ASCII Library I/F Toolkit

SYSMAC ALT
ASCII Library I/F Toolkit

Operation Manual

Produced March 1999

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to the product.

A DANGER! Indicates information that, if not heeded, is likely to result in loss of life or serious injury.

AWARNING Indicates information that, if not heeded, could possibly result in loss of life or serious
injury.

A Caution Indicates information that, if not heeded, could result in relatively serious or minor injury,
damage to the product, or faulty operation.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

[0 OMRON, 1999

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written
permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained in this publication.

Vi

TABLE OF CONTENTS

GENETAl OVEI VIBW......eeee ettt e s sree e e e e e Xi
1 ADBOUL tNESIMBNUEL ...t st e srte st e s neesaeesneeeneesneeenes Xii
2 Fa1e= a0 (=0 =T o =g Tor TR Xii
3 REFEIEINCES. ...ttt ettt ettt ettt e bt e bt e bt et e et e te et e bt et e e beenteenteeteereereens Xii
4 L1075 PR Xiii
1 USING THE LIBRARY INTERFACE INBASICcccceevuvrrrnnnee. 1
1-1 Theoperation of the Library INTEITaCe.........ooieeeeee et e e e e nee s 2
1-2 USEr MEMOIY INBASIC ...ttt e e e s e st e et e et e e s ateeeateeaaseeeseeesseeeanteeenseeenneeanseesnseeanenn 6
1-3 Library INterface BASIC StalEMENES.cciiieiiee e et ee e rtee e ee st s e e et e e nee e st e e st e e eneeeneeesneeesnseeeneen 7
2 CREATING AUSERLIBRARY ., 11
2-1 Creating alibrary FUNCHIONc.oe it tee s e e s e e st e e e teeeneeesneeennneennees 12
2-2 Application deSign CONSIAEIAIONS.eeeiuieeiie s e creeeree e see e st e st e e e ste e e ssee e s seeessseesnseeeseeenneeesneeesnseennnes 15
3 USING BIOSFUNCTIONS ..., 19
3-1 Genera description of BIOS and APl fUNCLIONS.........cc.uviiieeiiie ettt stee e rtee e s e e e e e e nnaeenneeens 20
3-2 Functions for iNterrupt NaNAIINGc.ceoiieeiie e e e e e et e et e e seeesaee e snteeeseeennaeenneeenns 21
3-3 Functionsfor exchanging datawith the PC UNIt..........c.ovoiiiiiie et 23
3-4 FUNCLIONS TOr OS E1TOr MESSAES. ... uveeiveeeiteeesteeeiteesteesiteeessesesseeessteesteessseeasseeeaseeessssesssessnsesensesessseesssesssessses 25
3-5 FUNCtions fOr MEMOrY MENAGING.......ccciteeeiieeieeeiieesiteeesteeereeesteeesseeesteesteeesseeesseeesseeessseesnseseseeesseeesseeesnsessnses 26
3-6 Functionsfor controlling SEITal POIS.........cuiiiieeiiiecee e e s e e e e st e e see e e nseeesneeesneeesneeennees 27
3-7 Functionsfor using the realtime ClOCKoiiie e e s e e e e e e snee e s e e enees 29
4 TROUBLESHOOTING.......oiiiiiiiiiiiiiiiiiieiiiisssesssessssssssssssesssssssnnnnn 31
4-1 Out of memory error message after [10a0..........ccveiie e 32
S o 1= o - U T = 1 (o SRS 32
4-3 ASCIH UNIt MAITUNCHIONS.....eiieiie ettt et et te st e te e nteesteenteenteenteenteeneesneesneennes 32
R I o 1 0= o g = SRS 32
v eI VLol (o o =Sy (o 1= A= 1 o GRS URSPRTRR 32
T RT GRS oW oo (=0 o (o 1 oo PSS 33
Appendices
Appendix A (D= S'or T o) o 1o 2N = I o 1O 35
Appendix B Reference of BIOS FOULINES.......c.ccciie et esee e se s e e stee e sate e see e ste e s te e e snaeesnnee e 37
Appendix C Examples of small appliCations.........ccccoieiiiieeiiec e 71
Appendix D HMI Of Library INterface.......ccviiee ittt 91
Appendix E Description of Linker and Map fil€S.......cooiiiiie e 99
Appendix F NS = 0] o 2SR 103
REVISION HISLONY veiiiiiiiii ittt 107

Vii

viii

A WARNING

Failure to read and understand the information provided in this manual may
result in personal injury or death, damage to the product, or product failure.
Please read each section in its entirety and be sure you understand the

information provided in the section and related sections before attempting any of
the procedures or operations given.

General overview

This section is supposed to give the reader a summary and other global information on this document; It gives an
overview of the context and contents of this manual.

1 ADOUL TNISIMANUAEL.......ooiiiriii it e et e et e e et e e e ebb e e e e e bbeeeeaabaeesesreeesensaeeeennreeeeas Xii
2 Fa1C= 0[S o I T o 1= o (o TSROSO Xii
3 R S = (= 1 =TSRSS Xii
4 L1075 SR Xiii

Xi

References General overview subsection 1

1 About this manual
This manual describes the use of the Library Interface of the ASCII unit types ASC11, ASC21 and
ASC3L1. It describes how a user library is created, and how it can be used from a Basic application.

The ASCII unit is a freely programmable unit for the mid-size PLC family C200Hx. The unit’'s main
tasks are handling serial communication and co-processing. The ASCII unit can be programmed in
Basic, however, to acquire higher performances, the ASCII unit's Basic is equipped with a library in-
terface. That library interface allows up to ten user functions -written for instance in the C language- to
be used from the application in Basic.

This manual also describes how the Application Programming Interface can be used to call firmware
routines from a library function. The hardware involving these firmware routines (read: ‘BIOS routines’)
is explained and should be understood before one can use these firmware functions.

The manual is divided into four sections;
¢ Section one explains how library functions can be loaded and called from the Basic application. It
also gives some understanding about how the user memory is affected.

< Section two describes the general way to create a user library, written in the C language. It also
gives an overview of some considerations to be taken during the design of the function.

< Section three explains the benefit of using the API for writing user library functions. It gives an over-
view of the firmware routines that are supported, and to make the functionality of the routines more
understandable, the routines are illustrated by the hard- and software involved.

« The last section is a small troubleshooting guide.

The appendices are included to give listings, examples, references and general information on creating
and using library functions.

2 Intended audience

Experienced users of the OMRON ASCII units with experience in developing embedded software. To program
the ASCII unit properly, special knowledge is required. If this knowledge lacks or if the functions in this manual
are not applied properly, the ASCII unit or even the whole PLC system might malfunction.

WARNING: Improper use of the ASCII unit’s features described in this manual can cause the PLC
system to malfunction!

3 References

When reading this manual or starting writing user library functions, the following documents might be of help:
e W130:C200H Operation Manual and W322:C200Hx-CPU-Z E Operation Manual, for:

- an explanation on memory areas.
- ladderdiagram programming
- PLC cycle and I/O-refresh.
e W306: ASCII unit Operation Manual, for:
- adetailed description of communication between ASCII and PC unit.
- description of communication with serial ports.
- Basic language reference.
¢ ANSI-C programmers guide or reference guide, for:
- datatypes, typecasting
- (function-) pointers, prototyping.
« M68000 programmers reference manual (M68000PM/AD rev. 1), for:
- Motorola-S format
- Exception vector table
e M68340 users manual (M68340UM/AD rev. 1), for:

- Register lay-out of processor-units (e.g. serial ports, timers etc.)
- Exception vector table

Xii

Glossary General overview subsection 4

4 Glossary
Acronyms:
ANSI American National Standards Institute
API Application Programming Interface
BCD Binary Coded Decimal
BIOS Basic Input/Output System
BPS Bits Per Second
COF Extension of so-called coff file, is output file from linker
CR Carriage return
CTS Clear To Send
DM Data Memory-area
DMA Direct Memory Access
DSR Data Set Ready
DTR Data Terminal Ready
FIFO First In First Out
GCC GNU C/C++ Compiler
HEX Hexadecimal
HMI Human Machine Interface
IR Internal Relay-area
ISR Interrupt service routine
JIS Japanese International Standard
LF Line feed
MAP Extension of map-file, is output file from linker
MPU Micro-Processing Unit. (micro-processor with built-in peripherals)
MTS Extension of Motorola-S format file, containing machine code
oBJ Extension of object file, is output file from compiler (also .O instead of .OBJ)
OCT Octal
PC Programmable controller; The main unit on the PLC system
pc program counter
PRM Extension of parameter file, is input file for linker
RTC Realtime clock
RTS Request To Send
SRAM Static Read-Only-Memory
WDT Watchdog Timer

Xiii

Glossary

General overview subsection 4

Explanation of terms:

Baud
Binary Coded Decimal

Cross-compiler
Hexadecimal

Interface
Interrupt

Interrupt Service
Routine

I/O-refresh cycle
Octal

Pointer
Prototyping
Register

Run-time
Stack

Number of bits per second, only used for serial communication.

A coding technique, where a binary number of four bits represents a decimal
number from 0..9 .

A tool to convert a program to object code for an other machine.

A coding technique, where a number from 0..9,A..F represents a decimal
number from 0 .. 15 .

Takes care of interaction between two different devices or units

A request from a device to the processor, to stop the current task, and start an
ISR. Normally, an interrupt is generated when immediate data processing is
required.

This routine is executed when the corresponding interrupt occurred. It is usually
optimised for speed. Also called interrupt handler.

At the end of each program cycle, the PC unit updates communication with all
other units during the I/O-refresh cycle.

A coding technique, where a binary number of three bits represents a decimal
number from 0..7 .

A variable containing a vector to the actual variable plus the type of the variable
A programming technique, telling the compiler what functions the file contains.

A group of bits (usually 8,16 or 32) inside the processor, used to store and
manipulate data.

During execution of a program.

A part of memory that is used to temporarily store data. This data can be either
passed arguments during function calls, local variables or status info during
function/ISR calls.

The stack grows downwards by pushing something onto the stack. Data can be
retrieved by popping data from the stack. The M68K uses the A7 register to point
to the last pushed word on the stack.

Xiv

1 UsingthelLibrary Interfacein BASIC

This section gives general information about library functions from a user’s perspective:

= Loading a library function into user memory and the effect on memory,
= How to call a library function from a Basic prompt/application.

= What happens when a library function is called

= The way memory is built up.

1-1 Theoperation of the Library INTEIfaCe.........oo e e e e sre e e s 2
1-1-1HOWO USE @ liBrary fUNCHION.......cceie et et e e ae e e s e e et e e enneeeneeenneeennnes 2
1-1-2Example of using @ Library fUNCLION.ooiie e e e e e e e e e e eeenns 4

1-2 USer MEMOIY INBASIC ...t e e s e e e et e et e e s st e e sateeaasee e seeesneeeanteeenseeeneeeanseesnseeannenn 6
Y/ 1= o VA o] o Tox 2 6
1-2-2Block headers and the MAP SEALEIMENE.......oo.iiiiieiieie e s s st st eseeesneesneeenes 6

1-3 Library INterface BASIC StalEMENES.ccoiiiieeee ettt e ee e ee st e st e st e e aa e e st e e snteeeseeennaeesneeesneeeenneen 7

The operation of the Library Interface Section 1-1

1-1 The operation of the Library Interface

This section explains how a library function is loaded into user memory, how the corresponding Basic user
function is defined and how the function is called from the Basic program. Section 1-1-1 explains these three
steps in detail, and section 1-1-2 shows an example of using a simple library function according to the same
three steps.

All Basic statements in the example of section 1-1-2 are explained in section 1-3. All that is needed for the
example is a cross-compiled library function and an ASCII unit (test-)setup as shown here:

Microsoft*
Windows'95

RS232

ASCII unit

Terminal emulator
software

1-1-1 How to use alibrary function

1. Load the library function

Loading a library function is done with the LIB LOAD statement. The library function to be loaded can be
of two types:

+ compiled for a fixed address,

+ compiled for a free address.

If the library function is compiled to be stored at a fixed address, this address should be passed to the LIB
LOAD statement. Else, the ASCII unit will allocate a proper memory block for the library function itself. For
more information on fixed or free addresses for library functions, see section 2-2-2.

If a library function is to be loaded at a fixed address, but some Basic variables reside somewhere in that
part of memory, LIB LOADiIng will result in an ‘out of memory’ error. The CLEAR command can be used to
remove these temporary memory blocks, assuming that Basic is operating in dynamic mode.

2. Define a Basic user function for the library function

Defining a Basic user function for the library function is done with the DEF LIBFN statement.

This statement tells Basic the type of the parameters and the return value. This statement is in a way
similar to the normal DEF FN statement, the only difference is that in this case the functionality is
described in the library function, instead of in a Basic function. Also, the programmer must specify the
number of the library function to which this user function is referring.

It is possible with the DEF LIBFN statement to determine output and throughput parameters as well. This
is done by means of the VARPTR function. This function returns the address of a variable, so that the
library function can access the parameters by reference, allowing parameter values to be altered.

Two other options are included, STACK and WDT. If the option STACK is specified, the library interface
will display the contents of passed parameters on the stack before and after calling the library function.
This allows debugging of parameter passing. By specifying the WDT option, the programmer can specify
whether or not Basic should refresh the watchdog timer. The watchdog timer is a counter, counting
downwards and reaching zero 60ms after it was reset (refreshed). If it is not constantly refreshed in time,
the PC unit assumes that the ASCII unit has crashed and stops operating due to a so-called ‘special unit
error’. Normally, the WDT should be refreshed by from within the library function. Only when the ASCII
unit causes a special unit error on the PLC, the WDT option can be used to determine whether or not the
library function has refreshed the WDT in time. The WDT option should not be used in hormal situations,
because the functionality of the WDT is to track if units have crashed. By specifying the WDT option, the
PLC system cannot detect if the library function crashes.

The operation of the Library Interface Section 1-1

3. Calling the function

Calling the user function is done like any other Basic function, except the name is to be preceded by ‘fn’
when calling the function. For instance, if a library function is declared with the DEF LIBFN statement, and
the name given to the function is ‘example’, then the function can be called by the name of ‘fnexample’.
This is similar to user-defined Basic functions. Note that when a program is started (by e.g. the RUN
statement) all user defined functions are cleared. This means that if a library function is to be called from a
Basic program, it must be defined in this program, prior to the function call.

When a library function is called, the library interface will read the input parameters onto the system-stack,
and call the function. When the function is completed, the return value is read from the appropriate
register, and the output parameters are read from the stack. The library will then write these output values
into the proper variables. This procedure is explained in more detail in Appendix D.

WARNING: The function header of the Basic function must correspond to the header in the source code
of the library function. If this is not the case, calling the library function will probably cause the ASCII unit

to crash.
BASIC L 2 LIBRARY FUNCTION
(library function is loaded as nr. 3) - - Library function: nr. 3, takes care of WDT
def libfn testfun(INT,LNG),INT,3 - - Inputs: short integer, long integer
print fntestfun(99,99999) - - Returns: short integer

This illustration gives an example of corresponding declarations in Basic and in the Library function.

The operation of the Library Interface Section 1-1

1-1-2 Example of using a Library function

This section gives a complete example of using a library function from the Basic prompt. The statements used
here to load, define and call the library function can also be executed from a Basic program. This example
shows how a library function can be used from Basic on an initialised ASCII unit. The example library function
‘example’ returns the value of the input, and increases the input parameter by one. It is assumed that this
library function is already compiled to be downloaded at fixed address &H30000. How to compile the source of
a library function to the Motorola-S format is described in section 2.

1 Look at memory map [optional]

(map \

khkkkkhkhkkkhkhkhkkkhkhkkkhkhkxk*k IVAP HEAP AREA khkkkkhkhkkkhkhkhkkkhhkkkkxx

Addr ess Unit Size Byt es Type Li nk
(Hex) (Hex) (Deci mal)

E000 A 40 file 0
E028 C7F5 204756 free E028

*kkkkkkkk*x ds nrmtabl e TABLE kkhkkkhkhkkhkhkkhkkkk*kx
Free chai n address(Hex): E028

>> END
Total free bl ocks: 1
Total allocated blocks: 1
>> END

_ -
At start-up, there is one free memory block of approximately 200 Kbytes long and one small block of 40
bytes, used to store global data. For more information about this small block, see section 3-5.

2 Look at library entry list [optional]

/Iib \

Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned

© oo ~NO UL~ WNPE OV
E666666666

/v

No libraries have been loaded yet.

3 Load the library function

> LI B LOAD #1," COMU: 9600, 8, n, 2, CS_OFF, RS_OFF, DS_OFF, XN_ON"; " exanpl e", &430000
Li brary down-|oad checksum = 3AEC
>

This example will load a library and gives it the name ‘example’. Once this statement is input, the ASCII
unit will wait until the library is sent. When the transmission is complete, the ASCII unit will wait again, until
the user presses CTRL-C. Once it is pressed, the checksum is returned and the prompt will appear again.

The operation of the Library Interface

Section 1-1

4 Look at memory map again[optional]

/% mp

khkkkkhkhkkkhkhkhkkkhkhkkkhkk*k IVAP HEAP AREA khkkkkhkhkkkhkhkhkkkhhkkkkxx

Addr ess Unit Size Byt es Type Li nk

(Hex) (Hex) (Deci mal)

E000 A 40 file 0
E028 A6 664 file 0
E2Q0 874F 138556 free 30320
2FFFC 9 804 file 0
30320 3F37 64732 free E2C0

*kkhkkkkkkk*x ds nrmtabl e TABLE kkhkkkhkhkkhkhkkhkkkh*k*kx
Free chai n address(Hex): 30320

>> END
Total free bl ocks: 2
Total allocated bl ocks: 3
>> END

N

\

/

Though the library function was stored at &H30000, the memory map shows the address &H2FFFC. At this
address the header of the concerning memory block starts. Storing the library function at the fixed address
caused the free memory block of 200 Kbytes to split up into two smaller blocks. When the first library
function is loaded, a block of 664 bytes is created that contains the Basic Library Function entry Table.

5 Look at library entry list again[optional]

2

exampl e 800 bytes
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned
Li brary defi ned

Li brary defi ned

©CoOoO~NOOOUA~WNEOYV
E66666666

/v

28.07.98 16:49:52

\

Since this is the first library loaded, it is automatically loaded as library 0.

6 Define and call the user function

-

> DEF LI BFN xyz(ADDR), | NT, 0
>

> a%100

> b%f nxyz(VARPTR(a%)

> print a% b%

101 100

"

/

Here, the user function was given the name ‘xyz’ to point out that this name is not related to the filename

nor to the library function name, but only to the library function number (zero in this example).

User memory in BASIC Section 1-2

1-2 User memory in BASIC

1-2-1 Memory blocks

The table below shows that the ASCII unit's RAM is 256 Kbytes big. Of this memory 56 Kbytes are used by
the system, and the other 200 Kbytes is user memory. In this part of memory all data resides; all programs,
library functions and variables are stored here, each in their own memory block.

There are two types of memory blocks, permanent memory blocks and non-permanent memory blocks. Basic
programs and library functions are stored in permanent memory blocks. When the ASCII unit is turned off and
on again, these blocks remain intact and accessible. This is not the case with variables, since they are stored
in non-permanent memory blocks.

When the power is removed from the ASCII unit, the battery will backup the power to the memory, so all data
remains intact. However at start-up, the memory manager deletes all nhon-permanent memory blocks.
Basically, there is no difference between these two block types, the only difference is one bit telling the
memory manager of the ASCII unit what the block type is.

