
INSTRUCTIONS
REFERENCE MANUAL

SYSMAC CS Series
CS1G/H-CPU@@-EV1
CS1G/H-CPU@@H
CS1D-CPU@@H
CS1D-CPU@@S

SYSMAC CJ Series
CJ1H-CPU@@H-R
CJ1G-CPU@@
CJ1G/H-CPU@@H
CJ1G-CPU@@P
CJ1M-CPU@@

SYSMAC One NSJ Series

Cat. No. W340-E1-17

Programmable Controllers

Copyrights
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior
written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because
OMRON is constantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this manual. Neverthe-
less, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained in this publication.

NOTE

• Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation
in the United States and other countries.

• ODVA, CIP, CompoNet, DeviceNet, and EtherNet/IP are trademarks of ODVA.

Other company names and product names in this document are the trademarks or registered trademarks of their
respective companies.

Trademarks

SYSMAC CS Series
CS1G/H-CPU@@-EV1
CS1G/H-CPU@@H
CS1D-CPU@@H
CS1D-CPU@@S

SYSMAC CJ Series
CJ1H-CPU@@H-R
CJ1G-CPU@@
CJ1G/H-CPU@@H
CJ1G-CPU@@P
CJ1M-CPU@@

SYSMAC One NSJ Series

Programmable Controllers
Instructions Reference Manual

Revised June 2017

iv

Notice:
OMRON products are manufactured for use according to proper procedures
by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this
manual. Always heed the information provided with them. Failure to heed pre-
cautions can result in injury to people or damage to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also
capitalized when it refers to an OMRON product, regardless of whether or not
it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON
products, often means “word” and is abbreviated “Wd” in documentation in
this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, how-
ever, in some Programming Device displays to mean Programmable Control-
ler.

Visual Aids
The following headings appear in the left column of the manual to help you
locate different types of information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.
v

Unit Versions of CS/CJ-series CPU Units

Unit Versions A “unit version” has been introduced to manage CPU Units in the CS/CJ
Series according to differences in functionality accompanying Unit upgrades.
This applies to the CS1-H, CJ1-H, CJ1M, and CS1D CPU Units.

Notation of Unit Versions
on Products

The unit version is given to the right of the lot number on the nameplate of the
products for which unit versions are being managed, as shown below.

• CS1-H, CJ1-H, and CJ1M CPU Units manufactured on or before Novem-
ber 4, 2003 do not have a unit version given on the CPU Unit (i.e., the
location for the unit version shown above is blank).

• The unit version of the CJ1-H-R CPU Units begins at version 4.0.
• The unit version of the CS1-H, CJ1-H, and CJ1M CPU Units, as well as

the CS1D CPU Units for Single-CPU Systems, begins at version 2.0.
• The unit version of the CS1D CPU Units for Duplex-CPU Systems, begins

at version 1.1.
• CPU Units for which a unit version is not given are called Pre-Ver. @.@

CPU Units, such as Pre-Ver. 2.0 CPU Units and Pre-Ver. 1.1 CPU Units.

Confirming Unit Versions
with Support Software

CX-Programmer version 4.0 can be used to confirm the unit version using one
of the following two methods.

• Using the PLC Information
• Using the Unit Manufacturing Information (This method can be used for

Special I/O Units and CPU Bus Units as well.)

Note CX-Programmer version 3.3 or lower cannot be used to confirm unit versions.

PLC Information

• If you know the device type and CPU type, select them in the Change
PLC Dialog Box, go online, and select PLC - Edit - Information from the
menus.

• If you don't know the device type and CPU type, but are connected
directly to the CPU Unit on a serial line, select PLC - Auto Online to go
online, and then select PLC - Edit - Information from the menus.

In either case, the following PLC Information Dialog Box will be displayed.

CS1H-CPU67H

CPU UNIT

Lot No. 040715 0000 Ver.3.0

OMRON Corporation MADE IN JAPAN

CS/CJ-series CPU Unit Product nameplate

Lot No. Unit version
Example for Unit version 3.0
vi

Use the above display to confirm the unit version of the CPU Unit.

Unit Manufacturing Information

In the IO Table Window, right-click and select Unit Manufacturing informa-
tion - CPU Unit.

The following Unit Manufacturing information Dialog Box will be displayed.

Unit version
vii

Use the above display to confirm the unit version of the CPU Unit connected
online.

Using the Unit Version
Labels

The following unit version labels are provided with the CPU Unit.

These labels can be attached to the front of previous CPU Units to differenti-
ate between CPU Units of different unit versions.

Unit version
viii

Unit Version Notation In this manual, the unit version of a CPU Unit is given as shown in the follow-
ing table.

Product nameplate

Meaning

CPU Units on which no unit version is
given

Units on which a version is given
(Ver. @.@)

Designating individual
CPU Units (e.g., the
CS1H-CPU67H)

Pre-Ver. 2.0 CS1-H CPU Units CS1H-CPU67H CPU Unit Ver. @.@

Designating groups of
CPU Units (e.g., the
CS1-H CPU Units)

Pre-Ver. 2.0 CS1-H CPU Units CS1-H CPU Units Ver. @.@

Designating an entire
series of CPU Units
(e.g., the CS-series CPU
Units)

Pre-Ver. 2.0 CS-series CPU Units CS-series CPU Units Ver. @.@

Lot No. XXXXXX XXXX

OMRON Corporation MADE IN JAPAN

Lot No. XXXXXX XXXX Ver. @ @ .@
ix

Unit Versions

CS Series

CJ Series

NSJ Series

Units Models Unit version

CS1-H CPU Units CS1@-CPU@@H Unit version 4.2

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CS1D CPU Units Duplex-CPU Systems
CS1D-CPU@@H

Unit version 1.2

Unit version 1.1

Pre-Ver. 1.1

Single-CPU Systems
CS1D-CPU@@S

Unit version 2.0

CS1 CPU Units CS1@-CPU@@ No unit version.

CS1 Version-1 CPU Units CS1@-CPU@@-V1 No unit version.

Units Models Unit version

CJ1-H CPU Units CJ1H-CPU@@H-R Unit version 4.0

CJ1@-CPU@@H
CJ1@-CPU@@P

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CJ1M CPU Units CJ1M-CPU12/13

CJ1M-CPU22/23

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CJ1M-CPU11/21 Unit version 4.0

Unit version 3.0

Unit version 2.0

Units Unit version

NSJ@-TQ@@(B)-G5D

NSJ@-TQ@@(B)-M3D

Unit version 3.0
x

Function Support by Unit Version

• Functions Supported for Unit Version 4.0 or Later
CX-Programmer 7.0 or higher must be used to enable using the functions
added for unit version 4.0.

CS1-H CPU Units

CS1D CPU Units

Unit version 4.0 is not supported.

CJ1-H/CJ1M CPU Units

User programs that contain functions supported only by CPU Units with unit
version 4.0 or later cannot be used on CS/CJ-series CPU Units with unit ver-
sion 3.0 or earlier. An error message will be displayed if an attempt is made to
download programs containing unit version 4.0 functions to a CPU Unit with a
unit version of 3.0 or earlier, and the download will not be possible.

If an object program file (.OBJ) using these functions is transferred to a CPU
Unit with a unit version of 3.0 or earlier, a program error will occur when oper-
ation is started or when the unit version 4.0 function is executed, and CPU
Unit operation will stop.

Function CS1@-CPU@@H

Unit version 4.0 or
later

Other unit versions

Online editing of function blocks

Note This function cannot be used for simulations on the CX-Sim-
ulator.

OK ---

Input-output variables in function blocks OK ---

Text strings in function blocks OK ---

New application

instructions

Number-Text String Conversion Instructions:

NUM4, NUM8, NUM16, STR4, STR8, and STR16

OK ---

TEXT FILE WRITE (TWRIT) OK ---

Function CJ1H-CPU@@H-R, CJ1@-CPU@@H,
CJ1G-CPU@@P, CJ1M-CPU@@

Unit version 4.0 or
later

Other unit versions

Online editing of function blocks

Note This function cannot be used for simulations on the CX-Sim-
ulator.

OK ---

Input-output variables in function blocks OK ---

Text strings in function blocks OK ---

New application

instructions

Number-Text String Conversion Instructions:

NUM4, NUM8, NUM16, STR4, STR8, and STR16

OK ---

TEXT FILE WRITE (TWRIT) OK ---
xi

• Functions Supported for Unit Version 3.0 or Later
CX-Programmer 5.0 or higher must be used to enable using the functions
added for unit version 3.0.

CS1-H CPU Units

CS1D CPU Units

Unit version 3.0 is not supported.

CJ1-H/CJ1M CPU Units

Function CS1@-CPU@@H

Unit version 3.0 or
later

Other unit versions

Function blocks OK ---

Serial Gateway (converting FINS commands to CompoWay/F
commands at the built-in serial port)

OK ---

Comment memory (in internal flash memory) OK ---

Expanded simple backup data OK ---

New application
instructions

TXDU(256), RXDU(255) (support no-protocol
communications with Serial Communications
Units with unit version 1.2 or later)

OK ---

Model conversion instructions: XFERC(565),
DISTC(566), COLLC(567), MOVBC(568),
BCNTC(621)

OK ---

Special function block instructions: GETID(286) OK ---

Additional
instruction func-
tions

TXD(235) and RXD(236) instructions (support
no-protocol communications with Serial Commu-
nications Boards with unit version 1.2 or later)

OK ---

Function CJ1H-CPU@@H-R, CJ1@-CPU@@H,
CJ1G-CPU@@P, CJ1M-CPU@@

Unit version 3.0 or
later

Other unit versions

Function blocks OK ---

Serial Gateway (converting FINS commands to CompoWay/F
commands at the built-in serial port)

OK ---

Comment memory (in internal flash memory) OK ---

Expanded simple backup data OK ---

New application
instructions

TXDU(256), RXDU(255) (support no-protocol
communications with Serial Communications
Units with unit version 1.2 or later)

OK ---

Model conversion instructions: XFERC(565),
DISTC(566), COLLC(567), MOVBC(568),
BCNTC(621)

OK ---

Special function block instructions: GETID(286) OK ---

Additional
instruction func-
tions

PRV(881) and PRV2(883) instructions: Added
high-frequency calculation methods for calculat-
ing pulse frequency. (CJ1M CPU Units only)

OK ---
xii

User programs that contain functions supported only by CPU Units with unit
version 3.0 or later cannot be used on CS/CJ-series CPU Units with unit ver-
sion 2.0 or earlier. An error message will be displayed if an attempt is made to
download programs containing unit version 3.0 functions to a CPU Unit with a
unit version of 2.0 or earlier, and the download will not be possible.

If an object program file (.OBJ) using these functions is transferred to a CPU
Unit with a unit version of 2.0 or earlier, a program error will occur when oper-
ation is started or when the unit version 3.0 function is executed, and CPU
Unit operation will stop.
xiii

• Functions Supported for Unit Version 2.0 or Later
CX-Programmer 4.0 or higher must be used to enable using the functions
added for unit version 2.0.

CS1-H CPU Units

Function CS1-H CPU Units
(CS1@-CPU@@H)

Unit version 2.0 or
later

Other unit versions

Downloading and Uploading Individual Tasks OK ---

Improved Read Protection Using Passwords OK ---

Write Protection from FINS Commands Sent to
CPU Units via Networks

OK ---

Online Network Connections without I/O Tables OK ---

Communications through a Maximum of 8 Net-
work Levels

OK ---

Connecting Online to PLCs via NS-series PTs OK OK from lot number 030201

Setting First Slot Words OK for up to 64 groups OK for up to 8 groups

Automatic Transfers at Power ON without a
Parameter File

OK ---

Automatic Detection of I/O Allocation Method for
Automatic Transfer at Power ON

--- ---

Operation Start/End Times OK ---

New Application
Instructions

MILH, MILR, MILC OK ---

=DT, <>DT, <DT, <=DT, >DT,
>=DT

OK ---

BCMP2 OK ---

GRY OK OK from lot number 030201

TPO OK ---

DSW, TKY, HKY, MTR, 7SEG OK ---

EXPLT, EGATR, ESATR,
ECHRD, ECHWR

OK ---

Reading/Writing CPU Bus
Units with IORD/IOWR

OK OK from lot number 030418

PRV2 --- ---
xiv

CS1D CPU Units

Function CS1D CPU Units for
Single-CPU Systems

(CS1D-CPU@@S)

CS1D CPU Units for Duplex-CPU
Systems (CS1D-CPU@@H)

Unit version 2.0 Unit version 1.1 or
later

Pre-Ver. 1.1

Functions
unique to CS1D
CPU Units

Duplex CPU Units --- OK OK

Online Unit Replacement OK OK OK

Duplex Power Supply Units OK OK OK

Duplex Controller Link
Units

OK OK OK

Duplex Ethernet Units --- OK OK

Unit removal without a Pro-
gramming Device

--- OK (Unit version 1.2 or
later)

Downloading and Uploading Individual Tasks OK --- ---

Improved Read Protection Using Passwords OK --- ---

Write Protection from FINS Commands Sent
to CPU Units via Networks

OK --- ---

Online Network Connections without I/O
Tables

OK --- ---

Communications through a Maximum of 8
Network Levels

OK --- ---

Connecting Online to PLCs via NS-series
PTs

OK --- ---

Setting First Slot Words OK for up to 64 groups --- ---

Automatic Transfers at Power ON without a
Parameter File

OK --- ---

Automatic Detection of I/O Allocation Method
for Automatic Transfer at Power ON

--- --- ---

Operation Start/End Times OK OK ---

New Applica-
tion Instructions

MILH, MILR, MILC OK --- ---

=DT, <>DT, <DT, <=DT,
>DT, >=DT

OK --- ---

BCMP2 OK --- ---

GRY OK --- ---

TPO OK --- ---

DSW, TKY, HKY, MTR,
7SEG

OK --- ---

EXPLT, EGATR, ESATR,
ECHRD, ECHWR

OK --- ---

Reading/Writing CPU Bus
Units with IORD/IOWR

OK --- ---

PRV2 OK --- ---
xv

CJ1-H/CJ1M CPU Units

User programs that contain functions supported only by CPU Units with unit
version 2.0 or later cannot be used on CS/CJ-series Pre-Ver. 2.0 CPU Units.
An error message will be displayed if an attempt is made to download pro-
grams containing unit version s.0 functions to a Pre-Ver. 2.0 CPU Unit, and
the download will not be possible.

Function CJ1-H CPU Units CJ1M CPU Units

CJ1H-CPU@@H-R
CJ1@-CPU@@H
CJ1G-CPU@@P

CJ1M-CPU12/13/22/23 CJ1M-
CPU11/21

Unit version
2.0 or
later

Other unit
versions

Unit version
2.0 or
later

Other unit
versions

Other unit
versions

Downloading and Uploading Individual Tasks OK --- OK --- OK

Improved Read Protection Using Passwords OK --- OK --- OK

Write Protection from FINS Commands Sent
to CPU Units via Networks

OK --- OK --- OK

Online Network Connections without I/O
Tables

OK ---
(Supported if
I/O tables are
automatically
generated at
startup.)

OK ---
(Supported if
I/O tables are
automatically
generated at
startup.)

OK

Communications through a Maximum of 8
Network Levels

OK --- OK --- OK

Connecting Online to PLCs via NS-series
PTs

OK OK from lot
number
030201

OK OK from lot
number
030201

OK

Setting First Slot Words OK for up to
64 groups

OK for up to 8
groups

OK for up to
64 groups

OK for up to 8
groups

OK for up to
64 groups

Automatic Transfers at Power ON without a
Parameter File

OK --- OK --- OK

Automatic Detection of I/O Allocation Method
for Automatic Transfer at Power ON

--- --- --- --- ---

Operation Start/End Times OK --- OK --- OK

New Applica-
tion Instructions

MILH, MILR, MILC OK --- OK --- OK

=DT, <>DT, <DT, <=DT,
>DT, >=DT

OK --- OK --- OK

BCMP2 OK --- OK OK OK

GRY OK OK from lot
number
030201

OK OK from lot
number
030201

OK

TPO OK --- OK --- OK

DSW, TKY, HKY, MTR,
7SEG

OK --- OK --- OK

EXPLT, EGATR, ESATR,
ECHRD, ECHWR

OK --- OK --- OK

Reading/Writing CPU Bus
Units with IORD/IOWR

OK --- OK --- OK

PRV2 --- --- OK, but only
for CPU Units
with built-in
I/O

--- OK, but only
for CPU Units
with built-in
I/O
xvi

If an object program file (.OBJ) using these functions is transferred to a Pre-
Ver. 2.0 CPU Unit, a program error will occur when operation is started or
when the unit version 2.0 function is executed, and CPU Unit operation will
stop.
xvii

Unit Versions and Programming Devices
The following tables show the relationship between unit versions and CX-Pro-
grammer versions.

Unit Versions and Programming Devices

Note 1. As shown above, there is no need to upgrade to CX-Programmer version
as long as the functions added for unit versions are not used.

2. CX-Programmer version 7.1 or higher is required to use the new functions
added for unit version 4.0 of the CJ1-H-R CPU Units. CX-Programmer ver-
sion 7.22 or higher is required to use unit version 4.1 of the CJ1-H-R CPU
Units. CX-Programmer version 7.0 or higher is required to use unit version
4.2 of the CJ1-H-R CPU Units. You can check the CX-Programmer version
using the About menu command to display version information.

3. CX-Programmer version 7.0 or higher is required to use the functional im-
provements made for unit version 4.0 of the CS/CJ-series CPU Units. With
CX-Programmer version 7.2 or higher, you can use even more expanded
functionality.

CPU Unit Functions (See note 1.) CX-Programmer Program-
ming Con-

sole
Ver. 3.3
or lower

Ver. 4.0 Ver. 5.0
Ver. 6.0

Ver. 7.0
or higher

CS/CJ-series unit
Ver. 4.0

Functions added
for unit version
4.0

Using new functions --- --- --- OK (See
note 2
and 3.)

No
restrictions

Not using new functions OK OK OK OK

CS/CJ-series unit
Ver. 3.0

Functions added
for unit version
3.0

Using new functions --- --- OK OK

Not using new functions OK OK OK OK

CS/CJ-series unit
Ver. 2.0

Functions added
for unit version
2.0

Using new functions --- OK OK OK

Not using new functions OK OK OK OK

CS1D CPU Units
for Single-CPU
Systems, unit Ver.
2.0

Functions added
for unit version
2.0

Using new functions --- OK OK OK

Not using new functions

CS1D CPU Units
for Duplex-CPU
Systems, unit
Ver.1.

Functions added
for unit version
1.1

Using function blocks --- OK OK OK

Not using function blocks OK OK OK OK
xviii

Device Type Setting The unit version does not affect the setting made for the device type on the
CX-Programmer. Select the device type as shown in the following table
regardless of the unit version of the CPU Unit.

Note Select one of the following CPU types: CPU67-R, CPU66-R, CPU65-R, or
CPU64-R.

 Series CPU Unit group CPU Unit model Device type setting on
CX-Programmer Ver. 4.0 or higher

CS Series CS1-H CPU Units CS1G-CPU@@H CS1G-H

CS1H-CPU@@H CS1H-H

CS1D CPU Units for Duplex-CPU Systems CS1D-CPU@@H CS1D-H (or CS1H-H)

CS1D CPU Units for Single-CPU Systems CS1D-CPU@@S CS1D-S

CJ Series CJ1-H CPU Units CJ1G-CPU@@H
CJ1G-CPU@@P

CJ1G-H

CJ1H-CPU@@H-R
(See note.)
CJ1H-CPU@@H

CJ1H-H

CJ1M CPU Units CJ1M-CPU@@ CJ1M
xix

Troubleshooting Problems with Unit Versions on the CX-Programmer
Problem Cause Solution

After the above message is displayed, a compiling
error will be displayed on the Compile Tab Page in the
Output Window.

An attempt was made to down-
load a program containing
instructions supported only by
later unit versions or a CPU Unit
to a previous unit version.

Check the program or change
to a CPU Unit with a later unit
version.

An attempt was to download a
PLC Setup containing settings
supported only by later unit ver-
sions or a CPU Unit to a previous
unit version.

Check the settings in the PLC
Setup or change to a CPU Unit
with a later unit version.

“????” is displayed in a program transferred from the
PLC to the CX-Programmer.

An attempt was made to upload a
program containing instructions
supported only by higher versions
of CX-Programmer to a lower ver-
sion.

New instructions cannot be
uploaded to lower versions of
CX-Programmer. Use a higher
version of CX-Programmer.
xx

TABLE OF CONTENTS

PRECAUTIONS . xxxi

1 Intended Audience . xxxii

2 General Precautions . xxxii

3 Safety Precautions. xxxii

4 Operating Environment Precautions . xxxiv

5 Application Precautions . xxxiv

6 Conformance to EC Directives . xxxviii

SECTION 1
Introduction . 1

1-1 General Instruction Characteristics . 2

1-2 Instruction Execution Checks . 13

SECTION 2
Summary of Instructions . 15

2-1 Instruction Classifications by Function. 16

2-2 Instruction Functions. 25

2-3 Alphabetical List of Instructions by Mnemonic . 114

2-4 List of Instructions by Function Code. 131

SECTION 3
Instructions . 147

3-1 Notation and Layout of Instruction Descriptions . 155

3-2 Instruction Upgrades and New Instructions . 158

3-3 Sequence Input Instructions . 161

3-4 Sequence Output Instructions . 185

3-5 Sequence Control Instructions . 206

3-6 Timer and Counter Instructions. 242

3-7 Comparison Instructions . 291

3-8 Data Movement Instructions . 331

3-9 Data Shift Instructions . 360

3-10 Increment/Decrement Instructions . 409

3-11 Symbol Math Instructions . 425

3-12 Conversion Instructions. 483

3-13 Logic Instructions . 548

3-14 Special Math Instructions . 565

3-15 Floating-point Math Instructions . 589

3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) 651

3-17 Table Data Processing Instructions . 697

3-18 Data Control Instructions . 757

3-19 Subroutines . 811

3-20 Interrupt Control Instructions . 836
xxi

TABLE OF CONTENTS

3-21 High-speed Counter/Pulse Output Instructions . 864

3-22 Step Instructions . 908

3-23 Basic I/O Unit Instructions . 926

3-24 Serial Communications Instructions . 972

3-25 Network Instructions . 1026

3-26 File Memory Instructions . 1095

3-27 Display Instructions: DISPLAY MESSAGE: MSG(046) . 1119

3-28 Clock Instructions . 1122

3-29 Debugging Instructions . 1136

3-30 Failure Diagnosis Instructions . 1140

3-31 Other Instructions . 1165

3-32 Block Programming Instructions. 1186

3-33 Text String Processing Instructions . 1220

3-34 Task Control Instructions. 1255

3-35 Model Conversion Instructions (Unit Ver. 3.0 or Later) . 1261

SECTION 4
Instruction Execution Times and Number of Steps. 1281

4-1 CS-series Instruction Execution Times and Number of Steps. 1283

4-2 CJ-series Instruction Execution Times and Number of Steps . 1312

Appendix
A ASCII Code Table . 1351

Index. 1353

Revision History . 1361
xxii

About this Manual:
This manual describes the ladder diagram programming instructions of the CPU Units for CS/CJ-
series Programmable Controllers (PLCs). The CS Series, CJ Series and NSJ Series are subdivided as
shown in the following figure.

NSJ-series Controller Notation

For information in this manual on the Controller Section of NSJ-series Controllers, refer to the informa-
tion of the equivalent CJ-series PLC. The following models are equivalent.

NSJ-series Controllers Equivalent CJ-series CPU Unit

NSJ@-TQ@@(B)-G5D CJ1G-CPU45H CPU Unit with unit version 3.0

NSJ@-TQ@@(B)-M3D CJ1G-CPU45H CPU Unit with unit version 3.0 (See note.)

Note: The following points differ between the NSJ@-TQ@@(B)-M3D and the CJ1G-CPU45H.

Please read this manual and all related manuals listed in the table on the next page and be sure you
understand information provided before attempting to program or use CS/CJ-series CPU Units in a
PLC System.

Item CJ-series CPU Unit

CJ1G-CPU45H

Controller Section in
NSJ@-@@@@(B)-M3D

I/O capacity 1280 points 640 points

Program capacity 60 Ksteps 20 Ksteps

No. of Expansion Racks 3 max. 1 max.

EM Area 32 Kwords x 3 banks

E0_00000 to E2_32767

None

Function blocks Max. No. of definitions 1024 128

Max. No. of instances 2048 256

Capacity in built-in
file memory

FB program memory 1024 KB 256 KB

Variable tables 128 KB 64K KB

CS1H-CPU@@H
CS1G-CPU@@H

CS1-H CPU Units

CS Series

CS1 CPU Units

CS1H-CPU@@(-V1)
CS1G-CPU@@(-V1)

CS1D CPU Units

CS1D CPU Units for
Duplex Systems

CS1D-CPU@@H

CS1D CPU Units for
Simplex Systems

CS1D-CPU@@S

CS1D Process-control CPU Units

CS1D-CPU@@P

CS-series Basic I/O Units

CS-series Special I/O Units

CS-series CPU Bus Units

CS-series Power Supply Units
Note: A special Power Supply Unit must

be used for CS1D CPU Units.

CJ-series Power Supply Units

CJ-series CPU Bus Units

CJ-series Special I/O Units

CJ-series Basic I/O Units

CJ1G-CPU@@

CJ1 CPU Units

CJ1M CPU Units

CJ1M-CPU@@

CJ1H-CPU@@H-R
CJ1H-CPU@@H
CJ1G-CPU@@H
CJ1G -CPU@@P
(Loop-control CPU Units)

CJ1-H CPU Units

CJ Series NSJ Series

NSJ Controllers

NSJ5-TQ@@(B)-G5D
NSJ5-SQ@@(B)-G5D
NSJ8-TV@@(B)-G5D
NSJ10-TV@@(B)-G5D
NSJ12-TS@@(B)-G5D

NSJ Controllers

NSJ5-TQ@@(B)-M3D
NSJ5-SQ@@(B)-M3D
NSJ8-TV@@(B)-M3D

NSJ-series Expansion Units

CJ2H-CPU@@-@@@

CJ2 CPU Units
xxiii

Section 1 introduces the CS/CJ-series PLCs in terms of the instruction set that they support.

Section 2 provides various lists of instructions that can be used for reference.

Section 3 individually describes the instructions in the CS/CJ-series instruction set.

Section 4 provides instruction execution times and the number of steps for each CS/CJ-series instruc-
tion.
xxiv

About this Manual, Continued
Name Cat. No. Contents

SYSMAC CS/CJ/NSJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CS1D-CPU@@H, CS1D-CPU@@S, CJ1H-CPU@@H-R,
CJ1G-CPU@@, CJ1G/H-CPU@@H, CJ1G-CPU@@P,
CJ1M-CPU@@, NSJ@-@@@@(B)-G5D,
NSJ@-@@@@(B)-M3D
Programmable Controllers Instructions Reference Manual

W340 Describes the ladder diagram programming
instructions supported by CS/CJ/NSJ-series
PLCs. (This manual)

SYSMAC CS/CJ/NSJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CS1D-CPU@@H, CS1D-CPU@@S, CJ1H-CPU@@H-R,
CJ1G-CPU@@, CJ1G/H-CPU@@H, CJ1G-CPU@@P,
CJ1M-CPU@@, NSJ@-@@@@(B)-G5D,
NSJ@-@@@@(B)-M3D
Programmable Controllers Programming Manual

W394 This manual describes programming and other
methods to use the functions of the CS/CJ/NSJ-
series PLCs.

SYSMAC CS Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H
Programmable Controllers Operation Manual

W339 Provides an outlines of and describes the design,
installation, maintenance, and other basic opera-
tions for the CS-series PLCs.

SYSMAC CJ Series
CJ1H-CPU@@H-R, CJ1G/H-CPU@@H, CJ1G-CPU@@P,
CJ1G-CPU@@, CJ1M-CPU@@
Programmable Controllers Operation Manual

W393 Provides an outlines of and describes the design,
installation, maintenance, and other basic opera-
tions for the CJ-series PLCs.

SYSMAC CJ Series
CJ1M-CPU21/22/23
Built-in I/O Functions Operation Manual

W395 Describes the functions of the built-in I/O for
CJ1M CPU Units.

SYSMAC CS Series
CS1D-CPU@@H CPU Units
CS1D-CPU@@S CPU Units
CS1D-DPL1 Duplex Unit
CS1D-PA207R Power Supply Unit
Duplex System Operation Manual

W405 Provides an outline of and describes the design,
installation, maintenance, and other basic opera-
tions for a Duplex System based on CS1D CPU
Units.

SYSMAC CS/CJ Series
CQM1H-PRO01-E, C200H-PRO27-E, CQM1-PRO01-E
Programming Consoles Operation Manual

W341 Provides information on how to program and
operate CS/CJ-series PLCs using a Programming
Console.

SYSMAC CS/CJ/NSJ Series
CJ1H-CPU@@H-R, CS1G/H-CPU@@-EV1,
CS1G/H-CPU@@H, CS1D-CPU@@H, CS1D-CPU@@S,
CJ1M-CPU@@, CJ1G-CPU@@, CJ1G-CPU@@P,
CJ1G/H-CPU@@H, CS1W-SCB@@-V1,
CS1W-SCU@@-V1, CJ1W-SCU@@-V1, CP1H-X@@@@-@,
CP1H-XA@@@@-@, CP1H-Y@@@@-@,
NSJ@-@@@@(B)-G5D, NSJ@-@@@@(B)-M3D
Communications Commands Reference Manual

W342 Describes the C-series (Host Link) and FINS
communications commands used with CS/CJ-
series PLCs.
xxv

NSJ Series

NSJ5-TQ@@(B)-G5D, NSJ5-SQ@@(B)-G5D,
NSJ8-TV@@(B)-G5D, NSJ10-TV@@(B)-G5D,
NSJ12-TS@@(B)-G5D

Operation Manual

W452 Provides the following information about the NSJ-
series NSJ Controllers:
Overview and features

Designing the system configuration
Installation and wiring
I/O memory allocations

Troubleshooting and maintenance
Use this manual in combination with the following
manuals: SYSMAC CS Series Operation Manual
(W339), SYSMAC CJ Series Operation Manual
(W393), SYSMAC CS/CJ Series Programming
Manual (W394), and NS-V1/-V2 Series Setup
Manual (V083)

SYSMAC WS02-CX@@-V@
CX-Programmer Operation Manual

W446 Provides information on how to use the CX-Pro-
grammer for all functionality except for function
blocks.

SYSMAC WS02-CX@@-V@
CX-Programmer Ver. 7.0 Operation Manual
Function Blocks

(CS1G-CPU@@H, CS1H-CPU@@H,
CJ1G-CPU@@H, CJ1H-CPU@@H,
CJ1M-CPU@@, CP1H-X@@@@-@,

CP1H-XA@@@@-@, CP1H-Y@@@@-@
CPU Units)

W447 Describes the functionality unique to the CX-Pro-
grammer and CP-series CPU Units or CS/CJ-
series CPU Units with unit version 3.0 or later
based on function blocks. Functionality that is the
same as that of the CX-Programmer is described
in W446 (enclosed).

SYSMAC CS/CJ Series
CS1W-SCB@@-V1, CS1W-SCU@@-V1,

CJ1W-SCU@@-V1
Serial Communications Boards/Units Operation Manual

W336 Describes the use of Serial Communications Unit
and Boards to perform serial communications
with external devices, including the usage of stan-
dard system protocols for OMRON products.

SYSMAC WS02-PSTC1-E
CX-Protocol Operation Manual

W344 Describes the use of the CX-Protocol to create
protocol macros as communications sequences
to communicate with external devices.

CXONE-AL@@C-V3/AL@@D-V3

CX-Integrator Operation Manual

W464 Describes operating procedures for the CX-Inte-
grator Network Configuration Tool for CS-, CJ-,
CP-, and NSJ-series Controllers.

CXONE-AL@@C-V3/AL@@D-V3

CX-One Setup Manual

W463 Installation and overview of CX-One FA Inte-
grated Tool Package.

Name Cat. No. Contents

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
xxvi

Terms and Conditions Agreement

• Exclusive Warranty

Omron’s exclusive warranty is that the Products will be free from defects in materials and work-
manship for a period of twelve months from the date of sale by Omron (or such other period
expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

• Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF
THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based
on infringement by the Products or otherwise of any intellectual property right.

• Buyer Remedy

Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form origi-
nally shipped with Buyer responsible for labor charges for removal or replacement thereof) the
non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an
amount equal to the purchase price of the non-complying Product; provided that in no event shall
Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding
the Products unless Omron’s analysis confirms that the Products were properly handled, stored,
installed and maintained and not subject to contamination, abuse, misuse or inappropriate modifi-
cation. Return of any Products by Buyer must be approved in writing by Omron before shipment.
Omron Companies shall not be liable for the suitability or unsuitability or the results from the use
of Products in combination with any electrical or electronic components, circuits, system assem-
blies or any other materials or substances or environments. Any advice, recommendations or
information given orally or in writing, are not to be construed as an amendment or addition to the
above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CON-
SEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN
ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CON-
TRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on
which liability is asserted.

Warranty, Limitations of Liability

Warranties

Limitation on Liability; Etc
xxvii

Omron Companies shall not be responsible for conformity with any standards, codes or regulations
which apply to the combination of the Product in the Buyer’s application or use of the Product. At
Buyer’s request, Omron will provide applicable third party certification documents identifying ratings
and limitations of use which apply to the Product. This information by itself is not sufficient for a com-
plete determination of the suitability of the Product in combination with the end product, machine,
system, or other application or use. Buyer shall be solely responsible for determining appropriate-
ness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take
application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Omron Companies shall not be responsible for the user’s programming of a programmable Product,
or any consequence thereof.

Application Considerations

Suitability of Use

Programmable Products
xxviii

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for
the user in determining suitability and does not constitute a warranty. It may represent the result of
Omron’s test conditions, and the user must correlate it to actual application requirements. Actual per-
formance is subject to the Omron’s Warranty and Limitations of Liability.

Product specifications and accessories may be changed at any time based on improvements and
other reasons. It is our practice to change part numbers when published ratings or features are
changed, or when significant construction changes are made. However, some specifications of the
Product may be changed without any notice. When in doubt, special part numbers may be assigned
to fix or establish key specifications for your application. Please consult with your Omron’s represen-
tative at any time to confirm actual specifications of purchased Product.

Information presented by Omron Companies has been checked and is believed to be accurate; how-
ever, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Disclaimers

Performance Data

Change in Specifications

Errors and Omissions
xxix

xxx

PRECAUTIONS

This section provides general precautions for using the CS/CJ-series Programmable Controllers (PLCs) and related devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or
operate a PLC system.

1 Intended Audience . xxxii

2 General Precautions . xxxii

3 Safety Precautions. xxxii

4 Operating Environment Precautions . xxxiv

5 Application Precautions . xxxiv

6 Conformance to EC Directives . xxxviii

6-1 Applicable Directives . xxxviii

6-2 Concepts . xxxviii

6-3 Conformance to EC Directives . xxxix

6-4 Relay Output Noise Reduction Methods . xxxix
xxxi

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

3 Safety Precautions

!WARNING The CPU Unit refreshes I/O even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to I/O Units, Special I/O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

• Transferring I/O memory data to the CPU Unit from a Programming
Device.

• Changing present values in memory from a Programming Device.

• Force-setting/-resetting bits from a Programming Device.

• Transferring I/O memory files from a Memory Card or EM file memory to
the CPU Unit.

• Transferring I/O memory from a host computer or from another PLC on a
network.

!WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.
xxxii

Safety Precautions 3
!WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

!WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

!WARNING Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

• The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

• The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

• When the 24-V-DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

!Caution Confirm safety before transferring data files stored in the file memory (Mem-
ory Card or EM file memory) to the I/O area (CIO) of the CPU Unit using a
peripheral tool. Otherwise, the devices connected to the output unit may mal-
function regardless of the operation mode of the CPU Unit.

!Caution Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Serious accidents may
result from abnormal operation if proper measures are not provided.

!Caution Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution The CS1-H, CJ1-H, CJ1M, and CS1D CPU Units automatically back up the
user program and parameter data to flash memory when these are written to
the CPU Unit. I/O memory (including the DM, EM, and HR Areas), however, is
not written to flash memory. The DM, EM, and HR Areas can be held during
power interruptions with a battery. If there is a battery error, the contents of
these areas may not be accurate after a power interruption. If the contents of
the DM, EM, and HR Areas are used to control external outputs, prevent inap-
propriate outputs from being made whenever the Battery Error Flag (A40204)
is ON.

!Caution Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.
xxxiii

Operating Environment Precautions 4
!Caution Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in
burning or malfunction.

!Caution Do not touch the Power Supply Unit when power is being supplied or immedi-
ately after the power supply is turned OFF. The Power Supply Unit will be hot
and you may be burned.

!Caution Be careful when connecting personal computers or other peripheral devices
to a PLC to which is mounted a non-insulated Unit (CS1W-CLK12/52(-V1) or
CS1W-ETN01) connected to an external power supply. A short-circuit will be
created if the 24 V side of the external power supply is grounded and the 0 V
side of the peripheral device is grounded. When connecting a peripheral
device to this type of PLC, either ground the 0 V side of the external power
supply or do not ground the external power supply at all.

4 Operating Environment Precautions

!Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified
in the specifications.

• Locations subject to condensation as the result of severe changes in tem-
perature.

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

!Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

!Caution The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

5 Application Precautions
Observe the following precautions when using the PLC System.

• You must use the CX-Programmer (programming software that runs on
Windows) if you need to program more than one task. A Programming
Console can be used to program only one cyclic task plus interrupt tasks.
xxxiv

Application Precautions 5
A Programming Console can, however, be used to edit multitask pro-
grams originally created with the CX-Programmer.

!WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always connect to a ground of 100 Ω or less when installing the Units. Not
connecting to a ground of 100 Ω or less may result in electric shock.

• A ground of 100 Ω or less must be installed when shorting the GR and LG
terminals on the Power Supply Unit.

• Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

• Mounting or dismounting Power Supply Units, I/O Units, CPU Units, In-
ner Boards, or any other Units.

• Assembling the Units.

• Setting DIP switches or rotary switches.

• Connecting cables or wiring the system.

• Connecting or disconnecting the connectors.

!Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

• The user program and parameter area data in the CS1-H, CS1D, CJ1-H,
and CJ1M CPU Units are backed up in the built-in flash memory. The
BKUP indicator will light on the front of the CPU Unit when the backup
operation is in progress. Do not turn OFF the power supply to the CPU
Unit when the BKUP indicator is lit. The data will not be backed up if
power is turned OFF.

• When using a CS-series CS1 CPU Unit for the first time, install the
CS1W-BAT1 Battery provided with the Unit and clear all memory areas
from a Programming Device before starting to program. When using the
internal clock, turn ON power after installing the battery and set the clock
from a Programming Device or using the DATE(735) instruction. The clock
will not start until the time has been set.

• When the CPU Unit is shipped from the factory, the PLC Setup is set so
that the CPU Unit will start in the operating mode set on the Programming
Console mode switch. When a Programming Console is not connected, a
CS-series CS1 CPU Unit will start in PROGRAM mode, but a CS1-H,
CS1D, CJ1, CJ1-H, or CJ1M CPU Unit will start in RUN mode and opera-
tion will begin immediately. Do not advertently or inadvertently allow oper-
ation to start without confirming that it is safe.

• When creating an AUTOEXEC.IOM file from a Programming Device (a
Programming Console or the CX-Programmer) to automatically transfer
data at startup, set the first write address to D20000 and be sure that the
size of data written does not exceed the size of the DM Area. When the
data file is read from the Memory Card at startup, data will be written in
the CPU Unit starting at D20000 even if another address was set when
the AUTOEXEC.IOM file was created. Also, if the DM Area is exceeded
(which is possible when the CX-Programmer is used), the remaining data
will be written to the EM Area.
xxxv

Application Precautions 5
• Always turn ON power to the PLC before turning ON power to the control
system. If the PLC power supply is turned ON after the control power sup-
ply, temporary errors may result in control system signals because the
output terminals on DC Output Units and other Units will momentarily turn
ON when power is turned ON to the PLC.

• Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal
lines, momentary power interruptions, or other causes.

• Interlock circuits, limit circuits, and similar safety measures in external cir-
cuits (i.e., not in the Programmable Controller) must be provided by the
customer.

• Do not turn OFF the power supply to the PLC when data is being trans-
ferred. In particular, do not turn OFF the power supply when reading or
writing a Memory Card. Also, do not remove the Memory Card when the
BUSY indicator is lit. To remove a Memory Card, first press the memory
card power supply switch and then wait for the BUSY indicator to go out
before removing the Memory Card.

• If the I/O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

• The contents of the DM, EM, and HR Areas in the CPU Unit are backed
up by a Battery. If the Battery voltage drops, this data may be lost. Provide
countermeasures in the program using the Battery Error Flag (A40204) to
re-initialize data or take other actions if the Battery voltage drops.

• When supplying power at 200 to 240 V AC with a CS-series PLC, always
remove the metal jumper from the voltage selector terminals on the Power
Supply Unit (except for Power Supply Units with wide-range specifica-
tions). The product will be destroyed if 200 to 240 V AC is supplied while
the metal jumper is attached.

• Always use the power supply voltages specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

• Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

• Do not apply voltages to the Input Units in excess of the rated input volt-
age. Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.
xxxvi

Application Precautions 5
• Separate the line ground terminal (LG) from the functional ground termi-
nal (GR) on the Power Supply Unit before performing withstand voltage
tests or insulation resistance tests. Not doing so may result in burning.

• Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

• With CS-series PLCs, be sure that all the Unit and Backplane mounting
screws are tightened to the torque specified in the relevant manuals.
Incorrect tightening torque may result in malfunction.

• Be sure that all terminal screws, and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

• Wire all connections correctly.

• Double-check all wiring and switch settings before turning ON the power
supply. Incorrect wiring may result in burning.

• Mount Units only after checking terminal blocks and connectors com-
pletely.

• Be sure that the terminal blocks, Memory Units, expansion cables, and
other items with locking devices are properly locked into place. Improper
locking may result in malfunction.

• Check switch settings, the contents of the DM Area, and other prepara-
tions before starting operation. Starting operation without the proper set-
tings or data may result in an unexpected operation.

• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC (including the setting of the
startup operating mode).

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so
may break the cables.

• Do not use commercially available RS-232C personal computer cables.
Always use the special cables listed in this manual or make cables
according to manual specifications. Using commercially available cables
may damage the external devices or CPU Unit.

• Never connect pin 6 (5-V power supply) on the RS-232C port on the CPU
Unit to any device other than an NT-AL001 or CJ1W-CIF11 Adapter. The
external device or the CPU Unit may be damaged.
xxxvii

Conformance to EC Directives 6
• When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in
order to discharge any static build-up. Not doing so may result in malfunc-
tion or damage.

• When transporting or storing circuit boards, cover them in antistatic mate-
rial to protect them from static electricity and maintain the proper storage
temperature.

• Do not touch circuit boards or the components mounted to them with your
bare hands. There are sharp leads and other parts on the boards that
may cause injury if handled improperly.

• Do not short the battery terminals or charge, disassemble, heat, or incin-
erate the battery. Do not subject the battery to strong shocks. Doing any
of these may result in leakage, rupture, heat generation, or ignition of the
battery. Dispose of any battery that has been dropped on the floor or oth-
erwise subjected to excessive shock. Batteries that have been subjected
to shock may leak if they are used.

• UL standards require that batteries be replaced only by experienced tech-
nicians. Do not allow unqualified persons to replace batteries.

• Dispose of the product and batteries according to local ordi-
nances as they apply. Have qualified specialists properly dis-
pose of used batteries as industrial waste.

• With a CJ-series PLC, the sliders on the tops and bottoms of the Power
Supply Unit, CPU Unit, I/O Units, Special I/O Units, and CPU Bus Units
must be completely locked (until they click into place). The Unit may not
operate properly if the sliders are not locked in place.

• With a CJ-series PLC, always connect the End Plate to the Unit on the
right end of the PLC. The PLC will not operate properly without the End
Plate

• Unexpected operation may result if inappropriate data link tables or
parameters are set. Even if appropriate data link tables and parameters
have been set, confirm that the controlled system will not be adversely
affected before starting or stopping data links.

• CPU Bus Units will be restarted when routing tables are transferred from
a Programming Device to the CPU Unit. Restarting these Units is required
to read and enable the new routing tables. Confirm that the system will
not be adversely affected before allowing the CPU Bus Units to be reset.

6 Conformance to EC Directives

6-1 Applicable Directives
• EMC Directives

• Low Voltage Directive

6-2 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
xxxviii

Conformance to EC Directives 6
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility): EN61131-2 (CS-series)/
EN61000-6-2 (CJ-series)

EMI (Electromagnetic Interference): EN61000-6-4
(Radiated emission: 10-m regulations)

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

6-3 Conformance to EC Directives
The CS/CJ-series PLCs comply with EC Directives. To ensure that the
machine or device in which the CS/CJ-series PLC is used complies with EC
Directives, the PLC must be installed as follows:

1,2,3... 1. The CS/CJ-series PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for the communications power supply and I/O power sup-
plies.

3. CS/CJ-series PLCs complying with EC Directives also conform to the
Common Emission Standard (EN61000-6-4). Radiated emission charac-
teristics (10-m regulations) may vary depending on the configuration of the
control panel used, other devices connected to the control panel, wiring,
and other conditions. You must therefore confirm that the overall machine
or equipment complies with EC Directives.

6-4 Relay Output Noise Reduction Methods
The CS/CJ-series PLCs conforms to the Common Emission Standards
(EN61000-6-4) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

Countermeasures
(Refer to EN61000-6-4 for more details.)

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.
xxxix

Conformance to EC Directives 6
Countermeasure Examples
When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

Circuit Current Characteristic Required element

AC DC

Yes Yes If the load is a relay or solenoid, there
is a time lag between the moment the
circuit is opened and the moment the
load is reset.
If the supply voltage is 24 or 48 V,
insert the surge protector in parallel
with the load. If the supply voltage is
100 to 200 V, insert the surge protector
between the contacts.

The capacitance of the capacitor must
be 1 to 0.5 µF per contact current of
1 A and resistance of the resistor must
be 0.5 to 1 Ω per contact voltage of 1 V.
These values, however, vary with the
load and the characteristics of the
relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.
The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

No Yes The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current
will be converted into Joule heat by the
resistance of the inductive load.
This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.
The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Yes Yes The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V,
insert the varistor in parallel with the
load. If the supply voltage is 100 to
200 V, insert the varistor between the
contacts.

CR method

Power
supply

In
du

ct
iv

e
lo

ad

Diode method

Power
supply

In
du

ct
iv

e
lo

ad

Varistor method

Power
supply

In
du

ct
iv

e
lo

ad

OUT

COM

R
OUT

COM

R

Providing a dark current of
approx. one-third of the rated
value through an incandescent
lamp

Providing a limiting resistor

Countermeasure 2Countermeasure 1
xl

SECTION 1
Introduction

This section provides information on general instruction characteristics as well as the errors that can occur during
instruction execution.

1-1 General Instruction Characteristics . 2

1-1-1 Program Capacity . 2

1-1-2 Differentiated Instructions . 3

1-1-3 Instruction Variations . 4

1-1-4 Instruction Location and Execution Conditions 5

1-1-5 Inputting Data in Operands. 5

1-1-6 Data Formats. 11

1-2 Instruction Execution Checks . 13

1-2-1 Errors Occurring at Instruction Execution . 13

1-2-2 Fatal Errors (Program Errors) . 13
1

General Instruction Characteristics Section 1-1
1-1 General Instruction Characteristics

1-1-1 Program Capacity
The program capacity tells the size of the user program area in the CPU Unit
and is expressed as the number of program steps. The number of steps
required in the user program area for each of the CS/CJ-series instructions
varies from 1 to 7 steps, depending upon the instruction and the operands
used with it.

CS Series

The following tables show the maximum number of steps that can be pro-
grammed in each CS-series CPU Unit.

• CS1-H CPU Units

• CS1 CPU Units

• CS1D CPU Units for Single-CPU Systems

CS1D CPU Units for Duplex-CPU Systems

CJ Series

The following tables show the maximum number of steps that can be pro-
grammed in each CJ-series CPU Unit.

