot 2.

REIEIC Ryl DRIVE, DRIVEI, MOVE, MOVEI, MOVET

I 8-228 @ Chapter 8 Robot Language Lists

WEIGHT

Specifies/acquires the tip weight parameter

WEIGHT [robot number] expression

robot number......................... 1 to 4 (If not input, robot 1 is specified.)
EXPIeSSION.......cvvueeuieiaiainnns The range varies according to the robot which has
been specified.

BOIENELING) Changes the "tip weight" parameter of the robot to the <expression> value.
This change does not apply to auxiliary axes.

I Functions

WEIGHT [robot number]

robot number 1 to 4 (If not input, robot 1 is specified.)

m Acquires the "tip weight" parameter value of the robot specified by <robot number>.

A=5

B=2

C=WEIGHT @+ s cccceeeoncnccennnn The tip weight parameter of robot 1 is
assigned to variable C.

WEIGHT A ccccccecceeceeeennn The tip weight parameter of robot 1 is
changed to value (5) of variable A.

MOVE P, PO

WEIGHT B = cccecevcceeccnceneenn The tip weight parameter of robot 1 is
changed to value (2) of variable B.

MOVE P, P1

WEIGHT C @ cecccccccceecccecnnnn The tip weight parameter of robot 1
is replaced to the origin value (the
value of variable C).

D=WEIGHT @ cccccccecceeccnccnn.n The tip weight parameter of robot 1 is
assigned to variable D.

HALT

WEIGHT @ 8-229

WEND

Ends the WHILE statement's command block

WHILE conditional expression

command block
WEND

BYJELEND) Ends the command block which begins with the WHILE statement. A WEND
statement must always be paired with a WHILE statement.
Jumping out of the WHILE to WEND loop is possible by using the GOTO statement,
etc.

A=0
WHILE DI3(0)=0
A=A+1
MOVE P, PO
MOVE P, P1
PRINT "COUNTER=";A
WEND
HALT

Related commands ERWglIRS

I 8-230 @ Chapter 8 Robot Language Lists

WHERE

Acquires the arm's current position (pulse coordinates)

WHERE @ [robot number]

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

BRYELEGDN) Acquires the arm’s current position in the joint coordinates.

SAMPLE

P1O=WHERE ¢t toeeeeeccconnnn. The current position's pulse coordinate

value of robot 1 is assigned to P10.

Related commands ERWizl3%.4%

WHERE @ 8-231 I

WHILE to WEND

Repeats an operation for as long as a condition is met

WHILE conditional expression

command block
WEND

BOIENEGD) Executes the command block between the WHILE and WEND statements when the
condition specified by the <conditional expression> is met, and then returns to the
WHILE statement to repeat the same operation.
When the <conditional expression> condition is no longer met (becomes false), the
program jumps to the next command after the WEND statement.
If the <condlitional expression> condition is not met from the beginning (false), the
command block between the WHILE and WEND statements is not executed, and a
jump occurs to the next statement after the WEND statement.
Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

¢ When the conditional expression is a numeric expression, an expression value other than "0"

indicates TRUE status, and "0" indicates FALSE status.

SAMPLE 1

A=0
WHILE DI3 (0)=0

A=A+1

MOVE P, PO

MOVE P, P1l

PRINT "COUNTER=";A
WEND

\A/ HALT

A=0
WHILE -1 cccc e Becomes an endless loop because the
conditional expression 1is always TRUE
(other than 0).
A=A+1
MOVE P, PO
IF DI3(0)=1 THEN *END
MOVE P, P1

PRINT "COUNTER=";A

IF DI3(0)=1 THEN *END
WEND
*END
HALT

8-232 @ Chapter 8 Robot Language Lists

WHRXY

Acquires the arm's current position in Cartesian coordinates

WHRXY = [robot number]

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

SRJENEGD) Acquires the arm’s current position in the Cartesian coordinates.

SAMPLE

PI1O=WHRXY e ccececeeccecenn . The current position Cartesian
coordinate value of robot 1 is assigned
to P10.

Related commands ERWgl=a1S

WHRXY @ 8-233

XYTOJ

Converts the Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

XYTOJ [robot number] (point expression)

robot number......................... 1 to 4 (If not input, robot 1 is specified.)

BYJELEND) This function converts the Cartesian coordinate data (unit: mm, deg.) specified by the
<point expression> to the joint coordinate data (unit: pulse) of the robot specified by
the <robot number>.

e When the command is executed, the data is converted based on the standard
coordinates, shift coordinates and hand definition that were set.

* On SCARA robots, the converted result differs depending on whether right-
handed or left-handed is specified.

e To convert joint coordinate data to Cartesian coordinate data, use the JTOXY

statement.
P10=XYTOJ (P10) ++ccvvvennncneeeeenn P10 is converted to joint coordinate

data of robot 1.

I 8-234 @ Chapter 8 Robot Language Lists

Chapter 9
PATH Statements

A W N =

OVEIVIEW ... e -
Features......... s -
How fo USe.......ccceiiiiiee e -
Cautions when using this function

_ Overview

This function moves the robot at a specified speed along a path composed of linear and circular

segments. Because speed fluctuations during movement are minimal, the PATH function is ideal for
applications such as sealing, etc.

n Features

= Moves the robot at a constant speed along the entire movement path (except during acceleration

from a stop, and during deceleration just prior to the operation end).

= Permits easy point teaching because the robot speed is not affected by the point teaching
positions' level of precision.

= Permits movement speed changes for the entire movement path, or speed changes for only one
portion of the path (using the speed option).

= Using the DO option permits signal outputs to a specified port at any desired position during
movement.

“ How to use

The following robot language commands must be used as a set in order to use the PATH function.

B PATH SET .o Starts path setting.

= PATH (PATH L, PATCH C) ooovveiiiiiices Specifies the path to be used.

B PATHEND ..o, Ends path setting.

B PATH START ..ot Starts actual movement along the path.

As shown below, the motion path is specified between the PATH SET and PATH END statements.
Simply specifying a path, however, does not begin robot motion.

Robot motion only occurs when the PATH START statement is executed after the path setting
procedure has been completed.

SAMPLE

MOVE P, PO0,z=0

PATH SET = ccccceeeceeccceenn Start of robot 1's path setting
PATH L,P1,DO(20)=1@10.0

PATH L, P2

PATH C,P12,P13

PATH L,P14,D0O(20)=0@20.0

PATH END = s et teceeeeccceennnn End of robot 1's path setting
MOVE P,P1l,Z=0

MOVE P, P0,Z=0
PATH START s s cccceeeeeecccennnnn Path motion of robot 1 is executed
HALT

Overview @ 9-1 I

Cautions when using this function

= Paths may comprise no more than 1000 points (total) linear and circular segments. 1 point forms 1
linear segment by PATH L command and 2 points form 1 circular segment by PATH C command.

Number of points specified by PATH C
2

Number of points specified by PATHL 4 = 1000

= The robot must be positioned at the path start point when PATH motion is executed (by PATH
START statement).

= At points where circular and linear segments connect, the motion direction of the two connecting
segments should be a close match (as close as possible). An excessive difference in their motion
directions could cause vibration and robot errors.

Circular and linear segment connection point:

if there is a large difference between the motion directions of the connecting segments

Good example Poor example

= Where a linear segment connects to another linear segment, the motion path passes to the inner
side of the connection point. Moreover, as shown in fig. (1) below, the faster the speed, the
further to the inner side the path becomes. To prevent significant speed-related path shifts, add
more points as shown in fig. (2). Note also, that in some cases, the speed may have to be reduced
in order to prevent errors from occurring.

Linear segments connection point: Prevents a deviation

K / Low speed Increase the number q

High speed of points N\, =

)

= [f an error occurs due the robot's inability to move at the specified speed:
Robot acceleration/deceleration occurs if the speed setting is changed when PATH motion begins,
stops, or at some point along the path. At such times, an error may occur before motion begins if the
distance between points is too short for the specified speed to be reached. In such cases, a slower
speed must be specified. If the error still occurs after the speed is lowered, adjust the PATH points to

increase the length of the linear or circular segments which contain acceleration or deceleration zones.

= The hand system used during PATH motion must be the same as the hand system used at the
path's start point. The same applies if the path is to pass through points where hand flags are set.
Differing hand systems will cause an error and disable motion.

= The first arm and second arm rotation information during PATH movement must be the same as
the first arm and second arm rotation information at the PATH movement's START point. If the
two are different, an error will occur and movement will be disabled.

= |f the robot is stopped by a stop signal, etc., during PATH motion, this is interpreted as an execution
termination, and the remaining path motion will not be completed even if a restart is executed.

I 9-2 @ Chapter 9 PATH Statements

Chapter 10

Data file description

1 LO3V/=1 oV 1= 10-1
2 Program file.........ccciiiiiiiiiiiciieeeeece 10-3
3 Pointfile.....oooooo e 10-5
4 Point commentfileccccoovrrreennnnnnn. 10-8
5 Pointnamefile........ccccooiiiiiiiinieennnnne. 10-10
6 Parameter file........cccccriiiiiiiiieereneeeee, 10-12
7 Shift coordinate definition file.............. 10-16
8 Hand definition fileccccocrrrernnnne. 10-18
9 Pallet definition fileccccocceceerreenneen. 10-20
10 General Ethernet portfile 10-24
11 Input/output name file............cccccccccc. 10-26
12 Area check output file..........ccccceeeee 10-30
13 Allfile . 10-32
14 Program directory filecccccoeenne. 10-34
15 Parameter directory file..........c......... 10-36
16 Machine reference file............ccccuuuueee 10-37
17 System configuration information file 10-39
18 Version information file 10-40

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Option boardfileccccceeeieiiiiiicnnnn. 10-41

Self check fileccceerrviicccceeeeeeeee, 10-42
Alarm history file.......ccccccververeerinenennn. 10-43
Remaining memory size file................ 10-45
Variable file.......ccccvieiiieeccceeereeeeee 10-46
Constant file ... 10-52
Array variable file.........cccccvvereineeenn. 10-53
D] 11 1= 10-55
DO il 10-57
V(@ 11 1= 10-59
LO file ... 10-61
TOfil€ oo 10-63
SHfile...ieiiee e 10-65
CTO I 1| = 10-67
SIW ile oo 10-69
SOWIile ..., 10-71
EOF file.....oeeeeeeee e 10-73
Serial port communication file............ 10-74
Ethernet port communication file........ 10-75

_ Overview
1.1

. B Data file types

This section explains data files used with a SEND statement and READ/WRITE online commands.
There are 36 different types of data files.

Definition Format Read-)
Type File Name — - Write
All Individual File out
User All file ALL v v
<bbbbbbbb>
Program PGM PGn v v
Point PNT Pn v v
Point comment PCM PCn v v
Point name PNM PNn v v/
/cceeeeece!/
Parameter PRM #cceceeec# v v
\ccceeeee\
Shift definition SFT Sn v v
Hand definition HND Hn v v
Pallet definition PLT PLn v v
General Ethernet Port GEP GPn v v
Input/output name ION iNMn(n) v v
Area check output ACO ACn v v
Variable Variable VAR ab...by v v
' | Array variable ARY ab...by(x) v/ v
Constant

Constant E— “cc...c” v -
Status Program directory DIR <<bbbbbbbb>> v -
Parameter directory DPM v/ -
Machine reference sensor, stroke-end | MRF E— v -
mark ARP — v -
System configuration information CFG — v -
Version information VER —_— v -
Option board OPT —_— v/ -
Self check SCK —_— v -
Alarm history LOG — v -
Remaining memory size MEM v -
Device | DI port DI() DIn() v -
DO port DO() DOn() v v
MO port MO() MOn() v v
TO port TO() TON() v v
LO port LO() LON() v v
Sl port SIK() Sin() v -
SO port SO() SOn() 4 v
SIW port SIW() SIWn() v/ -
SOW port SOW() SOWNn() v v
RS-232C CMU v v
Ethernet ETH —_ v v
Other File END code EOF v/ -

n: Number a: Alphabetic character b: Alphanumeric character or underscore (_)

c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type
i Input/output type
v/ Permitted —: Not Permitted

Overview @ 10-1 I

1.2 I Cautions

Observe the following cautions when handling data files.

= Only one-byte characters can be used.

= All data is handled as character strings conforming to ASCII character codes.

= Only upper-case alphabetic characters may be used in command statements (lower case
characters are prohibited).

= Line lengths must not exceed 255 characters.

= A [cr/lf] data format designation indicates CR code (ODh) + LF code (0Ah).

= The terms "reading out" and "writing" used in this manual indicate the following data flow;
Reading out: Controller — external communication device

Writing: External communication device — controller

I 10-2 @ Chapter 10 Data file description

n Program file

2.1 B Al programs

Read-out v/ | When used as a read-out file, all programs currently stored are read out.

Write files are registered at the controller under the program name indicated
at the "NAME = program name" line.

PGM

Write v

¢ Expresses all programs.
e If there is a specification of a program number in the case of a write file, the new

program overwrites.

e If the program number is omitted in the case of a write file, the assignment is made to
the smallest free number. If there are programs with the same name and with different
program numbers, the older program is deleted.

DATA FORMAT

NAME = program name [cr/1f]
PGN=mmm [cr/1f]
aaaaa ...aaaaaaaaaaaaaalcr/1f]

aaaaa ...aaaaaaaaaaaaaalcr/1f]

NAME = program name [cr/1f]
PGN=mmm [cr/1f]

aaaaa ...aaaaaaaaaaaaaalcr/1f]
aaaaa ...aaaaaaaaaaaaaalcr/1f]
[cr/1f]
A e Character code
MMM Lo Program number: 1 to 100

= Program names are shown with 32 characters or less consisting of alphanumeric characters and
_ (underscore).
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PGM TO CMU -« e eeeccceennn Outputs all programs from the
communication port.

Response:

RUN [cr/1f]

NAME=TEST [cr/1f]
PGN=1[cr/1f]

PGN=1

A=1l[cr/1f]

RESET DO2 () [cr/1f]

HALT[cr/1f]
[cr/1f]
END [cr/1f]

Program file @ 10-3 I

n Program file

2.2 I One program

Read-out v
Write v

1.<program name>
2 . PGmmm

e Expresses a specified program.
e "mmm" represents a number from 1 to 100.

e Program names are shown with 32 characters or less consisting of alphanumeric

characters and _ (underscore), and must be enclosed in < > (angle brackets).
e If a program name is omitted and written as <> in format 1, the current program is specified.
¢ In the case of write file, an error occurs if the specified program name (<program
name>) differs from one on the data (NAME=program name).

DATA FORMAT

NAME=program name[cr/1f]

PGN=mmm
aaaaa ...aaaaaaaaaaaaaalcr/1f]
aaaaa ...aaaaaaaaaaaaaalcr/1f]
[cr/1f]
Qe Character code
MMM Program name:1 to 100

= Program names are shown with 32 characters or less consisting of alphanumeric characters
and _ (underscore).
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

e At program writing operations, be sure to specify the program name after NAME=.

Program writing cannot occur if the program name is not specified.

* When there is a program number with the different program, the older one will be overwritten.
e When there is no program number specified, the smallest free number will be specified automatically.
¢ Writing into the currently selected program is not possible.

¢ When a sequence program is being executed, writing into the program name "SEQUENCE" is

not possible.
SAMPLE
SEND <TEST1> TO CMU =« ceen Outputs program TEST1 from the
communication port.
Response:

RUN [cr/1f]
NAME=TEST1 [cxr/1f]
PGN=1[cr/1f]
A=1[cr/1f]

RESET DO2 () [cr/1f]

HALT[cr/1f]
[cr/1f]
END [cr/1f]

I 10-4 @ Chapter 10 Data file description

M NOTE

°Integer point data is
recognized in "pulse" units,
and real number point
data is recognized in
"mm" units.

Read-out v |When used as a read-out file, all points currently stored are read out.

Write v/ | When used as a write file, writing is performed with a point number.
PNT

e Expresses all point data.

DATA FORMAT

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/1f]
Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/1f]

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/1f]
Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/1f]
[cr/1f]

MMMM..ee Point number: 0 to 29999
fo Coordinate sign: + / - / space
xxxxxx/../bbbbbb....... Represent a numeric value of 8 digits or less. When a dot is

included, this is treated as point data in "mm" units. Each piece

of data is separated by one or more spaces.
B Extended hand system flag setting for SCARA robots.

1: RIGHT 2:LEFT

= Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.

= |f a number other than "1" or "2" is specified for a hand system flag, or if no number is specified,
this is interpreted as "0" setting (no hand system flag).

= The first arm and the second arm rotation information is processed as "0" if a numeral other than 0,
1, -1 has been specified, or if no numeral has been specified.

Point file @ 10-5 I

“ Point file

= A line containing only [cr/If] is added at the end of the file to indicate the end of the file.

SEND PNT TO CMU -+« ccccvvececceeens Outputs all points from the

communication port.
Response:
RUN [cr/1f]
PO =12 3 45 6 [cr/lf]
Pl 426.200 -160.770 0.001 337.210 0.000 0.000 0 1 O [cr/1lf]
P2 -27.570 -377.840 0.360 193.220 0.000 0.000 0 -1 0 [cr/1lf]

P29999= -251.660 -419.510 0.000 -127.790 0.000 0.000 2 -1 -1 [cr/l1lf]
[cr/1f]
END [cr/1f]

10-6 @ Chapter 10 Data file description

n Point file

3.2

I One point

M NOTE

e Integers indicate point
data in "pulse" units, and
real numbers in "mm"
unifs.

Read-out v
Write v

Pmmmm

e Expresses a specified point.
e "'mmmm" represents a number from 0 to 29999.

DATA FORMAT

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

mmmmM.................. Point number: 0 to 29999
fore e Coordinate sign: +/ - / space
xxxxxx/../bbbbbb... Represent a numeric value of 8 digits or less. When a dot is included,
this is treated as point data in "mm" units. Each piece of data is
separated by one or more spaces.
o Extended hand system flag setting for SCARA robots.
1: RIGHT 2:LEFT

= Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.

= |f a number other than "1" or "2" is specified for a hand system flag, or if no number is specified,
this is interpreted as "0" setting (no hand system flag).

= The first arm and the second arm rotation information is processed as "0" if a numeral other than 0,
1, -1 has been specified, or if no numeral has been specified.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND P100 TO CMU -+ =+ =cceeeeee-e Outputs the specified point from the
communication port.

Response:

RUN [cr/1f]

P100= 1.000 2.000 3.000 4.000 5.000 6.000 0 1 O [cr/lf]

END [cr/1f]

Point file @ 10-7 I

n Point comment file

4.1 B Al point comments
When used as a read-out file, all point comments currently stored are read
Read-out v
out.
. When used as a write file, writing is performed with a point comment
Write v
number.
PCM

WAEEUINTY Expresses all point comments.

DATA FORMAT

PCmmmm= sssssssssssssss[cr/1f]

PCmmmm= sssssssssssssss[cr/1f]

PCmmmm= sssssssssssssss[cr/1f]

PCmmmm= sssssssssssssss[cr/1f]

[cr/1f]
MMMM e Point comment number: 0 to 29999
5. 1e5S sttt ettt Comment data: which can be up to 16 one-byte

characters. If comment data exceeds 16 characters,
then the 17th character onward will be deleted.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND PCM TO CMU *+«cccvveececcceen Outputs all point comments from the
communication port.

Response:

RUN [cr/1f]

PCl = ORIGIN POS[cr/1f]

PC3 = WAIT POS[cr/1lf]

PC3999 = WORK100([cr/1f]
[cr/1f]
END [cr/1f]

I 10-8 @ Chapter 10 Data file description

n Point comment file

4.2

I One point comment

Read-out v
Write v

PCmmmm

e Expresses a specified point comment.
e "'mmmm" represents a number from 0 to 29999.

DATA FORMAT

PCmmmm= sssssssssssssss[cr/1f]

MMM e Point comment number: 0 to 29999
551 1eSS ettt ettt Comment data: which can be up to 16 one-byte
characters. If comment data exceeds 16 characters,
then the 17th character onward will be deleted.

SAMPLE

SEND PC1l TO CMU =+« =+ cceeceencsn Outputs the specified point comment
from the communication port.

Response:

RUN [cr/1f]

PC1l = ORIGIN POS[cr/1lf]

END [cr/1f]

Point comment file @ 10-9 I

“ Point name file

5.1 B Al point names

Read-out v | When used as a read-out file, all point names currently stored are read out.

Write v | When used as a write file, writing is performed with a point name number.

PNM

WEENITTY © Expresses all point names.

DATA FORMAT

PNmmmm= assssssss [cr/1f]

PNmmmm= assssssss [cr/1f]

PNmmmm= assssssss [cr/1f]

PNmmmm= assssssss [cr/1f]

[cr/1f]
MMMM e Point comment number: 0 to 29999
A et Name data (the first character): Use only one-byte
alphabetic character. Otherwise, "4.202: Input format
error" occurs.
85118 ettt eeitte e et e e e et Name data (the second character onward): Use one-

byte alphanumeric characters and _ (underscore).
Otherwise, "4.202: Input format error" occurs. If name
data exceeds 16 characters, then the 17th character
onward will be deleted.

Name data must not be duplicate. If name data were duplicate, delete the name data with the

ealier point name number and save the name data to newly specified point name number.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND PNM TO CMU ««cccvvveeecccenen Outputs all point names from t h e
communication port.

Response:

RUN [cr/1f]

PN1=0ORIGIN_POS [cr/1f]

PN3=WAIT_POS [cr/1lf]

PN 3999=WORK 100 [cr/l1f]
[cr/1f]
END [cr/1f]

I 10-10 @ Chapter 10 Data file description

“ Point name file

5.2 I One point name

Read-out v
Write v

PNmmmm

e Expresses a specified point name.
e "'mmmm" represents a number from 0 to 29999.

DATA FORMAT

PNmmmm= asssssssssssssss [cr/1f]

MMM e Point name number: 0 to 29999

A et Name data (the first character): Use only one-byte
alphabetic character. Otherwise, "4.202: Input format
error" occurs.

5515 et ettt ettt Name data (the second character onward): Use one-
byte alphanumeric characters and _ (underscore).
Otherwise, "4.202: Input format error" occurs. If name
data exceeds 16 characters, then the 17th character
onward will be deleted.

SAMPLE

SEND PN1 TO CMU -+ ++ ¢ ceeceseeeens Outputs the specified point name from
the communication port.

Response:

RUN [cr/1f]

PN1=ORIGIN_POS [cr/1f]

END [cr/1f]

Point name file @ 10-11 I

n Parameter file

6.1 B Al parameters

Read-out v | When used as a read-out file, all parameters currently stored are read out.

When used as a write file, only the parameters specified by labels are

Write v .
written.
PRM

e Expresses all parameters.
DATA FORMAT

/parameter label/ [cr/1lf]

RC=xxxxxx [cr/lf]

/parameter label/ [cr/1f]

R?=xxxxxX[cr/1f]

/parameter label/ [cr/1f]

R?A=XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX [cr/1f]
\parameter label\ [cr/1lf]

C?=xxxxxxX [cr/1f]

\parameter label\ [cr/1f]

R?=xxxxxX[cr/1f]

\parameter label\ [cr/1f]

R?A=XXXXXX , XXXXXX , XXXXXX , XXXXXX , KXXXXX , XXXXXX [cr/1f]
#parameter label# [cr/l1f]

R?=xxxxxX[cr/1f]

#parameter label# [cr/1f]

R?A=XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX [cr/1f]
/parameter label/ [cr/1f]

C?0=XXXXXX , XXXXXX , XXXXXX , XXXXXX [cr/1f]

[cr/1f]

Values Indicates the entire controller.

...Robot setting (2: Robot number)
...Controller setting (2: Controller number)

Represents an axis parameter. Each data is separated by
a comma.

O e Represents an option board parameter. Each data is
separated by a comma.

= Parameter labels are shown with 8 alphabetic characters.
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

10-12 @ Chapter 10 Data file description

n Parameter file

e When writing parameter data, be sure that the servo is off.

e Parameters are already compatible with upper versions. However, parameters might not always

be compatible with lower versions (upward compatibility).

* When you attempt to load a parameter file of new version into a controller of an earlier
version, "10.214: Undefined parameter found" error may occur. In this case, you may load the
parameter by setting the "PRM SKIP" parameter to "VALID".

¢ As parameters whose labels are enclosed in "\" are controller configuration parameters, take
care when editing them.

e As parameters whose labels are enclosed in "#" affect robot control, take care when editing
them.

¢ "\" symbols may be displayed as "¥" depending on the computer environment.

SAMPLE

SEND PRM TO CMU -« eeecceeennn Outputs all parameters from the
communication port.

Response:

RUN [cr/1f]

‘' v1.22,R0191-v1.000-v1.09,R0015/V1.09,R0015 [cr/1f]
\ Gripper,V0.32/Gripper,V0.32///[cr/1£f]
‘' PRM(0) [cr/1f]

\CNTTYP\ [cxr/1f]

C1=340[cr/1f]

\YCEADR\ [cr/1f]

Cl=0[cr/1f]

\DRVASGNN\ [cr/1f]
R1A=101,102,103,104,0,0([cxr/1£f]
R2A=0,0,0,0,0,0[cxr/1f]
R3A=0,0,0,0,0,0[cxr/1f]
R4A=0,0,0,0,0,0[cxr/1f]

\RBTNUM\ [cr/1f]

R1=2203[cr/1f]

[cr/1f]
END [cr/1f]

Parameter file @ 10-13

“ Parameter file

6.2 B One parameter
Read-out Y ZY,Ten used as a read-out file, only the parameter specified by a label is read
Write v | When used as a write file, only the parameter specified by a label is written.

/parameter label/, \parameter label\, #parameter label#

WEENITTY e Parameter labels are shown with 8 alphabetic characters.

DATA FORMAT 1

/parameter label/ [cr/l1f]

RC= xxxxxXxX [cr/1f]
[cr/1f]

DATA FORMAT 2

/parameter label/ [cr/1f]

R?= xxxxxx [cr/1f]
[cr/1f]

DATA FORMAT 3

/parameter label/ [cr/1f]

R?A=XXXXXX, XXXXXX , XXXXXX , XXXXXX , KXXXXX , XXXXXX [cr/1f]

[cr/1£]]

DATA FORMAT 4

\parameter label\ [cr/1f]

C?2=xxxxXXX [cr/1f]
[cr/1f]

DATA FORMATS5

\parameter label\ [cr/1lf]

R?=xxxxxXxX|[cr/1f]
[cr/1f]

DATA FORMAT 6

\parameter label\ [cr/l1f]

R?A=XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX [cr/1f]

[cr/1f]

I 10-14 @ Chapter 10 Data file description

n Parameter file

DATA FORMAT 7

#parameter label# [cr/1f]
R?=xxxxxx[cr/1f]

[cr/1f]

DATA FORMAT 8

#parameter label# [cr/1f]
R?A=XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXXXX , XXXxXxxXX [cr/1f]

[cr/1f]

DATA FORMAT 9

/parameter label/ [cr/1f]

C?0=XXXXXX , XXXXXX , XXXXXX , XxXxXXX [cr/1f]

[cr/1f]

RC e Indicates the entire controller.
RY . Robot setting (2: Robot number)
C e, Controller setting (2: Controller number)
A Represents an axis parameter. Each data is separated by
a comma.

O e Represents an option board parameter. Each data is

separated by a comma.

= Parameter labels are shown with 8 alphabetic characters.
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

e When writing parameter data, be sure that the servo is off.

 Parameters are already compatible with upper versions. However, parameters might not always
be compatible with lower versions (upward compatibility).

* When you attempt to load a parameter file of new version into a controller of an earlier
version, "10.214: Undefined parameter found" error may occur. In this case, you may load
the parameter by setting the "PRM SKIP" to "VALID". (For detail, refer to the YRCX operator’s
manual.

¢ As parameters whose labels are enclosed in "\" are controller configuration parameters, take
care when editing them.

e As parameters whose labels are enclosed in "#" affect robot control, take care when editing
them.

¢ "\" symbols may be displayed as "¥" depending on the computer environment.

SEND /ACCEL / TO CMU

Outputs the acceleration parameter
from the communication port.