To prevent permanent loss of the user memory’s contents, the ROMSAVE statement can be used. It is
described in the ASCII unit operation manual. Executing a ROMSAVE statement saves all Basic programs
and all Library functions. The Basic programs and Library functions can be restored by means of the
ROMLOAD statement.

FFFFFF
Other
041000
040FFF
MPU (4kb)

040000
O3FFFF

Basic SRAM (200kb)
00EO0O
OODFFF

System SRAM (56kb)
000000

‘Memory map’

1-2-2 Block headers and the MAP statement

The management of all these memory blocks is maintained by the ASCII unit's memory manager. Each free
memory block has a block-header of six bytes, containing the size of that block, and a pointer to the next free
block. The last free block points to the first free block, this way all free blocks are chained in a linked-list.
Consequently, all parts of memory that are not in this linked list are in use.

Each time the size of a Basic program is increased, a library function is loaded or a variable is created in
Basic, a part of free memory is allocated. This means that a part of a free block is allocated and removed from
the linked-list.

It is possible to take a look at the memory map with the MAP statement (see section 1-3). It shows all memory
blocks, including the start and the size of the blocks. The start of an allocated block indicated by the MAP-
statement points to the header of the block, not to the data in the block. The header of an allocated block is
two bytes long, containing information on the size.

If this block contains a Basic variable, the address retrieved from the MAP statement, increased by two gives
the address of the data. Poking to this address can change the value of the variable quickly, however, a Basic
programmer should never poke. WARNING: Poking might corrupt the linked list causing the PLC-setup to
crash! For more information about the memory manager, see section 3-5 .

Library Interface BASI C statements Section 1-3

1-3 Library Interface BASIC statements

In this paragraph the library interface statements are explained. For an example in which all these
statements are used, see section 1-1-2. The functions are also used in Basic listings in Appendix C.

def libfn

Description

Syntax

Parameters

Remarks

Declares a library function that was previously uploaded to the
ASCII unit.

DEF LIBFN <function_name> ([par_typel, ... par_type n]),
<return_type>,
<library expression> [[WDT] [, STACK]

Function_name is the user defined name, used to call from the
BASIC application.

Par_typel ... par_type n, determine the datatypes of the
parameters sent to the function. Valid types are int, Ing, sng, dbl, str
and addr. WARNING: If the parameters do not correspond with the
parameters of the function source file in the correct order, the ASCII
unit might crash when the function is called.

When the function is to be called, parameters of datatype addr can
be passed by means of the VARPTR() function (passing by
reference).

Return_type determines the datatype of the return value. Valid
types are int, Ing, sng and dbl.

Library expression specifies the number of the library function, it is a
numeric value in the range from0t0 9.

If the WDT option is specified, the system will perform the watch-
dog refreshes, else it is assumed that the watch-dog timer refreshes
are performed from the library function as explained in section 2-2-
4.

If the STACK option is specified, the library interface will display the
contents of the stack before and after calling the library function.

When a parameter is an output- or throughput parameter, the
datatype should be specified as type addr.

Note that a user defined function doesn’t necessarily need a
parameter, but it ALWAYS must return a value.

For more information on WDT refreshes, see section 2-2.

Library Interface BASI C statements Section 1-3

Lib

Description Gives a list of all the library entries for library functions.

Syntax LIB

Parameters -

Remarks If a library entry has no corresponding library loaded then “no library
defined” is displayed

lib del

Description Deletes one, or all library functions from the library.

Syntax LIB DEL <lib expression | ALL>

Parameters Lib expression is a numerical expression with a value in the range
from 0 to 9. It indicates the library function to be deleted.
If ALL is specified, all library functions are deleted.

Remarks Sometimes when a library function with a fixed address is to be
loaded, the memory must be freed up by LIB DEL ALL and the
CLEAR statement. Checking whether the concerning part of
memory is free, can be done with the MAP statement.
Consequently, to replace a library function with another, the existing
library function must be deleted first.

Library Interface BASI C statements Section 1-3

lib load

Description

Syntax

Parameters

Remarks

Uploads a library function (filename.mts) into user memory. Once
the transfer has completed, the ASCII unit waits for the user to
press CTRL-C.

LIB LOAD #<port expression> [,<com_string expression>]
[;<lib_name>] [,<library address>]

Port expression is the number of the port connected to the terminal.
Valid values are 1 and 2, and if the unit is a ASC31 also port 3 can
be specified.

Com_string expression is the communication definition string; if
omitted, the current active communication settings are used.
Lib_name is the name the user gives to the library function. If the
name is omitted, the name “lib#n” is given to it.

Library_address is the address where the user desires the library to
be stored in memory. If that part of memory is (partially) in use, an
“OUT OF MEMORY” error will occur. If this parameter is omitted,
the memory manager of the ASCII unit will attempt to find a suitable
place in memory.

It is recommended to use the software flowcontrol option, XON, in
the com_string expression when using the LIB LOAD statement.
The library name lib_name doesn't need to be the same as the
name used in the source of the library function, nor as the name
used in the DEF LIBFN statement.

For more information on the communication definition string, see the
LOAD statement, in the ASCII operation manual.

Library Interface BASI C statements Section 1-3

10

map

Description Shows the memory-map. From the listing of the memory-map, the
location and size of a memory block can be retrieved.

Syntax MAP

Parameters -

Remarks The starting address of a memory block points to the header of the

block, not to the data in the block.

2 Creating auser library

This section describes the general way to create a user library in the C language. It also gives an overview of
some considerations to be taken during the design of the function. All items mentioned in this section are
illustrated by the small application examples in Appendix C.

2-1 Creating alibrary FUNCHIONcuee it e e e e e e s e e s e e e e eeeeneeenneeesnneennees 12
2-2 Application deSign CONSIAEIALIONS.eeiiuieiiee e e s eree et e e see e st e e st e e te e e sneeesneeessaeesnseeeseeeneeesseeesnneennees 15
2-2-10rder of arguments passed frOM BASIC.ooii e et e e e e rr e e s e e saeeenee s 15
2-2-2FiXE0 OF frEB AOUINESS. ..ottt ettt et e et e bt e be e s bt e beenbe e beenbeenbeenbeenbeenseensean 15
e Y BT 1= W (= =g Tor =SSOSR 16
et VAV = ot g e 0T I 11 0= SR 17
2-2-5Use Of glODAI/SEALIC HALAL .. .ecveeeeieeieeeie e et e et e et e e st e e et e e e ae e e nee e a e e e enreeenee s 17
2-2-BProgramMIMINgG FUIES.eeiiieeieeecee et s et e e e e e st e e st e et e e saeeessseeesteeasaeeeseeesneeeanseesnseeeseeesnseennsenannenn 18

11

Creating a library function Section 2-1

2-1 Creating alibrary function

When a library is to be loaded, it must consist of machine code for the M68K processor coded in the Motorola-
S format. Therefore, this section describes the route from source to machine code. The source can be written
in any language, as long as cross-compiler and linker can convert it to the right code. For detailed examples
on creating library functions, see the C-source listings in Appendix C.

In this manual, it is assumed that the source is written in ANSI standard C language. Furthermore, the cross-
compiler and linker used to write this manual is the “GNU C-language Cross Compiler for Motorola 68K”. It is
likely that most details are different on other cross-development systems.

The general route to create a library function consists of six steps as shown schematically:

Write the source

v

Compile the source to object code

v

Determine fixed or free address

v

Write a linker parameter file

v

Link object code

v

'‘Burn’ to Motorola-S

1. Write the source.
Writing the code is language dependent, and also different from programming applications on a
DOS/WINDOWS machine, since the library function will become a part of embedded software. Some
guidelines for designing the software are included in section 2-2.

2. Compile the source to object code.
To compile, the source file and all other include files are input to the compiler. The compiler generates an
object code file (.O).

3. Determine fixed or free address. This is actually a part of the application design, but it is included in this
list to point out that it is an essential part of linking. It does not only effect the linking but also the restric-
tions for writing the source file. More details on free or fixed address can be found in section 2-2.

4. Write alinker parameter file.

This file contains the linker options for the source file. For every library function, the programmer should

write a parameter file. The parameter file (.LD) informs the linker about the concerning memory layout,

and some specific options about compiling conventions.

Furthermore, this file contains a MEMORY block with an ORIGIN option that tells the linker where the

programmer wants his functions and variables to be stored in memory. The memory origin depends on

the way the library function is loaded into the ASCII unit, with a free address or a fixed address:

= Free address: To load the library function with a free address, the LIB LOAD statement should not

contain a target address; LIB LOAD will allocate a free memory block to store the function in. The
address in the ORIGIN option should be set to &H00000 to load the function at the beginning of the
allocated block.

= Fixed address: To load the library function with a fixed address, the LIB LOAD statement should
contain a target address, specifying where to place the library function. This address must be equal to
the lowest address in the ORIGIN option.

See Appendix E for more information on the linker parameter file.

12

Creating a library function Section 2-1

5. Link object code.
To link, the parameter file and object code files of the source are input to the linker. The parameter file will
tell the linker how the files are to be linked. Also see Appendix E for more information on this topic.
The linker generates two files, the coff file and the map file.

= coff file: The coff file (.COF) contains the linked machine code, coded together with some debug code
and references to the source file.

= map file: The map file ((MAP) contains the linking results and code statistics and placement as well.
From the map file, the absolute addresses of the functions and variables can be retrieved.

6. ‘Burn’ to Motorola-S.
This step encodes the coff file to Motorola-S format. The output file, an MTS file, is the input file for LIB
LOADiINg the library function to the ASCII unit.

Steps 2, 5 and 6 can be automated by using a makefile. The advantage is that commands for these steps do
not have to be retyped each time and that the make utility automatically detects which files have to be rebuilt.
It detects this by checking if changes have been made to files that the file to be built depends on. See
Appendix C for examples of makefiles.

The library module creation process could look like this:

1. Create a small C file example.c:

C. \ exanpl e>edit exanpl e.cO

with the following contents:

/* A small exanple program*/
I ong mai n(short arg2, short argl)

if (arg2!=0)
return (long)argl/(long)arg2; /* argl / arg2 */
}

el se

{

}
}

2. Compile the source file (example.c) to an object file (example.o)

return O;

C: \ exanpl e>conpi | e exanpl e. cO
exanple.c: In function ‘main’:
exanple.c:2: warning: return type of ‘main’ is not ‘int’

Before compiling, make sure that the path of the compiler is set correctly.
The compiler generates a warning because main returns a long instead of an int. This can safely be
ignored.

13

Creating a library function Section 2-1

3. Use the MAP command on the ASCII unit to check which addresses are unused

> maplU
khkhkhkhkhkhkhkhkhkhhkhkhkhkkkk '\/AP HEAP AREA khkhkhkhkhkhkhkhkhkhhkhkhkhkkk
Addr ess Unit Size Byt es Type Li nk
(Hex) (Hex) (Deci mal)
E000 A 40 file 0
E028 C7F5 204756 free E028

K*kkkkkkkk ds rrm tabl e TABLE *khkhkhkhkkkkkkkk
Free chai n address(Hex): E028

>> END
Total free bl ocks: 1
Total allocated blocks: 1
>> END

This example shows that there is a free memory block that starts at address &HE028. The size of this
block is 204756 bytes. In this example, the lowest possible start address of the library function is
&HEQ02C, because the memory manager uses up to four bytes when a block is allocated.

4. The default linker parameter file 'ascii.ld’ is configured for address &H30000. This is within the free
memory block. Therefore, the default linker parameter file can be used.

5. Link the object file (example.o) to a coff file (example.cof)
A map file (example.map) is generated. This file shows the memory layout of the coff file.

C:\exanpl e>link -0 exanple.cof exanple.o -Tascii.ld -W, - Map=exanpl e. mapO

6. Convert the coff file (example.cof) to a Motorola-S record file (example.mts)

C:. \ exanpl e>obj copy -O srec exanpl e. cof exanple.ntsO

To use the created library module, follow these steps:
1. Load the library module into the ASCII unit:

> LI B LOAD #3, "COWMJ: 9600, 8, N, 2, CS_OFF, RS_OFF, DS_OFF, XN_ON'; " EXAMPLE", &H300000

Now transfer the file 'example.mts’ to the ASCII unit. Press Ctrl-C when loading is finished.

2. Create a BASIC program to define the library function and to perform a call to it:

> 10 DEF LI BFN EXAMPLE(| NT, | NT), LNG, 00

> 20 PRI NT FNEXAMPLE(912,5) O

> RUNO

Pl ease wait, conpiling ... Finished
182

Note that the order of arguments in the BASIC function call is the opposite of the order of the arguments
in the C function.

14

Application design considerations Section 2-2

2-2 Application design considerations

Because the library function will become a part of cross-compiled embedded software, it differs from ‘regular’
programming on a DOS/WINDOWS platform, because:

= Debugging is not possible on the platform itself. For debugging, an M68K emulator is required.

= The Library Interface acts like a shell around the actual library function, so that the programmer must be
aware of its functionality.

The rest of this section contains several points that should be kept in mind when designing an application.

2-2-1 Order of arguments passed from BASIC.

For GCC, the arguments for the primary function are received in the opposite direction as they are passed
from BASIC. Care should be taken to make sure that the order of the arguments in the primary library
routine is reversed. If a BASIC program calls a library function like 'FUNC(arg1, arg2)', the function should
be declared as 'FUNC(arg2, argl)' in C. Unexpected behaviour may be seen when arguments are treated
in the wrong direction.

2-2-2 Fixed or free address.

The application programmer can divide up memory the way he desires by specifying the target address
(fixed address) when executing the LIB LOAD statement. If the target address is omitted, a free address is
used. Compiling the library function with a free address has three disadvantages:

= Global data or constants cannot be used,

= Calls to other functions (absolute jumps) are not allowed, (note that GCC uses subroutines to convert
float and integer types!) It is possible to check the use of absolute jumps by looking for the keyword ‘jsr’
in the assembly file.

= The primary function can not be main.

Most of the time, the disadvantages of using a free address outweigh the advantages. If there is no
special need for using a free address, then don't. It is also possible to store a library function compiled for
a fixed address, as if it where loaded with a free address. This is done by loading the compiled function
with LIB LOAD without specifying a target address. The ASCII unit will determine and display a proper
address to store the library function. Instead of transferring the Motorola-S file of the function, the pro-
grammer can abort LIB LOAD and re-compile the library function at the fixed address that LIB LOAD
displayed to be an appropriate location. This way the ASCII unit divides up the memory, without the
programmer experiencing the disadvantages of compiling with a free address.

Normally a function in machine code should begin at an address that is a multiple of two to enable a
‘Jump To Subroutine’ to it. Still any address in free RAM can be specified for the fixed address. When the
library function is loaded at the fixed address, a block is allocated that is larger than the library function
itself since it is to be preceded by a header. The header of the block must start at an address that is a
multiple of four, because the memory manager can only allocate blocks with a size that is a multiple of
four. For instance, in the example in section 1-1-2 a library function is loaded at fixed address &H30000. A
two byte header should precede the library function, so the starting address would be &H2FFFE. Since
this is not a multiple of four, the starting address becomes &H2FFFC.

15

Application design considerations Section 2-2

2-2-3 Data differences.

The data types in Basic and C are not completely similar. For instance, in the C language any standard
variable can be signed or unsigned; This is not the case in Basic. In Basic the data type string is allowed,
in C, however, strings are realised by charpointers or arrays of chars. Such a ‘string’ can be manipulated
by means of functions from the standard library string.h .

When passing parameters between the Basic application and the library function, the programmer must
be aware of differences like these.

The following table gives an overview of the standard data types in C and in Basic.

Description of data type Type identifier in Basic Type identifier in C

single character - char

String STR, symbol $ char*, charf]
short integer INT , symbol % (short) int
long integer LNG , symbol & long int
single precision real SNG , symbol ! float
double precision real DBL , symbol # double
Enumeration - enum

There are some special cases in C that must be taken into account:

16

String. The string data type in C is not the same as in Basic. A string in the C language is actually an
array of char’s, that's why most compilers consider the data type char[] as char* . The last element of
the array contains a zero; this is a so-called null-terminated string.

A Basic string, however, is preceded by a header containing the length of the string. This knowledge
was used in the example ‘CHANGE CASE’ in Appendix C where a string was input to the library
function, without specifying the length. See also Appendix D in the ASCII unit operation manual for the
format of Basic string variables.

Enum. Basic doesn’t support the enumerated data type. Most C compilers treat enumerated data as
integers or have an option to do so. This makes it possible to pass the concerning data to the Basic
application. In fact this is type casting from enum to int.

Void. The C language supports the void data type which is actually no type at all. It is mostly used to
tell the compiler either that:

+ A pointer is not pointing to anything in particular.

+ A function is not returning a value, or no parameters are passed to the function
A library function must always return a value, but doesn’t necessarily need an input parameter. In
other words, the void specifier can be used to specify that the library function has no parameters, but
it can not be used to specify the data type of the return value.

Boolean values. A ‘FALSE’ expression like (1==0) is equal to zero in the C language, like the
expression (0=1) is equal to zero in Basic as well. The value of a ‘TRUE’ expression however, is not
standardised. In the ASCII unit's Basic, a ‘TRUE’ expression like (1=1) always returns ‘-1'. In the C
language however, an expression like (1==1) is can be equal to any value, depending on the compiler
being used. These differences are not necessarily a problem, but must be taken into account when
passing expressions from or to a library function.

Application design considerations Section 2-2

2-2-4 Watchdog timer.

The ASCII unit has a watchdog-timer. In fact it is just a counter, counting downwards and becomes zero,
60ms after the timer was reset. When the timer becomes zero, a special unit error is generated. In other
words, the units must perform a watchdog-timer refresh that resets the watchdog timer at least once every
60ms.

When executing the LIB LOAD statement, the user can specify whether the Library Interface should
refresh the watchdog timer, or not. If the programmer decides to take care of the watchdog himself, the
design of the application should take into account that the watchdog should be refreshed every 10
milliseconds. Though 60ms normally would suffice, it is advised to refresh the watchdog timer every 10ms
because interrupts could postpone the refresh of the watchdog timer too much. This means that the
watchdog must be refreshed at several locations in the source, especially in a loop.

Refreshing the watchdog timer can be done in two ways:

1. By means of the inline assembly statement TRAP #00. Using the GNU cross-compiler, this is
implemented as: ASM (“TRAP #00"); See also Appendix F.

2. Use the macro from API.H. Using the macro _wadt_refresh will refresh the watch-dog timer as well.

These methods differ since the macro will work with any compiler, but the TRAP-routine can’'t be used
with compilers that don't support inline assembly. Another difference is that the macro only refreshes the
watch-dog timer. The TRAP-routine, however, consumes more time because it also performs other
checks for system integrity.

2-2-5 Use of global/static data.

Normally, the use of global data is avoided as much as possible. However, global data in a library function
can be very useful. Library functions are stored in permanent memory blocks, so any global or static data
will remain intact even when the power is cut off from the ASCII unit. It could even be possible to create
an extra library function only containing global data (so it's a dummy function).

Using global data in a library function, from Basic or an other library function is done by passing the
address of the data. Using globals in the source of the library function is only possible when the function is
to be compiled at a fixed address, because globals are compiled to be stored at an absolute address.

Normally, global variables can be initialised to a certain value by adding an assignment to the declaration
of the global variable. This principle can not be used in a library function!

Actually, an initialised global variable has the correct value the first time a library is loaded. Once the
variable has been modified, it is not initialised again. Even cutting off the power from the ASCII unit does
not re-initialise the variable. If a global variable is to be initialised, then this initialisation should be
performed by a normal assignment in an initialisation routine or by deleting and re-loading the library
again.