Model Program capacity I/O points

CS1H-CPU67H 250K steps 5,120

CS1H-CPU66H 120K steps

CS1H-CPU65H 60K steps

CS1H-CPU64H 30K steps

CS1H-CPU63H 20K steps

CS1G-CPU45H 60K steps

CS1G-CPU44H 30K steps 1,280

CS1G-CPU43H 20K steps 960

CS1G-CPU42H 10K steps

Model Program capacity I/O points

CS1H-CPU67-E 250K steps 5,120

CS1H-CPU66-E 120K steps

CS1H-CPU65-E 60K steps

CS1H-CPU64-E 30K steps

CS1H-CPU63-E 20K steps

CS1G-CPU45-E 60K steps

CS1G-CPU44-E 30K steps 1,280

CS1G-CPU43-E 20K steps 960

CS1G-CPU42-E 10K steps

Model Program capacity I/O points

CS1D-CPU67H 250K steps 5,120

CS1D-CPU65H 60K steps

Model Program capacity I/O points

CS1D-CPU42S 10K steps 960

CS1D-CPU44S 30K steps 1,280

CS1D-CPU65S 60K steps 5,120

CS1D-CPU67S 250K steps
2

General Instruction Characteristics Section 1-1
• CJ1-H CPU Units

• CJ1 CPU Units

• CJ1M CPU Units

Note Program capacity for CS/CJ-series PLCs is measured in steps, whereas pro-
gram capacity for previous OMRON PLCs, such as the C-series and CV-
series PLCs, was measured in words. Basically speaking, 1 step is equivalent
to 1 word. The amount of memory required for each instruction, however, is
different for some of the CS/CJ-series instructions, and inaccuracies will occur
if the capacity of a user program for another PLC is converted for a CS/CJ-
series PLC based on the assumption that 1 word is 1 step. Refer to the infor-
mation at the end of SECTION 4 Instruction Execution Times and Number of
Steps for guidelines on converting program capacities from previous OMRON
PLCs.

The number of steps in a program is not the same as the number of instruc-
tions. For example, LD and OUT require 1 step each, but MOV(021) requires
3 steps. Other instructions require up to 15 steps each. The number of steps
required by an instruction is also increased by one step for each double-
length operand used in it. For example, MOVL(498) normally requires 3 steps,
but 4 steps will be required if a constant is specified for the source word oper-
and, S. Refer to SECTION 4 Instruction Execution Times and Number of
Steps for the number of steps required for each instruction.

1-1-2 Differentiated Instructions
Most instructions in CS/CJ-series PLCs are provided with both non-differenti-
ated and upwardly differentiated variations, and some are also provided with a
downwardly differentiated variation.

• A non-differentiated instruction is executed every time it is scanned.

Model Program capacity I/O points

CJ1H-CPU67H-R 250K steps 2,560

CJ1H-CPU66H-R 120K steps

CJ1H-CPU65H-R 60K steps

CJ1H-CPU64H-R 30K steps

CJ1H-CPU67H 250K steps

CJ1H-CPU66H 120K steps

CJ1H-CPU65H 60K steps

CJ1G-CPU45H 60K steps 1,280

CJ1G-CPU44H 30K steps

CJ1G-CPU43H 20K steps 960

CJ1G-CPU42H 10K steps

Model Program capacity I/O points

CJ1G-CPU45 60K steps 1,280

CJ1G-CPU44 30K steps

Model Program capacity I/O points

CJ1M-CPU23 20K steps 640

CJ1M-CPU22 10K steps 320

CJ1M-CPU21 5K steps 160

CJ1M-CPU13 20K steps 640

CJ1M-CPU12 10K steps 320

CJ1M-CPU11 5K steps 160
3

General Instruction Characteristics Section 1-1
• An upwardly differentiated instruction is executed only once after its exe-
cution condition goes from OFF to ON.

• A downwardly differentiated instruction is executed only once after its exe-
cution condition goes from ON to OFF.

Note The downwardly differentiated option (%) is available only for the LD, AND,
OR, and RSET instructions. To create downwardly differentiated variations of
other instructions, control the execution of the instruction with work bits con-
trolled with DIFD(014) or DOWN(522).

1-1-3 Instruction Variations
The variation prefixes (@, %, and !) can be added to an instruction to create a
differentiated instruction or provide immediate refreshing.

Variation Instruction type Operation Format Example

Non-
differentiated

Output instructions
(instructions requiring
an execution condi-
tion)

The instruction is exe-
cuted every cycle while
the execution condition is
true (ON).

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true while the
result is ON.

Upwardly
differentiated
(with @ prefix)

Output instructions The instruction is exe-
cuted just once when the
execution condition goes
from OFF to ON.

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true for one cycle
when the result goes
from OFF to ON.

Downwardly
differentiated
(with % prefix)

Output instructions The instruction is exe-
cuted just once when the
execution condition goes
from ON to OFF.

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true for one cycle
when the result goes
from ON to OFF.

Output instruction
executed each cycle MOV

Input instruction
executed each cycle

Instruction executed
once for upward
differentiation

@MOV

MOV(021) executed once
for each OFF to ON transi-
tion in CIO 000102.

Upwardly differentiated
input instruction

ON execution condition created
for one cycle only for each OFF
to ON transition in CIO 000103.

%Instruction
executed once for
downward
differentiation

0001
02 %SET

SET executed once for
each ON to OFF transition
in CIO 000102.

Downwardly differentiated
input instruction

0001
03

ON execution condition created
for one cycle only for each ON to
OFF transition in CIO 000103.

Variation Prefix Operation

Differentiation Upwardly dif-
ferentiated

@ Creates an upwardly differentiated instruc-
tion.

Downwardly
differentiated

% Creates a downwardly differentiated instruc-
tion.

Immediate refreshing ! The instruction’s operand data in the I/O
Area will be refreshed when the instruction
is executed.
4

General Instruction Characteristics Section 1-1
1-1-4 Instruction Location and Execution Conditions
The following table shows the locations in which instructions can be pro-
grammed. The table also shows when an instruction requires an execution
condition and when it does not. Refer to SECTION 2 Summary of Instructions
for details on specific instructions.

In addition to these instructions, the CS/CJ-series PLCs are equipped with
block programming instructions. Refer to the description of the block program-
ming instructions for details.

Note If an execution condition does not precede an instruction that requires one, a
program error will occur when the program is checked from a Peripheral
Device.

1-1-5 Inputting Data in Operands
Operands are parameters that are set in advance with the I/O memory
addresses or constants to be used when the instruction is executed. There
are basically three kinds of operands: Source operands, destination oper-
ands, and numbers.

! @ MOV

Instruction mnemonic
Up-differentiation variation
Immediate-refreshing variation

Instruction type Location Execution
condition

Format Examples

Input Instructions
that start
logic
conditions

At the left bus or at
the start of an
instruction block

Not required LD, LD TST, and input com-
parison instructions such as
LD >

Connecting
instructions

Between a starting
instruction and out-
put instruction

Required AND, OR, AND TST, input
comparison instructions such
as AND >, UP, DOWN, NOT

Output At the right bus Required The majority of instructions
(such as OUT and MOV)

Not required Instructions such as END,
JME, FOR, and ILC

Operand Usual
code

Contents

Source Address containing
the data or the data
itself

S Source
operand

Source data other than
control data

C Control
data

Control data with a bit
or bits controlling
instruction execution

Destination Address where the
data will be stored

D ---

Number Contains a number
such as a jump num-
ber or subroutine
number.

N ---

JMP

&3#0000

D00000

MOV

S (Source)

D (Destination)

N (Number)
5

General Instruction Characteristics Section 1-1
Note An instruction’s operands may also be referred to by their position in the
instruction (first operand, second operand, ...). The codes used for the oper-
and vary with the specific function of the operand.

Specifying Bit Addresses

Specifying Word Addresses

Specifying Indirect DM/EM Addresses in Binary Mode

#0000

D00000

MOV

First operand

Second operand

Description Example Instruction example

Description Example Instruction example
MOV 0003 D00200

Description Example Instruction example

--- ---

When the contents of @D@@@@@ is between
0000 and 7FFF (00000 to 32,767), the corre-
sponding word between D00000 and D32767 is
specified.

MOV #0001
@D00300

@@@@ @@

Note The word address + bit number format is
not used for Timer/Counter Completion
Flags or Task Flags.

Bit number

Word address

To specify a bit address, specify the word
address and bit address directly.

0001 02

Bit 02

Word CIO 0001

02
0001

@@@@

To specify a word address, specify the word
address directly.

Word address

0003

D00200

Word D00200

Word CIO 0003

@D@@@@@

D

Content 00000 to 32767
(0000 to 7FFF)

When the @ prefix is input before a DM or EM
address, the contents of that word specifies
another word that is used as the operand. The
contents can be 0000 to 7FFF (0 to 32,767),
corresponding to the desired word address in the
DM or EM Area.

Add the @ prefix.

Specifies D00256.

Decimal:

@D00300

0 1 0 0

 256
6

General Instruction Characteristics Section 1-1
Note When binary mode is selected in the PLC Setup, the DM Area and current EM
bank addresses (bank 0 to C) are treated as consecutive memory addresses.
A word in EM bank 0 will be specified if an indirectly addressed DM word con-
tains a value greater than 32,767. For example, E00000 in bank 0 will be
specified when the indirect-addressing DM word contains a hexadecimal
value of 8000 (32,768).

A word in the next EM bank will be specified if an indirectly addressed EM
word contains a value greater than 32,767. For example, E3_00000 will be
specified when the indirect-addressing EM word in bank 2 contains a hexa-
decimal value of 8000 (32,768).

Specifying Indirect DM/EM Addresses in BCD Mode

When the contents of @D@@@@@ is between
8000 and FFFF (32,768 to 65,535), the corre-
sponding word between E0_00000 and E0_32767
in EM bank 0 is specified.

When the contents of @En@_@@@@@ is between
0000 and 7FFF (00000 to 32,767), the corre-
sponding word between En@_00000 and
En@_32767 is specified.

MOV #0001
@E1_00200

When the contents of @En@_@@@@@ is between
8000 and FFFF (32,768 to 65,535), the corre-
sponding word between E (@+1) _00000 and E
(@+1) _32767 (in the next EM bank) is specified.

Description Example Instruction example

@D00300

8 0 0 1

 32,769Decimal:

Specifies E0_00001.

@E1_00200

0 1 0 1

 257Decimal:

Specifies E1_00257.

@E1_00200

8 0 0 2

 32770Decimal:

Specifies E2_00002.

Method Description Example Instruction example
Indirect DM/EM
addressing
(BCD mode)

MOV #0001 *D00200

*D@@@@@

D

(BCD)Content 0000 to 9999

When the * prefix is input before a DM
or EM address, the BCD contents of
that word specify another word that is
used as the operand. The contents can
be 0000 to 9999, corresponding to the
desired word address in the DM or EM
Area.

*D00200

0 1 0 0

Specifies D00100.

Add the * prefix.
7

General Instruction Characteristics Section 1-1
Addressing Index Registers

Note Make sure that the contents of index registers indicate valid I/O memory
addresses.

Method Description Example Instruction example

Directly
addressing
Index Registers

MOVR(560) moves the PLC memory address of a
word or bit to an Index Register (IR0 to IR15).
(MOVRW(561) moves the PLC memory address of
a timer or counter PV to an Index Register.)

IR0
IR2

MOVR 0010 IR0
Stores the PLC memory address
of CIO 0010 in IR0.

MOVR 000102 IR2
Stores the PLC memory address
of CIO 000102 in IR2.

Indirect
addressing with
Index Registers

Basic opera-
tion (no offset)

The word or bit at the I/O memory
address contained in IR@ is used
as the operand. Input a comma
before the Index Register to indi-
cate indirect addressing.
(The bit/word designation can be
determined by the instruction or
operand.)

,IR0
,IR1

LD ,IR0
Loads the status of the bit at the
I/O memory address contained in
IR0.
MOV #0001, IR1
Moves #0001 to the word at the
I/O memory address contained in
IR1.

Constant offset The offset value (–2,048 to
+2,047) is added to the I/O mem-
ory address contained in IR@ and
the resulting address is used as
the operand.
(The offset is converted to binary
when the instruction is executed.)

+5 ,IR0
+31 ,IR1

LD +5 ,IR0
Adds 5 to the I/O memory
address contained in IR0 and
loads the status of the bit at that
address.
MOV #0001 +31 ,IR1
Adds 31 to the I/O memory
address contained in IR1 and
moves #0001 to the word at that
address.

DR offset The signed binary content of the
Data Register is added to the I/O
memory address contained in
IR@ and the resulting address is
used as the operand.

DR0 ,IR0

DR0 ,IR1

LD DR0 ,IR0
Adds the content of DR0 to the
I/O memory address contained in
IR0 and loads the status of the bit
at that address.
MOV #0001 DR0 ,IR1
Adds the content of DR0 to the
I/O memory address contained in
IR1 and moves #0001 to the word
at that address.

Auto-increment After the I/O memory address is
read from IR@, the content of the
Index Register is incremented by
one or two.
Increment by 1: ,R@+
Increment by 2: ,IR@++
Note Index registers will be incre-

mented when the instruction
is executed even if an error
occurs and the Error Flag
turns ON.

,IR0 + +
,IR1 +

LD ,IR0 + +
Loads the status of the bit at the
I/O memory address contained in
IR0 and then increments the reg-
ister by two.

MOV #0001 ,IR1 +
Moves #0001 to the word at the
I/O memory address contained in
IR1 and then increments the reg-
ister by one.

Auto-decre-
ment

The content of IR@ is decre-
mented by one or two and then
the I/O memory address in the
register is used as the operand.

Decrement by 1: ,– IR@
Decrement by 2: ,– –IR@
Note Index registers will be dec-

remented when the instruc-
tion is executed even if an
error occurs and the Error
Flag turns ON.

, – – IR0

, – IR1

LD , – – IR0
Decrements the content of IR0 by
two and then loads the status of
the bit at that I/O memory
address.
MOV #0001 , – IR1
Decrements the content of IR0 by
one and then moves #0001 to the
word at that I/O memory address.
8

General Instruction Characteristics Section 1-1
Specifying Constants

Specifying Text Strings

Method Applicable
operands

Data
format

Code Range Example

Constant
(16-bit data)

All binary data
and binary data
within a range

Unsigned
binary

#0000 to #FFFF MOV #0100 D00000
Stores #0100 hex (&256 decimal)
in D00000.

+#0009 #0001 D00001
Stores #000A hex (&10 decimal)
in D00001.

Signed dec-
imal

± –32,768 to +32,767 MOV −100 D00000
Stores −100 decimal (#FF9C hex)
in D00000.

+−9 −1 D00001
Stores −10 decimal (#FFF6 hex)
in D00001.

Unsigned
decimal

& &0 to &66,535 MOV &256 D00000
Stores −256 decimal (#0100 hex)
in D00000.

+&9 &1 D00001
Stores −10 decimal (#000A hex)
in D00001.

All BCD data
and BCD data
within a range

BCD # #0000 to #9999 MOV #0100 D00000
Stores #0100 (BCD) in D00000.

+B #0009 #0001 D00001
Stores #0010 (BCD) in D00001.

Constant
(32-bit data)

All binary data
and binary data
within a range

Unsigned
binary

#0000 0000 to
#FFFF FFFF

MOVL #12345678 D00000
Stores #12345678 hex in D00000
and D00001.

Signed dec-
imal

+
–

–2,147,483,648 to
+2,147,483,647

MOVL −12345678 D00000
Stores −12345678 decimal in
D00000 and D00001.

Unsigned
decimal

& &0 to &4,294,967,295 MOVL &12345678 D00000
Stores &12345678 decimal in
D00000 and D00001.

All BCD data
and BCD data
within a range

BCD # #0000 0000 to
#9999 9999

MOVL #12345678 D00000
Stores #12345678 (BCD) in
D00000 and D00001

Method Description Code Examples Instruction example

Text strings Text is stored in ASCII (1 byte/
character excluding special
characters) starting with the
lower byte of the lowest word
in the range.

If there is an odd number of
characters, 00 (NULL) is
stored in the higher byte of the
last word in the range.
If there is an even number of
characters, 0000 (two NULLs)
are stored in the word after the
last in the range.

1234 5678

D0001 D00000

 "ABCDE"

 "A" "B"
 "C" "D"
 "E" NUL

41 42
43 44
45 00

 "ABCD"
 "A" "B"
 "C" "D"
NUL NUL

41 42
43 44
00 00

41 42
43 44
45 00

D00100
D00101
D00102

41 42
43 44
45 00

D00200
D00201
D00202

MOV$ D00100 D00200
9

General Instruction Characteristics Section 1-1
The following diagram shows the characters that can be expressed in ASCII.

Note The following instructions are executed even when the input conditions are
OFF. Therefore, when indirect memory addresses are specified using auto-
incrementing or auto-decrementing (,IR+ or ,IR-) in an operand of any of
these instructions, the value in the Index Register (IR) is refreshed each cycle
regardless of the input condition (increases or decreases one every cycle).
This must be considered when writing a program.

SP

R
ig

ht
m

os
t b

it

Leftmost bit

Classification Instructions

Sequence input
instructions

LD, LD NOT, AND, AND NOT, OR, OR NOT, LD TST(350),
LD TSTN(351), AND TST(350), AND TSTN(351), OR
TST(350), OR TSTN(351)

Sequence output
instructions

OUT, OUT NOT, DIFU(013), DIFD(014)

Sequence control
instructions

JMP(004), FOR(512)

Timer and counter
instructions

TIM/TIMX(550), TIMH(015)/TIMHX(551), TMHH(540)/
TMHHX(552), TIMU(541)/TIMUX(556), TMUH(544)/
TMUHX(557), TTIM(087)/TTIMX(555), TIML(542)/
TIMLX(553), MTIM(533)/MTIMX(554), CNT/CNTX(546),
CNTR(012)/CNTRX(548)

Comparison instruc-
tions

Symbol comparison instructions (LD, AND, OR =, etc.(func-
tion codes: 300, 305, 310, 320, and 325))

Single-precision float-
ing-point math instruc-
tions

Single-precision floating-point data comparison (LD, AND,
OR = F, etc.(function codes: 329 to 334))

Double-precision float-
ing-point math instruc-
tions

Double-precision floating-point data comparison (LD, AND,
OR = D, etc.(function codes: 335 to 340))
10

General Instruction Characteristics Section 1-1
The following ladder programming examples show how the index registers are
treated.

Example 1

Ladder Program:
LD P_Off
OUT, IR0+

Operation: When the PLC memory address 000013 is stored in IR0.

The input condition is OFF (P_Off is the Always OFF Flag), so the OUT
instruction sets 000013, which is indirectly addressed by IR0, to OFF. The
OUT instruction is executed, so IR0 is incremented. As a result, the PLC
memory address 000014, which was incremented by +1 in the IR0, is stored.
Therefore, in the following cycle the OUT instruction turns OFF 000014.

Example 2

Ladder Program:
LD P_Off
SET, IR0+

Operation: When the PLC memory address 000013 is stored in IR0.

The input condition is OFF (P_Off is the Always OFF Flag), so the SET
instruction is not executed. Therefore, IR0 is not incremented and the value
stored in IR0 remains PLC memory address 000013.

1-1-6 Data Formats
The following table shows the data formats that can be used in CS/CJ-series
PLCs.

Block programming
instructions

BPPS(811), BPRS(812), EXIT(806), EXIT(806) NOT,
IF(802), IF(802) NOT, WAIT(805), WAIT(805) NOT,
TIMW(813)/TIMWX(816), CNTW(814)/CNTWX(818),
TMHW(815)/TMHWX(817), LEND(810), LEND(810) NOT

Text string processing
instructions

STRING COMPARISON (LD, AND, OR = $, etc. (function
codes: 670 to 675))

Classification Instructions

Name Format Decimal
range

Hexadecimal
range

Unsigned
binary
data

0 to
65,535

0000 to FFFF

Signed
binary
data

–32,768
to
+32,767

8000 to 7FFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 2023 22 21 2023 22 21 2023 22 21 20

32768 512 256 128 64 32 16 8 4 2 116384 8192 4096 2048 1024Decimal

Binary

Hexa-
decimal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 2023 22 21 2023 22 21 2023 22 21 20

-32768 512 256 128 64 32 16 8 4 2 116384 81924096 2048 1024Decimal

1: Negative
0: Positive
Sign bit

Binary

Hexa-
decimal
11

General Instruction Characteristics Section 1-1
Signed Binary Numbers Negative signed-binary numbers are expressed as the 2’s complement of the
absolute hexadecimal value. For a decimal value of –12,345, the absolute
value is equivalent to 3039 hexadecimal. The 2’s complement is 10000 – 3039
(both hexadecimal) or CFC7.

To convert from a negative signed binary number (CFC7) to decimal, take the
2’s complement of that number (10000 – CFC7 = 3039), convert to decimal
(3039 hexadecimal = 12,345 decimal), and add a minus sign (–12,345).

BCD data 0 to 9,999 0000 to 9999

Floating-
point deci-
mal

--- ---

Double-
precision
floating-
point deci-
mal

--- ---

Name Format Decimal
range

Hexadecimal
range

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BCD 23 22 21 2023 22 21 2023 22 21 2023 22 21 20

0 to 9 0 to 9 0 to 9 0 to 9Decimal

31 30 29 23 22 21 20 19 18 17 3 2 1 0

Exponent Mantissa

Note This format conforms to IEEE754 standards for single-precision floating-point data
and is used only with instructions that convert or calculate floating-point data. It can
be used to set or monitor from the I/O memory Edit and Monitor Screen on the CX-
Programmer (not supported by the Programming Consoles). As such, users do not
need to know this format although they do need to know that the formatting takes up
two words.

The exponent includes 8 bits from bit 23 to bit 30
and indicates n plus 127 in 2n in binary.

The mantissa includes 23 bits from bit 00 to bit 22
and indicates this portion below the decimal point
in 1.@@@..... in binary.

1: negative or 0: positive

Sign of
mantissa Binary

Value = (−1)Sign x 1.[Mantissa] x 2Exponent

Mantissa

Sign (bit 31)

Exponent

63 62 61 52 51 50 49 48 47 46 3 2 1 0

Exponent Mantissa

Sign (bit 63)

Mantissa

Exponent

Note This format conforms to IEEE754 standards for double-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the I/O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming
Consoles). As such, users do not need to know this format although they do
need to know that the formatting takes up four words.

Sign of
mantissa Binary

Value = (−1)Sign x 1.[Mantissa] x 2Exponent

1: negative or 0: positive

The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.@@@.....,
in binary.

The 11 bits from bit 52 to bit 62 contain the exponent
The exponent is expressed in binary as 1023 plus n in
2n.
12

Instruction Execution Checks Section 1-2
1-2 Instruction Execution Checks

1-2-1 Errors Occurring at Instruction Execution
An instruction’s operands and placement are checked when an instruction is
input from a Peripheral Device or a program check is performed from a
Peripheral Device (other than a Programming Console), but these are not final
checks. The following four errors can occur when an instruction is executed.

Instruction Processing Error (ER Flag ON)

Normally, Instruction Processing Errors are non-fatal errors, but the PLC
Setup can be set to treat Instruction Processing Errors as fatal errors. If this
setting has been made, the Instruction Processing Error Flag (A29508) will be
turned ON and program execution will stop when an Instruction Processing
Error occurs.

Access Error (AER Flag ON)

Normally, Access Errors are non-fatal errors, but the PLC Setup can be set to
treat these errors as fatal errors. If this setting has been made, the Illegal
Access Error Flag (A29510) and the Indirect DM/EM BCD Error Flag
(A29509) will be turned ON and program execution will stop when an Access
Error occurs.

Illegal Instruction Error

The Illegal Instruction Error Flag (A29514) will be turned ON and program
execution will stop when this error occurs.

UM (User Program Memory) Overflow Error

The UM Overflow Error Flag (A29515) will be turned ON and program execu-
tion will stop when this error occurs.

1-2-2 Fatal Errors (Program Errors)
Program execution will be stopped when one of the following program errors
occurs. When a program error has occurred, the task number of the task that
was being executed when program execution was stopped is written to A294
and the program address is written to A298 and A299.

Use the contents of these words to locate the program error and correct it as
necessary.

Address Description

A294 The task number of the current task is written to this word when pro-
gram execution is stopped because of a program error.
Cyclic tasks have task numbers 0000 to 001F (cyclic tasks 0 to 31).
Interrupt tasks have task numbers 8000 to 80FF (interrupt tasks 0 to
255).

A298 and
A299

The current program address is written to these words when program
execution is stopped because of a program error.
A299 contains the leftmost digits of the program address and A298
contains the rightmost digits of the program address.
13

Instruction Execution Checks Section 1-2
All errors for which the Error Flag or Access Error Flag turns ON is treated as
a program error The following table lists program errors. The PLC Setup can
be set to stop program execution when one of these errors occurs.

Error type Description Related flags

No END Instruction There is no END(001) instruction in the program. No END Error Flag
(A29511)

Task Error There are three possible causes of a task error:
1) There is not an executable cyclic task.
2) There is not a program allocated to the task.
3) An interrupt was generated but the corresponding interrupt
task does not exist.

Task Error Flag (A29512)

Instruction Processing
Error*

The CPU attempted to execute an instruction, but the data
provided in the instruction’s operand was incorrect.
*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Instruction Processing Error
Flag (A29508) will be turned ON and program execution will
stop.

Error (ER) Flag,
Instruction Processing
Error Flag (A29508)

Access Error* There are five possible causes of an access error:
1) Reading/writing to the parameter area.
2) Writing to memory that is not installed.
3) Reading/writing to an EM bank that is EM file memory.
4) Writing to a read-only area.
5) The contents of a DM/EM word was not BCD although the
PLC is set for BCD indirect addressing.
*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Illegal Access Error Flag
(A29510) will be turned ON and program execution will stop.

Access Error (AER) Flag,
Illegal Access Error Flag
(A29510)

Indirect DM/EM BCD
Error*

The contents of a DM/EM word was not BCD although the
PLC is set for BCD indirect addressing.
*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Indirect DM/EM BCD Error
Flag (A29509) will be turned ON and program execution will
stop.

Access Error (AER) Flag,
Indirect DM/EM BCD Error
Flag (A29509)

Differentiation Overflow
Error

Differentiated instructions were repeatedly inserted and
deleted during online editing (over 31,072 times).

Differentiation Overflow
Error Flag (A29513)

UM Overflow Error The last address in UM (user program memory) has been
exceeded.

UM Overflow Error Flag
(A29515)

Illegal Instruction Error The program contains an instruction that cannot be executed. Illegal Instruction Error
Flag (A29514)
14

SECTION 2
Summary of Instructions

This section provides a summary of instructions used with CS/CJ-series PLCs.

2-1 Instruction Classifications by Function. 16

2-2 Instruction Functions. 25

2-2-1 Sequence Input Instructions . 25

2-2-2 Sequence Output Instructions . 27

2-2-3 Sequence Control Instructions . 30

2-2-4 Timer and Counter Instructions . 34

2-2-5 Comparison Instructions. 39

2-2-6 Data Movement Instructions. 43

2-2-7 Data Shift Instructions . 46

2-2-8 Increment/Decrement Instructions . 50

2-2-9 Symbol Math Instructions. 51

2-2-10 Conversion Instructions . 56

2-2-11 Logic Instructions . 63

2-2-12 Special Math Instructions . 65

2-2-13 Floating-point Math Instructions . 66

2-2-14 Double-precision Floating-point Instructions. 71

2-2-15 Table Data Processing Instructions. 75

2-2-16 Data Control Instructions . 79

2-2-17 Subroutine Instructions. 83

2-2-18 Interrupt Control Instructions . 84

2-2-19 High-speed Counter and Pulse Output Instructions
(CJ1M-CPU21/22/23 Only) . 86

2-2-20 Step Instructions . 88

2-2-21 Basic I/O Unit Instructions . 88

2-2-22 Serial Communications Instructions. 92

2-2-23 Network Instructions . 93

2-2-24 File Memory Instructions . 96

2-2-25 Display Instructions . 98

2-2-26 Clock Instructions. 98

2-2-27 Debugging Instructions. 99

2-2-28 Failure Diagnosis Instructions . 100

2-2-29 Other Instructions . 101

2-2-30 Block Programming Instructions . 102

2-2-31 Text String Processing Instructions . 108

2-2-32 Task Control Instructions . 111

2-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or Later Only) . 112

2-2-34 Special Function Block Instructions. 113

2-3 Alphabetical List of Instructions by Mnemonic . 114

2-4 List of Instructions by Function Code. 131
15

Instruction Classifications by Function Section 2-1
2-1 Instruction Classifications by Function
The following table lists the CS/CJ-series instructions by function. (The
instructions appear by order of their function in Section 3 Instructions.)

*Instructions or instruction groups marked with a single asterisk are supported
by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only.

**Instructions or instruction groups marked with two asterisks are supported
by CJ1M CPU Units only.

***Instructions or instruction groups marked with three asterisks are not sup-
ported by CS1D CPU Units for Duplex-CPU Systems.

Note 1. CS/CJ-series CPU Unit Ver. 2.0 or later only

2. CJ1-H-R CPU Units only.

3. CJ1M-CPU21/22/23 CPU Unit Ver. 2.0 or later only

4. CS/CJ-series CPU Unit Ver. 2.0 or later only
CJ1M CPU Unit (Pre-Ver. 2.0 or Unit Ver. 2.0 or later)

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction

Basic
instructions

Input LD LOAD LD NOT LOAD NOT AND AND

AND NOT AND NOT OR OR OR NOT OR NOT

AND LD AND LOAD OR LD OR LOAD --- ---

Output OUT OUTPUT OUT NOT OUTPUT NOT --- ---

Sequence
input
instructions

--- NOT NOT UP CONDITION
ON

DOWN CONDITION
OFF

Bit test LD TST LD BIT TEST LD TSTN LD BIT TEST
NOT

AND TST AND BIT
TEST NOT

AND TSTN AND BIT
TEST NOT

OR TST OR BIT TEST OR TSTN OR BIT TEST
NOT

Sequence
output
instructions

--- KEEP KEEP DIFU DIFFERENTI-
ATE UP

DIFD DIFFERENTI-
ATE DOWN

OUTB* SINGLE BIT
OUTPUT

--- --- --- ---

Set/Reset SET SET RSET RESET SETA MULTIPLE
BIT SET

RSTA MULTIPLE
BIT RESET

SETB* SINGLE BIT
SET

RSTB* SINGLE BIT
RESET

Sequence
control
instructions

--- END END NOP NO OPERA-
TION

--- ---

Interlock IL INTERLOCK ILC INTERLOCK
CLEAR

MILH MULTI-INTER-
LOCK DIF-
FERENTIATIO
N HOLD

MILR
(See note 1.)

MULTI-INTER-
LOCK DIF-
FERENTIATIO
N RELEASE

MILC
(See note 1.)

MULTI-INTER-
LOCK CLEAR

--- ---

Jump JMP JUMP JME JUMP END CJP CONDI-
TIONAL
JUMP

CJPN CONDI-
TIONAL
JUMP

JMP0 MULTIPLE
JUMP

JME0 MULTIPLE
JUMP END

Repeat FOR FOR-NEXT
LOOPS

BREAK BREAK LOOP NEXT FOR-NEXT
LOOPS
16

Instruction Classifications by Function Section 2-1
Timer and
counter
instructions

BCD Timer
(with
timer
numbers)

TIM HUNDRED-
MS TIMER

TIMH TEN-MS
TIMER

TMHH ONE-MS
TIMER

TIMU
(See note 2.)

TENTH-MS
TIMER

TMUH
(See note 2.)

HUN-
DREDTH-MS
TIMER

TTIM ACCUMULA-
TIVE TIMER

Timer
(without
timer
numbers)

TIML LONG TIMER MTIM MULTI-OUT-
PUT TIMER

--- ---

Counter
(with
counter
numbers)

CNT COUNTER CNTR REVERSIBLE
TIMER

CNR RESET
TIMER/
COUNTER

Binary* Timer
(with
timer
numbers)

TIMX HUNDRED-
MS TIMER

TIMHX TEN-MS
TIMER

TMHHX ONE-MS
TIMER

TIMUX
(See note 2.)

TENTH-MS
TIMER

TMUHX
(See note 2.)

HUN-
DREDTH-MS
TIMER

TTIMX ACCUMULA-
TIVE TIMER

Timer
(without
timer
numbers)

TIMLX LONG TIMER MTIMX MULTI-OUT-
PUT TIMER

--- ---

Counter
(with
counter
numbers)

CNTX COUNTER CNTRX REVERSIBLE
TIMER

CNRX RESET
TIMER/
COUNTER

Comparison
instructions

Symbol
comparison

LD, AND, OR
+
=, <>, <, <=, >,
>=

Symbol com-
parison
(unsigned)

LD, AND, OR
+
=, <>, <, <=, >,
>= + L

Symbol com-
parison (dou-
ble-word,
unsigned)

LD, AND, OR
+
=, <>, <, <=, >,
>= +S

Symbol
comparison
(signed)

LD, AND, OR
+
=, <>, <, <=, >,
>= + SL

Symbol com-
parison (dou-
ble-word,
signed)

LD, AND, OR
+
= DT, <> DT, <
DT, <= DT, >
DT, >= DT
(See note 1.)

Time compari-
son

--- ---

Data
comparison
(Condition Flags)

CMP UNSIGNED
COMPARE

CMPL DOUBLE
UNSIGNED
COMPARE

CPS SIGNED
BINARY
COMPARE

CPSL DOUBLE
SIGNED
BINARY
COMPARE

ZCP* AREA RANGE
COMPARE

ZCPL* DOUBLE
AREA RANGE
COMPARE

Table
compare

MCMP MULTIPLE
COMPARE

TCMP TABLE COM-
PARE

BCMP UNSIGNED
BLOCK COM-
PARE

BCMP2
(See note 3.)

EXPANDED
BLOCK COM-
PARE

--- --- --- ---

Data
movement
instructions

Single/
double-word

MOV MOVE MOVL DOUBLE
MOVE

MVN MOVE NOT

MVNL DOUBLE
MOVE NOT

--- --- --- ---

Bit/digit MOVB MOVE BIT MOVD MOVE DIGIT --- ---

Exchange XCHG DATA
EXCHANGE

XCGL DOUBLE
DATA
EXCHANGE

--- ---

Block/bit transfer XFRB MULTIPLE
BIT TRANS-
FER

XFER BLOCK
TRANSFER

BSET BLOCK SET

Distribute/ collect DIST SINGLE
WORD DIS-
TRIBUTE

COLL DATA COL-
LECT

--- ---

Index register MOVR MOVE TO
REGISTER

MOVRW MOVE TIMER/
COUNTER PV
TO REGIS-
TER

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
17

Instruction Classifications by Function Section 2-1
Data shift
instructions

1-bit shift SFT SHIFT REG-
ISTER

SFTR REVERSIBLE
SHIFT REG-
ISTER

ASLL DOUBLE
SHIFT LEFT

ASL ARITHMETIC
SHIFT LEFT

ASR ARITHMETIC
SHIFT RIGHT

ASRL DOUBLE
SHIFT RIGHT

0000 hex asynchro-
nous

ASFT ASYNCHRO-
NOUS SHIFT
REGISTER

--- --- --- ---

Word shift WSFT WORD SHIFT --- --- --- ---

1-bit rotate ROL ROTATE LEFT ROLL DOUBLE
ROTATE LEFT

RLNC ROTATE LEFT
WITHOUT
CARRY

RLNL DOUBLE
ROTATE LEFT
WITHOUT
CARRY

ROR ROTATE
RIGHT

RORL DOUBLE
ROTATE
RIGHT

RRNC ROTATE
RIGHT WITH-
OUT CARRY

RRNL DOUBLE
ROTATE
RIGHT WITH-
OUT CARRY

--- ---

1 digit shift SLD ONE DIGIT
SHIFT LEFT

SRD ONE DIGIT
SHIFT RIGHT

--- ---

Shift n-bit data NSFL SHIFT N-BIT
DATA LEFT

NSFR SHIFT N-BIT
DATA RIGHT

--- ---

Shift n-bit NASL SHIFT N-BITS
LEFT

NSLL DOUBLE
SHIFT N-BITS
LEFT

NASR SHIFT N-BITS
RIGHT

NSRL DOUBLE
SHIFT N-BITS
RIGHT

--- --- --- ---

Increment/
decrement
instructions

BCD ++B INCREMENT
BCD

++BL DOUBLE
INCREMENT
BCD

– –B DECRE-
MENT BCD

– –BL DOUBLE
DECRE-
MENT BCD

--- --- --- ---

Binary ++ INCREMENT
BINARY

++L DOUBLE
INCREMENT
BINARY

– – DECRE-
MENT
BINARY

– –L DOUBLE
DECRE-
MENT
BINARY

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
18

Instruction Classifications by Function Section 2-1
Symbol
math
instructions

Binary add + SIGNED
BINARY ADD
WITHOUT
CARRY

+L DOUBLE
SIGNED
BINARY ADD
WITHOUT
CARRY

+C SIGNED
BINARY ADD
WITH CARRY

+CL DOUBLE
SIGNED
BINARY ADD
WITH CARRY

--- --- --- ---

BCD add +B BCD ADD
WITHOUT
CARRY

+BL DOUBLE BCD
ADD
WITHOUT
CARRY

+BC BCD ADD
WITH CARRY

+BCL DOUBLE BCD
ADD WITH
CARRY

--- --- --- ---

Binary subtract – SIGNED
BINARY SUB-
TRACT
WITHOUT
CARRY

–L DOUBLE
SIGNED
BINARY
SUBTRACT
WITHOUT
CARRY

–C SIGNED
BINARY
SUBTRACT
WITH CARRY

–CL DOUBLE
SIGNED
BINARY WITH
CARRY

--- --- --- ---

BCD subtract –B BCD
SUBTRACT
WITHOUT
CARRY

–BL DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BC BCD
SUBTRACT
WITH CARRY

–BCL DOUBLE BCD
SUBTRACT
WITH CARRY

--- --- --- ---

Binary multiply * SIGNED
BINARY
MULTIPLY

*L DOUBLE
SIGNED
BINARY
MULTIPLY

*U UNSIGNED
BINARY
MULTIPLY

*UL DOUBLE
UNSIGNED
BINARY
MULTIPLY

--- --- --- ---

BCD multiply *B BCD
MULTIPLY

*BL DOUBLE BCD
MULTIPLY

--- ---

Binary divide / SIGNED
BINARY
DIVIDE

/L DOUBLE
SIGNED
BINARY
DIVIDE

/U UNSIGNED
BINARY
DIVIDE

/UL DOUBLE
UNSIGNED
BINARY
DIVIDE

--- --- --- ---

BCD divide /B BCD DIVIDE /BL DOUBLE BCD
DIVIDE

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
19

Instruction Classifications by Function Section 2-1
Conversion
instructions

BCD-binary con-
versions

BIN BCD TO
BINARY

BINL DOUBLE BCD
TO DOUBLE
BINARY

BCD BINARY TO
BCD

BCDL DOUBLE
BINARY TO
DOUBLE BCD

NEG 2’S COMPLE-
MENT

NEGL DOUBLE 2’S
COMPLE-
MENT

SIGN 16-BIT TO
32-BIT
SIGNED
BINARY

--- --- --- ---

Decoder/ encoder MLPX DATA
DECODER

DMPX DATA
ENCODER

--- ---

ASCII-hexadecimal
conversions

ASC ASCII CON-
VERT

HEX ASCII TO HEX --- ---

Line-column con-
versions

LINE COLUMN TO
LINE

COLM LINE TO
COLUMN

--- ---

Signed binary-BCD
conversions

BINS SIGNED BCD
TO BINARY

BISL DOUBLE
SIGNED BCD
TO BINARY

BCDS SIGNED
BINARY TO
BCD

BDSL DOUBLE
SIGNED
BINARY TO
BCD

GRY
(See note 1.)

GRAY CODE
CONVER-
SION

--- ---

Number-ASCII con-
versions

STR4 FOUR-DIGIT
NUMBER TO
ASCII

STR8 EIGHT-DIGIT
NUMBER TO
ASCII

STR16 SIXTEEN-
DIGIT NUM-
BER TO ASCII

NUM4 ASCII TO
FOUR-DIGIT
NUMBER

NUM8 ASCII TO
EIGHT-DIGIT
NUMBER

NUM16 ASCII TO SIX-
TEEN-DIGIT
NUMBER

Logic
instructions

Logical AND/OR ANDW LOGICAL
AND

ANDL DOUBLE
LOGICAL
AND

ORW LOGICAL OR

ORWL DOUBLE
LOGICAL OR

XORW EXCLUSIVE
OR

XORL DOUBLE
EXCLUSIVE
OR

XNRW EXCLUSIVE
NOR

XNRL DOUBLE
EXCLUSIVE
NOR

--- ---

Complement COM COMPLE-
MENT

COML DOUBLE
COMPLE-
MENT

--- ---

Special
math
instructions

--- ROTB BINARY
ROOT

ROOT BCD SQUARE
ROOT

APR ARITHMETIC
PROCESS

FDIV FLOATING
POINT
DIVIDE

BCNT BIT
COUNTER

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
20

Instruction Classifications by Function Section 2-1
Floating-
point math
instructions

Floating point/
binary convert

FIX FLOATING TO
16-BIT

FIXL FLOATING TO
32-BIT

FLT 16-BIT TO
FLOATING

FLTL 32-BIT TO
FLOATING

--- --- --- ---

Floating- point
basic math

+F FLOATING-
POINT ADD

–F FLOATING-
POINT
SUBTRACT

/F FLOATING-
POINT
DIVIDE

*F FLOATING-
POINT
MULTIPLY

--- --- --- ---

High-speed trigo-
nometric functions
(See note 2.)

SINQ HIGH-SPEED
SINE

CONQ HIGH-SPEED
COSINE

TANQ HIGH-SPEED
TANGENT

Floating- point
trigonometric func-
tions

RAD DEGREES TO
RADIANS

DEG RADIANS TO
DEGREES

SIN SINE

COS COSINE TAN TANGENT ASIN ARC SINE

ACOS ARC COSINE ATAN ARC TAN-
GENT

--- ---

Floating- point
math

SQRT SQUARE
ROOT

EXP EXPONENT LOG LOGARITHM

PWR EXPONEN-
TIAL POWER

--- --- --- ---

Symbol compari-
son and conver-
sion*

LD, AND, OR
+
=, <>, <, <=, >,
>= + F

Symbol com-
parison (sin-
gle-precision
floating point)

FSTR* FLOATING-
POINT TO
ASCII

FVAL* ASCII TO
FLOATING-
POINT

Single-precision
floating point move
(See note 2.)

MOVF MOVE FLOAT-
ING-POINT
(SINGLE)

--- --- --- ---

Double-pre-
cision float-
ing- point
instruc-
tions*

Floating point/
binary convert

FIXD DOUBLE
FLOATING TO
16-BIT

FIXLD DOUBLE
FLOATING TO
32-BIT

DBL 16-BIT TO
DOUBLE
FLOATING

DBLL 32-BIT TO
DOUBLE
FLOATING

--- --- --- ---

Floating- point
basic math

+D DOUBLE
FLOATING-
POINT ADD

–D DOUBLE
FLOATING-
POINT
SUBTRACT

/D DOUBLE
FLOATING-
POINT
DIVIDE

*D DOUBLE
FLOATING-
POINT
MULTIPLY

--- --- --- ---

Floating- point
trigonometric func-
tions

RADD DOUBLE
DEGREES TO
RADIANS

DEGD DOUBLE
RADIANS TO
DEGREES

SIND DOUBLE
SINE

COSD DOUBLE
COSINE

TAND DOUBLE
TANGENT

ASIND DOUBLE ARC
SINE

ACOSD DOUBLE ARC
COSINE

ATAND DOUBLE ARC
TANGENT

--- ---

Floating- point
math

SQRTD DOUBLE
SQUARE
ROOT

EXPD DOUBLE
EXPONENT

LOGD DOUBLE
LOGARITHM

PWRD DOUBLE
EXPONEN-
TIAL POWER

--- --- --- ---

Symbol compari-
son

LD, AND, OR
+
=, <>, <, <=, >,
>= + D

Symbol com-
parison (dou-
ble-precision
floating point)

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
21

Instruction Classifications by Function Section 2-1
Table data
processing
instructions

Stack
processing

SSET SET STACK PUSH PUSH ONTO
STACK

LIFO LAST IN
FIRST OUT

FIFO FIRST IN
FIRST OUT

SNUM* STACK SIZE
READ

SREAD* STACK DATA
READ

SWRIT* STACK DATA
OVERWRITE

SINS* STACK DATA
INSERT

SDEL* STACK DATA
DELETE

1-record/
multiple-word pro-
cessing

DIM DIMENSION
RECORD
TABLE

SETR SET RECORD
LOCATION

GETR GET
RECORD
NUMBER

Record-to- word
processing

SRCH DATA
SEARCH

MAX FIND
MAXIMUM

MIN FIND
MINIMUM

SUM SUM FCS FRAME
CHECKSUM

--- ---

Byte
processing

SWAP SWAP BYTES --- --- --- ---

Data control
instructions

--- PID PID CON-
TROL

PIDAT* PID CON-
TROL WITH
AUTOTUNING

LMT LIMIT
CONTROL

BAND DEAD BAND
CONTROL

ZONE DEAD ZONE
CONTROL

TPO
(See note 1.)

TIME-PRO-
PORTIONAL
OUTPUT

SCL SCALING SCL2 SCALING 2 SCL3 SCALING 3

AVG AVERAGE --- --- --- ---

Subroutines
instructions

--- SBS SUBROU-
TINE CALL

MCRO MACRO SBN SUBROU-
TINE ENTRY

RET SUBROU-
TINE
RETURN

GSBS* GLOBAL
SUBROU-
TINE CALL

GSBN* GLOBAL
SUBROU-
TINE ENTRY

GRET* GLOBAL
SUBROU-
TINE
RETURN

--- --- --- ---

Interrupt
control
instructions

--- MSKS*** SET
INTERRUPT
MASK

MSKR*** READ INTER-
RUPT MASK

CLI*** CLEAR
INTERRUPT

DI DISABLE
INTERRUPTS

EI ENABLE
INTERRUPTS

--- ---

High-speed
counter/
pulse out-
put instruc-
tions**

--- INI MODE CON-
TROL

PRV HIGH-SPEED
COUNTER PV
READ

PRV2
(See note 2.)

COUNTER
FREQUENCY
CONVERT

CTBL COMPARI-
SON TABLE
LOAD

SPED SPEED OUT-
PUT

PULS SET PULSES

PLS2 PULSE OUT-
PUT

ACC ACCELERA-
TION Control

ORG ORIGIN
SEARCH

Step
instructions

--- PWM PULSE WITH
VARIABLE
DUTY FAC-
TOR

STEP STEP DEFINE SNXT STEP START

Basic I/O
Unit instruc-
tions

--- IORF I/O REFRESH FIORF
(See note 2.)

SPECIAL I/O
UNIT I/O
REFRESH

DLNK* CPU BUS
UNIT I/O
REFRESH

SDEC 7-SEGMENT
DECODER

DSW
(See note 1.)

DIGITAL
SWITCH
INPUT

TKY
(See note 1.)

TEN KEY
INPUT

HKY
(See note 1.)

HEXADECI-
MAL KEY
INPUT

MTR
(See note 1.)

MATRIX
INPUT

7SEG
(See note 1.)

7-SEGMENT
DISPLAY
OUTPUT

IORD INTELLI-
GENT I/O
READ

IOWR INTELLI-
GENT I/O
WRITE

DLNK* CPU BUS
UNIT I/O
REFRESH

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
22

Instruction Classifications by Function Section 2-1
Serial com-
munica-
tions
instructions

--- PMCR PROTOCOL
MACRO

TXD TRANSMIT RXD RECEIVE

STUP CHANGE
SERIAL PORT
SETUP

--- --- --- ---

Network
instructions

--- SEND NETWORK
SEND

RECV NETWORK
RECEIVE

CMND DELIVER
COMMAND

EXPLT
(See note 1.)

SEND GEN-
ERAL
EXPICIT

EGATR
(See note 1.)

EXPLICIT
GET
ATTRIBUTE

ESATR
(See note 1.)

EXPLICIT
SET
ATTRIBUTE

ECHRD
(See note 1.)

EXPLICIT
WORD READ

ECHWR
(See note 1.)