Response:

RUN [cr/1f]

/ACCEL / [cr/1f]
R1A=100, 100, 100,
[cr/1f]

END [cr/1f]

100 [cr/1f]

Parameter file @ 10-15 I

Shift coordinate definition file

7.1 I All shift data

Read-out v |When used as a read-out file, all shift data currently stored are read out.

Write v |When used as a write file, writing is performed with a shift number.
SFT

e Expresses all shift data.
DATA FORMAT

Sm = fxxxxxx fyyyyyy £zzzzzz frrrrrr [cr/1lf]
SPm = fxxxxxx fyyyvyy fzzzzzz frrrrrr [cr/1f]
SMm = fxxxxxx fyyyvyyy fzzzzzz frrrrrr [cr/1f]

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/1lf]
SPm = fxxxxxx fyyyyyy £fzzzzzz frrrrrr [cr/1lf]
SMm = fxxxxxx fyyyyyy £zzzzzz frrrrrr [cr/1lf]
[cr/1f]

M eShift number: 0 to 39
f o Coordinate sign: + /- / space

XXXXXX/YYYYYY/ SOOI Represent a numeric value of 7 digits or less, having 3
or less places below the decimal point.

= The SPm and SMm inputs are optional in writing files.
SPm: shift coordinate range plus-side
SMm: shift coordinate range minus-side
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND SFT TO CMU -+« =« c et eeeeeenen Outputs all shift data from the
communication port.

Response:

RUN [cr/1f]

S0 = 0.000 0.000 0.000 0.000 [cr/1f]
SPO= 0.000 0.000 0.000 0.000 [cr/1lf]
SMO= 0.000 0.000 0.000 0.000 [cr/1lf]
S1 = 1.000 1.000 1.000 1.000 [cr/1f]

SM39= 9.000 9.000 9.000 9.000 [cxr/1f]
[cr/1f]
END [cr/1f]

I 10-16 @ Chapter 10 Data file description

Shift coordinate definition file

7.2

B One shift definition

Read-out v
Write v

Sm

e Expresses a specified shift definition.

DATA FORMAT

Sm = fxxxxxx fyyyvvy fzzzzzz frrrrrricr/lf]
M e Shift number: 0 to 39
f e Coordinate sign: +/ - / space

XXXXXX/YYYYYY/ ST ... Represent a numeric value of 7 digits or less, having 3

or less places below the decimal point.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND SO TO CMU =+ ¢t seveeeceeenn Outputs the specified shift coordinate
from the communication port.

Response:

RUN [cr/1f]

SO0 = 0.000 0.000 0.000 0.000[cxr/1f]

SPO= 0.000 0.000 0.000 0.000[cr/1f]

SMO0= 0.000 0.000 0.000 0.000[cr/1f]

[cr/1f]

END [cr/1f]

Shift coordinate definition file @ 10-17 I

n Hand definition file

8.1 I All hand data

Read-out v | When used as a read-out file, all hand data currently stored are read out.

Write v | When used as a write file, writing is performed with a hand number.

HND

e Expresses all hand data.

DATA FORMAT

Hm = n, fxxxxxx, fyyyyvy, fzzzzzz ,{R}[cr/1f]
Hm = n, fxxxxxx, fyyyyyy, fzzzzzz ,{R}[cr/1f]
[cr/1f]
MM s Hand number: 0 to 31
3 WU Robot number: 1 to 4
f e Coordinate sign: + / - / space
XXXXXX/YYYYYY/222277............ Represent a real numeric value of 7 digits or less,

having 3 or less places below the decimal point, or an

integer of 7 digits or less. (This numeric format depends

on the robot type setting and hand definition type.)
R} Indicates whether a hand is attached to the R-axis.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND HND TO CMU ¢+ c e Outputs all hand data from the
communication port.

Response:

RUN [cr/1f]

HO =1, 0.000, 0.000, 0.000 [cr/1lf]
H1 =1, 1.000, 1.000, 1.000 [cr/1f]
H2 = 2, 2.000, 2.000, 2.000 [cxr/1f]
H3 = 2, 3.000, 3.000, 3.000 [cxr/1f]
H4 = 3, 4.000, 4.000, 4.000 [cxr/1f]
H5 = 3, 5.000, 5.000, 5.000 [cr/1lf]
H6 = 4, 6.000, 6.000, 6.000 [cr/1lf]
H7 = 4, 7.000, 7.000, 7.000 [cr/l1lf]
[cr/1f]

END [cr/1f]

I 10-18 @ Chapter 10 Data file description

n Hand definition file

8.2

I One hand definition

Read-out v
Write v

Hm

e Expresses a specified hand definition.

DATA FORMAT

Hm = n, fxxxxxx, fyvyyyy, fzzzzzz ,{R}[cr/1f]

Hand number: 0 to 31

Robot number: 1 to 4

Coordinate sign: +/ - / space

Represent a real numeric value of 7 digits or less,

having 3 or less places below the decimal point, or an

integer of 7 digits or less. (This numeric format depends

on the robot type setting and hand definition type.)
(R}, Indicates whether a hand is attached to the R-axis.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND H3 TO CMU -+ +++csevvceseeenns Outputs the specified hand definition
data from the communication port.

Response:

RUN [cr/1f]

H3=2, 3.000, 3.000, 3.000, R [cr/1lf]

[cr/1f]

END [cr/1f]

Hand definition file @ 10-19 I

“ Pallet definition file

9. All pallet definitions

When used as a read-out file, all pallet definitions currently stored are read

Read-out v
out.

Write v |When used as a write file, writing is performed with a pallet number.

PLT

e Expresses all pallet definitions.
DATA FORMAT

PLm [cr/1f]

PLN = XY [cr/1f]
NX = nnn [cr/1f]
NY = nnn [cr/1f]

NZ = nnn [cr/l1f]
PLP = ppppp [cr/lf]
P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yrlcr/lf]

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yrlcr/1f]
PLm [cr/1f]

[cr/1f]
MMMM.ee. Pallet number: 0 to 39
XY i Coordinate plane setting: XY coordinate plane
NN Number of points for each axis: positive integer
PPPPP-veeveeveererienienrennene The point number used for a pallet definition. Continuous 5
points starting with the specified point are used.
foe Coordinate sign: +/ - / space

XXXXxx/yyyyyy/../bbbbbbxr....... Represent a numeric value of 8 digits or less. When a dot is
included, this is treated as point data in "mm" units. Each piece of
data is separated by one or more spaces.

o An extended hand system flag setting for SCARA robots.

1: RIGHT 2: LEFT

I 10-20 @ Chapter 10 Data file description

“ Pallet definition file

= Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA

robots.
= Hand system flags and the first arm and the second arm rotation information are ignored during
movement where pallet definitions are used.

= If a number other than 1 or 2 is set, or if no number is designated, then O will be set to indicate
that there is no hand system flag.

= |f a value other than "0", "1", "-1" is specified at the first arm and the second arm rotation
information, or if no value is specified, this will be processed as "0".

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PLT TO CMU -+ ¢+ cccveccccceens Outputs all pallet definitions from the

communication port.

Response:

RUN [cr/1f]
PLO[cxr/1f]
PLN=XY[cr/1f]
NX = 3 [cr/1lf]
NY = 4 [cr/1lf]
NZ = 2 [cr/1f]
PLP= 3996 ([cr/1f]

P[1]= 0.000 0.000 0.000 0.000 0.000 0.000 [cr/1f]
P[2]= 100.000 0.000 0.000 0.000 0.000 0.000 [cr/1lf]
P[3]= 0.000 100.000 0.000 0.000 0.000 0.000 [cr/1lf]
P[4]= 100.000 100.000 0.000 0.000 0.000 0.000 [cr/1lf]
P[5]= 0.000 0.000 50.000 0.000 0.000 0.000 [cr/1lf]
PLl[cr/1f]

PLN= XY[cr/1lf]

NX = 3[cr/1f]

NY = 4[cr/1f]

NZ = 2[cr/1f]

PLP= 3991 ([cr/1f]

P[1]= 0.000 0.000 0.000 0.000 0.000 0.000 [cr/1lf]
P[2]= 100.000 100.000 0.000 0.000 0.000 0.000 [cr/1f]
P[3]= 0.000 200.000 0.000 0.000 0.000 0.000 [cxr/1f]
P[4]= 100.000 200.000 0.000 0.000 0.000 0.000 [cr/1f]

P[5]= 0.000 0.000 100.000 0.000 0.000 0.000 [cr/1f]
[cr/1f]
END [cr/1f]

Pallet definition file @ 10-21

n Pallet definition file

9.2 B One pallet definition

Read-out | v
Write 4
PLm
e Expresses a specified pallet definition.
e "m" represents a number from 0O to 39.
DATA FORMAT
PLm [cr/1f]
PLN = XY [cr/1lf]
PLP = ppppp [cr/lf]
NX = nnn [cr/1lf]
NY = nnn [cr/1f]
NZ = nnn [cr/l1f]
P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr(cr/lf]
P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yrlcr/1f]
[cr/1f]
NOTE
M Mttt Pallet number: 0 to 39
e Integers indicate point . . s
data in "pulse" units, and NN Number of points for each axis: positive integer
real numbpers in "mm" [S]0] 0] o) TR The point number used for a pallet definition. Continuous 5

units. points starting with the specified point are used.

foer e Coordinate sign: + / - / space

XXXx/yyyyyy/../obbbbbxrRepresent a numeric value of 8 digits or less. When a dot is
included, this is treated as point data in "mm" units. Each piece of
data is separated by one or more spaces.

B An extended hand system flag setting for SCARA robots.
1: RIGHT 2: LEFT

I 10-22 @ Chapter 10 Data file description

n Pallet definition file

= Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA

robots.
= Hand system flags and the first arm and the second arm rotation information are ignored during
movement where pallet definitions are used.

= If a number other than 1 or 2 is set, or if no number is designated, then O will be set to indicate
that there is no hand system flag.

= |f a value other than "0", "1", "-1" is specified at the first arm and the second arm rotation
information, or if no value is specified, this will be processed as "0".

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PL2 TO CMU -+ ¢+ cccveccccceens Outputs the specified pallet definition from

the communication port as shown below.

Response:

RUN [cr/1f]

PL2 [cxr/1f]
PLN=XY[cr/1f]
NX= 3[cr/1f]

NY= 3[cr/1f]

NZ= 2[cr/1f]
PLP= 3986 ([cr/1f]

P[1]= 100.000 100.000 50.000 90.000 0.000 0.000 [cxr/1f]
P[2]= 200.000 100.000 50.000 90.000 0.000 0.000 [cr/1f]
P[3]= 100.000 200.000 50.000 90.000 0.000 0.000 [cr/1f]
P[4]= 200.000 200.000 50.000 90.000 0.000 0.000 [cr/1f]
P[5]= 100.000 10.000 100.000 90.000 0.000 0.000 [cr/1lf]

[cr/1f]
END [cr/1f]

Pallet definition file @ 10-23

n General Ethernet port file

When used as a read-out file, all general Ethernet port definitions are read
Read-out v
out.
. When used as a write file, writing is performed with a general Ethernet port
Write v
number.
GEP

e Expresses all general Ethernet port definitions.
DATA FORMAT

GPm [cr/1f]

MODE=n [cr/1f]

IPADRS= aaa.aaa.aaa.aaa [cr/lf]
PORT=ppppp [cr/l1f]

EOL=e [cr/1f]

TYPE=t [cr/1f]

TYPE=t [cr/1f]
[cr/1f]

Values

General Ethernet port number: 0 to 7

Mode
0: Server 1: Client
AQQ cveeeerieiie e ee e IP address: 0 to 255
PPPPP-veeveeveererienieenennene Port number: 0 to 65535
Bttt Termination character code
0: CRLF 1: CR
| SO TP PRRS Port type (0: TCP)

When Client mode is selected in the write file,

e [P address and port number: Set the IP address and port number of the connection destination
server.

When Server mode is selected in the write file,

e [P address: IP address already set on the controller is used to communicate, so IP address setting
is unnecessary.

¢ Port number: Set a port number which differs from the one on the controller.

I 10-24 @ Chapter 10 Data file description

“ General Ethernet port definition file

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND GEP TO CMU -« + ¢ ¢ eccccceeeens Outputs all files of the general Ethernet

port from the communication port.

Response:

RUN [cr/1f]

GPO [cr/1f]

MODE=1 [cr/1f]
IPADRS=192.168.0.1 [cxr/1f]
PORT=100 [cr/1f]

EOL=0 [cr/1f]

TYPE=0 [cr/1f]

GP1 [cr/1f]

MODE=1 [cr/1f]
IPADRS=192.168.0.100 [cr/1lf]
PORT=200 [cr/1f]

EOL=0 [cr/1f]

TYPE=0 [cr/1f]

[cr/1f]

END [cr/1f]

General Ethernet port file @ 10-25 I

“ Input/output name file

11.1 I All input/output name data

When used as a read-out file, all input/output data currently stored are read

Read-out v
out.

Write v |When used as a write file, writing is performed with a input/output number.

ION

e Expresses all input/output name data.

DATA FORMAT

1oNMpp (b) =assssssssssssssss [cr/1f]

ioNMpp (b) =assssssssssssssss [cr/1f]

ioNMpp (b) =assssssssssssssss [cr/1f]

10NMpp (b) =assssssssssssssss [cr/1f]

[cr/1f]
1O i Input/outpu type: DI, DO, SI, SO

PP «evvevreneeneeretee et Port number: 2 to 7, 10 to 15

Do Bit number: 0 to 7

A e, Name data (the first character): Use only one-byte
alphabetic character. Otherwise, "4.202: Input format
error" occurs.

85118 et et e et e Name data (the second character onward): Use one-

byte alphanumeric characters and underscore "_".
Otherwise, "4.202: Input format error" occurs. If name
data exceeds 16 characters, then the 17th character

onward will be deleted.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND ION TO CMU ¢+ cccveveeceeeenn Outputs all input/output name data
from the communication port.

Response:

RUN [cr/1f]

DONM2 (0) =DO_PORT2_0 [cr/1f]

DONM2 (1) =DO_PORT2_1 [cr/1lf]

SINM15(6)=SI_PORT15_6 [cr/l1f]
SINM15(7)=SI_PORT15_7 [cr/1lf]
[cr/1f]

END [cr/1f]

Name data must not be duplicate. When duplicate name data is saved, delete the name data

with the ealier point number and save the name data to the point number which is specified as
the new destination to save to.

I 10-26 @ Chapter 10 Data file description

“ Input/output name file

11.2 B One input/output type

Read-out v
Write Restricted*

10NM ()

¢ Expresses a specified input/output type.

DATA FORMAT

1ioNMpp (b) =asssssssssssssss [cr/1f]

1oNMpp (b) =asssssssssssssss [cr/1f]
[cr/1f]

7 wore

*Readable input/output
type and Port number

Input/output type: DI, DO, SI, SO
Port number: 2 to 7, 10 to 15
Bit number: 0 to 7

* DI: Up fo Port14 Qe Name data (the first character): Use only one-byte
* DO: Up to Port 10 alphabetic character. Otherwise, "4.202: Input format
¢ S|, SO: Up to Port 15 error" occurs.

8555 et Name data (the second character onward): Use one-byte

alphanumeric characters and underscore
Otherwise, "4.202: Input format error" occurs. If name data
exceeds 16 characters, then the 17th character onward
will be deleted.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DONM () TO CMU =« =ttt oeeee- Outputs the specified input/output name
data from the communication port.

Response:

RUN [cr/1f]

DONM2 (0) =DO_PORT2_0 [cr/1lf]
DONM2 (1) =DO_PORT2_1 [cr/1lf]

DONM10 (6) =DO_PORT10_6 [cr/1lf]
DONM10 (7) =DO_PORT10_7 [cr/1lf]
[cr/1f]

END [cr/1f]

Input/output name file @ 10-27 I

“ Input/output name file

11.3 J One input/output port

Read-out v
Write Restricted*

ioNMpp ()

e Expresses a specified input/output type and port number.

DATA FORMAT

1oNMpp (b) =asssssssssssssss [cr/1f]

ioNMpp (b) =asssssssssssssss [cr/1f]

[cr/1f]
M NOTE 0™ i Input/output type: DI, DO, SI, SO
*Readable inpuf/outpuf 0] Port number: 2 to 7, 10 to 15
type and Port number e Bit number: 0 to 7
* DI: Up fo Port14 Qe Name data (the first character): Use only one-byte
* DO: Up to Port 10 alphabetic character. Otherwise, "4.202: Input format
¢ 3], SO: Up to Port 15 error" occurs.

805 et Name data (the second character onward): Use one-byte

alphanumeric characters and underscore
Otherwise, "4.202: Input format error" occurs. If name data
exceeds 16 characters, then the 17th character onward
will be deleted.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND DONM2 () TO CMU =« =+« cceeeee- Outputs the specified input/output name
data from the communication port.

Response:

RUN [cr/1f]

DONM2 (0) =DO_PORT2_0 [cr/1lf]

DONM2 (1) =DO_PORT2_1 [cr/1lf]

DONM10 (6) =DO_PORT10_6 [cr/1f]
DONM10 (7)=DO_PORT10_7 [cr/1f]
[cr/1f]

END [cr/1f]

I 10-28 @ Chapter 10 Data file description

“ Input/output name file

11.4

B One input/output bit

Read-out v
. When used as a write file, writing is performed with an input/output name
Write v
number.
ioNMpp (b)

¢ Expresses a specified input/output type and bit number.

DATA FORMAT

1ioNMpp (b) =asssssssssssssss [cr/1f]

1oNMpp (b) =asssssssssssssss [cr/1f]

[cr/1f]
1O i Input/outpu type: DI, DO, SI, SO
PP eeenreeieere e Port number: 2 to 7, 10 to 15
D Bit number: 0 to 7
Q e Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format
error' occurs.
551 1e5S ettt Name data (the second character onward): Use one-
byte alphanumeric characters and underscore "_".
Otherwise, "4.202: Input format error" occurs. If name
data exceeds 16 characters, then the 17th character

onward will be deleted.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DONM2 (0) TO CMU =« =+« === Outputs the specified input/output name
data from the communication port.

Response:

RUN [cr/1f]

DONM2 (0) =DO_PORT2_0 [cr/1f]

[cr/1f]

END [cr/1f]

Input/output name file @ 10-29 I

n Area check output file

12.1 B Al area check output data

When used as a read-out file, all area check output data currently stored are
Read-out v
read out.
. When used as a write file, writing is performed with an area check output
Write 4
number.
ACO

e Expresses all area check output data.

DATA FORMAT

ACm=r,pl,p2,t,n,1 [cr/lf]
ACm=r,pl,p2,t,n,1 [cr/lf]

ACm=r,pl,p2,t,n,1 [cr/lf]
ACm=r,pl,p2,t,n,1 [cr/1f]
[cr/1f]

Area check output number: 0 to 31
Robot number: 0 to 4 (0: Invalid)
. Comparison point number 1: 0 to 29999

Comparison point number 2: 0 to 29999

S Port type

0: DO/SO 1: DO 2: SO 3: MO
Mttt eere et e ere et Port number: 20 to 277
Lot Logic

0: OFF 1: ON

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND ACO TO CMU ««ccvvvvecccceenn Outputs all area check output data
from the communication port.

Response:

RUN [cr/1f]

AC0=1,0,1,0,20,0 [cr/lf]

AC1=2,100,110,0,50,0 [cr/1f]

AC30=1,20,21,0,20,0 [cr/1lf]
AC31=1,50,51,0,100,0 [cr/1f]
[cr/1f]

END[cr/1f]

I 10-30 @ Chapter 10 Data file description

n Area check output file

12.2 B One area check output definition

Read-out v

When used as a write file, writing is performed with an area check output
number.

ACm

Write 4

e Expresses a specified area check output definition.

DATA FORMAT

ACm=r,pl,p2,t,n,1 [cr/lf]

Area check output number: 0 to 31
Robot number: 0 to 4 (0: Invalid)
Comparison point number 1: 0 to 29999
Comparison point number 2: 0 to 29999

Port type

0: DO/SO 1: DO 2: SO 3: MO
Nttt ettt Port number: 20 to 277
Lo Logic

0: OFF 1: ON

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND ACO TO CMU =t ecceeeeeenn Outputs specified area check output
data from the communication port.

Response:

RUN [cr/1f]

AC0=1,0,1,0,20,0 [cr/1lf]

END[cr/1f]

file @ 10-31 I

All file

13.1 B Allfile

Read-out v
Write v

ALL

Expresses the minimum number of data files required to operate the robot system.

07 nore

eFor details of each [PGM] ----All program format
file, refer to that file's _
. NAME=< program name>

explanation.
PGN=mmm
aaaa ----aaaaaaaa [cr/l1lf]
aaaa ----aaaaaaaa [cr/lf]
[cr/1f]
[PNT] ----All point format

Pmmmm=fxxxxxx fyyyyyy fzzzzzz faaaaaa fbbbbbb t [cr/1f]

Pmmmm=fxxxxxx fyyyyyy fzzzzzz faaaaaa fbbbbbb t [cr/1f]
[cr/1f]
[PCM] All point comment format

PCmmmm= ssSssssSssssssssss [cr/1f]

PCmmmm= SsssSssssssssssss [cr/l1f]
[cr/1f]
[PNM] ---:-All point name format

PNmmmm= asssssssssssssss [cr/1f]

PNmmmm= asssssssssssssss [cr/1f]
[cr/1f]

[PRM] --:--All parameter format
/parameter label/ [cr/1lf]

RC=xxxxxxX [cr/1f]

#parameter label# [cr/1f]
R?=xxxxxxX [cr/1f]

[cr/1f]

[SFT] --:--All shift format

Sm= fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/1lf]

SMm= fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/l1f]
[cr/1f]
[HND] -:--All hand format

Hm= n, fxxxxxx, fyyyyyy, fzzzzzz ,{R} [cr/1f]

Hm= n, fxxxxxx, fyyyyyy, fzzzzzz ,{R} [cr/1lf]
[cr/1f]

10-32 @ Chapter 10 Data file description

n Al file

[PLT] ----All pallet format
PLm [cr/1f]

P[5]= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t [cr/l1f]
[cr/1f]

[GEP] -:---All general Ethernet port format

MODE=n [cr/1f]

TYPE=t [cr/1f]
[cr/1f]
[ION] ----All input/output name format

ioNMpp (b) =asssssssssssssss [cr/1f]

ioNMpp (b) =asssssssssssssss [cr/1f]
[cr/1f]

[ACO] ----All area check output format
ACm=r,pl,p2,t,n,1 [cr/lf]

ACm=r,pl,p2,t,n,1 [cr/1lf]
[cr/1f]
[END] --:--All file end

e In readout files, only items whose data is saved in the controller is readout.

e In writing files, [xxx] determines the data file's format, and this format is saved at the controller.
Example: [HND]...All text data up the next [xxx] is saved at the controller as "all hand" format
data.

SEND ALL TO CMU ¢t ecceeceeeen Outputs all files of the entire system from
the communication port.
SEND CMU TO ALL e ceeeenn Inputs all files of the entire system from the

communication port.

All file @ 10-33

n Program directory file

14.1 I Entire program directory

When used as a read-out file, information on entire program directory is read

Read-out v
out.

Write — | This file cannot be used as a write file.

DIR

¢ Expresses entire program directory.
DATA FORMAT

nnn, yy/mm/dd, hh:mm, bbbbbbb, 1111, xx, ff, sssss..sssssssss [cr/1f]

nnn, yy/mm/dd, hh:mm, bbbbbbb, 1111, xx, ff, sssss..sssssssss [cr/l1f]
[cr/1f]

Values

Program number: 1 to 100

Date when the program was updated

hhimme. Time when the program was updated
bbbbbb.........ccccoieinnn. Byte size of program: 7 digits
XX eveirenteieeneeneeneeie e File attribute

RW: Readable/writable
RO: Not writable (read only)
H: Hidden file
foe e Flag
m: Main program
c: Current program
s: Sequence program
555...555555 1.veviiiiiiiiinenns Program name: shown with 32 characters or less consisting of
alphanumeric characters and _ (underscore)

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND DIR TO CMU *t+cccvvvecceeeenn Outputs information on all program
directory from the communication port.

Response:

RUN [cr/1f]

1, 15/01/10,10:14,100,24,RW, m, SAMPLE]l [cr/1f]

2, 15/01/18,18:00,50,18,R0O, ,SAMPLE2 [cr/1f]

3, 15/02/11,20:15,200,58,RW, ¢, SAMPLE3 [cr/1f]

4, 15/02/11,19:03,28,15,H, ,SAMPLE4 [cr/1lf]

10, 15/03/02, 20:21,592,288,RW, , SAMPLE10 [cr/1f]

24, 15/01/18,13:19,10,3,RW, , SAMPLE24 [cr/1f]

[cr/1f]

END [cr/1f]

I 10-34 @ Chapter 10 Data file description

n Program directory file

14.2 B One program directory

Read-out v
Write -

<<program name>>

e Expresses information on one program.
¢ The program name is enclosed in << >> (double brackets).

DATA FORMAT

nnn, yy/mm/dd, hh:mm, bbbbbbb, 1111, xx, ff, sssss..sssssssss [cr/1f]

Values

Program number: 1 to 100
Date when the program was updated
Time when the program was updated

Byte size of program: 7 digits
XX ettt File attribute
RW: Readable/writable
RO: Not writable (read only)
H: Hidden file
f e Flag
m: Main program
c: Current program
s: Sequence program
$55...555555 .veuviireiiiiinnns Program name: shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore)

SAMPLE

SEND <<TEST>> TO CMU =+ =+« - Outputs information on the specified
program from the communication port.

Response:

RUN [cr/1f]

1, 15/01/10,10:14,100,24,RW,m, SAMPLEl [cr/1lf]

END [cr/1f]

Program directory file @ 10-35 I

n Parameter directory file

15.1 I Entire parameter directory

When used as a read-out file, information on entire parameter directory is read
Read-out v out

Write — | This file cannot be used as a write file.

DPM

e Expresses entire parameter directory.
DATA FORMAT

\mmmmmm\ a m nl n2 n3 .. n10 nll nl2 uuuuuu [cr/1f]
/mmmmmm/ a m nl n2 n3 .. n10 nl1l nl2 uvuuuuu [cr/1f]
#mmmmmm# a m nl n2 n3 .. n10 nl1l nl12 uuuuuu [cr/1f]
[cr/1f]

Values

mmmmmm Parameter label: 8 characters or less having some symbols
Attribute
Mottt Input method
0: Direct input
1 to 12: Selective input
N* Input range
n1: Minimum value
n2: Maximum value

Selective input value (n1 to n12)
UUUUUU. ..., Units

= Parameter labels are shown with 6 alphabetic characters.
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

"\" symbols may be shown as "¥" depending on the computer environment.

SEND DPM TO CMU -+« =« =t eeeeeeen Outputs information on all parameter

directory from the communication port.
Response:

RUN [cr/1f]

‘PRM(0) [cr/1f]

\CNTTYP\ 16460 0 0 2147493647 [cr/1lf]
\YCEADR\ 16396 0 0 99 [cr/1lf]
\DRVASGN\ 16398 0 0 9906 [cr/1lf]

/IOORGOUT/ 2052 0 0 27 [cxr/1lf]
/IOSRVOUT/ 2052 0 0 27 [cxr/1lf]
/GRPORGIN/ 2052 0 0 27 [cxr/1lf]
[cr/1f]

END [cr/1f]

I 10-36 @ Chapter 10 Data file description

n Machine reference file

I Machine reference (axes: sensor method, stroke-end method)

Read-out v
Write -

MRF

WAEELINTY o Expresses all machine reference values of axes whose return-to-origin method is set
as "Sensor" or "Stroke-end".

DATA FORMAT

RnA=mmm , mmm , jmm , amm, mmm, mmm [cr/1£]

RnA= mmm, mmm, mmm, mmm, mmm, mmm [cr/1f]
[cr/1f]

Tl e Robot number: 1 to 4
(20100700 ISR Machine reference value: 0 to 100

This file reads out the machine reference values of the axes set to the robots.
Example: When the 1st through 6th axes of the robot 1 and 1st and 3rd axes of the robot 2 are
connected, the data is shown as follows.