17

Application design considerations Section 2-2

2-2-6 Programming rules.
There are four rules to keep in mind when writing the source of a library function:

18

1)

2)

3)

4)

If the library is to be compiled with a free address, the primary function can not have the name 'main’.
In this a case a dummy main must be written as well. The primary function must be the first object in
the object code. Therefore, the primary function must be at the start of the source file. The linker
parameter file must be changed to make sure that the file containing the primary function is loaded
first by adding a STARTUP(flename) command. The ‘PRINT STRING’ example in Appendix C makes
use of this principle.

If the library is to be compiled with a fixed address, the primary function should normally have the
name 'main’. Sometimes it is desired to give the primary function a name that reflects it's functionality.
This is allowed. In this case rule number one should be obeyed.

If the library function is to be compiled at a fixed address, it is possible to use more functions in the
source. If it is compiled at a free address, using (calling) more functions is not possible. It is wise to
declare a prototype or an allusion for every function in the source file(s).

For GCC, the arguments for the primary function are received in the opposite direction as they are
passed from Basic.

3 Using BIOS functions

This section explains the benefit of using the API for writing user library functions. It gives an overview of the
firmware routines that are supported, and to make the functionality of the routines more understandable, the
routines are illustrated by the hard- and software involved. In Appendix B, a reference of the routines is
included.

3-1 Genera description of BIOS and APl fUNCLIONS..........cuuiiiieeiiie et ee s tee e e e sae e snaeennne e 20
3-2 Functions for iNterrupt NaNAIINGceeiieeeeeee e e e e e e st e et e eseeesaaeessseeenneeenneenneeenns 21
3-3 Functionsfor exchanging datawith the PC UNIt.........cc.oiiiiiiiic e e see e s s nnee e 23
B e = 0 - USSP 23
3-3-2UMMAry Of OW-IEVEl FOULINEScoeieeie et e e et st e et eeae e e naeeesseeesneeeenneeannne s 23
3-3-33ummary of Nigh-1EVEl FOULINES...........ooiieicie e e e et e et e e saa e e s e e s e e e eaeeenee s 24
34 FUNCLONS TOr OS 1T 0N MESSAGES. ...eeuvveeteeerreeiteeastesarseeessteesseesseeasseeassseessseesssesassesassesessesesssessssessnsessnsesesssessns 25
3-5 FUNCtioNS fOr MEMOIY MANAGINGveeeiureeireeiteeerteeerteeesteesaeesteeesseeasseeesseeessseeasesasesessesessseesssessnsesensesenseenns 26
3-6 Functions for CoNtrolling SErial POMTS........ueiueeiiie e erie s se e e e ee s e re e st e e rte e e seeesaeeesnseeeneeenneeenneeenns 27
B R o a NS O LI U1 T = - oo £ R 27
B-6-2L0WHIEVEL FOULINES ...ttt b e b e b e b e s b e sse e s aeesneesneesmeesneesneesneesnneenes 27
K] o [Te A L= Y= I 0 TH] ST 28
3-7 Functionsfor using the realtime ClOCKoiiii it e e e e e e snee e s nreeenees 29
oy N €= = 1o =S v T oL o) SR 29
3-7-2Description of data inSide realtime ClOCK.........c.uviiieeiie e e e et e e nee s 29

19

General description of BIOS and API functions Section 3-1

3-1 General description of BIOS and API functions

The ASCII unit contains several hardware aspects: serial ports, communication with the PLC, timers and DMA
controllers. These hardware units must all be controlled or supervised by embedded software in the ASCI|I
unit's ROM. This embedded software exists as a set of functions that perform Basic input/output tasks,
therefore these firmware functions are called BIOS routines.

Some of the firmware routines are low-level BIOS routines, directly effecting the hardware. Others are high-
level BIOS routines that are wrapping their low-level versions or make use of the low-level BIOS routines.
Since most BIOS routines directly effect the hardware, it is important to understand the concerning hardware
before using a function. The hardware and the concerning BIOS routines can be divided in six categories
named after the software units they reside in: Interrupt handler, 1/O bus handler, main executive, memory
manager, port handler and the realtime clock.

See sections 3-2 to 3-7 for more details.

The BIOS routines are normally called by the system software, but can be called by the programmer of a
library function as well. The BIOS routines are written in an Application Programming Interface (API). This
toolkit makes it easier for the programmer to use BIOS routines.

To use the functions defined in the API, only including “api.h” is needed. Once the API is included, the
firmware functions and the data types described in this manual can be used. Since this API is optimised for
the compiler used (GCC), one should not copy pieces of the API into the source which makes the source
compiler-dependent.

See the listing of user available data of the API in Appendix A for more information.

Software: ASCII UNIT
- |

Library Library . TERMINAL

Function Interface Basic
---------- Program

Basic [«>»
A Interpreter <
Y
I
BIOS | FIRMWARE

[}

Hardware: com. ports, timers, realtime clock, bus com.

In this illustration, a link can be seen between the Library Function and the BIOS routines which is established
by including “api.h” in the source of the library function. This link makes it possible for the user to directly use
the hardware and fully exploit the possibilities of the ASCII unit. WARNING: Improper use of the API or
improper use of the BIOS routines may cause the ASCII unit to malfunction!

20

Functionsfor interrupt handling Section 3-2

3-2 Functions for interrupt handling

In the Application Programming Interface, three routines are included that are used when writing an interrupt
service routine. These routines are:

= Register interrupt. To register an interrupt service routine in the exception vector table.

= Mask Basic interrupt. To mask one or all Basic interrupts.

= Unmask Basic interrupt. To unmask one or all Basic interrupts.

WARNING: Working with interrupts requires specific knowledge of both the MPU of the ASCII unit and the
principles behind interrupt servicing. Make sure that both these matters are understood before developing
your own interrupt service routine.

When an interrupt service routine is created, it should be optimised for speed; An interrupt service routine
should be completed as fast as possible. To install a routine to be an interrupt service routine, find the
corresponding (free) vector in the vector table and appoint the address of the routine to that vector, using the
_register_int() routine. The following table shows some of the exceptions supported by the M68K.

No. | Offset | Description
0 000 | Not used
1 004 | Not used
2 008 Bus error
3 00C | Address error
4 010 lllegal instruction
5 014 | Divide by zero
6 018 | CHK instruction
7 01C | TRAPV instruction
8 020 | Privilege violation
9 024 | Trace
32 080 | Trap #00 vector (WDT refresh)
33

084 | Trap #01 vector not in use

42 0A8 | Trap #10 vector not in use
43 OAC | Trap #11 vector in use

44 0BO | Trap #12 vector in use

45 0B4 | Trap #13 vector in use

46 0B8 | Trap #14 vector not used
47 0BC | Trap #15 vector not used
65 104 | Timerl interrupt

67 10C | Timer2 interrupt

The base address of the vector table is &H00000, therefore the offset address of a vector as shown in the
table is identical to the real address of this vector. For instance, the address of vector 65 (0x41) can be
calculated as follows: 0x41 x 4 = &H00104.

21

Functionsfor interrupt handling Section 3-2

In some interrupt service routines it is needed to mask a certain Basic interrupt. When _mask_basic_int() is
called it will return the previous mask level. This value must be stored in a local variable, so it can be passed
to _unmask_basic_int() in order to restore the old mask level before function scope is left. The following table
shows the mask numbers and the corresponding Basic interrupts (order is also order of priority).

1 oncoml
2 on com 2

3 onkey 0
12 | onkey9
13 |onpcl
111 | on pc 99

112 | on alarm
113 | on timer

114 | ontime$
115 | on error
116 | wait

An Interrupt Service Routine should save the registers, that are used, on the stack and restore them again
from the stack when the routine is ended. Also an ISR is terminated by a “RTE” instead of a “RTD” or “RTS".
Many compilers have an option/directive to determine which routines are ISR’s and which are not. For the
GCC, the programmer must meet the restrictions mentioned above by himself. This can be done be writing a
‘wrapper’ for the actual routine.

The following code gives an example of how a new interrupt service routine can be set. The interrupt service
routine of timer1 is replaced:

/* EXAMPLE; Interrupt service routines */
{
DI SABLE_TI MER1;

(void) _register_int(65, (ULONG &mry_tiner_isr_wapper());
ENABLE_TI MER1;

void my_timer_isr_wapper(void)
asm "MOVEM L %D0- %A5, - (¥%A7)"); [/* push registers used in my_real _tinmer_isr() */
(void) nmy_real _timer_isr();
asm ("MOVEM L (%A7) +, %D0- %A5"); /* pop registers again */
asm (“UNLK %A6”); /* Confirmmatching “LINK %6” instruction in assenbly */

/* else renpve this line (see appendi x F) */
asm (“RTE");

void nmy_real _tinmer_isr(void)

CLEAR TI MER_| NTERRUPT_FLAG, /* prevent interrupt fromrepeating */

22

Functionsfor exchanging data with the PC unit Section 3-3

3-3 Functions for exchanging data with the PC unit

For more information on data exchange methods, see ASCII unit operation manual section 6.

3-3-1 General

Communication between any special unit and the PC unit is performed during the I/O refresh cycles via the

I/0 bus on the backplane. Since the ASCII can address almost all memory areas in the PC unit, the ASCII unit

can communicate (indirectly) with other units. Communication between the PC unit and the ASCII unit can
also be done at any other moment, by means of interrupts:

= The PC unit can interrupt the ASCII unit’s current task, requesting a data exchange.
= The ASCII unit can ‘peek’ and ‘poke’ directly into the memory of the PC unit, during 1/0O-refresh.

The BIOS routines for I/O bus communication make use of two memory areas in the PLC:

= The ASCII unit has 100 words in DM memory, shared with the PC unit, of which 10 words contain start-

up options. During the I/O refresh cycle, the remaining 90 words are used both as input buffer and as
output buffer, to exchange data between the PC unit and the ASCII unit. The programmer can divide
these 90 words up himself to specify the size of the input- and output buffer.

To calculate the starting address of the shared memory, use the formula: m = 1000 + 100 x unit no.

= The ASCII unit has 10 words in IR memory, containing several communication status bits. There are two

versions of this part of memory: The real IR words in the PC unit, and a local copy of these words in the

ASCII unit.

When a programmer wishes to change the data in the IR memory, these changes are made in the local

copy. Afterwards, an update routine must be called to update the real IR memory in the PC unit.

When a programmer wishes to read the data in the IR memory, first an update routine must be called to

update the local copy of the IR memory with the real IR memory in the PC unit.

To calculate the starting address of the special unit memory:

use the formula: n =100 + 10 x unit no. , if the unit number is in the range 0..9,
use the formula n =300 + 10 x unit no. , if the unit number is in the range 10..15.

3-3-2 Summary of low-level routines
Many of the high level BIOS routines that perform I/O bus communication, make use of low-level routines.

+ Routines to maintain the status bits;

= read/write_IR_word(). To read or write one of the 5 words in the IR memory
= set/clr_IR_bit() . To set or clear a bit in one of the 5 words on the IR memory
= update_IR_in/out(). To update the IR memory in the ASCII unit or in the PLC memory

These routines can be used to realise communication between the ASCII unit and the PC unit in a way

that can be compared to data exchange method no. 3 in the ASCII unit Operation manual (section 6).

« Routines for converting hexadecimal, binary coded decimal, and octal coded words;

_HEX2BCD()
_BCD2HEX()
_BCD20CT()
_OCT2BCD()

23

Functionsfor exchanging data with the PC unit Section 3-3

3-3-3 Summary of high-level routines

There are three different types of communication routines:

= PC eget/eput. The ASCII unit and the PC unit can both asynchronously read or write to the ASCII unit’s
shared memory. These routines are used in combination with the IORD and IOWR commands in the
ladder program. The IORD and IOWR areas in the DM memory are set in words DM m+6 and DM m+7.
Corresponds to data exchange method no. 4 in the ASCII unit Operation manual (section 6).

= PC read/write. During an I/O refresh cycle, the ASCII unit reads or writes a maximum of 255 words in CPU
memory. Normally this is performed on a trigger from the PLC. The words IR n+3 and IR n+4 are used to
specify the memory part that is to be transferred. A special option is included, to make the routines
perform like the PC@read and the PC@write. These routines independently read or write the PLC
memory. In other words, calling the PC read/write function gives access to two different data exchange
methods.
Corresponds to data exchange methods 1 and 2 in the ASCII unit Operation manual (section 6).

= PC gread/qwrite. Also called quick-read and quick-write. On a request from the ASCII unit, the PC unit
reads or writes a maximum of 128 words to or from the ASCII unit. These routines are used in combina-
tion with the IORD and IOWR commands in the ladder program. The handshake and settings are
performed by means of words IR n+5, IR n+8 and IR n+9.
Corresponds to data exchange method no. 5 in the ASCII unit Operation manual (section 6).

The following table gives an overview of the four communication methods mentioned.

Method Initiating unit Required ladder statement ‘ Max. amount of data
PC Eget/Eput ASCII or PC unit IORD/IOWR (#0000) 180 bytes
PC read/write PC unit MOV 255 words
PC@ read/write ASCII unit - 255 words
PC gread/qwrite ASCII unit IORD/IOWR (#FD00) 128 words

The following code gives an example of communication with the PC unit from a library function:

/* EXAMPLE; Communication with PC unit */
{

UCHAR num of _words, area, data;

USHORT addr ess;

num of _words = 1;
area = 0; /* DM area */
address = 0123;

if(_pc_read(1l, 1, &numof _words, &area, &address, &data))
{
/* PRINT_STRING("ERRORI "); */
}
el se
{
/* Do sonmething with the data read...*/
}
}

24

Functionsfor OS error messages Section 3-4

3-4 Functions for OS error messages

The ASCII unit's main executive is a single tasking operating system. It communicates with other software
units and therefore handles the error messages from those software units. The Application Programming
Interface supports five routines to handle error messages. These routines are:

1) set error().

2) _del_errors().

3) _update_errors().
4) read_error().

5) _print_errmsg().

Error messages are stored in the so-called error FIFO. In fact it is a cyclic stack that can contain a maximum
of 30 error messages. With the _set_error() routine an error can be pushed onto this stack. If already 30 errors
are on the stack, pushing a new error message on the stack will result in loss of the oldest error message.
With the _read_error() routine, an error can be read from the stack, and if desired printed with the
_print_errmsg() routine.

After popping from the stack or pushing to the stack, the status of all remaining errors on the stack must be
updated with the _update_errors() routine.

The _read_error() routine will read one error from the stack and update the pointer to the position of the next
oldest error. The stack is terminated with a zero error. Calling the _read_error() routine over and over again
will eventually result in a return of this zero error. Calling the _read_error() once more, will return the newest
error again.

The _print_errmsg() routine is not only used to print an error message, but also to set an error message
pending, or to print an old error message that was set pending before.

An error message is a 16-bit variable containing the error code (a twelve bit number) and the error type (a 4
bit symbol). For more information on the error codes and corresponding messages, see the ASCII unit
manual, section 9-1.

The following code gives an example of how error messages can be used:

/* EXAMPLE; Error nessages */
{

USHORT error code;

UCHAR* error_nessage;

if (something_is_going_wong())
{
errorcode = 0xB014; /* This error-code is unused by ASCI| unit’'s Basic */
(void) _set_error(errorcode);
(voi d) deterni ne_nessage(errorcode, error_mnessage); /*nmake error_nessage point to string*/
(void) _print_errnsg(error_nessage);

25

Functions for memory managing Section 3-5

3-5 Functions for memory managing

In some cases it is useful to create and delete variables during run-time. These variables are called dynamic
variables. To use dynamic variables, dynamic memory must be allocated where these variables can be
stored. The ASCII unit's memory manager allows memory blocks to be allocated by the programmer of library
functions.

Like the standard C functions for memory allocating malloc(), calloc(), realloc() and free() , the Application
Programming Interface supports the functions _malloc(), _calloc(), _realloc() and _free_mem(). To allocate or
free dynamic memory, always use these functions instead of the functions from the standard C library. The
general way of using dynamic memory, consists of the following steps:

1. Allocate memory.
Before calling _malloc() or _calloc(), determine the amount of memory to be allocated, in other words, the
numbers of elements and the size of the elements that are to be placed in the dynamic memory. When
calling an allocation routine, an option specifies whether the memory block should be permanent or non-
permanent. It is advised not to use permanent memory blocks if not really necessary.
If it is still desired to allocate permanent memory, make use of the empty permanent memory block of 40
bytes that is stored at &HOEO0QO. The first byte in this block contains the unit number and the ASCII unit
type. The other bytes can be used to store global data in. When the user allocates a permanent memory
block, the pointer to this block should be stored in this block of global data. This should be done to save
the pointer to the allocated block, even when the power is switched off and on. Note that this is not a
waterproof method!
If the application allocates memory in a loop or in a recursive routine, it is wise to test the amount of free
memory with _ram_available() to prevent a memory leak.
Routines like _get size() and _largest_block() are low-level routines used by _malloc(), _calloc() and
_realloc().

2. Use dynamic memory.
When _malloc() or _calloc() is called, a pointer is returned. The pointer is a void-pointer, pointing to the
address where the first element of data is to be stored. The pointer returned by the allocation routines
must be type-casted to a pointer to the elements to store. The value of an element that the pointer is
referring to, can be accessed by means of the dereference operator or with brackets as if it where an
array of elements.
The memory manager allows altering the chosen block type of an allocated block. It is possible to change
the block type from non-permanent to permanent or vice versa with the _change_blk type() routine.

3. Free allocated memory block.
When the allocated part of memory is no longer needed, it can be de-allocated with the _free_mem()
routine. When a block is freed and it is located next to an other free block, they are merged to one larger
free block.
All temporary blocks are freed when the ASCII unit is powered on, when the RUN statement is executed
or when the CLEAR statement is executed in dynamic mode.

The following code shows how dynamic memory can be used:
/* EXAMPLE; Using dynami c nenmory */
{
| TEM_ TYPE *i t ens;
items = (I TEM_TYPE*) _cal | oc(100, (USHORT)si zeof (I TEM TYPE), 0);
if (!items) PRI NT_STRI NG("ERROR ");
el se

{

/* Here, the routine uses the dynami c data... */
_free_nmenm(itens);

}
}

26

Functionsfor controlling serial ports Section 3-6

3-6 Functions for controlling serial ports

This section describes how the serial ports of the ASCII unit can be configured and controlled. These routines
allow the ASCII to communicate at a maximum rate of 76.800 baud in a point-to-point or a multidrop
configuration. For more information, see ASCII unit operation manual section 4.

3-6-1 ASCII unit serial ports

Depending on the type of ASCII unit, two different serial connections can be used, RS232 or RS422/485. The
two major differences between these ports are:

RS232: RS422/485:
+ only for point to point configurations + multidrop configurations possible
+ full duplex + half duplex!

The advantage of the RS422/485 port is that more than one device can be controlled from one port, using only
one cable. Also the length of the cable is no longer restricted to 15 meter. On the other hand, the RS422/485
port can't be used when a full duplex configuration is needed; Port 2 of the ASC21 is a half-duplex port!
Normally in multidrop configurations (also called 1 to n configuration), one master communicates with n
slaves, in which a half-duplex link suffices.

3-6-2 Low-level routines

Set/clr leds
Set/clr dtr
Set/clr rts

Get cts

Get dsr

Read switches

Using _set leds() and _clr_leds(), the leds run, basic, error, errl and err2 on the front panel can be turned
on or off. Only if the used ASCII unit model is ASC31, then the led errt can be controlled as well.

All low-level routines are used to build up the high-level routines. However, to write a user hardware
communication protocol, it is possible to control the exterior lines with these routines.