EXPLICIT
WORD
WRITE

--- ---

Display
instructions

--- MSG DISPLAY
MESSAGE

--- --- --- ---

File mem-
ory instruc-
tions

--- FREAD READ DATA
FILE

FWRIT WRITE DATA
FILE

TWRIT WRITE TEXT
FILE

Clock
instructions

--- CADD CALENDAR
ADD

CSUB CALENDAR
SUBTRACT

SEC HOURS TO
SECONDS

HMS SECONDS TO
HOURS

DATE CLOCK
ADJUST-
MENT

--- ---

Debugging
instructions

--- TRSM TRACE
MEMORY
SAMPLING

--- --- --- ---

Failure
diagnosis
instructions

--- FAL FAILURE
ALARM

FALS SEVERE
FAILURE
ALARM

FPD FAILURE
POINT
DETECTION

Other
instructions

--- STC SET CARRY CLC CLEAR
CARRY

EMBC SELECT EM
BANK

WDT EXTEND
MAXIMUM
CYCLE TIME

CCS* SAVE CONDI-
TION FLAGS

CCL* LOAD CONDI-
TION FLAGS

FRMCV* CONVERT
ADDRESS
FROM CV

TOCV* CONVERT
ADDRESS TO
CV

IOSP*** DISABLE
PERIPH-
ERAL SER-
VICING

IORS*** ENABLE
PERIPH-
ERAL SER-
VICING

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
23

Instruction Classifications by Function Section 2-1
Block
program-
ming
instructions

Define block pro-
gram area

BPRG BLOCK PRO-
GRAM BEGIN

BEND BLOCK PRO-
GRAM END

--- ---

Block
program start/stop

BPPS BLOCK
PROGRAM
PAUSE

BPRS BLOCK
PROGRAM
RESTART

--- ---

EXIT EXIT
bit_address

Conditional
END

EXIT NOT
bit_address

Conditional
END NOT

input_condition
EXIT

Conditional
END

IF branch
processing

IF
bit_address

CONDI-
TIONAL
BLOCK
BRANCHING

IF NOT
bit_address

CONDI-
TIONAL
BLOCK
BRANCHING
(NOT)

ELSE CONDI-
TIONAL
BLOCK
BRANCHING
(ELSE)

IEND CONDI-
TIONAL
BLOCK
BRANCHING
END

--- --- --- ---

WAIT WAIT
bit_address

ONE CYCLE
AND WAIT

WAIT NOT
bit_address

ONE CYCLE
AND WAIT
NOT

input_condition
WAIT

ONE CYCLE
AND WAIT

Timer/
counter

BCD TIMW HUNDRED-
MS TIMER
WAIT

CNTW COUNTER
WAIT

TMHW TEN-MS
TIMER WAIT

Binary* TIMWX HUNDRED-
MS TIMER
WAIT

CNTWX COUNTER
WAIT

TMHWX TEN-MS
TIMER WAIT

Repeat LOOP LOOP BLOCK LEND
bit_address

LOOP BLOCK
END

LEND NOT
bit_address

LOOP BLOCK
END NOT

input_
condition
LEND

LOOP BLOCK
END

--- --- --- ---

Text string
processing
instructions

--- MOV$ MOV STRING +$ CONCATE-
NATE
STRING

LEFT$ GET STRING
LEFT

RIGHT$ GET STRING
RIGHT

MID$ GET STRING
MIDDLE

FIND$ FIND IN
STRING

LEN$ STRING
LENGTH

RPLC$ REPLACE IN
STRING

DEL$ DELETE
STRING

XCHG$ EXCHANGE
STRING

CLR$ CLEAR
STRING

INS$ INSERT INTO
STRING

LD, AND, OR
+
=$, <>$, <$,
<=$, >$, >=$

STRING
COMPARI-
SON

--- --- --- ---

Task control
instructions

--- TKON TASK ON TKOF TASK OFF --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
24

Instruction Functions Section 2-2
2-2 Instruction Functions

2-2-1 Sequence Input Instructions
*1: Not supported by CS1D CPU Units for Duplex-CPU Systems.
*2: Supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only.
*3: Supported by CS1-H, CJ1-H, and CJ1M CPU Units only.

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

LOAD
LD

@LD
%LD
!LD*1

!@LD*1

!%LD*1

Indicates a logical start and creates an ON/OFF execution condition
based on the ON/OFF status of the specified operand bit.

Start of logic
Not required

161

LOAD NOT
LD NOT

@LD NOT*2

%LD NOT*2

!LD NOT*1

!@LD NOT*3

!%LD NOT*3

Indicates a logical start and creates an ON/OFF execution condition
based on the reverse of the ON/OFF status of the specified operand
bit.

Start of logic
Not required

163

AND
AND

@AND
%AND
!AND*1

!@AND*1

!%AND*1

Takes a logical AND of the status of the specified operand bit and the
current execution condition.

Continues on
rung
Required

165

AND NOT
 AND NOT

@AND NOT*2

%AND NOT*2

!AND NOT*1

!@AND NOT*3

!%AND NOT*3

Reverses the status of the specified operand bit and takes a logical
AND with the current execution condition.

Continues on
rung
Required

167

OR
OR

@OR
%OR
!OR*1

!@OR*1

!%OR*1

Takes a logical OR of the ON/OFF status of the specified operand bit
and the current execution condition.

Continues on
rung
Required

169

OR NOT
OR NOT

@OR NOT*2

%OR NOT*2

!OR NOT*1

!@OR NOT*3

!%OR NOT*3

Reverses the status of the specified bit and takes a logical OR with the
current execution condition

Continues on
rung
Required

171

Bus bar

Starting
point of
block

Bus bar

Starting
point of
block

Bus bar

Bus bar
25

Instruction Functions Section 2-2
AND LOAD
AND LD

Continues on
rung
Required

172

OR LOAD
OR LD

Continues on
rung
Required

174

NOT
NOT
520

--- Reverses the execution condition. Continues on
rung
Required

180

CONDITION ON
UP
521

UP(521) turns ON the execution condition for one cycle when the exe-
cution condition goes from OFF to ON.

Continues on
rung
Required

181

CONDITION OFF
DOWN

522

DOWN(522) turns ON the execution condition for one cycle when the
execution condition goes from ON to OFF.

Continues on
rung
Required

181

BIT TEST
LD TST

350

LD TST(350), AND TST(350), and OR TST(350) are used in the pro-
gram like LD, AND, and OR; the execution condition is ON when the
specified bit in the specified word is ON and OFF when the bit is OFF.

Continues on
rung
Not required

182

BIT TEST
LD TSTN

351

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the
program like LD NOT, AND NOT, and OR NOT; the execution condition
is OFF when the specified bit in the specified word is ON and ON when
the bit is OFF.

Continues on
rung
Not required

182

BIT TEST
AND TST

350

LD TST(350), AND TST(350), and OR TST(350) are used in the pro-
gram like LD, AND, and OR; the execution condition is ON when the
specified bit in the specified word is ON and OFF when the bit is OFF.

Continues on
rung
Required

182

BIT TEST
AND TSTN

351

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the
program like LD NOT, AND NOT, and OR NOT; the execution condition
is OFF when the specified bit in the specified word is ON and ON when
the bit is OFF.

Continues on
rung
Required

182

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

Logic block Logic block

LD

LD

AND LD

to

to

Serial connection between logic block A and
logic block B.

Logic block B

Logic block A

Takes a logical AND between logic blocks.

Logic block

Logic block LD

LD

OR LD

to

to

Logic block A

Logic block B

Takes a logical OR between logic blocks.

Parallel connection between logic block A
and logic block B.

UP(521)

DOWN(522)

TST(350)

S

N

S: Source word
N: Bit number

TSTN(351)

S

N

S: Source word
N: Bit number

AND TST(350)

S

N

S: Source word
N: Bit number

AND TSTN(351)

S

N

S: Source word
N: Bit number
26

Instruction Functions Section 2-2
2-2-2 Sequence Output Instructions
*1: Not supported by CS1D CPU Units for Duplex-CPU Systems.

BIT TEST
OR TST

350

LD TST(350), AND TST(350), and OR TST(350) are used in the pro-
gram like LD, AND, and OR; the execution condition is ON when the
specified bit in the specified word is ON and OFF when the bit is OFF.

Continues on
rung
Required

182

BIT TEST
OR TSTN

351

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the
program like LD NOT, AND NOT, and OR NOT; the execution condition
is OFF when the specified bit in the specified word is ON and ON when
the bit is OFF.

Continues on
rung
Required

182

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

TST(350)

S

N

S: Source word
N: Bit number

TSTN(351)

S

N

S: Source word
N: Bit number

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

OUTPUT
OUT

!OUT*1

Outputs the result (execution condition) of the logical processing to the
specified bit.

Output
Required

185

OUTPUT NOT
OUT NOT

!OUT NOT*1

Reverses the result (execution condition) of the logical processing, and
outputs it to the specified bit.

Output
Required

187

KEEP
KEEP

!KEEP*1

011

Output
Required

188

DIFFERENTIATE
UP

DIFU
!DIFU*1

013

Output
Required

193

KEEP(011)

B

S (Set)

R (Reset)

B: Bit

Set

Reset

Status of B

S execution
condition

R execution
condition

Operates as a latching relay.

DIFU(013)

B

B: Bit

Status of B

One cycle

DIFU(013) turns the designated bit ON for one cycle when the
execution condition goes from OFF to ON (rising edge).

Execution condition
27

Instruction Functions Section 2-2
DIFFERENTIATE
DOWN

DIFD
!DIFD*1

014

Output
Required

193

SET
SET

@SET
%SET
!SET*1

!@SET*1

!%SET*1

Output
Required

195

RESET
RSET

@RSET
%RSET
!RSET*1

!@RSET*1

!%RSET*1

Output
Required

195

MULTIPLE BIT
SET

SETA
@SETA

530

Output
Required

198

MULTIPLE BIT
RESET

RSTA
@RSTA

531

Output
Required

198

SINGLE BIT SET
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

SETB
@SETB
!SETB*1

!@SETB*1

SETB(532) turns ON the specified bit in the specified word when the exe-
cution condition is ON.
Unlike the SET instruction, SETB(532) can be used to set a bit in a DM or
EM word.

Output
Required

201

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DIFD(014)

B

B: Bit

Status of B
One cycle

DIFD(014) turns the designated bit ON for one cycle when the
execution condition goes from ON to OFF (falling edge).

Execution condition

SET

B
B: Bit

Status of B

SET turns the operand bit ON when the execution condition is ON.

Execution condition
of SET

RSET

B
B: Bit

Status of B

RSET turns the operand bit OFF when the execution condition is ON.

Execution condition
of RSET

SETA(530)

D

N1

N2

D: Beginning
word
N1: Beginning bit
N2: Number of
bits

SETA(530) turns ON the specified number of consecutive bits.

N2 bits are set to 1
(ON).

RSTA(531)

D

N1

N2

D: Beginning
word
N1: Beginning bit
N2: Number of
bits

N2 bits are reset to
0 (OFF).

RSTA(531) turns OFF the specified number of consecutive bits.

SETB(532)

D

N

D: Word address
N: Bit number
28

Instruction Functions Section 2-2
SINGLE BIT
RESET (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

RSTB
@RSTB
!RSTB*1

!@RSTB*1

RSTB(533) turns OFF the specified bit in the specified word when the
execution condition is ON.
Unlike the RSET instruction, RSTB(533) can be used to reset a bit in a
DM or EM word.

Output
Required

201

SINGLE BIT
OUTPUT (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

OUTB
@OUTB
!OUTB*1

OUTB(534) outputs the result (execution condition) of the logical pro-
cessing to the specified bit.
Unlike the OUT instruction, OUTB(534) can be used to control a bit in a
DM or EM word.

Output
Required

204

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

RSTB(533)

D

N

D: Word address
N: Bit number

OUTB(534)

D

N

D: Word address
N: Bit number
29

Instruction Functions Section 2-2
2-2-3 Sequence Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

END
END
001

Output
Not required

206

NO OPERATION
NOP
000

This instruction has no function. (No processing is performed for
NOP(000).)

Output
Not required

207

INTERLOCK
IL

002

Output
Required

210

END(001)

I/O refreshing

Indicates the end of a program.
END(001) completes the execution of a program for that cycle. No
instructions written after END(001) will be executed. Execution
proceeds to the program with the next task number. When the
program being executed has the highest task number in the program,
END(001) marks the end of the overall main program.

Task 1

Task 2

Program A

Program B

To the next task number

To the next task number

Task n Program Z

End of the main program

IL(002)
Interlocks all outputs between IL(002) and ILC(003) when the
execution condition for IL(002) is OFF. IL(002) and ILC(003) are
normally used in pairs.

Execution
condition

Execution
condition ON

Execution
condition OFF

Outputs
interlocked.

Normal
execution

Interlocked section
of the program
30

Instruction Functions Section 2-2
INTERLOCK
CLEAR

ILC
003

All outputs between IL(002) and ILC(003) are interlocked when the
execution condition for IL(002) is OFF. IL(002) and ILC(003) are nor-
mally used in pairs.

Output
Not required

210

MULTI-INTER-
LOCK DIFFER-
ENTIATION
HOLD

MILH
517

CS/CJ-series CPU
Unit Ver. 2.0 or later
only

When the execution condition for MILH(517) is OFF, the outputs for all
instructions between that MILH(517) instruction and the next
MILC(519) instruction are interlocked. MILH(517) and MILC(519) are
used as a pair.
MILH(517)/MILC(519) interlocks can be nested (e.g., MILH(517)—
MILH(517)—MILC(519)—MILC(519)).
If there is a differentiated instruction (DIFU, DIFD, or instruction with a
@ or% prefix) between MILH(517) and the corresponding MILC(519),
that instruction will be executed after the interlock is cleared if the dif-
ferentiation condition of the instruction was established while it was
interlocked.

Output
Required

214

MULTI-INTER-
LOCK DIFFER-
ENTIATION
RELEASE

MILR
518

CS/CJ-series CPU
Unit Ver. 2.0 or later
only

When the execution condition for MILR(518) is OFF, the outputs for all
instructions between that MILR(518) instruction and the next
MILC(519) instruction are interlocked.MILR(518) and MILC(519) are
used as a pair.
MILR(518)/MILC(519) interlocks can be nested (e.g., MILR(518)—
MILR(518)—MILC(519)—MILC(519)).
If there is a differentiated instruction (DIFU, DIFD, or instruction with a
@ or % prefix) between MILR(518) and the corresponding MILC(519),
that instruction will not be executed after the interlock is cleared even if
the differentiation condition of the instruction was established.

Output
Required

214

MULTI-INTER-
LOCK CLEAR

MILC
519

CS/CJ-series CPU
Unit Ver. 2.0 or later
only

Clears an interlock started by an MILH(517) or MILR(518) with the
same interlock number.
All outputs between MILH(517)/MILR(518) and the corresponding
MILC(519) with the same interlock number are interlocked when the
execution condition for MILH(517)/MILR(518) is OFF.

Output
Not required

214

JUMP
JMP
004

Output
Required

228

CONDITIONAL
JUMP

CJP
510

Output
Required

232

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ILC(003)

MILH (517)

N

D

N: Interlock number
D: Interlock Status Bit

MILR (518)

N

D

N: Interlock number
D: Interlock Status Bit

MILC (519)

N

N: Interlock number

JMP(004)
N

N: Jump number

When the execution condition for JMP(004) is OFF, program
execution jumps directly to the first JME(005) in the program with
the same jump number. JMP(004) and JME(005) are used in pairs.

Execution condition
Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

Instructions
executed

CJP(510)

N

N: Jump number

The operation of CJP(510) is the basically the opposite of JMP(004).
When the execution condition for CJP(510) is ON, program execution
jumps directly to the first JME(005) in the program with the same jump
number. CJP(510) and JME(005) are used in pairs.

Execution
condition OFF

Execution
condition ON

Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

Instructions
executed
31

Instruction Functions Section 2-2
JUMP END
JME
005

Indicates the end of a jump initiated by JMP(004) or CJP(510). Output
Not required

228

CONDITIONAL
JUMP

CJPN
511

Output
Not required

232

MULTIPLE JUMP
JMP0

515

Output
Required

236

MULTIPLE JUMP
END

JME0
516

When the execution condition for JMP0(515) is OFF, all instructions
from JMP0(515) to the next JME0(516) in the program are processed
as NOP(000). Use JMP0(515) and JME0(516) in pairs. There is no
limit on the number of pairs that can be used in the program.

Output
Not required

236

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

JME(005)

N

N: Jump number

CJPN(511)

N

N: Jump number

The operation of CJPN(511) is almost identical to JMP(004).
When the execution condition for CJP(004) is OFF, program execution
jumps directly to the first JME(005) in the program with the same jump
number. CJPN(511) and JME(005) are used in pairs.

Execution
condition ON

Execution
condition OFF

Instructions
executed

Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

JMP0(515)
When the execution condition for JMP0(515) is OFF, all instructions
from JMP0(515) to the next JME0(516) in the program are processed
as NOP(000). Use JMP0(515) and JME0(516) in pairs. There is no
limit on the number of pairs that can be used in the program.

Execution
condition a ON

Execution
condition a OFF

Instructions
jumped

Instructions
executed

Execution
condition b ON

Execution
condition b OFF

Jumped instructions
are processed as
NOP(000). Instruction
execution times are
the same as
NOP(000).

Instructions
jumped

Instructions
executed

JME0(516)
32

Instruction Functions Section 2-2
FOR-NEXT
LOOPS

FOR
512

Output
Not required

238

BREAK LOOP
BREAK

514

Output
Required

241

FOR-NEXT
LOOPS

NEXT
513

The instructions between FOR(512) and NEXT(513) are repeated a
specified number of times. FOR(512) and NEXT(513) are used in
pairs.

Output
Not required

238

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

FOR(512)

N

N: Number of
loops

Repeated N times

The instructions between FOR(512) and NEXT(513) are repeated a
specified number of times. FOR(512) and NEXT(513) are used in
pairs.

Repeated program section

BREAK(514)

N repetitions
Condition a ON

Programmed in a FOR-NEXT loop to cancel the execution of the loop
for a given execution condition. The remaining instructions in the loop
are processed as NOP(000) instructions.

Repetitions
forced to end.

Processed as
NOP(000).

NEXT(513)
33

Instruction Functions Section 2-2
2-2-4 Timer and Counter Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

HUNDRED-MS
TIMER

TIM
(BCD)

TIMX
(Binary)

(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

Output
Required

245

TEN-MS TIMER
TIMH

015
(BCD)

TIMHX
551

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

TIMH(015)/TIMHX(551) operates a decrementing timer with units of
10-ms. The setting range for the set value (SV) is 0 to 99.99 s for BCD
and 0 to 655.35 s for binary (decimal or hexadecimal).

Output
Required

249

ONE-MS TIMER
TMHH

540
(BCD)

TMHHX
552

(BCD)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

TMHH(540)/TMHHX(552) operates a decrementing timer with units of
1-ms. The setting range for the set value (SV) is 0 to 9.999 s for BCD
and 0 to 65.535 s for binary (decimal or hexadecimal).

Output
Required

253

TIM

N

S

N: Timer number
S: Set value SV

SV

Timer input

Timer PV

Timer input

Timer PV

 TIM/TIMX(550) operates a decrementing timer with units of 0.1-s.
The setting range for the set value (SV) is 0 to 999.9 s for BCD
and 0 to 6,553.5 s for binary (decimal or hexadecimal).

Completion
Flag

Completion
Flag

TIMX(550)

N

S

N: Timer number
S: Set value

TIMH(015)

N

S

N: Timer number
S: Set value

SV

SV

Timer input

Timer PV

Timer input

Timer PV

Completion
Flag

Completion
Flag

TIMHX(551)

N

S

N: Timer number
S: Set value

TMHH(540)

N

S

N: Timer number
S: Set value

SV

SV

Timer input

Timer PV

Timer input

Timer PV

Completion
Flag

Completion
Flag

TMHHX(552)

N

S

N: Timer number
S: Set value
34

Instruction Functions Section 2-2
TENTH-MS
TIMER (CJ1-H-R
only)

TIMU
541

(BCD)

TIMU(541)/TIMUX(556) operates an decrementing timer with units of
0.1-s. The setting range for the set value (SV) is 0 to 0.999 s for BCD
and 0 to 6,553.5 s for binary (decimal or hexadecimal).

 Note: The timer’s present value cannot be accessed for a TENTH-MS
TIMER instruction.

Output
Required

256

TIMUX
556

(BCD)

HUNDREDTH-MS
TIMER (CJ1-H-R
only)

TMUH
554

(BCD)

TMUH(554)/TMUHX(557) operates an decrementing timer with units of
0.01-s. The setting range for the set value (SV) is 0 to 0.0999 s for BCD
and 0 to 0.65535 s for binary (decimal or hexadecimal).

 Note: The timer’s present value cannot be accessed for a HUN-
DREDTH-MS TIMER instruction.

Output
Required

259

TMUHX
557

(BCD)

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

N: Timer number
S: Set value

TIMU(541)

N

S ON
OFF

0

ON
OFF

Timer Input Turns OFF before Completion Flag Turns ON

SV

ON
OFF

0

ON
OFF

Timer input

Timer PV

Completion
Flag

Timer input

Timer PV

Completion
Flag

SV

N: Timer number
S: Set value

TIMUX(556)

N

S

N: Timer number
S: Set value

TMUH(554)

N

S ON
OFF

0

ON
OFF

Timer Input Turns OFF before Completion Flag Turns ON

ON
OFF

0

ON
OFF

SV

Timer input

Timer PV

Completion
Flag

SV

Timer input

Timer PV

Completion
Flag

N: Timer number
S: Set value

TMUHX(557)

N

S

35

Instruction Functions Section 2-2
ACCUMULATIVE
TIMER

TTIM
087

(BCD)

TTIMX
555

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

Output
Required

262

LONG TIMER
TIML

542
(BCD)

TIMLX
553

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

Output
Required

266

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

TTIM(087)

N

S

Timer
input

Reset
input

N: Timer number
S: Set value

SV

Timer input

Timer PV

Completion
Flag

Reset input

PV maintained.

Timing resumes.

TTIM(087)/TTIMX(555) operates an incrementing timer with units of
0.1-s. The setting range for the set value (SV) is 0 to 999.9 s for
BCD and 0 to 6,553.5 s for binary (decimal or hexadecimal).

TTIMX(555)

N

S

N: Timer number
S: Set value

Reset
input

Timer
input

TIML(542)

D1

D2

S

D1: Completion
Flag
D2: PV word
S: SV word

SV

Timer input

Timer PV

Completion Flag
(Bit 00 of D1)

TIML(542)/TIMLX(553) operates a decrementing timer with units of
0.1-s that can time up to approx. 115 days for BCD and 49,710 days
for binary (decimal or hexadecimal).

TIMLX(553)

D1

D2

S

D1: Completion
Flag
D2: PV word
S: SV word
36

Instruction Functions Section 2-2
MULTI-OUTPUT
TIMER

MTIM
543

(BCD)

MTIMX
554

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

Output
Required

269

COUNTER
CNT

(BCD)

CNTX
546

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

Output
Required

275

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

MTIM(543)

D1

D2

S

D1: Completion
Flags
D2: PV word
S: 1st SV word

SV 7

SV 2
SV 1
SV 0

0

to
to

Timer input

Timer PV (D2)

to

Bit 7
to

Timer PV

Timer SVs

0

Bit 2

Bit 1

Bit 0

MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with 8
independent SVs and Completion Flags. The setting range for the
set value (SV) is 0 to 999.9 s for BCD and 0 to 6,553.5 s for binary
(decimal or hexadecimal).

Completion
Flags (D1)

MTIMX(554)

D1

D2

S

D1: Completion
Flags
D2: PV word
S: 1st SV word

CNT

N

S

Count
input

Reset
input

N: Counter
number
S: Set value SV

Count input

Counter PV

Completion
Flag

Reset input

CNT/CNTX(546) operates a decrementing counter. The setting range
for the set value (SV) is 0 to 9,999 for BCD and 0 to 65,535 for binary
(decimal or hexadecimal).

CNTX(546)

N

S

Count
input

Reset
input

N: Counter
number
S: Set value
37

Instruction Functions Section 2-2
REVERSIBLE
COUNTER

CNTR
012

(BCD)

CNTRX
548

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

Output
Required

278

RESET TIMER/
COUNTER

CNR
@CNR

545
(BCD)

CNRX
@CNRX

547
(Binary)

(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

CNR(545)/CNRX(547) resets the timers or counters within the speci-
fied range of timer or counter numbers. Sets the set value (SV) to the
maximum of 9999.

Output
Required

282

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CNTR(012)

N

S

Incre-
ment
input

Decre-
ment
input

Reset
input

N: Counter
number
S: Set value

SV

+1

SV 1

Increment input

Counter PV

Decrement input

Counter PV

Completion Flag

Counter PV

Completion Flag

CNTR(012)/CNTRX(548) operates a reversible counter.

CNTRX(548)

N

S

Incre-
ment
input

Decre-
ment
input

Reset
input

N: Counter
number
S: Set value

CNR(545)

N1

N2

N1: 1st number in
range

N2: Last number
in range

CNRX(547)

N1

N2

N1: 1st number
in range
N2: Last number
in range
38

Instruction Functions Section 2-2
2-2-5 Comparison Instructions
*1: Not supported by CS1D CPU Units for Duplex-CPU Systems.

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

Symbol Compari-
son (Unsigned)
LD, AND, OR + =,

<>, <, <=, >, >=
300 (=)

305 (<>)
310 (<)

315 (<=)
320 (>)

325(>=)

LD: Not
required
AND, OR:
Required

291

Symbol Compari-
son (Double-
word, unsigned)
LD, AND, OR + =,
<>, <, <=, >, >= +

L
301 (=)

306 (<>)
311 (<)

316 (<=)
321 (>)

326 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (double-word, unsigned) compare two
values (constants and/or the contents of specified double-word data) in
unsigned 32-bit binary data and create an ON execution condition when
the comparison condition is true. There are three types of symbol com-
parison instructions, LD (LOAD), AND, and OR.

LD: Not
required
AND, OR:
Required

291

Symbol Compari-
son (Signed)
LD, AND, OR + =,

<>, <, <=, >, >=
+S

302 (=)
307 (<>)

312 (<)
317 (<=)

322 (>)
327 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (signed) compare two values (con-
stants and/or the contents of specified words) in signed 16-bit binary (4-
digit hexadecimal) and create an ON execution condition when the com-
parison condition is true. There are three types of symbol comparison
instructions, LD (LOAD), AND, and OR.

LD: Not
required
AND, OR:
Required

291

S1

S2

Symbol & options

S1: Comparison
data 1
S2: Comparison
data 2

LD

AND

OR

<

<

<

ON execution condition when
comparison result is true.

ON execution condition
when comparison result
is true.

Symbol comparison instructions (unsigned) compare two values
(constants and/or the contents of specified words) in 16-bit binary
data and create an ON execution condition when the comparison
condition is true. There are three types of symbol comparison
instructions, LD (LOAD), AND, and OR.

ON execution condition when
comparison result is true.
39

Instruction Functions Section 2-2
Symbol Compari-
son (Double-
word, signed)
LD, AND, OR + =,

<>, <, <=, >, >=
+SL

303 (=)
308 (<>)

313 (<)
318 (<=)

323 (>)
328 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (double-word, signed) compare two
values (constants and/or the contents of specified double-word data) in
signed 32-bit binary (8-digit hexadecimal) and create an ON execution
condition when the comparison condition is true. There are three types
of symbol comparison instructions, LD (LOAD), AND, and OR.

LD: Not
required
AND, OR:
Required

291

Time Compari-
son

LD, AND, OR + =
DT, <> DT, < DT,
<= DT, > DT, >=

DT
341 (= DT)

342 (<> DT)
343 (< DT)

344 (<= DT)
345 (> DT)

346 (>= DT)
(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Time comparison instructions compare two BCD time values and create
an ON execution condition when the comparison condition is true.
There are three types of time comparison instructions, LD (LOAD),
AND, and OR. Time values (year, month, day, hour, minute, and second)
can be masked/unmasked in the comparison so it is easy to create cal-
endar timer functions.

LD: Not
required
AND, OR:
Required

297

UNSIGNED COM-
PARE

CMP
!CMP*1

020

Output
Required

303

DOUBLE
UNSIGNED
COMPARE

CMPL
060

Output
Required

306

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

S1

C

S2

LD (LOAD):

AND:

OR:

S1

C

S2

S1

C

S2

Symbol

Symbol

Symbol

C: Control word
S1: 1st word of

present time
S2: 1st word of

comparison
time

CMP(020)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

Compares two unsigned binary values (constants and/or the contents
of specified words) and outputs the result to the Arithmetic Flags in
the Auxiliary Area.

Unsigned binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

CMPL(060)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

S1+1 S2+1

Compares two double unsigned binary values (constants and/or the
contents of specified words) and outputs the result to the Arithmetic
Flags in the Auxiliary Area.

Unsigned binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)
40

Instruction Functions Section 2-2
SIGNED BINARY
COMPARE

CPS
!CPS*1

114

Output
Required

309

DOUBLE
SIGNED BINARY
COMPARE

CPSL
115

Output
Required

312

MULTIPLE COM-
PARE

MCMP
@MCMP

019

Output
Required

315

TABLE COM-
PARE

TCMP
@TCMP

085

Output
Required

317

UNSIGNED
BLOCK COM-
PARE

BCMP
@BCMP

068

Output
Required

320

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CPS(114)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

Compares two signed binary values (constants and/or the contents of
specified words) and outputs the result to the Arithmetic Flags in the
Auxiliary Area.

Signed binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

CPSL(115)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

S1+1 S2+1

Compares two double signed binary values (constants and/or the
contents of specified words) and outputs the result to the Arithmetic
Flags in the Auxiliary Area.

Signed binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

MCMP(019)

S1

S2

R

S1: 1st word of
set 1
S2: 1st word of
set 2
R: Result word

R

Compares 16 consecutive words with another 16 consecutive words
and turns ON the corresponding bit in the result word where the
contents of the words are not equal.

Comparison

0: Words
are equal.
1: Words
aren't
equal.

TCMP(085)

S

T

R

S: Source data
T: 1st word of
table
R: Result word

R

Compares the source data to the contents of 16 words and turns
ON the corresponding bit in the result word when the contents are
equal.

1: Data are
equal.
0: Data aren't
equal.

Comparison

BCMP(068)

S

T

R

S: Source data
T: 1st word of
table
R: Result word

T+3 1

0

14

15

T+29

T+31

T+1

T+2

T+28
T+30

T

S

R

to

to

to

to

Ranges

Upper limit

Compares the source data to 16 ranges (defined by 16 lower limits
and 16 upper limits) and turns ON the corresponding bit in the result
word when the source data is within the range.

1: In range
0: Not in range

Lower limit

Source data
41

Instruction Functions Section 2-2
EXPANDED
BLOCK COM-
PARE

BCMP2
@BCMP2

502
(CS1-H, CJ1-H, or
CS1D CPU Unit
Ver. 2.0 or later
only)
CJ1M CPU Unit
(Pre-Ver. 2.0 or
Unit Ver. 2.0 or
later)

Compares the source data to up to 256 ranges (defined by upper and
lower limits) and turns ON the corresponding bit in the result word when
the source data is within a range.

Output
Required

322

AREA RANGE
COMPARE

ZCP
@ZCP

088
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

Compares the 16-bit unsigned binary value in CD (word contents or
constant) to the range defined by LL and UL and outputs the results to
the Arithmetic Flags in the Auxiliary Area.

Output
Required

326

DOUBLE AREA
RANGE COM-
PARE

ZCPL
@ZCPL

116
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

Compares the 32-bit unsigned binary value in CD and CD+1 (word con-
tents or constant) to the range defined by LL and UL and outputs the
results to the Arithmetic Flags in the Auxiliary Area.

Output
Required

329

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BCMP2(502)

S

T

R

S: Source data
T: 1st word of
block
R: Result word

T+1

T+3

T+2N+1

S

T

T+2

T+4

T+2N+2

0

1

D
N

D+15 max.

Bit

1: In range
0: Not in range

Source data

Range 0 A

Range 1 A

Range N A

n=255 max.

Range 0 B

Range 1 B

Range N B

Note: A can be less than
or equal to B or
greater the B.

ZCP(088)

CD

LL

UL

CD: Compare
data (1 word)
LL: Lower limit of
range
UL: Upper limit of
range

ZCPL(116)

CD

LL

UL

CD: Compare
data (2 words)
LL: Lower limit of
range
UL: Upper limit of
range
42

Instruction Functions Section 2-2
2-2-6 Data Movement Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

MOVE
MOV

@MOV
!MOV

!@MOV
021

Output
Required

331

DOUBLE MOVE
MOVL

@MOVL
498

Output
Required

334

MOVE NOT
MVN

@MVN
022

Output
Required

333

DOUBLE MOVE
NOT

MVNL
@MVNL

499

Output
Required

336

MOVE BIT
MOVB

@MOVB
082

Output
Required

337

MOV(021)

S

D

S: Source
D: Destination

Transfers a word of data to the specified word.

Source word

Destination word

Bit status not
changed.

MOVL(498)

S

D

S: 1st source
word
D: 1st destination
word

S

D

S+1

D+1

Bit status not
changed.

Transfers two words of data to the specified words.

MVN(022)

S

D

S: Source
D: Destination

Transfers the complement of a word of data to the specified word.

Source word

Bit status
inverted.

Destination word

MVNL(499)

S

D

S: 1st source
word
D: 1st destination
word

S

D

S+1

D+1

Transfers the complement of two words of data to the specified words.

Bit status
inverted.

S

C

D

MOVB(082)

S: Source word or
data
C: Control word
D: Destination
word

Transfers the specified bit.
43

Instruction Functions Section 2-2
MOVE DIGIT
MOVD

@MOVD
083

Output
Required

339

MULTIPLE BIT
TRANSFER

XFRB
@XFRB

062

Output
Required

342

BLOCK
TRANSFER

XFER
@XFER

070

Output
Required

344

BLOCK SET
BSET

@BSET
071

Output
Required

347

DATA
EXCHANGE

XCHG
@XCHG

073

Output
Required

349

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

S

C

D

MOVD(083)

S: Source word or
data
C: Control word
D: Destination
word

Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

XFRB(062)

C

S

D

C: Control word
S: 1st source
word
D: 1st destination
word

Transfers the specified number of consecutive bits.

XFER(070)

N

S

D

N: Number of
words
S: 1st source
word
D: 1st destination
word

S+(N−1) D+(N−1)

to to
N words

Transfers the specified number of consecutive words.

BSET(071)

S

St

E

S: Source word
St: Starting word
E: End word

E

St

Source word Destination words

Copies the same word to a range of consecutive words.

XCHG(073)

E1

E2

E1: 1st exchange
word
E2: Second
exchange word

E2E1

Exchanges the contents of the two specified words.
44

Instruction Functions Section 2-2
DOUBLE DATA
EXCHANGE

XCGL
@XCGL

562

Output
Required

350

SINGLE WORD
DISTRIBUTE

DIST
@DIST

080

Output
Required

352

DATA COLLECT
COLL

@COLL
081

Output
Required

354

MOVE TO REGIS-
TER

MOVR
@MOVR

560

Output
Required

356

MOVE TIMER/
COUNTER PV TO
REGISTER

MOVRW
@MOVRW

561

Output
Required

358

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

XCGL(562)

E1

E2

E2: Second
exchange word

E1: 1st exchange
word

E2E1 E1+1 E2+1

Exchanges the contents of a pair of consecutive words with another
pair of consecutive words.

DIST(080)

S

Bs

Of

S: Source word
Bs: Destination
base address
Of: Offset

sS B

Bs+n

Of

Transfers the source word to a destination word calculated by adding
an offset value to the base address.

COLL(081)

Bs

Of

D

Bs: Source base
address
Of: Offset
D: Destination
word

Bs

Bs+n

Of

Transfers the source word (calculated by adding an offset value to the
base address) to the destination word.

MOVR(560)

S

D

S: Source
(desired word or
bit)
D: Destination
(Index Register)

Sets the internal I/O memory address of the specified word, bit, or
timer/counter Completion Flag in the specified Index Register. (Use
MOVRW(561) to set the internal I/O memory address of a
timer/counter PV in an Index Register.)

I/O memory address of S

Index Register

MOVRW(561)

S

D

S: Source
(desired TC
number)
D: Destination
(Index Register)

Sets the internal I/O memory address of the specified timer or
counter's PV in the specified Index Register. (Use MOVR(560) to set
the internal I/O memory address of a word, bit, or timer/counter
Completion Flag in an Index Register.)

I/O memory address of S

Timer/counter PV only

Index Register
45

Instruction Functions Section 2-2
2-2-7 Data Shift Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SHIFT REGISTER
SFT
010

Output
Required

361

REVERSIBLE
SHIFT REGISTER

SFTR
@SFTR

084

Output
Required

362

ASYNCHRO-
NOUS SHIFT
REGISTER

ASFT
@ASFT

017

Output
Required

365

WORD SHIFT
WSFT

@WSFT
016

Output
Required

368

ARITHMETIC
SHIFT LEFT

ASL
@ASL

025

Output
Required

370

SFT(010)

St

E

Data
input

Shift
input
Reset
input

St: Starting word
E: End word

E St+1, St+2 St

Lost Status of data
input for each shift
input

Operates a shift register.

SFTR(084)

C

St

E

C: Control word
St: Starting word
E: End word

E

E

Data inputSt

St

Creates a shift register that shifts data to either the right or the left.

Shift
direc-
tionData

input

ASFT(017)

C

St

E

C: Control word
St: Starting word
E: End word

E

E

St

St

•
•

•
•

•
•

Clear

Shift

Shift

Non-zero data

Zero data

Shift enabled

Shift direction

Shifts all non-zero word data within the specified word range either
towards St or toward E, replacing 0000Hex word data.

WSFT(016)

S

St

E

S: Source word
St: Starting word
E: End word

E St

Lost

Shifts data between St and E in word units.

ASL(025)

Wd

Wd: Word

Shifts the contents of Wd one bit to the left.
46

Instruction Functions Section 2-2
DOUBLE SHIFT
LEFT

ASLL
@ASLL

570

Output
Required

371

ARITHMETIC
SHIFT RIGHT

ASR
@ASR

026

Output
Required

373

DOUBLE SHIFT
RIGHT

ASRL
@ASRL

571

Output
Required

374

ROTATE LEFT
ROL

@ROL
027

Output
Required

376

DOUBLE
ROTATE LEFT

ROLL
@ROLL

572

Output
Required

378

ROTATE LEFT
WITHOUT
CARRY

RLNC
@RLNC

574

Output
Required

383

DOUBLE
ROTATE LEFT
WITHOUT
CARRY

RLNL
@RLNL

576

Output
Required

385

ROTATE RIGHT
ROR

@ROR
028

Output
Required

380

DOUBLE
ROTATE RIGHT

RORL
@RORL

573

Output
Required

381

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ASLL(570)

Wd: Word

Wd WdWd+1

Shifts the contents of Wd and Wd +1 one bit to the left.

ASR(026)

Wd

Wd: Word

Shifts the contents of Wd one bit to the right.

ASRL(571)

Wd

Wd: Word

WdWd+1

Shifts the contents of Wd and Wd +1 one bit to the right.

ROL(027)

Wd

Wd: Word

Shifts all Wd bits one bit to the left including the Carry Flag (CY).

ROLL(572)

Wd

Wd: Word

Shifts all Wd and Wd + 1 bits one bit to the left including the Carry Flag
(CY).

Wd+1 Wd

RLNC(574)

Wd

Wd: Word

Wd

Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

RLNL(576)

Wd

Wd: Word

Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the left not including the Carry
Flag (CY).

ROR(028)

Wd: Word

Wd
WdWd+1

Shifts all Wd bits one bit to the right including the Carry Flag (CY).

RORL(573)

Wd

Wd: Word

WdWd+1

Shifts all Wd and Wd +1 bits one bit to the right including the Carry
Flag (CY).
47

Instruction Functions Section 2-2
ROTATE RIGHT
WITHOUT
CARRY

RRNC
@RRNC

575

Output
Required

387

DOUBLE
ROTATE RIGHT
WITHOUT
CARRY

RRNL
@RRNL

577

Output
Required

388

ONE DIGIT SHIFT
LEFT

SLD
@SLD

074

Output
Required

390

ONE DIGIT SHIFT
RIGHT

SRD
@SRD

075

Output
Required

392

SHIFT N-BIT
DATA LEFT

NSFL
@NSFL

578

Output
Required

393

SHIFT N-BIT
DATA RIGHT

NSFR
@NSFR

579

Output
Required

395

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

RRNC(575)

Wd

Wd: Word

Wd

Shifts all Wd bits one bit to the right not including the Carry Flag (CY).
The contents of the rightmost bit of Wd shifts to the leftmost bit and to
the Carry Flag (CY).

RRNL(577)

Wd

Wd: Word
Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the right not including the Carry
Flag (CY). The contents of the rightmost bit of Wd +1 is shifted to the
leftmost bit of Wd, and to the Carry Flag (CY).

SLD(074)

St

E

St: Starting word
E: End word

E S

Lost

t

Shifts data by one digit (4 bits) to the left.

SRD(075)

St

E

St: Starting word
E: End word

E S t

Lost

Shifts data by one digit (4 bits) to the right.

NSFL(578)

D

C

N

D: Beginning
word for shift
C: Beginning bit
N: Shift data
length

Shifts one bit to the left

Shifts the specified number of bits to the left.

N−1 bit

N−1 bit

NSFR(579)

D

C

N

N: Shift data
length

C: Beginning bit

D: Beginning
word for shift

Shifts one bit to the right

Shifts the specified number of bits to the right.

N−1 bit

N−1 bit
48

Instruction Functions Section 2-2
SHIFT N-BITS
LEFT

NASL
@NASL

580

Output
Required

397

DOUBLE SHIFT
N-BITS LEFT

NSLL
@NSLL

582

Output
Required

400

SHIFT N-BITS
RIGHT

NASR
@NASR

581

Output
Required

403

DOUBLE SHIFT
N-BITS RIGHT

NSRL
@NSRL

583

Output
Required

405

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

NASL(580)

D

C

D: Shift word
C: Control word

Shift n-bits

Lost

N bits

Shifts the specified 16 bits of word data to the left by the specified
number of bits.

Contents of
shifted in "a"
or "0"

NSLL(582)

D

C

D: Shift word
C: Control word

Shift n-bits

Lost

N bits

Contents of
"a" or "0"
shifted in

Shifts the specified 32 bits of word data to the left by the specified
number of bits.

NASR(581)

D

C

D: Shift word
C: Control word Lost

N bits

Contents of "a" or
"0" shifted in

Shifts the specified 16 bits of word data to the right by the specified
number of bits.

NSRL(583)

D

C

D: Shift word
C: Control word

Shift n-bits

Lost

Contents of
"a" or "0"
shifted in

Shifts the specified 32 bits of word data to the right by the specified
number of bits.

N bits
49

Instruction Functions Section 2-2
2-2-8 Increment/Decrement Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

INCREMENT
BINARY

++
@++
590

Output
Required

409

DOUBLE INCRE-
MENT BINARY

++L
@++L

591

Output
Required

411

DECREMENT
BINARY

– –
@– –

592

Output
Required

413

DOUBLE DEC-
REMENT
BINARY

– –L
@– –L

593

Output
Required

415

INCREMENT
BCD

++B
@++B

594

Output
Required

417

DOUBLE INCRE-
MENT BCD

++BL
@++BL

595

Output
Required

419

DECREMENT
BCD

– –B
@– –B

596

Output
Required

421

DOUBLE DEC-
REMENT BCD

– –BL
@– –BL

597

Output
Required

423

++(590)

Wd

Wd: Word

Increments the 4-digit hexadecimal content of the specified word by 1.

Wd Wd

++L(591)

Wd

Wd: Word

Wd+1 Wd Wd+1 Wd

Increments the 8-digit hexadecimal content of the specified words by
1.

(592)− −

Wd

Wd: Word

Wd Wd

Decrements the 4-digit hexadecimal content of the specified word by
1.

− − L(593)

Wd

Wd: 1st word

Wd+1 Wd Wd+1 Wd

Decrements the 8-digit hexadecimal content of the specified words by
1.

++B(594)

Wd: Word

Wd Wd Wd

Increments the 4-digit BCD content of the specified word by 1.

++BL(595)

Wd

Wd: 1st word

Wd+1 Wd Wd+1 Wd

Increments the 8-digit BCD content of the specified words by 1.

− − B(596)

Wd

Wd: Word

−1Wd Wd

Decrements the 4-digit BCD content of the specified word by 1.

− − BL(597)

Wd

Wd: 1st word

Wd+1 Wd Wd+1 Wd

Decrements the 8-digit BCD content of the specified words by 1.
50

Instruction Functions Section 2-2
2-2-9 Symbol Math Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SIGNED BINARY
ADD WITHOUT
CARRY

+
@+
400

Output
Required

426

DOUBLE
SIGNED BINARY
ADD WITHOUT
CARRY

+L
@+L
401

Output
Required

428

SIGNED BINARY
ADD WITH
CARRY

+C
@+C

402

Output
Required

430

DOUBLE
SIGNED BINARY
ADD WITH
CARRY

+CL
@+CL

403

Output
Required

432

BCD ADD WITH-
OUT CARRY

+B
@+B

404

Output
Required

434

+(400)

R

Au

Ad

Au: Augend word
Ad: Addend word
R: Result word

RCY

+

Au

Ad

CY will turn ON
when there is a
carry.

(Signed binary)

(Signed binary)

(Signed binary)

Adds 4-digit (single-word) hexadecimal data and/or constants.

+L(401)

R

Au

Ad

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

R+1CY

+

R

Ad+1

Au

Ad

Adds 8-digit (double-word) hexadecimal data and/or constants.

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when
there is a
carry.

Au+1

+C(402)

R

Au

Ad

Au: Augend word
Ad: Addend word
R: Result word

CY+

RCY

Au

Ad

Adds 4-digit (single-word) hexadecimal data and/or constants with the
Carry Flag (CY).

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn ON
when there is a
carry.

+CL(403)

R

Au

Ad

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

+

CY

CY

R+1 R

Ad+1

Au

Ad

CY will turn ON
when there is a
carry.

Au+1

(Signed binary)

(Signed binary)

(Signed binary)

Adds 8-digit (double-word) hexadecimal data and/or constants with the
Carry Flag (CY).

+B(404)

Au

Ad

R

Au: Augend word
Ad: Addend word
R: Result word

CY

+

(BCD)

(BCD)

(BCD)

Au

Ad

R

Adds 4-digit (single-word) BCD data and/or constants.

CY will turn ON
when there is a
carry.
51

Instruction Functions Section 2-2
DOUBLE BCD
ADD WITHOUT
CARRY

+BL
@+BL

405

Output
Required

435

BCD ADD WITH
CARRY

+BC
@+BC

406

Output
Required

437

DOUBLE BCD
ADD WITH
CARRY

+BCL
@+BCL

407

Output
Required

439

SIGNED BINARY
SUBTRACT
WITHOUT
CARRY

–
@–
410

Output
Required

440

DOUBLE
SIGNED BINARY
SUBTRACT
WITHOUT
CARRY

–L
@–L
411

Output
Required

442

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

Au

Ad

R

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result
word

+BL(405)

R+1CY

+

(BCD)

(BCD)

(BCD)R

Ad+1

Au

Ad

Au+1

CY will turn ON
when there is a
carry.

Adds 8-digit (double-word) BCD data and/or constants.

+BC(406)

R

Au

Ad

Au: Augend word
Ad: Addend word
R: Result word

CY+

RCY

(BCD)

(BCD)

(BCD)

Au

Ad

Adds 4-digit (single-word) BCD data and/or constants with the Carry
Flag (CY).

CY will turn ON
when there is a
carry.

+BCL(407)

R

Au

Ad

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

R+1

CY+

RCY

(BCD)

(BCD)

(BCD)

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Adds 8-digit (double-word) BCD data and/or constants with the Carry
Flag (CY).

Au+1

(410)

R

−
Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

RCY

−

Mi

Su

Subtracts 4-digit (single-word) hexadecimal data and/or constants.

(Signed binary)

(Signed binary)

(Signed binary)CY will turn ON
when there is a
borrow.

L(411)

R

Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

−

CY RR+1

−

Mi+1

Su+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)

CY will turn
ON when
there is a
borrow.