RTA = mmm, mmm, mmm, mmm, mmm, mmm

R2A = mmm, mmm

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MRE TO CMU =+« Outputs all machine reference data
from the communication port.

Response:

RUN[cr/1f]

R1A=53,47,58,25,55,59 [cr/1lf]

R4A=52,58,41,38,61,50 [cr/1f]
[cr/1f]
END[cr/1f]

Machine reference file @ 10-37 I

n Machine reference file

16.2

I Machine reference (axes: mark method)

Read-out v
Write -

ARP

WMCEUITY e Expresses all machine reference values of axes whose return-to-origin method is set
as "Mark".

DATA FORMAT

RnA=mmm , mmm , mmm , mmm , mmm, mmm [cr/1f]

RnA= mmm, mmm, mmm, mmm, mmm, mmm [cxr/1f]

[cxr/1f]
3 WU Robot number: 1 to 4
MMM e Machine reference value: 0 to 100

This file reads out the machine reference values of the axes set to the robots.
Example: When the 1st through 6th axes of the robot 1 and 1st and 3rd axes of the robot 2 are
connected, the data is shown as follows.

RTA = mmm, mmm, mmm, mmm, mmm, mmm

R2A = mmm, mmm

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND ARP TO CMU «++ ¢« e Outputs all machine reference data
from the communication port.

Response:

RUN[cr/1f]

R1A=53,47,58,25,55,59 [cr/1lf]

R4A=52,58,41,38,61,50 [cr/1lf]
[cr/1f]
END[cr/1f]

I 10-38 @ Chapter 10 Data file description

System configuration information file

Read-out v/
Write -

CFG

¢ Expresses all system configuration information.

DATA FORMAT

Cm:nnnn, s, b, kkkkk, ff-ff-ff-ff-ff-ff [cr/1f]
Cm:nnnn, s, b, kkkkk, ff-ff-ff-ff-ff-ff [cr/1f]

Rr:aaaa,hhhhhh [cr/1f]
Rr:aaaa,hhhhhh [cr/1f]
[cr/1f]

Values

. Controllr number: 1 onward

Controller ID number

S ettt Specification

G: CE specification

L: Normal specification

Do Brake power

I: Internal

E: External
KKKKKK .o Memory size
L1 TSRS PSRRI MAC address
ettt Robot number: 1 to 4
QAQAQ e Robot ID number
hhhhhh.....oooooois Connected axis number

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND CFG TO CMU -« + =+ v eeceeenn Outputs all the system configuration

file from the communication port.
Response:

RUN [cr/1f]
Cc1:340,L,I,2.1MB,00-04-C6-FF-83-12[cr/1f]
R1:MULTTI, 1234 [cr/1f]

[cr/1f]

END [cr/1f]

System configuration information file @ 10-39 I

n Version information file

Read-out v
Write -

VER

WAGELITY Expresses version information.

DATA FORMAT

Cm:cv, cr-mv-dvl, drl/dv2, dr2 [cr/1lf]

Cm:cv, cr-mv-dvl, drl/dv2, dr2 [cr/1f]

[cr/1f]
M e Controllr number: 1 onward
CV... ..Host version
cr... ..Host revision (Rxxxx)
mvPLD version (Vx.xx)
dAv? (20 1,2) e, Driver version (Vx.xx)
dr2 (2:1,2) e, Driver revision (Rxxx)

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND VER TO CMU -+« ¢+ et eeeeeeen Outputs all files of the version
information from the communication port.

Response:

RUN [cr/1f]

Cl:v1.22,R0191-v1.000-V1.09,R0015/V1.09,R0015 [cxr/1f]

C2:V1.22,R0191-v1.000-V1.09,R0015/V1.09,R0015 [cxr/1f]

C3:V1.22,R0191-v1.000-V1.09,R0015/V1.09,R0015 [cr/1lf]

C4:v1.22,R0191-v1.000-V1.09,R0015/V1.09,R0015 [cxr/1f]

[cr/1f]

END [cr/1f]

10-40 @ Chapter 10 Data file description

n Option board file

Read-out v/
Write -

OPT

¢ Expresses all option boards.

DATA FORMAT

CmOn:aaaaaa,Vb.bb [cr/1f]
CmOn:aaaaaa,Vb.bb [cr/1f]

CmOn:aaaaaa,Vb.bb [cr/1f]
CmOn:aaaaaa,Vb.bb [cr/1f]

[cr/1f]
Mttt Controllr number: 1 onward
Mo Option board number inside the controller
Slot number: 1 to 4
EEEEEF: oo Option board name
bbb Option board version

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND OPT TO CMU « v eeeccceenenn Outputs all files of the option boards
from the communication port.

Response:

RUN [cr/1f]

C1l01:Gripper,V0.32 [cr/1f]

Cl02:Gripper,V0.32 [cr/1f]

[cr/1f]

END [cr/1f]

file @ 10-41 I

n Self check file

Read-out v
Write -

SCK

e Expresses self check file.
DATA FORMAT

gg.bbb:mmmm [cr/1f]
gg.bbb:mmmm [cr/1f]

gg.bbb:mmmm [cr/1f]
gg.bbb:mmmm [cr/1f]
[cr/1f]

88

Alarm group number

Alarm classification number
MMMM. e Alarm occurrence location
RC: Entire controller
R?: Robot (2: Robot number)
C?: Controller (2: Controller number)
A?: Axis (2: Axis number)
M?2: Driver (2: Driver number)
R?: Option board
(2: Option board number inside the controller)
T2: Task (2: Task number)
ETH: Ethernet
CMU: RS-232CBrake power

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND SCK TO CMU -+« ¢+ eceeeeeeeen Outputs all files of the self check
information from the communication port.

Response:

RUN [cr/1f]

12.600:C1M1 [cr/1f]

12.600:C1M2 [cr/1f]

12.600:C1IM3 [cr/1f]

12.600:C1M4 [cr/1f]

[cr/1f]

END [cr/1f]

I 10-42 @ Chapter 10 Data file description

n Alarm history file

Read-out v
Write -

LOG

¢ Expresses all alarm history.

DATA FORMAT

nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,
iiiii, 3jjjjjjjj, kkkkkkkk, 11111111, 00000000, PPPPPPPP,
PPPPPPPP, PPPPPPPP, PPPPPPPP, PPPPPPPP, PPPPPpppp, d [cr/lf]
nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,

iiiii, j3jjjjij, kkkkkkkk, 11111111, 00000000, PPPPPPPP.

PPPPPPPP, PPPPPPPP, PPPPPPPP, PPPPPPPP, PPPPpppp, d [cr/lf]

nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,
1iiii, j3jjjjjij, kkkkkkkk, 11111111, 00000000, PPPPPPPP,

PPPPPPPP, PPPPPPPP, PPPPPPPP, PPPPPPPP, PPPPPppp, 4 [cr/lf]
[cr/1f]

file @ 10-43

n Alarm history file

NN Alarm history number: 1 to 500
yy/mm/dd ... Alarm occurrence date
hh:mm:ss.....oooeiienn Alarm occurrence time

Alarm group number
Alarm classification number

Alarm occurrence location
RC: Entire controller
R?: Robot (2: Robot number)
C2: Controller (2: Controller number)
A?: Axis (2: Axis number)
M?: Driver (2: Driver number)
R?: Option board
(¢: Option board number inside the controller)
T?: Task (2: Task number)
ETH: Ethernet
CMU: RS-232C Brake power
Gttt Operation mode

I: lllegalM: Manual mode

A: Automatic mode (with programming box)
O: Automatic mode (with other devices)
CMU: RS-232C

Program number

Program execution line

Point number

Parallel input: Port o to 3 (hexadecimal)

Parallel output: Port o to 3 (hexadecimal)
I Serial input: Port o to 3 (hexadecimal)
00000000........c.cuveereeeenn. Serial output: Port o to 3 (hexadecimal)

11111 Alarm occurrence location: Al to A6

Hand system
0: NONE

1: RIGHT

2: LEFT

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND LOG TO CMU ¢+ ccvvvvecccceenen Outputs all files of the alarm history
from the communication port.

Response:

RUN [cr/1f]

1:15/03/30,08:23:05,1.100:RC,0, :,0,00000000,00000012,00000000,00000112,,,,,,, [cr/lf

2:15/03/30,08:23:05,5.288: RC,0,:,0,00000000,00000010,00000000,00000110,,,,,,, [cr/lf]

500:15/03/18,10:23:04,5.228:T701,0,17:3,,00000000,00000010,00000000,00000110,
40119,100000,99996,39375,0,0,0 [cr/1f]

[cr/1f]

END [cr/1f]

I 10-44 @ Chapter 10 Data file description

a Remaining memory size file

Read-out v/
Write -

MEM

WAEELINTY o Expresses remaining memory size

DATA FORMAT

PGM+PNT AREA=mmmmmmm/nnnnnnnn [cr/1£f]
VAR AREA=xxxxx/yyyyylcr/1f]
[cr/1f]

Values mmmmmmm ..

nnnnnnn Total memory size of program and point area

..Remaining memory size of program and point area

XXXXX ...
YYYYY -

..Remaining memory size of variable area

...Total memory size of variable area

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND MEM TO CMU -« ++ ¢ =csccceeeens Outputs all files of the remaining memory
size from the communication port.

Response:

RUN [cr/1f]

PGM+PNT AREA=2088547 / 2100000 [cr/1f]

VAR AREA=23220 / 24000 [cxr/1lf]

[cr/1f]

END [cr/1f]

file @ 10-45

n Variable file

23.1 B Dynamic variables

B All dynamic variables

Read-out | v |When used as a read-out file, all dynamic variables currently stored are read out.

Write v | When used as a write file, a specified dynamic variable is written.
VAR

e Expresses all dynamic variables.
DATA FORMAT

variable name t = xxxxxx [cr/1f]

variable name t = xxxxxx [cr/1lf]

variable name t = xxxxxx [cr/1f]

[cr/1f]

Variable name........... Global variable defined in the program. Variable name is shown
with 32 characters or less consisting of alphanumeric characters
and _ (underscore).

o Type of variable
I: Real number, %: Integer, $: Character string
XXXXXX e Value of variable

Integer type: Integer of -2147483647 to 2147483647
Real type: Real number of 7 digits or less including decimal fractions
Character type: Character string of 255 characters or less

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND VAR TO CMU ¢ ccccceceeeens Outputs all global variables from the
communication port.

Response:

RUN [cr/1f]

A%=150 [cr/1f]

B!=1.0234E1 [cr/1lf]

Cl$=“"SAMPLEl” [cr/1f]

C2$=“"SAMPLE2"” [cr/lf]

[cr/1f]

END [cr/1f]C1$="CNS_1"[cr/1f]

C2$="CNS_2" [cr/1f]

[cr/1f]

END [cr/1f]

I 10-46 @ Chapter 10 Data file description

n Variable file

B One dynamic variable

Read-out v/
Write v

variable name t

e Expresses one dynamic variable.
DATA FORMAT

XXXXXX [cr/1f]

Variable name........... Global variable defined in the program. Variable name is shown
with 32 characters or less consisting of alphanumeric characters
and _ (underscore).

e Type of variable
I: Real number, %: Integer, $: Character string
XXXXXX cvveivenenneneenenes Value of variable
Integer type: Integer of 8 digits or less
Real type: Real number of 7 digits or less including decimal fractions
Character type: Character string of 255 characters or less

Dynamic global variables are registered during program execution. Variables cannot be referred
to unless they are registered.

SAMPLE 1

SEND A% TO CMU [cr/1f] «-«-cce--n Outputs the specified variable A% from

the communication port.
Response:

150 [cr/1f]

SEND CMU TO A% [cr/1f] ««cceeee-. Inputs the specified variable A% from
the communication port.

Response:

300 [cr/1f] «ccceemeeneeeennnn. Data input to the controller.

OK [cr/1f] ccceceeceeceeeeeennn Result output from the controller.

Variable file @ 10-47

n Variable file

23.2 I Static variables

B 23.2.1 Integer type static variables (SGI)

[l Allinteger type static variables

Read-out | v When used as a read-out file, all integer type static variables currently stored
are read out.

Write v | When used as a write file, a specified integer type static variable is written.

* Expresses all integer static variables.
DATA FORMAT

SGIn=xxxxxx [cr/1f]

SGIn=xxxxxx [cr/1f]

SGIn=xxxxxx [cr/1f]

[cr/1f]
M et Integer type static variable number: 0 to 31
XXXXXX wveeeennieeenneeeineeeainee s Integer of -2147483647 to 2147483647

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND SGI TO CMU + ¢ =ccssooeeeees Outputs all integer type static
variables from the communication port.

Response:

RUN [cr/1f]

SGR0=0 [cr/1f]

SGR1=0 [cr/1f]

SGR31=0 [cr/1f]
[cr/1f]
END [cr/1f]

I 10-48 @ Chapter 10 Data file description

n Variable file

[l One integer type static variables

Read-out v/
Write v

SGIm

¢ Expresses a specified integer type static variable.
e "m" represents a number from 0 to 31.

DATA FORMAT

xxxxxx [cr/1f]

XXXXXX evenveairennenenennenirenneeenenne Integer of -2147483647 to 2147483647

SEND SGI1 TO CMU -+ + v cssoeeens Outputs the specified integer type
static variables (SGI1l) from the
communication port.

Response:

RUN [cr/1f]

0 [cr/1lf]

END [cr/1f]

Variable file @ 10-49 I

n Variable file

B 23.2.2 Real type static variables (SGR)

B All real type static variables

When used as a read-out file, all real type static variables currently stored
Read-out v
are read out.
Write v | When used as a write file, a specified real type static variable is written.

e Expresses all real type static variables.
DATA FORMAT

SGRn=xxxxxx [cr/1f]

SGRn=xxxxxx [cr/1f]

SGRn=xxxxxx [cr/1f]
[cr/1f]

N e Real type static variable number: 0 to 31
XXXXXX coveerenreenrenneennenneenne Real number of 7 digits or less including decimal fractions

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SEND SGR TO CMU =+ ¢+ =cctteeeeeens Outputs all real type static variables
from the communication port.

Response:

RUN [cr/1f]

SGI0=0 [cr/1f]

SGI1=0 [cr/1f]

SGI31=0 [cr/1f]
[cr/1f]
END [cr/1f]

I 10-50 @ Chapter 10 Data file description

n Variable file

| One redl type static variables

Read-out v
Write v

e Expresses a specified real type static variable.
e "m" represents a number from 0 to 31.

DATA FORMAT

xxxxxx [cr/1f]

XXXXXX evenrtaerenneennenieennenans Real number of 7 digits or less including decimal fractions

SAMPLE

SEND SGR1 TO CMU + + ¢ eccesoeenens Outputs the specified real type static
variables (SGR1) from the communication
port.

Response:

RUN [cr/1f]

0 [cr/1lf]

END [cr/1f]

Variable file @ 10-51 I

m Constant file

24.1

l One character string

Read-out v | When used as a read-out file, the specified character string is read out.

Write - This file cannot be used as a write file.

"character string"

e Expresses a specified character string.

DATA FORMAT

sssss...ssssss[cr/1f]

Values §555S...SS5SSS cunvrenreirenreeireniens Character string: 255 characters or less

= Qutput of " symbol (double quotation) is shown with successive " symbol.

SEND """OMRON ROBOT""" TO CMU
--------------------- Outputs the specified character string
from the communication port.
Response:
"OMRON ROBOT" [cr/1f]

I 10-52 @ Chapter 10 Data file description

n Array variable file

25.1

§ Al array variables

Read-out v | When used as a read-out file, all array variables are read out.

Write v | When used as a write file, a specified array variable is written.
ARY

WAGENTTTY Expresses all array variables.

DATA FORMAT

variable name t(1{,m{,n}}) = xxxxxx [cr/1lf]
variable name t(1{,m{,n}}) = xxxxxx [cr/lf]
variable name t(1{,m{,n}}) = xxxxxx [cr/1lf]
[cr/1f]

Variable name....... Global variable defined by the DIM statement in the program.
Variable name is shown with 32 characters or less consisting of
alphanumeric characters and _ (underscore).

| TR Type of variable

I: Real number, %: Integer, $: Character string
Lm, N Indicate array arguments
XXXXXX vnvenvenrennenens Differs depending on the type of array variable.

Integer type: Integer of -2147483647 to 2147483647
Real type: Real number of 7 digits or less including decimal fractions
Character type: Character string of 255 characters or less

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND ARY TO CMU -« eeecceeennn Outputs all global array variables
from the communication port.

Response:

RUN [cr/1f]

A!(0)=0 [cr/lf]
1(1)=1.E2 [cxr/1lf]
1(2)=2.E2 [cr/1f]
%(0,0)=0 [cr/1lf]
%(0,1)=1111 [cr/1f]
%(1,0)=2222 [cr/1lf]
%(1,0)=3333 [cr/1f]

(0,0,0)= “ARY1l” [cx/1f]

(0,0,1)= “ARY2” [cr/1lf]

(0,1,0)= “ARY3” [cxr/1f]

(0,1,1)= “ARY4” [cxr/1f]

(1,0,0)= “ARY5” [cr/1f]

C$(1,0,1)= “ARY6” [cr/1lf]

C$(1,1,0)= “ARY7” [cr/1lf]

C$(1,1,1)= “ARY8” [cr/l1lf]

[cr/1f]

END [cr/1f]

cs
cs
cs
cs
cs

Array variable file @ 10-53 I

n Array variable file

25.2 l One array variable

Read-out v
Write v

variable name t (1l {,m {,n }})

* Expresses one array variable.
DATA FORMAT

xxxxxX [cr/1f]

Variable name.......Global variable defined by the DIM statement in the program.
Variable name is shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore).

o Type of variable

I: Real number, %: Integer, $: Character string
L,m, N Indicate array arguments
XXXXXX covvieeneenenene Differs depending on the type of array variable.

Integer type: Integer of -2147483647 to 2147483647
Real type: Real number of 7 digits or less including decimal fractions

Character type: Character string of 255 characters or less

Array variables defined by the DIM statement are registered during compiling. Array variables

cannot be referred to unless they are registered.

SEND C1S$(2) TO CMU -« =+ ecceeene- Outputs the specified array variable

Cl$(2) from the communication port.
Response:
RUN [cr/1f]
OMRON ROBOT [cr/1f]
END [cr/1f]

I 10-54 @ Chapter 10 Data file description

I All DI information

Read-out v | When used as a read-out file, all DI information is read out.

Write - This file cannot be used as a write file.
DI ()

e Expresses all DI (parallel input variable) information.

DATA FORMAT

DIO () =&Bnnnnnnnn [cr/1f]
DI1 ()=&Bnnnnnnnn [cr/1f]

DI27 ()=&Bnnnnnnnn [cr/1f]
[cr/1f]

M e "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DI() TO CM « v v eeeeennn Outputs all DI information from the

communication port.

Response:

DIO()=&B10001001[cr/1f]
DI1()=&B00000010[cxr/1f]
DI2 ()=&B00000000[cxr/1f]

=&B00000000 [cxr/1f]
)=&B00000000 [cr/1£f]
)=&B00000000 [cr/1£f]
)=&B00000000 [cxr/1£f]

DI7 ()
DI10 (
DI11(
DI12 (
DI17()=&B00000000 [cr/1f]
DI20()=&B00000000 [cxr/1£f]

DI26()=&B00000000 [cr/1£]
DI27 ()=&B00000000 [cr/1£]
[cr/1f]

END [cr/1f]

Dl file @ 10-55 I

m DI file

26.2

I One DI port

Read-out v | When used as a read-out file, the specified DI port status is read out.

Write - This file cannot be used as a write file.

DIm()

e Expresses the status of one DI port.

DATA FORMAT

DIm()=&Bnnnnnnnn[cr/1f]

M e 0to7,10to0 17,20 to 27
3 WU "0" or "1" (total of 8 digits). Corresponds to m7, me, ...,
mO, reading from the left ("m" is the port number).

SEND DIS5() TO CMU =« st ceeeeens Outputs the DI5 port status from the
communication port.

Response:

RUN [cr/1f]

DI15()=&B00000000 [cr/1f]

END [cr/1f]

I 10-56 @ Chapter 10 Data file description

27.1 I All DO information

Read-out v | When used as a read-out file, all DO information is read out.

Write v | When used as a write file, the value is written to the specified DO port.

e Expresses all DO (parallel output variable) information.
e Writing to DOO() and DO1() is prohibited.

DATA FORMAT

DOO () =&Bnnnnnnnn [cr/1f]
DO1 () =&Bnnnnnnnn [cr/1f]

D027 () =&Bnnnnnnnn [cr/1f]
[cr/1f]

M et "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DO() TO CMU ==« cseceeeenn Outputs all DO information from the
communication port.

Response:

RUN [cr/1f]

DOO () =&B10001001 [cr/1£f]

DO1 () =&B00000010[cr/1£f]

DO2 () =&B00000000 [cr/1£f]

DO7 () =&B00000000 [cr/1£f]
D010 ()=&B00000000 [cxr/1£]
DO11 ()=&B00000000 [cxr/1£f]
D012 ()=&B00000000 [cxr/1£f]

DO17 ()=&B00000000 [cxr/1f]
D020 ()=&B00000000 [cr/1£]

D026 () =&B00000000 [cr/1£]
D027 ()=&B00000000 [cr/1£]
[cr/1f]

END [cr/1f]

DO file @ 10-57 I

DO file

27.2 | One DO port

Read-out | v | When used as a read-out file, the specified DO port status is read out.

Write v | When used as a write file, the value is written to the specified DO port.

DOm ()

e Expresses the status of one DO port.
e Writing to DOO() and DO1() is prohibited.

e Readout file

DATA FORMAT

DOm () =&Bnnnnnnnn[cr/1f]

e Write file

DATA FORMAT

&Bnnnnnnnn[cr/1f] or kl[cr/1f]

M e Port number: 0 to 7, 10 to 17, 20 to 27
I e "0" or "1" (total of 8 digits). Corresponds to m7, mé, ...,
mO, reading from the left ("m" is the port number).
K Integer from O to 255

Writing to DOO0() and DO1() is prohibited. Only referencing is permitted.

SEND DO5 () TO CMU =« v Outputs the DO5 port status from the
communication port.

Response:

RUN [cr/1f]

DO5 () =&B00000000 [cr/1£f]

END [cr/1f]

I 10-58 @ Chapter 10 Data file description

I Mo file

28.1 I All MO information

Read-out v | When used as a read-out file, all MO information is read out.

Write v/ | When used as a write file, the value is written to the specified MO port.

e Expresses all MO (internal output variable) information.
e Writing to MO30() and DO37() is prohibited.

DATA FORMAT

MOO () =&Bnnnnnnnn [cr/1f]
MO1 () =&Bnnnnnnnn [cr/1f]

MO37 () =&Bnnnnnnnn [cr/1f]
[cr/1f]

M ettt "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MO () TO CMU *+ + e vcceeeeens Outputs all MO information from the
communication port.

Response:

RUN [cr/1f]

MOO () =&B10001001 [cr/1f]

MO1 () =&B00000010 [cr/1f]

MO2 () =&B00000000 [cr/1f]

MO7 () =&B00000000 [cr/1f]

MO10 ()=&B00000000 [cr/1f]
MO11 ()=&B00000000 [cr/1f]
MO12 () =&B00000000 [cr/1f]

MO17 ()=&B00000000 [cr/1f]
MO20 () =&B00000000 [cr/1f]

MO27 ()=&B00000000 [cr/1f]
MO30 () =&B00000000 [cr/1f]

MO36 () =&B00000000 [cr/1f]
MO37 ()=&B00000000 [cr/1f]
[cr/1f]

END [cr/1f]

MO file @ 10-59 I

n MO file

28.2 I One MO port

Read-out | v | When used as a read-out file, the specified MO port status is read out.
Write v | When used as a write file, the value is written to the specified MO port.

MOm ()

e Expresses the status of one MO port.
e Writing to MO30() to MO37() is prohibited.

¢ Readout file

DATA FORMAT

MOm () =&Bnnnnnnnn [cr/1f]

e Write file

DATA FORMAT

&Bnnnnnnnn[cr/1f] or kl[cr/1lf]

M e Port number: 0to 7, 10to 17, 20 to 27, 30 to 37
3 NPT "0" or "1" (total of 8 digits). Corresponds to m7, me, ...,
mO, reading from the left ("m" is the port number).
K e Integer from 0 to 255

Writing to MO30() to MO37() is prohibited. Only reference is permitted.

SEND MO5() TO CMU =+« oo eeeeens Outputs the MO5 port status from the
communication port.

Response:

RUN [cr/1f]

MO5 () =&B00000000 [cr/1£f]

END [cr/1f]

I 10-60 @ Chapter 10 Data file description

I All LO information

Read-out v | When used as a read-out file, all LO information is read out.

Write v/ | When used as a write file, the value is written to the specified LO port.
LO()

e Expresses all LO (internal output variable) information.

DATA FOMAT

LOO () =&Bnnnnnnnn [cr/1f]

LO1 () =&Bnnnnnnnn [cr/1f]
[cr/1f]

M e "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LO() TO CMU =« =+« eeeenn Outputs all LO status from the
communication port.

Response:

RUN [cr/1f]

LOO () =&B10001001 [cr/1f]
LO1()=&B00100100 [cr/1f]
[cr/1f]

END [cr/1f]

LO file @ 10-61 I

n LO file

29.2

| One LO port

Read-out | v | When used as a read-out file, the specified LO port status is read out.

Write v | When used as a write file, the value is written to the specified LO port.

LOm ()

 Expresses the status of one LO port.

e Readout file

DATA FORMAT

LOm () =&Bnnnnnnnn [cr/1f]

e Write file

DATA FORMAT

&Bnnnnnnnn[cr/1f] or kl[cr/1f]

00 U Port number: 0, 1

N e "0" or "1" (total of 8 digits). Corresponds to m7, me, ...,
mO, reading from the left ("m" is the port number)
K e Integer from 0 to 255

SEND LOO () TO CMU =+« Outputs the LOO port status from the
communication port.

Response:

RUN [cr/1f]

LOO () =&B00000000 [cr/1f]

END [cr/1f]

I 10-62 @ Chapter 10 Data file description

30.1 I All TO information

Read-out v | When used as a read-out file, all TO information is read out.

Write v | When used as a write file, the value is written to the specified TO port.

e Expresses all TO (timer output variable) information.
DATA FORMAT

TOO () =&Bnnnnnnnn [cr/1f]
TO1 () =&Bnnnnnnnn [cr/1f]
[cr/1f]

M et "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND TO() TO CMU *t+ v vccceeenens Outputs all TO status from the
communication port.

Response:

RUN [cr/1f]

TOO () =&B10001001 [cr/1f]

TO1 ()=&B10001001 [cr/1f]

[cr/1f]

END [cr/1f]

TO file @ 10-63 I

“ TO file

30.2 | One TO port

Read-out | v | When used as a read-out file, the specified TO port status is read out.

Write v | When used as a write file, the value is written to the specified TO port.

TOm ()

e Expresses the status of one TO port.

¢ Readout file

DATA FORMAT

TOm () =&Bnnnnnnnn[cr/1f]

e Write file

DATA FORMAT

&Bnnnnnnnn[cr/1£f] or k[cr/1f]

00 PR Port number: 0, 1

N e "0" or "1" (total of 8 digits). Corresponds to m7, me, ...,
mO, reading from the left ("m" is the port number).
K Integer from 0 to 255

SAMPLE 1

SEND TOO () TO CMU =« ==« ccceeeeenens Outputs the TO0 port status from the
communication port.

Response:

RUN [cr/1f]

TOO0 () =&B00000000 [cxr/1f]

END [cr/1f]

I 10-64 @ Chapter 10 Data file description

31.1 I All Sl information

Read-out v | When used as a read-out file, all Sl information is read out.

Write - This file cannot be used as a write file.

e Expresses all Sl (serial input variable) information.
DATA FORMAT

SIO0 ()=&Bnnnnnnnn [cr/1f]
SI1()=&Bnnnnnnnn [cr/1f]

SI27 () =&Bnnnnnnnn [cr/1f]
[cr/1f]

M et "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SI() TO CMU ¢+ ccvccccccenens Outputs all SI status from the
communication port.