27

Functionsfor controlling serial ports Section 3-6

3-6-3 High level routines

Most of the high level routines require the parameter port. For ASCII unit models ASC11 and ASC21,
valid values for port are 1 and 2. If the ASCII unit ASC31 is used, port 3 can also be specified. The
following routines are supported:

Configure port
Close port
Port status
Print to port
Rprint to port
Read from port
Cls

To configure a port, a structure is used to pass the port status. This port status contains all information on
how the port was configured. When _conf_port() is called, new configurations can be set, but also the old
configuration is returned. This feature enables the programmer to restore the port configuration as it was
in Basic, before the library function is ended. Port_status is a struct that is defined in api.h containing
twelve unsigned chars:

typedef struct

{
UCHAR type
UCHAR baudrate;
UCHAR databits;
UCHAR stopbits;
UCHAR parity;
UCHAR xonxoff;
UCHAR rts;
UCHAR cts;
UCHAR dtrdsr;
UCHAR overwrite;
UCHAR print;
UCHAR read;

} T PORT_STATUS;

type can have the following values: O=terminal, 1=screen, 2=keyboard, 3=communication device, 4=line
printer, 5=Nec Kaniji printer, 6=Epson Kanji printer.

If the xonxoff option is set to one, the software flowcontrol is enabled. If zero, then it is disabled. The fields
of overwrite, print and read are flags, used by the operating system.

See the listing of api.h in Appendix A for more about the status struct. To get more information about
configuring a serial port, see Basic's OPEN statement in the ASCII Operation Manual. The following code
gives an example of how the serial ports can be used:

/* EXAMPLE; Using the serial ports */

{
_T_PORT_STATUS new_st atus, ol d_status;
UCHAR port _nr, lines;

port = TERM NAL_PORT;
if (_conf_port(port, new status, &old_status)) /* new port status */
{
/* PRINT_STRING("ERRORI "); */
}
el se
{
_cls(port);
_print_to_port(port, O, "This is a small ‘Hallo Wrld type exanple...", & ines);
(void) _conf_port(port_nr, old_status, &old_status); /* restore port status */

28

Functionsfor using the realtime clock Section 3-7

3-7 Functions for using the realtime clock

3-7-1 General description

The ASCII unit has a realtime clock on-board, that works independently from the clock inside the PC unit. The
realtime clock keeps track of the current date, the current day of the week and the current time. If the power is
cut off from the ASCII unit, the data inside the realtime clock remains intact. The realtime clock allows
accessing the date and time separately. For each of date, time and day_of week, there is a routine to set the
value, and a routine to get the value.

The routines that can be used to get or set values can give the following error messages:
= Data out of range error. The values are incorrect.
= Time out error. The realtime clock is not responding, probably due to a hardware defect.

3-7-2 Description of data inside realtime clock

= The date:

The date consists of the year, the month and the day. The BIOS routines that are concerned with the date,
use a date struct to exchange data. The date struct is also defined in “api.h” , like this:
typedef struct
{
UCHAR day;
UCHAR nont h;
UCHAR year;
} _T_DATE;

The variables in the struct are normal unsigned chars containing the one-to-one values for day and month.
The year is stored a bit different than the other two variables. If the value is in the range 70..99 then it should
be interpreted by the years 1970..1999, if the value is in the range 00..69 then it should be interpreted by the
years 2000..2069.

Corresponding BIOS routines: _get_date(), _set_date().

= The time:

The time consists of the hours, the minutes and the seconds. The BIOS routines that are concerned with the
time, use a time struct to exchange data. The time struct is also defined in “api.h” , like this:
typedef struct
{
UCHAR seconds;
UCHAR mi nut es;
UCHAR hours;
} T TIME

All variables in the struct are unsigned chars. Valid values for minutes and seconds are 0..59 , and valid
values for hours are 0..23 .
Corresponding BIOS routines: _get_time(), _set_time().

= The day of the week

The day_of week is represented by one unsigned char enumeratively. If zero, the day is Sunday, if one, the
day is Monday etc.
Corresponding BIOS routines: _get_day_of week(), _set_day of week().

29

30

4-1

4-3
4-4
4-5
4-6

4 Troubleshooting

Out of memory error message after [10ad.........c.ve e e e 32
S o1 o = T 11 A= o USRS 32
YN O W 1] g = 10 o o PO 32
I I o I = o 32
Lol e g Fo TSy (o 1= A= 1 o (TP 32
RS o U o= 0 = o 11 T o1 0o USRS 33

31

Out of memory error message after lib load Section 4-1

4-1 Out of memory error message after lib load

If a library function is to be loaded at a fixed address, use the map statement to check if the concerning part of
memory, to load the function in, is not in use. Note that the memory manager needs up to four bytes memory
preceding the library function! In other words, if there is a free memory block starting at &H30CO00, specify the
address &H30C04 as start address to store the library at.

If a memory block is in use by a Basic variable, use the clear statement to remove this variable (only works in
dynamic mode). The memory might also be in use by a part of a Basic program or another library function.
These blocks can be removed with the new and the lib del statement. If none of these statements can be used
to clear the concerning memory block, clear the memory as described by the procedure of section 9-2-1 in the
ASCII unit operation manual.

4-2 Special unit error

Special unit errors mainly occur when a library function does not properly refresh the watch-dog timer. To
prove if the library function indeed caused the special unit error, the watch-dog timer option can be specified in
the def libfn statement making the library interface refresh the watch-dog timer in time as described in section
1-3. A special unit error can also occur when the operating system of the ASCII unit is malfunctioning. The
user can corrupt the operating system from within a library function by writing data to a part of the SRAM in
which the system resides, as shown by the table in section 1-2. This can happen in the following situations:

- a pointer has an incorrect value or the index of an array is out of its boundaries,

- a library function which was compiled for a free address is lib loaded at a fixed address (or vice versa),

. a library function which was compiled for a free address uses global data or contains calls to subroutines.
When a library function is called and the declaration of the corresponding Basic user function’s parameter
declaration does not relate properly to the function header of the Library function source, the ASCII might also
crash and cause a special unit error. Note that the order of Basic parameters must be in opposite order
compared to the C routine.

4-3 ASCIl unit malfunctions

If the ASCII unit does not respond anymore or if it behaves unexpectedly, try using the new statement or
switching the power off and on again. If the ASCII unit still isn't behaving correctly (for instance, the map
statement is in an endless loop), follow the procedure in section 9-2-1 of the ASCII unit operation manual.

4-4 Lib Load hangs

When the lib load statement is entered, the ASCII waits for data and will remain doing this until the user
presses CTRL-C. During lib load, the ASCII unit scans for data and for key-presses at the port that was
specified in the lib load statement. For instance, if an ASC31 is used, the terminal port is port 3. If in this case
alib load #1... is entered, the ASCII will wait endlessly for a CTRL-C character from port 1 instead of port 3.
The ASCII can be stopped waiting by either switching the power on and off, or by temporarily connecting the
terminal to the other port, only for sending a CTRL-C character.

4-5 Motorola-S format error

The ASCII unit gives a Motorola-S format error after lib load, if the MTS file sent was corrupted. First make
sure that the correct file is sent. If the error occurs repeatedly, re-create the MTS file.

32

4-6 Source debugging

Debugging a library function is more difficult than debugging a stand alone program. Syntax and semantics of
parts that do not call BIOS functions can be debugged on a normal PC. However, other parts can only be
tested by using an in circuit emulator or by simply running the code and see what happens by printing
information to the terminal or the PLC.

It can be checked if the parameter passes from and to the library function are performed correctly by
specifying the STACK option in the def libfn statement as described in section 1-3. This option will cause the
ASCII unit to print the pushed and popped data on the stack when a library function is called or terminated.
When a program is functioning incorrectly, it is possible to determine whether or not this is due to a compiler
bug by inspecting the assembly file. See also Appendix F.

33

34

Appendix A

Description of APlL.h

SRR I R I R R I R R I R R SRR I R I R R R I R R I R R
/ TYPE DEFI NI TI ONS /

t ypedef unsi gned char UCHAR
typedef char CHAR

t ypedef unsi gned short USHORT;
typedef unsigned | ong ULONG

/* 1 byte unsigned char

/* 1 byte signed char

/* 2 bytes unsigned integer
/* 4 bytes unsigned integer

typedef void VA D /* void
/* Date structure for get date and _set _date
typedef struct

UCHAR day;

UCHAR nont h;

UCHAR year;
} _T DATE; /* contains day, nonth and ye
[* Time structure for get tine and _set tine
typedef struct

UCHAR seconds;
UCHAR ni nut es;

ar

UCHAR hours;
} T TIME /* contains seconds, mnutes and hours
[* Port structure for _conf_ port
typedef struct
{
UCHAR t ype; /* 0: TERM 1: SCRN, 2: KYBD, 3: COMU, 4: LPRT, 5: NKPRT, 6: EKPRT
UCHAR baudrate; /* 0:9600, 1:300, 2: 600, 3:1200, 4:2400,
5: 4800, 6:19200, 7:38400, 8:76800
UCHAR databits; /* 5, 6, 7, 8
UCHAR stopbits; /* 0:1 bit, 1:1.5 bits, 2:2 bits
UCHAR parity; /* 0: none, 1: even, 2: odd, 3: nark or 4: space
UCHAR xonxof f; /* 0: disabled, 1. enabled
UCHAR rts; /* 0: disabled, 1. enabled
UCHAR ct s; /* 0: disabled, 1. enabled
UCHAR dtrdsr; /* 0: disabled, 1. enabled
UCHAR overwite; /* 0: no, 1. yes
UCHAR print; /* 0: no, 1. yes
UCHAR r ead; /* 0: no, 1. yes

} T PORT_STATUS; [/* port 1, 2, 3 structure
/**

*/
*/
*/
*/
*/

*/

*/

*/

*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

**/

/*************************** mem TI NER REFRESH ***************************/

#define _wdt_refresh *(UCHAR*) O0xC00007L=(UCHAR) 1

/**/

35

R R I R R I I R I R O I R R R R R I R O I I R I R O I R R O R
/ FUNCTI ON DEFI NI TI ONS /

UCHAR bcd2hex(USHORT, USHORT*);

UCHAR bcd2oct (USHORT, USHORT*);

VO D* _cal | oc(USHORT, USHORT, UCHAR);

UCHAR change_ bl k_t ype(UCHAR*, UCHAR);

UCHAR cl ose port (UCHAR) ;

UCHAR clr_dtr(UCHAR);

UCHAR clr_ir_bit(UCHAR, UCHAR);

VO D _clr_leds(UCHAR UCHAR UCHAR, UCHAR, UCHAR, UCHAR);
UCHAR clr_rts(UCHAR);

UCHAR cl s(UCHAR) ;

UCHAR conf port (UCHAR, _T PORT_STATUS, T PORT_STATUS*);
VOD _del _errors(VAD);

UCHAR free_nmem(VA D*);

UCHAR get cts(UCHAR, UCHAR*);

UCHAR get date(T _DATE*);

UCHAR get day_ of week(UCHAR*);

UCHAR get dsr(UCHAR, UCHAR*);

ULONG get _size(VA D*);

UCHAR get tinme(_T_TIM);

UCHAR hex2bcd(USHORT, USHORT*);

ULONG | argest bl ock(Vva D);

VO D* _mal | oc(USHORT, USHORT, UCHAR);

UCHAR nmask_basi c_i nt (UCHAR) ;

UCHAR nots to_str(UCHAR*, USHORT, ULONG', USHORT*);

UCHAR _oct 2bcd(USHORT, USHORT*) ;

UCHAR pc_eget (UCHAR, UCHAR, UCHAR*);

UCHAR pc_eput (UCHAR, UCHAR, UCHAR*);

UCHAR pc_gread(UCHAR, UCHAR, USHORT, USHORT*);

UCHAR pc_gwite(UCHAR, UCHAR, USHORT, USHORT*);

UCHAR pc_read(UCHAR, UCHAR, UCHAR*, UCHAR*, USHORT*, UCHAR*);
UCHAR _pc_write(UCHAR, UCHAR, UCHAR*, UCHAR*, USHORT*, UCHAR*);
UCHAR port_status(UCHAR, UCHAR, USHORT*);

UCHAR print_errnsg(UCHAR) ;

UCHAR print_to port(UCHAR, UCHAR, UCHAR*, UCHAR*);

ULONG ram avail abl e(VO D) ;

UCHAR read_error (USHORT*) ;

UCHAR read from port (UCHAR, UCHAR, UCHAR, USHORT, UCHAR*);
UCHAR read ir_word(UCHAR, USHORT*);

UCHAR read swi tches(UCHAR, UCHAR*);

VO D* realloc(VOD*, ULONG UCHAR);

UCHAR register_int(USHORT, ULONG ;

UCHAR rprint_to port(UCHAR UCHAR, UCHAR*, UCHAR*, UCHAR);
UCHAR set date(_ T _DATE);

UCHAR set day_of week(UCHAR);

UCHAR set dtr (UCHAR);

VO D _set _error(USHORT) ;

UCHAR set ir_bit(UCHAR, UCHAR);

VO D _set_leds(UCHAR UCHAR UCHAR, UCHAR, UCHAR, UCHAR);
UCHAR set rts(UCHAR);

UCHAR set tinme(_T_TIM);

VOD _sjis2jis(UCHAR, UCHAR, UCHAR*, UCHAR*);

UCHAR str_to _nots(ULONG UCHAR*, UCHAR);

VO D _unmask_basi c_int (UCHAR, UCHAR);

VO D _update errors(VAD);

VO D _update_ irin(VvVAD);

VO D _update_ irout(VAOD);

UCHAR write ir_word(UCHAR, USHORT);

/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or
/ *Vect or

98*/
99*/
113*/
132*/
151*/
145*/
87*/
136*/
148*/
152*/
150*/
102*/
116*/
149*/
160*/
162*/
146*/
128*/
158*/
97*/
117*/
112*/
74*/
142*/
100*/
91*/
92*/
93*/
94*/
95*/
96*/
154*/
105*/
156*/
118*/
104*/
157*/
85*/
141*/
115*/
72%/
155*/
161*/
163*/
138*/
101*/
86*/
135*/
137*/
159*/
144*]
143*/
75*/
103*/
89*/
90*/
88*/

/**/

36

Remarks:

Appendix B
Reference of BIOS routines

= Some routines require the option port. For ASCII unit models ASC11 and ASC21, valid values for port are
1 and 2. Only if the ASCII unit ASC31 is used, port 3 can be specified as well.

= In this reference, some routines are illustrated with an example. If a routine is not illustrated with an

example, there might by a reference to one of the example applications in Appendix C.
= The routines in this reference are listed in alphabetical order. Cross-references in ‘see also’ are not. The

first routine mentioned in the ‘see also’ is the complementary routine (if applicable), and than the other

routines involved are mentioned.

= Every routine is defined in api.h in Appendix A and is described in one of the subsections 3-2 .. 3-7.

_bcd2hex
Function Converts a 16 bit binary coded decimal integer to a 16 bit
hexadecimal coded integer.
Syntax #include “api.h”
UCHAR _bcd2hex(USHORT bcd_val, USHORT *hex_val);
Parameters Bcd val is the input value, hex_val is the converted output value.

Return Value

Remarks

See also

Example

0: OK, 1: Error, invalid bed value.

The value of each digit(4 bits) in the input parameter must be 9 or
less. The value of the output parameter is in the range from 0 to
0x270F .

_hex2bcd, bcd2oct, _oct2bcd

Results of calling (void) _bcd2hex(bcd_val, &hex_val);
input bcd_val 0x0009 0x0010 0x4096 Ox789A

output hex_val 0x0009 0x000A 0x1000 - ERROR -

37

_bcd2oct

Function

Syntax

Parameters
Return Value

Remarks

See also

Example

38

Converts a 16 bit binary coded decimal integer to a 16 bit octal
coded integer;

in a & A A & A o a8 as as A as @ a a
out bl bl bl bl bl bl bg bs b7 b5 b5 b4 b3 bz b1 bo
5 4 3 2 1 0

#include “api.h”
UCHAR _bcd20oct(USHORT bced_val, USHORT *oct_val);

Bcd val is the input value, oct_val is the converted output value.
0: OK, 1:Invalid bcd value.

The value of each digit in the input parameter must be 7 or smaller
(bits 3, 7, 11 and 15 must be zero).
The value of the output parameter is in the range from 0 to OXOFFF .

_oct2bed, _bcd2hex, _hex2bcd

Results of calling (void) _bcd2oct (bcd_val, &oct val);

input bcd_val 00007 0x0010 Ox7777 0x4567
output oct_val 0x0007 0x0008 OXOFFF - ERROR -

_calloc

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

» Allocates memory, that is to be assigned by the caller, to be
used for dynamic variables.
» Clears allocated memory.

#Include “api.h”
VOID* _calloc(USHORT nitems, USHORT size, UCHAR blktype);

Nitems is the number of items, and size is the size of one item.
Blktype = 0: non-permanent type, blktype = 1: permanent type.

0: Error, invalid input values or out of memory error.
non-zero: Address pointer to first data element in allocated memory
block.

Size x nitems must at least be smaller than 131068 bytes.
For more information about dynamic variables, see section 3-5.

_free_mem, _malloc, realloc

_change_blk_type

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Changes block type.

#Include “api.h”
UCHAR _change_blk type(UCHAR *blkptr, UCHAR blktype);

Blkptr is a pointer to the block of which the type is to be changed.
Blktype = 0: non-permanent type, blktype = 1: permanent type.
0: OK, 1:Error, invalid blktype or blkptr.

This low-level function is normally called by high-level memory
managing functions. Therefore this function should only be called by

programmers with sufficient knowledge of the ASCII unit’s internals.
For more information about memory blocks, see section 1-2.

39

_close_port

Function Stops transmitting and receiving data on a port,
Prevents other routines from controlling the parameters of the port.

Syntax #Include “api.h”
UCHAR _close_port(UCHAR port);

Parameters Port is the desired port number. If zero, all ports are closed.
Return Value 0: OK, 1: Error, invalid port number.

Remarks -

See also _conf_port

Example -

_clr_dtr

Function Clears (negates) the DTR output signal on a port. If the port is
controlled automatically, an error is returned.

Syntax #Include “api.h”
UCHAR _clr_dtr(UCHAR port);

Parameters Port is the desired port number.
Return Value 0: OK, 1: Error, invalid port number.
Remarks -
See also _set_dtr, clr_rts

Example -

40

_clr_ir_bit

Function

Syntax

Parameters

Return Value

Clears (negates) a bit in one of the words in the local copy of the IR
INPUT area.

#Include “api.h”
UCHAR _clr_ir_bit(UCHAR wordnum, UCHAR bitnum);

Wordnum indicates the word of the IR INPUT area, valid values are
0 to 4. Bitnum indicates the bit to be cleared in the selected word.

0: OK, 1: Error, invalid word requested, 2: Error, invalid bit
requested.

Remarks -

See also _set_ir_bit, _write_ir_word, _update_irin

Example -

_clr_leds
Function Turns specified indicator leds off.
Syntax #Include “api.h”
VOID _clr_leds(UCHAR ledl, UCHAR led2,, UCHAR led6);
Parameters Ledl, led2..led6 correspond to indicator led’s: run, basic, error, errl,

Return Value
Remarks
See also

Example

err2, errt. If the value is one, the corresponding led is turned off.

The errt led can only be controlled on an ASC31.

_set_leds

See example 2 in Appendix C.

41

_clr_rts

Function

Syntax

Parameters

Return Value

Clears (negates) the RTS output signal on a port. If the port is
controlled automatically, an error is returned.

#Include “api.h”
UCHAR _clr_rts(UCHAR port);

Port is the desired port number.

0: OK, 1: Error, invalid port number.

Remarks If the ASCII unit is an ASC21, referring to port 2 is possible,
although the port has no RTS output line. In this case it controls (de-
)activation of receiver/transmitter mode of the RS422/485 port.
When the RTS signal is cleared, the receiver is active.