Subtracts 8-digit (double-word) hexadecimal data and/or constants.
52

Instruction Functions Section 2-2
SIGNED BINARY
SUBTRACT
WITH CARRY

–C
@–C

412

Output
Required

446

DOUBLE
SIGNED BINARY
WITH CARRY

–CL
@–CL

413

Output
Required

448

BCD SUBTRACT
WITHOUT
CARRY

–B
@–B

414

Output
Required

451

DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BL
@–BL

415

Output
Required

452

BCD SUBTRACT
WITH CARRY

–BC
@–BC

416

Output
Required

456

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

−C(412)

R

Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

CY

RCY

−

Mi

Su

Subtracts 4-digit (single-word) hexadecimal data and/or constants
with the Carry Flag (CY). (Signed binary)

(Signed binary)

(Signed binary)
CY will turn ON
when there is a
borrow.

−CL(413)

Mi

Su

R

Mi: Minuend word
Su: Subtrahend
word
R: Result word R+1

CY

RCY

Mi+1

Su+1

Mi

Su

CY will turn
ON when
there is a
borrow.

Subtracts 8-digit (double-word) hexadecimal data and/or constants
with the Carry Flag (CY).

(Signed binary)

(Signed binary)

(Signed binary)

−

−B(414)

R

Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

Mi

Su

Subtracts 4-digit (single-word) BCD data and/or constants.

CY will turn ON
when there is a
carry.

−

RCY

(BCD)

(BCD)

(BCD)

−BL(415)

R

Su

Mi: 1st minuend
word
Su: 1st
subtrahend word
R: 1st result word

Mi

R+1CY R

(BCD)

(BCD)

(BCD)

−

Mi +1

Su+1

Mi

Su

Subtracts 8-digit (double-word) BCD data and/or constants.

CY will turn ON
when there is a
borrow.

−BC(416)

Mi

Su

R

Mi: Minuend word
Su: Subtrahend
word
R: Result word

CY

CY

(BCD)

(BCD)

(BCD)R

−

Mi

Su

CY will turn ON
when there is a
borrow.

Subtracts 4-digit (single-word) BCD data and/or constants with the
Carry Flag (CY).
53

Instruction Functions Section 2-2
DOUBLE BCD
SUBTRACT
WITH CARRY

–BCL
@–BCL

417

Output
Required

457

SIGNED BINARY
MULTIPLY

*
@*

420

Output
Required

459

DOUBLE
SIGNED BINARY
MULTIPLY

*L
@*L
421

Output
Required

461

UNSIGNED
BINARY
MULTIPLY

*U
@*U

422

Output
Required

463

DOUBLE
UNSIGNED
BINARY
MULTIPLY

*UL
@*UL

423

Output
Required

465

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

−BCL(417)

Mi

Su

R

Mi: 1st minuend
word
Su: 1st
subtrahend word
R: 1st result word

R+1

CY

RCY

(BCD)

(BCD)

(BCD)

−

Mi +1

Su+1

Mi

Su

Subtracts 8-digit (double-word) BCD data and/or constants with the
Carry Flag (CY).

CY will turn ON
when there is a
borrow.

*(420)

R

Md

Mr

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

R +1 R

Md

Mr

Multiplies 4-digit signed hexadecimal data and/or constants.

(Signed binary)

(Signed binary)

(Signed binary)

×

Md

Mr

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

*L(421)

R

R + 1 RR + 3 R + 2

×

Md + 1

Mr + 1

Md

Mr

(Signed binary)

(Signed binary)

(Signed binary)

Multiplies 8-digit signed hexadecimal data and/or constants.

*U(422)

R

Md

Mr

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

R +1 R

×

Md

Mr

Multiplies 4-digit unsigned hexadecimal data and/or constants.

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

*UL(423)

R

Md

Mr

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

R + 1 RR + 3 R + 2

Md + 1

Mr + 1

Md

Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Multiplies 8-digit unsigned hexadecimal data and/or constants.

×

54

Instruction Functions Section 2-2
BCD MULTIPLY
*B

@*B
424

Output
Required

467

DOUBLE BCD
MULTIPLY

*BL
@*BL

425

Output
Required

469

SIGNED BINARY
DIVIDE

/
@/

430

Output
Required

471

DOUBLE
SIGNED BINARY
DIVIDE

/L
@/L
431

Output
Required

473

UNSIGNED
BINARY DIVIDE

/U
@/U
432

Output
Required

475

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

*B(424)

R

Md

Mr

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

R +1 R

(BCD)

(BCD)

(BCD)

×

Md

Mr

Multiplies 4-digit (single-word) BCD data and/or constants.

*BL(425)

R

Md

Mr

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

×

Md + 1 Md

Mr + 1 Mr

Multiplies 8-digit (double-word) BCD data and/or constants.

/(430)

R

Dd

Dr

Dd: Dividend word
Dr: Divisor word
R: Result word

Dd

Dr

R +1 R

÷

Remainder Quotient

(Signed binary)

(Signed binary)

(Signed binary)

Divides 4-digit (single-word) signed hexadecimal data and/or
constants.

/L(431)

R

Dd

Dr

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

QuotientRemainder

(Signed binary)

(Signed binary)

(Signed binary)

Divides 8-digit (double-word) signed hexadecimal data and/or
constants.

/U(432)

R

Dd

Dr

Dd: Dividend
word
Dr: Divisor word
R: Result word

R +1 R

÷

Dd

Dr

Remainder Quotient

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Divides 4-digit (single-word) unsigned hexadecimal data and/or
constants.
55

Instruction Functions Section 2-2
2-2-10 Conversion Instructions

DOUBLE
UNSIGNED
BINARY DIVIDE

/UL
@/UL

433

Output
Required

477

BCD DIVIDE
/B

@/B
434

Output
Required

479

DOUBLE BCD
DIVIDE

/BL
@/BL

435

Output
Required

481

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BCD TO BINARY
BIN

@BIN
023

Output
Required

483

DOUBLE BCD TO
DOUBLE
BINARY

BINL
@BINL

058

Output
Required

485

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

/UL(433)

R

Dd

Dr

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R + 1 RR + 3 R + 2

÷

Dd + 1

Dr + 1

Remainder

Divides 8-digit (double-word) unsigned hexadecimal data and/or
constants.

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Dd

Dr

Quotient

/B(434)

R

Dd

Dr

Dd: Dividend
word
Dr: Divisor word
R: Result word

R +1 R

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder

Divides 4-digit (single-word) BCD data and/or constants.

Quotient

/BL(435)

R

Dd

Dr

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

÷

Dd + 1

Dr + 1

Remainder

Dr

Dd

Divides 8-digit (double-word) BCD data and/or constants.

Quotient

BIN(023)

S

R

S: Source word
R: Result word

(BCD) (BIN)R

Converts BCD data to binary data.

BINL(058)

S

R

S: 1st source
word
R: 1st result word

(BCD) (BIN)

(BCD) (BIN)

R

R+1

Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.
56

Instruction Functions Section 2-2
BINARY TO BCD
BCD

@BCD
024

Output
Required

487

DOUBLE
BINARY TO DOU-
BLE BCD

BCDL
@BCDL

059

Output
Required

489

2’S COMPLE-
MENT

NEG
@NEG

160

Output
Required

491

DOUBLE 2’S
COMPLEMENT

NEGL
@NEGL

161

Output
Required

493

16-BIT TO 32-BIT
SIGNED BINARY

SIGN
@SIGN

600

Output
Required

494

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BCD(024)

S

R

S: Source word
R: Result word

(BCD)(BIN) R

Converts a word of binary data to a word of BCD data.

BCDL(059)

S

R

S: 1st source
word
R: 1st result word

(BIN) (BCD)

(BIN) (BCD)

R

R+1

Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.

NEG(160)

S

R

S: Source word
R: Result word

(S) (R)

Calculates the 2's complement of a word of hexadecimal data.

2's complement
(Complement + 1)

NEGL(161)

S

R

S: 1st source
word
R: 1st result word

(S+1, S) (R+1, R)

Calculates the 2's complement of two words of hexadecimal data.

2's complement
(Complement + 1)

SIGN(600)

S

R

S: Source word
R: 1st result word

D+1 D

S
MSB

MSB = 1:
FFFF Hex

MSB = 0:
0000 Hex

D = Contents of S

Expands a 16-bit signed binary value to its 32-bit equivalent.
57

Instruction Functions Section 2-2
DATA DECODER
MLPX

@MLPX
076

Output
Required

496

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

MLPX(076)

S

C

R

S: Source word
C: Control word
R: 1st result word

C

R
R+1

C

R+1

R+14
R+15
R+16
R+17

R+30
R+31

Reads the numerical value in the specified digit (or byte) in the source
word, turns ON the corresponding bit in the result word (or 16-word
range), and turns OFF all other bits in the result word (or 16-word
range).

l=1 (Convert 2 digits.)

4-to-16 bit conversion

n=2 (Start with second digit.)

4-to-16 bit decoding
(Bit m of R is turned ON.)

8-to-256 bit conversion

l=1 (Convert 2 bytes.)

n=1 (Start with first byte.)

8-to-256 bit decoding
(Bit m of R to R+15 is turned ON.)

Two 16-word ranges are
used when l specifies 2
bytes.
58

Instruction Functions Section 2-2
DATA ENCODER
DMPX

@DMPX
077

Output
Required

500

ASCII CONVERT
ASC

@ASC
086

Output
Required

504

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DMPX(077)

S

R

C

S: 1st source
word
R: Result word
C: Control word

C

R

C

R

Leftmost bit Rightmost bit

Leftmost bit

l=1 (Convert
2 words.)

FInds the location of the first or last ON bit within the source word (or
16-word range), and writes that value to the specified digit (or byte) in
the result word.
16-to-4 bit conversion

Finds leftmost bit
(Highest bit address)

16-to-4 bit decoding
(Location of leftmost
bit (m) is written to R.)

n=2 (Start with digit 2.)

256-to-8 bit conversion

l=0 (Convert one 16-word range.)

Finds leftmost bit
(Highest bit address)

256-to-8 bit decoding (The location of
the leftmost bit in the 16-word range
(m) is written to R.)

n=1 (Start with byte 1.)

ASC(086)

S

D

Di

S: Source word
Di: Digit
designator
D: 1st destination
word

Right (0)Left (1)

Di

Converts 4-bit hexadecimal digits in the source word into their 8-bit
ASCII equivalents.

First digit to convert

Number of
digits (n+1)
59

Instruction Functions Section 2-2
ASCII TO HEX
HEX

@HEX
162

Output
Required

508

COLUMN TO
LINE

LINE
@LINE

063

Output
Required

512

LINE TO
COLUMN

COLM
@COLM

064

Output
Required

514

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

HEX(162)

S

Di

D

S: 1st source
word
Di: Digit
designator
D: Destination
word

C: 0021

Number of digits (n+1)

Right (0)Left (1)

Di

First digit to write

First byte to convert

Converts up to 4 bytes of ASCII data in the source word to their
hexadecimal equivalents and writes these digits in the specified
destination word.

LINE(063)

S

N

D

S: 1st source
word
N: Bit number
D: Destination
word

0

0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1

15 00

S

N

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1S+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1S+2

 .
 .
 .

 .
 .
 .

 . . .

 .
 .
 .

0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0S+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1S+3

0 1 1D 1

15 00

 .
 .
 .

Bit Bit

Bit Bit

Converts a column of bits from a 16-word range (the same bit number
in 16 consecutive words) to the 16 bits of the destination word.

COLM(064)

S

D

N

S: Source word
D: 1st destination
word
N: Bit number

0

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

15 00

D

Bi

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1D+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1D+2

 .

0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0D+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1D+3

0 1 1S 1

15 00

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

Converts the 16 bits of the source word to a column of bits in a
16-word range of destination words (the same bit number in 16
consecutive words).

Bit Bit

Bit Bit
60

Instruction Functions Section 2-2
SIGNED BCD TO
BINARY

BINS
@BINS

470

Output
Required

517

DOUBLE
SIGNED BCD TO
BINARY

BISL
@BISL

472

Output
Required

520

SIGNED BINARY
TO BCD

BCDS
@BCDS

471

Output
Required

523

DOUBLE
SIGNED BINARY
TO BCD

BDSL
@BDSL

473

Output
Required

525

GRAY CODE
CONVERSION

GRY
474

(CS/CJ-series
Unit Ver. 2.0 or
later only, includ-
ing CS1-H, CJ1-H,
and CJ1M CPU
Units from lot
number 030201
and later)

Converts the Gray code data in the specified word to binary, BCD, or
angle (°) data at the specified resolution.

Output
Required

529

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BINS(470)

C

S

D

C: Control word
S: Source word
D: Destination
word

Signed BCD

Converts one word of signed BCD data to one word of signed binary
data.

Signed BCD format
specified in C

Signed binary

BISL(472)

C

S

D

C: Control word
S: 1st source
word
D: 1st destination
word

Signed BCD

Signed BCD Signed binary

Signed binary

Signed BCD format
specified in C

Converts double signed BCD data to double signed binary data.

BCDS(471)

C

S

D

C: Control word
S: Source word
D: Destination
word

Signed BCD

Converts one word of signed binary data to one word of signed BCD
data.

Signed BCD format
specified in C

Signed binary

BDSL(473)

C

S

D

C: Control word
S: 1st source
word
D: 1st destination
word

Signed BCD
Signed BCD

Signed BCD format
specified in C

Signed binary

Signed binary

Converts double signed binary data to double signed BCD data.

GRY (474)

C

S

D

C: Control word
S: Source word
D: 1st destination
word
61

Instruction Functions Section 2-2
FOUR-DIGIT
NUMBER TO
ASCII

STR4
@STR4

601
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Converts a 4-digit hexadecimal number (#0000 to #FFFF) to ASCII
data (4 characters).

Output
Required

534

EIGHT-DIGIT
NUMBER TO-
ASCII

STR8
@STR8

602
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Converts an 8-digit hexadecimal number (#0000 0000 to #FFFF FFFF)
to ASCII data (8 characters).

Output
Required

537

SIXTEEN-DIGIT
NUMBER TO
ASCII

STR16
@STR16

603
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Converts a 16-digit hexadecimal number (#0000 0000 0000 0000 to
#FFFF FFFF FFFF FFFF) to ASCII data (16 characters).

Output
Required

539

ASCII TO FOUR-
DIGIT NUMBER

NUM4
@NUM4

604
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Converts 4 characters of ASCII data to a 4-digit hexadecimal number. Output
Required

541

ASCII TO EIGHT-
DIGIT NUMBER

NUM8
@NUM8

605
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Converts 8 characters of ASCII data to an 8-digit hexadecimal number. Output
Required

544

ASCII TO SIX-
TEEN-DIGIT
NUMBER

NUM16
@NUM16

606
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Converts 16 characters of ASCII data to a 16-digit hexadecimal num-
ber.

Output
Required

545

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

STR4

S

D

S: Numeric
D: ASCII text

STR8

S

D

S: Numeric
D: ASCII text

STR16

S

D

S: Numeric
D: ASCII text

NUM4

S

D

S: ASCII text
D: Numeric

NUM8

S

D

S: ASCII text
D: Numeric

NUM16

S

D

S: ASCII text
D: Numeric
62

Instruction Functions Section 2-2
2-2-11 Logic Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

LOGICAL AND
ANDW

@ANDW
034

Output
Required

548

DOUBLE
LOGICAL AND

ANDL
@ANDL

610

Output
Required

550

LOGICAL OR
ORW

@ORW
035

Output
Required

551

DOUBLE
LOGICAL OR

ORWL
@ORWL

611

Output
Required

553

EXCLUSIVE OR
XORW

@XORW
036

Output
Required

555

I1
I2
R

ANDW(034)

I1: Input 1
I2: Input 2
R: Result word

I1
1

1

0

0

I2
1

0

1

0

R
1

0

0

0

I1. I2→ R

Takes the logical AND of corresponding bits in single words of word
data and/or constants.

ANDL(610)

I1
I2
R

I1: Input 1
I2: Input 2
R: Result word

Takes the logical AND of corresponding bits in double words of word
data and/or constants.

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

1

0

0

0

(I1, I1+1). (I2, I2+1)→ (R, R+1)

I1: Input 1
I2: Input 2
R: Result word

I1
I2
R

ORW(035)

I1
1

1

0

0

I2
1

0

1

0

R

1

1

1

0

I1 + I2 → R

Takes the logical OR of corresponding bits in single words of word
data and/or constants.

I1
I2
R

ORWL(611)

I1: Input 1
I2: Input 2
R: Result word

(I1, I1+1) + (I2, I2+1) →(R, R+1)

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

1

1

1

0

Takes the logical OR of corresponding bits in double words of word
data and/or constants.

I1
I2
R

XORW(036)

I1: Input 1
I2: Input 2
R: Result word

I1. I2 + I1.I2 → R

I1
1

1

0

0

I2
1

0

1

0

R

0

1

1

0

Takes the logical exclusive OR of corresponding bits in single words
of word data and/or constants.
63

Instruction Functions Section 2-2
DOUBLE EXCLU-
SIVE OR

XORL
@XORL

612

Output
Required

557

EXCLUSIVE NOR
XNRW

@XNRW
037

Output
Required

559

DOUBLE EXCLU-
SIVE NOR

XNRL
@XNRL

613

Output
Required

560

COMPLEMENT
COM

@COM
029

Output
Required

562

DOUBLE COM-
PLEMENT

COML
@COML

614

Output
Required

564

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

XORL(612)

I1
I2
R

I1: Input 1
I2: Input 2
R: Result word

(I1, I1+1). (I2, I2+1) + (I1, I1+1). (I2, I2+1) → (R, R+1)

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

0

1

1

0

Takes the logical exclusive OR of corresponding bits in double words
of word data and/or constants.

I1
I2
R

XNRW(037)

I1: Input 1
I2: Input 2
R: Result word

I1. I2 + I1.I2 →R

I1
1

1

0

0

I2
1

0

1

0

R

1

0

0

1

Takes the logical exclusive NOR of corresponding single words of
word data and/or constants.

XNRL(613)

I1
I2
R

I1: Input 1
I2: Input 2
R: 1st result word

(I1, I1+1). (I2, I2+1) + (I1, I1+1). (I2, I2+1)→ (R, R+1)

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

1

0

0

1

Takes the logical exclusive NOR of corresponding bits in double
words of word data and/or constants.

Wd: Word

Wd

COM(029) Turns OFF all ON bits and turns ON all OFF bits in Wd.

Wd→Wd: 1 → 0 and 0 → 1

COML(614)

Wd

Wd: Word

Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1.

(Wd+1, Wd) → (Wd+1, Wd)
64

Instruction Functions Section 2-2
2-2-12 Special Math Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

BINARY ROOT
ROTB

@ROTB
620

Output
Required

565

BCD SQUARE
ROOT

ROOT
@ROOT

072

Output
Required

567

ARITHMETIC
PROCESS

APR
@APR

069

Calculates the sine, cosine, or a linear extrapolation of the source data.
The linear extrapolation function allows any relationship between X and
Y to be approximated with line segments.

Output
Required

571

FLOATING
POINT DIVIDE

FDIV
@FDIV

079

Output
Required

583

BIT COUNTER
BCNT

@BCNT
067

Output
Required

587

S

R

ROTB(620)

S: 1st source
word
R: Result word

RS+1 S

Computes the square root of the 32-bit binary content of the specified
words and outputs the integer portion of the result to the specified
result word.

Binary data (32 bits) Binary data (16 bits)

S

R

ROOT(072)

S: 1st source
word
R: Result word

RS+1 S

BCD data (8 digits) BCD data (4 digits)

Computes the square root of an 8-digit BCD number and outputs the
integer portion of the result to the specified result word.

APR(069)

C

S

R

C: Control word
S: Source data
R: Result word

FDIV(079)

Dd

Dr

R

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R+1 R

Quotient

Dd+1 DdDr+1 Dr

Divides one 7-digit floating-point number by another. The floating-
point numbers are expressed in scientific notation (7-digit mantissa
and 1-digit exponent).

BCNT(067)

N

S

R

N: Number of
words
S: 1st source
word
R: Result word

S+(N −1)

R

to

Counts the total number of ON bits in the specified word(s).

N words
Counts the number
of ON bits.

Binary result
65

Instruction Functions Section 2-2
2-2-13 Floating-point Math Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

FLOATING TO
16-BIT

FIX
@FIX

450

Output
Required

594

FLOATING TO
32-BIT

FIXL
@FIXL

451

Output
Required

596

16-BIT TO
FLOATING

FLT
@FLT

452

Output
Required

597

32-BIT TO
FLOATING

FLTL
@FLTL

453

Output
Required

599

FLOATING-
POINT ADD

+F
@+F
454

Output
Required

601

FLOATING-
POINT SUB-
TRACT

–F
@–F

455

Output
Required

603

FIX(450)

S

R

S: 1st source
word
R: Result word

S+1 S

R Signed binary data
(16 bits)

Floating-point data
(32 bits)

Converts a 32-bit floating-point value to 16-bit signed binary data and
places the result in the specified result word.

FIXL(451)

S

R

S: 1st source
word
R: 1st result word

S+1 S

R+1 R Signed binary data
(32 bits)

Floating-point data
(32 bits)

Converts a 32-bit floating-point value to 32-bit signed binary data and
places the result in the specified result words.

FLT(452)

S

R

S: Source word
R: 1st result word R+1 R

S

Converts a 16-bit signed binary value to 32-bit floating-point data and
places the result in the specified result words.

Signed binary data
(16 bits)

Floating-point data
(32 bits)

S

R

FLTL(453)

S: 1st source
word
R: 1st result word

R+1 R

SS+1

Floating-point data
(32 bits)

Signed binary data
(32 bits)

Converts a 32-bit signed binary value to 32-bit floating-point data and
places the result in the specified result words.

+F(454)

R

Au

Ad

Au: 1st augend
word
AD: 1st addend
word
R: 1st result word

R+1 R

+

AuAu+1

AdAd+1

Adds two 32-bit floating-point numbers and places the result in the
specified result words.

Augend (floating-
point data, 32 bits)

Addend (floating-
point data, 32 bits)

Result (floating-
point data, 32 bits)

F(455)

R

Mi

Su

Mi: 1st Minuend
word
Su: 1st
Subtrahend word
R: 1st result word

R+1 R

−

MiMi+1

SuSu+1

Minuend (floating-
point data, 32 bits)

Subtrahend (floating-
point data, 32 bits)

Result (floating-point
data, 32 bits)

Subtracts one 32-bit floating-point number from another and places
the result in the specified result words.
66

Instruction Functions Section 2-2
FLOATING-
POINT MULTIPLY

*F
@*F
456

Output
Required

605

FLOATING-
POINT DIVIDE

/F
@/F
457

Output
Required

607

DEGREES TO
RADIANS

RAD
@RAD

458

Output
Required

609

RADIANS TO
DEGREES

DEG
@DEG

459

Output
Required

610

SINE
SIN

@SIN
460

Output
Required

612

HIGH-SPEED
SINE (CJ1-H-R
only)

SINQ
@SINQ

475

Calculates the sine of a 32-bit floating-point number (in radians) and
places the result in the specified result words.

Output
Required

614

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

*F(456)

Md

Mr

R

Md: 1st
Multiplicand word
Mr: 1st Multiplier
word
R: 1st result word

R+1 R

×

MdMd+1

MrMr+1

Multiplies two 32-bit floating-point numbers and places the result in
the specified result words.

Multiplicand (floating-
point data, 32 bits)

Multiplier (floating-
point data, 32 bits)

Result (floating-point
data, 32 bits)

/F(457)

R

Dd

Dr

Dd: 1st Dividend
word
Dr: 1st Divisor
word
R: 1st result word

R+1 R

DdDd+1

DrDr+1÷

Result (floating-
point data, 32 bits)

Divisor (floating-
point data, 32 bits)

Dividend (floating-
point data, 32 bits)

Divides one 32-bit floating-point number by another and places the
result in the specified result words.

RAD(458)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1

Converts a 32-bit floating-point number from degrees to radians and
places the result in the specified result words.

Result (radians, 32-bit
floating-point data)

Source (degrees, 32-bit
floating-point data)

DEG(459)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1

Result (degrees, 32-bit
floating-point data)

Source (radians, 32-bit
floating-point data)

Converts a 32-bit floating-point number from radians to degrees and
places the result in the specified result words.

SIN(460)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1SIN

Calculates the sine of a 32-bit floating-point number (in radians) and
places the result in the specified result words.

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

SINQ(475)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1SIN Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)
67

Instruction Functions Section 2-2
COSINE
COS

@COS
461

Output
Required

615

HIGH-SPEED
COSINE (CJ1-H-
R only)

COSQ
@COSQ

476

Calculates the cosine of a 32-bit floating-point number (in radians) and
places the result in the specified result words.

Output
Required

617

TANGENT
TAN

@TAN
462

Output
Required

619

HIGH-SPEED
TANGENT (CJ1-
H-R only)

TANQ
@TANQ

477

Calculates the tangent of a 32-bit floating-point number (in radians)
and places the result in the specified result words.

Output
Required

621

ARC SINE
ASIN

@ASIN
463

Output
Required

623

ARC COSINE
ACOS

@ACOS
464

Output
Required

625

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

COS(461)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1COS Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

Calculates the cosine of a 32-bit floating-point number (in radians)
and places the result in the specified result words.

COSQ(476)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1COS Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

S

R

TAN(462)

S: 1st source
word
R: 1st result word R+1 R

SS+1TAN

Result (32-bit
floating-point
data)

Source (32-bit
floating-point
data)

Calculates the tangent of a 32-bit floating-point number (in radians)
and places the result in the specified result words.

S

R

TANQ(477)

S: 1st source
word
R: 1st result word

R+1 R

SS+1TAN

Result (32-bit
floating-point
data)

Source (32-bit
floating-point
data)

ASIN(463)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1SIN−1

Calculates the arc sine of a 32-bit floating-point number and places
the result in the specified result words. (The arc sine function is the
inverse of the sine function; it returns the angle that produces a given
sine value between −1 and 1.)

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

ACOS(464)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1COS−1

Calculates the arc cosine of a 32-bit floating-point number and places
the result in the specified result words. (The arc cosine function is the
inverse of the cosine function; it returns the angle that produces a
given cosine value between −1 and 1.)

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)
68

Instruction Functions Section 2-2
ARC TANGENT
ATAN

@ATAN
465

Output
Required

627

SQUARE ROOT
SQRT

@SQRT
466

Output
Required

629

EXPONENT
EXP

@EXP
467

Output
Required

631

LOGARITHM
LOG

@LOG
468

Output
Required

633

EXPONENTIAL
POWER

PWR
@PWR

840

Output
Required

635

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ATAN(465)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1TAN−1

Calculates the arc tangent of a 32-bit floating-point number and
places the result in the specified result words. (The arc tangent
function is the inverse of the tangent function; it returns the angle that
produces a given tangent value.)

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

S

R

SQRT(466)

S: 1st source
word
R: 1st result word R+1 R

SS+1 Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

Calculates the square root of a 32-bit floating-point number and
places the result in the specified result words.

EXP(467)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1

e

Calculates the natural (base e) exponential of a 32-bit floating-point
number and places the result in the specified result words.

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

LOG(468)

S

R

S: 1st source
word
R: 1st result word

Calculates the natural (base e) logarithm of a 32-bit floating-point
number and places the result in the specified result words.

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

R+1 R

SS+1loge

PWR(840)

B

E

R

B: 1st base word
E: 1st exponent
word
R: 1st result word

R+1B+1 S

EE+1

R

Base

Raises a 32-bit floating-point number to the power of another 32-bit
floating-point number.

Power
69

Instruction Functions Section 2-2
FLOATING SYM-
BOL COMPARI-
SON (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

LD, AND. or OR
+

=F (329),
<>F (330),

<F (331),
<=F (332),

>F (333),
or >=F (334)

Compares the specified single-precision data (32 bits) or constants
and creates an ON execution condition if the comparison result is true.
Three kinds of symbols can be used with the floating-point symbol
comparison instructions: LD (Load), AND, and OR.

LD:
Not required

AND or OR:
Required

636

FLOATING-
POINT TO ASCII
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

FSTR
@FSTR

448

Converts the specified single-precision floating-point data (32-bit deci-
mal-point or exponential format) to text string data (ASCII) and outputs
the result to the destination word.

Output
required

640

ASCII TO FLOAT-
ING-POINT (CS1-
H, CJ1-H, CJ1M,
or CS1D only)

FVAL
@FVAL

449

Converts the specified text string (ASCII) representation of single-pre-
cision floating-point data (decimal-point or exponential format) to 32-bit
single-precision floating-point data and outputs the result to the desti-
nation words.

Output
required

645

MOVE FLOAT-
ING-POINT
(SINGLE)
(CJ1-H-R only)

MOVF
@MOVF

469

Transfers the specified 32-bit floating-point number to the destination
words.

Output
required

649

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

S1

S2

S1

S2

S1

S2

S1: Comparison data 1
S2: Comparison data 2

Symbol, option

Using LD:

Symbol, option

Using AND:

Symbol, option

Using OR:

FSTR(448)

S

C

D

S: 1st source
word
C: Control word
D: Destination
word

FVAL(449)

S

D

S: Source word
D: 1st destination
word

MOVF(469)

S

D

S: First source
word
D: First destination
word

D+1 D

SS+1
70

Instruction Functions Section 2-2
2-2-14 Double-precision Floating-point Instructions
The Double-precision Floating-point Instructions are supported only by the
CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DOUBLE FLOAT-
ING TO 16-BIT
BINARY

FIXD
@FIXD

841

Converts the specified double-precision floating-point data (64 bits) to 16-
bit signed binary data and outputs the result to the destination word.

Output
Required

657

DOUBLE FLOAT-
ING TO 32-BIT
BINARY

FIXLD
@FIXLD

842

Converts the specified double-precision floating-point data (64 bits) to 32-
bit signed binary data and outputs the result to the destination words.

Output
Required

658

16-BIT BINARY
TO DOUBLE
FLOATING

DBL
@DBL

843

Converts the specified 16-bit signed binary data to double-precision float-
ing-point data (64 bits) and outputs the result to the destination words.

Output
Required

660

32-BIT BINARY
TO DOUBLE
FLOATING

DBLL
@DBLL

844

Converts the specified 32-bit signed binary data to double-precision float-
ing-point data (64 bits) and outputs the result to the destination words.

Output
Required

661

DOUBLE FLOAT-
ING-POINT ADD

+D
@+D

845

Adds the specified double-precision floating-point values (64 bits each)
and outputs the result to the result words.

Output
Required

663

FIXD(841)

S

D

S: 1st source
word
D: Destination
word

FIXLD(842)

S

D

S: 1st source
word
D: 1st destination
word

DBL(843)

S

D

S: Source word
D: 1st destination
word

DBLL(844)

S

D

S: 1st source
word
D: 1st destination
word

+D(845)

Au

Ad

R

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word
71

Instruction Functions Section 2-2
DOUBLE FLOAT-
ING-POINT SUB-
TRACT

−D
@−D

846

Subtracts the specified double-precision floating-point values (64 bits
each) and outputs the result to the result words.

Output
Required

665

DOUBLE FLOAT-
ING-POINT MUL-
TIPLY

*D
@*D

847

Multiplies the specified double-precision floating-point values (64 bits
each) and outputs the result to the result words.

Output
Required

667

DOUBLE FLOAT-
ING-POINT
DIVIDE

/D
@/D
848

Divides the specified double-precision floating-point values (64 bits each)
and outputs the result to the result words.

Output
Required

669

DOUBLE
DEGREES TO
RADIANS

RADD
@RADD

849

Converts the specified double-precision floating-point data (64 bits) from
degrees to radians and outputs the result to the result words.

Output
Required

671

DOUBLE RADI-
ANS TO
DEGREES

DEGD
@DEGD

850

Converts the specified double-precision floating-point data (64 bits) from
radians to degrees and outputs the result to the result words.

Output
Required

673

DOUBLE SINE
SIND

@SIND
851

Calculates the sine of the angle (radians) in the specified double-precision
floating-point data (64 bits) and outputs the result to the result words.

Output
Required

674

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

−D(846)

Mi

Su

R

Mi: 1st minuend
word
Su: 1st subtra-
hend word
R: 1st result word

*D(847)

Md

Mr

R

Md: 1st multipli-
cand word
Mr: 1st multiplier
word
R: 1st result word

/D(848)

Dd

Dr

R

Dd: 1st Dividend
word
Dr: 1st divisor
word
R: 1st result word

RADD(849)

S

R

S: 1st source
word
R: 1st result word

DEGD(850)

S

R

S: 1st source
word
R: 1st result word

SIND(851)

S

R

S: 1st source
word
R: 1st result word
72

Instruction Functions Section 2-2
DOUBLE
COSINE

COSD
@COSD

852

Calculates the cosine of the angle (radians) in the specified double-preci-
sion floating-point data (64 bits) and outputs the result to the result words.

Output
Required

676

DOUBLE TAN-
GENT

TAND
@TAND

853

Calculates the tangent of the angle (radians) in the specified double-preci-
sion floating-point data (64 bits) and outputs the result to the result words.

Output
Required

678

DOUBLE ARC
SINE

ASIND
@ASIND

854

Calculates the angle (in radians) from the sine value in the specified dou-
ble-precision floating-point data (64 bits) and outputs the result to the
result words. (The arc sine function is the inverse of the sine function; it
returns the angle that produces a given sine value between -1 and 1.)

Output
Required

680

DOUBLE ARC
COSINE

ACOSD
@ACOSD

855

Calculates the angle (in radians) from the cosine value in the specified
double-precision floating-point data (64 bits) and outputs the result to the
result words. (The arc cosine function is the inverse of the cosine function;
it returns the angle that produces a given cosine value between -1 and 1.)

Output
Required

682

DOUBLE ARC
TANGENT

ATAND
@ATAND

856

Calculates the angle (in radians) from the tangent value in the specified
double-precision floating-point data (64 bits) and outputs the result to the
result words. (The arc tangent function is the inverse of the tangent func-
tion; it returns the angle that produces a given tangent value.)

Output
Required

684

DOUBLE
SQUARE ROOT

SQRTD
@SQRTD

857

Calculates the square root of the specified double-precision floating-point
data (64 bits) and outputs the result to the result words.

Output
Required

686

DOUBLE EXPO-
NENT

EXPD
@EXPD

858

Calculates the natural (base e) exponential of the specified double-preci-
sion floating-point data (64 bits) and outputs the result to the result words.

Output
Required

688

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

COSD(852)

S

R

S: 1st source
word
R: 1st result word

TAND(853)

S

R

S: 1st source
word
R: 1st result word

ASIND(854)

S

R

S: 1st source
word
R: 1st result word

ACOSD(855)

S

R

S: 1st source
word
R: 1st result word

ATAND(856)

S

R

S: 1st source
word
R: 1st result word

SQRTD(857)

S

R

S: 1st source
word
R: 1st result word

EXPD(858)

S

R

S: 1st source
word
R: 1st result word
73

Instruction Functions Section 2-2
DOUBLE LOGA-
RITHM

LOGD
@LOGD

859

Calculates the natural (base e) logarithm of the specified double-precision
floating-point data (64 bits) and outputs the result to the result words.

Output
Required

690

DOUBLE EXPO-
NENTIAL
POWER

PWRD
@PWRD

860

Raises a double-precision floating-point number (64 bits) to the power of
another double-precision floating-point number and outputs the result to
the result words.

Output
Required

692

DOUBLE SYM-
BOL COMPARI-
SON

LD, AND. or OR
+

=D (335),
<>D (336),

<D (337),
<=D (338),

>D (339),
or >=D (340)

Compares the specified double-precision data (64 bits) and creates an ON
execution condition if the comparison result is true.
Three kinds of symbols can be used with the floating-point symbol com-
parison instructions: LD (Load), AND, and OR.

LD:
Not
required

AND or
OR:
Required

694

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

LOGD(859)

S

R

S: 1st source
word
R: 1st result word

PWRD(860)

B

E

R

B: 1st base word
E: 1st exponent
word
R: 1st result word

S1

S2

S1

S2

S1

S2

S1: Comparison data 1
S2: Comparison data 2

Symbol, option

Using LD:

Symbol, option

Using AND:

Symbol, option

Using OR:
74

Instruction Functions Section 2-2
2-2-15 Table Data Processing Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SET STACK
SSET

@SSET
630

Output
Required

703

PUSH ONTO
STACK

PUSH
@PUSH

632

Output
Required

706

LAST IN FIRST
OUT

LIFO
@LIFO

634

Output
Required

712

FIRST IN FIRST
OUT

FIFO
@FIFO

633

Output
Required

709

SSET(630)

TB

N

TB: 1st stack
address
N: Number of
words

TB

TB+1

TB+2

TB+3

m+(N−1)

m+(N −1)

Defines a stack of the specified length beginning at the specified word
and initializes the words in the data region to all zeroes.

Internal I/O
memory address

N words
in stack

Stack
pointer

Last word
in stack

PUSH(632)

TB

S

TB: 1st stack
address
S: Source word

TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3PUSH(632)

Writes one word of data to the specified stack.

Internal I/O
memory address

Internal I/O
memory address

LIFO(634)

TB

D

TB: 1st stack
address
D: Destination
word

TB

TB+1

TB+2

TB+3

TB
TB+1

TB+2

TB+3

−1m −1

m−1

m

Last-in first-outThe pointer is
decremented.

Stack
pointer

Newest
data

Internal I/O
memory address

Stack
pointer

Reads the last word of data written to the specified stack (the newest
data in the stack).

Internal I/O
memory address

A is left
un-
changed.

FIFO(633)

TB

D

TB: 1st stack
address
D: Destination
word

m−1

TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3
m−1

First-in first-out

Reads the first word of data written to the specified stack (the oldest
data in the stack).

Internal I/O
memory address

Internal I/O
memory address

Oldest
data

Stack
pointer

Stack
pointer
75

Instruction Functions Section 2-2
DIMENSION
RECORD TABLE

DIM
@DIM

631

Output
Required

715

SET RECORD
LOCATION

SETR
@SETR

635

Output
Required

718

GET RECORD
NUMBER

GETR
@GETR

636

Output
Required

720

DATA SEARCH
SRCH

@SRCH
181

Output
Required

722

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DIM(631)

N

LR

NR

TB
N: Table number
LR: Length of
each record
NR: Number of
records
TB: 1st table
word

Number of records

Record NR

Record 1

Defines a record table by declaring the length of each record and the
number of records. Up to 16 record tables can be defined.

Table number (N)

LR × NR words

SETR(635)

N

R

D

N: Table number
R: Record
number
D: Destination
Index Register

R

Writes the location of the specified record (the internal I/O memory
address of the beginning of the record) in the specified Index
Register.

Internal I/O
memory address

SETR(635) writes the internal I/O
memory address (m) of the first word of
record R to Index Register D.

Table number (N)

Record
number (R)

GETR(636)

N

IR

D
N: Table number
IR: Index
Register
D: Destination
word

IR

n

Returns the record number of the record at the internal I/O memory
address contained in the specified Index Register.

Internal I/O
memory address

GETR(636) writes the
record number of the
record that includes
I/O memory address
(m) to D.

Record number
(R)

Table number (N)

SRCH(181)

C

R1

Cd

C: 1st control
word
R1: 1st word in
range
Cd: Comparison
data

R1+(C−1)

R1

C

Search

Match

Cd

Internal I/O
memory address

Searches for a word of data within a range of words.
76

Instruction Functions Section 2-2
SWAP BYTES
SWAP

@SWAP
637

Output
Required

725

FIND MAXIMUM
MAX

@MAX
182

Output
Required

727

FIND MINIMUM
MIN

@MIN
183

Output
Required

731

SUM
SUM

@SUM
184

Output
Required

735

FRAME CHECK-
SUM

FCS
@FCS

180

Output
Required

738

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SWAP(637)

N

R1

N: Number of
words
R1: 1st word in
range

N

R1

Switches the leftmost and rightmost bytes in all of the words in the
range.

Byte position is swapped.

MAX(182)

C

R1

D

C: 1st control
word
R1: 1st word in
range
D: Destination
word

R1+(W−1)

R1

Finds the maximum value in the range.

Internal I/O
memory address

C words

Max.
value

MIN(183)

C

R1

D

C: 1st control
word
R1: 1st word in
range
D: Destination
word

R1+(W−1)

R1

Finds the minimum value in the range.

Internal I/O
memory address

C words

Min. value

SUM(184)

C

R1

D

C: 1st control
word
R1: 1st word in
range
D: 1st destination
word

R1+(W−1)

R1

)

Adds the bytes or words in the range and outputs the result to two
words.

FCS(180)

C

R1

D

C: 1st control
word
R1: 1st word in
range
D: 1st destination
word

C units

Calculation

R1

Calculates the ASCII FCS value for the specified range.

ASCII conversion

FCS value
77

Instruction Functions Section 2-2
STACK SIZE
READ (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

SNUM
@SNUM

638

Counts the amount of stack data (number of words) in the specified stack. Output
required

742

STACK DATA
READ (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

SREAD
@SREAD

639

Reads the data from the specified data element in the stack. The offset
value indicates the location of the desired data element (how many data
elements before the current pointer position).

Output
required

744

STACK DATA
OVERWRITE
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

SWRIT
@SWRIT

640

Writes the source data to the specified data element in the stack (overwrit-
ing the existing data). The offset value indicates the location of the desired
data element (how many data elements before the current pointer posi-
tion).

Output
required

747

STACK DATA
INSERT (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

SINS
@SINS

641

Inserts the source data at the specified location in the stack and shifts the
rest of the data in the stack downward. The offset value indicates the loca-
tion of the insertion point (how many data elements before the current
pointer position).

Output
required

750

STACK DATA
DELETE (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

SDEL
@SDEL

642

Deletes the data element at the specified location in the stack and shifts
the rest of the data in the stack upward. The offset value indicates the
location of the deletion point (how many data elements before the current
pointer position).

Output
required

753

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SNUM(638)

TB

D

TB: First stack
address
D: Destination
word

SREAD(639)

TB

C

D

TB: First stack
address
C: Offset value
D: Destination
word

SWRIT(640)

TB

C

S

TB: First stack
address
C: Offset value
S: Source data

SINS(641)

TB

C

S

TB: First stack
address
C: Offset value
S: Source data

SDEL(642)

TB

C

D

TB: First stack
address
C: Offset value
D: Destination
word
78

Instruction Functions Section 2-2
2-2-16 Data Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

PID CONTROL
PID
190

Output
Required

757

PID CONTROL
WITH AUTOTUN-
ING

PIDAT
191

 (CS1-H, CJ1-H,
or CJ1M only)

Executes PID control according to the specified parameters. The PID
constants can be auto-tuned with PIDAT(191).

Output
required

769

LIMIT CONTROL
LMT

@LMT
680

Output
Required

779

DEAD BAND
CONTROL

BAND
@BAND

681

Output
Required

781

PID(190)

S

C

D

S: Input word
C: 1st parameter
word
D: Output word

PV input (S) PID control

Manipulated variable (D)

Parameters (C to C+8)

Executes PID control according to the specified parameters.

PIDAT(191)

S

C

D

S: Input word
C: 1st parameter
word
D: Output word

LMT(680)

S

C

D

S: Input word
C: 1st limit word
D: Output word

Upper limit
C+1

Lower limit
C

Controls output data according to whether or not input data is within
upper and lower limits.

BAND(681)

S

C

D

S: Input word
C: 1st limit word
D: Output word

Upper limit (C+1)

Output

Input

Controls output data according to whether or not input data is within
the dead band range.

Lower limit (C)
79

Instruction Functions Section 2-2
DEAD ZONE
CONTROL

ZONE
@ZONE

682

Output
Required

784

TIME-PROPOR-
TIONAL OUTPUT

TPO
685

(CS/CJ-series
Unit Ver. 2.0 or
later only)

Inputs the duty ratio or manipulated variable from the specified word,
converts the duty ratio to a time-proportional output based on the spec-
ified parameters, and outputs the result from the specified output.

Output
Required

787

SCALING
SCL

@SCL
194

Output
Required

795

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ZONE(682)

S

C

D

S: Input word
C: 1st limit word
D: Output word

Output

Input

Adds the specified bias to input data and outputs the result.

Positive bias (C+1)

Negative bias (C)

TPO (685)

S

C

R
S: Input word
C: 1st parameter
word
R: Pulse Output
Bit

SCL(194)

S

P1

R

S: Source word
P1: 1st parameter
word
R: Result word

(BCD)

(BIN)

(BCD)

(BIN)

P
P1 + 1
P1 + 2
P1 + 3

R (unsigned BCD)

Converts unsigned binary data into unsigned BCD data according to
the specified linear function.

Scaling is performed according
to the linear function defined by
points A and B.

Point B

Point A

Converted
value

Converted
value

S (unsigned binary)
80

Instruction Functions Section 2-2
SCALING 2
SCL2

@SCL2
486

Output
Required

800

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SCL2(486)

S

P1

R

S: Source word
P1: 1st parameter
word
R: Result word ∆Y

∆X

∆Y

∆X

∆Y

∆X

∆Y

∆X

P1

P1 + 1

P1 + 2

R (signed BCD)

Offset

Negative Offset

Offset

R (signed BCD)

Offset of 0000

Offset

(Signed BCD)

R (signed BCD)

Positive Offset

S (signed
binary)

S (signed binary)

S (signed
binary)

Offset = 0000 hex

(Signed binary)

(Signed binary)

Converts signed binary data into signed BCD data according to the
specified linear function. An offset can be input in defining the linear
function.
81

Instruction Functions Section 2-2
SCALING 3
SCL3

@SCL3
487

Output
Required

804

AVERAGE
AVG
195

Output
Required

807

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SCL3(487)

S

P1

R

S: Source word
P1: 1st parameter
word
R: Result word

X

Y

X

Y

X

Y

S (signed BCD)

Offset S (signed BCD)

Negative Offset

Offset

∆

∆

S (signed BCD)

Offset of 0000

∆

∆

∆

∆

Converts signed BCD data into signed binary data according to the
specified linear function. An offset can be input in defining the linear
function.

Positive Offset

R (signed binary) R (signed binary)

Max conversion
Max
conver-
sion

Min.
conver-
sion Min. conversion

R (signed binary)

Max
conver-
sion

Min. conversion

AVG(195)

S

N

R

S: Source word
N: Number of
cycles
R: Result word

R + N + 1

R

R + 1

R + 2

R + 3

Average Valid Flag

Pointer

Average

N values

N: Number of cycles

S: Source word

Calculates the average value of an input word for the specified
number of cycles.
82

Instruction Functions Section 2-2
2-2-17 Subroutine Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SUBROUTINE
CALL

SBS
@SBS

091

Output
Required

811

MACRO
MCRO

@MCRO
099

Output
Required

817

SUBROUTINE
ENTRY

SBN
092

Output
Not required

821

SUBROUTINE
RETURN

RET
093

Indicates the end of a subroutine program. Output
Not required

824

SBS(091)

N

N: Subroutine
number

Calls the subroutine with the specified subroutine number and
executes that program.

Execution condition ON

Main program

Program end

Subroutine
program
(SBN(092) to
RET(093))

MCRO(099)

N

S

D

N: Subroutine
number
S: 1st input
parameter word
D: 1st output
parameter word

MCRO(099)

MCRO(099)

Calls the subroutine with the specified subroutine number and
executes that program using the input parameters in S to S+3 and the
output parameters in D to D+3.

Execution of sub-
routine between
SBN(092) and
RET(093).

The subroutine uses A600 to
A603 as inputs and A604 to
A607 as outputs.

SBN(092)

N

N: Subroutine
number

Subroutine region

or

Indicates the beginning of the subroutine program with the specified
subroutine number.

RET(093)
83

Instruction Functions Section 2-2
2-2-18 Interrupt Control Instructions

GLOBAL SUB-
ROUTINE CALL
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

GSBS
750

Calls the subroutine with the specified subroutine number and exe-
cutes that program.

Output
Not required

824

GLOBAL SUB-
ROUTINE ENTRY
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

GSBN
751

Indicates the beginning of the subroutine program with the specified
subroutine number.

Output
Not required

832

GLOBAL SUB-
ROUTINE
RETURN (CS1-H,
CJ1-H, CJ1M, or
CS1D only)

GRET
752

Indicates the end of a subroutine program. Output
Not required

835

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SET INTERRUPT
MASK
(Not supported
by CS1D CPU
Units for Duplex-
CPU Systems.)

MSKS
@MSKS

690

Output
Required

839

READ
INTERRUPT
MASK
(Not supported
by CS1D CPU
Units for Duplex-
CPU Systems.)

MSKR
@MSKR

692

Reads the current interrupt processing settings that were set with
MSKS(690).