Response:

RUN [cr/1f]

SIO()=&B10001001[cr/1£]

SI1()=&B00000010([cr/1f]

SI2()=&B00000000([cr/1£f]

SI7()=&B00000000[cr/1£]

SI10()=&B00000000[cr/1£f]
SI11()=&B00000000[cr/1£f]
SI12()=&B00000000[cr/1£f]

SI17()=&B00000000[cr/1f]
SI20()=&B00000000[cr/1f]

SI26()=&B00000000[cr/1f]
SI27()=&B00000000[cr/1f]
[cr/1f]

END [cr/1f]

Slfile @ 10-65 I

n Sl file

31.2

I One Sl port

Read-out | v | When used as a read-out file, the specified Sl port status is read out.
Write - | This file cannot be used as a write file.

STIm()

e Expresses the status of one S port.
DATA FORMAT

SIm()=&Bnnnnnnnn[cr/1£f]

M e Port number: 0to 7, 10 to 17, 20 to 27
Il e "0" or "1" (total of 8 digits). Corresponds to m7, me, ...,

mO, reading from the left ("m" is the port number).

SEND SI5() TO CMU =« *cccceeeeenees Outputs the SI5 port status from the
communication port.

Response:

RUN [cr/1f]

SI5()=&B00000000 [cr/1lf]

END [cr/1f]

I 10-66 @ Chapter 10 Data file description

32.1 I All SO information

Read-out v | When used as a read-out file, all SO information is read out.

Write v | When used as a write file, the value is written to the specified SO port.
SO ()

e Expresses all SO (serial output variable) information.
e Writing to SOO0() and SO1() is prohibited.

DATA FORMAT

S00 () =&Bnnnnnnnn [cr/1f]
SO1 () =&Bnnnnnnnn [cr/1f]

S027 () =&Bnnnnnnnn [cr/1f]
[cr/1f]

M e "0" or "1" (total of 8 digits).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SO() TO CMU =« ceeenenn Outputs all SO status from the
communication port.

Response:

RUN [cr/1f]

SO0 () =&B10001001 [cxr/1£]

SO1 () =&B00000010[cr/1£]

S02 ()=&B00000000[cxr/1£f]

SO7()=&B00000000 [cxr/1£]
S010 () =&B00000000[cr/1£f]
S011 () =&B00000000[cr/1£f]
S012()=&B00000000 [cr/1f]

S017 () =&B00000000[cr/1£f]
S020 () =&B00000000[cr/1£f]

S026 ()=&B00000000 [cr/1f]
S027 ()=&B00000000 [cr/1f]
[cr/1f]

END [cr/1f]

SO file @ 10-67 I

AN soite

32.2 | One SO port

Read-out | v | When used as a read-out file, the specified SO port status is read out.
Write v | When used as a write file, the value is written to the specified SO port.

SOm ()

 Expresses the output status of one SO port.
e Writing to SO0() and SO1() is prohibited.

¢ Readout file

DATA FORMAT

SOm () =&Bnnnnnnnn [cr/1f]

e Write file

DATA FORMAT

&Bnnnnnnnn[cr/1f] or kl[cr/1f]

M) e Port number: 0to 7, 10to 17, 20 to 27
N e "0" or "1" (total of 8 digits). Corresponds to m7, mé, ...,
mO, reading from the left ("m" is the port number).
K e Integer from 0 to 255

Writing to SO0() and SO1() is prohibited. Only reference is permitted.

SEND SO5() TO CMU =« v Outputs the SO5 port status from the
communication port.

Response:

RUN [cr/1f]

SO5 () =&B00000000 [cr/1f]

END [cr/1f]

I 10-68 @ Chapter 10 Data file description

33

SIW file
1

I All SIW data

When used as a read-out file, all SIW information is read out in hexadecimal
Read-out v -
digit.
Write - This file cannot be used as a write file.

SIW()

e Expresses all SIW (serial word input) data.
DATA FORMAT

SIW(0)=&Hnnnn [cr/1f]
SIW(1l)=&Hnnnn [cr/1f]

SIW(15)=&Hnnnn [cr/1f]

[cr/1f]
[TP UTT USRS 0to 9, Ato F: 4 digits (hexadecimal)

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SIW() TO CMU =« cccccceeenenn Outputs all SIW data from the
communication port.

Response:

RUN [cr/1f]

SIW(0)=&H1001[cxr/1f]
SIW(1)=&H0010([cxr/1f]
SIW(2)=&H0000[cr/1£f]

SIW(15)=&H0000[cr/1f]
[cr/1f]
END [cr/1f]

SIW file @ 10-69 I

N sw e

33.2

I One SIW data

When used as a read-out file, the specified SIW status is read out in
Read-out v . .
hexadecimal digit.
Write - This file cannot be used as a write file.

STIW (m)

* Expresses one SIW status.
DATA FORMAT

SIW (m)=&Hnnnn [cr/1f]

) e 0to 9, Ato F: 4 digits (hexadecimal)
SEND SIW(5) TO CMU =« =+t seeeeees Outputs SIW(5) from the communication
port.

Response:

RUN [cr/1f]
SIW(5)=&H1001[cxr/1f]
END [cr/1f]

I 10-70 @ Chapter 10 Data file description

When used as a read-out file, all SOW information is read out in
Read-out | v . L
hexadecimal digit.
Write v | When used as a write file, the value is written to the specified SOW port.

SOW ()

e Expresses all SOW (serial word output) data.
e Writing to SOW(0) and SOW(1) is prohibited.

DATA FORMAT

SOW (0) =&Hnnnn [cr/1f]
SOW (1) =&Hnnnn [cr/1f]

SOW (15) =&Hnnnn [cr/1f]
[cr/1f]

M et 0to 9, A to F: 4 digits (hexadecimal)

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SOW() TO CMU =« ==t ceeene Outputs all SOW data from the
communication port.

Response:

RUN [cr/1f]

SOW (0) =&H1001 [cxr/1f]

SOW (1) =&H0010[cr/1f]

SOW (2) =&H0000 [cxr/1f]

SOW (15) =&H0000 [cr/1f]
[cr/1f]
END [cr/1f]

SOW file @ 10-71 I

I sow fie

34.2

I One SOW data

When used as a read-out file, the specified SOW port status is read out in
Read-out | v/ . o
hexadecimal digit.
Write v | When used as a write file, the value is written to the specified SOW port.

SOW (m)

* Expresses one SOW status.
e Writing to SOW(0) and SOW(1) is prohibited.

¢ Readout file

DATA FORMAT

SOW (m) =&Hnnnn [cr/1f]

e Write file

DATA FORMAT

&Hnnnn

M oo 2t015

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE 1

SEND SOW(5) TO CMU =« =+t seeeeees Outputs SOW(5) from the communication
port.

Response:

RUN [cr/1f]
SOW (5) =&H1001 [cxr/1f]
END [cr/1f]

I 10-72 @ Chapter 10 Data file description

Read-out | v | When used as a read-out file, *Z (=1Ah) is read out.
Write - This file cannot be used as a write file.

e This file is a special file consisting only of a AZ (=1Ah) code. When transmitting data
to an external device through the communication port, the EOF data can be used to
add a AZ code at the end of file.

DATA FORMAT

~Z (=1Ah)

SAMPLE

SEND PGM TO CMU
SEND EOF TO CMU ¢+ s v eceeesn Outputs EOF data from the communication
port.

NAME=TEST1 [cr/1f]
A=1[cr/1f]

HALT[cr/1f]
[cr/1f]
~Z

A "AZ" code may be required at the end of the transmitted file, depending on the specifications

of the receiving device and application.

EOF file @ 10-73 I

n Serial port communication file

6.1 Serial port communication file
Read-out | v
Write 4
CMU

e Expresses the serial communication port.
e Depends on the various data formats.

SEND PNT TO CMU -+« =« c ot eeeeeesn Outputs all point data from the

communication port.
SEND CMU TO PNT ¢« e Inputs all point data from the
communication port.

I 10-74 @ Chapter 10 Data file description

- Ethernet port communication file

37.1 | Ethernet port communication file
Read-out | v
Write 4
ETH
e Expresses the Ethernet port.
¢ Depends on the various data formats.
SAMPLE
SEND PNT TO ETH =« -cccecvececece. Outputs all point data from the
Ethernet port.
SEND ETH TO PNT e eeeeenn Inputs all point data from the Ethernet

port.

Ethernet port communication file @ 10-75 I

Chapter 11

User program examples

1 Basic operation..........ccccccereereiirieieienennnnns 11-1
2 Application ..., 11-8

_ Basic operation

1.1 B Directly writing point data in program

= Overview

The robot arm can be moved by PTP (point-to-point) motion by directly specifying point data in the
program.

Processing flow

START

300.000 300.000 50.000 90.000 0.000 0.000 PTP movement
300.000 100.000 0.000 0.000 0.000 0.000 PTP movement
200.000 200.000 10.000 -90.000 0.000 0.000 PTP movement

STOP

33C01-R7-00
MOVE P, 300.000 300.000 50.000 90.000 0.000 0.000
MOVE P, 300.000 100.000 0.000 0.000 0.000 0.000
MOVE P, 200.000 200.000 10.000 -90.000 0.000 0.000

HALT

Basic operation @ 11-1

1.2 B Using point numbers

= Overview

Coordinate data can be specified by using point numbers in a program. Coordinate data should be
entered beforehand from the programming box or the support software "SCARA-YRCX Studio", for
example as shown below (For details, refer to the YRCX operator's manual or the SCARA-YRCX
Studio manual).

POINT DATA

P0=0.000 0.000 0.000 --- 0.000 0.000 0.000
P1=100.0000.000 150.000 -- 30.000 0.000 0.000
P2=0.000100.000 50.000 --- 0.000 0.000 0.000
P3=300.000300.000 0.000 --- 0.000 0.000 0.000
P4=300.000100.000100.000-- 90.000 0.000 0.000
P5=200.000200.000 0.000 --- 0.000 0.000 0.000
Processing flow

PTP movement to PO

PTP movement to P1

PTP movement to P2

PTP movement to P3

PTP movement to P4

PTP movement to P5

(STOP)
33C02-R7-00

SAMPLE 1
MOVE P, PO
MOVE P, P1
MOVE P, P2
MOVE P, P3
MOVE P, P4
MOVE P, P5
HALT

FOR J=0 TO 5
MOVE P,P[J]

NEXT J

HALT

Although the same operation is executed by both SAMPLE 1 and SAMPLE 2, the program can be
shortened by using point numbers and the FOR statement.

11-2 @ Chapter 11 User program examples

1.3 B Using shift coordinates

= Overview

In the example shown below, after PTP movement from P3 to P5, the coordinate system is shifted
+140mm along the X-axis and -100mm along the Y-axis, and the robot then moves from P3 to
P5 again. The shift coordinate data is set in ST and P3, P4, P5 are set as described in the previous
section ("1.2 Using point numbers").

S0=0.000 0.000 0.000 --- 0.000
S1=140.000-100.000 0.000 --- 0.000
Shift Coordinate
Y+

P3

X: 140mm shift, Y: -100mm shift

0
ul

|
I
|
'
~
AN
A
o

i
1
Shift Coordinate o7 |
S0 T - K :
Shift Coordinate " AN
S1 AN
N
{: X+
0 /
100
1
L e b
e
140 !
33C03-R7-00
SHIFT SO cccccesoccocasnocacss shift 0.
FOR J=3 TO 5 cccvceccceeenneeeeenn Repeated movement from P3 to P5.
MOVE P, P[J]
NEXT J
SHIFT S1 = cccccceceeeececennnnn Changed to "shift 1".
FOR K=3 TO 5+ Repeated movement occurs in the same

manner from P3 to P5.
MOVE P, P[K]
NEXT K
HALT

Basic operation @ 11-3

1.4 B Padlletizing

J 141 Cdleulating point coordinates

= Overview

Repetitive movement between a fixed work supply position PO and each of the equally spaced
points on a pallet can be performed with the following program.

In the drawing below, points N1 to N20 are on Cartesian coordinates, consisting of 5 points
positioned at a 50mm pitch in the X-axis direction and 4 points at a 25mm pitch in the Y-axis
direction. The robot arm moves from point to point in the order of PO-NT-P0-N2...N5-P0O-N6-PO...
while repeatedly moving back and forth between point PO and each pallet.

POINT DATA

Work supply position:

PO= 0.000 0.000 0.000 0.000 0.000 0.000
X-axis pitch:

P10= 50.000 0.000 0.000 0.000 0.000 0.000
Y-axis pitch:

P20= 0.000 25.000 0.000 0.000 0.000 0.000
N1 position:

Pl = 100.000 50.000 0.000 0.000 0.000 0.000

Calculating point coordinates

Y+
i
i N16 N17 N18 N19 N20
Qs Qe Qe Qe e
1 1 1 1 1
N1 | N12 i N13 i N14 | N15
R R g
i N6 i N7 i N8 . N9 i N10
MR o o g i
| N1 Y ! N3 | N4 L ONS X+
— O---oe-- O--------- O--------- O--------- O---------
50 o PO
33C04-R7-00
Processing flow
(START)
P200=P1 ee+eeeece++ P1 coordinates are input at P200.
P100=P1 ee+eeeeee- P{ coordinates are input at P100.
Movement to PO e+ e Movement to supply position.
| Repeat 5 times | Movement to P100 ceceeeeecc Movementto P100
P100=P100+P10 ececeec* P100 is shifted by the pitch amount
in the X-direction.
| Repeat4thnes|
P200=P200+P20 eeeeces* Movement to P200
P100=P200 eeeeeeeeee P200 is shifted by the pitch amount
in the Y-direction.

31C05-R7-00

11-4 @ Chapter 11 User program examples

P100=P1
P200=P1
FOR J=1 TO 4
FOR K=1 TO 5
MOVE P, PO
MOVE P,P100
P100=P100+P10
NEXT K
P200=P200+P20
P100=P200
NEXT J
HALT

Basic operation @ 11-5

J 1.42 Uiilizing pallet movement

= Overview

Repetitive movement between a fixed work supply position PO and each of the equally spaced
points on a pallet can be performed with the following program. In the drawing below, points
N1 to N24 are on Cartesian coordinates, consisting of 3 points positioned at a 50mm pitch in the
X-axis direction, 4 points at a 50mm pitch in the Y-axis direction, and 2 points at T00mm pitch in
the Z-axis direction. The robot arm moves from point to point in the order of PO-N1-PO-N2...-N5-

PO-NG6... while repeatedly moving back and forth between point PO and each pallet.

POINT DATA

Work supply position:

PO= 0.000 0.000 200.000 0.000 0.000 0.000
Pallet definition:
PLO
NX= 3
NY= 4
NZ= 2
PLP= 3996: (P3996 to P4000 are used)
P[1]= 100.000 50.000 200.000 0.000 0.000 0.000
P[2]= 200.000 50.000 200.000 0.000 0.000 0.000
P[3]= 100.000 200.000 200.000 0.000 0.000 0.000
P[4]= 200.000 200.000 200.000 0.000 0.000 0.000
P[5]= 100.000 50.000 100.000 0.000 0.000 0.000
Utilizing pallet movement Opos
O
—ge
P3999
NZ | Onia
PO P399E r<-----mmo--mmmo-ommooooooooos > P3997
NX
33C06-R9-00

Processing flow

(sTART)

| Repeat 24 times |

Pallet m

Movement to PO
ovement

(STOP)

eeeecee2+ Movement to supply position (P0).
eeceecee - Repeated for points N1 to N24.

33C07-R7-00

TOR T=1 MO 24 cocococcoccocooooao

MOVE P,P0,Z=0.000

PMOVE (0,I),Z=0.000----------

NEXT I

MOVE P,P0,Z=0.000

HALT

Repeated for I =

1 to 24.

Movement of robot 1 to supply position.

Movement of robot 1 to pallet point.

11-6 @ Chapter 11 User program examples

1.5 B DI/DO (digital input and output) operation

= Overview
The following example shows input/ output signal operations through the general-purpose input/
output device.

Processing flow

(START)

Wait until DI2() is all at "0". s eeeee e+« Wait until DI20 to DI27 become "0".
Setall of DO2 () to "1". seeeeeees DO20 to DO27 become "1".
Wait 1 second.
Wait until DI2 (0) is at "1". ++eeeee--. Wait until DI20 becomes "1".

escesssccssccssessse "1"iSaSSignedt0"N".

Y
DI2 (1)="1"? l
Set DO2 (7, 6, 1, 0) to "1".
Wait 2 seconds
v Set all of DO2 () to "0".
END
Set all of DO2 () to “0".
Wait 0.5 seconds « DO processing ends if DI2(1) is "1".
N=N+1 * Repeated until N=20 if DI2(1) is "0".
|
33C08-R7-00

WAIT DI2()=0 ccvcevcceecenceenenn Waits until DI20 to DI27 become "0".
DO2 () =&B11111111 ««ccveeeeceennen DO20 to DO27 become "1".
DELAY 1000
WAIT DI2(0)=1 «ccvvevenneneeeeennnnn Waits until DI20 becomes "1".
N=1
*LOOP1:
IF DI2(1)=1 THEN *PROGEND =+« -- Jumps to *PROGEND if DI21 = 1.
IF N>20 THEN *ALLEND =« Ended in N > 20 (jumps to *ALLEND) .
DO2()=0 @ ccccecceecceccenon.n DO20 to DO27 become "O0".
DELAY 500
N=N+1
GOTO *LOOP1 « ¢ ccceeceeceeeeecnncnn Loop is repeated.
"END ROUTINE
*PROGEND: End processing.
DO2(7,6,1,0)=&BL111]l «:cvceececene.n Sets D027, 26, 21, 20 to "1".
DELAY 2000 e Waits 2 seconds
D02 ()=@ occocccccococccoooosccco Sets DO20 to "Q".
*ALLEND:
HALT

Basic operation @ 11-7

n Application

2.1 B Pick and place between 2 points

= Overview

The following is an example for picking up a part at point A and placing it at point B.

Pick and place between 2 points

z
0
P3 30mm P4
O, O, e w
®
® @) @ ® 50mm
P1 P2
Point A Point B

33C09-R7-00
= Precondition

1. Set the robot movement path.
¢ Movement path: P3—P1—-P3—-P4—-P2—P4
e Locate P3 and P4 respectively at a position 50mm above P1 and P2 and set the P1 and P2
positions by teaching.
2. /O signal
[DO (20) | Chuck (gripper) open/close = 0: open, 1: close |
¢ A 0.1 second wait time is set during chuck open and close.

SAMPLE: When calculating to find P3 and P4

P3=P1l cccceeccieata. Pl coordinates are assigned to P3.
P4A=P2 sttt P2 coordinates are assigned to P4.
LOC3 (P3)=LOC3 (P3)-50.000--:"-- Axis 3 data of P3 is shifted 50mm in

upper direction.
LOC3 (P4)=L0OC3 (P4)-50.000+---- Axis 3 data of P4 is shifted 50mm in
upper direction.
MOVE P, P3
GOSUB *OPEN
MOVE P, P1
GOSUB *CLOSE
MOVE P, P3
MOVE P, P4
MOVE P, P2
GOSUB *OPEN
MOVE P, P4
HALT
FOPEN: ~ cecececececeecnnn Chuck OPEN routine.
D02 (0) =0
DELAY 100
RETURN
*CLOSE: = cececececcceccacecenns Chuck CLOSE routine.
DO2 (0) =1
DELAY 100
RETURN

11-8 @ Chapter 11 User program examples

SAMPLE: When using arch motion

P4A=P2 cccccccceiittiitenen P2 coordinates are assigned to P4.
LOC3 (P4)=LOC3 (P4)-50.000----- Axis 3 data of P4 is shifted 50mm in
upper direction.
GOSUB *OPEN
MOVE P,P1,A3=30.000-:-:«:-:-- Arch motion at A3 = 30mm.
GOSUB *CLOSE
MOVE P,P2,A3=30.000¢¢-:«««:--- Arch motion at A3 = 30mm.
GOSUB *OPEN
MOVE P, P4
HALT
FOPEN: = cc e e eeeeeccecceeens Chuck OPEN routine.
DO2 (0) =0
DELAY 100
RETURN
*CLOSE: = cccccececececencene.n Chuck CLOSE routine.
DO2 (0) =1
DELAY 100
RETURN

Application @ 11-9

2.2 B Palletizing

= Overview

The following is an example for picking up parts supplied from the parts feeder and placing them on
a pallet on the conveyor. The pallet is ejected when full.

Palletizing

50mm
. . .
P1: Pallet reference position e | o |
P1 PO
Robot
PO: Part supply position
Parts feeder
33C10-R7-00
= Precondition
1. /O signal
DI (30) Component detection sensor 1: Parts are supplied
DI (31) Pallet sensor 1: Pallet is loaded
DO (30) Robot hand open/close 0: Open/ 1: Close
DO (31) Pallet eject 1: Eject

Robot hand open/close time is 0.1 seconds and pallet eject time is 0.5 seconds.

2. The points below should be input beforehand as point data.

PO Part supply position

P1 Pallet reference position
P10 X direction pitch

P11 Y direction pitch

3. Vertical movement is performed to a position Z=50mm above the pallet and parts feeder.

I 11-10 @ Chapter 11 User program examples

SAMPLE 1: When point is calculated

WHILE -1 @ cccccceeeneecteennnnn All repeated (-1 is always TRUE) .
FOR A=0 TO 2
FOR B=0 TO 2

WAIT DI(31)=1 «cvvvvoveeeenn Wait until a pallet "present" status
occurs.
WAIT DI(30)=1 +--ccvveee-n Wait until the supplied component
"present" status occurs.
DO(30)=0 +ccceccececcecnns Robot hand OPENS.
DELAY 100
MOVE P,P0,A3=50.000 +----- Movement of robot 1 to supply position.
DO(30)=1 «cvvvveeeeceeennn Robot hand CLOSES.
DELAY 100
P100=P1+P10*B+P11*A - .- - - Next point is calculated.
MOVE P,P100,A3=50.000 ---- Movement of robot 1 to calculated point.
DO(30)=0 +cccevccececcecnns Robot hand OPENS.
DELAY 100
NEXT

NEXT

DRIVE (3,0) +ceceecceeeencennnn Only 3 axis of robot 1 moves to O.

BDO(3L)=L o000000000000000000000 Pallet is ejected.

DELAY 500

DO(31)=0

VEIN[D 3 ©000000000000050000000 Loop is repeated.
HALT

SAMPLE 2: When using the palletizing function

* Precondition: Must be defined at pallet "0".
WHILE =1 = e e e e e eeeeecccennsees All repeated.
FOR A=1 TO 9

WAIT DI(31)=1 «vvvveeeeenn Wait until a pallet "present" status
occurs.
WATIT DI(30)=1 +--ccvveee-e Wait until the supplied component
"present" status occurs.
DO(30)=0 +cccevceeccccecnns Robot hand OPENS.
DELAY 100
MOVE P,P0,A3=50.000 +----- Movement of robot 1 to supply position.
DO(30)=1 «cvvvveeecceeennn Robot hand CLOSES.
DELAY 100
PMOVE (0,A) ,A3=50.000 -~ -- Movement of robot 1 to pallet point.
DO(30)=0 ¢cccevccccecon.n. Robot hand OPENS.
DELAY 100
NEXT
DRIVE (3,0) «cccveeeeeeeeeeenn. Only axis 3 of robot 1 moves to 0.
DO(31)=1 Pallet is ejected.
DELAY 500
DO (31)=0
WEND! ele e elee oot Loop is repeated.

HALT

Application @ 11-11

2.3 B Pick and place of stacked parts

= Overview

The following is an example for picking up parts stacked in a maximum of 6 layers and 3 blocks
and placing them on the conveyor.

The number of parts per block may differ from others.

Parts are detected with a sensor installed on the robot hand.

Pick and place of stacked parts

Z=0.0
- : : :
— 1 v v v
Convevor P5 P1 P2 P3
onveyo Block1 Block2 Block 3
33C11-R7-00
= Precondition
1. /O signal
DI (30) Component detection sensor 1: Parts are supplied
DI (31) Robot hand open/close 0: Open / 1: Close

¢ Robot hand open/close time is 0.1 seconds.

2. The points below should be input beforehand as point data.

P1 Bottom of block 1
P2 Bottom of block 2
P3 Bottom of block 3
P5 Position on conveyor

3. Movement proceeds at maximum speeds but slows down when in proximity to the part.

Processing flow

High speed \]/

P4=WHERE

Set the current position
into point data (P4)

— 1 1 | Set the speed at maximum |
P5 P1 |

Load the part onto
conveyor position (P5)

|
. m Move to position (P4)
High speed l during parts detection

—> P4=WHERE

P4=WHERE
Y
| Slow down |
I
el s | Move to P1 |
P5 P1 i

33C12-R7-00

4. Use a STOPON condition in the MOVE statement for sensor detection during movement.

I 11-12 @ Chapter 11 User program examples

SAMPLE

FOR A=1 TO 3
SPEED 100
GOSUB *OPEN
P6=P[A]
LOC3 (P6)=0.000
MOVE P,P6,A3=0.000
WHILE -1
SPEED 20
MOVE P,P[A],STOPON DI3(0)=1
IF DI3(0)=0 THEN *L1
'SENSOR ON
P4=JTOXY (WHERE)
GOSUB *CLOSE
SPEED 100
MOVE P,P5,A3=0.000
GOSUB *OPEN
MOVE P,P4,A3=0.000

WEND

*L1: ’'SENSOR OFF
NEXT A
SPEED 100
DRIVE (3,0)
HALT

*OPEN:

DO3 (0) =0
DELAY 100
RETURN
*CLOSE:

DO3 (0)=1
DELAY 100
RETURN

Application @ 11-13

2.4 B Parts inspection (Multi-tasking example)

= Overview

One robot is used to inspect two different parts and sort them according to the OK/NG results
judged by a testing device.

The robot picks up the part at point A and moves it to the testing device at point B. The testing
device checks the part and sends it to point C if OK or to point D if NG.

The part at point A" is picked up and moved to the testing device at point B' in the same way. The
testing device checks the part and sends it to point C" if OK or to point D" if NG.

It is assumed that 10 to 15 seconds are required for the testing device to issue the OK/NG results.

Parts inspection (Multi-tasking example)

Part supply 1 Testing device 1 Part 1 OK Part 1 NG

: fypgt

P1 P2 P3 P4

LI L | [

P11 P12 P13 P14

t Ll

Part supply 2 Testing device2 ~ Part 2 OK Part 2 NG

33C13-R7-00
o = Precondition
Il/l NOTE 1. /O signal
**1: As the start signal, .
supply a 0.1 second I/0 signal 76543210
pulse signal to the testing DO2
device. Testing device 1 start (0.1 second) 1: Start *'
. . Robot chuck open/close 0: Open / 1: Close *2
,0.1 seconds:
ON =-emmu- : H 76543210
OFF DO3
Testing device 2 start (0.1 second) 1: Start *'
e *2: Chuck open and close
fime is 0.1 seconds.
76543210
**3: Each time a test DI2
is finished, the fest L Testing device 1 test completed *
completion signal and Testing device 1 OK/NG signal
OK/NG signal are sent Part supply 1
from the testing device. Part 1 OK
After testing, the test Part1NG
completion signal turns 76543210
ON (=1), and the OK/ NG DI3
signal turns ON (=1) when L— Testing device 2 test completed *?
the result is OK and turns Testing device 2 OK/NG signal
OFF (=0) when NG. Part supply 2
Part 2 OK
Part 2 NG
33C14-R7-00

The main task (task 1) is used to test part 1 and the subtask (task 2) is used to test part 2.

An exclusive control flag is used to allow other tasks to run while waiting for the test

completion signal from the testing device.
FLAG1 0: Task 1 standby

1: Executing Task 1

FLAG2 0: Task 2 standby
1: Executing Task 2

Task 2 execution enabled)
Task 2 execution disabled)
Task 1 execution enabled)
Task 1 execution disabled)

Py Py iy gy

I 11-14 @ Chapter 11 User program examples

4. Flow chart

Processing flow

START

| Exclusive control flag reset | seccccceee FLAG1=0 FLAG2=0
I

| Subtask start |
|

Part 1 supplied?