See also _set_rts, _clr_dtr

Example -

_cls
Function Clears the screen of a device, if open.
Syntax #Include “api.h”
UCHAR _cls(UCHAR port);
Parameters Port is the desired port number.

Return Value

Remarks
See also

Example

0: OK, 1: Error, invalid port number,
7: Error, port is not an output device.

_conf_port

42

_conf_port

Function

Syntax

Parameters

Return Value

» |nitializes a port by means of a status struct,
= Clears the corresponding in- and output buffers.

#Include “api.h”

UCHAR _conf_port(UCHAR port, T PORT_STATUS
new_p_status,

_ T _PORT_STATUS *old_p_status);

Port is the desired port number, new_p_status is the struct to
configure the port with. Old_p_status contains the old port
configuration.

0: OK, 1: Error, invalid port number, 2: Error, port not opened,
3: Error, invalid configuration settings, 4: Error, local loop-back
error.

Remarks For more information about the port-status datatype, see section 3-
6.

See also _Close_port

Example -

_del_errors

Function * Deletes all errors from the error stack

= Clears the error led’s ERROR, ERR1, ERR2 & ERRT on ASCII
front.
Syntax #Include “api.h”
VOID _del_errors();
Parameters -

Return Value

Remarks

See also

Example

This routine also clears IR n+5, bits 2, 3, 4, 5and 8, and IR n+7.
For more about error handling, see section 3-4.

_set_error, _read error, _print_errmsg

43

_free_mem

Function

Syntax

Parameters

Return Value

Frees up memory that was assigned to variable(s).

#Include “api.h”
UCHAR _free_mem(VOID *blkptr);

Blkptr is a pointer the memory block that is to be freed.

0: OK, 1: Error, address null or out of range, 2: Error, block
already free,

3: Error, block does not exist, or contents of RAM has corrupted.

Remarks For more information about memory blocks, see section 1-2.
See also _calloc, _malloc
Example -
_get_cts
Function Reads the CTS input signal.
Syntax #Include “api.h”
UCHAR _get_cts(UCHAR port, UCHAR *val);
Parameters Port is the desired port number.

Return Value

Remarks

See also

Example

Val is the output; 0: negated (clear), 1: asserted (set)

0: OK, 1: Error, invalid port number, 6: Error, access violation.

It is not allowed to use _get_cts from port 2 on an ASC21 unit. This

will result in an access violation error.

_get_dsr

_get_date

Function

Syntax

Parameters

Return Value

Remarks
See also

Example

Retrieves the current date from realtime clock.

#Include “api.h”
UCHAR _get date(_T_DATE *dateptr);

Dateptr is the output, containing the date struct.

0: OK, 1: Error, RTC reading out of time,
3: Error, read data out of range.

See section 3.7 for description of date struct _T_DATE.

_set _date, get day of week, _get time

See example 2 in Appendix C.

_get_day_of week

Function

Syntax

Parameters

Return Value

Remarks
See also

Example

Retrieves the current day from realtime clock.

#Include “api.h”
UCHAR _get day of week(UCHAR *day_of week);

The output value of day_of week represents the day enumeratively:
0: Sunday, 1:Monday, 2: Tuesday, 6: Saturday

0: OK, 1: Error, RTC reading out of time,
3: Error, read data out of range.

_set _day_of week, get date, get time

See example 2 in Appendix C

45

_get_dsr

Function

Syntax

Parameters

Return Value

Reads the DSR input signal

#Include “api.h”
UCHAR _get _dsr(UCHAR port, UCHAR *val);

Port is the desired port number,

Val is the output; 0: negated (clear), 1:asserted (set)

0: OK, 1: Error, invalid port number, 6: Error, access violation.

Remarks It is not allowed to use _get_dsr from port 2 on an ASC21 unit. This
will result in an access violation error.

See also _get_cts

Example -

_get_size
Function Returns the size of the block indicated by the caller.
Syntax #Include “api.h”
ULONG _get_size(VOID *blkptr);
Parameters Blkptr is a pointer to the first data element of that block, of which the

Return Value

Remarks

See also

Example

size is to be returned.

0: Error, pointer out of range , non-zero: Size of memory block.

Normally, pointers to the first data element in the memory block are
returned by functions like calloc and malloc.
For more information about memory blocks, see section 1-2.

_ram_available

46

_get_time

Function

Syntax

Parameters

Return Value

Retrieves the current time from realtime clock.

#Include “api.h”
UCHAR _get_time(_T_TIME *timeptr);

Timeptr is the output, containing the time struct.

0: OK, 1: Error, RTC reading out of time,
3: Error, read data out of range.

Remarks See section 3-7 for description of date struct _T_TIME.

See also _set time, _get date, _get day_of week

Example See example 2 in Appendix C

_hex2bcd

Function Converts a 16 bit hexadecimal coded integer to a 16 bit binary

coded decimal integer.
Syntax #include “api.h”
UCHAR _hex2bcd(USHORT hex_val, USHORT *bcd_val);
Parameters Hex_ val is the input value, bcd_val is the converted output value.

Return Value
Remarks
See also

Example

0: OK, 1:Hex value to large.

The value of the input parameter can not be greater than 0x270F .

_bcd2hex, bcd2oct, _oct2bcd

Results of calling (void) _hex2bcd(hex_val, &bcd_val);
input hex_val 0x0009 0x000A 0x270F 0x2710

output bed_val 0x0009 0x0010 0x9999 - ERROR -

See also example 2 in Appendix C

47

_largest_block

Function

Syntax

Parameters

Return Value

Returns the size of the largest free block

#include “api.h”
ULONG _largest_block();

0: No free block available,
non-zero: Size of the largest block, maximum value is 204796

Remarks For more information about memory blocks, see section 1-2.

See also _ram_available

Example -

_malloc

Function Allocates memory, that is to be assigned by the caller, to be used for

dynamic variables.
Syntax #Include “api.h”
VOID* _malloc(USHORT nitems, USHORT size, UCHAR blktype);
Parameters Nitems is the number of items, and size is the size of one item.

Return Value

Remarks

See also

Example

48

Blktype: 0: non-permanent type, 1: permanent type.

0: Error, invalid input values or out of memory error.

non-zero: Address pointer to first data element in allocated memoryblock.

size x nitems must at least be smaller than 131068 bytes.
For more information about dynamic variables, see section 3-5.

_free_mem, _calloc, _realloc,

_mask_basic_int

Function

Syntax

Parameters

Return Value

Masks one or all Basic interrupts.

#Include “api.h”
UCHAR _mask_basic_int(UCHAR type);

Type is the number of the interrupt type to mask (max. 116). If zero,
all are masked.

0: Previously not masked, 1: Previously already masked.

Remarks Always use _mask_basic_int with _unmask_basic_int. Use the
return value of the mask function as parameter for the unmask
function.

See also _unmask_basic_int

Example -

_oct2bcd

Function Converts a 16 bit octal coded integer to a 16 bit binary coded decimal
integer.
in & A A A& & A g e e A & & A &

=)
out bl bl bl bl bl bl bg bs b7 b5 b5 b4 b3 bz b1 bo
5 4 3 2 1 0
Syntax #include “api.h”
UCHAR _oct2bcd(USHORT oct_val, USHORT *bcd_val);
Parameters Oct_val is the input value, bcd_val is the converted output value.

Return Value

Remarks

See also

Example

0: OK, 1: Error, invalid octal value.

The value of the input parameter must be in the range from 0 to
OXOFFF .

_bcd2oct, bcd2hex, hex2bcd

Results of calling (void) _oct2bcd (oct_val, &bcd_val);

0x0007 0x0008 OxOFFF 0x1000
0x0007 0x0010 ox7777 - ERROR -

input oct_val
output bed_val

49

_pc_eget

Function Reads data from the IOWR buffer (shared memory).

Syntax #include “api.h”
UCHAR _pc_eget(UCHAR num_bytes, UCHAR offset, UCHAR
*data);

Parameters Num_bytes is the number of bytes to read. Offset is added to the
base-address of the IOWR buffer to determine the address of the
indata buffer. Data is the array of data as requested (max. 180
bytes).

Return Value 0: OK, 1: Error, indata buffer is not available,
2: Error, IOWR #00xx is currently active,
3: Error, Size of data in buffer is smaller than requested.

Remarks Data transfer-method 1. Before calling _pc_eget the share memory
must be set up correctly by DM m+6 and m+7.
For more details, see ASCII unit Operation Manual, section 6.

See also _pc_eput, pc_read, pc_qgread

Example -

50

_pc_eput

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Writes data (characters) to the IORD buffer (shared memaory).

#include “api.h”
UCHAR _pc_eput(UCHAR num_bytes, UCHAR offset, UCHAR
*data);

Num_bytes is the number of bytes to write. Offset is added to the
base-address of the IORD buffer to determine the address of the

outdata buffer. Data is an array containing the data to be sent (max.

180 bytes).

0: OK, 1: Error, outdata buffer is not available,
2: Error, IORD #00xx or pc_eput is currently active,
3: Error, Size of outdata buffer is to small.

Data transfer-method 1. Before calling _pc_eput the share memory
must be set up correctly by DM m+6 and m+7.
For more details, see ASCII unit Operation Manual, section 6.

_pc_eget, pc_write, _pc_qgwrite

51

_pc_qgread

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Reads data (words) from PLC memory.

#include “api.h”
UCHAR _pc_gread(UCHAR num_words, UCHAR area,
USHORT address, USHORT *data);

Num_words is the number of words to read, valid values are 1..127.
Area is the PLC area to read from:

0:DM, 1.IR, 2:LR, 3:HR, 4:AR, 5 EM, 6:TC.

Address is the PLC memory address to read data from,

Data is the array where the read data will be stored (max. 128
elements).

0: OK, 1: Error, not connected to PLC, 2: Error, invalid PLC
area,

3: Error, invalid address, 4: Error, invalid number of words,
5: Another PLC transfer is currently active,

6: Stopped by wait-interrupt, 7: Stopped by break-interrupt.

Data transfer-method 4. The ASCII unit forces the PLC to write
memory-data to the ASCII unit by means of an IOWR (#FDO00)
instruction.

Before calling pc_qwrite, properly set the indices in IR n+8 and n+9.
For more details on transfer methods, see ASCII Operation Manual,
section 6, for more detail on memory areas, see C200H / C200Hx-
CPUxx-ZE Operation Manual, section 3.

_pc_qgwrite, _pc_eget,, _pc_read

52

_pc_qwrite

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Writes data (words) to PLC memory.

#include “api.h”
UCHAR _pc_gwrite(UCHAR num_words, UCHAR area,
USHORT address, USHORT *data);

Num_words is the number of words to write, valid values are 1..127.
Area is the PLC area to write in:

0:DM, 1:IR, 2:LR, 3:HR, 4:AR, 5:EM, 6:TC.

Address is the PLC memory address to send data to,

Data is an array containing the data to be sent (max. 128 elements).

0: OK, 1: Error, not connected to PLC, 2: Error, invalid PLC area
3: Error, invalid address, 4: Error, invalid number of words,

5: Another PLC transfer is currently active,

6: Stopped by wait-interrupt, 7: Stopped by break-interrupt.

Data transfer-method 4. The ASCII unit forces the PLC to read data
from the ASCII unit into memory by means of an IORD (#FDO0O0)
instruction.

Before calling pc_qwrite, properly set the indices in IR n+8 and n+9.
For more details on transfer methods, see ASCII Operation Manual,
section 6, for more detail on memory areas, see C200H / C200Hx-
CPUxx-ZE Operation Manual, section 3.

_pc_gread, _pc _eput, _pc_write

53

_pc_read

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Reads data (words) from PLC memory, during I/O-refresh cycle.

#include “api.h”

UCHAR _pc_read(UCHAR at, UCHAR num_req, UCHAR
*num_words,

UCHAR *area, USHORT *address, UCHAR *data);

At determines whether to use the pc_read (at=0) or pc_read@
(at=1) routine, Num_req is number of request, valid values are 1..5,
Num_words is an array of 5 unsigned chars, for each request one,
containing the number of words to transfer, valid values are 1..255.
Area is an array of 5 unsigned chars, for each request one,
containing the PLC area(s) to read from. Valid values are:

0:DM, 1:IR, 2:LR, 3:HR, 4:AR, 5:EM, 6:TC.
Address is an array of 5 unsigned integers, for each request one,
containing the PLC memory address(es) to read data from,

Data is the array where the read data will be stored.

0: OK, 1: Stopped by wait-interrupt, 2: Error, invalid PLC area
3: Error, invalid address, 4: Error, invalid number of words,

5: Another PLC transfer is currently active,

6: Error, invalid number of requests, 7: Stopped by break-
interrupt.

If at=0 ,data transfer-method 2, data is transferred on a trigger from
the PCU unit. If at=1 ,data transfer-method 3, the ASCII unit
independently reads data by interrupting the PC unit.

For more details on transfer methods, see ASCII Operation Manual,
section 6, for more detail on memory areas, see C200H / C200Hx-
CPUxx-ZE Operation Manual, section 3.

_pc_write, pc_eget, pc_gread

_pc_write

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Writes data (words) to PLC memory, during 1/O-refresh cycle.

#include “api.h”

UCHAR _pc_write(UCHAR at, UCHAR num_req, UCHAR
*num_words,

UCHAR *area, USHORT *address, UCHAR *data);

At determines whether to use the pc_write (at=0) or pc_write@
(at=1) routine, Num_req is number of request, valid values are 1..5,
Num_words is an array of 5 unsigned chars, for each request one,
containing the number of words to transfer, valid values are 1..255.
Area is an array of 5 unsigned chars, for each request one,
containing the PLC area(s) to write in. Valid values are:

0:DM, 1:IR, 2:LR, 3:HR, 4:AR, 5:EM, 6:TC.
Address is an array of 5 unsigned integers, for each request one,
containing the PLC memory address(es) to write data to,

Data is the array containing the data to be sent.

0: OK, 1: Stopped by wait-interrupt, 2: Error, invalid PLC area
3: Error, invalid address, 4: Error, invalid number of words,

5: Another PLC transfer is currently active,

6: Invalid number of requests, 7: Stopped by break-interrupt.

If at=0 ,data transfer-method 2, data is transferred on a trigger from
the PCU unit. If at=1 ,data transfer-method 3, the ASCII unit
independently writes data by interrupting the PC unit.

For more details on transfer methods, see ASCII Operation Manual,
section 6, for more detail on memory areas, see C200H / C200Hx-
CPUxx-ZE Operation Manual, section 3.

_pc_read, pc_eput, _pc_gwrite

See example 2 in Appendix C

55

__port_status

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

_print_errmsg

Retrieves information on the status of a port. The caller must specify

what information is to be retrieved.

#include “api.h”

UCHAR _port_status(UCHAR port, UCHAR info, USHORT *result);

Port is the desired port number,

Info specifies what information about the port is to be retrieved:
1: device type, 2: number of bytes in input buffer, 3: number of
bytes in output buffer, 4: RTS enabled, 5: DTR enabled.
Result contains the value of the requested data.

0: OK, 1: Error, invalid port specified, 8: Error, invalid option
requested.

For more about the status struct, see section 3-6.

_conf_port, clr_dtr, clr_rts, set dtr, set rts

Function

Syntax

Parameters

Return Value

Remarks
See also

Example

56

Prints an error message -if a terminal is connected- else set
message pending to be printed later. If the string is empty, the
routine will print a pending message (if one is available).

#Include “api.h”
UCHAR _print_errmsg(UCHAR *message);

Message is a string containing the error message.

0: OK, 1: No terminal connected, message is set pending.
2: Error, no terminal connected and string is empty.

_read_error

_print_to_port

Function

Syntax

Parameters

Return Value

Remarks
See also

Example

_ram_available

Prints a string to port.

#include “api.h”
UCHAR _print_to_port(UCHAR port, UCHAR option,
UCHAR *string, UCHAR *lines);

Port is the desired port number, possible values for option:

0: Print without any trailer, 1: Print with a CR trailer,

2: Print with CR-LF trailer, 3: Print cursor movement and ctrl
sequence.

String is a pointer to the string that is to be printed,

Lines is output, value is the number of lines occupied by the string,
printed on the terminal.

0: OK, 1: Error, invalid port number, 7: Error, invalid output
device, 8: Error, invalid option, 9: Port is busy.

The string must be terminated by a NULL-character.
_read_from_port, _rprint_to_port, _conf port

See example 3 in Appendix C

Function

Syntax

Parameters
Return Value
Remarks
See also

Example

Returns the total free memory in RAM.

#include “api.h”
ULONG _ram_available();

Value is in the range from 0 to 204796 .

_free_mem, get size

57

_read_error

Function

Syntax

Parameters
Return Value

Remarks

See also

Example

Retrieves the next error from the ASCII units error stack,
Updates corresponding bits in IR n+5 and IR n+7 .

#Include “api.h”
UCHAR _read_error(USHORT *errorcode);

Errorcode is output, containing the error code and type.

0: OK, 1: Error stack is empty.

The error stack is a cyclic buffer containing the errors, stacked in
order of age, from oldest to newest. Therefore the oldest error is
retrieved first, and the newest error is retrieved last.

However if all errors have been read, the next call to read_error will
return a zero. Calling read_error again, will result in starting at the
oldest error again. For more about error handling, see section 0.

_set_error, _del _errors, _print_errmsg

58

_read_from_port

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Reads data from the input buffer of the specified port.

#include “api.h”
UCHAR _read_from_port(UCHAR port, UCHAR option,
UCHAR led_rate, USHORT number, UCHAR *string);

Port is the desired port number.
Option must be a number from 0to 5, or 17:

Echo Echo End with Special FX
string CR CR
0 Y -
Y Y Y -
2 Y Each character is echoed as
an asterisk (for passwords)
Y Y -
Reads fixed number of
characters
5 Reads only one character
g Y Y Y Up/Down arrows treated as
CR

The string read out is normally terminated by a \O’ character, except
when option four or five are used.

When option five is chosen, the value of one byte is returned in
string, if there is a byte in the buffer. If there is none, a zero is
returned in string.

Led_rate is the blinking speed of the Basic indicator led; 0: slow,

1: fast.

Number specifies the number of characters to be read (max. 511) .
String is a pointer to the array where the read data will be stored.

0: OK, 1:Error, invalid port number, 8: Error, invalid option,
9: Port is busy, 11: Error, input device, 18: Input buffer was
empty,

22: Stopped by wait interrupt, 23: Stopped by break interrupt.

Type ahead is allowed. The input string can only be echoed if the
device was configured as TERM (terminal).

_print_to_port, _rprint_to_port

59

_read_ir_word

Function Retrieves a word from the local copy of the IR OUPUT area.
Syntax #include “api.h”
UCHAR _read_ir_word(UCHAR wordnum, USHORT *val);
Parameters Wordnum indicates the word of the IR INPUT area, valid values are

0 to 4. Val contains the value of the word selected.

Return Value 0: OK, 1: Error, invalid word requested.
Remarks -
See also _write_ir_word, _update_irout
Example -

_read_switches

Function Reads the position of the requested switch.
Syntax #include “api.h”
UCHAR _read_switches(UCHAR switch, UCHAR *pos);
Parameters Switch is the number of which position is to be the switch to be

read, valid values are 1: rotary switch, 2: default switch, 3:
testmode jumper, 4: model detection, 5: start/stop switch.
Pos contains the position of the requested switch:

Requested switch | Possible values

rotary switch | 0 — 15

default switch | 0 (no), 1 (yes)

testmode jumper | 0 (off) , 1 (on)

model detection | 0x?1: ASC31 0x?2:ASC21 0x?3:ASC11
start/stop switch | 0 (stop) , 1 (start)

8: Error, invalid switch type.