Output
Required

846

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

GSBS(750)

N

N: Subroutine
number

GSBN(751)

N

N: Subroutine
number

GRET(752)

MSKS(690)

N

C

N: Interrupt
identifier
C: Control data

Sets up interrupt processing for I/O interrupts or scheduled
interrupts. Both I/O interrupt tasks and scheduled interrupt tasks
are masked (disabled) when the PC is first turned on.
MSKS(690) can be used to unmask or mask I/O interrupts and
set the time intervals for scheduled interrupts.

Interrupt Input Unit 0 to 3

I/O
interrupt

Mask (1) or unmask (0)
interrupt inputs 0 to 7.

Time interval
Scheduled
interrupt Set scheduled

interrupt time interval.

MSKR(692)

N

D

N: Interrupt
identifier
D: Destination
word
84

Instruction Functions Section 2-2
CLEAR
INTERRUPT
(Not supported
by CS1D CPU
Units for Duplex-
CPU Systems.)

CLI
@CLI

691

Output
Required

851

DISABLE INTER-
RUPTS

DI
@DI
693

Output
Required

855

ENABLE INTER-
RUPTS

EI
694

Output
Not required

858

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CLI(691)

N

C

N: Interrupt
identifier
C: Control data

MSKS(690)

Recorded interrupt cleared Recorded interrupt retained

N = 0 to 3

N = 4 to 5

Clears or retains recorded interrupt inputs for I/O interrupts
or sets the time to the first scheduled interrupt for scheduled
interrupts.

Interrupt
input n

Internal
status

Interrupt
input n

Internal
status

Execution of scheduled
interrupt task.

Time to first
scheduled interrupt

DI(693)
Disables execution of all interrupt tasks except the power OFF
interrupt.

Disables execution of all
interrupt tasks (except
the power OFF interrupt).

EI(694)
Enables execution of all interrupt tasks that were disabled with
DI(693).

Disables execution of all
interrupt tasks (except the
power OFF interrupt).

Enables execution of all
disabled interrupt tasks.
85

Instruction Functions Section 2-2
2-2-19 High-speed Counter and Pulse Output Instructions
(CJ1M-CPU21/22/23 Only)

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

MODE CONTROL
INI

@INI
880

P: Port specifier
C: Control data
NV: 1st word with
new PV

INI(880) is used to start and stop target value comparison, to
change the present value (PV) of a high-speed counter, to
change the PV of an interrupt input (counter mode), to change
the PV of a pulse output, or to stop pulse output.

Output
Required

864

HIGH-SPEED
COUNTER PV
READ

PRV
@PRV

881

P: Port specifier
C: Control data
D: 1st destination
word

PRV(881) is used to read the present value (PV) of a high-
speed counter, pulse output, or interrupt input (counter mode).

Output
Required

868

COUNTER FRE-
QUENCY CON-
VERT

PRV2
883

(CJ1M CPU Unit
Ver. 2.0 or later
only) C1: Control data

C2: Pulses/revo-
lution
D: 1st destination
word

Reads the pulse frequency input from a high-speed counter and either
converts the frequency to a rotational speed (number of revolutions) or
converts the counter PV to the total number of revolutions. The result is
output to the destination words as 8-digit hexadecimal. Pulses can be
input from high-speed counter 0 only.

Output
Required

874

COMPARISON
TABLE LOAD

CTBL
@CTBL

882

P: Port specifier
C: Control data
TB: 1st compari-
son table word

CTBL(882) is used to perform target value or range comparisons for
the present value (PV) of a high-speed counter.

Output
Required

878

SPEED OUTPUT
SPED

@SPED
885

P: Port specifier
M: Output mode
F: 1st pulse fre-
quency word

SPED(885) is used to specify the frequency and perform pulse output
without acceleration or deceleration.

Output
Required

882

INI

P

C

NV

PRV

P

C

D

PRV2

C1

C2

D

CTBL

P

C

TB

SPED

P

M

F

86

Instruction Functions Section 2-2
SET PULSES
PULS

@PULS
886

P: Port specifier
T: Pulse type
N: Number of
pulses

PULS(886) is used to set the number of pulses for pulse output. Output
Required

887

PULSE OUTPUT
PLS2

@PLS2
887

P: Port specifier
M: Output mode
S: 1st word of set-
tings table
F: 1st word of
starting frequency

PLS2(887) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with different acceleration/deceleration rates). Only positioning is pos-
sible.

Output
Required

890

ACCELERATION
CONTROL

ACC
@ACC

888

P: Port specifier
M: Output mode
S: 1st word of set-
tings table

ACC(888) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with the same acceleration/deceleration rate). Both positioning and
speed control are possible.

Output
Required

896

ORIGIN SEARCH
ORG

@ORG
889

P: Port specifier
C: Control data

ORG(889) is used to perform origin searches and returns. Output
Required

903

PULSE WITH
VARIABLE DUTY
FACTOR

PWM
@

891

P: Port specifier
F: Frequency
D: Duty factor

PWM(891) is used to output pulses with a variable duty factor. Output
Required

906

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

PULS

P

T

N

PLS2

P

M

S

F

ACC

P

M

S

ORG

P

C

PWM

P

F

D

87

Instruction Functions Section 2-2
2-2-20 Step Instructions

2-2-21 Basic I/O Unit Instructions

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

STEP DEFINE
STEP

008

STEP(008) functions in following 2 ways, depending on its position and
whether or not a control bit has been specified.
(1)Starts a specific step.
(2)Ends the step programming area (i.e., step execution).

Output
Required

909

STEP START
SNXT

009

SNXT(009) is used in the following three ways:
(1)To start step programming execution.
(2)To proceed to the next step control bit.
(3)To end step programming execution.

Output
Required

909

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

I/O REFRESH
IORF

@IORF
097

Output
Required

926

SPECIAL I/O
UNIT I/O
REFRESH
(CJ1-H-R only)

FIORF
@FIORF

225

Performs I/O refreshing immediately for the specified Special I/O Unit's
allocated CIO Area and DM Area words.t with the specified unit num-
ber.

Output
Required

929

CPU BUS UNIT
I/O REFRESH
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

DLNK
@DLNK

226

Immediately refreshes the I/O in the CPU Bus Unit with the specified
unit number.

Output
required

932

STEP(008)

B

B: Bit

SNXT(009)

B

B: Bit

IORF(097)

St

E

St: Starting word
E: End word

I/O bit area or
Special I/O Unit bit area

I/O Unit or
Special I/O Unit

I/O refreshing
St

E

Refreshes the specified I/O words.

FIORF(225)

N

N: Unit number

DLNK(226)

N

N: Unit number
88

Instruction Functions Section 2-2
7-SEGMENT
DECODER

SDEC
@SDEC

078

Output
Required

937

DIGITAL SWITCH
INPUT

DSW
210

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Reads the value set on an external digital switch (or thumbwheel
switch) connected to an Input Unit or Output Unit and stores the 4-digit
or 8-digit BCD data in the specified words.

Output
Required

940

TEN KEY INPUT
TKY
211

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Reads numeric data from a ten-key keypad connected to an Input Unit
and stores up to 8 digits of BCD data in the specified words.

Output
Required

945

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SDEC(078)

S

Di

D

S: Source word
Di: Digit
designator
D: 1st destination
word

Number of digits

Rightmost 8 bits (0)

Di

7-segment

First digit to convert

Converts the hexadecimal contents of the designated digit(s) into
8-bit, 7-segment display code and places it into the upper or lower
8-bits of the specified destination words.

DSW (210)

I

O

D

C1

C2

I:

O:
D:

C1:

C2:

 Data input word
(D0 to D3)
 Output word

 1st result
 word

 System word

Number of
digits

TKY (211)

I

D1

D2

I: Data input
word

D1: 1st register
word

D2: Key input
word
89

Instruction Functions Section 2-2
HEXADECIMAL
KEY INPUT

HKY
212

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Reads numeric data from a hexadecimal keypad connected to an Input
Unit and Output Unit and stores up to 8 digits of hexadecimal data in
the specified words.

Output
Required

948

MATRIX INPUT
MTR
213

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Inputs up to 64 signals from an 8 × 8 matrix connected to an Input Unit
and Output Unit (using 8 input points and 8 output points) and stores
that 64-bit data in the 4 destination words.

Output
Required

953

7-SEGMENT DIS-
PLAY OUTPUT

7SEG
214

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Converts the source data (either 4-digit or 8-digit BCD) to 7-segment
display data, and outputs that data to the specified output word.

Output
Required

957

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

HKY (212)

I

O

D

C
I: Data input

word
O: Output word
D: 1st register

word
C: System word

MTR (213)

I

O

D

C
I: Data input

word
O: Output word
D: 1st

destination
word

C: System word

7SEG (214)

S

O

C

D

S: 1st source
word
O: Output word
C: Control data
D: System word
90

Instruction Functions Section 2-2
INTELLIGENT I/O
READ

IORD
@IORD

222

 Note: CS/CJ-series CPU Unit Ver. 2.0 or later (including CS1-H, CJ1-H,
and CJ1M CPU Units from lot number 030418 or later) can read
from CPU Bus Units.

Output
Required

962

INTELLIGENT I/O
WRITE

IOWR
@IOWR

223

 Note: CS/CJ-series CPU Unit Ver. 2.0 or later (including CS1-H, CJ1-H,
and CJ1M CPU Units from lot number 030418 or later) can write
to CPU Bus Units.

Output
Required

967

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

IORD(222)

C

S

D

C: Control data
S: Transfer
source and
number of words
D: Transfer
destination and
number of words

S
S+1

Reads the contents of the memory area for the Special I/O Unit
or CPU Bus Unit (see note).

Unit number of Special I/O Unit

Desig-
nated
number
of words
read.

IOWR(223)

C

S

D

C: Control data
S: Transfer
source and
number of words
D: Transfer
destination and
number of words

D
D+1

Outputs the contents of the CPU Unit's I/O memory area to the
Special I/O Unit or the CPU Bus Unit (see note).

Unit number of Special I/O Unit

Desig-
nated
number of
words writ-
ten.
91

Instruction Functions Section 2-2
2-2-22 Serial Communications Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

PROTOCOL
MACRO

PMCR
@PMCR

260

Output
Required

974

TRANSMIT
TXD

@TXD
236

Outputs the specified number of bytes of data from the RS-232C port
built into the CPU Unit or the serial port of a Serial Communications
Board (version 1.2 or later).

Output
Required

983

RECEIVE
RXD

@RXD
235

Reads the specified number of bytes of data from the RS-232C port
built into the CPU Unit or the serial port of a Serial Communications
Board (version 1.2 or later).

Output
Required

993

TRANSMIT VIA
SERIAL COMMU-
NICATIONS UNIT

TXDU
@TXDU

256

Outputs the specified number of bytes of data from the serial port of a
Serial Communications Unit (version 1.2 or later). The data is output in
no-protocol mode with the start code and end code (if any) specified in
the allocated DM Setup Area.

Output
Required

1005

PMCR(260)

C1

C2

S

R

C1: Control word 1
C2: Control word 2
S: 1st send word
R: 1st receive word

R

S
to

to

CPU Unit

Calls and executes a communications sequence registered in a Serial
Communications Board (CS Series only) or Serial Communications
Unit.

Serial Communications Unit
Port

External
device

TXD(236)

S

C

N

S: 1st source
word
C: Control word
N: Number of
bytes
0000 to 0100 hex
(0 to 256 decimal)

RXD(235)

D

C

N

D: 1st destination
word
C: Control word
N: Number of
bytes to store
0000 to 0100 hex
(0 to 256 decimal)

TXDU(256)

S

C

N

S: 1st source word
C: 1st control
word
N: Number of
bytes
0000 to 0256 BCD
92

Instruction Functions Section 2-2
2-2-23 Network Instructions

RECEIVE VIA
SERIAL COMMU-
NICATIONS UNIT

RXDU
@RXDU

255

Reads the specified number of bytes of data from the serial port of a
Serial Communications Unit (version 1.2 or later). The data is read in
no-protocol mode with the start code and end code (if any) specified in
the allocated DM Setup Area.

Output
Required

1013

CHANGE SERIAL
PORT SETUP

STUP
@STUP

237

Changes the communications parameters of a serial port on the CPU
Unit, Serial Communications Unit (CPU Bus Unit), or Serial Communi-
cations Board. STUP(237) thus enables the protocol mode to be
changed during PLC operation.

Output
Required

1021

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

NETWORK SEND
SEND

@SEND
090

Output
Required

1044

NETWORK
RECEIVE

RECV
@RECV

098

Output
Required

1050

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

RXDU(255)

D

C

N

D: 1st destination
word
C: 1st control
word
N: Number of
bytes to store
0000 to 0256 BCD

STUP(237)

C

S

C: Control word
(port)
S: First source
word

SEND(090)

S

D

C

S: 1st source
word
D: 1st destination
word
C: 1st control
word

D

15 0

n

S

15 0

Local node Destination node

n: No.
of send
words

Transmits data to a node in the network.

RECV(098)

S

D

C

S: 1st source
word
D: 1st destination
word
C: 1st control
word

D
15 0 15 0

S

m n

Source nodeLocal node

Requests data to be transmitted from a node in the network and
receives the data.
93

Instruction Functions Section 2-2
DELIVER
COMMAND

CMND
@CMND

490

Output
Required

1056

EXPLICIT MES-
SAGE SEND

EXPLT
720

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Sends an explicit message with any Service Code. Output
Required

1066

EXPLICIT GET
ATTRIBUTE

EGATR
721

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Reads status information with an explicit message (Get Attribute Sin-
gle, Service Code: 0E hex).

Output
Required

1074

EXPLICIT SET
ATTRIBUTE

ESATR
722

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Writes status information with an explicit message
(Set Attribute Single, Service Code: 0E hex)

Output
Required

1081

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CMND(490)

S

D

C

S: 1st command
word
D: 1st response
word
C: 1st control
word

D

15 0

15 0

S

2
m+

(D−1)

2
n+

(S−1)

Destination nodeLocal node

Command

Response

Sends FINS commands and receives the response.

Com-
mand
data (n
bytes)

Re-
sponse
data (m
bytes)

Interpret

Execute

EXPLT (720)

S

D

C

S: 1st word of
send
message

D: 1st word of
received
message

C: 1st control
word

EGATR (721)

S

D

C
S: 1st word of

send
message

D: 1st word of
received
message

C: 1st control
word
message

ESATR (722)

S

C

S:

C:

First word of
send message
First control
word
94

Instruction Functions Section 2-2
EXPLICIT WORD
READ

ECHRD
723

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Reads data to the local CPU Unit from a remote CPU Unit in the net-
work. (The remote CPU Unit must support explicit messages.)

Output
Required

1087

EXPLICIT WORD
WRITE

ECHWR
724

(CS/CJ-series
CPU Unit Ver. 2.0
or later only)

Writes data from the local CPU Unit to a remote CPU Unit in the net-
work. (The remote CPU Unit must support explicit messages.)

Output
Required

1091

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ECHRD (723)

S

D

C
S:

D:

C:

1st source
word in remote
CPU Unit
1st destination
word in local
CPU Unit
1st control
word

ECHWR (724)

S

D

C

S:

D:

C:

1st source
word in local
CPU Unit
1st destination
word in remote
CPU Unit
1st control
word
95

Instruction Functions Section 2-2
2-2-24 File Memory Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

READ DATA FILE
FREAD

@FREAD
700

Output
Required

1099
FREAD(700)

C

S1

S2

D

C: Control word
S1: 1st source
word
S2: Filename
D: 1st destination
word

CPU Unit

CPU Unit

Memory Card or EM file memory
(Specified by the 4th digit of C.)

Number of
words

File specified
in S2

Memory Card or
EM file memory
(Specified by the
4th digit of C.)

Number
of words
written to
D and
D+1.

Number of
words specified
in S1 and S1+1

File specified
in S2

Starting read ad-
dress specified in
S1+2 and S1+3

Reads the specified data or amount of data from the specified data file
in file memory to the specified data area in the CPU Unit.
96

Instruction Functions Section 2-2
WRITE DATA
FILE

FWRIT
@FWRIT

701

Output
Required

1106

WRITE TEXT
FILE

TWRIT
@TWRIT

704
(CS/CJ-series
CPU Units with
unit version 4.0 or
later only)

Reads ASCII data from I/O memory and stores that data in the Memory
Card as a text file (writing a new file or appending a file). The data is
stored in the TXT format.

Output
Required

1113

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

FWRIT(701)

C

D1

D2

S

C: Control word
D1: 1st
destination word
D2: Filename
S: 1st source
word

File specified in D2CPU Unit

File specified in D2CPU Unit

Append

CPU Unit

Memory Card or EM file memory
(Specified by the 4th digit of C.)

Starting
address
specified
in S

Number of words
specified in D1
and D1+1

Beginning
of file File speci-

fied in D2 New file created

Memory Card or EM file memory
(Specified by the 4th digit of C.)

Memory Card or EM file memory
(Specified by the 4th digit of C.)

Existing
data

End of
file

Number of words
specified in D1
and D1+1

Starting
address
specified
in S

Starting
address
specified
in S

Overwrite

Number of words
specified in D1
and D1+1

Starting word
specified in
D1+2 and
D1+3

Overwrites or appends data in the specified data file in file memory
with the specified data from the data area in the CPU Unit. If the
specified file doesn't exist, a new file is created with that filename.

TWRIT

C

S1

S2

S3

S4

C: Control word
S1: Number of
bytes to write
S2: Directory and
file name
S3: Write data
S4: Delimiter
97

Instruction Functions Section 2-2
2-2-25 Display Instructions

2-2-26 Clock Instructions

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DISPLAY
MESSAGE

MSG
@MSG

046

Reads the specified sixteen words of extended ASCII and displays the
message on a Peripheral Device such as a Programming Console.

Output
Required

1119

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CALENDAR ADD
CADD

@CADD
730

Output
Required

1122

CALENDAR
SUBTRACT

CSUB
@CSUB

731

Output
Required

1126

MSG(046)

N

M

N: Message
number
M: 1st message
word

CADD(730)

C

T

R

C: 1st calendar
word
T: 1st time word
R: 1st result word

C+1
C

C+2

T+1
T

R+1
R

R+2

Minutes Seconds

Minutes Seconds

Day Hour
 Year Month

Minutes Seconds
Day Hour
 Year Month

Hours

Adds time to the calendar data in the specified words.

CSUB(731)

C

T

R

C: 1st calendar
word
T: 1st time word
R: 1st result word

C+1
C

C+2

T+1
T

R+1
R

R+2

−

Minutes Seconds

Minutes Seconds

Day Hour
 Year Month

Minutes Seconds
Day Hour
 Year Month

Hours

Subtracts time from the calendar data in the specified words.
98

Instruction Functions Section 2-2
2-2-27 Debugging Instructions

HOURS TO
SECONDS

SEC
@SEC

065

Output
Required

1129

SECONDS TO
HOURS

HMS
@HMS

066

Output
Required

1131

CLOCK
ADJUSTMENT

DATE
@DATE

735

Output
Required

1134

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

TRACE
MEMORY
SAMPLING

TRSM
045

When TRSM(045) is executed, the status of a preselected bit or word
is sampled and stored in Trace Memory. TRSM(045) can be used any-
where in the program, any number of times.

Output
Not required

1136

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SEC(065)

S

D
S: 1st source
word
D: 1st destination
word

Minutes Seconds
Hours

Seconds

Converts time data in hours/minutes/seconds format to an equivalent
time in seconds only.

HMS(066)

S
D

S: 1st source
word
D: 1st destination
word

Minutes Seconds
Hours

Seconds

Converts seconds data to an equivalent time in hours/minutes/
seconds format.

DATE(735)

S

S: 1st source
word

CPU Unit

Minutes Seconds

Day Hour

Year Month

00 Day of week

Changes the internal clock setting to the setting in the specified
source words.

Internal clock

New
setting

TRSM(045)
99

Instruction Functions Section 2-2
2-2-28 Failure Diagnosis Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

FAILURE ALARM
FAL

@FAL
006

Output
Required

1140

SEVERE
FAILURE ALARM

FALS
007

Output
Required

1148

FAILURE POINT
DETECTION

FPD
269

Output
Required

1156

FAL(006)

N

S

N: FAL number
S: 1st message
word or error
code to gener-
ate

ERR Indicator flashes

Generates or clears user-defined non-fatal errors. Non-fatal errors
do not stop PC operation.
Also generates non-fatal errors with the system.

Execution of
FAL(006)
generates a
non-fatal error
with FAL
number N.

FAL Error Flag ON
Corresponding Executed FAL
Number Flag ON
Error code written to A400
Error code and time written to Error
Log Area

Message
displayed on
Programming
Console

FALS(007)

N

S

N:
S: 1st message

word or error
code to gener-
ate

 FALS number

ERR Indicator lit

Generates user-defined fatal errors. Fatal errors stop PC operation.
Also generates fatal errors with the system.

Execution of
FALS(007)
generates a
fatal error
with FALS
number N.

FALS Error Flag ON

Error code written to A400
Error code and time/date written to
Error Log Area

Message displayed
on Programming
Console

FPD(269)

C

T

R

C: Control word
T: Monitoring time
R: 1st register
word

T

R

Diagnostic output B

Next instruction block

Logic diagnosis function
Determines which input in C
prevents output B from going ON.

Logic diagnosis
execution condition C

Logic diagnosis block*

Execution
condition A

Error-pro-
cessing
block (op-
tional)

Time monitoring function:
Starts timing when execution condition A goes
ON. Generates a non-fatal error if output B
isn't turned ON within the monitoring time.

Diagnoses a failure in an instruction block by monitoring the time
between execution of FPD(269) and execution of a diagnostic output
and finding which input is preventing an output from being turned ON.
100

Instruction Functions Section 2-2
2-2-29 Other Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SET CARRY
STC

@STC
040

Sets the Carry Flag (CY). Output
Required

1166

CLEAR CARRY
CLC

@CLC
041

Turns OFF the Carry Flag (CY). Output
Required

1166

SELECT EM
BANK

EMBC
@EMBC

281

Changes the current EM bank. Output
Required

1167

EXTEND
MAXIMUM
CYCLE TIME

WDT
@WDT

094

Extends the maximum cycle time, but only for the cycle in which this
instruction is executed.

Output
Required

1169

SAVE CONDI-
TION FLAGS
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

CCS
@CCS

282

Saves the status of the condition flags. Output
Required

1171

LOAD CONDI-
TION FLAGS
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

CCL
@CCL

283

Reads the status of the condition flags that was saved. Output
Required

1173

CONVERT
ADDRESS FROM
CV (CS1-H, CJ1-
H, CJ1M, or
CS1D only)

FRMCV
@FRMCV

284

Converts a CV-series PLC memory address to its equivalent CS/CJ-
series PLC memory address.

Output
Required

1174

CONVERT
ADDRESS TO CV
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

TOCV
@TOCV

285

Converts a CS/CJ-series PLC memory address to its equivalent CV-
series PLC memory address.

Output
Required

1179

STC(040)

CLC(041)

EMBC(281)

N

N: EM bank
number

WDT(094)

T

T: Timer setting

CCS(282)

CCL(283)

FRMCV(284)

S

D

S: Word contain-
ing CV-series
memory address
D: Destination
Index Register

TOCV(285)

S

D

S: Index Register
containing CS-
series memory
address
D: Destination
word
101

Instruction Functions Section 2-2
2-2-30 Block Programming Instructions

DISABLE
PERIPHERAL
SERVICING
(CS1D CPU Units
for Single-CPU
Systems, CS1-H,
CJ1-H, or CJ1M
only)

IOSP
@IOSP

287

Disables peripheral servicing during program execution in one of the
Parallel Processing Modes or Peripheral Servicing Priority Mode.

Output
Required

1183

ENABLE
PERIPHERAL
SERVICING
(CS1D CPU Unit
for Single-CPU
Systems, CS1-H,
CJ1-H, or CJ1M
only)

IORS
288

Enables peripheral servicing that was disabled by IOSP(287) for pro-
gram execution in one of the Parallel Processing Modes or Peripheral
Servicing Priority Mode.

Output
Not required

1185

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BLOCK
PROGRAM
BEGIN

BPRG
096

Output
Required

1191

BLOCK
PROGRAM END

BEND
801

Define a block programming area. For every BPRG(096) there must be
a corresponding BEND(801).

Block program
Required

1191

BLOCK
PROGRAM
PAUSE

BPPS
811

Block program
Required

1193

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

IOSP(287)

IORS(288)

BPRG(096)

N

N: Block program
number

Define a block programming area. For every BPRG(096) there must
be a corresponding BEND(801).

Block program

Executed when the execu-
tion condition is ON.

N

BPPS
(811)

N: Block program
number

to

to

to Block program n. Once
paused this block program
will not be executed even
if bit "a" is ON.

BPPS(811) executed
for block program n.

Pause and restart the specified block program from another block
program.
102

Instruction Functions Section 2-2
BLOCK
PROGRAM
RESTART

BPRS
812

Block program
Required

1193

CONDITIONAL
BLOCK EXIT

EXIT
806

EXIT(806)

B: Bit operand

Block program
Required

1199

CONDITIONAL
BLOCK EXIT

EXIT
806

EXIT(806)B

B: Bit operand

Block program
Required

1199

CONDITIONAL
BLOCK EXIT
NOT

EXIT NOT
806

EXIT NOT(806)
B

B: Bit operand

EXIT(806) without an operand bit exits the program if the execution
condition is OFF.

Block program
Required

1199

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

N

BPRS
(812)

N: Block program
number

to

to

to Block program n. This block
program will now be executed
as long as bit "a" is ON.

BPRS(812) executed
for block program n.

Pause and restart the specified block program from another block
program.

Block ended.

"B" executed.

"A" executed. "A" executed.

Execution condition

Execution
condition
OFF

Execution
condition
ON

EXIT(806) without an operand bit exits the program if the execution
condition is ON.

EXIT(806) without an operand bit exits the program if the execution
condition is ON.

Operand bit
OFF
(ON for
EXIT NOT)

Operand bit
ON
(OFF for EXIT
NOT)

"A" executed. "A" executed.

"B" executed.

Block ended.
103

Instruction Functions Section 2-2
CONDITIONAL
BLOCK
BRANCHING

IF
802

IF (802) Block program
Required

1196

CONDITIONAL
BLOCK
BRANCHING

IF
802

IF (802)
B

B: Bit operand

Block program
Required

1196

CONDITIONAL
BLOCK
BRANCHING
(NOT)

IF NOT
802

IF (802) NOT
B

B: Bit operand

The instructions between IF(802) and ELSE(803) will be executed and
if the operand bit is ON, the instructions be ELSE(803) and IEND(804)
will be executed is the operand bit is OFF.

Block program
Required

1196

CONDITIONAL
BLOCK
BRANCHING
(ELSE)

ELSE
803

--- If the ELSE(803) instruction is omitted and the operand bit is ON, the
instructions between IF(802) and IEND(804) will be executed

Block program
Required

1196

CONDITIONAL
BLOCK
BRANCHING
END

IEND
804

--- If the operand bit is OFF, only the instructions after IEND(804) will be
executed.

Block program
Required

1196

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

If the execution condition is ON, the instructions between IF(802) and
ELSE(803) will be executed and if the execution condition is OFF, the
instructions between ELSE(803) and IEND(804) will be executed.

Execution
condition Execution

condition ON?

 "A" executed (be-
tween IF and ELSE).

 "B" executed
(after ELSE).

IF R (IF NOT R)

If the operand bit is ON, the instructions between IF(802) and
ELSE(803) will be executed. If the operand bit is OFF, the instructions
between ELSE(803) and IEND(804) will be executed.

Operand bit
ON?

 "A" executed
(between IF and
ELSE).

 "B" executed
(after ELSE).
104

Instruction Functions Section 2-2
ONE CYCLE AND
WAIT

WAIT
805

WAIT(805) Block program
Required

1202

ONE CYCLE AND
WAIT

WAIT
805

WAIT(805)
B

B: Bit operand

If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the
instructions in the block program will be skipped. In the next cycle,
none of the block program will be executed except for the execution
condition for WAIT(805) or WAIT(805) NOT. When the execution condi-
tion goes ON (OFF for WAIT(805) NOT), the instruction from
WAIT(805) or WAIT(805) NOT to the end of the program will be exe-
cuted.

Block program
Required

1202

ONE CYCLE AND
WAIT (NOT)

WAIT NOT
805

WAIT(805) NOT
B

B: Bit operand

If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the
instructions in the block program will be skipped. In the next cycle,
none of the block program will be executed except for the execution
condition for WAIT(805) or WAIT(805) NOT. When the execution condi-
tion goes ON (OFF for WAIT(805) NOT), the instruction from
WAIT(805) or WAIT(805) NOT to the end of the program will be exe-
cuted.

Block program
Required

1202

HUNDRED-MS
TIMER WAIT

TIMW
813

(BCD)

TIMWX
816

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

TIMW(813)
N
SV

N: Timer number
SV: Set value

Block program
Required

1206

TIMWX(816)
N
SV

N: Timer number
SV: Set value

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

If the execution condition is ON for WAIT(805), the rest of the
instruction in the block program will be skipped.

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
ON

 "A"
executed.

"B" executed.

"C" executed."C"
executed.

"C"
executed.

Execution
condition

Wait

BEND

C

Time elapsed.

Delays execution of the block program until the specified time has
elapsed. Execution continues from the next instruction after
TIMW(813)/TIMWX(816) when the timer times out.
 SV: 0 to 999.9 s for BCD and
 0 to 6,553.5 s for binary

 "B" executed.

 "C" executed.

SV
preset.

 "A"
executed.
105

Instruction Functions Section 2-2
COUNTER WAIT
CNTW

814
(BCD)

CNTWX
818

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

CNTW(814)
N
SV

N: Counter
number
SV: Set value
I: Count input

Block program
Required

1209

CNTWX(818)
N
SV

N: Counter
number
SV: Set value
I: Count input

TEN-MS TIMER
WAIT

TMHW
815

(BCD)

TMHWX
817

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D

only)

TMHW(815)
N
SV

N: Timer number
SV: Set value

Block program
Required

1212

TMHWX(817)
N
SV

N: Timer number
SV: Set value

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

C

Time elapsed.

Delays execution of the rest of the block program until the specified count
has been achieved. Execution will be continued from the next instruction
after CNTW(814)/CNTWX(818) when the counter counts out.
 SV: 0 to 9,999 times for BCD and
 0 to 65,535 times for binary

 "C"
executed.

 "C"
executed.

 "C" executed.

 "B" executed.

SV
preset.

 "A"
executed.

C

BEND

Time elapsed.

Delays execution of the rest of the block program until the specified
time has elapsed. Execution will be continued from the next
instruction after TMHW(815)/TMHWX(818) when the timer times out.
 SV: 0 to 99.99 s for BCD
 and 0 to 655.35 s for binary

 "A"
executed.

SV
preset.

 "B" executed.

 "C" executed.
106

Instruction Functions Section 2-2
LOOP
LOOP

809

--- Block program
Required

1215

LEND
LEND

810

LEND (810) LEND(810) or LEND(810) NOT specifies the end of the loop. When
LEND(810) or LEND(810) NOT is reached, program execution will loop
back to the next previous LOOP(809) until the operand bit for
LEND(810) or LEND(810) NOT turns ON or OFF (respectively) or until
the execution condition for LEND(810) turns ON.

Block program
Required

1215

LEND
LEND

810

LEND (810)
B

B: Bit operand

Block program
Required

1215

LEND NOT
LEND NOT

810

LEND(810) NOT

B: Bit operand

LEND(810) or LEND(810) NOT specifies the end of the loop. When
LEND(810) or LEND(810) NOT is reached, program execution will loop
back to the next previous LOOP(809) until the operand bit for
LEND(810) or LEND(810) NOT turns ON or OFF (respectively) or until
the execution condition for LEND(810) turns ON.

Block program
Required

1215

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

Loop repeated

Execution condition

LOOP(809) designates the beginning of the loop program.

Execution
condition
ON

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
OFF

Loop repeated

If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT),
execution of the loop is repeated starting with the next instruction after
LOOP(809). If the operand bit is ON for LEND(810) (or OFF for
LEND(810) NOT), the loop is ended and execution continues to the
next instruction after LEND(810) or LEND(810) NOT.

Operand
bit ON

Operand
bit OFF

Operand
bit OFF

Operand
bit OFF

Note The status of the operand bit would be
reversed for LEND(810) NOT.
107

Instruction Functions Section 2-2
2-2-31 Text String Processing Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

MOV STRING
MOV$

@MOV$
664

Output
Required

1221

CONCATENATE
STRING

+$
@+$
656

Output
Required

1223

GET STRING
LEFT

LEFT$
@LEFT$

652

Output
Required

1226

GET STRING
RIGHT

RGHT$
@RGHT$

653

Output
Required

1228

GET STRING
MIDDLE

MID$
@MID$

654

Output
Required

1230

MOV$(664)

S

D
S: 1st source
word
D: 1st destination
word

Transfers a text string.

+$(656)

S1

S2

D

S1: Text string 1
S2: Text string 2
D: First
destination word

+

Links one text string to another text string.

→ → → →

LEFT$(652)

S1

S2

D

S1: Text string
first word
S2: Number of
characters
D: First
destination word

Fetches a designated number of characters from the left (beginning)
of a text string.

RGHT$(653)

S1

S2

D

S1: Text string
first word
S2: Number of
characters
D: First
destination word

00

Reads a designated number of characters from the right (end) of a
text string.

MID$(654)

S1

S2

S3

D

S1: Text string
first word
S2: Number of
characters
S3: Beginning
position
D: First
destination word

→ →

Reads a designated number of characters from any position in the
middle of a text string.
108

Instruction Functions Section 2-2
FIND IN STRING
FIND

@FIND$
660

Output
Required

1233

STRING LENGTH
LEN$

@LEN$
650

Output
Required

1235

REPLACE IN
STRING

RPLC$
@RPLC$

661

Output
Required

1237

DELETE STRING
DEL$

@DEL$
658

Output
Required

1240

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

FIND$(660)

S1

S2

D

S1: Source text
string first word
S2: Found text
string first word
D: First
destination word

→ → →

Finds a designated text string from within a text string.

Found data

LEN$(650)

S

D

S: Text string first
word
D: 1st destination
word

1
3
5

2
4

→

Calculates the length of a text string.

RPLC$(654)

S1

S2

S3

S4

D
S1: Text string
first word
S2: Replacement
text string first
word
S3: Number of
characters
S4: Beginning
position
D: First
destination word

→ →

Replaces a text string with a designated text string from a designated
position.

DEL$(658)

S1

S2

S3

D
S1: Text string
first word
S2: Number of
characters
S3: Beginning
position
D: First
destination word

→

G

→

Deletes a designated text string from the middle of a text string.
Number of characters to be
deleted (designated by S2).
109

Instruction Functions Section 2-2
EXCHANGE
STRING

XCHG$
@XCHG$

665

Output
Required

1242

CLEAR STRING
CLR$

@CLR$
666

Output
Required

1245

INSERT INTO
STRING

INS$
@INS$

657

Output
Required

1246

String Compari-
son

LD, AND, OR +
=$, <>$, <$, <=$,

>$, >=$
670 (=$)

671 (<>$)
672 (<$)

673 (<=$)
674 (>$)

675 (>=$)

Sting comparison instructions (=$, <>$, <$, <=$, >$, >=$) compare two
text strings from the beginning, in terms of value of the ASCII codes. If
the result of the comparison is true, an ON execution condition is cre-
ated for a LOAD, AND, or OR.

LD: Not
required
AND, OR:
Required

1250

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

XCHG$(665)

Ex1

Ex2

Ex1: 1st
exchange word 1
Ex2: 1st
exchange word 2

Ex1 Ex1

Ex2 Ex2

Replaces a designated text string with another designated text string.

CLR$(666)

S

S: Text string first
word

S SA B
C D

NUL NUL

→ →

Clears an entire text string with NUL (00 hex).

INS$(657)

S1

S2

S3

D
S1: Base text
string first word
S2: Inserted text
string first word
S3: Beginning
position
D: First
destination word

NUL

→

→

→

Inserted
characters

Deletes a designated text string from the middle of a text string.

LD

AND

OR

S1

S2

S1

S2

S1

S2

Symbol

Symbol

Symbol

S1: Text string 1
S2: Text string 2
110

Instruction Functions Section 2-2
2-2-32 Task Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

TASK ON
TKON

@TKON
820

Output
Required

1255

TASK OFF
TKOF

@TKOF
821

Output
Required

1258

TKON(820)

N

N: Task number

Makes the specified task executable.

The specified task's task number
is higher than the local task's
task number (m<n).

The specified task's task number
is lower than the local task's task
number (m>n).

Task m

Task n

Task m

Task n

Becomes
execut-
able in that
cycle.

Be-
comes
execut-
able in
the next
cycle.

TKOF(821)

N

N: Task number

Puts the specified task into standby status.

The specified task's task num-
ber is higher than the local
task's task number (m<n).

The specified task's task num-
ber is lower than the local
task's task number (m>n).

Task m

Task n

Task m

Task n

In stand-
by status
that
cycle.

In stand-
by status
the next
cycle.
111

Instruction Functions Section 2-2
2-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or Later Only)
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

BLOCK
TRANSFER

XFERC
@XFERC

565

Output
Required

1263

SINGLE WORD
DISTRIBUTE

DISTC
@DISTC

566

Output
Required

1266

DATA COLLECT
COLLC

@COLLC
567

Output
Required

1269

MOVE BIT
MOVBC

@MOVBC
568

Output
Required

1273

BIT COUNTER
BCNTC

@BCNTC
621

Output
Required

1275

XFERC(565)

N

S

D

N: Number of
words
S: 1st source
word
D: 1st destination
word

S+(N−1) D+(N−1)

to to
N words

Transfers the specified number of consecutive words.

DISTC(566)

S

Bs

Of

S: Source word
Bs: Destination
base address
Of: Offset

sS B

Bs+n

Of

Transfers the source word to a destination word calculated by adding
an offset value to the base address. Can also write to a stack (Stack
Push Operation).

COLLC(567)

Bs

Of

D

Bs: Source base
address
Of: Offset
D: Destination
word

Bs

Bs+n

Of

Transfers the source word (calculated by adding an offset value to the
base address) to the destination word. Can also read data from a
stack in FIFO or LIFO order (Stack Read Operation).

S

C

D

MOVBC(568)

S: Source word or
data
C: Control word
D: Destination
word

Transfers the specified bit.

BCNTC(621)

N

S

R

N: Number of
words (BCD)
S: 1st source
word
R: Result word

S+(N −1)

R

to

Counts the total number of ON bits in the specified word(s).

N words
Counts the number
of ON bits.

BCD result
112

Instruction Functions Section 2-2
2-2-34 Special Function Block Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

GET VARIABLE
ID

GETID
@GETID

286

Outputs the FINS command variable type (data area) code and word
address for the specified variable or address. This instruction is gener-
ally used to get the assigned address of a variable in a function block.

Output
Required

1277
GETID(286)

S

D1

D2

S: Variable or
address
D1: ID code
D2: Destination
word
113

Alphabetical List of Instructions by Mnemonic Section 2-3
2-3 Alphabetical List of Instructions by Mnemonic
A

Mnemonic Instruction Function code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

ACC ACCELERATION CON-
TROL

888 @ACC --- --- 896

ACOS ARC COSINE 464 @ACOS --- --- 625

ACOSD DOUBLE ARC
COSINE

855 @ACOSD --- --- 682

AND AND --- @AND %AND !AND 165

AND < AND LESS THAN 310 --- --- --- 291

AND <$ AND STRING LESS
THAN

672 --- --- --- 1250

AND <> AND NOT EQUAL 305 --- --- --- 291

AND <>$ AND STRING NOT
EQUAL

671 --- --- --- 1250

AND <>D AND DOUBLE FLOAT-
ING NOT EQUAL

336 --- --- --- 694

AND <> DT AND TIME NOT
EQUAL

342 --- --- --- 297

AND <>F AND FLOATING NOT
EQUAL

330 --- --- --- 636

AND <>L AND DOUBLE NOT
EQUAL

306 --- --- --- 291

AND <>S AND SIGNED NOT
EQUAL

307 --- --- --- 291

AND <>SL AND DOUBLE
SIGNED NOT EQUAL

308 --- --- --- 291

AND <D AND DOUBLE FLOAT-
ING LESS THAN

337 --- --- --- 694

AND <DT AND TIME LESS
THAN

343 --- --- --- 297

AND <F AND FLOATING LESS
THAN

331 --- --- --- 636

AND <L AND DOUBLE LESS
THAN

311 --- --- --- 291

AND <S AND SIGNED LESS
THAN

312 --- --- --- 291

AND <SL AND DOUBLE
SIGNED LESS THAN

313 --- --- --- 291

AND = AND EQUAL 300 --- --- --- 291

AND =$ AND STRING EQUALS 670 --- --- --- 1250

AND =D AND DOUBLE FLOAT-
ING EQUAL

335 --- --- --- 694

AND =DT AND TIME EQUAL 341 --- --- --- 297

AND =F AND FLOATING
EQUAL

329 --- --- --- 636

AND =L AND DOUBLE EQUAL 301 --- --- --- 291

AND =S AND SIGNED EQUAL 302 --- --- --- 291

AND =SL AND DOUBLE
SIGNED EQUAL

303 --- --- --- 291

AND > AND GREATER THAN 320 --- --- --- 291

AND >$ AND STRING
GREATER THAN

674 --- --- --- 1250

AND >D AND DOUBLE FLOAT-
ING GREATER THAN

339 --- --- --- 694

AND >DT AND TIME GREATER
THAN

345 --- --- --- 297

AND >F AND FLOATING
GREATER THAN

333 --- --- --- 636
114

Alphabetical List of Instructions by Mnemonic Section 2-3
AND >L AND DOUBLE
GREATER THAN

321 --- --- --- 291

AND >S AND SIGNED
GREATER THAN

322 --- --- --- 291

AND >SL AND DOUBLE
SIGNED GREATER
THAN

323 --- --- --- 291

AND LD AND LOAD --- --- --- --- 172

AND NOT AND NOT --- --- --- !AND NOT 167

AND TST AND BIT TEST 350 --- --- --- 182

AND TSTN AND BIT TEST 351 --- --- --- 182

AND <= AND LESS THAN OR
EQUAL

315 --- --- --- 291

AND <=$ AND STRING LESS
THAN OR EQUAL

673 --- --- --- 1250

AND <=D AND DOUBLE FLOAT-
ING LESS THAN OR
EQUAL

338 --- --- --- 694

AND <=DT AND TIME LESS
THAN OR EQUAL

344 --- --- --- 297

AND <=F AND FLOATING LESS
THAN OR EQUAL

332 --- --- --- 636

AND <=L AND DOUBLE LESS
THAN OR EQUAL

316 --- --- --- 291

AND <=S AND SIGNED LESS
THAN OR EQUAL

317 --- --- --- 291

AND <=SL AND DOUBLE
SIGNED LESS THAN
OR EQUAL

318 --- --- --- 291

AND >= AND GREATER THAN
OR EQUAL

325 --- --- --- 291

AND >=$ AND STRING
GREATER THAN OR
EQUALS

675 --- --- --- 1250

AND >=D AND DOUBLE FLOAT-
ING GREATER THAN
OR EQUAL

340 --- --- --- 694

AND >=DT AND TIME GREATER
THAN OR EQUAL

346 --- --- --- 297

AND >=F AND FLOATING
GREATER THAN OR
EQUAL

334 --- --- --- 636

AND >=L AND DOUBLE
GREATER THAN OR
EQUAL

326 --- --- --- 291

AND >=S AND SIGNED
GREATER THAN OR
EQUAL

327 --- --- --- 291

AND >=SL AND DOUBLE
SIGNED GREATER
THAN OR EQUAL

328 --- --- --- 291

ANDL DOUBLE LOGICAL
AND

610 @ANDL --- --- 550

ANDW LOGICAL AND 034 @ANDW --- --- 548

APR ARITHMETIC
PROCESS

069 @APR --- --- 571

ASC ASCII CONVERT 086 @ASC --- --- 504

ASFT ASYNCHRONOUS
SHIFT REGISTER

017 @ASFT --- --- 365

ASIN ARC SINE 463 @ASIN --- --- 623

ASIND DOUBLE ARC SINE 854 @ASIND --- --- 680

ASL ARITHMETIC SHIFT
LEFT

025 @ASL --- --- 370

Mnemonic Instruction Function code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
115

Alphabetical List of Instructions by Mnemonic Section 2-3
B

C

ASLL DOUBLE SHIFT LEFT 570 @ASLL --- --- 371

ASR ARITHMETIC SHIFT
RIGHT

026 @ASR --- --- 373

ASRL DOUBLE SHIFT
RIGHT

571 @ASRL --- --- 374

ATAN ARC TANGENT 465 @ATAN --- --- 627

ATAND DOUBLE ARC TAN-
GENT

856 @ATAND --- --- 684

AVG AVERAGE 195 --- --- --- 807

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

BAND DEAD BAND CON-
TROL

681 @BAND --- --- 781

BCD BINARY TO BCD 024 @BCD --- --- 487

BCDL DOUBLE BINARY TO
BCD

059 @BCDL --- --- 489

BCDS SIGNED BINARY TO
BCD

471 @BCDS --- --- 523

BCMP UNSIGNED BLOCK
COMPARE

068 @BCMP --- --- 320

BCMP2 EXPANDED BLOCK
COMPARE

502 @BCMP2 --- --- 322

BCNT BIT COUNTER 067 @BCNT --- --- 587

BCNTC BIT COUNTER 621 @BCNTC --- --- 1275

BDSL DOUBLE SIGNED
BINARY TO BCD

473 @BDSL --- --- 525

BEND BLOCK PROGRAM
END

801 --- --- --- 1191

BIN BCD TO BINARY 023 @BIN --- --- 483

BINL DOUBLE BCD TO
DOUBLE BINARY

058 @BINL --- --- 485

BINS SIGNED BCD TO
BINARY

470 @BINS --- --- 517

BISL DOUBLE SIGNED
BCD TO BINARY

472 @BISL --- --- 520

BPPS BLOCK PROGRAM
PAUSE

811 --- --- --- 1193

BPRG BLOCK PROGRAM
BEGIN

096 --- --- --- 1191

BPRS BLOCK PROGRAM
RESTART

812 --- --- --- 1193

BREAK BREAK LOOP 514 --- --- --- 241

BSET BLOCK SET 071 @BSET --- --- 347

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

CADD CALENDAR ADD 730 @CADD --- --- 1122

CCL LOAD CONDITION
FLAGS

283 @CCL --- --- 1173

CCS SAVE CONDITION
FLAGS

282 @CCS --- --- 1171

CJP CONDITIONAL JUMP 510 --- --- --- 232

CJPN CONDITIONAL JUMP 511 --- --- --- 232

CLC CLEAR CARRY 041 @CLC --- --- 1166

Mnemonic Instruction Function code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
116