Exclusive control flag set | seeecceees FLAGT=1
I

Chuck open |
I

Move to parts supply position P1 |
I

Chuck close |
I

Chuck open
I

Exclusive control flag reset ceececcese FLAGT=0

|
|
|
|
[Move to testing device 1
|
|
|
|

|
|
Move upward|1000O pulses |
|
|

Testing device 1 start

| Exclusive control flag set | seeecceees FLAGT=A
I

I Move to testing device 1 I
I

| Chuck close |

Part OK?
Y
NG parts?
| Move to OK parts position | N

I I Move to NG parts position

| Chuck open |
I

| Move upward 10000 pulses |
I

| Exclusive control flag reset | seeeeeecee FLAGT=0

33C15-R7-00

Task 2 (subtask) runs in the same flow.

Application @ 11-15

Program example

<Main task> <Subtask>

FLAG1=0 Program name:SUB_PGM

FLAG2=0

UPPOS=0.000

START <SUB_PGM>,T2 e Subtask Start

Ll ¢ “E 5

WAIT DI2(2)=1 WAIT DI3(2)=1 eeeeeen Part supply standby

WAIT FLAG2=0 WAIT FLAG1=0 +ceeeen- Other taskswaiting for standoy status
FLAG1=1 FLAG2=1 eeeee Exclusive control flag set
GOSUB *OPEN GOSUB *OPEN eeee.. Chuck open

MOVE P, P1l,Z=UPPOS MOVE P,P11,Z=UPPOS = «t:++=«-- Move to part supply position
GOSUB *CLOSE GOSUB *CLOSE +eee-- Chuck close

MOVE P, P2,Z=UPPOS MOVE P,P12,Z=UPPOS = +++=--- Move to testing device
GOSUB *OPEN GOSUB *OPEN eeeeen Chuck open

DRIVEI (3,-10000) DRIVEI (3,-10000) e e--- Move axis 3 upward 10,000 pulses
FLAG1=0 FLAG2=0 e Exclusive control flag reset
DO2 (0) =1 DO3(0)=1 eeeee Testing device start
DELAY 100 DELAY 100

DO2 (0) =0 DO3 (0) =0

WAIT DI2(0)=1 WAIT DI3(0)=1 eeeeee. Test completion standby
WAIT FLAG2=0 WAIT FLAG1=0 eeeeenes Task completion standby
FLAG1=1 FLAG2=1 e Exclusive control flag set
MOVE P, P2,Z=UPPOS MOVE P,P12,Z=UPPOS = = c:eec-- Move to testing device
GOSUB *CLOSE GOSUB *CLOSE eeeee. Chuck close

IF DI2(1)=1 THEN IF DI3(1)=1 THEN = e« Test

'GOOD 'GOOD

WAIT DI4(2)=0 WAIT DI3(3)=0 eeeeee. Part movement standby
MOVE P, P3,Z=UPPOS MOVE P,P13,Z=UPPOS = @ ++cov-- Move to OK parts position
ELSE ELSE

'NG 'NG

WAIT DI2(4)=0 WAIT DI3(4)=0 eeeeens Part movement standby
MOVE P, P4,Z=UPPOS MOVE P,P14,Z=UPPOS = ++cee-- Move to NG parts position
ENDIF ENDIF

GOSUB *OPEN GOSUB *OPEN eeeeen Chuck open

DRIVEI (3,-10000) DRIVEI (3,-10000) ceeeeenn Move axis 3 upward 10,000 pulses
FLAG1=0 FLAG2=0 e Exclusive control flag reset
GOTO *L1 GOTO *S1

<common routine>
Program name : COMMON
*OPEN:

DO2 (1) =0

DELAY 100

RETURN

*CLOSE:

DO2 (1)=1

DELAY 100

RETURN

11-16 @ Chapter 11 User program examples

2.5 B Sedling

= Overview

The following is an example for sealing a part.

Sealing

= Precondition
1. /O signal

P2

33C11-R9-00

[DO (20) | Valve open/close 1: Open / 0: Close

2. Positions of PO to P7 are set by teaching.

SAMPLE

MOVE P, PO, Z=0
SPEED 40
PATH SET
PATH L,P1,D0(20)=1@10.000 « -+« --

Start of sealing
at a 10mm position
PATH L, P2

PATH C,P3,P4

PATH L, P5

PATH L, P6,S=30

PATH L,P7,D0(20)=0@20.000 <=« ---- End of sealing at a
20mm position

End of robot 1's

PATH END
path setting

Start of robot 1's path setting

~

Setting of the
motion path
(Robot does

not move.)

J

PATH START Path motion of robot 1 is executed (Robot 1 starts moving from PO

and stops at P7) .
HALT

Application @ 11-17

2.6 | Connection to an external device through RS-232C (example 1)

= Overview
Point data can be written in a program by using an external device connected to the YRCX series
controller via the RS-232C port.

= Precondition
1. Input to the external device from the controller
SDATA/X/Y [cr/If]

2. Output to the controller from the external device

M NOTE
POINT DATA
e (cr/If) indicates CR code

(=0Dh) + LF code (=0Ah). P10=156.420243.910 00008 = =rter 0.000 0.000 0.000 [cr/1f]

"INIT
VCMDS="SDATA/X/Y" « c e eeeeen. Command:Requiring the Movement position.
PO= 0.000 0.000 --- 0.000 0.000 0.000 0.000

..................... An initial position

'MAIN ROUTINE

MOVE P, PO cccevceeceeecenn. Moves to the initial position.
RIS
SEND VCMDS TO CMU-: + =« Sends the command.
SEND CMU TO P10+ e vceeeeenn Receives the destination point to move
to.
MOVE P, P10 :-cccvceeceeeeene. Moves to the reception position.
GOTO *ST

e "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.
¢ "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

I 11-18 @ Chapter 11 User program examples

2.7 B Connection to an external device through RS-232C (example 2)

= Overview
Point data can be created from the desired character strings and written in a program by using an
external device connected to the YRCX controller via the RS-232C port.

= Precondition
1. Input to the external device from the controller
SDATA/X/Y [cr/If]

Il/' NOTE 2. Output to the controller from the external device

e (cr/If) indicates CR code X=156.420, Y=243.910 [cr/If]
(=0Dh) + LF code (=0Ah).

e "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.

¢ "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

e The LEN () function obtains the length of the character string.

e The MID$ () function obtains the specified character string from among the character strings.
e The VAL () function obtains the value from the character string.

SAMPLE

'"INIT
VCMDS="SDATA/X/Y" « ¢ cecevecen. Command: Requiring the Movement
position.
PO= 0.000 0.000 --- 0.000 0.000 0.000 0.000
..................... An initial position
P11=100.000 100.000 0.000 0.000 0.000 0.000

..................... A reception position
'MAIN ROUTINE

MOVE P,PQO-cccceeeecececeennn. Moves to the initial position.
*ST:SEND VCMDS TO CMU ++«cvvvvene- Sends the command.
SEND CMU TO VINS -+ +ccveeennn.. Receilves the Response:

"X=156.420,Y=243.910".
FOR I%=1 TO LEN(VINS)-2
IF MIDS (VINS,I%,2)="X=" THEN EXIT FOR
--------------------- If "X=", then exits from the roop.
NEXT I%
LOC1 (P11)=VAL (MIDS (VINS, I%+2))
--------------------- Converts "X=" downward to numeric value
and assigns to axis 1 of P11.
FOR I%=1 TO LEN(VINS)-2
IF MIDS (VINS,I%,2)="Y=" THEN EXIT FOR
--------------------- If "Y=", then exits from the roop.
NEXT I%
LOC2 (P11)=VAL (MIDS (VINS, I%+2))
--------------------- Converts "Y=" downward to numeric value
and assigns to axis 2 of P11.
MOVE P,Pllcccccccceeceeeennns Moves to the reception position.
GOTO *ST

Application @ 11-19

" INT
VCMD$="SDATA/X/Y"
VINS=""
XS =
vyg=""
PO= 0.000 0.000 0.000 0.000 0.000 0.000
Pll= 100.000 100.000 0.000 0.000 0.000 0.000
'MAIN ROUTINE
MOVE P, PO
RICTE
SEND VCMDS$ TO CMU
SEND CMU TO VINS
T=1
VMAX=LEN (VINS)
*LOOP:
IF I>VMAX THEN GOTO *E_LOOP
C$=MIDS (VINS,I ,1)
IF CS$="X" THEN

I=TI+2
J=1
*X_LOOP:
C$=MIDS (VINS, J, 1)
IF C$="," THEN
*X1_LP:
L=J-I
VX$=MIDS (VINS, I, L)
I=J+1
GOTO *LOOP
ENDIF
J=J+1

IF J>VMAX THEN GOTO *X1_LP
GOTO *X_LOOP
ENDIF
IF CS$="Y" THEN
I=I+2
J=TI
*Y_LOOP:
C$=MIDS (VINS, J, 1)
IF C$=", "THEN
*Y1l LP:
L=J-I
VY$=MIDS (VINS, I, L)
I=J+1
GOTO *LOOP
ENDIF
J=J+1
IF J>VMAX THEN GOTO *Y1_LP
GOTO *Y_LOOP
END IF
I=I+1
GOTO *LOOP
*E_LOOP:
WX=VAL (VXS$)
WY=VAL (VYS$)
LOCL (P11)=WX
LOC2 (P11) =WY
MOVE P, P11
GOTO *ST
HALT

11-20 @ Chapter 11 User program examples

Chapter 12

Online commands

O N O g A W N =

Online Command Listccccceevieeeneee. 12-1
Operation and setting commands....... 12-9

Reference commands.............cccecuueeen. 12-23
Operation commands........cccccceeeeereeene 12-37
Data file operation commands........... 12-41
Utility commands.............ccccevrreennnnnneen. 12-52

Individual execution of robot language... 12-54
Control codes..........ocoomiriiiiiienicceen. 12-55

_ Online Command List

Online commands can be used to operate the controller via an RS-232C interface or via an Ethernet.

This Chapter explains the online commands which can be used. For details regarding the RS-232C
and Ethernet connection methods, refer to the "YRCX Controller User's Manual".

I About termination codes

During data transmission, the controller adds the following codes to the end of a line of transmission data.

e RS-232C
e CR (0Dh) and LF (0Ah) are added to the end of the line when the "Termination code" parameter
of communication parameters is set to "CRLF".
e CR (0Dh) is added to the end of the line when the "Termination code" parameter of
communication parameters is set to "CR".
e Ethernet
¢ CR (0Dh) and LF (0OAh) are added to the end of the line.

When data is received, then the data up to CR (0Dh) is treated as one line regardless of the
"Termination code" parameter setting, so LF (OAh) is ignored.
The termination code is expressed as [cr/If] in the detailed description of each online command

stated in "2 Operation and setting commands" onwards in this Chapter.

Online Command List @ 12-1 I

1.1 B Online command list: Operation-specific

I Key operation

Operation type Command Condition

<program name> | ,Tn, p
Register program in the task LOAD PGm 2
(m:1-100, n: 1-16, p: 1-64)
Program Reset program RESET Tnm e
Execute program RUN B 2
st sTOP PGm
Op program (m: 1-100, n: 1-16)
. Tn
Program Execute one line STEP oI nAmes
Skip one line SKIP Pprog 2
Execute to next line NEXT PGm
(m:1-100, n: 1-16)
Tn k
Program Execute before specified line | RUNTO <program name> 5
Skip before specified line | SKIPTO PGm
(m:1-100, n: 1-16, k: 1-9999)
<program name> |(n, N, N,...), k
. PGm 0
Set break point BREAK 0 2
(m: 1-100, n: 1-9999, k: 0/1)
[robot number] k
Change manual movement speed MSPEED (robot number: 1-4, k: 1-100) 2
. [robot number] k, f
Move to absolute reset position ABSADJ (robot number: 1-4, k: 1-6, f: 0/1) 3
[robot number] k
Absolute reset MRKSET (robot number: 1-4, k: 1-6) 3
O [robot number] k
Return-to-origin ORGRTN (robot number: 1-4, k: 1-6) 3
. . [robot number] k
Change inching movement amount IDIST (robot number: 1-4, k: 1-10000) 2
INCH
Manual movement (inching) INCHXY [ro(l:gég:lrﬁfgl:fr:_‘l K 1-6, m: +1-) 3
INCHT D
JOG
Manual movement (jog) JOGXY [r‘??gégfﬂjﬁgyﬁr:_‘l K: 1-6, m: +-) 3
JOGT B
. . TEACH [robot number] m
Point data teaching TCHXY (robot number: 1-4, m: 0-29999) 2

Conditions: 1. Always executable.
2. Not executable during inputs from the programming box.
3. Not executable during inputs from the programming box, and while the program is
running.
4. Not executable during inputs from the programming box, while the program is
running, and when specific restrictions apply.

I 12-2 @ Chapter 12 Online commands

§ Utility

Operation type Command Condition
rogram name1>TO <program name2>|
Copy program Gm
(m: 1-100)
H 1] n H nn COPY Pm-Pn TO Pk 2
Copy points "m - n" to point "k (m: 0-29999, n: 0-29999, k: 0-29999)
H n n H nn PC 'PC TO PCk
Copy point comments "m - n" to point comment "k (m;n(;.zggngg, n: 0-29999, k: 0-29999)
rogram name>
Delete program Gm
(m: 1-100)
. " " Pm-Pn
Delete points "m - n (m: 0-29999, n: 0-29999)
H " " ERA PCm-PCn 2
Delete point comments "m - n (m: 0-29999, n: 0-29999)
. " " PNm-PNn
Delete point names "m - n (m: 0-29999, n: 0-29999)
Wanll PLm
Delete pallet "m (m: 0-39)
Rename "program 1" to "program 2" REN <program 1> TO <program 2> 2
<program name> |, k
Check program syntax SYNCHK PGm 2
(m: 1-100, k: 1-100)
Compile sequence program SEQCMPL 2
|<program name> | TOs
Change program attribute ATTR PGm 2
(m: 1-100, s: RW/RO/H)
Setting main program MAINPG ?:T]: 1-100) 2
Initialize data Program PGM
Point PNT
Point comment PCM
Point name PNM
Shift SFT
Hand HND
Pallet INIT PLT 3
General Ethernet Port GEP
Input/output name ION
Area check output ACO
All data except parameters MEM
Parameter PRM
All data (MEM+PRM) ALL
Initialize data Communication parameter | INIT (E)_II_/I|_l|J 3
Initialize data Alarm history INIT LOG 3
SET d
. CAN
Setting Input data INPUT CLR 2
(d: input data)
Buffer clear ~ Output message MSGCLR 2
k', ppPPPPPP
Change access level ACCESS (k: 0/1, p: alphanumeric characters 2
of 8 characters or less)
Setting password SETPW 2
Setting Sequence execution flag SEQUENCE I(‘k: 0/1/3) 2
Reset alarm ALMRST 2
yy/mm/dd
Check or set date DATE (yy: 00-99, mm: 01-12, dd: 00-31) 2
. hh: mm: ss
Check or set time TIME (hh: 00-23, mm: 00-59. ss: 00-59) 2

Conditions: 1. Always executable.
2. Not executable during inputs from the programming box.
3. Not executable during inputs from the programming box, and while the program is
running.
4. Not executable during inputs from the programming box, while the program is
running, and when specific restrictions apply.

Online Command List @ 12-3 I

B Data handling

Operation type

Command

ACCESS k ;' pppppppPpR

Condition

Acquiring status | Access level ? (k: 0/1, p: alphanumeric characters| 1
of 8 characters or less)
Alarm status ALM
BREAK | <program name>
Break point status PGm
(m: 1-100)
Last (Current) point number reference CURPNT
Emergency stop status EMG
Selected hand status :-rlcﬁgt[)ng:ic;:n:’_rg’er]
Inching movement amount status IDIST RN
(robot number: 1-4)
Input data INPUT
. . LINEMODE |ETH
Online/offline status ‘CMU ‘
Main program number MAINPG
Remaining memory capacity MEM
Mode status MODE
Motor power status MOTOR
Output message MSG
Manual movement speed ?:loiitEniagz??fgumber]
Return-to-origin status ORIGIN RS
(robot number: 1-4)
Sequence program execution SEQUENCE
status
Servo status SERVO [robot number]
(robot number: 1-4)
Selected shift status i?;;?ﬂﬁﬁg?ﬁ':f erl
Acquire task in RUN or
SUSPEND status TASKS
Task end condition ;I—kS:(ng Tk
Task operation status ;LS:(I:AG?N Tk
Version information VER
Numerical data numerical expression
Character string data character string expression
Point data point expression
Shift data shift expression
Read-out data READ read-out file 2
Write data WRITE write file 2
Conditions: 1. Always executable.

2. Not executable during inputs from the programming box.

3. Not executable during inputs from the programming box, and while the program is

running.

4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

I 12-4 @ Chapter 12 Online commands

B Robot language independent execution

The Robot languages executable independently are the commands/functions with "v/" at "Online"
column in Chapter 8 "robot language table".

I Control code

Operation type Command Condition
Execution language interruption AC(=03H) j 1

Conditions: 1. Always executable.
2. Not executable during inputs from the programming box.
3. Not executable during inputs from the programming box, and while the program is
running.
4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

Online Command List @ 12-5 I

1.2

B Online command list: In alphabetic order

Command

ACCESS Kk, pppppppp

(k: 0/1,
p: alphanumeric characters
of 8 characters or less)

Meaning

Acquire access level

ALM

Acquire alarm status

BREAK |<sprogram name>
PGm Acquire break point status
(m: 1-100)
CURPNT Acquire Last (Current) point number reference
EMG Acquire emergency stop status

HAND [robot number]
(robot number: 1-4)

Acquire selected hand status

IDIST [robot number]
(robot number: 1-4)

Acquire inching movement amount status

INPUT Acquire input data status
LINEMODE ICE)-II\-/IHU Acquire online/offline status
MAINPG Acquire main program number
MEM Acquire remaining memory capacity
MODE Acquire mode status

MOTOR Acquire motor power status

MSG Acquire output message

MSPEED [robot number]
(robot number: 1-4)

Acquire manual movement speed

ORIGIN [robot number]
(robot number: 1-4)

Acquire return-to-origin status

SEQUENCE

Acquire sequence program execution status

SERVO [robot number]
(robot number: 1-4)

Acquire servo status

SHIFT [robot number]
(robot number: 1-4)

Acquire selected shift status

TASKS Acquire task in RUN or SUSPEND status
TSKECD Tk . .

(k: 1-16) Acquire task end condition

TSKMON Tk . .

(k: 1-16) Acquire task operation status

VER Acquire version

numerical expression Acquire numerical data

character string expression

Acquire character string data

point expression

Acquire point data

shift expression

Acquire shift data

AC (=03H)

Execution language interruption

ABSADJ

[robot number] k, f
(robot number: 1-4, k: 1-6, f: 0/1)

Move to absolute reset position

ACCESS

K, pPPPPPPP

(k: 01,

p: alphanumeric characters
of 8 characters or less)

Change access level

ARMRST

Reset alarm

ATTR

|<0rogram name> | TOs
PGm
(m: 1-100, s: RW/RO/H)

Change program attribute

BREAK

<program name> | (n, N, N,...), K
PGm 0 ‘
0

(m: 1-100, n: 1-9999, k: 0/1)

Set break point

I 12-6 @ Chapter 12 Online commands

Command Meaning Condition

<orogram namer> ’TO <program namez>
COPY PGm Copy program
(m: 1-100)
FmTol?ggggg,T:(o-zgggg, k: 0-29999)| COPY Points "m - n" to point "k" 2
PCm-PCn TO PCk Copy point comments "m - n" to point
(m: 0-29999, n: 0-29999, k: 0-29999)| comment "k"
DATE {yyy/“gg‘gjg m: 0112, dg: 00-31) | Check or set the date 2
<program name>
ERA PGm Delete program
(m: 1-100)
FnT 529999, n: 0-29999) Delete points 'm - n*
Fn?rgzp&)gg n: 0-29999) Delete point comments "m - n" 2
PNm-PNn Delete point names "m - n"
(m: 0-29999, n: 0-29999)
Fnlg:"z)_sg) Delete pallet "m"
[robot number] k
IDIST (robot number: 1-4, k: Change inching movement amount 3
1-10000)
INCH [robot number] km
INCHXY (robot number: 1-4, k: 1-6, m:{ Manual movement (inching) 3
INCHT +/-)
INIT ACO Initialize area check output)
ALL Initialize all data (MEM+PRM)
Initialize communication parameter
CMU (RS-232C)
ETH Initialize communication parameter
(Ethernet)
GEP Initialize General Ethernet Port
HND Initialize hand data
ION Initialize input/output name
LOG Initialize alarm history 3
MEM Initialize all data except parameters
PCM Initialize point comment data
PGM Initialize program data
PLT Initialize pallet data
PNM Initialize point name
PNT Initialize point data
PRM Initialize parameter data
SFT Initialize shift data
SETd
INPUT CAN Sets the input data to the data request 5
CLR by the INPUT statement
(d: input data)
JOG
JOGXY Eﬁb$f:lem$‘Z]:1m+) Manual movement (jog) 3
JOGT o e
<program name> | ,Tn, p
LOAD PGm Register program in the task 2
(m: 1-100, n: 1-16, p: 1-64)
MAINPG ?r1n: 1-100) Setting main program 2
robot number] k
MRKSET Erobot number:]1-4, k: 1-6) Absolute reset 3
MSGCLR Buffer clear ~ Output message 1
MSPEED E:ggg: Zﬁ'gsz::] 1k 4, k: 1-100) Change manual movement speed 2

Online Command List @ 12-7 I

Command Meaning
Tn
NEXT ;’g‘;gfam name= Execute program to next line
(m:1-100, n: 1-16)
[robot number] k e
ORGRTN (robot number: 1-4, k: 1-6) Return-to-origin
READ read-out file Read-out data
REN <program 1>TO <program 2> | Change program name from "1" to "2"
Tn
<program name>
RESET PG Reset program
(m: 1-100, n: 1-16)
Tn
<program name>
RUN PGm Execute program
(m: 1-100, n: 1-16)
Tn K
RUNTO f(;oriram name= Execute program before specified line
(m: 1-100, n: 1-16, k: 1-9999)
SEQCMPL Compile sequence program
k .
SEQUENCE (k: 0/1/3) Set sequence execution flag
SETPW Setting password
Tn
SKIP <program pame> Program: Skip one line
PGm
(m:1-100, n: 1-16)
Tn k
SKIPTO <§(raong1ram name= Program: Skip before specified line
(m:1-100, n: 1-16, k: 1-9999)
Tn
STEP spregram name= Program: Execute one line
PGm
(m: 1-100, n: 1-16)
Tn
<program name>
STOP PG Stop program
(m: 1-100, n: 1-16)
<program name> ‘ .k
SYNCHK PGm Check program syntax
(m: 1-100, k: 1-100)
[robot number] m
I(E:Q?: (robot number: 1-4, m: Point data teaching
0-29999)
hh: mm: ss .
TIME (hh: 00-23, mm: 00-59. ss: 00-59)| Ceck or set time
WRITE write file Write data
- Robot language executable independently
Conditions: 1. Always executable.

2. Not executable during inputs from the programming box.

3. Not executable during inputs from the programming box, and while the program is

I 12-8 @ Chapter 12 Online commands

running.

. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

n Operation and setting commands

2.1

B Program operations

B 1.Register task

Command format

@LOAD <program name> ,Tn, p [cr/1lf]
PGm

Response format

OK[cr/1f]
M et Program number: 1 to 100
M e Task number: 1to 16
P Task priority ranking: 1 to 64

Registers the specified program into "task n" with "priority p". The registered program
enters the STOP status. When "task number n" is omitted, the task with the smallest
number of those that have not been started is specified automatically. When "task
priority p" is omitted, "32" is specified.

The smaller value, the higher priority. The larger value, the lower priority (high 1 to low 64).
When the task with a high task priority is in the RUNNING status, the task with a low
task priority still remains in the READY status.

SAMPLE

Command : @QLOAD <PG_MAIN>, T1 [cr/1f] «---- Registers the program to task 1.
Response: OK [cr/1f]

B 2.Reset program

Command format

1.@RESET [cr/1f]

2 .@RESET Tn [cr/1f]
<program name>
PGm

Response format

OK[cr/1f]

Task number: 1to 16
Program number: 1 to 100

Values n

Online Command List @ 12-9 I

Executes the program reset.
Command format 1 resets all programs. When restarting the program, the main program

or the program that has been executed last in task 1 is executed from its beginning.
Command format 2 resets only the specified program. When restarting the program that
has been reset, this program is executed from its beginning.

Command : @QRESET [cr/1f] «ccvveveeee... Resets all programs.

Response: OK [cr/l1f]

Command : @RESET T3 [cr/1f] cecce--- Resets only the program that is
executed by T3.

Response: OK [cr/l1f]

| 3.Program execution

Command format

1.@RUN [cr/1f]

2 .@RUN Tn [cr/1f]
<program name>
PGm

Response format

OK[cr/1f]
N e Task number: 1 to 16
M e Program number: 1 to 100

Executes or stops the current program.
Command format 1 executes all programs in the STOP status.

Command format 2 executes only the specified program in the STOP status.

Command : @RUN [cr/1f] e Executes all programs in the STOP
status.

Response: OK [cr/1f]

Command : @RUN T3 [cr/lf] -cecceee.n. Executes only the program in the
STOP status that is registered in
T3.

Response: OK [cr/l1f]

12-10 @ Chapter 12 Online commands

| 4.Stop program

Command format

1.@STOP [cr/1f]

2.@STOP Tn [cr/1f]
<program name>
PGm

Response format

OK[cr/1f]
M e Task number: 1to 16
M e Program number: 1 to 100

Stops the program.

Command format 1 stops all programs.
Command format 2 stops only the specified program.

SAMPLE

Command : @STOP [cr/1f] «cccceeeene.. Stops all programs.

Response: OK [cr/1f]

Command : @STOP T3 [cr/1f] «-vvvvve.. Stops only the program that 1is

executed by T3.
Response: OK [cr/l1f]

I 5.Execute one program line

Command format

@STEP Tn [cr/1f]
<program name>
PGm

Command format

OK[cr/1f]
Tl e Task number: 1 to 16
M i Program number: 1 to 100

Executes one line of the specified program. When executing one line of the GOSUB
statement or CALL statement, the program operation enters the subroutine or sub-

procedure.

SAMPLE

Command : @STEP T3 [cr/1f] -« Executes one line of the program
that is executed by T3.
Response: OK [cr/1f]

Online Command List @ 12-11 I

| 6.Skip one program line

Command format

@SKIP Tn [cr/1f]
<program name>
PGm

Response format

OK[cr/1f]
Dl e Task number: 1 to 16
M i Program number: 1 to 100

Skips one line of the specified program. When skipping one line of the GOSUB
statement or CALL statement, all subroutines or sub-procedures are skipped.

Command : @SKIP T3 [cr/lf]--cece:-- Skips one line of the program
that is executed by T3.
Response: OK [cr/1lf]

B 7.Execute program to the next line

Command format

@NEXT Tn [cr/1f]
<program name>
PGm

Response format

OK[cr/1f]
D e Task number: 1 to 16
M et Program number: 1 to 100

Executes the specified program to the next line. Executing @NEXT on the line in the
GOSUB or in the CALL statement make the program execute and return through the
sub-procedure processing, then stop at the next line.

e This is a same processing as setting the breakpoint on the next line in the program currently

suspended and executing the program (@RUN).
@STEP stops the program at the beginning line of the sub-procedure called by GOSUB or CALL
statement.

Command : @NEXT T3 [cr/1f] «--ccec--- Executes the program in execution
at T3 until the next line.

Response: OK [cr/1lf]

I 12-12 @ Chapter 12 Online commands

8. Execute program fo line before specified line

Command format

@RUNTO Tn , k [cr/1f]
<program name>
PGm

Command format

OK[cr/1f]
M e Task number: 1 to 16
M et Program number: 1 to 100
K e Specified line number: 1 to 9999

Executes the specified program to the line before the specified line.