Return Value 0: OK,

Remarks In newer ASCII models the default switch and the testmode jumper
are internally connected. In such a case, the return values when
requesting switch is 2 or 3 will always be the same.

See also -

Example See example 3 in Appendix C

60

_realloc

Function

Syntax

Parameters

Return Value

Reallocates a memory block, and copies the contents of the block at
the old location to the new location.

#include “api.h”
VOID* _realloc(VOID *blkptr, ULONG *size, UCHAR type);

Blkptr is the pointer to the block to be reallocated, size should be
smaller than 131068 .

Type is blocktype, 0: non-permanent type, 1: permanent type.
0: Error, not enough space, or block was freed,

Non-zero: pointer to the new start-address of the replaced block.

Remarks If the new block is smaller than the old one, the tail part is
discarded, If the new block is larger than the old one, the tail part is
initialized to zero.

See also _calloc, _malloc, _change_blk_type

Example -

_register_int
Function Registers an interrupt service routine in the exception vector table.
Syntax #include “api.h”
UCHAR _register_int(USHORT vector, ULONG addr);
Parameters Vector is the vector number from the vector table. Addr is the

Return Value
Remarks
See also

Example

address of the interrupt service routine.

0: OK, 1: Error, invalid vector, 2: Error, invalid address.
Precondition: The involved vector should be unreserved.

_mask_basic_int, _unmask_basic_int

61

_rprint_to_port

Function

Syntax

Parameters

‘Rawprints’ a string to port.

#include “api.h”

UCHAR _rprint_to_port(UCHAR port, UCHAR option, UCHAR
*string,

UCHAR *lines, UCHAR strlen);

Port is the desired port number, possible values for option:

0: Print without any trailer, 1: Print with a CR trailer,

2: Print with CR-LF trailer, 3: Print cursor movement and ctrl
sequence.

String is a pointer to the string that is to be printed, Lines is output,
value is the number of lines occupied by the string printed on the
terminal; Is related to terminal screen width.

Strlen must be in the range from 1 to 255 .

Return Value 0: OK, 1: Error, invalid port number, 7: Error, invalid output
device, 8: Error, invalid option, 9: Port is busy.
Remarks This function is a low-level version of _print_to_port, allowing the
string to contain NULL-characters as well.
See also _read_from_port, _print_to_port
Example -
_set_date
Function Changes the date of the realtime clock.
Syntax #Include “api.h”
UCHAR _set_date(_T_DATE date);
Parameters Date is the input, containing the date struct.

Return Value
Remarks
See also

Example

62

0: OK, 1: Error, RTC writing out of time, 3: Error, data out of range.
See section 3-7 for description of date struct T _DATE.

_get _date, set day of week, _set time

_set_day_of week

Function

Syntax

Parameters

Return Value

Changes the day of the realtime clock.

#Include “api.h”
UCHAR _set_day_of week(UCHAR *day_of week);

The input value day_of week represents the day enumeratively:

0: Sunday, 1:Monday, 2: Tuesday, 6: Saturday

0: OK, 1: Error, RTC writing out of time, 3: Error, data out of
range.

Remarks -

See also _set _day_of week, get date, get time

Example -

_set_dtr

Function Sets (asserts) the DTR output signal on a port. If the port is

controlled automatically, an error is returned.
Syntax #Include “api.h”
UCHAR _set_dtr(UCHAR port);
Parameters Port is the desired port number.

Return Value
Remarks
See also

Example

0: OK, 1: Error, invalid port number.

_get_dtr, _set _rts

63

_set_error

Function

Syntax

Parameters

Return Value

Adds an error to the error stack,
Sets the proper indicator led’s on the ASCII panel,
Sets the corresponding values to IR n+5 and n+7.

#Include “api.h”
VOID _set_error(USHORT errorcode);

Errorcode contains the errorcode and type of the error to be added
to the list of errors.

Remarks The error stack can only contain 30 errors. When setting more
errors, the oldest will be lost. For more about error handling, see
section 3-4.

See also _del_errors, _read_error, _print_errmsg

Example -

_set_ir_bit
Function Sets (asserts) a bit in one of the words in IR INPUT area.
Syntax #Include “api.h”
UCHAR _set_ir_bit(UCHAR wordnum, UCHAR bitnum);
Parameters Wordnum indicates the word of the IR INPUT area, valid values are

Return Value

Remarks
See also

Example

64

0 to 4. Bitnum indicates the bit to be set in the selected word.

0: OK, 1: Error, invalid word requested, 2: Error, invalid bit
requested.

_clr_ir_bit, write_ir_word, _update_irin

_set_leds

Function

Syntax

Parameters

Return Value

Turns specified indicator led’s on.

#Include “api.h”
VOID _set_leds(UCHAR ledl, UCHAR led2, , UCHAR led6);

Ledl, led2..led6 correspond to indicator led’s: run, basic, error, errl,
err2, errt. If the value is one, the corresponding led is turned on.

Remarks The errt led can only be controlled on an ASC31.

See also _clr_leds

Example See example 2 in Appendix C

_set_rts

Function Sets (asserts) the RTS output signal on a port. If the port is

controlled automatically, an error is returned.
Syntax #Include “api.h”
UCHAR _set_rts(UCHAR port);
Parameters Port is the desired port number.

Return Value

Remarks

See also

Example

0: OK, 1: Error, invalid port number.

If the ASCII unit is an ASC21, referring to port 2 is possible,
although the port has no RTS output line. In this case it controls (de-
)activation of receiver/transmitter mode of the RS422/485 port.
When the RTS signal is set, the transmitter is active.

_clr_rts, _set_dtr

65

_set_time

Function Changes the time of the realtime clock.
Syntax #Include “api.h”
UCHAR _set_time(_T_TIME time);
Parameters Time is the input, containing the time struct.
Return Value 0: OK, 1: Error, RTC writing out of time, 3: Error, data out of
range.
Remarks See section 3-7 for description of date struct _T_TIME.
See also _get_time, _set_date, _set day_of week
Example -
_Sjis2jis
Function Converts a two-byte shifted JIS character to a two-byte JIS
character.
Syntax #include “api.h”
VOID _sjis2jis(UCHAR inl1, UCHAR in2, UCHAR *outl, UCHAR
*out2);
Parameters In1 and in2 together form the shifted JIS input-character. Outl and

Return Value
Remarks
See also

Example

out2 together form the JIS output-character.

66

_str_to_mots

Function

Syntax

Parameters

Return Value
Remarks
See also

Example

Converts a struct containing an address and a string to a Motorola-S
format string.

#Include “api.h”
UCHAR _str_to_mots(ULONG addr, UCHAR *ptr, UCHAR num_bytes);

Addr is the address where the data should reside, ptr is pointer to the
string that is to be converted.

Num_bytes contains the number of unsigned chars of the string that is to
be converted, valid values are even numbers from 2 to 120 .

0: OK, 1: Error, invalid number of bytes.
For more information on the Motorola-S format, see section 3-6.

_mots_to_str

_unmask_basic_int

Function

Syntax

Parameters

Return Value

Remarks

See also

Example

Unmasks one or all Basic interrupts.

#Include “api.h”
VOID _unmask_basic_int(UCHAR type, UCHAR level));

Type is the number of the interrupt type to unmask (max. 116). If

zero, all are unmasked. Level contains the mask-level at moment of

masking, 0:unmasked, 1: masked.

Always use _unmask_basic_int with _mask_basic_int. Use the
return value of the mask function as parameter for the unmask
function.

_mask_basic_int

67

_update_errors

Function

Syntax

Parameters

Return Value

Updates the error status of all errors in the error stack.

#Include “api.h”
VOID _update_errors();

Remarks For more about error handling, see section 3-4.
See also _set_error, _read_error, _del_errors
Example -
_update_irin
Function Copies words of the local copy of the IR OUTPUT area to the IR
OUTPUT area.
Syntax #Include “api.h”
VOID _update_irin();
Parameters -

Return Value
Remarks
See also

Example

_update_irout, _write_ir_word

68

_update_irout

Function

Syntax

Parameters
Return Value
Remarks
See also

Example

Copies words of the IR INPUT area to the local copy of the IR
INPUT area.

#Include “api.h”
VOID _update_irout();

_update_irin, _read_ir_word

_write_ir_word

Function

Syntax

Parameters

Return Value
Remarks
See also

Example

Changes a word of the local copy in the IR OUTPUT area.

#include “api.h”
UCHAR _write_ir_word(UCHAR wordnum, USHORT *val);

Wordnum indicates the word of the IR INPUT area, valid values are
0 to 4.
Val contains the value of the word selected.

0: OK, 1: Error, invalid word requested.

_read_ir_word, _update_irin

69

70

Appendix C
Examples of small applications

e This appendix contains four examples of small applications, CHANGE CASE, DATE AND TIME, PRINT
STRING and ALGORITHM. These examples can show how:

= library functions can be written
= an application is executed from Basic
= to use several BIOS routines and how to execute a WDT refresh.

e The included examples:

Example | No. of BIOS Example of
No. routines used
1 - Writing a library function in general.
2 7 RT clock, data conversion I/O bus comm'’s, WDT refreshing.
3 2 Port communication, use of a free address.
4 - Use of multiple source files

e Contents of following pages:

= Example 1: CHANGE CASE
1a) Basic listing
1b) Screen dump
1c) Library function source code
1d) Linker file
1le) Make file
= Example 2: DATE AND TIME
2a) Basic listing
2b) Library function source code
2c) Linker file
2d) Make file
= Example 3: PRINT STRING
3a) Basic listing
3b) Library function source code
3c) Linker file
3d) Make file
= Example 4: ALGORITHM
4a) Basic listing
4b) Library function source code: ALGORITH.C
4c) Library function source code: SQUARED.C
4d) Library function header file: SQUARED.H
4e) Linker file
4f) Make file

72

EXAMPLE 1: CHANGE CASE

From Basic, a function can be called that changes the case of a string to either lowercase, uppercase or
sentence case.

1a) The listing of CHNGCASE.BAS, using the library function in an application:

10 ' CHNGCASE. BAS

20 ' DEMONSTRATES THE USE OF A LI BRARY FUNCTI ON

30"

40 ' The library function can convert an input string to | owercase,
50 ' uppercase, or sentence case (only first character in uppercase).
60 ’

70 ' (Make sure that the library chngcase.nts is |oaded as library 0 !)
80’

90’

100 DEF LI BFN CASE(STR, INT), I NT, 0

110 PRI NT

120 INPUT "Pl ease, enter a string: ",A$

130 PRI NT

140 B%=FNCASE(A%, 0)

150 PRINT "String in uppercase: " A$

160 BY%=FNCASE(A%, 1)

170 PRINT "String in | owercase: " A$

180 BY%=FNCASE(A%, 2)

190 PRINT "String in sentencecase: ";A$

200 PRI NT

210 END

1b) A possible screen-dump from the application CHANGE CASE:

ar)

Pl ease wait, conpiling ... Finished.

Pl ease, enter a string: ascii rules!

String in uppercase: ASCI | RULES!
String in | owercase: ascii rul es!
String in sentencecase: Ascii rules!

\ _/

1c) The source code of the library function CHNGCASE.C :

/* CHNGCASE. C
EXAMPLE OF A LI BRARY FUNCTI ON
Can convert an input string to uppercase, |owercase or sentence case. \Wen
it is called fromBASIC, the caller specifies howto convert, by means of
paraneter 'option’. The length of the string is retrieved fromthe byte
precedi ng the string...
Valid values for option are 0, 1 and 2.
If the function returns a zero, all went fine. If the return value is 1, the
Val ue for option was invalid. */

73

/* PROTOTYPI NG

int main(int, char*);
voi d upcase(char*);
voi d | ocase(char*);

/* PRI MARY ROUTI NE:
int main(int option, char *bas_str)

int teller, len;

| en=*(bas_str-1); /* deternine string length */

if (option==0)

for (teller=0; teller<len; teller++) /* convert

upcase(bas_str+teller);
return 0; /* OK */

else if ((option==1) || (option==2)) /* convert

for (teller=0; teller<len; teller++) /* convert

| ocase(bas_str+teller);

if (option==2) upcase(bas_str); /* convert

return 0; /* OK */
}

else return 1; /* invalid option requested */

}

/* SUB- RQUTI NES
voi d upcase(char* kar)

if ((*kar>96)&&(*kar<123)) /* if character is |owercase */
*kar =*kar - 32; /* then convert to uppercase */

}

voi d | ocase(char* kar)

if ((*kar>64)&&(*kar<91)) /* if character is uppercase */
*kar =*kar +32; /* then convert to | owercase */

1d) The linker file CHNGCASE.LD :

/* Qutput architecture: Mtorola 68k */
OUTPUT_ARCH(n68k)

/* Uncomment this if you want Mdtorola-S record fornat out put

[* QUTPUT_FORMAT(srec) */

/* Search directory */

SEARCH DI R(.)
/* Link these libraries

* (Select from libascii.a, libc.a, libgcc.a,
/*GROUP(-lascii -l1c -lgcc -Im*/

l'i bm a,

) *l

*/

*/

to uppercase */

to | ower/sentence case */
to | owercase */

first char to uppercase. */

*/

instead of a COFF fornat

/* The library nust be |oaded into menory at a fixed address i.e. 0x30000
* The armount of menory reserved is 64k. This can be increased if this if this

* is too little. */
VEMORY

{
ram : ORIA@ N = 0x30000, LENGTH = Oxffff

}

/* stick everything in ram (of course) */
SECTI ONS

74

*/

{

. text
{
*(.text)
= ALI G\(0x4) ;

__CIOR LIST__ = .;
LONG((__CTOREND__ - _ CTORLIST_) / 4 - 2)
*(.ctors)

L}

__ DIOR LIST__ = .;
LONG((__DITOR END__ - _ DTORLIST_) / 4 - 2)
*(.dtors)

LONG 0)
_DIOREND__ = .;
*(.rodat a)

*(.gcc_except _table)

_INIT_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.init)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) [* rts */
_FINI_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.fini)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) [* rts */

_etext = .;

*(.lit)

} > ram
.data BLOCK (0x4)

*(.shdat a)

*(.dat a)

_edata = .;
} > ram

. bss BLOCK (0x4)
{

__bss_start = . ;
*(.shbss)
*(. bss)
*(.eh_fram
_end = ALIGN (0x8);
__end = _end;

} > ram

/* Wite sonme data at the end of the nenory area to make sure the ASC |
* unit allocates enough nenory */
. endof nem :

LONG (0x12345678)
} > ram

.stab 0 (NOLQAD)

*(.stab)

.stabstr 0 (NOLOAD)

*(.stabstr)

75

1le) The make file:

Project name; used for project fil enanmes
PRQINAME = chngcase

Program nanes

COWILE = conpile
LI NK = link
OBJCCPY = obj copy
REMOVE = rm-f

Conpile flags

-On Set optimsation level nto 0..3
-\Val | Turn all warnings on

CFLAGS = -00 -wall

Link flags

-W,-Map= Wite linker results to a .MAP file
#-T... Linker file

LDFLAGS = -W, - Map=$(PROINAME) . nep - T$(PRQINAME) . | d
Qutput conversion fl ags

OBJCFLAGS = -Osrec

I NCFI LES =

OBJFI LES = chngcase. o

all: $(PRQINAME).nts

cl ean:
$(REMOVE) $(OBJFI LES)
$(REMOVE) $(PRQINAME) . cof
$(REMOVE) $(PRQINAME) . map
$(REMOVE) $(PRQINAME) . nt's

chngcase. 0: chngcase.c $(1 NCFI LES) nekefile
@ECHO .
@CHO Conpi ling $<
$(COWPI LE) $(CFLAGS) $< -0 $@
$(PROINAME) . cof: $(OBJFI LES) $(PRQINAME) .| d makefile
@ECHO

@CHO Li nki ng
$(LINK) $(LDFLAGS) -0 $(PROINAME). cof $(OBIFI LES)

$(PROINAME) . mt's: $(PROINAMVE) . cof nakefil e
@CHO

@CHO i3urni ng
$(OBICOPY) $(OBICFLAGS) 3$< s@

76

EXAMPLE 2: DATE AND TIME

This function continuously writes the date and time to a DM address specified by the caller. By means of a
programming console the date and time can be read from the concerning memory addresses.

2a) The listing of DATETIME.BAS, using the library function in an application:

10’
20
30"
40
50
60 ’
70’
80 ’
90

100
110
120
130
140
150
160
170
180

DATETI ME. BAS
DEMONSTRATES THE USE OF A LI BRARY FUNCTI ON THAT USES SOVE Bl OSROUTI NES.

The library function wites the date and tine to an address in DM ar ea.
The user specifies the address to wite to.

(Make sure that the library datetine.ms is |oaded as library 0 !)

DEF LI BFN DT(INT), I NT, O

PRI NT

| NPUT" Address "; A%

PRI NT"Use a progranmi ng console or Syswin to | ook at address"; A%
PRI NT "You can stop this routine by pressing ctrl-x."

E=FNDT(A%

| F E=1 THEN PRI NT: PRI NT"I nval i d address requested!": PRI NT: GOTO 120
| F E=2 THEN PRI NT: PRI NT"PLC bus transfer busy... Try again later."
END

77

2b) The source code of the library function DATETIME.C :

/* DATETIME C
EXAMPLE OF A LI BRARY FUNCTI ON USI NG SOMVE BI S RQUTI NES, THAT ARE DEFI NED IN
APl . H .

The function continuously read the date, the tine and the day of the week.
These data are converted to readabl e Binary Coded Decimal, and witten to DM
nenory ar ea.

Every second, the data is updated, and two indicator |eds flash.

The caller determines the DM address to wite to.
Possi bl e return val ues: 0: X
1: Invalid address requested
2: Gher PLGbus transfer is active
3: Stopped by wait- or break-interrupt */

#i nclude "API. H'

#defi ne MAX_NR_CHARS 8

#def i ne MAX_NR_WORDS (MAX_NR_CHARS/ 2)
#define AT 1

#define NUM REQ 1

/* Prototyping: */
USHORT nai n(USHORT) ;
UCHAR hex2bcd(UCHAR) ;

/* MAI N ROUTI NE: */
USHORT mai n(USHORT addr ess)
{

/* variables for tenmporary storing of time/date/day: */

_T_TIME tijd;

_T DATE datum

UCHAR day_ot _week;

/* parameters for the _pc_wite function: */
UCHAR nr_of _words = NMAX_NR _WORDS;

UCHAR ar ea[MAX_NR_WORDS] ;

UCHAR dat a[MAX_NR_CHARS] ;

/* variables used to control programflow */
UCHAR ol d_seconds = 0;

UCHAR | edlon = O;

UCHAR problem = 0; /* 0=No problem */

do
{
/* retrieve data */
(void)_get_tine(&ijd);
(voi d) _get _dat e(&dat un;
(voi d) _get _day_of _week(&day_ot _week) ;

data[0] = hex2bcd(tijd.hours);
data[1] = hex2bcd(tijd. m nutes);
data[2] = hex2bcd(tijd.seconds);
data[3] = hex2bcd(day_ot _week);
data[4] = hex2bcd(datum day);
data[5] = hex2bcd(datum nont h);
data[7] = hex2bcd(datum year);

if (tijd.seconds!=ol d_seconds) /* Update data every second */

78

ol d_seconds=ti j d. seconds;

if (data[7]>0x69) data[6]=0x19; el se data[6]=0x20; /* determ ne century */
probl en¥_pc_wite(AT, NUM_REQ, &nr _of _wor ds, &ar ea[0] , &addr ess, (UCHAR*) dat a) ;
if (ledlon) /* if ledl is on, then turn it off, and turn on led2 */

| edlon=0;
_clr_leds(1,0,0,0,0,0);

_set_leds(0,1,0,0,0,0);

else /* if ledl is off, then turn it on, and turn led2 off */

| edlon=1;
_set_leds(1,0,0,0,0,0);
_clr_leds(0,1,0,0,0,0);

}
}

_wdt _refresh; /* Instead of asn{“TRAP #00"); */
} while (!problen;

/* end of routine: */

if (problenm=3) return 1;

else if (problem=5) return 2;

else if ((problem=1)||(problenm=7)) return 3;

return 0; /* OK */

UCHAR hex2bcd(UCHAR hex)

/* This routine is the 8-bit version of _hex2bcd, casting USHORTs<-->UCHARs */
USHORT result;

(voi d) _hex2bcd((USHORT) hex, &result);

return (UCHAR)resul t;

}

2¢) The linker file DATETIME.LD :

/* Qutput architecture: Mdtorola 68k */
OUTPUT_ARCH(n68k)

/* Uncomment this if you want Mdtorola-S record format output instead of a COFF format */
[* QUTPUT_FORMAT(srec) */

/* Search directory */
SEARCH DI R(.)