Alphabetical List of Instructions by Mnemonic Section 2-3
D

CLI CLEAR INTERRUPT 691 @CLI --- --- 851

CLR$ CLEAR STRING 666 @CLR$ --- --- 1245

CMND DELIVER COMMAND 490 @CMND --- --- 1056

CMP COMPARE 020 --- --- !CMP 303

CMPL DOUBLE COMPARE 060 --- --- --- 306

CNR RESET TIMER/
COUNTER

545 @CNR --- --- 282

CNRX RESET TIMER/
COUNTER

548 @CNRX --- --- 282

CNT COUNTER --- --- --- --- 275

CNTX COUNTER 546 --- --- --- 275

CNTR REVERSIBLE
COUNTER

012 --- --- --- 278

CNTRX REVERSIBLE
COUNTER

548 --- --- --- 278

CNTW COUNTER WAIT 814 --- --- --- 1209

CNTWX COUNTER WAIT 818 --- --- --- 1209

COLL DATA COLLECT 081 @COLL --- --- 354

COLLC DATA COLLECT 567 @COLLC --- --- 1269

COLM LINE TO COLUMN 064 @COLM --- --- 514

COM COMPLEMENT 029 --- --- --- 562

COML DOUBLE
COMPLEMENT

614 @COML --- --- 564

COS COSINE 461 @COS --- --- 615

COSD DOUBLE COSINE 852 @COSD --- --- 676

COSQ HIGH-SPEED COSINE 476 @COSQ --- --- 617

CPS SIGNED BINARY
COMPARE

114 --- --- !CPS 309

CPSL DOUBLE SIGNED
BINARY COMPARE

115 --- --- --- 312

CSUB CALENDAR
SUBTRACT

731 @CSUB --- --- 1126

CTBL COMPARISON TABLE
LOAD

882 @CTBL --- --- 878

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

DATE CLOCK ADJUSTMENT 735 @DATE --- --- 1134

DBL 16-BIT BINARY TO
DOUBLE FLOATING

843 @DBL --- --- 660

DBLL 32-BIT BINARY TO
DOUBLE FLOATING

844 @DBLL --- --- 661

DEG RADIANS-TO
DEGREES

459 @DEG --- --- 610

DEGD DOUBLE RADIANS TO
DEGREES

850 @RADD --- --- 671

DEL$ DELETE STRING 658 @DEL$ --- --- 1240

DI DISABLE INTER-
RUPTS

693 @DI --- --- 855

DIFD DIFFERENTIATE
DOWN

014 --- --- !DIFD 193

DIFU DIFFERENTIATE UP 013 --- --- !DIFU 193

DIM DIMENSION RECORD
TABLE

631 @DIM --- --- 715

DIST SINGLE WORD
DISTRIBUTE

080 @DIST --- --- 352

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
117

Alphabetical List of Instructions by Mnemonic Section 2-3
E

F

DISTC SINGLE WORD
DISTRIBUTE

566 @DISTC --- --- 1266

DLNK CPU BUS UNIT I/O
REFRESH

226 @DLNK --- --- 932

DMPX DATA ENCODER 077 @DMPX --- --- 500

DOWN CONDITION OFF 522 --- --- --- 181

DSW DIGITAL SWITCH
INPUT

210 --- --- --- 940

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

ECHRD EXPLICIT WORD
READ

723 @ECHRD --- --- 1087

ECHWR EXPLICIT WORD
WRITE

724 @ECHWR --- --- 1091

EGATR EXPLICIT GET
ATTRIBUTE

721 @EGATR --- --- 1074

EI ENABLE
INTERRUPTS

694 --- --- --- 858

ELSE ELSE 803 --- --- --- 1196

EMBC SELECT EM BANK 281 @EMBC --- --- 1167

END END 001 --- --- --- 206

ESATR EXPLICIT SET
ATTRIBUTE

722 @ESATR --- --- 1081

EXIT NOT
(operand)

CONDITIONAL BLOCK
EXIT NOT

806 --- --- --- 1199

EXIT (input con-
dition)

CONDITIONAL BLOCK
EXIT

806 --- --- --- 1199

EXIT (operand) CONDITIONAL BLOCK
EXIT

806 --- --- --- 1199

EXP EXPONENT 467 @EXP --- --- 631

EXPD DOUBLE EXPONENT 858 @EXPD --- --- 688

EXPLT EXPLICIT MESSAGE
SEND

720 @EXPLT --- --- 1066

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

FAL FAILURE ALARM 006 @FAL --- --- 1140

FALS SEVERE FAILURE
ALARM

007 --- --- --- 1148

FCS FRAME CHECKSUM 180 @FCS --- --- 738

FDIV FLOATING POINT
DIVIDE

079 @FDIV --- --- 583

FIFO FIRST IN FIRST OUT 633 @FIFO --- --- 709

FIND$ FIND IN STRING 660 @FIND$ --- --- 1233

FIORF SPECIAL I/O UNIT I/O
REFRESH

225 @FIORF --- --- 929

FIX FLOATING TO 16-BIT 450 @FIX --- --- 594

FIXD DOUBLE FLOATING
TO 16-BIT BINARY

841 @FIXD --- --- 657

FIXL FLOATING TO 32-BIT 451 @FIXL --- --- 596

FIXLD DOUBLE FLOATING
TO 32-BIT BINARY

842 @FIXLD --- --- 658

FLT 16-BIT TO FLOATING 452 @FLT --- --- 597

FLTL 32-BIT TO FLOATING 453 @FLTL --- --- 599

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
118

Alphabetical List of Instructions by Mnemonic Section 2-3
G

H

I

FOR FOR-NEXT LOOPS 512 --- --- --- 238

FPD FAILURE POINT
DETECTION

269 --- --- --- 1156

FREAD READ DATA FILE 700 @FREAD --- --- 1099

FRMCV CONVERT ADDRESS
FROM CV

284 @FRMCV --- --- 1174

FSTR FLOATING POINT TO
ASCII

448 @FSTR --- --- 640

FWRIT WRITE DATA FILE 701 @FWRIT --- --- 1106

FVAL ASCII TO FLOATING
POINT

449 @FVAL --- --- 645

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

GETID GET VARIABLE ID 286 @GETID --- --- 1277

GETR GET RECORD
NUMBER

636 @GETR --- --- 720

GRET GLOBAL SUBROU-
TINE RETURN

752 --- --- --- 835

GRY GRAY CODE CON-
VERSION

474 @GRY --- --- 529

GSBN GLOBAL SUBROU-
TINE ENTRY

751 --- --- --- 832

GSBS GLOBAL SUBROU-
TINE CALL

750 @GSBS --- --- 824

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

HEX ASCII TO HEX 162 @HEX --- --- 508

HKY HEXADECIMAL KEY
INPUT

212 --- --- --- 948

HMS SECONDS TO HOURS 066 @HMS --- --- 1131

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

IEND IF END 804 --- --- --- 1196

IF NOT (oper-
and)

IF NOT 802 --- --- --- 1196

IF (input condi-
tion)

IF 802 --- --- --- 1196

IF (operand) IF 802 --- --- --- 1196

IL INTERLOCK 002 --- --- --- 210

ILC INTERLOCK CLEAR 003 --- --- --- 210

INI MODE CONTROL 880 @INI --- --- 864

INS$ INS$ 657 @INS$ --- --- 1246

IORD INTELLIGENT I/O
READ

222 @IORD --- --- 962

IORF I/O REFRESH 097 @IORF --- --- 926

IORS ENABLE PERIPH-
ERAL SERVICING

288 --- --- --- 1185

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
119

Alphabetical List of Instructions by Mnemonic Section 2-3
J

K

L

IOSP DISABLE PERIPH-
ERAL SERVICING

287 @IOSP --- --- 1183

IOWR INTELLIGENT I/O
WRITE

223 @IOWR --- --- 967

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

JME JUMP END 005 --- --- --- 228

JME0 MULTIPLE JUMP END 516 --- --- --- 236

JMP JUMP 004 --- --- --- 228

JMP0 MULTIPLE JUMP 515 --- --- --- 236

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

KEEP KEEP 011 --- --- !KEEP 188

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

LD LOAD --- @LD %LD !LD 161

LD < LOAD LESS THAN 310 --- --- --- 291

LD <$ LOAD STRING LESS
THAN

672 --- --- --- 1250

LD <D LOAD DOUBLE
FLOATING LESS
THAN

337 --- --- --- 694

LD <DT LOAD TIME LESS
THAN

343 --- --- --- 297

LD <F LOAD FLOATING
LESS THAN

331 --- --- --- 636

LD <> LOAD NOT EQUAL 305 --- --- --- 291

LD <>$ LOAD STRING NOT
EQUAL

671 --- --- --- 1250

LD <>D LOAD DOUBLE
FLOATING NOT
EQUAL

336 --- --- --- 694

LD <>DT LOAD TIME NOT
EQUAL

342 --- --- --- 297

LD <>F LOAD FLOATING NOT
EQUAL

330 --- --- --- 636

LD <>L LOAD DOUBLE NOT
EQUAL

306 --- --- --- 291

LD <>S LOAD SIGNED NOT
EQUAL

307 --- --- --- 291

LD <>SL LOAD DOUBLE
SIGNED NOT EQUAL

308 --- --- --- 291

LD <L LOAD DOUBLE LESS
THAN

311 --- --- --- 291

LD <S LOAD SIGNED LESS
THAN

312 --- --- --- 291

LD <SL LOAD DOUBLE
SIGNED LESS THAN

313 --- --- --- 291

LD = LOAD EQUAL 300 --- --- --- 291

LD =$ LOAD STRING
EQUALS

670 --- --- --- 1250

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
120

Alphabetical List of Instructions by Mnemonic Section 2-3
LD =D LOAD DOUBLE
FLOATING EQUAL

335 --- --- --- 694

LD =DT LOAD TIME EQUAL 341 --- --- --- 297

LD =F LOAD FLOATING
EQUAL

329 --- --- --- 636

LD =L LOAD DOUBLE
EQUAL

301 --- --- --- 291

LD =S LOAD SIGNED EQUAL 302 --- --- --- 291

LD =SL LOAD DOUBLE
SIGNED EQUAL

303 --- --- --- 291

LD > LOAD GREATER
THAN

320 --- --- --- 291

LD >$ LOAD STRING
GREATER THAN

674 --- --- --- 1250

LD >D LOAD DOUBLE
FLOATING GREATER
THAN

339 --- --- --- 694

LD >DT LOAD TIME GREATER
THAN

345 --- --- --- 297

LD >F LOAD FLOATING
GREATER THAN

333 --- --- --- 636

LD >L LOAD DOUBLE
GREATER THAN

321 --- --- --- 291

LD >S LOAD SIGNED
GREATER THAN

322 --- --- --- 291

LD >SL LOAD DOUBLE
SIGNED GREATER
THAN

323 --- --- --- 291

LD NOT LOAD NOT --- --- --- !LD NOT 163

LD TST LOAD BIT TEST 350 --- --- --- 182

LD TSTN LOAD BIT TEST 351 --- --- --- 182

LD <= LOAD LESS THAN OR
EQUAL

315 --- --- --- 291

LD <=$ LOAD STRING LESS
THAN OR EQUAL

673 --- --- --- 1250

LD <=D LOAD DOUBLE
FLOATING LESS
THAN OR EQUAL

338 --- --- --- 694

LD <=DT LOAD TIME LESS
THAN OR EQUAL

344 --- --- --- 297

LD <=F LOAD FLOATING
LESS THAN OR
EQUAL

332 --- --- --- 636

LD <=L LOAD DOUBLE LESS
THAN OR EQUAL

316 --- --- --- 291

LD <=S LOAD SIGNED LESS
THAN OR EQUAL

317 --- --- --- 291

LD <=SL LOAD DOUBLE
SIGNED LESS THAN
OR EQUAL

318 --- --- --- 291

LD >= LOAD GREATER
THAN OR EQUAL

325 --- --- --- 291

LD >=$ LOAD STRING
GREATER THAN OR
EQUALS

675 --- --- --- 1250

LD >=D LOAD DOUBLE
FLOATING GREATER
THAN OR EQUAL

340 --- --- --- 694

LD >=DT LOAD TIME GREATER
THAN OR EQUAL

346 --- --- --- 297

LD >=F LOAD FLOATING
GREATER THAN OR
EQUAL

334 --- --- --- 636

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
121

Alphabetical List of Instructions by Mnemonic Section 2-3
M

LD >=L LOAD DOUBLE
GREATER THAN OR
EQUAL

326 --- --- --- 291

LD >=S LOAD SIGNED
GREATER THAN OR
EQUAL

327 --- --- --- 291

LD >=SL LOAD DOUBLE
SIGNED GREATER
THAN OR EQUAL

328 --- --- --- 291

LEFT$ GET STRING LEFT 652 @LEFT$ --- --- 1226

LEN$ STRING LENGTH 650 @LEN$ --- --- 1235

LEND NOT
(operand)

LOOP END NOT 810 --- --- --- 1215

LEND (input
condition)

LOOP END 810 --- --- --- 1215

LEND (oper-
and)

LOOP END 810 --- --- --- 1215

LIFO LAST IN FIRST OUT 634 @LIFO --- --- 712

LINE COLUMN TO LINE 063 @LINE --- --- 512

LMT LIMIT CONTROL 680 @LMT --- --- 779

LOG LOGARITHM 468 @LOG --- --- 633

LOGD DOUBLE LOGARITHM 859 @LOGD --- --- 690

LOOP LOOP 809 --- --- --- 1215

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

MAX FIND MAXIMUM 182 @MAX --- --- 727

MCMP MULTIPLE COMPARE 019 @MCMP --- --- 315

MCRO MACRO 099 @MCRO --- --- 817

MID$ GET STRING MIDDLE 654 @MID$ --- --- 1230

MILC MULTI-INTERLOCK
CLEAR

519 --- --- --- 214

MILH MULTI-INTERLOCK
DIFFERENTIATION
HOLD

517 --- --- --- 214

MILR MULTI-INTERLOCK
DIFFERENTIATION
RELEASE

518 --- --- --- 214

MIN FIND MINIMUM 183 @MIN --- --- 731

MLPX DATA DECODER 076 @MLPX --- --- 496

MOV MOVE 021 @MOV --- !MOV 331

MOV$ MOVE STRING 664 @MOV$ --- --- 1221

MOVB MOVE BIT 082 @MOVB --- --- 337

MOVBC MOVE BIT 568 @MOVBC --- --- 1273

MOVD MOVE DIGIT 083 @MOVD --- --- 339

MOVF MOVE FLOATING-
POINT (SINGLE)

469 @MOVF --- --- 649

MOVL DOUBLE MOVE 498 @MOVL --- --- 334

MOVR MOVE TO REGISTER 560 @MOVR --- --- 356

MOVRW MOVE TIMER/
COUNTER PV TO
REGISTER

561 --- --- --- 358

MSG DISPLAY MESSAGE 046 @MSG --- --- 1119

MSKR READ INTERRUPT
MASK

692 @MSKR --- --- 846

MSKS SET INTERRUPT
MASK

690 @MSKS --- --- 839

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
122

Alphabetical List of Instructions by Mnemonic Section 2-3
N

O

MTIM MULTI-OUTPUT
TIMER

543 --- --- --- 269

MTIMX MULTI-OUTPUT
TIMER

554 --- --- --- 269

MTR MATRIX INPUT 213 --- --- --- 953

MVN MOVE NOT 022 @MVN --- --- 333

MVNL DOUBLE MOVE NOT 499 @MVNL --- --- 336

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

NASL SHIFT N-BITS LEFT 580 @NASL --- --- 397

NASR SHIFT N-BITS RIGHT 581 @NASR --- --- 403

NEG 2’S COMPLEMENT 160 @NEG --- --- 491

NEGL DOUBLE 2’S
COMPLEMENT

161 @NEGL --- --- 493

NEXT FOR-NEXT LOOPS 513 --- --- --- 238

NOP NO OPERATION 000 --- --- --- 207

NOT NOT 520 --- --- --- 180

NSFL SHIFT N-BIT DATA
LEFT

578 @NSFL --- --- 393

NSFR SHIFT N-BIT DATA
RIGHT

579 @NSFR --- --- 395

NSLL DOUBLE SHIFT
N-BITS LEFT

582 @NSLL --- --- 400

NSRL DOUBLE SHIFT
N-BITS RIGHT

583 @NSRL --- --- 405

NUM4 ASCII TO FOUR-DIGIT
NUMBER

604 @NUM4 --- --- 534

NUM8 ASCII TO EIGHT-DIGIT
NUMBER

605 @NUM8 --- --- 537

NUM16 ASCII TO SIXTEEN-
DIGIT NUMBER

606 @NUM16 --- --- 539

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

OR OR --- @OR %OR !OR 169

OR < OR LESS THAN 310 --- --- --- 291

OR <$ OR STRING LESS
THAN

672 --- --- --- 1250

OR <> OR NOT EQUAL 305 --- --- --- 291

OR <>$ OR STRING NOT
EQUAL

671 --- --- --- 1250

OR <>D OR DOUBLE FLOAT-
ING NOT EQUAL

336 --- --- --- 694

OR <>DT OR TIME NOT EQUAL 342 --- --- --- 297

OR <>F OR FLOATING NOT
EQUAL

330 --- --- --- 636

OR <>L OR DOUBLE NOT
EQUAL

306 --- --- --- 291

OR <>S OR SIGNED NOT
EQUAL

307 --- --- --- 291

OR <>SL OR DOUBLE SIGNED
NOT EQUAL

308 --- --- --- 291

OR <D OR DOUBLE FLOAT-
ING LESS THAN

337 --- --- --- 694

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
123

Alphabetical List of Instructions by Mnemonic Section 2-3
OR <DT OR TIME LESS THAN 343 --- --- --- 297

OR <F OR FLOATING LESS
THAN

331 --- --- --- 636

OR <L OR DOUBLE LESS
THAN

311 --- --- --- 291

OR <S OR SIGNED LESS
THAN

312 --- --- --- 291

OR <SL OR DOUBLE SIGNED
LESS THAN

313 --- --- --- 291

OR = OR EQUAL 300 --- --- --- 291

OR =$ OR STRING EQUALS 670 --- --- --- 1250

OR =D OR DOUBLE FLOAT-
ING EQUAL

335 --- --- --- 694

OR =DT OR TIME EQUAL 341 --- --- --- 297

OR =F OR FLOATING EQUAL 329 --- --- --- 636

OR =L OR DOUBLE EQUAL 301 --- --- --- 291

OR =S OR SIGNED EQUAL 302 --- --- --- 291

OR =SL OR DOUBLE SIGNED
EQUAL

303 --- --- --- 291

OR > OR GREATER THAN 320 --- --- --- 291

OR >$ OR STRING GREATER
THAN

674 --- --- --- 1250

OR >D OR DOUBLE FLOAT-
ING GREATER THAN

339 --- --- --- 694

OR >DT OR TIME GREATER
THAN

345 --- --- --- 297

OR >F OR FLOATING
GREATER THAN

333 --- --- --- 636

OR >L OR DOUBLE
GREATER THAN

321 --- --- --- 291

OR >S OR SIGNED
GREATER THAN

322 --- --- --- 291

OR >SL OR DOUBLE SIGNED
GREATER THAN

323 --- --- --- 291

OR LD OR LOAD --- --- --- --- 174

OR NOT OR NOT --- --- --- !OR NOT 171

OR TST OR BIT TEST 350 --- --- --- 182

OR TSTN OR BIT TEST 351 --- --- --- 182

OR <= OR LESS THAN OR
EQUAL

315 --- --- --- 291

OR <=$ OR STRING LESS
THAN OR EQUALS

673 --- --- --- 1250

OR <=D OR DOUBLE FLOAT-
ING LESS THAN OR
EQUAL

338 --- --- --- 694

OR <=DT OR TIME LESS THAN
OR EQUAL

344 --- --- --- 297

OR <=F OR FLOATING LESS
THAN OR EQUAL

332 --- --- --- 636

OR <=L OR DOUBLE LESS
THAN OR EQUAL

316 --- --- --- 291

OR <=S OR SIGNED LESS
THAN OR EQUAL

317 --- --- --- 291

OR <=SL OR DOUBLE SIGNED
LESS THAN OR
EQUAL

318 --- --- --- 291

OR >= OR GREATER THAN
OR EQUAL

325 --- --- --- 291

OR >=$ OR STRING GREATER
THAN OR EQUALS

675 --- --- --- 1250

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
124

Alphabetical List of Instructions by Mnemonic Section 2-3
P

R

OR >=D OR DOUBLE FLOAT-
ING GREATER THAN
OR EQUAL

340 --- --- --- 694

OR >=DT OR TIME GREATER
THAN OR EQUAL

346 --- --- --- 297

OR >=F OR FLOATING
GREATER THAN OR
EQUAL

334 --- --- --- 636

OR >=L OR DOUBLE
GREATER THAN OR
EQUAL

326 --- --- --- 291

OR >=S OR SIGNED
GREATER THAN OR
EQUAL

327 --- --- --- 291

OR >=SL OR DOUBLE SIGNED
GREATER THAN OR
EQUAL

328 --- --- --- 291

ORG ORIGIN SEARCH 889 @ORG --- --- 903

ORW LOGICAL OR 035 @ORW --- --- 551

ORWL DOUBLE LOGICAL OR 611 @ORWL --- --- 553

OUT OUTPUT --- --- --- !OUT 185

OUTB SINGLE BIT OUTPUT 534 @OUTB --- !OUTB 204

OUT NOT OUTPUT NOT --- --- --- !OUT NOT 187

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

PID PID CONTROL 190 --- --- --- 757

PIDAT PID CONTROL WITH
AUTOTUNING

191 --- --- --- 769

PMCR PROTOCOL MACRO 260 @PMCR --- --- 974

PRV HIGH-SPEED
COUNTER PV READ

881 @PRV --- --- 868

PRV2 COUNTER FRE-
QUENCY CONVERT

883 @PRV2 --- --- 874

PULS SET PULSES 886 @PULS --- --- 887

PLS2 PULSE OUTPUT 887 @PLS2 --- --- 890

PUSH PUSH ONTO STACK 632 @PUSH --- --- 706

PWM PULSE WITH VARI-
ABLE DUTY FACTOR

891 @PWM --- --- 906

PWR EXPONENTIAL
POWER

840 @PWR --- --- 635

PWRD DOUBLE EXPONEN-
TIAL POWER

860 @PWRD --- --- 692

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

RAD DEGREES TO
RADIANS

458 @RAD --- --- 633

RADD DOUBLE DEGREES
TO RADIANS

849 @RADD --- --- 671

RECV NETWORK RECEIVE 098 @RECV --- --- 1050

RET SUBROUTINE
RETURN

093 --- --- --- 824

RGHT$ GET STRING RIGHT 653 @RGHT$ --- --- 1228

RLNC ROTATE LEFT
WITHOUT CARRY

574 @RLNC --- --- 383

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
125

Alphabetical List of Instructions by Mnemonic Section 2-3
S

RLNL DOUBLE ROTATE
LEFT WITHOUT
CARRY

576 @RLNL --- --- 385

ROL ROTATE LEFT 027 @ROL --- --- 376

ROLL DOUBLE ROTATE
LEFT

572 @ROLL --- --- 378

ROOT BCD SQUARE ROOT 072 @ROOT --- --- 567

ROR ROTATE RIGHT 028 @ROR --- --- 380

RORL DOUBLE ROTATE
RIGHT

573 @RORL --- --- 381

ROTB BINARY ROOT 620 @ROTB --- --- 565

RPLC$ REPLACE IN STRING 661 @RPLC$ --- --- 1237

RRNC ROTATE RIGHT
WITHOUT CARRY

575 @RRNC --- --- 387

RRNL DOUBLE ROTATE
RIGHT WITHOUT
CARRY

577 @RRNL --- --- 388

RSET RESET --- @RSET %RSET !RSET 195

RSTA MULTIPLE BIT RESET 531 @RSTA --- --- 198

RSTB SINGLE BIT RESET 533 @RSTB --- !RSTB 201

RXD RECEIVE 235 @RXD --- --- 993

RXDU RECEIVE VIA SERIAL
COMMUNICATIONS
UNIT

255 @RXDU --- --- 1013

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

SBN SUBROUTINE ENTRY 092 --- --- --- 821

SBS SUBROUTINE CALL 091 @SBS --- --- 811

SCL SCALING 194 @SCL --- --- 795

SCL2 SCALING 2 486 @SCL2 --- --- 800

SCL3 SCALING 3 487 @SCL3 --- --- 804

SDEC 7-SEGMENT
DECODER

078 @SDEC --- --- 974

SDEL STACK DATA DELETE 642 @SDEL --- --- 753

SEC HOURS TO SECONDS 065 @SEC --- --- 1129

SEND NETWORK SEND 090 @SEND --- --- 1044

SET SET --- @SET %SET !SET 195

SETA MULTIPLE BIT SET 530 @SETA --- --- 198

SETB SINGLE BIT SET 532 @SETB --- !SETB 201

SETR SET RECORD
LOCATION

635 @SETR --- --- 718

SFT SHIFT REGISTER 010 --- --- --- 361

SFTR REVERSIBLE SHIFT
REGISTER

084 @SFTR --- --- 362

SIGN 16-BIT TO 32-BIT
SIGNED BINARY

600 @SIGN --- --- 494

SIN SINE 460 @SIN --- --- 612

SIND DOUBLE SINE 851 @SIND --- --- 674

SINQ HIGH-SPEED SINE 475 @SINQ --- --- 614

SINS STACK DATA INSERT 641 @SINS --- --- 750

SLD ONE DIGIT SHIFT
LEFT

074 @SLD --- --- 390

SNUM STACK SIZE READ 638 @SNUM --- --- 742

SNXT STEP START 009 --- --- --- 909

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
126

Alphabetical List of Instructions by Mnemonic Section 2-3
T

SPED SPEED OUTPUT 885 @SPED --- --- 882

SQRT SQUARE ROOT 466 @SQRT --- --- 629

SQRTD DOUBLE SQUARE
ROOT

857 @SQRTD --- --- 686

SRCH DATA SEARCH 181 @SRCH --- --- 722

SRD ONE DIGIT SHIFT
RIGHT

075 @SRD --- --- 392

SREAD STACK DATA READ 639 @SREAD --- --- 744

SSET SET STACK 630 @SSET --- --- 703

STC SET CARRY 040 @STC --- --- 1166

STEP STEP DEFINE 008 --- --- --- 909

STR4 FOUR-DIGIT NUM-
BER TO ASCII

601 @STR4 --- --- 541

STR8 EIGHT-DIGIT NUMBER
TO ASCII

602 @STR8 --- --- 544

STR16 SIXTEEN-DIGIT NUM-
BER TO ASCII

603 @STR16 --- --- 545

STUP CHANGE SERIAL
PORT SETUP

237 @STUP --- --- 1021

SUM SUM 184 @SUM --- --- 735

SWAP SWAP BYTES 637 @SWAP --- --- 725

SWRIT STACK DATA WRITE 640 @SWRIT --- --- 747

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

TAN TANGENT 462 @TAN --- --- 619

TAND DOUBLE TANGENT 853 @TAND --- --- 678

TANQ HIGH-SPEED TAN-
GENT

477 @TANQ --- --- 621

TCMP TABLE COMPARE 085 @TCMP --- --- 317

TIM HUNDRED-MS TIMER --- --- --- --- 245

TIMH TEN-MS TIMER 015 --- --- --- 249

TIMHX TEN-MS TIMER 551 --- --- --- 249

TIML LONG TIMER 542 --- --- --- 266

TIMLX LONG TIMER 553 --- --- --- 266

TIMU TENTH-MS TIMER 541 --- --- --- 256

TIMUX TENTH-MS TIMER 556 --- --- --- 256

TIMW HUNDRED-MS TIMER
WAIT

813 --- --- --- 1206

TIMWX HUNDRED-MS TIMER
WAIT

816 --- --- --- 1206

TIMX HUNDRED-MS TIMER 550 --- --- --- 245

TKOF TASK OFF 821 @TKOF --- --- 1258

TKON TASK ON 820 @TKON --- --- 1255

TKY TEN KEY INPUT 211 @TKY --- --- 945

TMHH ONE-MS TIMER 540 --- --- --- 253

TMHHX ONE-MS TIMER 552 --- --- --- 253

TMHW TEN-MS TIMER WAIT 815 --- --- --- 1212

TMHWX TEN-MS TIMER WAIT 817 --- --- --- 1212

TMUH HUNDREDTH-MS
TIMER

544 --- --- --- 259

TMUHX HUNDREDTH-MS
TIMER

557 --- --- --- 259

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
127

Alphabetical List of Instructions by Mnemonic Section 2-3
U

W

X

TOCV CONVERT ADDRESS
TO CV

285 @TOCV --- --- 1179

TPO TIME-PROPOR-
TIONAL OUTPUT

685 --- --- --- 787

TRSM TRACE MEMORY
SAMPLING

045 --- --- --- 1136

TTIM ACCUMULATIVE
TIMER

087 --- --- --- 262

TTIMX ACCUMULATIVE
TIMER

555 --- --- --- 262

TWRIT WRITE TEXT FILE 704 @TWRIT --- --- 1113

TXD TRANSMIT 236 @TXD --- --- 983

TXDU TRANSMIT VIA
SERIAL COMMUNICA-
TIONS UNIT

256 @TXDU --- --- 1005

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

UP CONDITION ON 521 --- --- --- 181

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

WAIT NOT
(operand)

ONE CYCLE AND
WAIT NOT

805 --- --- --- 1202

WAIT (input
condition)

ONE CYCLE AND
WAIT

805 --- --- --- 1202

WAIT (operand) ONE CYCLE AND
WAIT

805 --- --- --- 1202

WDT EXTEND MAXIMUM
CYCLE TIME

094 @WDT --- --- 1169

WSFT WORD SHIFT 016 @WSFT --- --- 368

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

XCGL DOUBLE DATA
EXCHANGE

562 @XCGL --- --- 350

XCHG DATA EXCHANGE 073 @XCHG --- --- 349

XCHG$ EXCHANGE STRING 665 @XCHG$ --- --- 1242

XFER BLOCK TRANSFER 070 @XFER --- --- 344

XFERC BLOCK TRANSFER 565 @XFERC --- --- 1263

XFRB MULTIPLE BIT
TRANSFER

062 @XFRB --- --- 342

XNRL DOUBLE EXCLUSIVE
NOR

613 @XNRL --- --- 560

XNRW EXCLUSIVE NOR 037 @XNRW --- --- 559

XORL DOUBLE EXCLUSIVE
OR

612 @XORL --- --- 557

XORW EXCLUSIVE OR 036 @XORW --- --- 555

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
128

Alphabetical List of Instructions by Mnemonic Section 2-3
Z

Symbols

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

ZCP AREA RANGE COM-
PARE

088 --- --- --- 326

ZCPL DOUBLE AREA
RANGE COMPARE

116 --- --- --- 329

ZONE DEAD ZONE
CONTROL

682 @ZONE --- --- 784

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

7SEG 7-SEGMENT DISPLAY
OUTPUT

214 --- --- --- 957

+ SIGNED BINARY ADD
WITHOUT CARRY

400 @+ --- --- 426

+$ CONCATENATE
STRING

656 @+$ --- --- 1223

++ INCREMENT BINARY 590 @++ --- --- 409

++B INCREMENT BCD 594 @++B --- --- 417

++BL DOUBLE
INCREMENT BCD

595 @++BL --- --- 419

++L DOUBLE
INCREMENT BINARY

591 @++L --- --- 411

+B BCD ADD WITHOUT
CARRY

404 @+B --- --- 434

+BC BCD ADD WITH
CARRY

406 @+BC --- --- 437

+BCL DOUBLE BCD ADD
WITH CARRY

407 @+BCL --- --- 439

+BL DOUBLE BCD ADD
WITHOUT CARRY

405 @+BL --- --- 435

+C SIGNED BINARY ADD
WITH CARRY

402 @+C --- --- 430

+CL DOUBLE SIGNED
BINARY ADD WITH
CARRY

403 @+CL --- --- 432

+D DOUBLE FLOATING-
POINT ADD

845 @+D --- --- 663

+F FLOATING-POINT
ADD

454 @+F --- --- 601

+L DOUBLE SIGNED
BINARY ADD
WITHOUT CARRY

401 @+L --- --- 428

– SIGNED BINARY
SUBTRACT
WITHOUT CARRY

410 @– --- --- 440

– – DECREMENT BINARY 592 @– – --- --- 413

– –B DECREMENT BCD 596 @– –B --- --- 421

– –BL DOUBLE
DECREMENT BCD

597 @– –BL --- --- 423

– –L DOUBLE
DECREMENT BINARY

593 @– –L --- --- 415

–B BCD SUBTRACT
WITHOUT CARRY

414 @–B --- --- 451

–BC BCD SUBTRACT
WITH CARRY

416 @–BC --- --- 456

–BCL DOUBLE BCD
SUBTRACT WITH
CARRY

417 @–BCL --- --- 457
129

Alphabetical List of Instructions by Mnemonic Section 2-3
–BL DOUBLE BCD
SUBTRACT
WITHOUT CARRY

415 @–BL --- --- 452

–C SIGNED BINARY
SUBTRACT WITH
CARRY

412 @–C --- --- 446

–CL DOUBLE SIGNED
BINARY SUBTRACT
WITH CARRY

413 @–CL --- --- 448

−D DOUBLE FLOATING-
POINT SUBTRACT

846 @−D --- --- 665

–F FLOATING-POINT
SUBTRACT

455 @–F --- --- 603

* SIGNED BINARY
MULTIPLY

420 @* --- --- 459

*B BCD MULTIPLY 424 @*B --- --- 467

*BL DOUBLE BCD
MULTIPLY

425 @*BL --- --- 469

*D DOUBLE FLOATING-
POINT MULTIPLY

847 @*D --- --- 667

*F FLOATING-POINT
MULTIPLY

456 @*F --- --- 605

*L DOUBLE SIGNED
BINARY MULTIPLY

421 @*L --- --- 461

*U UNSIGNED BINARY
MULTIPLY

422 @*U --- --- 463

*UL DOUBLE UNSIGNED
BINARY MULTIPLY

423 @*UL --- --- 465

–L DOUBLE SIGNED
BINARY SUBTRACT
WITHOUT CARRY

411 @–L --- --- 442

/ SIGNED BINARY
DIVIDE

430 @/ --- --- 471

/B BCD DIVIDE 434 @/B --- --- 479

/BL DOUBLE BCD DIVIDE 435 @/BL --- --- 481

/D DOUBLE FLOATING-
POINT DIVIDE

848 @/D --- --- 669

/F FLOATING-POINT
DIVIDE

457 @/F --- --- 607

/L DOUBLE SIGNED
BINARY DIVIDE

431 @/L --- --- 473

/U UNSIGNED BINARY
DIVIDE

432 @/U --- --- 475

/UL DOUBLE UNSIGNED
BINARY DIVIDE

433 @/UL --- --- 477

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
130

List of Instructions by Function Code Section 2-4
2-4 List of Instructions by Function Code
Function code Mnemonic Instruction Upward

Differentiation
Downward

Differentiation
Immediate
Refreshing

Specification

Page

--- LD LOAD @LD %LD !LD 161

--- LD NOT LOAD NOT --- --- !LD NOT 163

--- AND AND @AND %AND !AND 165

--- AND NOT AND NOT --- --- !AND NOT 167

--- OR OR @OR %OR !OR 169

--- OR NOT OR NOT --- --- !OR NOT 171

--- AND LD AND LOAD --- --- --- 172

--- OR LD OR LOAD --- --- --- 174

--- OUT OUTPUT --- --- !OUT 185

--- OUT NOT OUTPUT NOT --- --- !OUT NOT 187

--- SET SET @SET %SET !SET 195

--- RSET RESET @RSET %RSET !RSET 195

--- TIM HUNDRED-MS TIMER --- --- --- 245

--- CNT COUNTER --- --- --- 275

000 NOP NO OPERATION --- --- --- 207

001 END END --- --- --- 206

002 IL INTERLOCK --- --- --- 210

003 ILC INTERLOCK CLEAR --- --- --- 210

004 JMP JUMP --- --- --- 228

005 JME JUMP END --- --- --- 228

006 FAL FAILURE ALARM @FAL --- --- 1140

007 FALS SEVERE FAILURE
ALARM

--- --- --- 1148

008 STEP STEP DEFINE --- --- --- 909

009 SNXT STEP START --- --- --- 909

010 SFT SHIFT REGISTER --- --- --- 361

011 KEEP KEEP --- --- !KEEP 188

012 CNTR REVERSIBLE
COUNTER

--- --- --- 278

013 DIFU DIFFERENTIATE UP --- --- !DIFU 193

014 DIFD DIFFERENTIATE
DOWN

--- --- !DIFD 193

015 TIMH TEN-MS TIMER --- --- --- 249

016 WSFT WORD SHIFT @WSFT --- --- 368

017 ASFT ASYNCHRONOUS
SHIFT REGISTER

@ASFT --- --- 365

019 MCMP MULTIPLE COMPARE @MCMP --- --- 315

020 CMP UNSIGNED COMPARE --- --- !CMP 303

021 MOV MOVE @MOV --- !MOV 331

022 MVN MOVE NOT @MVN --- --- 333

023 BIN BCD TO BINARY @BIN --- --- 483

024 BCD BINARY TO BCD @BCD --- --- 487

025 ASL ARITHMETIC SHIFT
LEFT

@ASL --- --- 370

026 ASR ARITHMETIC SHIFT
RIGHT

@ASR --- --- 373

027 ROL ROTATE LEFT @ROL --- --- 376

028 ROR ROTATE RIGHT @ROR --- --- 380

029 COM COMPLEMENT @COM --- --- 562

034 ANDW LOGICAL AND @ANDW --- --- 548

035 ORW LOGICAL OR @ORW --- --- 551

036 XORW EXCLUSIVE OR @XORW --- --- 555
131

List of Instructions by Function Code Section 2-4
037 XNRW EXCLUSIVE NOR @XNRW --- --- 559

040 STC SET CARRY @STC --- --- 1166

041 CLC CLEAR CARRY @CLC --- --- 1166

045 TRSM TRACE MEMORY
SAMPLING

--- --- --- 1136

046 MSG DISPLAY MESSAGE @MSG --- --- 1119

058 BINL DOUBLE BCD TO
DOUBLE BINARY

@BINL --- --- 485

059 BCDL DOUBLE BINARY TO
BCD

@BCDL --- --- 489

060 CMPL DOUBLE UNSIGNED
COMPARE

--- --- --- 306

062 XFRB MULTIPLE BIT
TRANSFER

@XFRB --- --- 342

063 LINE COLUMN TO LINE @LINE --- --- 512

064 COLM LINE TO COLUMN @COLM --- --- 514

065 SEC HOURS TO SECONDS @SEC --- --- 1129

066 HMS SECONDS TO HOURS @HMS --- --- 1131

067 BCNT BIT COUNTER @BCNT --- --- 587

068 BCMP UNSIGNED BLOCK
COMPARE

@BCMP --- --- 320

069 APR ARITHMETIC
PROCESS

@APR --- --- 571

070 XFER BLOCK TRANSFER @XFER --- --- 344

071 BSET BLOCK SET @BSET --- --- 347

072 ROOT BCD SQUARE ROOT @ROOT --- --- 567

073 XCHG DATA EXCHANGE @XCHG --- --- 349

074 SLD ONE DIGIT SHIFT
LEFT

@SLD --- --- 390

075 SRD ONE DIGIT SHIFT
RIGHT

@SRD --- --- 392

076 MLPX DATA DECODER @MLPX --- --- 496

077 DMPX DATA ENCODER @DMPX --- --- 500

078 SDEC 7-SEGMENT
DECODER

@SDEC --- --- 974

079 FDIV FLOATING POINT
DIVIDE

@FDIV --- --- 583

080 DIST SINGLE WORD
DISTRIBUTE

@DIST --- --- 352

081 COLL DATA COLLECT @COLL --- --- 354

082 MOVB MOVE BIT @MOVB --- --- 337

083 MOVD MOVE DIGIT @MOVD --- --- 339

084 SFTR REVERSIBLE SHIFT
REGISTER

@SFTR --- --- 362

085 TCMP TABLE COMPARE @TCMP --- --- 317

086 ASC ASCII CONVERT @ASC --- --- 504

087 TTIM ACCUMULATIVE
TIMER

--- --- --- 262

088 ZCP AREA RANGE COM-
PARE

--- --- --- 326

090 SEND NETWORK SEND @SEND --- --- 1044

091 SBS SUBROUTINE CALL @SBS --- --- 811

092 SBN SUBROUTINE ENTRY --- --- --- 821

093 RET SUBROUTINE
RETURN

--- --- --- 824

094 WDT EXTEND MAXIMUM
CYCLE TIME

@WDT --- --- 1169

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
132

List of Instructions by Function Code Section 2-4
096 BPRG BLOCK PROGRAM
BEGIN

--- --- --- 1191

097 IORF I/O REFRESH @IORF --- --- 926

098 RECV NETWORK RECEIVE @RECV --- --- 1050

099 MCRO MACRO @MCRO --- --- 817

114 CPS SIGNED BINARY
COMPARE

--- --- !CPS 309

115 CPSL DOUBLE SIGNED
BINARY COMPARE

--- --- --- 312

116 ZCPL DOUBLE AREA
RANGE COMPARE

--- --- --- 329

160 NEG 2’S COMPLEMENT @NEG --- --- 491

161 NEGL DOUBLE 2’S
COMPLEMENT

@NEGL --- --- 493

162 HEX ASCII TO HEX @HEX --- --- 508

180 FCS FRAME CHECKSUM @FCS --- --- 738

181 SRCH DATA SEARCH @SRCH --- --- 722

182 MAX FIND MAXIMUM @MAX --- --- 727

183 MIN FIND MINIMUM @MIN --- --- 731

184 SUM SUM @SUM --- --- 735

190 PID PID CONTROL --- --- --- 757

191 PIDAT PID CONTROL WITH
AUTOTUNING

--- --- --- 769

194 SCL SCALING @SCL --- --- 795

195 AVG AVERAGE --- --- --- 807

210 DSW DIGITAL SWITCH
INPUT

--- --- --- 940

211 TKY TEN KEY INPUT @TKY --- --- 945

212 HKY HEXADECIMAL KEY
INPUT

--- --- --- 948

213 MTR MATRIX INPUT --- --- --- 953

214 7SEG 7-SEGMENT DISPLAY
OUTPUT

--- --- --- 957

222 IORD INTELLIGENT I/O
READ

@IORD --- --- 962

223 IOWR INTELLIGENT I/O
WRITE

@IOWR --- --- 967

225 FIORF SPECIAL I/O UNIT I/O
REFRESH

@FIORF --- --- 929

226 DLNK CPU BUS UNIT I/O
REFRESH

@DLNK --- --- 932

235 RXD RECEIVE @RXD --- --- 993

236 TXD TRANSMIT @TXD --- --- 983

255 RXDU RECEIVE VIA SERIAL
COMMUNICATIONS
UNIT

@RXDU --- --- 1013

256 TXDU TRANSMIT VIA
SERIAL COMMUNICA-
TIONS UNIT

@TXDU --- --- 1005

237 STUP CHANGE SERIAL
PORT SETUP

@STUP --- --- 1021

260 PMCR PROTOCOL MACRO @PMCR --- --- 974

269 FPD FAILURE POINT
DETECTION

--- --- --- 1156

281 EMBC SELECT EM BANK @EMBC --- --- 1167

282 CCS SAVE CONDITION
FLAGS

@CCS --- --- 1171

283 CCL LOAD CONDITION
FLAGS

@CCL --- --- 1173

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
133

List of Instructions by Function Code Section 2-4
284 FRMCV CONVERT ADDRESS
FROM CV

@FRMCV --- --- 1174

285 TOCV CONVERT ADDRESS
TO CV

@TOCV --- --- 1179

286 GETID GET VARIABLE ID @GETID --- --- 1277

287 IOSP DISABLE PERIPH-
ERAL SERVICING

@IOSP --- --- 1183

288 IORS ENABLE PERIPH-
ERAL SERVICING

--- --- --- 1185

300 AND = AND EQUAL --- --- --- 291

300 LD = LOAD EQUAL --- --- --- 291

300 OR = OR EQUAL --- --- --- 291

301 AND =L AND DOUBLE EQUAL --- --- --- 291

301 LD =L LOAD DOUBLE
EQUAL

--- --- --- 291

301 OR =L OR DOUBLE EQUAL --- --- --- 291

302 AND =S AND SIGNED EQUAL --- --- --- 291

302 LD =S LOAD SIGNED EQUAL --- --- --- 291

302 OR =S OR SIGNED EQUAL --- --- --- 291

303 AND =SL AND DOUBLE
SIGNED EQUAL

--- --- --- 291

303 LD =SL LOAD DOUBLE
SIGNED EQUAL

--- --- --- 291

303 OR =SL OR DOUBLE SIGNED
EQUAL

--- --- --- 291

305 AND <> AND NOT EQUAL --- --- --- 291

305 LD <> LOAD NOT EQUAL --- --- --- 291

305 OR <> OR NOT EQUAL --- --- --- 291

306 AND <>L AND DOUBLE NOT
EQUAL

--- --- --- 291

306 LD <>L LOAD DOUBLE NOT
EQUAL

--- --- --- 291

306 OR <>L OR DOUBLE NOT
EQUAL

--- --- --- 291

307 AND <>S AND SIGNED NOT
EQUAL

--- --- --- 291

307 LD <>S LOAD SIGNED NOT
EQUAL

--- --- --- 291

307 OR <>S OR SIGNED NOT
EQUAL

--- --- --- 291

308 AND <>SL AND DOUBLE
SIGNED NOT EQUAL

--- --- --- 291

308 LD <>SL LOAD DOUBLE
SIGNED NOT EQUAL

--- --- --- 291

308 OR <>SL OR DOUBLE SIGNED
NOT EQUAL

--- --- --- 291

310 AND < AND LESS THAN --- --- --- 291

310 LD < LOAD LESS THAN --- --- --- 291

310 OR < OR LESS THAN --- --- --- 291

311 AND <L AND DOUBLE LESS
THAN

--- --- --- 291

311 LD <L LOAD DOUBLE LESS
THAN

--- --- --- 291

311 OR <L OR DOUBLE LESS
THAN

--- --- --- 291

312 AND <S AND SIGNED LESS
THAN

--- --- --- 291

312 LD <S LOAD SIGNED LESS
THAN

--- --- --- 291

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
134

List of Instructions by Function Code Section 2-4
312 OR <S OR SIGNED LESS
THAN

--- --- --- 291

313 AND <SL AND DOUBLE
SIGNED LESS THAN

--- --- --- 291

313 LD <SL LOAD DOUBLE
SIGNED LESS THAN

--- --- --- 291

313 OR <SL OR DOUBLE SIGNED
LESS THAN

--- --- --- 291

315 AND <= AND LESS THAN OR
EQUAL

--- --- --- 291

315 LD <= LOAD LESS THAN OR
EQUAL

--- --- --- 291

315 OR <= OR LESS THAN OR
EQUAL

--- --- --- 291

316 AND <=L AND DOUBLE LESS
THAN OR EQUAL

--- --- --- 291

316 LD <=L LOAD DOUBLE LESS
THAN OR EQUAL

--- --- --- 291

316 OR <=L OR DOUBLE LESS
THAN OR EQUAL

--- --- --- 291

317 AND <=S AND SIGNED LESS
THAN OR EQUAL

--- --- --- 291

317 LD <=S LOAD SIGNED LESS
THAN OR EQUAL

--- --- --- 291

317 OR <=S OR SIGNED LESS
THAN OR EQUAL

--- --- --- 291

318 AND <=SL AND DOUBLE
SIGNED LESS THAN
OR EQUAL

--- --- --- 291

318 LD <=SL LOAD DOUBLE
SIGNED LESS THAN
OR EQUAL

--- --- --- 291

318 OR <=SL OR DOUBLE SIGNED
LESS THAN OR
EQUAL

--- --- --- 291

320 AND > AND GREATER THAN --- --- --- 291

320 LD > LOAD GREATER
THAN

--- --- --- 291

320 OR > OR GREATER THAN --- --- --- 291

321 AND >L AND DOUBLE
GREATER THAN

--- --- --- 291

321 LD >L LOAD DOUBLE
GREATER THAN

--- --- --- 291

321 OR >L OR DOUBLE
GREATER THAN

--- --- --- 291

322 AND >S AND SIGNED
GREATER THAN

--- --- --- 291

322 LD >S LOAD SIGNED
GREATER THAN

--- --- --- 291

322 OR >S OR SIGNED
GREATER THAN

--- --- --- 291

323 AND >SL AND DOUBLE
SIGNED GREATER
THAN

--- --- --- 291

323 LD >SL LOAD DOUBLE
SIGNED GREATER
THAN

--- --- --- 291

323 OR >SL OR DOUBLE SIGNED
GREATER THAN

--- --- --- 291

325 AND >= AND GREATER THAN
OR EQUAL

--- --- --- 291

325 LD >= LOAD GREATER
THAN OR EQUAL

--- --- --- 291

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
135

List of Instructions by Function Code Section 2-4
325 OR >= OR GREATER THAN
OR EQUAL