Command : @RUNTO T3, 15 [cr/1f] ----- Executes the program that is
executed by T3 to the 14th line
and stops at the 15th line.

Response: OK [cr/1f]

| 9.Skip program to line before specified line

Command format

@SKIPTO Tn , k [cr/1f]
<program name>
PGm

Command format

OK[cr/1f]
M et Task number: 1to 16
M i Program number: 1 to 100
K Specified line number: 1 to 9999

Skips the specified program to the line before the specified line.

SAMPLE

Command : @SKIPTO T3, 15 [cr/1lf] ---. Skips the program that is executed
by T3 to the 14th line and stops
at the 15th line.

Response: OK [cr/1f]

Online Command List @ 12-13 I

| 10. Set break point

Command format

1.@BREAK <program name> (n,n,n,...), k [cr/1f]
PGm

2 .@BREAK <program name> 0 [cr/1lf]
PGm

3.@BREAK 0 [cr/1f]

Command format

OK[cr/1f]
M e Program number: 1 to 100
N e Specified line number: 1 to 9999
K e Set/Cancel: 0: Set, 1: Cancel

Sets a break point to pause the program during program execution.
Command format 1 sets or cancels a break point in the specified line of the specified
program. Multiple lines can also be specified.
Command format 2 cancels all break points set in the specified program.
Command format 3 cancels all break points.

Command : @BREAK PG3 (1, 3), 1 [cr/lf] ---- Sets a break point in the first
and third lines of PG3.
Response: OK [cr/l1f]

I 12-14 @ Chapter 12 Online commands

| 11. Check program syntax

Command format

@SYNCHK

PGm

<program name> ‘ ,k [cr/1f]

Command format

RUN [cr/1f]
nnnn:gg.bbb [cr/1f]
nnnn:gg.bbb [cr/1f]

nnnn:gg.bbb [cr/1f]
nnnn:gg.bbb [cr/1f]
END [cr/1lf]

M i Program number: 1 to 100
K e Maximum number of error: 1 to 100
NNNN e Line number where error occurred: 1 to 9999
B8ttt Alarm group number
bbb e Alarm classification number

Checks syntax of the program specified by <program name> or program number.
If there are syntax errors in the specified program, line number where error occurred,
alarm group number and alarm classification number are output. For details regarding
alarm group number and alarm classification number, refer to the "YRCX Controller
User's Manual" or "YRCX Controller Operator’s Manual".

SAMPLE

Command : @SYNCHK PG1, 100 [cr/1f] ------- Sets a Maximum number of error
at 100 and checks syntax of the
program 1.
Response: RUN [cr/1f]
1:5.239 [cr/1f] e, Detects syntax errors "5.239:
Illegal identifier" at 1th, 2nd,
3rd and 8th lines.
.239 [cr/1f]
.239 [cr/1f]
.239 [cr/1f]
.222 [cr/1f] e Detects syntax error "5.222 IF
without ENDIF" at 6th line.

O 0 W N
U o1 Ul Ul

END [cr/1f]

Online Command List @ 12-15

| 12. Set main program

Command format

@MAINPG[cxr/1f]

Response format

OK[cr/1f]

m: Program number 1to 100
M NOTE

*"Main program" Specifies the program which is always selected when all programs are reset. When "0"
corresponds conventional

function "_SELECT" of YRC,
efc. number doesn't exist, the program that has been executed last (current program) in the

is specified at the main program number or program specified at the main program

task 1 is selected after resetting all programs.

Command : @MAINPG 1[cr/1f] -« Sets program number 1 at the main
program.

Response: OK[cr/1lf]

| 13. Compile sequence program

Command format

@SEQCMPL [cr/1f]

Response format

RUN[cr/1f]
END[cr/1f]

Compiles the sequence program.
When the program named "SEQUENCE" doesn't exist or syntax errors exist in the

program, an error message appears.
The execution program is created after successful termination of compiling and the
letter "s" appears in Flag.

For details, refer to Chapter 7 "Sequence function".

Command : @SEQCMPL[cr/1£f] ««ccceveeeen. Compiles the sequence program.
Response: RUN[cr/1f]
END[cr/1f]

I 12-16 @ Chapter 12 Online commands

2.2 B MANUAL mode operation
| 1.Change the MANUAL mode speed

Command format

@MSPEED [robot number] kl[cr/1lf]

Response format

OK[cr/1f]
robot numberc.............. 1 to 4 (If not input, robot 1 is specified.)
K e Manual movement speed: 1 to 100

Changes the manual mode movement speed of the robot specified by the <robot
number>.

Command : @MSPEED 50([cr/1f]
Response: OK[cr/1f]

B 2.Point data teaching

Command format

@TEACH @ [robot number] mmmmm[cr/1f]
@TCHXY [robot number] mmmmm[cr/1f]

Response format

OK[cr/1f]

Values robot number......................... 1 to 4 (If not input, robot 1 is specified.)
MMMMM e Point number for registering point data: 0 to 29999

WL Registers the current robot position as point data for the specified point number. If point
data is already registered in the specified point number, then that point data will be

overwritten.

The unit of the point data may vary depending on the command.
TEACH oo, "pulse" units
TCHXY i "mm" units

Command : @TEACH[2] 100[cxr/1f]
Response: OK[cr/1lf]

Online Command List @ 12-17 I

| 3.Change inching movement amount

Command format

@IDIST [robot number] mmmmm [cr/1f]

Response format

OK[cr/1f]
Robot numberccccccccccvvveeen... 1 to 4 (If not input, robot 1 is specified.)

mmmmm: inching movement amount.... 1 to 10000
Changes the inching movement amount of the robot specified by the <robot number>.

The unit of the movement amount may vary depending on the command.
INCH oo "pulse" units: 1 to 10000 pulse

"mm" units: 0.001 to 10.000mm

"mm" units: 0.001 to 10.000mm

Command : @IDIST[2] 100[cr/1f]
Response: OK[cr/1lf]

2.3 I Alarm reset

Command format

@ALMRST [cr/1f]

Response format

RUN([cr/1f]
END[cr/1f]

WMCEUITTY Resets the alarm.
However, this command cannot be used for the alarms which require the restart of
system. In this case, turn off the controller and turn it on again.

Command : @ALMRST [cr/1f]
Response: RUN[cr/1f]
END[cr/1f]

I 12-18 @ Chapter 12 Online commands

2.4 J Clearing output message buffer

Command format

@MSGCLR [cr/1f]

Response format

OK[cr/1f]

Clears the output message buffer of the controller. After the messages have been output
by the PRINT statement, etc., the messages remaining in the buffer are cleared.

SAMPLE

Command : @MSGCLR [cr/1f]
Response: OK[cr/1f]

Online Command List @ 12-19 I

2.5 B Setting input data

Command format

@INPUT SET d [cr/1f]
CAN

Response format

Q
=
| w

OK[cr/1f]
d: Inputdata.....cccceevveninnenne. Value that is matched to the type of the variable specified

by the INPUT statement.
(Character string is enclosed by " ")

Sets the input data for responding to a data request by INPUT statement of robot
program.
The controller parameter "INPUT/PRINT using channel" should be set a current
communication channel (CMU, ETH or iVY).

SET........ Sets the data which is input to the variable when INPUT statement is executed.
CAN......Cancels the data request by INPUT statement.
CLR....... Clears the data specified @INPUT SET downward.

<Online command> <Robot program>
@INPUT SET 10[cxr/1f]
@INPUT SET 5[cr/1f]

OK[cr/1lf] INPUT A%[cr/lf]

@?MSG[cxr/1f] PRINT A%[cr/1f]
10[cxr/1f]
OK[cr/1lf]
<Online command> <Robot program>

@INPUT SET 10([cr/1f]

OK[cr/1f]

@INPUT CLR[cr/1f]

OK[cr/1f]

@INPUT SET 5[cr/1f]

OK[cr/1f] INPUT A%[cr/l1f]

@?MSG[cr/1f] PRINT A%[cr/1f]
5[cr/1f]

OK[cr/1f]

I 12-20 @ Chapter 12 Online commands

2.6 B Change access level

Command format

@ACCESS k |, pppppppp [cr/1f]

Response format

OK[cr/1f]
k: Access levelcccceeeee. 0: Maintainer level, 1: Operator level
pppppppp: Password.............. Alphanumeric characters of 8 characters or less

Changes access level. If password is omitted, sets without password.
When changes access level to the maintainer level and entered password is incorrect,

"6.235: Password error" will occur.

SAMPLE

Command : @ACCESS 0,password [cr/lf] «« e - Sets "password" as password, and
changes the level to "maintainer

REFERENCE

eFor details regarding
access level, refer to the
YRCX user's manual or level".

1
operator's manual. Response: OK [cr/1f]

Online Command List @ 12-21 I

2.7 B Setting input data

Command format

@SETPW [cr/1f]

Response format

READY [cr/1f]

pppppppp [cr/1f]

kkkkkkkk[cr/1f]

nnnnnnnn [cr/1£f]

[@e/ILiE]] ©0000000000090000000000 line-feed
OK[cr/1f]

ppppPppp: old password (current password)........ Alphanumeric characters of 8 characters or less
kkkkkkkk: new passwordcccccvevnivinininnn. Alphanumeric characters of 8 characters or less

nnnnnnnn: new password (confirmation)............. Alphanumeric characters of 8 characters or less

Changes the password for the access level changing to the maintainer level.

REFERENCE
eFor details regarding
access level, refer to the
YRCX user's manual or new password (confirmation), inserts line feeds only.
operator's manual.

The current password is input for the old password, and the revised password is input
for the new password and for the new password of confirmation. In the next line of the

When input password as the old password is different from the current password or new
password and new password (confirmation) are not same, "6.235: Password error" will

occur.

Command : @SETPW[cr/1f
Response: READY [cr/1f]

oldpass [cr/1lf] «ccceeeenen. Inputs "oldpass" as old password.

newpass [cr/1f] «--cceeee.. Inputs "newpass" as new password.

newpass [cr/1f] «cceeeeee.. Inputs "newpass" as new password
(confirmation) .

[@w@fif] coococcocccccoscoooooo line-feed

OK [cr/1lf]

12-22 @ Chapter 12 Online commands

3

Reference commands
1

I Acquiring return-to-origin status

Command format 1

@?0RIGIN|[cr/1f]

Response format 1

x [cr/1f]
OK [cr/1f]

Command format 2

@?0RIGIN robot number [cr/1f]

Response format 2

x yv{,y{,{...}}} [cr/1lf]

OK [cr/1f]
Robot numbercccccocovvcviiininincnnn. 1 to 4 (If not input, robot 1 is specified.)

x: Robot return-to-origin status ... 0: Incomplete, 1: Complete

y: AXis return-to-origin status...........c..c....... Shows the status of the axis 1, axis 2, ...,
axis 6 from the left.
0: Incomplete, 1: Complete
(Omitted when the axis is not connected.)

Acquires return-to-origin status.
Command format 1 acquires the return-to-origin status of all robots while command

format 2 acquires the status of the specified robot.

Command : @?0RIGIN 2 [cr/1f]

Response: 0 1,1,0,1 ««cccceeeeennnnn. Axis 3 of the robot 2 is in the
return-to-origin incomplete
status.

OK [cr/1f]

Reference commands @ 12-23 I

3.2 B Acquiring the servo status

Command format

@?SERVO = [robot number] [cr/1f]

Response format

x y{,y{,{...}}} [cr/1lf]

OK [cr/1f]
Robot number.................. 1 to 4 (If not input, robot 1 is specified.)
x: Robot servo status......... 0: Servo off status
1: Servo on status
y: Axis servo status Shows the status of the axis 1, axis 2, ..., axis 6 from the left.

0: Mechanical brake on + dynamic brake on status
1: Servo on status
2: Mechanical brake off + dynamic brake off status

(Omitted when the axis is not connected.)

Acquires the servo status.

Command : @?SERVO[3] [cr/1lf]

Response: 0 0,1,0,0 «ccceveeceeeennn. Only the axis 2 of the robot 3 is
in the servo on status.
OK [cr/1f]
3.3 B Acquire motor power status

Command format

@?MOTOR [cr/1f]

Response format

x [cr/1f]
OK [cr/1f]

x: Motor power status................... 0: Motor power off status
1: Motor power on status
2: Motor power on + all robot servo on status

Acquires the motor power status.

Command : @?MOTOR [cr/1f]
Response: 2

OK [cr/1f]

I 12-24 @ Chapter 12 Online commands

3.4 B Acquiring the access level

Command format

@?ACCESS[cr/1f]

Response format

klcr/1f]
OK[cr/1f]

Values k: Access levelcccoeuuee... Oto1

@ Acquires the access level.

REFERENCE

eFor details regarding SAMPLE
access level, refer to the
YRCX user's manual or

Command : @?ACCESS[cr/1f]

operator's manual. Response: 1l[cr/1f]
OK[cr/1f]
3.5 B Acquiring the break point status
Command format
@?BREAK <program name> [cr/1f]
PGm

Response format

n{,n{,{...}}} [cr/lf]
OK [cr/1f]

n: Line number on which break point "'n" is set 1 to 9999
Program name.............ccccccoooeviiiiiiinininnn. Program name intended to delete
m: Program numberccocooiiiiinininenn. 1 to 100

Acquires the break point status.
SAMPLE

Command : @?BREAK <TEST>[cr/1f]
Response: 12,35[cr/1f]
OK[cr/1lf]

Reference commands @ 12-25 I

3.6 B Acquiring the mode status

Command format

@?MODE [cr/1f]

Response format

klcr/1f]
OK[cr/1f]

k: Mode statusccceuuee... 0: MANUAL mode
1: AUTO mode (Control source: Programming box)
2: AUTO mode (Control source release)

-1: Restricted mode

Acquires the controller mode status.

Command : @?MODE [cxr/1f]
Response: 1l[cr/l1f]
OK[cr/1f]

3.7 I Acquiring the communication port status

Command format

@?LINEMODE ETH

CMU

[cr/1f]

Response format

klcr/1£f]
OK[cr/1f]

Values K e 0: OFFLINE, 1: ONLINE

WCEUINTY Acquires the specified communication port status.
ONLINE / OFFLINE commands allow to change a specified communication port to the
"online" / "offline" mode, respectively.

Command : @?LINEMODE ETH [cr/1f]
Response: 1l[cr/1f]
OK[cr/1lf]

I 12-26 @ Chapter 12 Online commands

3.8 B Acquiring the main program number

Command format

@?MAINPG [cr/1f]

Response format

m[cr/1f]
OK[cr/1f]

m: Program number............... 0to 100
(If not registered in the main program, acquires 0.)

Acquires the program number which is registered in the main program.

Command : @?MAINPG[cr/1f]
Response: 1[cr/1f]
OK[cr/1f]

3.9 I Acquiring the sequence program execution status

Command format

@?SEQUENCE [cr/1f]

Response format

1. 1,slcr/1f]

OK[cr/1f]
2. 3,slcr/1f]
OK[cr/1f]
3. 0f[cr/1f]
OK[cr/1lf]
S e The sequence program's execution status is indicated as 1 or 0.

(1: Program execution is in progress. 0: Program execution is stopped.)

Acquires the sequence program execution status.
Response output means as follows:

T e Enabled
3 e Enabled and output is cleared at emergency stop
0 ot Disabled

Command : @?SEQUENCE [cxr/1f]
Response: Of[cr/1f]
OK[cr/1f]

Reference commands @ 12-27 I

3.10 B Acquiring the version information

Command format

@?VER[cr/1f]

Response format

cv,cr-mv-dvl,drl/dv2,dr2[cr/1£f]

Host version number
Host revision number (Rxxxx)
PLO version number (Vx.xx)

Driver version number (Vx.xx)

Driver revision number (Rxxxx)

Acquires the version information.

Command : @?VER[cr/1f]
Response: V8.02,R1021-vV5.10-v1.01,R0001/v1.01,R0001([cr/1£f]
OK[cr/1f]

3.11 B Acquiring the tasks in RUN or SUSPEND status

Command format

@?TASKS[cr/1f]

Response format

n{,n{,{...}}}[cr/1f]

OK[cr/1f]
n: Task numberccc.... 1 to 16 (Task currently run or suspended)

Acquires the tasks in RUN or SUSPEND status.

Command : @?TASKS[cr/1f]
Response: 1,3,4,6[cr/1f]
OK[cr/1f]

I 12-28 @ Chapter 12 Online commands

3.12 B Acquiring the tasks operation status

Command format

@?TSKMON Tk[cr/1f]

Response format

m,n,f,plcr/1f]

OK [cr/1f]
k: Task number........ccocveviiiiieniiiieeies 1Tto16

m : Execution program number 1to 100

n : Task execution line number................... 1 to 9999

f: Each task status.........cccoevveevieeniieiieenennn R: RUN
U: SUSPEND
S: STOP
W: WAIT

p : Priority level of each task 17 to 47

Acquires the status of specified task.

SAMPLE

Command : @?TSKMON T3 [cr/1f]

Response: 5,11,R,32[cr/1f]
OK[cr/1f]

3.13 B Acquiring the task end condition

Command format

@?TSKECD Tk[cr/1f]

Response format

gg.bbblcr/1f]
OK[cr/1f]

kit Task numMber ... 1to 16
gg : Alarm group number of the task end condition
bbb : Alarm classification number of the task end condition
Acquires the specified task end condition.
For details about alarm group number and classification number of the task end
condition, refer to YRCX user’s or operator’s manual.

e When the specified task ends by error, acquires this alarm number.

SAMPLE
Command: @?TSKECD T1[cr/1f] -« -- Acquires the end condition of task 1.
Response: 1.5[cr/1f] «ccccceeeen The end condition of task 1: 1.5:

Program ended by "HALT".
OK[cr/1f]

Reference commands @ 12-29 I

3.14 B Acquiring the shift status

Command format

@?SHIFT [robot number] [cr/l1f]

Response format

m[cr/1f]
OK[cr/1f]

Values Robot number 1 to 4 (If not input, robot 1 is specified.)
M e, Shift number selected for the specified robot: 0 to 39
Shift not selected: -1

Acquires the shift status of the robot specified by the <robot number>.

Command : @?SHIFT[cxr/1f]
Response: 1llcr/1f]
OK[cr/1f]

3.15 B Acquiring the hand status

Command format

@?HAND [robot number] [cr/1f]

Response format

m[cr/1f]

x
Q
sy
ISt
S
<
3
Sy
@
=

VL) Robot number 1 to 4 (If not input, robot 1 is specified.)
Mot Hand number selected for the specified robot: 0 to 31

Hand not selected: -1

Acquires the hand status of the robot specified by the <robot number>.

Command : @?HAND [cr/1f]
Response: 1l[cr/l1f]
OK[cr/1f]

I 12-30 @ Chapter 12 Online commands

3.16 I Acquiring the remaining memory capacity

Command format

@?MEM [cr/1f]

Response format

k/m[cr/1£f]
K e Remaining source area (unit: bytes)
M e Remaining global identifier area (unit: bytes)

Acquires the remaining memory capacity.
SAMPLE

Command : @?MEM[cr/1f]
Response: 102543/1342[cr/1f]
OK[cr/1f]

3.17 B Acquiring the alarm status

Command format

@?ALM[cr/1f]

Response format

gg.bbblcr/1f]

OK[cr/1f]
Bttt Alarm group number
[0 0) o TR Alarm classification number

Acquires the alarm which occurs in the controller.
For details regarding the alarm group number and alarm classification number, refer to
the YRCX user's or operator's manual.

* The requirable alarms are number 400 or more of alarm classification number. If multiple

alarms occur, the alarm with larger alarm classification number (more serious alarm) is

acquired.
Command : @?ALM[cr/1f]

Response: 12.600[cr/1f]
OK[cr/1lf]

Reference commands @ 12-31 I

3.18 I Acquiring the emergency stop status

Command format

@?EMG[cr/1£f]

Response format

klcr/1£f]
OK[cr/1f]

Values k: Emergency stop status 0: normal operation, 1: emergency stop

MCEUIlEY Acquires the emergency stop status by checking the internal emergency stop flag.

Command : @?EMG[cr/1f]
Response: 1llcr/1f]
OK[cr/1f]

3.19 B Acquiring the manual movement speed

Command format

@?MSPEED [robot number] [cxr/1f]

Response format

k[cr/1f]
OK[cr/1f]

Values Robot number........................ 1 to 4 (If not input, robot 1 is specified.)
k: manual movement speed ...1 to 100 (unit: %)

Acquires the value of the manual movement speed specified by <Robot number>.

Command : @?MSPEED[cr/1f]
Response: 50[cr/1f]
OK[cr/1lf]

I 12-32 @ Chapter 12 Online commands

3.20 B Acquiring the inching movement amount

Command format

@?IDIST [robot number] [cr/1f]

Response format

mmmmm [cr/1f]

OK[cr/1f]
RObOt NUMDBEr..........ooeeeeeeeeeeeeeeeeeeeen 1 to 4 (If not input, robot 1 is specified.)
mmmmm: Inching movement amount 1 to 10000

Acquires the inching movement amount specified by <Robot number>.

Command : @?IDIST[2] [cxr/1f]
Response: 100[c/1f]
OK[cr/1f]

3.21 B Acquiring the last reference point number (current point number)

Command format

@?CURPNT [cr/1f]

Response format

klcr/1f]
OK[cr/1f]

k: Current point number-......... 0 to 29999

Acquires the point number which is referred last. The current point number (the point
number of last reference) is renewed by operations which uses the point data (point edit,

for example).

e The current point number is renewed by following operations: the point reference and the point

setting movement by remote commands, the trace movement or teaching by programming box
or SCARA-YRCX Studio, etc.

SAMPLE

Command : @?CURPNT [cr/1f]
Response: 100[cr/1f]
OK[cr/1f]

Reference commands @ 12-33 I

3.22 B Acquiring the output message

Command format

@?MSG[cr/1f]

Response format

sssss -+ - sssssslcr/lf]
OK[cr/1f]

Values s: Message character string

Acquires one line of message which is input from the output message buffer of the
controller by the PRINT statement, etc.

Command : @?MSG[cr/1f]
Response: MESSAGE[cr/1f] ««ccceeeeen. PRINT "MESSAGE" is executed in a
program.
OK[cr/1f]

e For executing this command, it is required that the "INPUT/PRINT using channel" parameter is

set at the port to execute command.
¢ When the output message buffer is empty, only "OK" is output as the response.

3.23 B Acquiring the input data

Command format

@?INPUT [cr/1f]

Response format

dlcr/1f]
OK[cr/1f]

d: Input data

Acquires the input data by the INPUT statement.

Command : @?INPUT[cr/1f]
Response: INPUT_SAMPLE[cr/1f]
OK[cr/1f]

I 12-34 @ Chapter 12 Online commands

3.24 B Acquiring various values

| 1.Acquiring the value of a numerical expression

Command format

@?numerical expression[cr/1f]
OK[cr/1f]

Response format

numerical valuel[cr/1f]

WWEEDINTY Acquires the value of the specified numerical expression.
The numerical expression's value format is "decimal" or "real number".

SAMPLE 1

Command : @?SQR(100*5) [cxr/1f]
Response: 2.236067E01[cr/1f]
OK[cr/1f]

SAMPLE 2

Command : @?LOC1 (WHERE) [cr/1f]

Response: 102054 ([cr/1f]
OK[cr/1f]

B 2.Acquiring the value of a character string expression

Command format

@?character string expression|[cr/1f]

Response format

character stringlcr/1f]
OK[cr/1f]

Acquires the value (character string) of the specified character string expression.

SAMPLE

The case of A$="ABC" and BS="DEF".

Command : @?AS+BS+"123"[cr/1f]

Response: ABCDEF123[cr/1f]
OK[cr/1f]

Reference commands @ 12-35

| 3.Acquiring the value of a point expression

Command format

@?point expression[cr/1f]

Response format

point datalcr/1f]
OK[cr/1f]

Acquires the value (point data) of the specified point expression.

Command : @?P1+WHRXY [cr/1f]
Response: 10.410 -1.600 52.150 3.000 0.000 0.000 O O O[cr/1f]
OK[cr/1f]

B 4.Acquiring the value of a shift expression

Command format

@?shift expression[cr/1f]
OK[cr/1f]

Response format

shift datalcr/1f]

Acquires the value (shift data) of the specified shift expression.

Command : @?slcr/1f]
Response: 25.000 12.600 10.000 0.000[cr/1f]
OK[cr/1f]

I 12-36 @ Chapter 12 Online commands

n Operation commands

4.1 I Absolute reset

Command format

@ABSADJ = [robot number] k,flcr/1f]
@MRKSET = [robot number] kl[cr/1lf]

Response format

RUN[cr/1f] «------- At movement start
END[cr/1f] ««-cc--- At movement end
Robot number 1 to 4 (If not input, robot 1 is specified.)
K e Axis number: 1 to 6
F Movement direction / 0: + direction, 1: - direction

Performs the absolute reset operation of the specified axis of the robot specified by the
<robot number>.
This command is available only to axes whose return-to-origin method is set as "Mark".

ABSADJ ...ooiiiiiiiie Moves the specified robot axis to an absolute reset
position.
MRKSET ..o, Performs absolute reset on the specified robot axis.

Command : @ABSADJ 1,0[cr/1f]
Response: RUN[cr/1f] «-cccceceeeeeeeee. Movement start
END[cr/1f] e Movement end

Operation commands @ 12-37 I

4.2 I Return-to-origin operation

Command format

@ORGRTN = [robot number] klcr/1lf]

Response format

RUN[cr/1f] «--cc--- At movement start
END[cr/1f] «ccevv-- At movement end
Robot number....................... 1 to 4 (If not input, robot 1 is specified.)
K e Axis number: 1 to 6

Performs the return-to-origin operation of the specified axis of the robot specified by the
<robot number>.

Command : @ORGRTN 1([cr/1f]
Response: RUN[cr/1f] «cccveeeeeeeeennn Movement start

END[cr/1f] v Movement end

I 12-38 @ Chapter 12 Online commands

4.3 B Manual movement: inching

Command format

@INCH ' [robot number] km [cr/l1f]
@INCHXY = [robot number] km [cr/l1f]
@INCHT [robot number] km [cr/1f]

Response format

RUN[cr/1f] «ccvv--- At movement start
END[cr/1f] «+:cce-- At movement end
Robot number........................ 1 to 4 (If not input, robot 1 is specified.)
K e Axis number: 1 to 6
M e Movement direction / +, -

Manually moves (inching motion) the specified axis of the robot specified by the <robot
number>.
The robot performs the same motion as when moved manually in inching motion with
the programming box's jog keys (moves a fixed distance each time a jog key is pressed).

The unit of the movement amount and operation type by command are shown below.

INCH oo, "pulse" units. Only the specified axis moves.

INCHXY oo, "mm" units. According to the robot configuration,
the arm tip of the robot moves in the direction of the
Cartesian coordinate system.

INCHT v "mm" units. According to the robot configuration, the
hand attached to the arm tip of the robot moves.

Command : @INCH 1+[cr/1f]
Response: RUN[cr/1f] e Movement start

END[cr/1f] e Movement end

Operation commands @ 12-39 I

4.4 B Manual movement: jog

Command format

@JOG ' [robot number] km [cr/l1f]
@JOGXY = [robot number] km [cr/l1f]
@JOGT [robot number] km [cr/1f]

Response format

RUN[cr/1f] ««--c--- At movement start
END[cr/1f] «-«ccv--- At movement end
Robot number........................ 1 to 4 (If not input, robot 1 is specified.)
K e Axis number: 1 to 6
M e Movement direction / +, -

Manually moves (jog motion) the specified axis of the robot specified by the <robot
number>.
The robot performs the same motion as when holding down the programming box's jog

keys in manual mode.

To continue the operation, it is necessary for the JOG command to input the execution

continue process (AV(=16H)) by the online command at intervals of 200ms. If not input,
the error stop occurs.

Additionally, after the movement has started, the robot stops when any of the statues
shown below arises.

¢ When software limit was reached.

* When stop signal was turned off.

e When STOP key on the programming box was pressed.

e When an online command (AC (=03H)) to interrupt execution was input.

The unit of the movement amount and operation type by command are shown below.

JOG it "pulse" units. Only the specified axis moves.