/* Link these libraries
* (Select from libascii.a, libc.a, libgcc.a, libma, ...) */
/*GROUP(-lascii -l1c -lgcc -Im*/

/* The library nust be |oaded into menory at a fixed address i.e. 0x30000

* The armount of menory reserved is 64k. This can be increased if this if this
*is too little. */

MEMORY

{
}

/* stick everything in ram (of course) */
SECTI ONS

{

ram : ORIA@ N = 0x30000, LENGIH = Oxffff

.text

79

*(.text)
= ALI G\(0x4) ;

__CIOR LIST__ = .;

LONG((__CTOREND__ - _ CTORLIST_) / 4 - 2)
*(.ctors)

LONG(0)

_CIOREND__ = .;

__ DIOR LIST__ = .;

LONG((__DITOR END__ - _ DTORLIST_) / 4 - 2)
*(.dtors)

LONG 0)

_DIOREND__ = .;

*(.rodat a)

*(.gcc_except _tabl e)

_INIT_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.init)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) /* rts */

_ FINI_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.fini)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) /* rts */

_etext =
*(.lit)

} > ram

L}

.data BLOCK (0x4)

*(.shdat a)

*(.dat a)

_edata =
} > ram

L}

. bss BLOCK (0x4)
{

__bss_start = . ;
*(.shbss)
*(. bss)
* (COMVON)
*(.eh_fram
_end = ALIGN (0x8);
__end = _end;

} > ram

/* Wite sonme data at the end of the nenory area to make sure the ASC |
* unit allocates enough nenory */
. endof nem :

LONG (0x12345678)
} > ram

.stab 0 (NOLQAD)
{

*(.stab)

.stabstr 0 (NOLOAD)

*(.stabstr)

}
}

80

2d) The make file:

Project name; used for project fil enanmes
PROQINAME = datetine

Program nanes

COWILE = conpile
LI NK = link
OBJCCPY = obj copy
REMOVE = rm-f

Conpile flags

-On Set optimsation level nto 0..3
-\Val | Turn all warnings on

CFLAGS = -0 -wall -1../inc

Link flags

-W,-Map= Wite linker results to a .MAP file
#-T... Linker file

LDFLAGS = -W, - Map=$(PROINAMVE) . nep - T$(PRQINAME) . | d
Qutput conversion fl ags

OBJCFLAGS = -Osrec

INCFILES = ../inc/api.h

OBJFI LES = datetine.o

all: $(PRQINAME).nts

cl ean:
$(REMOVE) $(OBJFI LES)
$(REMOVE) $(PRQINAME) . cof
$(REMOVE) $(PRQINAME) . map
$(REMOVE) $(PRQINAME) . nt's

datetine.o: datetinme.c $(I NCFILES) nekefile
@CHO .
@ECHO Conpi ling $<
$(COWPI LE) $(CFLAGS) $< -0 3@
$(PROJINAME) . cof : $(OBIFI LES) $(PRQINAME) .| d makefile
@CHO

@CHO Li nki ng
$(LINK) $(LDFLAGS) -0 $(PROINAME). cof $(OBIFI LES)

$(PROINAME) . m's: $(PROINAVE) . cof nakefil e
@CHO

@CHO i3urni ng
$(OBICOPY) $(OBICFLAGS) 3$< s@

81

EXAMPLE 3: PRINT STRING

This application demonstrates how a library function for a free address can be made. Because of the free
address, no function calls can be made.

3a) The listing of PRINTSTR.BAS, using the library function in an application:

10 * PRI NTSTR BAS

20 ' DEMONSTRATES THE USE OF A LI BRARY FUNCTI ON.

30

40 ' The library function prints a string to the terninal
50 ’

60 ' This library can be | oaded at a free address

70’

80 ' (Make sure that the library printstr.nms is |loaded as library 0 !)
90 ’

100

110 DEF LI BFN PRNTSTR(STR), | NT, 0

120 PRI NT

130 INPUT "Pl ease, enter a string: ", A$

140 PRI NT

150 BY%=FNPRNTSTR(A$)
160 IF B¥%>0 THEN PRINT "Could not print the string"
170 END

3b) The source code of the library function PRINTSTR.C :

/* PRINTSTR C
EXAMPLE OF A LI BRARY FUNCTI ON
Prints a string. */

/* 1 NCLUDES */
#i ncl ude "api.h"

/* PROTOTYPI NG */
USHORT printstr(UCHAR *str);
USHORT nmi n(VO D) ;

/* Return val ues: */
#define K 0
#define ERROR 1
/* Constants: */
#define MODEL_DETECTION 4 /* Tells read_switches to detect unit nodel */
#define PRI NT_NORMAL O /* Print without any trailer */
#define PRINT_CRLF 2 /* Print with cr and |If trailer */
#define MAX_STR LEN 256 /* Maximum string | ength */
/* PRI MARY RQUTI NE: */
USHORT printstr(UCHAR *str)
{

UCHAR port;

UCHAR | ; /* dummy */

UCHAR | engt h;

UCHAR count;

UCHAR ch[8] ;

UCHAR st rcopy[MAX_STR_LEN] ;

ch[0] ="FP;

82

ch[1]
ch[2]
ch[3]
ch[4]
ch[5]
ch[6]
ch[7]

/* Copy the string and add a '\0’ to termnate the string */
length = *(str-1);
for (count=0; count<length; count++)
{
strcopy[count] = *str;
str++; /* Increment pointer */

strcopy[count] = "'\0";
if (_read_sw tches(MODEL_DETECTI QN, &port))
{
return ERRCR;
}
el se
{

/* Deternmine terninal port, by checking ASCI| unit nodel. */
port=(port &x02) +3; /* Now, port contains 3 if ASC31 else port contains 5 */
if (port==5) port=1;

(VO D _print_to_port(port, PRI NT_NORMAL, &ch[O0], &l);
(VO D _print_to_port(port, PRINT_CRLF, &strcopy[0], &);

return OK

}

/* Dummy main routine */
USHORT nmi n(VO D)

return O;

}

3c) The linker file PRINTSTR.LD :

/* Startup nodul e nmust be specified to make sure crt0.0 is not |oaded first */
STARTUP(printstr. o)

/* Qutput architecture: Mtorola 68k */
OUTPUT_ARCH(n68k)

/* Uncomment this if you want Mdtorola-S record fornmat output instead of
* a COFF format */
[* QUTPUT_FORMAT(srec) */

/* Search directory */

SEARCH DI R(.)

/* Link these libraries

* (Select from libascii.a, libc.a, libgcc.a, libma, ...) */
/*GROUP(-lascii -l1c -lgcc -Im*/

/* Set the menmory origin to 0x00000, because the library will be | oaded at a
* free addres */
MEMORY

{
}

ram : ORIA@ N = 0x00000, LENGTH = Oxffff

83

/* stick everything in ram (of course) */
SECTI ONS
{

. text

*(.text)
= ALI G\(0x4) ;

__CIOR LIST__ = .;

LONG((__CTOREND__ - _ CTORLIST_) / 4 - 2)
*(.ctors)

LONG(0)

_CIOREND__ = .;

__ DIOR LIST__ = .;

LONG((__DTOR END__ - _ DTORLIST_) / 4 - 2)
*(.dtors)

LONG 0)

_DIOREND__ = .;

*(.rodat a)

*(.gcc_except _table)

_INIT_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.init)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) /* rts */

_ FINI_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.fini)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) /* rts */

_etext = .;

*(.lit)

} > ram
.data BLOCK (0x4)

*(.shdat a)

*(.dat a)

_edata = .;
} > ram

. bss BLOCK (0x4)
{

__bss_start = . ;
*(.shbss)
*(.bss)
* (COMVON)
*(.eh_fram
_end = ALIGN (0x8);
__end = _end;

} > ram

/* Wite sonme data at the end of the nenory area to make sure the ASC |
* unit allocates enough nenory */
. endof nem :

LONG (0x12345678)
} > ram

.stab 0 (NOLQAD)
*(.stab)
}

.stabstr 0 (NOLOAD)
{

84

*(.stabstr)

}
}

3d) The make file:

Project name; used for project fil enanmes
PRQINAME = printstr

Program nanes

COWILE = conpile
LI NK = link
OBJCCPY = obj copy
REMOVE = rm-f

Conpile flags

-On Set optimsation level nto 0..3
-\Val | Turn all warnings on

CFLAGS = -0 -wall -1../inc

Link flags

-W,-Map= Wite linker results to a .MAP file
#-T... Linker file

LDFLAGS = -W, - Map=$(PROINAMVE) . nep - T$(PRQINAME) . | d
Qutput conversion fl ags

OBJCFLAGS = -Osrec

INCFILES = ../inc/api.h

OBJFILES = printstr.o

all: $(PRQINAME).nts

cl ean:
$(REMOVE) $(OBJFI LES)
$(REMOVE) $(PRQINAME) . cof
$(REMOVE) $(PRQINAME) . map
$(REMOVE) $(PRQINAME) . nt's

printstr.o: printstr.c $(1NCFILES) mekefile
@ECHO .
@ECHO Conpi ling $<
$(COWPI LE) $(CFLAGS) $< -0 $@

$(PRQINAME) . cof : $(OBJFI LES) $(PROINAME) .| d nmakefile
@=CHO .
@CHO Li nki ng
$(LINK) $(LDFLAGS) -0 $(PRQINAME). cof

$(PROINAME) . m's: $(PROINAMVE) . cof nakefil e
@ECHO .
@CHO Bur ni ng
$(OBJCOPY) $(OBJCFLAGS) $< $@

85

EXAMPLE 4: ALGORITHM

This application demonstrates the use of multiple functions that are in separate files. The application returns a
value y that is computed according to the formula: y = x* - x.

4a) The listing of ALGORITH.BAS, using the library function in an application:

10 * ALGORI TH. BAS

20 ' DEMONSTRATES THE USE OF A LI BRARY FUNCTI ON.

30

40 ' The library function conputes y = x*2 — x and squares the input paraneter
50 '

60 ' (Make sure that the library algorith.nms is |oaded as library 0 !)
70

80 '

90 DEF LI BFN ALGORTH(ADDR), LNG 0

100 PRI NT

110 INPUT "Pl ease, enter a nunber: ", A&

120 PRI NT

130 B&=FNALGORTH(VARPTR(A&))

140 PRINT "The results: "; A& B&

150 END

4b) The source code of ALGORITH.C :

/* TWOFI LES. C
EXAMPLE OF A LI BRARY FUNCTI ON
Thi s exanpl e calls function Squared from squared. c
Return value: y = x"2 - X */

/* I nclude header file */
#i ncl ude "squared. h"

/* PROTOTYPI NG */
| ong mai n(long*);

/* PRI MARY ROUTI NE */
| ong mai n(l ong* arg)

long result;
| ong save;

save = *arg; /* Save val ue of input */
*arg = Squared((short)*arg); /* Square input val ue x|
result = *arg - save; /* Subtract saved input value */

return result; /* Return the conmputed val ue */

86

4c) The source code of SQUARED.C :

/* SQUARED. C
EXAMPLE OF A LI BRARY FUNCTI ON
The function Squared is called by main fromalgorith.c
Return value: y = x"2 */

/* I nclude header file */
#i ncl ude "squared. h"

/* Cal cul ate arg squared */
| ong Squared(short arg)
{

return (long)arg * (long)arg;

}

4d) The header file SQUARED.H :

/* SQUARED. H
EXAMPLE OF A LI BRARY FUNCTI ON */

/* Public function Squared */
extern | ong Squared(short);

4e) The linker file ALGORITH.LD :

/* Qutput architecture: Mtorola 68k */
OUTPUT_ARCH(n68k)

/* Uncomment this if you want Mdtorola-S record fornmat output instead of
* a COFF format */
[* QUTPUT_FORMAT(srec) */

/* Search directory */

SEARCH DI R(.)
/* Link these libraries

* (Select from libascii.a, libc.a, libgcc.a, libma, ...) */
/*GROUP(-lascii -l1c -lgcec -Im*/

/* The library nust be |oaded into menory at a fixed address i.e. 0x30000
* The armount of menory reserved is 64k. This can be increased if this if this
*is too little. */

MEMORY

{
}

/* stick everything in ram (of course) */
SECTI ONS

{

ram : ORIA@ N = 0x30000, LENGIH = Oxffff

. text

87

*(.text)
= ALI G\(0x4) ;

__CIOR LIST__ = .;

LONG((__CTOREND__ - _ CTORLIST_) / 4 - 2)
*(.ctors)

LONG(0)

_CIOREND__ = .;

__ DIOR LIST__ = .;

LONG((__DITOR END__ - _ DTORLIST_) / 4 - 2)
*(.dtors)

LONG 0)

_DIOREND__ = .;

*(.rodat a)

*(.gcc_except _tabl e)

_INIT_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.init)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) /* rts */

_ FINI_SECTION__ = . ;

LONG (0x4e560000) /* 1inkw % p, #0 */
*(.fini)

SHORT (0x4e5e) [* unlk % p */
SHORT (0x4e75) /* rts */

_etext =
*(.lit)

} > ram

L}

.data BLOCK (0x4)

*(.shdat a)

*(.dat a)

_edata =
} > ram

L}

. bss BLOCK (0x4)
{

__bss_start = . ;
*(.shbss)
*(. bss)
* (COMVON)
*(.eh_fram
_end = ALIGN (0x8);
__end = _end;

} > ram

/* Wite sonme data at the end of the nenory area to make sure the ASC |
* unit allocates enough nenory */
. endof nem :

LONG (0x12345678)
} > ram

.stab 0 (NOLQAD)
{

*(.stab)

.stabstr 0 (NOLOAD)

*(.stabstr)

}
}

4f) The make file:

88

Project name; used for project fil enanmes
PRQINAME = algorith

Program nanes

COWILE = conpile
LI NK = link
OBJCCPY = obj copy
REMOVE = rm-f

Conpile flags

-On Set optimsation level nto 0..3
-\Val | Turn all warnings on

CFLAGS = -00 -wall

Link flags

-W,-Map= Wite linker results to a .MAP file
#-T... Linker file

LDFLAGS = -W, - Map=$(PROINAMVE) . nep - T$(PRQINAME) . | d
Qutput conversion fl ags

OBJCFLAGS = -Osrec

I NCFI LES = squared. h

OBJFILES = algorith.o squared. o

all: $(PRQINAME).nts

cl ean:
$(REMOVE) $(OBJFI LES)
$(REMOVE) $(PRQINAME) . cof
$(REMOVE) $(PRQINAME) . map
$(REMOVE) $(PRQINAME) . nt's

algorith.o: algorith.c $(I NCFILES) nekefile
@ECHO .
@CHO Conpi ling $<
$(COWPI LE) $(CFLAGS) $< -0 $@

squared. o: squared.c $(I NCFI LES) nekefile
@ECHO .
@ECHO Conpi ling $<
$(COWPI LE) $(CFLAGS) $< -0 $@
$(PROINAME) . cof: $(OBJFI LES) $(PRQINAME) .| d makefile
@ECHO

@CHO Li nki ng
$(LINK) $(LDFLAGS) -0 $(PROINAME). cof $(OBIFI LES)

$(PROINAME) . m's: $(PROINAVE) . cof nakefil e
@CHO

@CHO i3urni ng
$(OBICOPY) $(OBICFLAGS) 3$< s@

90

Appendix D
HMI of Library Interface

Use a cross compiler (and simulator) for writing “other” language routines to execute operations that cannot
be processed with Basic programs. The ASCII unit incorporates the Motorola 68340 CPU.

Library routines can be written for the ASCII unit and called from the BAsIC program just like any other BASIC
function. A library routine cannot be saved to the personal computer but can only be loaded from the personal
computer withthe | i b | oad command. A total of 10 library functions can be stored in the ASCII unit. Library
routines are stored in the Motorola-S format.

The PASCAL calling convention, arguments are pushed from left to right, is used for functions (only a fixed
number of arguments is allowed): the caller pushes the arguments, as they appear, from left to right on stack
(register A7). The callee (the routine being called) removes the parameters from the stack again. Parameters
can be passed by reference by using the VARPTR function in BASIC to specify the address of the parameter.
This parameter is then passed as an output parameter on the stack.

Function results are to be returned in registers. Depending on the type, different registers are used, if the
return value of a function is assigned to a variable then the Expression Parser/Executor ensures that the
values are taken from the correct registers and assigned to the variable. If the type of the return value is a
string some temporary storage is required to store the return value. This is allocated before the function is
called and freed after assignment.

The table below shows the register assignment for different types of return value.

Return type Register
char DO

short int DO

long int DO
single float DO
double float p0/D1
string pointer A0

Returning string pointers is a risk since the memory associated with the string is not allocated and may be
overwritten at any time before assignment. In this case it is better to pass the string variable as a reference
parameter and allocate memory before the call to the library function.
Functions should have a stack frame containing all their local data set up by a LINK/UNLK pair using A6 as the
frame pointer. Normal entry code is just a link instruction reserving space for local variables and setting up the
frame pointer:

LI NK. W A6, #(-9)

where S is the size (in bytes) of the local data of the function. Exit code has to remove local variables from
the stack, reset the frame pointer to its previous value, remove the parameters and finally return to the caller:

UNLK A6
RTD

91

The following figure shows the layout of the stack frame described above. The “Dynamic Link” is actually the

A6

register pointing to the address in the stack of the previous calling routine.

High memory address

Parameters
Return Address | 4 bytes
Dynamic Link 4 bytes A6

The stack grows

Local variables S bytes downwards

Saved registers SP

Low memory address

Detailed calling procedure

The following procedure is to be used for calling library routines. Items 6 to 14 are executed by the library
routine, the other items are executed by the BAsIC executor. If required the available space for the System
Stack can be displayed using the PRINT or WATCH statements in BASIC to display the ssTACK System Variable.

1.

2
3.
4

16.
17.
18.

Push the routine’s 10 parameters on the stack;

. If required, display top of stack on terminal, showing the input parameters; [optional]

Push the return address on the stack;

. Jump to callee;

5. Create a new stack frame;
Reserve space for local variables on the stack;
Save all registers on the stack; [optional]
Read input parameters from the stack;
. Execute the routine;
10.Write return parameters on the stack;
11.Restore saved registers to the stack; [optional]
12.Set the return value in the appropriate register(s);
13.Free space for the local variables from the stack;
14.Restore the previous stack frame;
15.Set the Program Counter to the return address;
Read return value from the appropriate register(s);
If required, display top of stack on terminal, showing the output parameter value; [optional]
Read output parameters from the stack and pop them from the stack;

© ® N

Transforming the above items into Motorola assembly instructions and their corresponding action on the stack
and the registers is described below.