--- --- --- 291

326 AND >=L AND DOUBLE
GREATER THAN OR
EQUAL

--- --- --- 291

326 LD >=L LOAD DOUBLE
GREATER THAN OR
EQUAL

--- --- --- 291

326 OR >=L OR DOUBLE
GREATER THAN OR
EQUAL

--- --- --- 291

327 AND >=S AND SIGNED
GREATER THAN OR
EQUAL

--- --- --- 291

327 LD >=S LOAD SIGNED
GREATER THAN OR
EQUAL

--- --- --- 291

327 OR >=S OR SIGNED
GREATER THAN OR
EQUAL

--- --- --- 291

328 AND >=SL AND DOUBLE
SIGNED GREATER
THAN OR EQUAL

--- --- --- 291

328 LD >=SL LOAD DOUBLE
SIGNED GREATER
THAN OR EQUAL

--- --- --- 291

328 OR >=SL OR DOUBLE SIGNED
GREATER THAN OR
EQUAL

--- --- --- 291

329 AND =F AND FLOATING
EQUAL

--- --- --- 636

329 LD =F LOAD FLOATING
EQUAL

--- --- --- 636

329 OR =F OR FLOATING EQUAL --- --- --- 636

330 AND <>F AND FLOATING NOT
EQUAL

--- --- --- 636

330 LD <>F LOAD FLOATING NOT
EQUAL

--- --- --- 636

330 OR <>F OR FLOATING NOT
EQUAL

--- --- --- 636

331 AND <F AND FLOATING LESS
THAN

--- --- --- 636

331 LD <F LOAD FLOATING
LESS THAN

--- --- --- 636

331 OR <F OR FLOATING LESS
THAN

--- --- --- 636

332 AND <=F AND FLOATING LESS
THAN OR EQUAL

--- --- --- 636

332 LD <=F LOAD FLOATING
LESS THAN OR
EQUAL

--- --- --- 636

332 OR <=F OR FLOATING LESS
THAN OR EQUAL

--- --- --- 636

333 AND >F AND FLOATING
GREATER THAN

--- --- --- 636

333 LD >F LOAD FLOATING
GREATER THAN

--- --- --- 636

333 OR >F OR FLOATING
GREATER THAN

--- --- --- 636

334 AND >=F AND FLOATING
GREATER THAN OR
EQUAL

--- --- --- 636

334 LD >=F LOAD FLOATING
GREATER THAN OR
EQUAL

--- --- --- 636

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
136

List of Instructions by Function Code Section 2-4
334 OR >=F OR FLOATING
GREATER THAN OR
EQUAL

--- --- --- 636

335 AND =D AND DOUBLE FLOAT-
ING EQUAL

--- --- --- 694

335 LD =D LOAD DOUBLE
FLOATING EQUAL

--- --- --- 694

335 OR =D OR DOUBLE FLOAT-
ING EQUAL

--- --- --- 694

336 AND <>D AND DOUBLE FLOAT-
ING NOT EQUAL

--- --- --- 694

336 LD <>D LOAD DOUBLE
FLOATING NOT
EQUAL

--- --- --- 694

336 OR <>D OR DOUBLE FLOAT-
ING NOT EQUAL

--- --- --- 694

337 AND <D AND DOUBLE FLOAT-
ING LESS THAN

--- --- --- 694

337 LD <D LOAD DOUBLE
FLOATING LESS
THAN

--- --- --- 694

337 OR <D OR DOUBLE FLOAT-
ING LESS THAN

--- --- --- 694

338 AND <=D AND DOUBLE FLOAT-
ING LESS THAN OR
EQUAL

--- --- --- 694

338 LD <=D LOAD DOUBLE
FLOATING LESS
THAN OR EQUAL

--- --- --- 694

338 OR <=D OR DOUBLE FLOAT-
ING LESS THAN OR
EQUAL

--- --- --- 694

339 AND >D AND DOUBLE FLOAT-
ING GREATER THAN

--- --- --- 694

339 LD >D LOAD DOUBLE
FLOATING GREATER
THAN

--- --- --- 694

339 OR >D OR DOUBLE FLOAT-
ING GREATER THAN

--- --- --- 694

340 AND >=D AND DOUBLE FLOAT-
ING GREATER THAN
OR EQUAL

--- --- --- 694

340 LD >=D LOAD DOUBLE
FLOATING GREATER
THAN OR EQUAL

--- --- --- 694

340 OR >=D OR DOUBLE FLOAT-
ING GREATER THAN
OR EQUAL

--- --- --- 694

341 AND = DT AND TIME EQUAL --- --- --- 297

341 LD = DT LOAD TIME EQUAL --- --- --- 297

341 OR = DT OR TIME EQUAL --- --- --- 297

342 AND <> DT AND TIME NOT
EQUAL

--- --- --- 297

342 LD <> DT LOAD TIME NOT
EQUAL

--- --- --- 297

342 OR <> DT OR TIME NOT EQUAL --- --- --- 297

343 AND < DT AND TIME LESS
THAN

--- --- --- 297

343 LD < DT LOAD TIME LESS
THAN

--- --- --- 297

343 OR < DT OR TIME LESS THAN --- --- --- 297

344 AND <= DT AND TIME LESS
THAN OR EQUAL

--- --- --- 297

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
137

List of Instructions by Function Code Section 2-4
344 LD <= DT LD TIME LESS THAN
OR EQUAL

--- --- --- 297

344 OR <= DT OR TIME LESS THAN
OR EQUAL

--- --- --- 297

345 AND > DT AND TIME GREATER
THAN

--- --- --- 297

345 LD > DT LOAD TIME GREATER
THAN

--- --- --- 297

345 OR > DT OR TIME GREATER
THAN

--- --- --- 297

346 AND >= DT AND TIME GREATER
THAN OR EQUAL

--- --- --- 297

346 LD >= DT LOAD TIME GREATER
THAN OR EQUAL

--- --- --- 297

346 OR >= DT OR TIME GREATER
THAN OR EQUAL

--- --- --- 297

350 AND TST AND BIT TEST --- --- --- 182

350 LD TST LOAD BIT TEST --- --- --- 182

350 OR TST OR BIT TEST --- --- --- 182

351 AND TSTN AND BIT TEST NOT --- --- --- 182

351 LD TSTN LOAD BIT TEST NOT --- --- --- 182

351 OR TSTN OR BIT TEST NOT --- --- --- 182

400 + SIGNED BINARY ADD
WITHOUT CARRY

@+ --- --- 426

401 +L DOUBLE SIGNED
BINARY ADD
WITHOUT CARRY

@+L --- --- 428

402 +C SIGNED BINARY ADD
WITH CARRY

@+C --- --- 430

403 +CL DOUBLE SIGNED
BINARY ADD WITH
CARRY

@+CL --- --- 432

404 +B BCD ADD WITHOUT
CARRY

@+B --- --- 437

405 +BL DOUBLE BCD ADD
WITHOUT CARRY

@+BL --- --- 435

406 +BC BCD ADD WITH
CARRY

@+BC --- --- 437

407 +BCL DOUBLE BCD ADD
WITH CARRY

@+BCL --- --- 439

410 – SIGNED BINARY
SUBTRACT
WITHOUT CARRY

@– --- --- 440

411 –L DOUBLE SIGNED
BINARY SUBTRACT
WITHOUT CARRY

@–L --- --- 442

412 –C SIGNED BINARY
SUBTRACT WITH
CARRY

@–C --- --- 446

413 –CL DOUBLE SIGNED
BINARY SUBTRACT
WITH CARRY

@–CL --- --- 448

414 –B BCD SUBTRACT
WITHOUT CARRY

@–B --- --- 451

415 –BL DOUBLE BCD
SUBTRACT
WITHOUT CARRY

@–BL --- --- 452

416 –BC BCD SUBTRACT
WITH CARRY

@–BC --- --- 456

417 –BCL DOUBLE BCD
SUBTRACT WITH
CARRY

@–BCL --- --- 457

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
138

List of Instructions by Function Code Section 2-4
420 * SIGNED BINARY
MULTIPLY

@* --- --- 459

421 *L DOUBLE SIGNED
BINARY MULTIPLY

@*L --- --- 461

422 *U UNSIGNED BINARY
MULTIPLY

@*U --- --- 463

423 *UL DOUBLE UNSIGNED
BINARY MULTIPLY

@*UL --- --- 465

424 *B BCD MULTIPLY @*B --- --- 467

425 *BL DOUBLE BCD
MULTIPLY

@*BL --- --- 469

430 / SIGNED BINARY
DIVIDE

@/ --- --- 471

431 /L DOUBLE SIGNED
BINARY DIVIDE

@/L --- --- 473

432 /U UNSIGNED BINARY
DIVIDE

@/U --- --- 475

433 /UL DOUBLE UNSIGNED
BINARY DIVIDE

@/UL --- --- 477

434 /B BCD DIVIDE @/B --- --- 479

435 /BL DOUBLE BCD DIVIDE @/BL --- --- 481

448 FSTR FLOATING POINT TO
ASCII

@FSTR --- --- 640

449 FVAL ASCII TO FLOATING
POINT

@FVAL --- --- 645

450 FIX FLOATING TO 16-BIT @FIX --- --- 594

451 FIXL FLOATING TO 32-BIT @FIXL --- --- 596

452 FLT 16-BIT TO FLOATING @FLT --- --- 597

453 FLTL 32-BIT TO FLOATING @FLTL --- --- 599

454 +F FLOATING-POINT
ADD

@+F --- --- 601

455 –F FLOATING-POINT
SUBTRACT

@–F --- --- 603

456 *F FLOATING-POINT
MULTIPLY

@*F --- --- 605

457 /F FLOATING-POINT
DIVIDE

@/F --- --- 607

458 RAD DEGREES TO
RADIANS

@RAD --- --- 633

459 DEG RADIANS-TO
DEGREES

@DEG --- --- 610

460 SIN SINE @SIN --- --- 612

461 COS COSINE @COS --- --- 615

462 TAN TANGENT @TAN --- --- 619

463 ASIN ARC SINE @ASIN --- --- 623

464 ACOS ARC COSINE @ACOS --- --- 625

465 ATAN ARC TANGENT @ATAN --- --- 627

466 SQRT SQUARE ROOT @SQRT --- --- 629

467 EXP EXPONENT @EXP --- --- 631

468 LOG LOGARITHM @LOG --- --- 633

469 MOVF MOVE FLOATING-
POINT (SINGLE)

@MOVF --- --- 649

470 BINS SIGNED BCD TO
BINARY

@BINS --- --- 517

471 BCDS SIGNED BINARY TO
BCD

@BCDS --- --- 523

472 BISL DOUBLE SIGNED
BCD TO BINARY

@BISL --- --- 520

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
139

List of Instructions by Function Code Section 2-4
473 BDSL DOUBLE SIGNED
BINARY TO BCD

@BDSL --- --- 525

474 GRY GRAY CODE CON-
VERSION

@GRY --- --- 529

475 SINQ HIGH-SPEED SINE @SINQ --- --- 614

476 COSQ HIGH-SPEED COSINE @COSQ --- --- 617

477 TANQ HIGH-SPEED TAN-
GENT

@TANQ --- --- 621

486 SCL2 SCALING 2 @SCL2 --- --- 800

487 SCL3 SCALING 3 @SCL3 --- --- 804

490 CMND DELIVER COMMAND @CMND --- --- 1056

498 MOVL DOUBLE MOVE @MOVL --- --- 334

499 MVNL DOUBLE MOVE NOT @MVNL --- --- 336

502 BCMP2 EXPANDED BLOCK
COMPARE

@BCMP2 --- --- 322

510 CJP CONDITIONAL JUMP --- --- --- 232

511 CJPN CONDITIONAL JUMP --- --- --- 232

512 FOR FOR-NEXT LOOPS --- --- --- 238

513 NEXT FOR-NEXT LOOPS --- --- --- 238

514 BREAK BREAK LOOP --- --- --- 241

515 JMP0 MULTIPLE JUMP --- --- --- 236

516 JME0 MULTIPLE JUMP END --- --- --- 236

517 MILH MULTI-INTERLOCK
DIFFERENTIATION
HOLD

--- --- --- 214

518 MILR MULTI-INTERLOCK
DIFFERENTIATION
RELEASE

--- --- --- 214

519 MILC MULTI-INTERLOCK
CLEAR

--- --- --- 214

520 NOT NOT --- --- --- 180

521 UP CONDITION ON --- --- --- 181

522 DOWN CONDITION OFF --- --- --- 181

530 SETA MULTIPLE BIT SET @SETA --- --- 198

531 RSTA MULTIPLE BIT RESET @RSTA --- --- 198

532 SETB SINGLE BIT SET @SETB --- !SETB 201

533 RSTB SINGLE BIT RESET @RSTB --- !RSTB 201

534 OUTB SINGLE BIT OUTPUT @OUTB --- !OUTB 204

540 TMHH ONE-MS TIMER --- --- --- 253

541 TIMU TENTH-MS TIMER --- --- --- 256

542 TIML LONG TIMER --- --- --- 266

543 MTIM MULTI-OUTPUT
TIMER

--- --- --- 269

544 TMUH HUNDREDTH-MS
TIMER

--- --- --- 259

545 CNR RESET TIMER/
COUNTER

@CNR --- --- 282

546 CNTX COUNTER --- --- --- 275

547 CNRX RESET TIMER/
COUNTER

--- --- --- 282

548 CNTRX REVERSIBLE
COUNTER

--- --- --- 278

550 TIMX HUNDRED-MS TIMER --- --- --- 245

551 TIMHX TEN-MS TIMER --- --- --- 249

552 TMHHX ONE-MS TIMER --- --- --- 253

553 TIMLX LONG TIMER --- --- --- 266

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
140

List of Instructions by Function Code Section 2-4
554 MTIMX MULTI-OUTPUT
TIMER

--- --- --- 269

555 TTIMX ACCUMULATIVE
TIMER

--- --- --- 262

556 TIMUX TENTH-MS TIMER --- --- --- 256

557 TMUHX HUNDREDTH-MS
TIMER

--- --- --- 259

560 MOVR MOVE TO REGISTER @MOVR --- --- 356

561 MOVRW MOVE TIMER/
COUNTER PV TO
REGISTER

@MOVRW --- --- 358

562 XCGL DOUBLE DATA
EXCHANGE

@XCGL --- --- 350

565 XFERC BLOCK TRANSFER @XFERC --- --- 1263

566 DISTC SINGLE WORD
DISTRIBUTE

@DISTC --- --- 1266

567 COLLC DATA COLLECT @COLLC --- --- 1269

568 MOVBC MOVE BIT @MOVBC --- --- 1273

570 ASLL DOUBLE SHIFT LEFT @ASLL --- --- 371

571 ASRL DOUBLE SHIFT
RIGHT

@ASRL --- --- 374

572 ROLL DOUBLE ROTATE
LEFT

@ROLL --- --- 378

573 RORL DOUBLE ROTATE
RIGHT

@RORL --- --- 381

574 RLNC ROTATE LEFT
WITHOUT CARRY

@RLNC --- --- 383

575 RRNC ROTATE RIGHT
WITHOUT CARRY

@RRNC --- --- 387

576 RLNL DOUBLE ROTATE
LEFT WITHOUT
CARRY

@RLNL --- --- 385

577 RRNL DOUBLE ROTATE
RIGHT WITHOUT
CARRY

@RRNL --- --- 388

578 NSFL SHIFT N-BIT DATA
LEFT

@NSFL --- --- 393

579 NSFR SHIFT N-BIT DATA
RIGHT

@NSFR --- --- 395

580 NASL SHIFT N-BITS LEFT @NASL --- --- 397

581 NASR SHIFT N-BITS RIGHT @NASR --- --- 403

582 NSLL DOUBLE SHIFT
N-BITS LEFT

@NSLL --- --- 400

583 NSRL DOUBLE SHIFT
N-BITS RIGHT

@NSRL --- --- 405

590 ++ INCREMENT BINARY @++ --- --- 409

591 ++L DOUBLE
INCREMENT BINARY

@++L --- --- 411

592 – – DECREMENT BINARY @– – --- --- 413

593 – –L DOUBLE
DECREMENT BINARY

@– –L --- --- 415

594 ++B INCREMENT BCD @++B --- --- 417

595 ++BL DOUBLE
INCREMENT BCD

@++BL --- --- 419

596 – –B DECREMENT BCD @– –B --- --- 421

597 – –BL DOUBLE DECRE-
MENT BCD

@– –BL --- --- 423

600 SIGN 16-BIT TO 32-BIT
SIGNED BINARY

@SIGN --- --- 494

601 STR4 FOUR-DIGIT NUM-
BER TO ASCII

@STR4 --- --- 534

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
141

List of Instructions by Function Code Section 2-4
602 STR8 EIGHT-DIGIT NUMBER
TO ASCII

@STR8 --- --- 537

603 STR16 SIXTEEN-DIGIT NUM-
BER TO ASCII

@STR16 --- --- 539

604 NUM4 ASCII TO FOUR-DIGIT
NUMBER

@NUM4 --- --- 541

605 NUM8 ASCII TO EIGHT-DIGIT
NUMBER

@NUM8 --- --- 544

606 NUM16 ASCII TO SIXTEEN-
DIGIT NUMBER

@NUM16 --- --- 545

610 ANDL DOUBLE LOGICAL
AND

@ANDL --- --- 550

611 ORWL DOUBLE LOGICAL OR @ORWL --- --- 553

612 XORL DOUBLE EXCLUSIVE
OR

@XORL --- --- 557

613 XNRL DOUBLE EXCLUSIVE
NOR

@XNRL --- --- 560

614 COML DOUBLE
COMPLEMENT

@COML --- --- 564

620 ROTB BINARY ROOT @ROTB --- --- 565

621 BCNTC BIT COUNTER @BCNTC --- --- 1275

630 SSET SET STACK @SSET --- --- 703

631 DIM DIMENSION RECORD
TABLE

@DIM --- --- 715

632 PUSH PUSH ONTO STACK @PUSH --- --- 706

633 FIFO FIRST IN FIRST OUT @FIFO --- --- 709

634 LIFO LAST IN FIRST OUT @LIFO --- --- 712

635 SETR SET RECORD LOCA-
TION

@SETR --- --- 718

636 GETR GET RECORD
NUMBER

@GETR --- --- 720

637 SWAP SWAP BYTES @SWAP --- --- 725

638 SNUM STACK SIZE READ @SNUM --- --- 742

639 SREAD STACK DATA READ @SREAD --- --- 744

640 SWRIT STACK DATA WRITE @SWRIT --- --- 747

641 SINS STACK DATA INSERT @SINS --- --- 750

642 SDEL STACK DATA DELETE @SDEL --- --- 753

650 LEN$ STRING LENGTH @LEN$ --- --- 1235

652 LEFT$ GET STRING LEFT @LEFT$ --- --- 1226

653 RGHT$ GET STRING RIGHT @RGHT$ --- --- 1228

654 MID$ GET STRING MIDDLE @MID$ --- --- 1230

656 +$ CONCATENATE
STRING

@+$ --- --- 1223

657 INS$ INS$ @INS$ --- --- 1246

658 DEL$ DELETE STRING @DEL$ --- --- 1240

660 FIND$ FIND IN STRING @FIND$ --- --- 1233

661 RPLC$ REPLACE IN STRING @RPLC$ --- --- 1237

664 MOV$ MOV STRING @MOV$ --- --- 1221

665 XCHG$ EXCHANGE STRING @XCHG$ --- --- 1242

666 CLR$ CLEAR STRING @CLR$ --- --- 1245

670 AND =$ AND STRING EQUALS --- --- --- 1250

670 LD =$ LOAD STRING
EQUALS

--- --- --- 1250

670 OR =$ OR STRING EQUALS --- --- --- 1250

671 AND <>$ AND STRING NOT
EQUAL

--- --- --- 1250

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
142

List of Instructions by Function Code Section 2-4
671 LD <>$ LOAD STRING NOT
EQUAL

--- --- --- 1250

671 OR <>$ OR STRING NOT
EQUAL

--- --- --- 1250

672 AND <$ AND STRING LESS
THAN

--- --- --- 1250

672 LD <$ LOAD STRING LESS
THAN

--- --- --- 1250

672 OR <$ OR STRING LESS
THAN

--- --- --- 1250

673 AND <=$ AND STRING LESS
THAN OR EQUALS

--- --- --- 1250

673 LD <=$ LOAD STRING LESS
THAN OR EQUAL

--- --- --- 1250

673 OR <=$ OR STRING LESS
THAN OR EQUALS

--- --- --- 1250

674 AND >$ AND STRING
GREATER THAN

--- --- --- 1250

674 LD >$ LOAD STRING
GREATER THAN

--- --- --- 1250

674 OR >$ OR STRING GREATER
THAN

--- --- --- 1250

675 AND >=$ AND STRING
GREATER THAN OR
EQUALS

--- --- --- 1250

675 LD >=$ LOAD STRING
GREATER THAN OR
EQUALS

--- --- --- 1250

675 OR >=$ OR STRING GREATER
THAN OR EQUALS

--- --- --- 1250

680 LMT LIMIT CONTROL @LMT --- --- 779

681 BAND DEAD BAND
CONTROL

@BAND --- --- 781

682 ZONE DEAD ZONE
CONTROL

@ZONE --- --- 784

685 TPO TIME-PROPOR-
TIONAL OUTPUT

--- --- --- 787

690 MSKS SET INTERRUPT
MASK

@MSKS --- --- 839

691 CLI CLEAR INTERRUPT @CLI --- --- 851

692 MSKR READ INTERRUPT
MASK

@MSKR --- --- 846

693 DI DISABLE
INTERRUPTS

@DI --- --- 855

694 EI ENABLE
INTERRUPTS

--- --- --- 858

700 FREAD READ DATA FILE @FREAD --- --- 1099

701 FWRIT WRITE DATA FILE @FWRIT --- --- 1106

704 TWRIT WRITE TEXT TILE @TWRIT --- --- 1113

720 EXPLT EXPLICIT MESSAGE
SEND

@EXPLT --- --- 1066

721 EGATR EXPLICIT GET
ATTRIBUTE

@EGATR --- --- 1074

722 ESATR EXPLICIT SET
ATTRIBUTE

@ESATR --- --- 1081

723 ECHRD EXPLICIT WORD
READ

@ECHRD --- --- 1087

724 ECHWR EXPLICIT WORD
CLEAR

@ECHWR --- --- 1091

730 CADD CALENDAR ADD @CADD --- --- 1122

731 CSUB CALENDAR
SUBTRACT

@CSUB --- --- 1126

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
143

List of Instructions by Function Code Section 2-4
735 DATE CLOCK ADJUSTMENT @DATE --- --- 1134

750 GSBS GLOBAL SUBROU-
TINE CALL

@GSBS --- --- 824

751 GSBN GLOBAL SUBROU-
TINE ENTRY

--- --- --- 832

752 GRET GLOBAL SUBROU-
TINE RETURN

--- --- --- 835

801 BEND BLOCK PROGRAM
END

--- --- --- 1191

802 IF CONDITIONAL
BRANCHING BLOCK

--- --- --- 1196

802 IF CONDITIONAL
BRANCHING BLOCK

--- --- --- 1196

802 IF NOT CONDITIONAL
BRANCHING BLOCK
NOT

--- --- --- 1196

803 ELSE ELSE --- --- --- 1196

804 IEND IF END --- --- --- 1196

805 WAIT ONE CYCLE AND
WAIT

--- --- --- 1202

805 WAIT ONE CYCLE AND
WAIT

--- --- --- 1202

805 WAIT NOT ONE CYCLE AND
WAIT NOT

--- --- --- 1202

806 EXIT CONDITIONAL BLOCK
EXIT

--- --- --- 1199

806 EXIT CONDITIONAL BLOCK
EXIT

--- --- --- 1199

806 EXIT NOT CONDITIONAL BLOCK
EXIT NOT

--- --- --- 1199

809 LOOP LOOP --- --- --- 1215

810 LEND LOOP END --- --- --- 1215

810 LEND LOOP END --- --- --- 1215

810 LEND NOT LOOP END NOT --- --- --- 1215

811 BPPS BLOCK PROGRAM
PAUSE

--- --- --- 1193

812 BPRS BLOCK PROGRAM
RESTART

--- --- --- 1193

813 TIMW HUNDRED-MS TIMER
WAIT

--- --- --- 1206

814 CNTW COUNTER WAIT --- --- --- 1209

815 TMHW TEN-MS TIMER WAIT --- --- --- 1212

816 TIMWX HUNDRED-MS TIMER
WAIT

--- --- --- 1206

817 TMHWX TEN-MS TIMER WAIT --- --- --- 1212

818 CNTWX COUNTER WAIT --- --- --- 1209

820 TKON TASK ON @TKON --- --- 1255

821 TKOF TASK OFF @TKOF --- --- 1258

840 PWR EXPONENTIAL
POWER

@PWR --- --- 635

841 FIXD DOUBLE FLOATING
TO 16-BIT BINARY

@FIXD --- --- 657

842 FIXLD DOUBLE FLOATING
TO 32-BIT BINARY

@FIXLD --- --- 658

843 DBL 16-BIT BINARY TO
DOUBLE FLOATING

@DBL --- --- 660

844 DBLL 32-BIT BINARY TO
DOUBLE FLOATING

@DBLL --- --- 661

845 +D DOUBLE FLOATING-
POINT ADD

@+D --- --- 663

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
144

List of Instructions by Function Code Section 2-4
846 −D DOUBLE FLOATING-
POINT SUBTRACT

@−D --- --- 665

847 *D DOUBLE FLOATING-
POINT MULTIPLY

@*D --- --- 667

848 /D DOUBLE FLOATING-
POINT DIVIDE

@/D --- --- 669

849 RADD DOUBLE DEGREES
TO RADIANS

@RADD --- --- 671

850 DEGD DOUBLE RADIANS TO
DEGREES

@RADD --- --- 673

851 SIND DOUBLE SINE @SIND --- --- 674

852 COSD DOUBLE COSINE @COSD --- --- 676

853 TAND DOUBLE TANGENT @TAND --- --- 678

854 ASIND DOUBLE ARC SINE @ASIND --- --- 680

855 ACOSD DOUBLE ARC
COSINE

@ACOSD --- --- 682

856 ATAND DOUBLE ARC TAN-
GENT

@ATAND --- --- 684

857 SQRTD DOUBLE SQUARE
ROOT

@SQRTD --- --- 686

858 EXPD DOUBLE EXPONENT @EXPD --- --- 688

859 LOGD DOUBLE LOGARITHM @LOGD --- --- 690

860 PWRD DOUBLE EXPONEN-
TIAL POWER

@PWRD --- --- 692

880 INI MODE CONTROL @INI --- --- 864

881 PRV HIGH-SPEED
COUNTER PV READ

@PRV --- --- 868

882 CTBL COMPARISON TABLE
LOAD

@CTBL --- --- 878

883 PRV2 COUNTER FRE-
QUENCY CONVERT

@PRV2 --- --- 874

885 SPED SPEED OUTPUT @SPED --- --- 882

886 PULS SET PULSES @PULS --- --- 887

887 PLS2 PULSE OUTPUT @PLS2 --- --- 890

888 ACC ACCELERATION CON-
TROL

@ACC --- --- 896

889 ORG ORIGIN SEARCH @ORG --- --- 903

891 PWN PULSE WITH VARI-
ABLE DUTY FACTOR

@PWN --- --- 906

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
145

List of Instructions by Function Code Section 2-4
146

SECTION 3
Instructions

This section describes each of the instructions that can be used in programming CS/CJ-series PLCs. Instructions are
described in order of function, as classified in Section 2 Summary of Instructions.

3-1 Notation and Layout of Instruction Descriptions . 155
3-2 Instruction Upgrades and New Instructions . 158

3-2-1 Upgrades for CS1-H/CJ1-H CPU Units . 158
3-3 Sequence Input Instructions . 161

3-3-1 LOAD: LD . 161
3-3-2 LOAD NOT: LD NOT . 163
3-3-3 AND: AND. 165
3-3-4 AND NOT: AND NOT. 167
3-3-5 OR: OR . 169
3-3-6 OR NOT: OR NOT . 171
3-3-7 AND LOAD: AND LD. 172
3-3-8 OR LOAD: OR LD. 174
3-3-9 Differentiated and Immediate Refreshing Instructions. 177
3-3-10 Operation Timing for I/O Instructions . 178
3-3-11 TR Bits . 178
3-3-12 NOT: NOT(520) . 180
3-3-13 CONDITION ON/OFF: UP(521) and DOWN(522) . 181
3-3-14 BIT TEST: TST(350) and TSTN(351) . 182

3-4 Sequence Output Instructions . 185
3-4-1 OUTPUT: OUT . 185
3-4-2 OUTPUT NOT: OUT NOT . 187
3-4-3 KEEP: KEEP(011) . 188
3-4-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014). 193
3-4-5 SET and RESET: SET and RSET. 195
3-4-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531) . 198
3-4-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533) . 201
3-4-8 SINGLE BIT OUTPUT: OUTB(534) . 204

3-5 Sequence Control Instructions . 206
3-5-1 END: END(001) . 206
3-5-2 NO OPERATION: NOP(000). 207
3-5-3 Overview of Interlock Instructions . 208
3-5-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) 210
3-5-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,

MULTI-INTERLOCK DIFFERENTIATION RELEASE, and
MULTI-INTERLOCK CLEAR: MILH(517), MILR(518), and MILC(519). 214

3-5-6 JUMP and JUMP END: JMP(004) and JME(005). 228
3-5-7 CONDITIONAL JUMP: CJP(510)/CJPN(511) . 232
3-5-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JME0(516) 236
3-5-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513) . 238
3-5-10 BREAK LOOP: BREAK(514) . 241

3-6 Timer and Counter Instructions. 242
3-6-1 HUNDRED-MS TIMER: TIM/TIMX(550). 245
3-6-2 TEN-MS TIMER: TIMH(015)/TIMHX(551) . 249
3-6-3 ONE-MS TIMER: TMHH(540)/TMHHX(552). 253
3-6-4 TENTH-MS TIMER: TIMU(541)/TIMUX(556). 256
3-6-5 HUNDREDTH-MS TIMER: TMUH(544)/TMUHX(557) . 259
3-6-6 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555) . 262
3-6-7 LONG TIMER: TIML(542)/TIMLX(553). 266
147

3-6-8 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554) . 269
3-6-9 COUNTER: CNT/CNTX(546). 275
3-6-10 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548) . 278
3-6-11 RESET TIMER/COUNTER: CNR(545)/CNRX(547). 282
3-6-12 Example Timer and Counter Applications . 284
3-6-13 Indirect Addressing of Timer/Counter Numbers . 288

3-7 Comparison Instructions . 291
3-7-1 Input Comparison Instructions (300 to 328). 291
3-7-2 Time Comparison Instructions (341 to 346). 297
3-7-3 COMPARE: CMP(020) . 303
3-7-4 DOUBLE COMPARE: CMPL(060) . 306
3-7-5 SIGNED BINARY COMPARE: CPS(114) . 309
3-7-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115) . 312
3-7-7 MULTIPLE COMPARE: MCMP(019) . 315
3-7-8 TABLE COMPARE: TCMP(085) . 317
3-7-9 BLOCK COMPARE: BCMP(068) . 320
3-7-10 EXPANDED BLOCK COMPARE: BCMP2(502). 322
3-7-11 AREA RANGE COMPARE: ZCP(088). 326
3-7-12 DOUBLE AREA RANGE COMPARE: ZCPL(116) . 329

3-8 Data Movement Instructions . 331
3-8-1 MOVE: MOV(021). 331
3-8-2 MOVE NOT: MVN(022) . 333
3-8-3 DOUBLE MOVE: MOVL(498) . 334
3-8-4 DOUBLE MOVE NOT: MVNL(499) . 336
3-8-5 MOVE BIT: MOVB(082) . 337
3-8-6 MOVE DIGIT: MOVD(083) . 339
3-8-7 MULTIPLE BIT TRANSFER: XFRB(062). 342
3-8-8 BLOCK TRANSFER: XFER(070) . 344
3-8-9 BLOCK SET: BSET(071) . 347
3-8-10 DATA EXCHANGE: XCHG(073) . 349
3-8-11 DOUBLE DATA EXCHANGE: XCGL(562) . 350
3-8-12 SINGLE WORD DISTRIBUTE: DIST(080) . 352
3-8-13 DATA COLLECT: COLL(081) . 354
3-8-14 MOVE TO REGISTER: MOVR(560) . 356
3-8-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561). 358

3-9 Data Shift Instructions . 360
3-9-1 SHIFT REGISTER: SFT(010) . 361
3-9-2 REVERSIBLE SHIFT REGISTER: SFTR(084) . 362
3-9-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017). 365
3-9-4 WORD SHIFT: WSFT(016). 368
3-9-5 ARITHMETIC SHIFT LEFT: ASL(025). 370
3-9-6 DOUBLE SHIFT LEFT: ASLL(570). 371
3-9-7 ARITHMETIC SHIFT RIGHT: ASR(026) . 373
3-9-8 DOUBLE SHIFT RIGHT: ASRL(571) . 374
3-9-9 ROTATE LEFT: ROL(027). 376
3-9-10 DOUBLE ROTATE LEFT: ROLL(572) . 378
3-9-11 ROTATE RIGHT: ROR(028) . 380
3-9-12 DOUBLE ROTATE RIGHT: RORL(573) . 381
3-9-13 ROTATE LEFT WITHOUT CARRY: RLNC(574) . 383
3-9-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576). 385
3-9-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575) . 387
3-9-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577) 388
3-9-17 ONE DIGIT SHIFT LEFT: SLD(074) . 390
3-9-18 ONE DIGIT SHIFT RIGHT: SRD(075). 392
3-9-19 SHIFT N-BIT DATA LEFT: NSFL(578) . 393
3-9-20 SHIFT N-BIT DATA RIGHT: NSFR(579). 395
3-9-21 SHIFT N-BITS LEFT: NASL(580) . 397
148

3-9-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582) . 400
3-9-23 SHIFT N-BITS RIGHT: NASR(581) . 403
3-9-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583) . 405

3-10 Increment/Decrement Instructions . 409
3-10-1 INCREMENT BINARY: ++(590) . 409
3-10-2 DOUBLE INCREMENT BINARY: ++L(591) . 411
3-10-3 DECREMENT BINARY: – –(592). 413
3-10-4 DOUBLE DECREMENT BINARY: – –L(593). 415
3-10-5 INCREMENT BCD: ++B(594) . 417
3-10-6 DOUBLE INCREMENT BCD: ++BL(595) . 419
3-10-7 DECREMENT BCD: – –B(596) . 421
3-10-8 DOUBLE DECREMENT BCD: – –BL(597). 423

3-11 Symbol Math Instructions . 425
3-11-1 SIGNED BINARY ADD WITHOUT CARRY: +(400) . 426
3-11-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401) 428
3-11-3 SIGNED BINARY ADD WITH CARRY: +C(402). 430
3-11-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403) 432
3-11-5 BCD ADD WITHOUT CARRY: +B(404) . 434
3-11-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405) . 435
3-11-7 BCD ADD WITH CARRY: +BC(406) . 437
3-11-8 DOUBLE BCD ADD WITH CARRY: +BCL(407). 439
3-11-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410) 440
3-11-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411) 442
3-11-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412) . 446
3-11-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413) 448
3-11-13 BCD SUBTRACT WITHOUT CARRY: –B(414) . 451
3-11-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415) 452
3-11-15 BCD SUBTRACT WITH CARRY: –BC(416). 456
3-11-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417) . 457
3-11-17 SIGNED BINARY MULTIPLY: *(420). 459
3-11-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421) . 461
3-11-19 UNSIGNED BINARY MULTIPLY: *U(422) . 463
3-11-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423). 465
3-11-21 BCD MULTIPLY: *B(424). 467
3-11-22 DOUBLE BCD MULTIPLY: *BL(425). 469
3-11-23 SIGNED BINARY DIVIDE: /(430) . 471
3-11-24 DOUBLE SIGNED BINARY DIVIDE: /L(431) . 473
3-11-25 UNSIGNED BINARY DIVIDE: /U(432) . 475
3-11-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433). 477
3-11-27 BCD DIVIDE: /B(434). 479
3-11-28 DOUBLE BCD DIVIDE: /BL(435) . 481

3-12 Conversion Instructions. 483
3-12-1 BCD TO BINARY: BIN(023). 483
3-12-2 DOUBLE BCD TO DOUBLE BINARY: BINL(058) . 485
3-12-3 BINARY TO BCD: BCD(024) . 487
3-12-4 DOUBLE BINARY TO DOUBLE BCD: BCDL(059) . 489
3-12-5 2’S COMPLEMENT: NEG(160) . 491
3-12-6 DOUBLE 2’S COMPLEMENT: NEGL(161) . 493
3-12-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600) . 494
3-12-8 DATA DECODER: MLPX(076) . 496
3-12-9 DATA ENCODER: DMPX(077) . 500
3-12-10 ASCII CONVERT: ASC(086) . 504
3-12-11 ASCII TO HEX: HEX(162) . 508
3-12-12 COLUMN TO LINE: LINE(063). 512
3-12-13 LINE TO COLUMN: COLM(064) . 514
3-12-14 SIGNED BCD TO BINARY: BINS(470). 517
3-12-15 DOUBLE SIGNED BCD TO BINARY: BISL(472) . 520
149

3-12-16 SIGNED BINARY TO BCD: BCDS(471) . 523
3-12-17 DOUBLE SIGNED BINARY TO BCD: BDSL(473) . 525
3-12-18 GRAY CODE CONVERT: GRY(474) . 529
3-12-19 FOUR-DIGIT NUMBER TO ASCII: STR4(601) . 534
3-12-20 EIGHT-DIGIT NUMBER TO ASCII: STR8(602). 537
3-12-21 SIXTEEN-DIGIT NUMBER TO ASCII: STR16(603) . 539
3-12-22 ASCII TO FOUR-DIGIT NUMBER: NUM4(604) . 541
3-12-23 ASCII TO EIGHT-DIGIT NUMBER: NUM8(605). 544
3-12-24 ASCII TO SIXTEEN-DIGIT NUMBER: NUM16(606) . 545

3-13 Logic Instructions . 548
3-13-1 LOGICAL AND: ANDW(034) . 548
3-13-2 DOUBLE LOGICAL AND: ANDL(610) . 550
3-13-3 LOGICAL OR: ORW(035) . 551
3-13-4 DOUBLE LOGICAL OR: ORWL(611). 553
3-13-5 EXCLUSIVE OR: XORW(036). 555
3-13-6 DOUBLE EXCLUSIVE OR: XORL(612). 557
3-13-7 EXCLUSIVE NOR: XNRW(037) . 559
3-13-8 DOUBLE EXCLUSIVE NOR: XNRL(613) . 560
3-13-9 COMPLEMENT: COM(029) . 562
3-13-10 DOUBLE COMPLEMENT: COML(614) . 564

3-14 Special Math Instructions . 565
3-14-1 BINARY ROOT: ROTB(620). 565
3-14-2 BCD SQUARE ROOT: ROOT(072). 567
3-14-3 ARITHMETIC PROCESS: APR(069) . 571
3-14-4 FLOATING POINT DIVIDE: FDIV(079) . 583
3-14-5 BIT COUNTER: BCNT(067). 587

3-15 Floating-point Math Instructions . 589
3-15-1 FLOATING TO 16-BIT: FIX(450). 594
3-15-2 FLOATING TO 32-BIT: FIXL(451) . 596
3-15-3 16-BIT TO FLOATING: FLT(452) . 597
3-15-4 32-BIT TO FLOATING: FLTL(453) . 599
3-15-5 FLOATING-POINT ADD: +F(454). 601
3-15-6 FLOATING-POINT SUBTRACT: –F(455) . 603
3-15-7 FLOATING-POINT MULTIPLY: *F(456) . 606
3-15-8 FLOATING-POINT DIVIDE: /F(457) . 607
3-15-9 DEGREES TO RADIANS: RAD(458) . 609
3-15-10 RADIANS TO DEGREES: DEG(459) . 610
3-15-11 SINE: SIN(460) . 612
3-15-12 HIGH-SPEED SINE: SINQ(475). 614
3-15-13 COSINE: COS(461) . 615
3-15-14 HIGH-SPEED COSINE: COSQ(476) . 617
3-15-15 TANGENT: TAN(462) . 619
3-15-16 HIGH-SPEED TANGENT: TANQ(477) . 621
3-15-17 ARC SINE: ASIN(463) . 623
3-15-18 ARC COSINE: ACOS(464) . 625
3-15-19 ARC TANGENT: ATAN(465) . 627
3-15-20 SQUARE ROOT: SQRT(466) . 629
3-15-21 EXPONENT: EXP(467) . 631
3-15-22 LOGARITHM: LOG(468) . 633
3-15-23 EXPONENTIAL POWER: PWR(840) . 635
3-15-24 Single-precision Floating-point Comparison Instructions . 636
3-15-25 FLOATING-POINT TO ASCII: FSTR(448) . 640
3-15-26 ASCII TO FLOATING-POINT: FVAL(449) . 645
3-15-27 MOVE FLOATING-POINT (SINGLE): MOVF(469) . 649

3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) 651
3-16-1 DOUBLE FLOATING TO 16-BIT: FIXD(841). 657
3-16-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842) . 658
150

3-16-3 16-BIT TO DOUBLE FLOATING: DBL(843) . 660
3-16-4 32-BIT TO DOUBLE FLOATING: DBLL(844) . 661
3-16-5 DOUBLE FLOATING-POINT ADD: +D(845) . 663
3-16-6 DOUBLE FLOATING-POINT SUBTRACT: –D(846) . 665
3-16-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847). 668
3-16-8 DOUBLE FLOATING-POINT DIVIDE: /D(848) . 669
3-16-9 DOUBLE DEGREES TO RADIANS: RADD(849) . 671
3-16-10 DOUBLE RADIANS TO DEGREES: DEGD(850) . 673
3-16-11 DOUBLE SINE: SIND(851) . 674
3-16-12 DOUBLE COSINE: COSD(852) . 676
3-16-13 DOUBLE TANGENT: TAND(853) . 678
3-16-14 DOUBLE ARC SINE: ASIND(854) . 680
3-16-15 DOUBLE ARC COSINE: ACOSD(855) . 682
3-16-16 DOUBLE ARC TANGENT: ATAND(856) . 684
3-16-17 DOUBLE SQUARE ROOT: SQRTD(857) . 686
3-16-18 DOUBLE EXPONENT: EXPD(858) . 688
3-16-19 DOUBLE LOGARITHM: LOGD(859) . 690
3-16-20 DOUBLE EXPONENTIAL POWER: PWRD(860) . 692
3-16-21 Double-precision Floating-point Input Instructions . 694

3-17 Table Data Processing Instructions . 697
3-17-1 SET STACK: SSET(630) . 703
3-17-2 PUSH ONTO STACK: PUSH(632) . 706
3-17-3 FIRST IN FIRST OUT: FIFO(633) . 709
3-17-4 LAST IN FIRST OUT: LIFO(634) . 712
3-17-5 DIMENSION RECORD TABLE: DIM(631). 715
3-17-6 SET RECORD LOCATION: SETR(635) . 718
3-17-7 GET RECORD NUMBER: GETR(636) . 720
3-17-8 DATA SEARCH: SRCH(181) . 722
3-17-9 SWAP BYTES: SWAP(637). 725
3-17-10 FIND MAXIMUM: MAX(182) . 727
3-17-11 FIND MINIMUM: MIN(183) . 731
3-17-12 SUM: SUM(184) . 735
3-17-13 FRAME CHECKSUM: FCS(180) . 738
3-17-14 STACK SIZE READ: SNUM(638) . 742
3-17-15 STACK DATA READ: SREAD(639). 744
3-17-16 STACK DATA OVERWRITE: SWRIT(640) . 747
3-17-17 STACK DATA INSERT: SINS(641). 750
3-17-18 STACK DATA DELETE: SDEL(642) . 753

3-18 Data Control Instructions . 757
3-18-1 PID CONTROL: PID(190) . 757
3-18-2 PID CONTROL WITH AUTOTUNING: PIDAT(191) . 769
3-18-3 LIMIT CONTROL: LMT(680) . 779
3-18-4 DEAD BAND CONTROL: BAND(681) . 781
3-18-5 DEAD ZONE CONTROL: ZONE(682) . 784
3-18-6 TIME-PROPORTIONAL OUTPUT: TPO(685) . 787
3-18-7 SCALING: SCL(194). 795
3-18-8 SCALING 2: SCL2(486) . 800
3-18-9 SCALING 3: SCL3(487) . 804
3-18-10 AVERAGE: AVG(195) . 807

3-19 Subroutines . 811
3-19-1 SUBROUTINE CALL: SBS(091) . 811
3-19-2 MACRO: MCRO(099) . 817
3-19-3 SUBROUTINE ENTRY: SBN(092). 821
3-19-4 SUBROUTINE RETURN: RET(093) . 824
3-19-5 GLOBAL SUBROUTINE CALL: GSBS(750) . 824
3-19-6 GLOBAL SUBROUTINE ENTRY: GSBN(751) . 832
3-19-7 GLOBAL SUBROUTINE RETURN: GRET(752) . 835
151

3-20 Interrupt Control Instructions . 836
3-20-1 SET INTERRUPT MASK: MSKS(690) . 839
3-20-2 READ INTERRUPT MASK: MSKR(692) . 846
3-20-3 CLEAR INTERRUPT: CLI(691) . 851
3-20-4 DISABLE INTERRUPTS: DI(693) . 855
3-20-5 ENABLE INTERRUPTS: EI(694) . 858
3-20-6 Summary of Interrupt Control . 859

3-21 High-speed Counter/Pulse Output Instructions. 864
3-21-1 MODE CONTROL: INI(880) (CJ1M-CPU21/22/23 Only). 864
3-21-2 HIGH-SPEED COUNTER PV READ: PRV(881) (CJ1M-CPU21/22/23 Only). 868
3-21-3 COUNTER FREQUENCY CONVERT: PRV2(883). 874
3-21-4 REGISTER COMPARISON TABLE: CTBL(882) (CJ1M-CPU21/22/23 Only) 878
3-21-5 SPEED OUTPUT: SPED(885) (CJ1M-CPU21/22/23 Only) . 882
3-21-6 SET PULSES: PULS(886) (CJ1M-CPU21/22/23 Only) . 887
3-21-7 PULSE OUTPUT: PLS2(887) (CJ1M-CPU21/22/23 Only) . 890
3-21-8 ACCELERATION CONTROL: ACC(888) (CJ1M-CPU21/22/23 Only) 896
3-21-9 ORIGIN SEARCH: ORG(889) (CJ1M-CPU21/22/23 Only). 903
3-21-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891) (CJ1M-CPU21/22/23 Only) 906

3-22 Step Instructions . 908
3-22-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009) . 909

3-23 Basic I/O Unit Instructions . 926
3-23-1 I/O REFRESH: IORF(097). 926
3-23-2 SPECIAL I/O UNIT I/O REFRESH: FIORF(225) . 929
3-23-3 CPU BUS UNIT I/O REFRESH: DLNK(226) . 932
3-23-4 7-SEGMENT DECODER: SDEC(078) . 937
3-23-5 DIGITAL SWITCH INPUT – DSW(210) . 940
3-23-6 TEN KEY INPUT – TKY(211) . 945
3-23-7 HEXADECIMAL KEY INPUT – HKY(212) . 948
3-23-8 MATRIX INPUT: MTR(213) . 953
3-23-9 7-SEGMENT DISPLAY OUTPUT – 7SEG(214) . 957
3-23-10 INTELLIGENT I/O READ: IORD(222) . 962
3-23-11 INTELLIGENT I/O WRITE: IOWR(223) . 967

3-24 Serial Communications Instructions . 972
3-24-1 Serial Communications. 972
3-24-2 PROTOCOL MACRO: PMCR(260) . 974
3-24-3 TRANSMIT: TXD(236) . 983
3-24-4 RECEIVE: RXD(235) . 993
3-24-5 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT: TXDU(256). 1005
3-24-6 RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255) 1013
3-24-7 CHANGE SERIAL PORT SETUP: STUP(237) . 1021

3-25 Network Instructions. 1026
3-25-1 About SYSMAC NET Link/SYSMAC LINK Operations . 1026
3-25-2 About Explicit Message Instructions . 1039
3-25-3 NETWORK SEND: SEND(090) . 1044
3-25-4 NETWORK RECEIVE: RECV(098) . 1050
3-25-5 DELIVER COMMAND: CMND(490) . 1056
3-25-6 EXPLICIT MESSAGE SEND: EXPLT(720). 1066
3-25-7 EXPLICIT GET ATTRIBUTE: EGATR(721) . 1074
3-25-8 EXPLICIT SET ATTRIBUTE: ESATR(722). 1081
3-25-9 EXPLICIT WORD READ: ECHRD(723) . 1087
3-25-10 EXPLICIT WORD WRITE: ECHWR(724) . 1091

3-26 File Memory Instructions . 1095
3-26-1 Precautions when Using Memory Cards . 1095
3-26-2 READ DATA FILE: FREAD(700) . 1099
3-26-3 WRITE DATA FILE: FWRIT(701) . 1106
3-26-4 WRITE TEXT FILE: TWRIT(704) . 1113
152

3-27 Display Instructions: DISPLAY MESSAGE: MSG(046). 1119
3-28 Clock Instructions . 1122

3-28-1 CALENDAR ADD: CADD(730) . 1122
3-28-2 CALENDAR SUBTRACT: CSUB(731) . 1126
3-28-3 HOURS TO SECONDS: SEC(065) . 1129
3-28-4 SECONDS TO HOURS: HMS(066) . 1131
3-28-5 CLOCK ADJUSTMENT: DATE(735) . 1134

3-29 Debugging Instructions . 1136
3-29-1 Trace Memory Sampling: TRSM(045). 1136

3-30 Failure Diagnosis Instructions. 1140
3-30-1 FAILURE ALARM: FAL(006) . 1140
3-30-2 SEVERE FAILURE ALARM: FALS(007) . 1148
3-30-3 FAILURE POINT DETECTION: FPD(269) . 1156

3-31 Other Instructions . 1165
3-31-1 SET CARRY: STC(040) . 1166
3-31-2 CLEAR CARRY: CLC(041) . 1166
3-31-3 SELECT EM BANK: EMBC(281) . 1167
3-31-4 EXTEND MAXIMUM CYCLE TIME: WDT(094) . 1169
3-31-5 SAVE CONDITION FLAGS: CCS(282) . 1171
3-31-6 LOAD CONDITION FLAGS: CCL(283) . 1173
3-31-7 CONVERT ADDRESS FROM CV: FRMCV(284) . 1174
3-31-8 CONVERT ADDRESS TO CV: TOCV(285) . 1179
3-31-9 DISABLE PERIPHERAL SERVICING: IOSP(287) (CS1-H/CJ1-H/CJ1M Only). . . . 1183
3-31-10 ENABLE PERIPHERAL SERVICING: IORS(288) (CS1-H/CJ1-H/CJ1M Only) 1185

3-32 Block Programming Instructions . 1186
3-32-1 Introduction. 1186
3-32-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801) 1191
3-32-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812) 1193
3-32-4 Branching: IF(802), ELSE(803), and IEND(804) . 1196
3-32-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806) . 1199
3-32-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT 1202
3-32-7 HUNDRED-MS TIMER WAIT: TIMW(813) and TIMWX(816) 1206
3-32-8 COUNTER WAIT: CNTW(814) and CNTWX(818) . 1209
3-32-9 TEN-MS TIMER WAIT: TMHW(815) and TMHWX(817) . 1212
3-32-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT . 1215

3-33 Text String Processing Instructions. 1220
3-33-1 Text String Processing Overview . 1220
3-33-2 MOV STRING: MOV$(664) . 1221
3-33-3 CONCATENATE STRING: +$(656) . 1223
3-33-4 GET STRING LEFT: LEFT$(652) . 1226
3-33-5 GET STRING RIGHT: RGHT$(653) . 1228
3-33-6 GET STRING MIDDLE: MID$(654) . 1230
3-33-7 FIND IN STRING: FIND$(660) . 1233
3-33-8 STRING LENGTH: LEN$(650) . 1235
3-33-9 REPLACE IN STRING: RPLC$(661) . 1237
3-33-10 DELETE STRING: DEL$(658) . 1240
3-33-11 EXCHANGE STRING: XCHG$(665). 1242
3-33-12 CLEAR STRING: CLR$(666) . 1245
3-33-13 INSERT INTO STRING: INS$(657) . 1246
3-33-14 String Comparison Instructions (670 to 675) . 1250

3-34 Task Control Instructions . 1255
3-34-1 TASK ON: TKON(820) . 1255
3-34-2 TASK OFF: TKOF(821). 1258

3-35 Model Conversion Instructions (Unit Ver. 3.0 or Later) . 1261
3-35-1 BLOCK TRANSFER: XFERC(565) . 1263
3-35-2 SINGLE WORD DISTRIBUTE: DISTC(566) . 1266
3-35-3 DATA COLLECT: COLLC(567) . 1269
153

3-35-4 MOVE BIT: MOVBC(568). 1273
3-35-5 BIT COUNTER: BCNTC(621) . 1275
3-35-6 GET VARIABLE ID: GETID(286) . 1277
154

Notation and Layout of Instruction Descriptions Section 3-1
3-1 Notation and Layout of Instruction Descriptions
Instructions are described in groups by function. Refer to 2-3 Alphabetical List
of Instructions by Mnemonic for a list of instructions by mnemonic that lists the
page number in this section for each instruction.