JOGXY oot "mm" units. According to the robot configuration,
the arm tip of the robot moves in the direction of the
Cartesian coordinate system.

JOGT i "mm" units. According to the robot configuration, the
hand attached to the arm tip of the robot moves.

Command : @JOG 1l+[cr/1f]
Response: RUN[cr/1f] «cceeeeeeeeeennn. Movement start

END[cr/1f] v Movement end

I 12-40 @ Chapter 12 Online commands

“ Data file operation commands

5.1 I Copy operations

I 1.Copying a program

Command format

@QCOPY <program name 1> TO <program name 2> [cr/1f]
PGn

Response format

RUN[cr/1f] «------- At prosess start
END[cr/1f] «cccee-- At prosess end

Values Program name 1 Program name in copy source (32 characters or less
consisting of alphanumeric characters and underscore)

Program name 2 Program name in copy destination (32 characters
or less consisting of alphanumeric characters and
underscore)

n: Program number 1to 100

Copies the program specified by <program name 1> or program number to <program

name 2>.
SAMPLE
Command : @COPY <TEST1> TO <TEST2> [cr/1lf]
Response: RUN [cr/1f] e Process start
END [cxr/1f] cccevceeceeeenn. Process end

| 2.Copying point data

Command format

@COPY Pmmmmm-Pnnnnn TO Pkkkkk[cr/1f]

Response format

RUN[cr/1f] -« -- At prosess start
END[cr/1f] «cccee-- At prosess end

MMMMM L. Top point number in copy source: 0 to 29999
NNNNN e, Last point number in copy source: 0 to 29999
KKKKK oo Top point number in copy destination: 0 to 29999

Copies the point data between Pmmmmm and Pnnnnn to Pkkkkk.

Command : @COPY P101-P200 TO P1101[cr/1f]
Response: RUN [cr/l1f] «-cccccceeeenen. Process start

END [cr/1f] «ccvcveveveeeeeeeen. Process end

Data file operation commands @ 12-41 I

| 3.Copying point comments

Command format

@COPY PCmmmmm-PCnnnnn TO PCkkkkk[cr/1f]

Response format

RUN[cr/1f] ««-cc--- At prosess start
END[cr/1f] «-cccvv-- At prosess end
MMMMM .. Top point comment number in copy source: 0 to 29999

nnnnnLast point comment number in copy source: 0 to 29999

KKKKK ©oeeeeveieiiciccecce Top point comment number in copy destination: 0 to 29999

Copies the point comments between PCmmmmm and PCnnnnn to PCkkkkk.

Command : @COPY PC101-PC200 TO PC1101l[cr/1f]
Response: RUN [cr/1f] e Process start

END [cr/1f] «cceeeeeeeeeenn Process end

5.2 I Erase

I 1.Erasing a program

Command format

@ERA <program name> [cr/1f]
PGn

Response format

RUN[cr/1f] ««-cc--- At prosess start
END[cr/1£f] ««ccevv-- At prosess end
Program name Program name to be erased (32 characters or less

consisting of alphanumeric characters and underscore)
n: Program number 1 to 100

Erases the designated program.

Command : @ERA <TEST1> [cr/1f]
Response: RUN [cr/1f] ---cccceeeecen.n. Process start

END [cr/1f] «cceeeeeeeeeenn Process end

I 12-42 @ Chapter 12 Online commands

| 2.Erasing point data

Command format

@ERA Pmmmmm-Pnnnnn[cr/1f]

Response format

RUN[cr/1f] «cevvv-- At prosess start
END[cr/1f] ««------ At prosess end
MMMMM e Top point number to be erased: 0 to 29999

Last point number to be erased: 0 to 29999

Erases the point data between Pmmmmm and Pnnnnn.

Command : @ERA P101-P200[cr/1f]
Response: RUN [cr/1f] «ccceeeeeeeeeen. Process start

END [cr/1f] ccvcveveeeeeeeean. Process end

l 3.Erasing point comments

Command format

@ERA PCmmmmm-PCnnnnn[cr/1£f]

Response format

RUN[cr/1f] -« At prosess start
END[cr/1£f] «««ccece-- At prosess end
MMMMM e Top point comment number to be erased: 0 to 29999
NNNNN e Last point comment number to be erased: 0 to 29999

Erases the point comments between PCmmmmm and PCnnnnn.

Command : @ERA PC101-PC200([cr/1f]
Response: RUN [cr/1f] --:cccceeeee... Process start

END [cr/1f] «cceeeeeeeeeen. Process end

Data file operation commands @ 12-43 I

| A4.Erasing point name

Command format

@ERA PNmmmmm-PNnnnnn [cr/1f]

Response format

RUN[cr/1f] ««-cc--- At prosess start
END[cr/1f] «cccv--- At prosess end
MMMMM e Top point name number to be erased: 0 to 29999

Last point name number to be erased: 0 to 29999

Erases the point names between PNmmmmm and PNnnnnn.

Command : @ERA PC101-PC200[cr/1f]
Response: RUN [cr/1f] -« eeeenn. Process start

END [cr/1f] «ccveeeeeeeeeenn Process end

| 5.Erasing pallet data

Command format

@ERA PLm[cr/1f]

Response format

RUN[cr/1£f] «ccecce- At prosess start
END[cr/1f] ««ccee.. At prosess end
00 TR Pallet number to be erased: 0 to 39

Erases the PLm pallet data.

Command : @ERA PL1[cr/1f]
Response: RUN [cr/lf] «cccccceeeeenn. Process start

END [cr/1f] e Process end

I 12-44 @ Chapter 12 Online commands

| 6.Erasing hand

Command format

@ERA Hm [cr/1f]

Response format

RUN[cr/1f] «cevve-- At prosess start
END[cr/1f] ««------ At prosess end

Values 00 TR Hand number to be erased: 0 to 31

WL Erases the hand definition data of "Hm".

SAMPLE

Command : @ERA H2 [cr/1f]

Response: RUN [cr/1f] - Process start
END [cr/1f] cccevceccccecnn. Process end

| 7.Erasing shift

Command format

@ERA Sm [cr/1f]

Response format

RUN[cr/1f] «c-vv--- At prosess start
END[cr/1f] «------- At prosess end

Values 00 TP USSR Shift number to be erased: 0 to 39

WAEEUINT Erases the shift data of "Sm".

SAMPLE

Command : @ERA S1 [cr/1lf]

Response: RUN [cr/1f] «cccevveeeeeeeen. Process start
END [cr/1f] «ccveveeeeeeeeen. Process end

Data file operation commands @ 12-45

| 8.Erasing area check output setting

Command format

@ERA ACm [cr/1f]

Response format

RUN[cr/1f] «--cc--- At prosess start
END[cr/1f] ««ccevv-- At prosess end

Values M et Area check output setting number to be erased: 0 to 31

WGEUIlTY Erases the area check output setting of "ACm".

Command : @ERA AC3 [cr/1f]
Response: RUN [cr/1f] e Process start

END [cr/1f] ccccveeeeeceeenn Process end

| 9.Erasing general-purpose Ethernet port

Command format

@ERA GPm [cr/1f]

Response format

RUN[cr/1f] ««--c--- At prosess start
END[cr/1f] «-«cc---- At prosess end

Values M e General-purpose Ethernet port number to be erased: 0 to 15

Erases the general-purpose Ethernet port of "GPm".

Command : @ERA GP5 [cr/1f]
Response: RUN [cr/1f] e Process start

END [cr/1f] «cceveeeeeeeeenn Process end

I 12-46 @ Chapter 12 Online commands

5.3 J Rename program

Command format

@REN <program name 1> TO <program name 2> [cr/l1f]
PGn

Response format

RUN[cr/1f] «cceee-- At prosess start
END[cr/1f] =+« +e--- At prosess end
Program name 1 Program name before renaming: shown with 32 characters or

less consisting of alphanumeric characters and _ (underscore)
Program name 2....... Program name after renaming: shown with 32 characters or less
consisting of alphanumeric characters and _ (underscore)

n: Program number.... 1 to 100

Changes the name of the specified program.

SAMPLE

Command : @REN <TEST1> TO <TEST2>[cr/1f]

Response: RUN [cr/1f] -«--cccceen Process start
END [cr/1f] «ccvvveen. Process end

5.4 | Changing the program atiribute

Command format

@ATTR <program name> TO s [cr/1lf]
PGn

Response format

OK[cr/1f]
Program name Program name to change the attribute: shown with 32 characters
or less consisting of alphanumeric characters and _ (underscore)
s: Attribute................. RW: Readable/writable
RO: Not writable (read only)
H: Hidden

n: Program number.... 1 to 100

Changes the attribute of the program specified by the <program name> or program
number.

SAMPLE

Command : @ATTR <TEST1> TO RO[cr/1lf]
Response: OK[cr/1f]

Data file operation commands @ 12-47

5.5 B Initialization process

| 1.Initializing the memory area

Command format

@INIT memory arealcr/1f]

Response format

RUN[cr/1f] -------- At prosess start
END[cr/1f] ««ccv--- At prosess end
Memory area.............c.cc.c....... Memory area to be initialized.

One of the following memory areas is specified.
PGM i, Initializes the program area.
PNT oo Initializes the point data area.
SFT e Initializes the shift data area.
HND o Initializes the hand data area.
PLT e Initializes the pallet data area.
PCM. i Initializes the point comment area.
PNM Lo Initializes the point name area.
ION Lo Initializes the input/output name area.
ACO oot Initializes the area check output setting area.
GEP..oi Initializes the general-purpose Ethernet port setting area.
MEM L Initializes the above areas (PGM ... all data up to GEP).
PRM ..o Initializes the parameter area.
ALL oo, Initializes all areas (MEM+PRM).

WL Initializes the memory area.

Command : @INIT PGM[cr/1lf]
Response: RUN [cr/1f] ----cccoeeeen.n. Process start

END [cr/1f] «ccceveeeeeeeenn Process end

I 12-48 @ Chapter 12 Online commands

| 2.Initializing the communication port

Command format

@QINIT communication port [cr/1f]

Response format

RUN[cr/1f] «cevvv-- At prosess start
END[cr/1f] «ce----- At prosess end

Values Communication port.............. Communication port to be initialized
Specify any of the ports shown below for the communication port.
CMU i Initializes the RS-232C port.
ETH e, Initializes the Ethernet port.

Initializes the communication port.
For information about the communication port initial settings, refer to the YRCX user's

or operator's manual.

SAMPLE

Command : @INIT CMU [cr/1f]
Response: RUN [cr/1f] - Process start
END [cr/1f] cccevccecccceeen. Process end

| 3.Initializing the alarm history

Command format

@INIT LOG[cr/1f]

Response format

RUN[cr/1f] «ccvvv-- At prosess start
END[cr/1f] «:ccev-- At prosess end

Initializes the alarm history.
SAMPLE

Command : @INIT LOG[cr/1f]
Response: RUN [cr/1f] --:cccceeeee... Process start

END [cr/1f] «cceveeeceeennn. Process end

Data file operation commands @ 12-49

5.6 l Data readout processing

Command format

@READ read-out file[cr/1f]

Response format

BEGIN [Cr/1f] «ceceeeeeeececeeneeenn At process start
(Data output: The contents may vary depending on the read-out file.)
END [cr/1f]:.--cccvccececcececenn.. At process end
Read-out filec.cccccuveuvencnn Designates a read-out file name.
n NOTE Reads out the data from the designated file.
eFor more information Online commands that are input through the RS-232C port have the same meaning as

about files, refer to the

earlier Chapter 10 "Data
file description". e SEND <read-out file> TO CMU

Commands via Ethernet have the same meaning as the following command.
e SEND <read-out file> TO ETH

the following command.

’ Definition format
Type Read-out file name Al Individual file
Al file ALL
Program PGM <bb...b>>
Point data PNT Pn
Point comment PCM PCn
Point name PNM PNn
User memory Parameter PRM /ecceeece/
Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn
General Ethernet port GEP GPn
Input/output name ION iNMn(n)
Area check output ACO ACn
Variable VAR ab...by
Variable, constant Array variable ARY ab...by(x)
Constant "cc...c"
Program directory DIR <<bb...b>>
Parameter directory DPM
Machine reference (sensor or stroke-end) MRF _
Machine reference (mark) ARP B ——
System configuration information CFG —_—
Status Controller CNT _
Robot RBT —_—
Driver DRV —_—
Option board OPT _—
Self check SCK _
Alarm history LOG —_—
Remaining memory size MEM
DI port DI() DIn()
DO port DO() DOn()
MO port MO() MOn()
TO port TO() TON()
Device LO port LO() LON()
Sl port SI() Sin()
SO port SO() SOn()
SIW port SIW() SIWn()
SOW port SOW() SOWNn()
Others File end code EOF
a: Alphabetic character b: Alphanumeric character or underscore (_) c: Alphanumeric character or symbol
i: /0 type n: Number x: Expression (Array argument) y: variable type
Command : @READ PGM [cr/1f] -« Reads out all programs.
@READ P100 [cr/1f] ++¢-v--- Reads out the point 100.
@READ DINM2 (0) [cr/1lf] ---:- Reads out the input/output name

of DI2(0).

12-50 @ Chapter 12 Online commands

5.7 J Data write processing

Command format

@WRITE write file[cr/1f]

Response format

READY [cr/1f] «« o v Input request display
OK [cr/1f] «+cvcve-- After input is completed
N wnote Values IRV o1 i1 [T Designates a write file name.

eFor more information

about files, refer to the n
earlier Chapter 10 "Data Writes the data in the designated file.

file description”. Online commands that are input through the RS-232C port have the same meaning as
the following command.
e SEND CMU TO <wrrite file>
Commands via Ethernet have the same meaning as the following command.
e SEND ETH TO <wrrite file>

e At the DO, MO, TO, LO, SO, SOW ports, an entire port (DO(), MO(), etc.) cannot be
designated as a WRITE file.

e Some separate files (DON(), MON(), etc.) cannot be designated as a WRITE file. For details, refer
to Chapter 10 "Data file description".

o Definition format
Type Write file name Al S
User memory All file ALL
Program PGM <bb...b>>
Point data PNT Pn
Point comment PCM PCn
Point name PNM PNn
Parameter PRM /cceeeeee/
Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn
General Ethernet port GEP GPn
Input/output name ION iNMn(n)
Area check output ACO ACn
Variable, constant Variable VAR ab...by
Array variable ARY ab...by(x)
Device DO port DOn()
MO port _ MOn()
TO port m— TON()
LO port _ LON()
SO port m— SOn()
SOW port SOWn()
a: Alphabetic character b: Alphanumeric character or underscore (_) c: Alphanumeric character or symbol
i I/O type n: Number x: Expression (Array argument) y: variable type
Command : @WRITE PRM [cr/1f] «---:--- Writes the label specified
parameter.
@WRITE P100 [cr/1f] «------ Writes the point 100.
@WRITE DINM2(0) [cr/1f] ceoveoeees Writes the input/output name of

DI2(0) .

Data file operation commands @ 12-51

6

Utility commands
1

| Setting the sequence program execution flag

Command format

@SEQUENCE k[cr/1f]

Response format

OK[cr/1f]
K e Execution flag / 0: disable, 1: enable, 3: enable (DO reset)

Sets the sequence program execution flag.

Command : @SEQUENCE 1[cr/1f]
Response: OK[cr/1f]

6.2 | Setting the date

Command format

@DATE yy/mm/dd[cr/1£]

Response format

" NOTE OK[cr/1f]
*eTo change only the
year or month, the slash
(/) following it can be
omitted. yy/mm/dd........cocooiniiininne. Date to bj. s.et. ()f/esr, month, day)
Example: VY ettt Lower 2 digits of the year (00 to 99)
To set the year 1o 2016, NI e Month (01 to 12)
enter 16(cr/If). dd Day (01 to 31)
To set the month to June,
enter /06(cr/). Sets a date in the controller.

¢ The currently set values are used for the omitted items.

e If only [cr/If] is transmitted, then the date remains unchanged.
e If an improbable date is entered, then "5.202: Data error" occurs.

SAMPLE 1

To change only the day,
//15[cr/L1E] oo e oo Day is set to 15th.

Command : @DATE 16/01/14[cr/1f]
Response: OK[cr/1lf]

I 12-52 @ Chapter 12 Online commands

6.3 | Setting the time

Command format

@TIME hh:mm:ss[cr/1f]

Response format

OK[cr/1f]
hh:mm:ss oo Current time
B hour (00 to 23)
MM e e e minute (00 to 59)
8 et second (00 to 59)

Sets the time of the controller.

e The currently set values are used for the omitted items.

e If only [cr/If] is transmitted, then the time remains unchanged.
e If an improbable time is entered, then "5.202: Data error" occurs.

SAMPLE 1

To change only the minute,
220 [Cr/1E] ce e e e Minute is set to 20.

SAMPLE 2

Command : @TIME 10:21:35[cr/1f]
Response: OK[cr/1lf]

Utility commands @ 12-53 I

Individual execution of robot language

Command format

@robot languagelcr/1f]

Response format 1

OK[cr/1lf] or NG=gg.bbb [cr/1f]

Response format 2

RUN[cr/1f] or NG=gg.bbb[cr/lf] «-«ccceccceeeeeceec.. At process start
END[cr/1f] or NG=gg.bbb[cr/l1f] «:ccceceecececceeeen. At process end

OK, END...ooviiiniiiiiciccieeee, Command ended correctly.
NG An error occurred.
RUN o, Command starts correctly.
gg: Alarm group number 0to 99

bbb: Alarm classification number-...... 0 to 999

Robot language commands can be executed.
* Only independently executable commands are executed.

e Command format depends on each command to be executed.

SAMPLE 1

Command : @SET DO (20) [cr/1lf]
Response: OK[cr/1f]

Command : @MOVE P,P100,S=20[cr/1f]
Response: RUN [cr/1f] e Process start

END [cr/1f] «cceveeeeeeeeenn Process end

I 12-54 @ Chapter 12 Online commands

n Control codes

Command format

~C (=03H)

Response format

NG=1.8

Interrupts execution of the current command.

SAMPLE

Command : @MOVE P,P100,S=20[cr/1f]
~C

Response: NG=1.8[cr/1f]

Control codes @ 12-55 I

Chapter 13
Appendix

1 Reserved word list..........cccorcereniiennnnnen. 13-1
2 Changes from conventional models.... 13-3

_ Reserved word list

The words shown below are reserved for robot language and cannot be used as identifiers (variables, etc.).

P pate HND MOVET
ABS DBP HOLD MRF
ABSADJ DEC HOLDALL MRKSET
ABSRPOS DECEL Y wsa
ACC DEF IDIST MSGCLR
ACCEL DEGRAD IF MSPEED
ACCESS DELAY IMP MTRDUTY
ACO DI INCH IR
ALL DIM INCHT NAME
ALM DIR INCHXY NEXT
ALMRST DIST INIT NOT
ARCHP1 DPM INT OFF
ARCHP2 DRIVE ION OFFLINE
ARM DRIVE ON
ARMCND DRV ONLINE
ARMSEL JOGT OPEN
ARMTYP ELSE JOGXY OPT
ARP ELSEIF JTOXY OR
ASPEED END LEFT ORGORD
ATN ENDIF LEFTY ORGRTN
ATN2 EOF LEN ORIGIN
ATTR EQV LET ouT
AXWGHT ERA LINEMODE OUTPOS

O e 0 ECE—
BIN ERR LOAD P
BREAK ERROR LOC1 PATH
CALL ETHSTS LOC3 PCM
CASE EXIT LOC4 PDEF
CFG EXITTASK LOC5 PGM
CHANGE P Locs PGMTSK
CHGPRI FN LOCF PGN
CHR FOR LOG PLT
CLOSE FREE LSHIFT PMOVE
oy .
CNT GEP MAINPG PNT
CONT GEPSTS MCHREF PPNT
CONTPLS GO MEM PRINT
COPY GOSUB MID PRM
cos GOTO MO PSHFRC
CURPNT G oD PSHJGSP
CURTQST HALT MODE PSHMTD
CURTRQ HALTALL MOTOR PSHRSLT
cuT HAND MOVE PSHSPD

e HEx MOVEI PSHTIME

Reserved word list @ 13-1 I

Because the following names are used as system variable names, they cannot be used at the beginning of other

variable names (n: numeric value).

PUSH SET swi WEIGHT

PWR SETGEP SYNCHK WEND
O e wHiRe

RADDEG SFT TAG WHILE

RBT SGI TAN WHRXY

READ SGR TASKS WRITE

REF SHARED TCHXY x

REM SHIFT TCOUNTER XOR

REN sl TEACH XY

RESET SID THEN XYTOJ

RESTART SIN TIM Y

RESUME siw TIME

RETURN SKIP TIMER z

RIGHT SKIPTO TO X

RIGHTY o) TOLE

RSHIFT SOD TORQUE

RUN SOW TSKECD

RUNTO SPEED TSKMON
o o TG

SCK STEP VAL

SELECT STOP VAR

SEND STOPON VEL

SEQCMPL STR VER

SEQUENCE SUB M

SERVO SUSPEND WAIT

ACn GPn PNn SOn
Din Hn SGin SONMnN
DINMn LOn SGRn TOn
DOn MOn Sin

DONMnN PCn SINMn

FN Pn Sn

Variable name usage examples

= Although keywords which are reserved as robot language words cannot be used as they are, they can be used as

variable names if alphanumeric characters are added to them.
Example: "ABS" cannot be used, but "ABS1" or "ABSX" can be used.

= Keywords reserved as system variables cannot be used at the beginning of other variable names, even if
alphanumeric characters are added to them.

Example: "FN" cannot be used. "FNA" and "FN123" also cannot be used.

I 13-2 @ Chapter 13 Appendix

n Changes from conventional models

1

I Program name

For YRCX, the following two program names which have been special for conventional models (YRC,

etc.) don't have a special meaning.

A) FUNCTION
B) _SELECT

| A) FUNCTION

In conventional models (YRC, etc.), "FUNCTION" has been special program for registering a user
function. YRCX doesn't have a user function and "FUNCTION" doesn't have a special meaning.

B B) _sELECT

In conventional models (YRC, etc.), the "_SELECT" program has been selected and executed every
time robot programs were reset.

In YRCX, the program specified at the main program number (or the program executed last if there
is no specified program there) is selected and executed when robot programs are reset.

For details regarding the main program, refer to "12. Set main program" in "2.1 Program operations"
in Chapter 12.

J Multiple Robot Control

In conventional models (YRC, etc.), robot has consisted of a main group (one main robot, main
auxiliary axes) and a sub group (one sub robot, sub auxiliary axes).

In YRCX, robot consists of robot 1 to 4 (normal axes, auxiliary axes).

Due to this change, commands for each group have changed to ones for each robot.

For details regarding the command for each robot, refer to "2. Command list with a robot setting" in
Chapter 5 of this manual for YRCX, and regarding the command for each group, refer to "Command
list for each group” of the programming manual for conventional models (YRC, etc.), respectively.

SAMPLE

Command for each group: conventional model (YRC, etc.)
MOVE P, Pl Axes of a main group move to the

position specified by P1.
MOVE2 P, PS5, Axes of a sub group move to the
position specified by P5.

Command for each robot: YRCX
MOVE P, Pleccccceeceecceneenn Axes of the robot 1 move to the

position specified by P1.
MOVE[2] P, P5ecccecceccecen Axes of the robot 2 move to the
position specified by P5.

e The command with robot setting can be omitted a robot number. If it is omitted, robot 1 is
specified.

Changes from conventional models @ 13-3 I

3 B Multi-tasking

The differences between YRCX and conventional models (YRC, etc.) are shown below.
Conventional models YRCX
Maximum number of task 8 16

Priority 17 to 47 1to 63

During the program In another program

Task is assigned
in Task 1 automatically
and placed in RUN status

Task is assigned
in a specified task number
and placed in RUN status

Starting tasks

Command execution for

Task 1 (restart, etc.) Executable

Not executable

For details regarding the multi-tasking, refer to Chapter 6 "Multi-tasking" in this manual or in a
programming manual for conventional models (YRC, etc.).

4 B Robot Language
1.In YRCX, the robot languages shown below are added to ones of conventional models (YRC, etc.).
ARMSEL CLOSE CURTQST ETHSTS
GEPSTS HALTALL HOLDALL MOTOR
MOVET MTRDUTY OPEN PGMTSK
PGN PSHFRC PSHJGSP PSHMTD
PSHRSLT PSHSPD PSHTIME PUSH
SETGEP TSKPGM

For details regarding the robot Language, refer to Chapter 8 "Robot Language Lists".

2. These robot languages for conventional models (YRC, etc.) became unavailable in YRCX.

ABSINIT ABSINIT2 ABSRST ABSRPOS2
ACCEL2 ARMCND2 ARMTYP2 ASPEED2
AXWGHT2 CHANGE2 CURTRQ2 DECEL2
DECLARE DRIVE2 DRIVEI2 HAND2
JTOXY2 LEFTY2 MCHREF2 MOVE2
MOVEI2 ORGORD2 OUTPOS2 PMOVE2
RIGHTY2 SERVO2 SHIFT2 SPEED2
TOLE2 TORQUE2 TRQSTS TRQSTS2
TRQTIME TRQTIME2 WAIT ARM2 WEIGHT2
WHERE2 WHRXY2 XYTOJ2 _SYSFLG

For details regarding the robot Language, refer to "Robot Language Lists" of a programming manual

for conventional models (YRC, etc.).

I 13-4 @ Chapter 13 Appendix

B Online commands

1.In YRCX, the online commands shown below are added to ones of conventional models

(YRC, etc.).
RUNTO SKIPTO MRKSET IDIST
INCHXY INCHT JOGXY JOGT
TCHXY SYNCHK SEQCMPL LOAD
MAINPG MSGCLR SETPW ALMRST
? ALM ? CURPNT ? IDIST ? INPUT
? LONEMODE ? MAINPG ? MODE ? MSG
? MSPEED ? TSKECD

For details regarding the online commands, refer to Chapter 12 "Online commands".

2. These online commands for conventional models (YRC, etc.) became unavailable in YRCX.

AUTO EMGRST EXELV MANUAL
? ARM ? CONFIG ? EXELVL ? OPSLOT
? SELFCHK ? WHRXYEX

For details regarding the online commands, refer to "Online commands" of a programming manual
for conventional models (YRC, etc.).

6 I Data file

In YRCX, the data files shown below are added to ones of conventional models (YRC, etc.).

Point name file

General Ethernet port file
Input/output name file

Area check output file

System configuration information file
Version information file

Option board file

Self check file

Remaining memory size file

RN A W=

For details regarding the data files, refer to Chapter 10 "Data file description".

e "Alarm history file" replaced "Error message history file" and "Error message history details file"
of conventional models.
¢ In YRCX, the point number ranges from 0 to 29999 (0 to 9999: Conventional models).