92

ltem 1:
This can be done in several ways, e.g.:

MOVE. W #0x0002, - (A7) ; Put 2 on the stack and nove the Stack
; Pointer two bytes (one word) down
PEA. L (-2, A3) ; Put the address cal cul ated by addi ng the
; address stored in A3 and -2 on stack and
; move the Stack Pointer four bytes down: SP,

hi gh address st ack

SP;: bef ore

Paranet ers

SP,: af ter

| ow addr ess

Item 2:
This item does not change the stack pointer.

Item 3 and 4:
These two items can be combined by using the following statement:

JSR <effective address> ; Move the Stack Pointer four bytes down, SPy,
; copy the current Program Counter to the stack
; and put the PC at the <effective address>

hi gh address st ack

SP;:

Paranet ers

SP,: bef ore

Ret urn
address (PO

SP;: af ter

| ow addr ess

93

Item 5 and 6:
These two items are handled by the following instruction:

LI NK A6,

94

-Dn

; Move the stack pointer four bytes down,

; copy the current A6 register to the stack,
; copy the current stack pointer to A6,

; reserve space on the stack for |ocal

; variables (Dn bytes) by noving the stack

; down: SPs

hi gh address st ack

SP;:

Paraneters

SP,:

Ret urn
address (PO

SP;: bef ore

Current A6

Local
vari abl es
(Dn bytes)

SP,: af ter

| ow addr ess

ltem 7:
This is done by executing e.g. the following instruction:

MOVEM L DO/ D1/ D2/ D3/ D4/ D5/ D6/ D7/ AO/ ALl A2/ A3/ A4l A5/ A6, - (A7)
; For each register the stack pointer (A7)

; moved 4 bytes down: SP;

hi gh address

SP;:

SP,:

SP;:

SP,: bef ore

SPs: af ter

| ow addr ess

Item 8 to 10:
These items do not change the stack pointer.

st ack

Paraneters

Ret urn
address (PO

Current A6

Local
vari abl es
(Dn bytes)

Regi sters

is

95

Item 11.

This is done by executing e.g. the following instruction:

(A7) +, D0/ D1/ D2/ D3/ D4/ D5/ D6/ D7/ AQ/ A1l A2/ A3/ A4l A5/ A6
; For each register the stack pointer (A7)

MOVEM L

Iltem 12:

; moved 4 bytes up: SP,

hi gh address

SP;:

SP,:

SP;:

SP,: af ter

SPs: bef ore

| ow addr ess

This item does not change the stack pointer.

96

st ack

Paraneters

Ret urn
address (PO

Current A6

Local
vari abl es
(Dn bytes)

Regi sters

is

Item 13 and 14:
These two items are handled by the following instruction:

UNLK A6 ; Put the Stack Pointer at the address stored
; in A6 (see item“4 and 5"); this renoves all
; local variables fromthe stack. Restore A6

fromthe stack and nove the stack pointer 4
byt es up: SP,

hi gh address st ack

SP;:

Paranet ers

SP,:

Ret urn
address (PO

SP;: af ter

Current A6

Local
vari abl es
(Dn bytes)

SP,: bef ore

| ow addr ess

ltem 15:
This is done by executing e.g. the following instruction:

RTS ; Wite the address pointed at by the Stack
; Pointer to the Program Counter and nove the
; Stack Pointer 4 bytes up: SP;

hi gh address st ack

SP;:

Paranet ers

SP,: af ter

Ret urn
address (PO

SP;: bef ore

| ow addr ess

Item 16 and 17:
These items do not change the stack pointer.

97

Iltem 18:

This can be done in several ways, e.g.:

MOVE. W

98

(A7) +,

DO

; Put 2 what

is on the stack in DO and nove the

; Stack Pointer two bytes (one word) up: SP;

hi gh address

SP;: af ter

SP,: bef ore

| ow addr ess

st ack

Paraneters

Appendix E
Description of Linker and Map files

Linker parameter files

A linker parameter file contains settings that are needed for linking the object files to one coff file. A file will
look something like this:
/* Startup nodul e can be specified here, because the linker loads crt0.0

* first by default */
/*STARTUP(crt0.0)*/

/* Qutput architecture: Mtorola 68k */
QUTPUT_ARCH(n68k)

/* Uncomment this if you want Motorola-S record format output instead of
* a COFF format */
[* OQUTPUT_FORMAT(srec)*/

/* Search directory */
SEARCH DI R(.)

/* Link these libraries and search themuntil no
* unresol ved are present between them */
CGROUP(-lascii -lgcc -lc)

/* Menory origin specified at 0x30000 */
MEMORY

{
}

/* stick everything in ram (of course) */
SECTI ONS

{

ram : ORIG N = 0x30000, LENGTH = Oxffff

.text
{
*(.text)
= ALI G\(0x4) ;

__CTOR LIST__ = .;

LONG((__CTOR END - _ CTORLIST) / 4 - 2)
*(.ctors)

LONG(0)
__CIOR END__ = .;
__DIOR LIST__ = .;

LONG((__DTOR END - _ DTOR LIST) / 4 - 2)
*(.dtors)

LONG(0)
__DIOR END__ = .;

*(.rodata)
*(.gcc_except _table)
_INIT_SECTION _ = . ;
LONG (0x4e560000) /* |l'inkw % p, #0 */
*(.init)
SHORT (0Ox4eb5e) /* unlk %p */
SHORT (0x4e75) /* rts */
__FINI_SECTION__ = . ;
LONG (0x4e560000) /* l'inkw % p, #0 */
*(.fini)
SHORT (0Ox4e5e) /* unlk %p */
SHORT (0x4e75) [* rts */
_etext = .;
*(.lit)

} > ram

.data BLOCK (0x4)
{
*(.shdata)

*(.data)
_edata = .;

99

} > ram

. bss BLOCK (0x4) :
{

__bss_start = . ;
*(.shbss)
*(. bss)
* (COMVON)
*(.eh_fram
_end = ALIGN (0x8);
__end = _end;

} > ram

/* Wite some data at the end of the nmenory area to nmake sure the ASCII
* unit allocates enough nmenory */
.endof nem :

LONG (0x12345678)
} > ram

.stab 0 (NOLOAD) :
{

*(.stab)
}

.stabstr 0 (NOLOAD) :

{
*(.stabstr)

}
}

The entry 'STARTUP(crt0.0)’ specifies which object module should be placed at the start of the output file. If
this entry is omitted, crt0.0 is used by default. This entry must be specified, if the primary function does not
have the name 'main’.

The entry 'OUTPUT_ARCH(m68K)’ specifies the output architecture. Since the ASCII unit has a Motorola
68340 processor, this should always be 'm68k’.

The entry 'OUTPUT_FORMAT (srec)’ specifies the output format of the generated file. If this entry is omitted,
the output format used is 'coff’. The ASCII unit can only load Motorola-S record files. By specifying 'srec’ here,
Motorola-S records can be created directly without having to create coff files first. However, because coff files
can be used for debugging it's advised to create coff files first.

The entry 'SEARCH_DIR(.)' specifies the search directory that is searched for files. .’ means that the current
directory is searched.

The entry 'GROUP(-lascii -lgcc —Ic)' specifies which libraries (libascii.a, libgcc.a, libc.a) should be included.
The linker keeps searching these libraries until all unresolved references between functions from these
libraries are resolved.

The entry 'MEMORY ' specifies the used memory block(s). For each block a name is declared. The keyword
'ORIGIN' specifies at which memory address the block should start, and 'LENGHT' specifies the size of the
memory block.

The entry 'SECTIONS' specifies the memory layout. Inside this section are sub sections.
Functions are placed in the .text section

Initialised global data are placed in the .data section

Uninitialised global data are placed in the .bss section

At the end of most sections is specified in what memory block a section should be placed. The settings as
shown in this example should be OK for most situations.

100

Map files

A map file shows which object files are loaded and it shows a memory map of the generated coff file. A file will

look something like this:

Menory Configuration

Nane Oigin Length Attributes
ram 0x00030000 0x0000f f f f
defaul t 0x00000000 Oxffffffff
Li nker script and nenory nap
LOAD c:/xgcc/ 68k/2_8_1/nmshort/mtd/ ncpu32/crt0.o
LOAD exanpl e. o
LOAD c:/xgcc/ 68k/2_8_1/mshort/nmrtd/ ncpu32/1ibgcec. a
LOAD c:/xgcc/ 68k/2_8_1/nmshort/nmrtd/ ncpu32/1ibgcc. a
START GROUP
LOAD c:/xgcc/ 68k/2_8_1/mshort/nmrtd/ ncpu32/1ibbcc. a
LOAD c:/xgcc/ 68k/2_8_1/nmshort/mtd/ ncpu3d2/libc.a
LOAD c:/xgcc/ 68k/2_8_1/mshort/mrtd/ ncpu32/1ibgcec. a
LOAD c:/xgcc/ 68k/2_8_1/nmshort/mtd/ ncpu32/1libma
END GROUP
0x00000000 __DYNAM C=0x0
0x00000000 PROVI DE (__stack, 0x0)
. text 0x00030000 0x54
*(.text)
.text 0x00030000 Oxe c:/xgcc/68k/2_8_1/nmshort/mtd/ ncpu32/crt0.o
0x00030006 __min
0x00030000 start
Fill 0x0003000e 0x2
.text 0x00030010 0x24 exanple.o
0x00030010 mai n
0x00030034 . =ALI GN\(0x4)
0x00030034 __CTOR_LIST__=.
0x00030034 0x4 LONG Ox0 (((__CTOR_END__-__CTOR LI ST__)/0x4)-0x2)
*(.ctors)
0x00030038 0x4 LONG 0x0
0x0003003c __CTOR_END__-=.
0x0003003c __DTOR_LIST__=.
0x0003003c 0x4 LONG Ox0 (((__DTOR END__-__DTOR LI ST__)/0x4)-0x2)
*(.dtors)
0x00030040 0x4 LONG 0x0
0x00030044 _ DTOR _END__=.
*(.rodata)
*(.gcc_except _table)
0x00030044 __ INIT_SECTION__=.
0x00030044 0x4 LONG 0x4e560000
*(.init)
0x00030048 0x2 SHORT Ox4ebe
0x0003004a 0x2 SHORT 0x4e75
0x0003004c __FINI _SECTION__=.
0x0003004c 0x4 LONG 0x4e560000
*(.fini)
0x00030050 0x2 SHORT Ox4ebe
0x00030052 0x2 SHORT 0x4e75
0x00030054 _etext=.
*(.lit)
.data 0x00030054 0x4
*(.shdata)
*(.data)
.data 0x00030054 0x4 c:/xgcc/68k/2_8_1/nmshort/mtd/ ncpu32/crt0.o
0x00030058 _edat a=.
. bss 0x00030058 0x0
0x00030058 __bss_start-=.
*(.shbss)
*(. bss)
* (COMVON)
*(.eh_fram
0x00030058 _end=ALI G\(0x8)
0x00030058 __end=_end
. endof mem 0x00030058 0x4
0x00030058 0x4 LONG 0x12345678
.stab 0x00000000 0x1b0

101

*(.stab)

.stab 0x00000000 0x1b0 exanple.o
.stabstr 0x00000000 0x35c¢
*(.stabstr)

.stabstr 0x00000000 0x35c exanple.o

0x0 (size before rel axi ng)
QUTPUT(exanpl e. cof cof f - nB68k)

The output is placed in four columns:

¢ Name of the memory block

e Start address of the memory block

¢ Length of the memory block

¢ Name of the elements inside the memory block

102

Appendix F
Assembly

GNU GCC can handle assembly files. As a matter of fact, all C source code is converted to intermediate
assembly files during compilation. This appendix describes how C files can be converted to assembly files and
how coff and MTS files can be disassembled.

The source file that is used for the examples in this chapter looks like this:
int main(int argument)

{

unsi gned char val

val = (unsigned char)argunent;
val +=1

return (int)val

}

Inline assembly

GCC supports inline assembly. The keyword 'asm’ can be used for this. The syntax is:
asm "assenbly code")

Where 'assembly code’ represents the inline assembly code. All code between quotation marks is copied
exactly the same to the assembly intermediate files. The assembly code between quotation marks can even
span multiple lines.

To perform a watchdog timer refresh, the following inline assembly code can be used:
asm("trap #00")

Creating assembly output files from C input files

GCC can convert C files (.c) to assembly files (.s). The assembly file could also be manually adjusted to your
needs. Whenever possible use C instead of assembly. Code can be re-used and ported more easily when
using C.

To create an assembly output file, add the option -S’ when compiling:
compile -Q -S -0 exanple.s exanple.c

The resulting file will look something like this:

.file "exanple.c"
gcc2_conpi | ed.
__gnu_conpil ed_c:

.text

.even
.globl main
mai n:

l'ink. w %6, #-4

jsr __main

move. b 9(%a6), - 1(%6)

addqg. b #1, - 1(%6)

clr.w %l0

move. b -1(%6), %0

jbra .L1

.even
. L1

unl k %6

rtd #2

103

The —OO0 option can be used to disable optimisation. This will make the assembly output more readable, but it
will be less efficient. To get highly optimised assembly output, use the option -O3 instead.

The assembly file can be compiled by supplying the assembly file instead of the C file to the compiler:
compile -Q -c -0 exanple.o exanple.s

Disassembling COFF files and Motorola-S files

With the utility objdump.exe, coff files (.cof) and Motorola-S files (.mts) can be converted to assembly:
obj dunp --di sassenbl e exanpl e.cof > outfile
obj dunmp -b srec --architecture=n68k --disassenble-all exanple.nts > outfile

Motorola-S files, and coff files that have been linked with the -WI,-s option, do not contain symbol information.
As a result, the assembly output is not entirely correct:
00030000 <.text>:

30000: 4ef 9 0003 0010 j mp 0x30010

30006: 4e56 0000 I'i nkw 9% p, #0
3000a: 4e5e unl k % p

3000c: 4e75 rts

3000e: 0000 4e56 orib #86, %0
30012: fffc 0177774

30014: 4eb9 0003 0006 j sr 0x30006

3001a: 1d6e 0009 ffff moveb % p@9), % p@-1)
30020: 522e ffff addgb #1, % p@-1)
30024: 4240 clrw %0

30026: 102e ffff moveb % p@- 1), %0
3002a: 6000 0002 braw 0x3002e
3002e: 4e5e unl k % p

30030: 4e74 0002 rtd #2

This problem is caused, because there are some zeroes between functions. A way to solve this is by
specifying the start address of the function to be disassembled. The starting address can be obtained from the
map file, or it can be obtained by looking at destination addresses for function calls and jumps in the
disassembled file. In this case, at address 30000 a jump is made to address 0x30010, so an instruction should
start at address 0x30010:

obj dunp --disassenble --start-address=0x30010 exanpl e.cof > outfile

00030010 <. text+0x10>:

30010: 4e56 fffc linkw % p, #- 4

30014: 4eb9 0003 0006 j sr 0x30006

3001a: 1d6e 0009 ffff moveb % p@9), % p@-1)
30020: 522e ffff addgb #1, % p@-1)
30024: 4240 clrw %0

30026: 102e ffff moveb % p@- 1), %0
3002a: 6000 0002 braw 0x3002e

3002e: 4e5e unl k % p

30030: 4e74 0002 rtd #2

Coff files with symbol information produce a more readable result:
00030000 <start>:

30000: 4ef 9 0003 0010 j mp 30010 <nmi n>
00030006 <__rmmi n>:

30006: 4e56 0000 I'i nkw 9% p, #0

3000a: 4e5e unl k % p

3000c: 4e75 rts

00030010 <mai n>:

30010: 4e56 fffc l'inkw % p, #- 4

30014: 4eb9 0003 0006 j sr 30006 <__nmi n>
3001a: 1d6e 0009 ffff moveb % p@9), % p@-1)
30020: 522e ffff addgb #1, % p@-1)
30024: 4240 clrw %0

30026: 102e ffff moveb % p@- 1), %0
3002a: 6000 0002 braw 3002e <mai n+Oxle>
3002e: 4e5e unl k % p

30030: 4e74 0002 rtd #2

104

To get debug information in the disassembled output of the coff file, compile and link with the command line
option -g. A number can be placed after the -g option to specify the debug level. The default level is 2. If more

debug information is required, this can be changed to 3 by specifying -g3.

If the output file contains symbol information, source code and line numbers can be included in the
disassembled output:
obj dunmp --source --line-nunbers exanple.cof > outfile

00030000 <start>:

30000: 4ef 9 0003 0010 j mp 30010 <nmi n>
00030006 <__nmmi n>:

30006: 4e56 0000 I'i nkw 9% p, #0

3000a: 4e5e unl k % p

3000c: 4e75 rts

00030010 <mai n>:
mai n():
c:/asciilexanple.c:2

30010: 4e56 fffc l'inkw % p, #- 4

30014: 4eb9 0003 0006 j sr 30006 <__nmin>
c:/asciil/exanple.c:4

unsi gned char val 1;

val 1 = (unsigned char)argunent1;

3001a: 1d6e 0009 ffff moveb % p@9), % p@-1)
c:/asciil/exanple.c:5
val 1 += 1,
30020: 522e ffff addgb #1, % p@-1)

c:/asciil/exanple.c:6
return (int)val 1;

30024: 4240 clrw %0

30026: 102e ffff moveb % p@- 1), %0

3002a: 6000 0002 braw 3002e <nmai n+Oxle>
c:/asciilexanple.c:7

3002e: 4e5e unl k % p

30030: 4e74 0002 rtd #2

105

106

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W360-E2-1

L Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 March 1999 Initial version

107

Regional Headquarters

OMRON EUROPE B.V.

Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands

Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMmRON

Authorized Distributor:

Cat. No. W360-E2-1 Note: Specifications subject to change without notice. Printed in the Netherlands

	TABLE OF CONTENTS
	General overview
	1 About this manual
	2 Intended audience
	3 References
	4 Glossary

	1 Using the Library Interface in BASIC
	1-1 The operation of the Library Interface
	1-1-1 How to use a library function
	1-1-2 Example of using a Library function

	1-2 User memory in BASIC
	1-2-1 Memory blocks
	1-2-2 Block headers and the MAP statement

	1-3 Library Interface BASIC statements

	2 Creating a user library
	2-1 Creating a library function
	2-2 Application design considerations
	2-2-1 Order of arguments passed from BASIC.
	2-2-2 Fixed or free address.
	2-2-3 Data differences.
	2-2-4 Watchdog timer.
	2-2-5 Use of global/static data.
	2-2-6 Programming rules.

	3 Using BIOS functions
	3-1 General description of BIOS and API functions
	3-2 Functions for interrupt handling
	3-3 Functions for exchanging data with the PC unit
	3-3-1 General
	3-3-2 Summary of low-level routines
	3-3-3 Summary of high-level routines

	3-4 Functions for OS error messages
	3-5 Functions for memory managing
	3-6 Functions for controlling serial ports
	3-6-1 ASCII unit serial ports
	3-6-2 Low-level routines
	3-6-3 High level routines

	3-7 Functions for using the realtime clock
	3-7-1 General description
	3-7-2 Description of data inside realtime clock

	4 Troubleshooting
	4-1 Out of memory error message after lib load
	4-2 Special unit error
	4-3 ASCII unit malfunctions
	4-4 Lib Load hangs
	4-5 Motorola-S format error
	4-6 Source debugging

	Appendix
	Appendix A Description of API.h
	Appendix B Reference of BIOS routines
	Appendix C Examples of small applications
	Appendix D HMI of Library Interface
	Appendix E Description of Linker and Map files
	Appendix F Assembly

	Revision History