Changes from conventional models @ 13-5 I

Index

Index

Absolute reset ..o, 12-37
Acceleration coefficient ... 8-20
Acceleration settingcocoieene. 8-109, 8-121, 8-131
Acquiring return-to-origin status.............................. 12-23
Acquiring the access levelccoooviiiiiiinnnnn. 12-25
Acquiring the break point status.....................co.oene. 12-25
Acquiring the emergency stop status 12-32
Acquiring the mode statusccoooeiiiiin, 12-26
Acquiring the remaining memory capacity 12-31
Acquiring the servo statuscoovviiiiiiiinnnnn, 12-24
Acquiring the shift status............ 12-29, 12-30, 12-31, 12-33
Acquiring the tasks in RUN status....................o..oe. 12-28
Acquiring the tasks in SUSPEND status 12-28
Acquiring the tasks operation status........................ 12-29
Acquiring the version information 12-28
AlLTIle o 10-32, 10-33
Arch motion settingcooviii 8-105, 8-164
Area check output ..o 10-30

Erase ...oooiiiiii 12-46

Initializing ... 12-48

Read-outcoiiii 12-50
Arithmetic assignment statement 8-84
Arithmetic operationsccocooiviiiiiiiiii 4-1
Arm 10CK OUEPUL. ... 8-87
Arm lock output variable ... 3-11
Arm lock output variables ... 7-6
Array SUDSCHIPE ..o 8-44
Array variable file ... 10-53, 10-54
Array variables ... 3-5
Assignment statement ... 8-84
AUTO movement speedcccovuviiiriiniiiiiiieaene, 8-26
Axis tipweight ... 8-28
8
Bit Settings ..o 3-17
Cartesian coordinate formatccooiiiiiiiiin. 4-5
CASE .o 8-190
Change the MANUAL mode speedccoceueenenn. 12-17
Changing the program attributecooeenee. 12-47
Character constants............cooviiiiiiiiii 2-2

Character string

COMPANISON ..t 4-4
CoNNection ... 4-4
LiNK e 8-85
OPEratioNScvuieiii e 4-4
Character string assignment statement 8-85
Circular interpolation movement 8-100, 8-145
Command list with a robot settingcooeiinne. 5-2
Command Statement Format............c..cooeviiiiiinennnn, 1-5
CommeNnt ... 1-5, 8-182
COMMON ... 1-3
Communication port.............coooeiiiiineenne. 8-133, 8-137
Constant fileoooiiiiiiiiii 10-52
CoNtrol COAES ...vvveiiiiiiiei e 12-55
Control multiple robots............coooiiiiii 5-1
CONT setting 8-97, 8-107, 8-119, 8-129, 8-155, 8-157
Coordinate plane setting...............cooeveiinnee. 8-110, 8-149
Copying point comments...........c.ovvviiiiiniieieenn. 12-42
Copying point datacooeoveiiiiiiiiia 12-41
.o
Datafile ...ccoooviiiii 10-1, 10-2
Data file typescoovviiiiiiii 10-1
Data format conversioncccovviiiiiiiiiiiiiiinn. 4-3
Data readout processing..........ccoveveviiiriiiiiininnnnnn. 12-50
Data write processingccooeeiiiiiiiiiiiiieann, 12-51
Deceleration rateccoovviiiiiiiiiii 8-39
Deceleration settingooooeeie. 8-109, 8-121, 8-131
Declares array variablecooiiiiiiiiiii, 8-44
Define pointocuieiiii 8-166
Defines functions which can be used by the user 8-40
DI/DO conditional eXpressionscc.coovveeniuninninnes 4-6
DIfile o 10-55, 10-56
DOile i 10-57, 10-58
Dummy argument...........coooiiiii 8-213
Dynamic variablescoooiiiiiiii 3-18
e
EOF file ouiiiiiii 10-73
Erasing ...o.oeiieiiii 12-42
Area check output settingccooviiiiiiinnns 12-46
General-purpose Ethernet portcocoeieni. 12-46
Hand ... 12-45
Palletdatacooviiiii 12-44
Pointcomments ... 12-43
Pointdata ..o 12-43
Pointname ... 12-44
Program ... 12-42
Shift o 12-45

Index @ 1 I

Error processingcooveiiiiiiiiiiea 8-134, 8-185
Error recovery processingcoeveeveiiiieiiiiiiennennn. 8-185
Ethernet port communication filecooieiin. 10-75
Executes absolute movement of specified axes............ 8-48
e]
Functions: in alphabetic ordercocovviiiiiiinne. 8-13
Functions: operation-specificccociiii. 8-16

General Ethernet port

Read-out ... 12-50
General-purpose Ethernet port

Erase ..o 12-46
Global variable ... 10-46
Global variablesccccviiiiiie i 3-18
H
Hand

Acquiring the status ... 12-30

DefiNe ..o 8-70

Definitionfilecooviiiiii 10-18, 10-19

Erase ..o 12-45

Left-handed systemcooiiiiiiiiii 8-82

Right-handed system ..., 8-188

Hand system flag4-5, 8-101, 8-115, 8-125, 8-166, 10-5, 10-21

L 8-75
Block IF statementocooiiiiiiiii 8-76
Simple IF statement.........ccooooiiiiiiiii 8-75

INitiAliziNg ... 12-48
Alarm hiStoryooviiii 12-49
Communication Port...........ccoeuiiiiiiiiiiiiiieeens 12-49
MEMOIY @rea.......c.vuiiiiiiiii e 12-48

Integer constantscoooiiiii 2-1

Internal output variable ... 3-10

Joint coordinate format ... 4-5

Label o 1-4

LABEL Statement..........ocoeuiiiiiiiiiiiiieeeeeee 1-4

Left-hand Systemcooviiiiiiiii 8-82

Linear interpolation movement ... 8-99, 8-114, 8-124, 8-145

Local variable 8-213

2 @ Index

Local variablescccooiiiiiii 3-18
LOfile eneii e 10-61, 10-62
LOgiC Operationsc.oeviiiiiiiiii 4-2
e~
MANUAL mode operationcccoveveveiiiinieninnnn. 12-17
MO file o 10-59, 10-60
Movement speedcccooviiiiiiiii 8-209
Moves the specified robot axes in a relative manner-...... 8-52
Multi-task ... 6-1
N
Numeric constantscooiiiiiiiiiii 2-1
.o
Online Command Listcocooiiiiiiiiiiiiieean 12-1
Operation speedccooiiiiiiii i 8-26
OUT enable position coveiiiiiiiiiiieicieeeen, 8-143
e
Pallet
DefiNe . e 8-159
Definition filecccovieinnn. 10-20, 10-21, 10-22, 10-23
Definition number ... 8-162
Erase ..ooooiiii 12-44
Movement ... 8-162
Position number ... 8-162
Palletizing ... 11-4,11-10
Parallel input variablecoocoiiii 3-8
Parallel output variableccooiiiiii 3-9
Parallel port ... 8-43, 8-46
Parameter directory filec.ooiiiiiii, 10-36
Parameter filelL 10-12, 10-13, 10-14, 10-15
PATH o 8-145, 9-1
Cautions when using this function........................... 9-2
Ends the path settingcooiiiiiiis 8-151
Features.cooii i 9-1
HOW IO USE e 9-1
Specifies the motion path ...l 8-145
Starts the PATH motioncooiiiiiiiin. 8-155
Starts the path settingocoo, 8-152
Performs absolute movement 8-97, 8-112, 8-122
Pick and placecccooiiiiiiiiiii 11-12
Point assignment statement ... 8-85
Point comment file 10-8, 10-9, 10-10, 10-11
Point data
Erase ..o 12-43
Format ..o 4-5
Point data variable ... 3-7

POINt file .. 10-5

Port output setting cooooiiiii 8-111, 8-150
Priority of arithmetic operationccccooiiviiiiiinns 4-3
Program
(7] o)V 12-41
Erase ..o.ooiiii 12-42
SIOP et 8-68, 8-69
SWItCH ... 8-216
Temporarily Stopccovviiiiiiii 8-73, 8-74
Program directory fileccooviiiiiiiiiiinnis 10-34, 10-35
Program execution waitcoooviiiiiiiii, 8-42
Program filecoooiiiiii 10-3, 10-4
Programlevel ... 8-198
Program Namesccoooiiiiiiii 1-2
Program operations ... 12-9

PTP movement 8-48, 8-52, 8-97, 8-112, 8-122, 8-162, 8-176

Read-outfilecoooiviiiii 8-191
Ready QUEUEScoviiiiiiiiiie e 6-3
Real constantscoooviiiiii 2-1
Reference commandsc.ccooviiiiiiiiiiiiien, 12-23
Relational operators.............coviiiiiiii 4-1
Rename program namecocooeoiiiiiiininennns 12-47
Reserved word listcooviiiiiiiii 13-1
Return-to-origin sequencec.cooeviiiiiininnns 8-140
Right-handed systemcccooiiiiiiiin 8-188
RS-232C ..o 11-18, 11-19
s
SEQUENCE ..o 1-2
Sequence fuNCtioNooiiiiiiii 7-1
Sequence program
Acquiring the execution statusoooeeis 12-27
Compiling ...oveeii 7-3
Creating ...c.ve i 7-5
EXecutingovuiiii 7-4
Priority of logic operationsccoceiiiiiiiniennn. 7-8
Program capacityccooviiiiiiiiiie 7-8
Programming methodcccooiiiiiii 7-1
Scan timecooiiiiiiiii 7-8
Setting the execution flagcooeiviiiiiiiiiininnes 12-52
Specifications coiiiiiii 7-8
STEP executionccoiiiiiiiiiiee 7-4
SEQUENCE programcccceeeiiiiiiiiieicieieeneen. 1-2
Serial double word input ..o 3-15
Serial double word outputccciiiiiii 3-16
Serial input variablecccoiii 3-13
Serial output variable ... 3-14
Serial port communication file ... 10-74
Serial word input ..o 3-15

Serial word output ... 3-16
Servo statusovviiiiii i 8-193
Setting the sequence program execution flag 12-52
Shift

Erase ..o 12-45
Shift assignment statement ... 8-86
Shift coordinate...........ccoooviiiiiiiii 8-199, 8-204

Definitionfilecoooviiiiii 10-16, 10-17
Shift variable ... 3-8
SIfile i 10-65, 10-66
SIWHile .o 10-69, 10-70
SOfile . i 10-67, 10-68
SOW File...ovieiiiiii 10-71, 10-72
Static variableso 3-18

STOPON condition setting ... 8-51, 8-56, 8-106, 8-118, 8-128,
8-156, 8-165

Sub-procedure ... 8-29, 8-198, 8-213
Subroutine ... 8-135, 8-137
System prior to shipment ... 5-1
System Variablescc.cooiiiiiiii 3-2, 3-7
Task
Condition Waitccoiiiiii 6-4
Definition ..o 6-1
Deletingc.ovviieiii 6-6
Number ... 8-211
Priority Orderoovuieiiii 6-1
Priority rankingcooiiiiiiii 8-31, 8-211
Program example..........ooiiiiii 6-8
Restart ... 8-184
Restartingccovviiiiiii 6-5
Scheduling........ccooviiiiii 6-3
Sharingthe dataccooviiiiiiiii 6-8
Start 8-211
StArtiNg ..o 6-2
Status and transitioncocoiii 6-2
SEOPPING .t 6-7
SUSPENAING +.ncviieitii e 6-5
Temporarily StOpoveiviiiii 8-215
Terminateooooviiniiii 8-37, 8-63
Task status
NON EXISTENT oot 6-2
READY .o 6-2
RUN 6-2
STOP o 6-2
SUSPEND ...t 6-2
WAL 6-2
Timer output variable ..o 3-12
Tipweight ..o 8-229
TOE . e 10-63, 10-64
TOIEranCe ... 8-222

Index @ 3 I

User program examples

APPLICAtION ... 11-8

Basic operation..........coooviiiiii 11-1
User Variablescoooiiiiiiiii 3-2
Using point NUMDErsouiiiiiiiiiii e, 11-2
Using shift coordinatescoo 11-3
Valid range of variablescocoviiiiiiiiiiiiiin 3-18
Value Pass-Along & Reference Pass-Along 3-6
Variable fileocoiiii 10-46
Variable Names ... 3-3
Variable TYPES ...cuiviiiiii e 3-4
WAIT Status ..o 6-4
Write file v 8-191
XY 8etting ..couoeneiii 8-51

Revision history

A manual revision code appears as a suffix to the catalog number on the front cover manual.

Cat. No. 1232E-EN-OTA

L

The following table outlines the changes made to the manual during each revision.

Revision code

Revision code Date Description

01 June 2016 Original production

0TA February 2018 Small corrections

OMmRON

(Authorized Distributor: \

NS /

Cat. No. 1232E-EN-01A Note: Specifications subject to change without notice. Printed in Europe

	Introduction
	Safety precautions
	CONTENTS
	Chapter 1	
Writing Programs
		1	The OMRON Robot Language
		2	Characters
		3	Program Basics
		4	Program Names
		5	Identifiers
		6	LABEL Statement
		7	Comment
		8	Command Statement Format

	Chapter 2	
Constants
		1	Outline
		2	Numeric constants
	2.1	Integer constants
	2.2	Real constants

		3	Character constants

	Chapter 3	
Variables
		1	Outline
		2	User Variables & System Variables
	2.1	User Variables
	2.2	System Variables

		3	Variable Names
	3.1	Dynamic Variable Names
	3.2	Static Variable Names

		4	Variable Types
	4.1	Numeric variables
	4.2	Character variables

		5	Array variables
		6	Value Assignments
		7	Type Conversions
		8	Value Pass-Along & Reference Pass-Along
		9	System Variables
	9.1	Point variable
	9.2	Shift variable
	9.3	Parallel input variable
	9.4	Parallel output variable
	9.5	Internal output variable
	9.6	Arm lock output variable
	9.7	Timer output variable
	9.8	Serial input variable
	9.9	Serial output variable
	9.10	Serial word input
	9.11	Serial double word input
	9.12	Serial word output
	9.13	Serial double word output

		10	Bit Settings
		11	Valid range of variables
	11.1	Valid range of dynamic (array) variables
	11.2 	Valid range of static variables

		12	Clearing variables
	12.1	Clearing dynamic variables
	12.2	Clearing static variables

	Chapter 4	
Expressions and Operations
		1	Arithmetic operations
	1.1	Arithmetic operators
	1.2	Relational operators
	1.3	Logic operations
	1.4	Priority of arithmetic operation
	1.5	Data format conversion

		2	Character string operations
	2.1	Character string connection
	2.2	Character string comparison

		3	Point data format
		4	DI/DO conditional expressions

	Chapter 5	
Multiple Robot Control
		1	Overview
		2	Command list with a robot setting

	Chapter 6	
Multi-tasking
		1	Outline
		2	Task definition method
		3	Task status and transition
	3.1	Starting tasks
	3.2	Task scheduling
	3.3	Condition wait in task
	3.4	Suspending tasks (SUSPEND)
	3.5	Restarting tasks (RESTART)
	3.6	Deleting tasks
	3.7	Stopping tasks

		4	Multi-task program example
		5	Sharing the data
		6	Cautionary Items

	Chapter 7	
Sequence function
		1	Sequence function
		2	Creating a sequence program
	2.1	Programming method
	2.2	Compiling

		3	Executing a sequence program
	3.1	Sequence program STEP execution

		4	Programming a sequence program
	4.1	Assignment statements
	4.2	Input/output variables
		4.2.1	Input variables
		4.2.2	Output variables
	4.3	Timer definition statement
	4.4	Logical operators
	4.5	Priority of logic operations
	4.6	Sequence program specifications

	Chapter 8	
Robot Language Lists
			How to read the robot language table
			Command list in alphabetic order
			Operation-specific
			Functions: in alphabetic order
			Functions: operation-specific
		1	ABS
	Acquires absolute values

		2	ABSRPOS
	Acquires the machine reference value (axes: mark method)

		3	ACCEL
	Specifies/acquires the acceleration coefficient parameter

		4	ARCHP1 / ARCHP2
	Specifies/acquires the arch position parameter

		5	ARMCND
	Acquires the current arm status

		6	ARMSEL
	Sets/acquires the current hand system selection

		7	ARMTYP
	Sets/acquires the hand system selection during program reset

		8	ASPEED
	Sets/acquires the AUTO movement speed of a specified robot

		9	ATN / ATN2
	Acquires the arctangent of the specified value

		10	AXWGHT
	Sets/acquires the axis tip weight

		11	CALL
	Calls a sub-procedure

		12	CHANGE
	Switches the hand

		13	CHGPRI
	Changes the priority ranking of a specified task

		14	CHR$
	Acquires a character with the specified character code

		15	CLOSE
	Closes the specified General Ethernet Port

		16	COS
	Acquires the cosine value of a specified value

		17	CURTQST
	Acquires the current torque value of a specified axis to the rated torque

		18	CURTRQ
	Acquires the current torque of the specified axis

		19	CUT
	Terminates another task which is currently being executed

		20	DATE$
	Acquires the date

		21	DECEL
	Specifies/acquires the deceleration rate parameter

		22	DEF FN
	Defines functions which can be used by the user

		23	DEGRAD
	Angle conversion (degree → radian)

		24	DELAY
	Program execution waits for a specified period of time

		25	DI
	Acquires the input status from the parallel port

		26	DIM
	Declares array variable

		27	DIST
	Acquires the distance between 2 specified points

		28	DO
	Outputs to parallel port or acquires the output status

		29	DRIVE
	Executes absolute movement of specified axes

		30	DRIVEI
	Moves the specified robot axes in a relative manner

		31	END SELECT
	Ends the SELECT CASE statement

		32	END SUB
	Ends the sub-procedure definition

		33	ERR / ERL
	Acquires the error code / error line number

		34	ETHSTS
	Acquires the Ethernet port status

		35	EXIT FOR
	Terminates the FOR to NEXT statement loop

		36	EXIT SUB
	Terminates the sub-procedure defined by the SUB to END SUB statement

		37	EXIT TASK
	Terminates its own task which is in progress

		38	FOR to NEXT
	Performs loop processing until the variable exceeds the specified value

		39	GEPSTS
	Acquires the General Ethernet Port status

		40	GOSUB to RETURN
	Jumps to a subroutine

		41	GOTO
	Executes an unconditional jump to the specified line

		42	HALT
	Stops the program and performs a reset

		43	HALTALL
	Stops all programs and performs reset

		44	HAND
	Defines the hand
	44.1	For SCARA Robots

		45	HOLD
	Temporarily stops the program

		46	HOLDALL
	Temporality stops all programs

		47	IF
	Evaluates a conditional expression value, and executes the command in accordance with the conditions
	47.1	Simple IF statement
	47.2	Block IF statement

		48	INPUT
	Assigns a value to a variable specified from the programming box

		49	INT
	Truncates decimal fractions

		50	JTOXY
	Performs axis unit system conversions (pulse → mm)

		51	LEFT$
	Extracts character strings from the left end

		52	LEFTY
	Sets the SCARA robot hand system as a left-handed system

		53	LEN
	Acquires a character string length

		54	LET
	Assigns values to variables

		55	LO
	Arm lock output or acquires the output status

		56	LOCx
	Specifies/acquires point data for a specified axis or shift data for a specified element

		57	LSHIFT
	Left-shifts a bit

		58	MCHREF
	Acquires the machine reference value (axes: sensor method / stroke-end method)

		59	MID$
	Acquires a character string from a specified position

		60	MO
	Outputs a specified value to the MO port or acquires the output status

		61	MOTOR
	Controls the motor power status

		62	MOVE
	Performs absolute movement of robot axes

		63	MOVEI
	Performs relative movement of robot axes

		64	MOVET
	Performs relative movement of all robot axes in tool coordinates

		65	MTRDUTY
	Acquires the motor load factor of the specified axis

		66	OFFLINE
	Sets a specified communication port to the "offline" mode

		67	ON ERROR GOTO
	Jumps to a specified label when an error occurs

		68	ON to GOSUB
	Executes the subroutine specified by the <expression> value

		69	ON to GOTO
	Jumps to the label specified by the <expression> value

		70	ONLINE
	Sets the specified communication port to the "online" mode

		71	OPEN
	Opens the specified General Ethernet Port

		72	ORD
	Acquires a character code

		73	ORGORD
	Specifies/acquires the robot's return-to-origin sequence

		74	ORIGIN
	Performs return-to-origin

		75	OUT
	Turns ON the specified port output

		76	OUTPOS
	Specifies/acquires the OUT enable position parameter of the robot

		77	PATH
	Specifies the motion path

		78	PATH END
	Ends the path setting

		79	PATH SET
	Starts the path setting

		80	PATH START
	Starts the PATH motion

		81	PDEF
	Defines the pallet

		82	PGMTSK
	Acquires the task number in which a specified program is registered

		83	PGN
	Acquires the program number from a specified program name

		84	PMOVE
	Executes a pallet movement command for the robot

		85	Pn
	Defines points within a program

		86	PPNT
	Creates pallet point data

		87	PRINT
	Displays the specified expression value at the programming box

		88	PSHFRC
	Specifies/acquires the pushing force parameter

		89	PSHJGSP
	Specifies/acquires the push judge speed parameter

		90	PSHMTD
	Specifies/acquires a pushing type parameter

		91	PSHRSLT
	Acquires the status when PUSH statement ends

		92	PSHSPD
	Specifies/acquires the push speed parameter

		93	PSHTIME
	Specifies/acquires the push time parameter

		94	PUSH
	Executes a pushing operation for specified axes

		95	RADDEG
	Performs a unit conversion (radians → degrees)

		96	REM
	Inserts a comment

		97	RESET
	Turns OFF the bits of specified ports, or clears variables

		98	RESTART
	Restarts another task during a temporary stop

		99	RESUME
	Resumes program execution after error recovery processing

		100	RETURN
	Processing which was branched by GOSUB, is returned to the next line after GOSUB

		101	RIGHT$
	Extracts a character string from the right end of another character string

		102	RIGHTY
	Sets the SCARA robot hand system as a right-handed system

		103	RSHIFT
	Shifts a bit value to the right

		104	SELECT CASE to END SELECT
	Executes the specified command block in accordance with the <expression> value

		105	SEND
	Sends readout file data to the write file

		106	SERVO
	Controls the servo status

		107	SET
	Turns the bit at the specified output port ON

		108	SETGEP
	Sets the General Ethernet Port

		109	SGI
	Assigns /acquires the value to a specified integer type static variable

		110	SGR
	Assigns /acquires the value to a specified real type static variable

		111	SHARED
	Enables sub-procedure referencing without passing on the variable

		112	SHIFT
	Sets the shift coordinates

		113	SI
	Acquires specified SI status

		114	SID
	Acquires a specified serial input's double-word information

		115	SIN
	Acquires the sine value for a specified value

		116	SIW
	Acquires a specified serial input's word information

		117	Sn
	Defines the shift coordinates in the program

		118	SO
	Outputs a specified value to serial port or acquires the output status

		119	SOD
	Outputs a specified serial output's double-word information or acquires the output status

		120	SOW
	Outputs a specified serial output's word information or acquires the output status

		121	SPEED
	Changes the program movement speed

		122	SQR
	Acquires the square root of a specified value

		123	START
	Starts a new task

		124	STR$
	Converts a numeric value to a character string

		125	SUB to END SUB
	Defines a sub-procedure

		126	SUSPEND
	Temporarily stops another task which is being executed

		127	SWI
	Switches the program being executed

		128	TAN
	Acquires the tangent value for a specified value

		129	TCOUNTER
	Timer & counter

		130	TIME$
	Acquires the current time

		131	TIMER
	Acquires the current time

		132	TO
	Outputs a specified value to the TO port or acquires the output status

		133	TOLE
	Specifies/acquires the tolerance parameter

		134	TORQUE
	Specifies/acquires the maximum torque command value

		135	TSKPGM
	Acquires the program number which is registered in a specified task number

		136	VAL
	Converts character strings to numeric values

		137	WAIT
	Waits until the conditional expression is met

		138	WAIT ARM
	Waits until the robot axis operation is completed

		139	WEIGHT
	Specifies/acquires the tip weight parameter

		140	WEND
	Ends the WHILE statement's command block

		141	WHERE
	Acquires the arm's current position (pulse coordinates)

		142	WHILE to WEND
	Repeats an operation for as long as a condition is met

		143	WHRXY
	Acquires the arm's current position in Cartesian coordinates

		144	XYTOJ
	Converts the Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

	Chapter 9	
PATH Statements
		1	Overview
		2	Features
		3	How to use
		4	Cautions when using this function

	Chapter 10	
Data file description
		1	Overview
	1.1	Data file types
	1.2	Cautions

		2	Program file
	2.1	All programs
	2.2	One program

		3	Point file
	3.1	All points
	3.2	One point

		4	Point comment file
	4.1	All point comments
	4.2	One point comment

		5	Point name file
	5.1	All point names
	5.2	One point name

		6	Parameter file
	6.1	All parameters
	6.2	One parameter

		7	Shift coordinate definition file
	7.1	All shift data
	7.2	One shift definition

		8	Hand definition file
	8.1	All hand data
	8.2	One hand definition

		9	Pallet definition file
	9.1	All pallet definitions
	9.2	One pallet definition

		10	General Ethernet port file
		11	Input/output name file
	11.1	All input/output name data
	11.2	One input/output type
	11.3	One input/output port
	11.4	One input/output bit

		12	Area check output file
	12.1	All area check output data
	12.2	One area check output definition

		13	All file
	13.1	All file

		14	Program directory file
	14.1	Entire program directory
	14.2	One program directory

		15	Parameter directory file
	15.1	Entire parameter directory

		16	Machine reference file
	16.1	Machine reference (axes: sensor method, stroke-end method)
	16.2	Machine reference (axes: mark method)

		17	System configuration information file
		18	Version information file
		19	Option board file
		20	Self check file
		21	Alarm history file
		22	Remaining memory size file
		23	Variable file
		24	Constant file
	24.1	One character string

		25	Array variable file
	25.1	 All array variables
	25.2	One array variable

		26	DI file
	26.1	All DI information
	26.2	One DI port

		27	DO file
	27.1	All DO information
	27.2	One DO port

		28	MO file
	28.1	All MO information
	28.2	One MO port

		29	LO file
	29.1	All LO information
	29.2	One LO port

		30	TO file
	30.1	All TO information
	30.2	One TO port

		31	SI file
	31.1	All SI information
	31.2	One SI port

		32	SO file
	32.1	All SO information
	32.2	One SO port

		33	SIW file
	33.1	All SIW data
	33.2	One SIW data

		34	SOW file
	34.1	All SOW
	34.2	One SOW data

		35	EOF file
	35.1	EOF data

		36	Serial port communication file
	36.1	Serial port communication file

		37	Ethernet port communication file
	37.1	Ethernet port communication file

	Chapter 11	
User program examples
		1	Basic operation
	1.1	Directly writing point data in program
	1.2	Using point numbers
	1.3	Using shift coordinates
	1.4	Palletizing
	1.4.1	Calculating point coordinates
	1.4.2	Utilizing pallet movement

	1.5	DI/DO (digital input and output) operation

		2	Application
	2.1	Pick and place between 2 points
	2.2	Palletizing
	2.3	Pick and place of stacked parts
	2.4	Parts inspection (Multi-tasking example)
	2.5	Sealing
	2.6	Connection to an external device through RS-232C (example 1)
	2.7	Connection to an external device through RS-232C (example 2)

	Chapter 12	
Online commands
		1	Online Command List
	1.1	Online command list: Operation-specific
	1.2	Online command list: In alphabetic order

		2	Operation and setting commands
	2.1	Program operations
	2.2	MANUAL mode operation
	2.3	Alarm reset
	2.4	Clearing output message buffer
	2.5	Setting input data
	2.6	Change access level
	2.7	Setting input data

		3	Reference commands
	3.1	Acquiring return-to-origin status
	3.2	Acquiring the servo status
	3.3	Acquire motor power status
	3.4	Acquiring the access level
	3.5	Acquiring the break point status
	3.6	Acquiring the mode status
	3.7	Acquiring the communication port status
	3.8	Acquiring the main program number
	3.9	Acquiring the sequence program execution status
	3.10	Acquiring the version information
	3.11	Acquiring the tasks in RUN or SUSPEND status
	3.12	Acquiring the tasks operation status
	3.13	Acquiring the task end condition
	3.14	Acquiring the shift status
	3.15	Acquiring the hand status
	3.16	Acquiring the remaining memory capacity
	3.17	Acquiring the alarm status
	3.18	Acquiring the emergency stop status
	3.19	Acquiring the manual movement speed
	3.20	Acquiring the inching movement amount
	3.21	Acquiring the last reference point number (current point number)
	3.22	Acquiring the output message
	3.23	Acquiring the input data
	3.24	Acquiring various values

		4	Operation commands
	4.1	Absolute reset
	4.2	Return-to-origin operation
	4.3	Manual movement: inching
	4.4	Manual movement: jog

		5	Data file operation commands
	5.1	Copy operations
	5.2	Erase
	5.3	Rename program
	5.4	Changing the program attribute
	5.5	Initialization process
	5.6	Data readout processing
	5.7	Data write processing

		6	Utility commands
	6.1	Setting the sequence program execution flag
	6.2	Setting the date
	6.3	Setting the time

		7	Individual execution of robot language
		8	Control codes

	Chapter 13	
Appendix
		1	Reserved word list
		2	Changes from conventional models
	1	Program name
	A) FUNCTION
	B) _SELECT
	2	Multiple Robot Control
	3	Multi-tasking
	4	Robot Language
	5	Online commands
	6	Data file

	Index
	Revision history