The description of each instruction is organized as described in the following
table.

Item Contents

Name and Mnemonic The heading of each section consists of the name of the instruction followed by the
mnemonic with the function code in parentheses. Example: MOVE BIT: MOVB(082)

Purpose The basic purpose of the instruction is described after the section heading.

Ladder Symbol and Operand
Names

Variations Variations The variations that can be used to control execution of the instruction under special
conditions are given using the mnemonic form. Any variation that is not supported by
an instruction is given as “Not supported.”

• Executed Each Cycle for ON Condition: The instruction is executed as long as
it receives an ON execution condition.

• Executed Once for Upward Differentiation: The instruction is executed during
the next cycle only after the execution condition changes from OFF to ON.

• Executed Once for Downward Differentiation: The instruction is executed dur-
ing the next cycle only after the execution condition changes from ON to OFF.

• Always Executed: The instruction does not require an execution condition and
is executed each cycle.

• Creates ON Condition....: The instruction is executed each cycle to create an
execution condition for the next instruction.

Variations Executed Each Cycle for ON Condition MOVB(082)

Variations Variations Executed Once for Upward Differentia-
tion

@MOVB(082)

Executed Once for Downward Differenti-
ation

Not supported.

Immediate
Refreshing
Specification

Immediate refreshing can be specified for some instructions to refresh I/O when the
instruction is executed. If immediate refreshing is supported, the specification is
given using the mnemonic form. If immediate refreshing is not support by an instruc-
tion “Not supported” is given.

Immediate Refreshing Specification Not supported.

Applicable Program Areas The program areas in which the instruction can be used are specified. “OK” indicates
the areas in which the instruction can be used.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

MOVB(082)

S

C

D

S: Source word or data

C: Control word

D: Destination word

The ladder symbol used to represent the instruction on the CX-Programmer is
shown, as in the example for the MOVE BIT instruction given below. The name of
each operand is also provided with the ladder symbol.
155

Notation and Layout of Instruction Descriptions Section 3-1
Constants Constants input for operands are given as listed below.

Operand Descriptions and Operand Specifications

• Operands Specifying Bit Strings (Normally Input as Hexadecimal):
Only the hexadecimal form is given for operands specifying bit strings,
e.g., only “#0000 to #FFFF” is specified as the S operand for the
MOV(021) instruction. On the CX-Programmer, however, bit strings can
be input in decimal form by using the & prefix.

• Operands Specifying Numeric Values (Normally Input as Decimal, Includ-
ing Jump Numbers):
Both the decimal and hexadecimal forms are given for operands specify-
ing numeric values, e.g., “#0000 to #FFFF” and “&0 to &65535” are given
for the N operand for the XFER(070) instruction.

Operands

Operand Specifications The memory areas addresses that can be used each operand are listed in a table
like the following one. The letters used in the column headings on the left are the
same as those used in the ladder symbol. “---” is used to indicate when an area can-
not be specific for an operand.

Area S C D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

Description The function of the instruction and the operands used in the instruction are
described.

Flags The flags table indicates the status of the condition flags immediately after execution
of the instruction. Any flags that are not listed are not affected by the instruction.
“OFF” indicates that a flag is turned OFF immediately after execution of the instruc-
tion regardless of the results of executing the instruction.

Name Label Operation

Error Flag ER ON if control data is within ranges.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

Precautions Special precautions required in using the instruction are provided. Be sure to read
and follow these precautions.

Example An example of using the instruction with specific operands is provided to further
explain the function of the instruction.

Item Contents

15 8 07

C m n

Where necessary, the meaning of words and bits used in specific operands, such
as control words, is given.

Source bit: 00 to 0F
(0 to 15 decimal)

Destination bit: 00 to 0F
(0 to 15 decimal)
156

Notation and Layout of Instruction Descriptions Section 3-1
• Operands Indicating Control Numbers (Except for Jump Numbers):
The decimal form is given for control numbers, e.g., “0 to 1023” is given
for the N operand for the SBS(091) instruction.

Examples

In the examples, constants are given using the CX-Programmer notation, e.g.,
operands specifying numeric values are given in decimal for with an & prefix,
as shown in the following example.

The input methods for constants for the Programming Devices are given in the
following table.

Note When operands are input on the CX-Programmer, the input ranges will be dis-
played along with the appropriate prefixes.

Condition Flags Programming Console labels are used for condition flags in this section. With
the CX-Programmer, the condition flags are registered in advance as global
symbols with “P_” in front of the symbol name.

Operand CX-
Programmer

Programming Console

Operands specify-
ing bit strings (nor-
mally input as
hexadecimal)

Input as deci-
mal with an &
prefix or input
as hexadeci-
mal with an #
prefix. (See
note.)

The Cont/# Key can be pressed to input hexa-
decimal values by default with an # prefix. The
CHG Key can then be pressed to rotate
between hexadecimal (with # prefix), signed
decimal (with +/–), and unsigned decimal (with
& prefix).

Operands specify-
ing numeric values
(normally input as
decimal)

Operands specify-
ing control numbers
(except for jump
numbers)

Input as deci-
mal with an #
prefix. (See
note.)

Input directly in decimal form.
If the & prefix is automatically added, the CHG
Key can be pressed to rotate between
unsigned decimal (with & prefix), hexadecimal
(with # prefix), and signed decimal (with +/–).

If no prefix is displayed, the value must be
entered in decimal form.

XFER

&10

D00100

D00200

Flag CX-Programmer label Programming Console label

Error Flag P_ER ER

Access Error
Flag

P_AER AER

Carry Flag P_CY CY

Greater Than
Flag

P_GT >

Equals Flag P_EQ =

Less Than Flag P_LT <

Negative Flag P_N N

Overflow Flag P_OF OF

Underflow Flag P_UF UF

Greater Than or
Equals Flag

P_GE >=

Not Equal Flag P_NE <>
157

Instruction Upgrades and New Instructions Section 3-2
Symbol Instructions Some of the C/CV-series PLC instructions have been changed to different
instructions with the same functionality for the CS/CJ-series PLCs.

3-2 Instruction Upgrades and New Instructions
This section lists the instruction upgrades for CS1 CPU Units with the -EV1
suffix and CS1-H/CJ1-H CPU Units.

3-2-1 Upgrades for CS1-H/CJ1-H CPU Units
New Instructions The following instructions have been added to the CS1-H and CJ1-H CPU

Units.

Less Than or
Equals Flag

P_LE <=

Always ON Flag P_On ON

Always OFF
Flag

P_Off OFF

Flag CX-Programmer label Programming Console label

Instruction group C/CV Series CS/CJ Series

Sequence Control JMP #0 / JME #0 JMP0 / JME0

Comparison EQU AND=

Data Movement MOVQ MOV

Increment/Decre-
ment

INC ++B

INCL ++BL

INCB ++

INBL ++L

DEC --B

DECL --BL

DECB --

DCBL --L

Symbol Math ADB +C

ADBL +CL

ADD +BC

ADDL +BCL

SBB -C

SBBL -CL

SUB -BC

SUBL -BCL

MBS *

MBSL *L

MLB *U

MUL *B

MULL *BL

DBS /

DBSL /L

DVB /U

DIV /B

DIVL /BL

Interrupt Control INT MSKS / MSKR / CLIDI / EI
158

Instruction Upgrades and New Instructions Section 3-2
Sequence Output Instructions
SINGLE BIT SET, SETB(532)
SINGLE BIT RESET, RSTB(533)
SINGLE BIT OUTPUT, OUTB(534)

Data Comparison Instructions
AREA RANGE COMPARE, ZCP(088)
DOUBLE AREA RANGE COMPARE, ZCPL(116)

Floating Point Calculation and Conversion Instructions
Floating Point Data Comparison Instructions: =F, <>F, <F, <=F, >F, and >=F (329 to
334)

FLOATING POINT TO ASCII, FSTR(448)
ASCII TO FLOATING POINT, VAL(449)

Double-precision Floating Point Calculation and Conversion Instructions
Double-precision Comparison Instructions: =D, <>D, <D, <=D, >D, and >=D (335 to
340)
DOUBLE FLOATING TO 16-BIT BINARY, FIXD(841)
DOUBLE FLOATING TO 32-BIT BINARY, FIXLD(8420)
16-BIT BINARY TO DOUBLE FLOATING, DBL(843)
32-BIT BINARY TO DOUBLE FLOATING, DBLL(844)
DOUBLE FLOATING-POINT ADD, +D(845)
DOUBLE FLOATING-POINT SUBTRACT, −D(846)
DOUBLE FLOATING-POINT MULTIPLY, *D(847)
DOUBLE FLOATING-POINT DIVIDE, /D(848)
DOUBLE DEGREES TO RADIANS, RADD(849)
DOUBLE RADIANS TO DEGREES, DEGD(850)
DOUBLE SINE, SIND(851)
DOUBLE COSINE, COSD(852)
DOUBLE TANGENT, TAND(853)
DOUBLE ARC SINE, ASIND(854)
DOUBLE ARC COSINE, ACOSD(855)
DOUBLE ARC TANGENT, ATAND(856)
DOUBLE SQUARE ROOT, SQRTD(857)
DOUBLE EXPONENT, EXPD(858)
DOUBLE LOGARITHM, LOGD(859)
DOUBLE EXPONENTIAL POWER, PWRD(860)

Table Data Processing Instructions
STACK SIZE READ, SNUM(638)
STACK DATA READ, SREAD(639)
STACK DATA WRITE, SWRIT(640)
STACK DATA INSERT, SINS(641)
STACK DATA DELETE, SDEL(642)

Data Control Instructions
PID CONTROL WITH AUTOTUNING, PIDAT(191)

Subroutine Instructions
GLOBAL SUBROUTINE CALL, GSBS(750)
GLOBAL SUBROUTINE ENTRY, GSBN(751)
GLOBAL SUBROUTINE RETURN, GRET(752)

I/O Unit Instructions
CPU BUS UNIT I/O REFRESH, DLNK(226)

Other Instructions
SAVE CONDITION FLAGS, CCS(282)
LOAD CONDITION FLAGS, CCL(283)
CONVERT ADDRESS FROM CV, FRMCV(284)
CONVERT ADDRESS TO CV, TOCV(285)
DISABLE PERIPHERAL SERVICING, IOSP(287)
ENABLE PERIPHERAL SERVICING, IORS(288)
159

Instruction Upgrades and New Instructions Section 3-2
New Instructions The following instructions have been upgraded for the CS1-H and CJ1-H CPU
Units.

Special Math Instructions
ARITHMETIC PROCESS, APR(069)

Failure Diagnosis Instructions
FAILURE ALARM, FAL(006)
SEVERE FAILURE ALARM, FALS(007)
160

Sequence Input Instructions Section 3-3
3-3 Sequence Input Instructions

3-3-1 LOAD: LD
Purpose Indicates a logical start and creates an ON/OFF execution condition based on

the ON/OFF status of the specified operand bit.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units for Duplex-CPU
Systems.

Applicable Program Areas

Operand Specifications

Bus bar Starting point of block

Variations Restarts Logic and Creates ON Each Cycle
Operand Bit is ON

LD

Restarts Logic and Creates ON Once for
Upward Differentiation

@LD

Restarts Logic and Creates ON Once for
Downward Differentiation

%LD

Immediate Refreshing Specification (See note.) !LD

Combined
Variations

Refreshes Input Bit, Restarts Logic, and
Creates ON Once for Upward Differentiation
(See note.)

!@LD

Refreshes Input Bit, Restarts Logic, and
Creates ON Once for Downward Differentiation
(See note.)

!%LD

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area LD operand bit

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK0000 to TK0031

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, A1, A0

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area TR0 to TR15

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---
161

Sequence Input Instructions Section 3-3
Description LD is used for the first normally open bit from the bus bar or for the first nor-
mally open bit of a logic block. If there is no immediate refreshing specifica-
tion, the specified bit in I/O memory is read. If there is an immediate
refreshing specification, the status of the Basic Input Unit’s input terminal is
read and used.

LD is used in the following circumstances as an instruction for indicating a log-
ical start.

• When directly connecting to the bus bar.

• When logic blocks are connected by AND LD or OR LD, i.e., at the begin-
ning of a logic block.

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a programming error
will occur with the program check by the Peripheral Device.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus1. If they do not match, a program-
ming error will occur. For details, refer to 3-3-7 AND LOAD: AND LD and 3-3-
8 OR LOAD: OR LD.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for LD. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for LD. An immediate refresh
instruction updates the status of the input bit just before the instruction is exe-
cuted for Basic Input Units (but not Basic Input Units on Slave Racks or for
C200H Group 2 Multi-point Input Units).

For LD, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or !%). If either of these is specified, the input is refreshed from
the Basic Input Unit just before the instruction is executed and the execution
condition is turned ON for one cycle only after the status goes from OFF to
ON, or from ON to OFF.

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
, –(– –)IR0 to, –(– –)IR15

Area LD operand bit
162

Sequence Input Instructions Section 3-3
Example

3-3-2 LOAD NOT: LD NOT
Purpose Indicates a logical start and creates an ON/OFF execution condition based on

the reverse of the ON/OFF status of the specified operand bit.

Ladder Symbol

Variations

Note 1. The following variations are supported by only the CS1-H, CJ1-H, CJ1M,
or CS1D CPU Units: @LD NOT, %LD NOT, !@LD NOT, and !%LD NOT.

2. Immediate refreshing is not supported by CS1D CPU Units for Duplex-
CPU Systems.

3. Combined variations are supported by CS1D CPU Units for Single-CPU
Systems and CS1-H, CJ1-H, and CJ1M CPU Units only.

Instruction Operand

LD 000000

LD 000001

LD 000002

AND 000003

OR LD ---

AND LD ---

LD NOT 000004

AND 000005

OR LD ---

OUT 000100

OR LD
AND LD

OR LD

Bus bar Starting point of block

Variations Restarts Logic and Creates ON Each Cycle Operand
Bit is OFF

LD NOT

Restarts Logic and Creates ON Once for Upward
Differentiation (See note 1.)

@LD NOT

Restarts Logic and Creates ON Once for Downward
Differentiation (See note 1.)

%LD NOT

Immediate Refreshing Specification (See note 2.) !LD NOT

Combined
Variations

Refreshes Input Bit, Restarts Logic, and Creates ON
Once for Upward Differentiation (See note 3.)

!@LD NOT

Refreshes Input Bit, Restarts Logic, and Creates ON
Once for Downward Differentiation (See note 3.)

!%LD NOT
163

Sequence Input Instructions Section 3-3
Applicable Program Areas

Operand Specifications

Description LD NOT is used for the first normally closed bit from the bus bar, or for the first
normally closed bit of a logic block. If there is no immediate refreshing specifi-
cation, the specified bit in I/O memory is read and reversed. If there is an
immediate refreshing specification, the status of the Basic Input Unit’s input
terminal is read, reversed, and used.

LD NOT is used in the following circumstances as an instruction for indicating
a logical start.

• When directly connecting to the bus bar.

• When logic blocks are connected by AND LD or OR LD. (Used at the
beginning of a logic block.)

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a program error will
occur with the program check by the Peripheral Device.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus1. If they do not match, a program-
ming error will occur.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area LD NOT bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK0000 to TK0031

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
164

Sequence Input Instructions Section 3-3
Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!) can be specified for LD NOT. An immediate refresh
instruction updates the status of the input bit just before the instruction is exe-
cuted for Basic Input Units (but not Basic Input Units on Slave Racks or for
C200H Group 2 Multi-point Input Units).

Example

3-3-3 AND: AND
Purpose Takes a logical AND of the status of the specified operand bit and the current

execution condition.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units for Duplex-CPU
Systems.

Applicable Program Areas

Instruction Operand

LD 000000

LD 000001

LD 000002

AND 000003

OR LD ---

AND LD ---

LD NOT 000004

AND 000005

OR LD ---

OUT 000100

OR LD
AND LD

OR LD

Variations Creates ON Each Cycle AND Result is ON AND

Creates ON Once for Upward Differentiation @AND

Creates ON Once for Downward Differentiation %AND

Immediate Refreshing Specification (See note.) !AND

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation (See note.)

!@AND

Refreshes Input Bit and Creates ON Once for
Downward Differentiation (See note.)

!%AND

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
165

Sequence Input Instructions Section 3-3
Operand Specifications

Description AND is used for a normally open bit connected in series. AND cannot be
directly connected to the bus bar, and cannot be used at the beginning of a
logic block. If there is no immediate refreshing specification, the specified bit
in I/O memory is read. If there is an immediate refreshing specification, the
status of the Basic Input Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for AND. If dif-
ferentiate up (@) is specified, the execution condition is turned ON for one
cycle only after the status of the operand bit goes from OFF to ON. If differen-
tiate down (%) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for AND. An immediate refresh
instruction updates the status of the input bit just before the instruction is exe-
cuted from the Basic Input Unit (but not Basic Input Units on Slave Racks or
for C200H Group 2 Multi-point Input Units).

For AND, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or !%). If either of these is specified, the input is refreshed from
the Basic Input Unit just before the instruction is executed and the execution
condition is turned ON for one cycle only after the status goes from OFF to
ON, or from ON to OFF.

AND cannot be used for addresses in the DM and EM Areas. Use AND
TST(350) instead.

Area AND bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK0000 to TK0031

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
166

Sequence Input Instructions Section 3-3
Example

3-3-4 AND NOT: AND NOT
Purpose Reverses the status of the specified operand bit and takes a logical AND with

the current execution condition.

Ladder Symbol

Variations

Note 1. The following variations are supported by only the CS1-H, CJ1-H, CJ1M,
or CS1D CPU Units: @AND NOT, %AND NOT, !@AND NOT, and !%AND
NOT.

2. Immediate refreshing is not supported by CS1D CPU Units for Duplex-
CPU Systems.

3. Combined variations are supported by CS1D CPU Units for Single-CPU
Systems and CS1-H, CJ1-H, and CJ1M CPU Units only.

Applicable Program Areas

Operand Specifications

Instruction Operand

LD 000000

AND 000001

LD 000002

AND 000003

LD 000004

AND NOT 000005

OR LD ---

AND LD ---

OUT 000006

Variations Creates ON Each Cycle AND NOT Result is ON AND NOT

Creates ON Once for Upward Differentiation (See
note 1.)

@AND NOT

Creates ON Once for Downward Differentiation (See
note 1.)

%AND NOT

Immediate Refreshing Specification (See note 2.) !AND NOT

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation (See note 3.)

!@AND NOT

Refreshes Input Bit and Creates ON Once for
Downward Differentiation (See note 3.)

!%AND NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area AND NOT bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115
167

Sequence Input Instructions Section 3-3
Description AND NOT is used for a normally closed bit connected in series. AND NOT
cannot be directly connected to the bus bar, and cannot be used at the begin-
ning of a logic block. If there is no immediate refreshing specification, the
specified bit in I/O memory is read. If there is an immediate refreshing specifi-
cation, the status the Basic Input Unit’s input terminals is read.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!) can be specified for AND NOT. An immediate refresh
instruction updates the status of input bit just before the instruction is exe-
cuted from Basic Input Units (but not for Basic Input Units on Slave Racks or
for C200H Group 2 Multi-point Input Units).

Example

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK0000 to TK0031

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area AND NOT bit operand

Instruction Operand

LD 000000

AND 000001

LD 000002

AND 000003

LD 000004

AND NOT 000005
168

Sequence Input Instructions Section 3-3
3-3-5 OR: OR
Purpose Takes a logical OR of the ON/OFF status of the specified operand bit and the

current execution condition.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units for Duplex-CPU
Systems.

Applicable Program Areas

Operand Specifications

OR LD ---

AND LD ---

OUT 000006

Instruction Operand

Bus bar

Variations Creates ON Each Cycle OR Result is ON OR

Creates ON Once for Upward Differentiation @OR

Creates ON Once for Downward Differentiation %OR

Immediate Refreshing Specification (See note.) !OR

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation (See note.)

!@OR

Refreshes Input Bit and Creates ON Once for
Downward Differentiation (See note.)

!%OR

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area OR bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK0000 to TK0031

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---
169

Sequence Input Instructions Section 3-3
Description OR is used for a normally open bit connected in parallel. A normally open bit
is configured to form a logical OR with a logic block beginning with a LOAD or
LOAD NOT instruction (connected to the bus bar or at the beginning of the
logic block). If there is no immediate refreshing specification, the specified bit
in I/O memory is read. If there is an immediate refreshing specification, the
status of the Basic Input Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for OR. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for OR. An immediate refresh
instruction updates the status of the input bit just before the instruction is exe-
cuted from the Basic Input Unit (but not for Basic Input Units on Slave Racks
or for C200H Group 2 Multi-point Input Units).

For OR, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or !%). If either of these is specified, the input is refreshed from
the Basic Input Unit just before the instruction is executed and the execution
condition is turned ON for one cycle only after the status of the operand bit
goes from OFF to ON, or from ON to OFF.

Example

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area OR bit operand

Instruction Operand

LD 000000

AND 000001

AND 000002

OR 000003

AND 000004

LD 000005

AND 000006

OR NOT 000007

AND LD ---

OUT 000008
170

Sequence Input Instructions Section 3-3
3-3-6 OR NOT: OR NOT
Purpose Reverses the status of the specified bit and takes a logical OR with the current

execution condition.

Ladder Symbol

Variations

Note 1. The following variations are supported by only the CS1-H, CJ1-H, CJ1M,
or CS1D CPU Units: @OR NOT, %OR NOT, !@OR NOT, and !%OR NOT.

2. Immediate refreshing is not supported by CS1D CPU Units for Duplex-
CPU Systems.

3. Combined variations are supported by CS1D CPU Units for Single-CPU
Systems and CS1-H, CJ1-H, and CJ1M CPU Units only.

Applicable Program Areas

Operand Specifications

Bus bar

Variations Creates ON Each Cycle OR NOT Result is ON OR NOT

Creates ON Once for Upward Differentiation (See
note 1.)

@OR NOT

Creates ON Once for Downward Differentiation (See
note 1.)

%OR NOT

Immediate Refreshing Specification (See note 2.) !OR NOT

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation (See note 3.)

!@OR NOT

Refreshes Input Bit and Creates ON Once for
Downward Differentiation (See note 3.)

!%OR NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area OR NOT bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK0000 to TK0031

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, A1, A0

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---
171

Sequence Input Instructions Section 3-3
Description OR NOT is used for a normally closed bit connected in parallel. A normally
closed bit is configured to form a logical OR with a logic block beginning with a
LOAD or LOAD NOT instruction (connected to the bus bar or at the beginning
of the logic block). If there is no immediate refreshing specification, the speci-
fied bit in I/O memory is read. If there is an immediate refreshing specification,
the status of the Basic Input Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Immediate refresh (!) can be specified for OR NOT. An immediate refresh
instruction updates the status of the input bit just before the instruction is exe-
cuted from a Basic Input Unit (but not Basic Input Units on Slave Racks or for
C200H Group 2 Multi-point Input Units).

Example

3-3-7 AND LOAD: AND LD
Purpose Takes a logical AND between logic blocks.

Ladder Symbol

Variations

Applicable Program Areas

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area OR NOT bit operand

Instruction Operand

LD 000000

AND 000001

AND 000002

OR 000003

AND 000004

LD 000005

AND 000006

OR NOT 000007

AND LD ---

OUT 000008

Logic block Logic block

Variations Creates ON Each Cycle AND Result is ON AND LD

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
172

Sequence Input Instructions Section 3-3
Description AND LD connects in series the logic block just before this instruction with
another logic block.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

In the following diagram, the two logic blocks are indicated by dotted lines.
Studying this example shows that an ON execution condition will be produced
when either of the execution conditions in the left logic block is ON (i.e., when
either CIO 000000 or CIO 000001 is ON) and either of the execution condi-
tions in the right logic block is ON (i.e., when either CIO 000002 is ON or
CIO 000003 is OFF).

Flags There are no flags affected by this instruction.

Precautions Three or more logic blocks can be connected in series using this instruction to
first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in series.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a program
error will occur.

Example

Coding Example (1)

LD

LD

AND LD

Logic block A

Logic block B

Serial connection between logic block A and logic block B.

to

to

Instruction Operand

LD 000000

OR NOT 000001

LD NOT 000002

OR 000003

AND LD ---

LD 000004

OR 000005
173

Sequence Input Instructions Section 3-3
Coding Example (2)

The AND LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of AND LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before AND LOAD is not more than eight. To use nine or more,
program using method (1). If there are nine or more with method (2), then a
program error will occur during the program check by the Peripheral Device.

Coding

Second LD: Used for first bit of next block connected in series to previous block.

3-3-8 OR LOAD: OR LD
Purpose Takes a logical OR between logic blocks.

Ladder Symbol

Variations

AND LD ---

.

.
.
.

OUT 000500

Instruction Operand

LD 000000

OR NOT 000001

LD NOT 000002

OR 000003

LD 000004

OR 000005

.

.
.
.

AND LD ---

AND LD ---

.

.
.
.

OUT 000500

Address Instruction Operand

000000 LD 000000

000001 OR 000001

000002 LD 000002

000003 OR NOT 000003

000004 AND LD ---

000005 OUT 000500

Instruction Operand

Logic block

Logic block

Variations Creates ON Each Cycle AND Result is ON OR LD

Immediate Refreshing Specification Not supported.
174

Sequence Input Instructions Section 3-3
Applicable Program Areas

Description AND LD connects in parallel the logic block just before this instruction with
another logic block.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition would be pro-
duced either when CIO 000000 is ON and CIO 000001 is OFF or when
CIO 000002 and CIO 000003 are both ON. The operation of and mnemonic
code for the OR LOAD instruction is exactly the same as those for a AND
LOAD instruction except that the current execution condition is ORed with the
last unused execution condition.

Flags There are no flags affected by this instruction.

Precautions Three or more logic blocks can be connected in parallel using this instruction
to first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in parallel.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur.

Example

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

LD

LD

OR LD

to

to

Logic block A

Logic block B

Parallel connection between logic block A and logic block B.
175

Sequence Input Instructions Section 3-3
Coding Example (1)

Coding Example (2)

The OR LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of OR LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before OR LOAD is not more than eight. To use nine or more, pro-
gram using method (1). If there are nine or more with method (2), then a pro-
gram error will occur during the program check by the Peripheral Device.

Coding

Second LD: Used for first bit of next block connected in series to previous block.

Instruction Operand

LD 000000

AND NOT 000001

LD NOT 000002

AND NOT 000003

OR LD ---

LD 000004

AND 000005

OR LD ---

.

.
.
.

OUT 000501

Instruction Operand

LD 000000

AND NOT 000001

LD NOT 000002

AND NOT 000003

LD 000004

AND 000005

.

.
.
.

OR LD ---

OR LD ---

.

.
.
.

OUT 000501

Address Instruction Operand

000100 LD 000000

000101 AND NOT 000001

000102 LD 000002

000103 AND 000003

000104 OR LD ---

000105 OUT 000501
176

Sequence Input Instructions Section 3-3
3-3-9 Differentiated and Immediate Refreshing Instructions
The LOAD, AND, and OR instructions have differentiated and immediate
refreshing variations in addition to their ordinary forms, and there are also two
combinations available.

The LOAD NOT, AND NOT, OR NOT, OUT, and OUT NOT instructions have
immediate refreshing variations in addition to their ordinary forms.

The I/O timing for data handled by instructions differs for ordinary and differ-
entiated instructions, immediate refreshing instructions, and immediate
refreshing differentiated instructions.

Ordinary and differentiated instructions are executed using data input by pre-
vious I/O refresh processing, and the results are output with the next I/O pro-
cessing. Here “I/O refreshing” means the data exchanged between the CPU’s
internal memory and the I/O Unit.

In addition to the above I/O refreshing, an immediate refresh instruction
exchanges data with the I/O Unit for those words that are accessed by the
instruction. An immediate refresh instruction refreshes eight bits simulta-
neously (leftmost or rightmost eight bits) in addition to the specified bit.

Immediate refresh instructions cannot be used for Units on Slave Racks.

Instruction variation Mnemonic Function I/O refresh

Ordinary LD, AND, OR, LD NOT,
AND NOT, OR NOT

The ON/OFF status of the specified bit
is taken by the CPU with cyclic refresh-
ing, and it is reflected in the next instruc-
tion execution.

Cyclic refreshing

OUT, OUT NOT After the instruction is executed, the ON/
OFF status of the specified bit is output
with the next cyclic refreshing.

Differentiated up @LD, @AND, @OR The instruction is executed once when
the specified bit turns from OFF to ON
and the ON state is held for one cycle.

Differentiated down %LD, %AND, %OR The instruction is executed once when
the specified bit turns from ON to OFF
and the ON state is held for one cycle.

Immediate refresh !LD, !AND, !OR, !LD NOT,
!AND NOT, !OR NOT

The input data for the specified bit is
taken by the CPU and the instruction is
executed.

Before instruction execu-
tion

!OUT, !OUT NOT After the instruction is executed, the
data for the specified bit is output.

After instruction execution

Differentiated up /
immediate refresh

!@LD, !@AND, !@OR The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from OFF to ON and the ON state is
held for one cycle.

Before instruction execu-
tion

Differentiated down /
immediate refresh

!%LD, !%AND, !%OR The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from ON to OFF and the ON state is
held for one cycle.
177

Sequence Input Instructions Section 3-3
3-3-10 Operation Timing for I/O Instructions
The following chart shows the differences in the timing of instruction opera-
tions for a program configured from LD and OUT.

3-3-11 TR Bits
TR bits are used to temporarily retain the ON/OFF status of execution condi-
tions in a program when programming in mnemonic code. They are not used
when programming directly in ladder program form because the processing is
automatically executed by the Peripheral Device. The following diagram
shows a simple application using two TR bits.

↓

↑

!

!

!

!

!

!

!

!

!↓

!↑

!

↓

↑

!↓

!↑

I/O refreshingInstruction execution

CPU
processing

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input receivedInput
received
178

Sequence Input Instructions Section 3-3
Using TR0 to TR15 TR0 to TR15 are used only with LOAD and OUTPUT instructions. There are
no restrictions on the order in which the bit addresses are used.

Sometimes it is possible to simplify a program by rewriting it so that TR bits
are not required. The following diagram shows one case in which a TR bit is
unnecessary and one in which a TR bit is required.

In instruction block (1), the ON/OFF status at point A is the same as for output
CIO 00200, so AND 000001 and OUT 000201 can be coded without requiring
a TR bit. In instruction block (2), the status of the branching point and that of
output CIO 000202 are not necessarily the same, so a TR bit must be used. In
this case, the number of steps in the program could be reduced by using
instruction block (1) in place of instruction block (2).

TR0 to TR15
Considerations

TR bits are used only for retaining (OUT TR0 to TR15) and restoring (LD TR0
to TR15) the ON/OFF status of branching points in programs with many out-
put branches. They are thus different from general bits, and cannot be used
with AND or OR instructions, or with instructions that include NOT.

 000000 LD 000000
 000001 OUT TR0
 000002 AND 000001
 000003 OUT TR1
 000004 AND 000002
 000005 OUT 000500
 000006 LD TR1
 000007 AND 000003
 000008 OUT 000501
 000009 LD TR0
 000010 AND 000004
 000011 OUT 000502
 000012 LD TR0
 000013 AND NOT 000005
 000014 OUT 000503

Instruction OperandsAddress

(1)

(2)
179

Sequence Input Instructions Section 3-3
TR0 to TR15 output
Duplication

A TR bit address cannot be repeated within the same block in a program with
many output branches, as shown in the following diagram. It can, however, be
used again in a different block.

3-3-12 NOT: NOT(520)
Purpose Reverses the execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Description NOT(520) is placed between an execution condition and another instruction to
invert the execution condition.

Flags There are no flags affected by NOT(520).

Precautions NOT(520) is an intermediate instruction, i.e., it cannot be used as a right-hand
instruction. Be sure to program a right-hand instruction after NOT(520).

Example NOT(520) reverses the execution condition in the following example.

The following table shows the operation of this program section.

to

NOT(520)

Variations Reverses the Execution Condition Each Cycle NOT(520)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
180

Sequence Input Instructions Section 3-3
3-3-13 CONDITION ON/OFF: UP(521) and DOWN(522)
Purpose UP(521) turns ON the execution condition for the next instruction for one cycle

when the execution condition it receives goes from OFF to ON. DOWN(522)
turns ON the execution condition for the next instruction for one cycle when
the execution condition it receives goes from ON to OFF.

Ladder Symbols

Variations

Applicable Program Areas

Description UP(521) is placed between an execution condition and another instruction to
turn the execution condition into an up-differentiated condition. UP(521)
causes the connecting instruction to be executed just once when the execu-
tion condition goes from OFF to ON.

DOWN(522) is placed between an execution condition and another instruction
to turn the execution condition into a down-differentiated condition.
DOWN(522) causes the connecting instruction to be executed just once when
the execution condition goes from ON to OFF.

The DIFU(013) and DIFD(014) instructions can also be used for the same
purpose, but they require work bits. UP(521) and DOWN(522) simplify pro-
gramming by reducing the number of work bits and program addresses
needed.

Flags There are no flags affected by UP(521) and DOWN(522).

Precautions UP(521) and DOWN(522) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after UP(521) or DOWN(522).

The operation of UP(521) and DOWN(522) depends on the execution condi-
tion for the instruction as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped

Input bit status Output bit status

CIO 000000 CIO 000001 CIO 000002 CIO 000003

1 1 1 0

1 1 0 0

1 0 1 1

0 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

UP(521)

DOWN(522)

Variations Creates ON Once for Upward Differentiation UP(521)

Immediate Refreshing Specification Not supported

Variations Creates ON Once for Downward Differentiation UP(522)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
181

Sequence Input Instructions Section 3-3
program section, or a subroutine. Refer to 3-5-4 INTERLOCK and INTER-
LOCK CLEAR: IL(002) and ILC(003), 3-5-6 JUMP and JUMP END: JMP(004)
and JME(005), and 3-20 Interrupt Control Instructions for details.

Note Observe the following precaution when using UP(521) in a function
block definition.

The operation of UP(521) will not be consistent if the same function block
instance is executed more than once in the same cycle.

An instance will not be executed while EN is OFF. Caution is thus required
when using UP(521) in a function block definition. For details, refer to informa-
tion on restrictions on using ladder programming instructions in the CX-Pro-
grammer Operation Manual: Function Blocks.

Observe the following precaution when using UP(521) in a subroutine.

The operation of UP(521) will not be consistent if the same subroutine is exe-
cuted more than once in the same cycle.

An subroutine will not be executed while the input condition for the subroutine
is OFF. Caution is thus required when using UP(521) in a function block defini-
tion. For details, refer to information on SBS(091).

Examples When CIO 000000 goes from OFF to ON in the following example,
CIO 000001 is turned ON for just one cycle.

3-3-14 BIT TEST: TST(350) and TSTN(351)
Purpose LD TST(350), AND TST(350), and OR TST(350) are used in the program like

LD, AND, and OR; the execution condition is ON when the specified bit in the
specified word is ON, and OFF when the bit is OFF.

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the program
like LD NOT, AND NOT, and OR NOT; the execution condition is OFF when
the specified bit in the specified word is ON, and ON when the bit is OFF.

Cycle
time

Cycle
time
182

Sequence Input Instructions Section 3-3
Ladder Symbols

Variations

Applicable Program Areas

Operands N: Bit number

The bit number must be between 0000 and 000F hexadecimal or between
&0000 and &0015 decimal. Only the rightmost bit (0 to F hexadecimal) of the
contents of the word is valid when a word address is specified.

Operand Specifications

TST(350)

S

N

TSTN(351)

S

N

S: Source word

N: Bit number

S: Source word

N: Bit number

Variations Executed Each Cycle TST(350)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle TSTN(351)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM addresses
in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM addresses
in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to #000F (binary) or
&0 to &15

Data Registers DR0 to DR15
183

Sequence Input Instructions Section 3-3
Description LD TST(350), AND TST(350), and OR TST(350) can be used in the program
like LD, AND, and OR; the execution condition is ON when the specified bit in
the specified word is ON and OFF when the bit is OFF. Unlike LD, AND, and
OR, bits in the DM and EM areas can be used as operands in TST(350).

LD TSTN(351), AND TSTN(351), and OR TSTN(351) can be used in the pro-
gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is OFF.
Unlike LD NOT, AND NOT, and OR NOT, bits in the DM and EM areas can be
used as operands in TSTN(351).

Flags

Note In CS1 and CJ1 CPU Units, these are turned OFF.
In CS1-H, CJ1-H, CJ1M, and CS1D CPU Units, these Flags are left
unchanged.

Precautions TST(350) and TSTN(351) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after TST(350) or TSTN(351).

Examples LD TST(350) and LD TSTN(351)

In the following example, CIO 000001 is turned ON when bit 3 of D00010 is
ON.

In the following example, CIO 000001 is turned ON when bit 3 of D00010 is
OFF.

AND TST(350) and AND TSTN(351)

In the following example, CIO 000001 is turned ON when CIO 000000 and bit
3 of D00010 are both ON.

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 , IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S N

Name Label Operation

Error Flag ER OFF or unchanged (See note.)

Equals Flag = OFF or unchanged (See note.)

Negative Flag N OFF or unchanged (See note.)

&3

&3
184

Sequence Output Instructions Section 3-4
In the following example, CIO 000001 is turned ON when CIO 000000 is ON
and bit 5 of D00010 is OFF.

OR TST(350) and OR TSTN(351)

In the following example, CIO 000001 is turned ON when CIO 000000 or bit 3
of D00010 is ON.

In the following example, CIO 000001 is turned ON when CIO 000000 is ON
or bit 3 of D00010 is OFF.

3-4 Sequence Output Instructions
3-4-1 OUTPUT: OUT
Purpose Outputs the result (execution condition) of the logical processing to the speci-

fied bit.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

&3

&5

&3

&3

Variations Executed Each Cycle for ON Condition OUT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification (See note.) !OUT
185

Sequence Output Instructions Section 3-4
Applicable Program Areas

Operand Specifications

Description If there is no immediate refreshing specification, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If there is
an immediate refreshing specification, the status of the execution condition
(power flow) is also written to the Basic Output Unit’s output terminal in addi-
tion to the output bit in I/O memory.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!) can be specified for OUT and OUT NOT. An immedi-
ate refresh instruction updates the status of the output terminal just after the
instruction is executed for the Basic Output Unit (but not for Basic Output
Units on Slave Racks or for C200H Group 2 Multi-point Input Units), at the
same time as it writes the status of the execution condition (power flow) to the
specified output bit in I/O memory.

OUT cannot be used for addresses in the DM and EM Areas. Use OUTB(534)
instead.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area OUT bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A44800 to A95915

Timer Area ---

Counter Area ---

TR Area TR0 to TR15

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to ,IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
186

Sequence Output Instructions Section 3-4
Example

Note Difference between SET/RSET and OUT

For OUT, the operand bit is turned ON when the input condition turns ON and
is turned OFF when the input condition turns OFF. For SET and RSET, the
operand bit turns ON or OFF, respectively, when the input condition turns ON
and the operand bit does not change when the input condition turns OFF.

Note Precaution for Index Registers

OUT is executed even when the input condition turns OFF. Be particularly
careful when programming OUT using an indirect index register address.

3-4-2 OUTPUT NOT: OUT NOT
Purpose Reverses the result (execution condition) of the logical processing, and out-

puts it to the specified bit.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operand Specifications

Instruction Operand

LD 000000

OUT 000001

OUT NOT 000002

,IR0

MOVR
W0.0
IR0

Input condition

When the input condition is OFF,
MOVR(560) is not executed, but OUT
is executed for the address stored in
the index register.

Variations Executed Each Cycle for ON Condition OUT NOT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification (See note.) !OUT NOT

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area OUT bit operand

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115
187

Sequence Output Instructions Section 3-4
Description If there is no immediate refreshing specification, the status of the execution
condition (power flow) is reversed and written to a specified bit in I/O memory.
If there is an immediate refreshing specification, the status of the execution
condition (power flow) is reversed and also written to the Basic Output Unit’s
output terminal in addition to the output bit in I/O memory.

Flags There are no flags affected by this instruction.

Example

3-4-3 KEEP: KEEP(011)
Purpose Operates as a latching relay.

Ladder Symbol

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A44800 to A95915

Timer Area ---

Counter Area ---

TR Area TR0 to TR15

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to ,IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area OUT bit operand

Instruction Operand

LD 000000

OUT 000001

OUT NOT 000002

KEEP(011)

B

S (Set)

R (Reset)

B: Bit
188

Sequence Output Instructions Section 3-4
Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operand Specifications

Description When S turns ON, the designated bit will go ON and stay ON until reset,
regardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF. The relationship between execution conditions and
KEEP(011) bit status is shown below.

Variations Executed Each Cycle for ON Condition KEEP(011)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !KEEP(011)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A44800 to A95915

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15

Set

Reset
189

Sequence Output Instructions Section 3-4
If S and R are ON simultaneously, the reset input takes precedence.

The set input (S) cannot be received while R is ON.

KEEP(011) has an immediate refreshing variation (!KEEP(011)). When an
external output bit has been specified for B in a !KEEP(011) instruction, any
changes to B will be refreshed when !KEEP(011) is executed and reflected
immediately in the output bit. (The changes will not be reflected immediately if
the bit is allocated to a Group-2 High-density I/O Unit, High-density Special
I/O Unit, or a Unit mounted in a SYSMAC BUS Remote I/O Slave Rack.)

KEEP(011) operates like the self-maintaining bit, but a self-maintaining bit
programmed with KEEP(011) requires one less instruction.

Self-maintaining bits programmed with KEEP(011) will maintain status even in
an interlock program section, unlike the self-maintaining bit programmed with-
out KEEP(011).

ON

OFF

ON

OFF

ON

OFFStatus of C

S execution condition

R execution condition

Set

Reset

Status of C

Set

Reset

Status of C
190

Sequence Output Instructions Section 3-4
KEEP(011) can be used to create flip-flops as shown below.

If a holding bit is used for B, the bit status will be retained even during a power
interruption. KEEP(011) can thus be used to program bits that will maintain
status after restarting the PLC following a power interruption. An example of
this that can be used to produce a warning display following a system shut-
down for an emergency situation is shown below.

The status of I/O Area bits can be retained in the event of a power interruption
by turning ON the IOM Hold Bit and setting IOM Hold Bit Hold in the PLC
Setup. In this case, I/O Area bits used in KEEP(011) will maintain status after
restarting the PLC following a power interruption, just like holding bits. Be sure
to restart the PLC after changing the PLC Setup; otherwise the new settings
will not be used.

Flags No flags are affected by KEEP(011).

Precautions Never use an input bit in a normally closed condition on the reset (R) for
KEEP(011) when the input device uses an AC power supply. The delay in
shutting down the PLC’s DC power supply (relative to the AC power supply to

Output bit C will maintain its
previous status in an interlock.

Output bit C will be turned
OFF in an interlock.

Reset input

Indicates
emergency
situation

Activates
warning
display
191

Sequence Output Instructions Section 3-4
the input device) can cause the operand bit of KEEP(011) to be reset. This sit-
uation is shown below.

The operands for KEEP(011) are input in a different order in ladder diagrams
and mnemonic code.
Ladder diagram order: Set input → KEEP(011) → Reset input
Mnemonic code order:Set input → Reset input → KEEP(011)

Example When CIO 000000 goes ON in the following example, CIO 00500 is turned
ON. CIO 00500 remains ON until CIO 000001 goes ON.

When CIO 000002 goes ON and CIO 000003 goes OFF in the following
example, CIO 00100 is turned ON. CIO 00100 remains ON until CIO 000004
or CIO 000005 goes ON.

Coding

Note KEEP(011) is input in different orders on in ladder and mnemonic form. In lad-
der form, input the set input, KEEP(011), and then the reset input. In mne-
monic form, input the set input, the reset input, and then KEEP(011).

NEVER

S

R
A

KEEP

120000

A

Input Unit

Address Instruction Operand

000100 LD 000000

000101 LD 000001

000102 KEEP (011) 000500

000103 LD 000002

000104 AND NOT 000003

000105 LD 000004

000106 OR 000005

000107 KEEP (011) 000100
192

Sequence Output Instructions Section 3-4
3-4-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)
Purpose DIFU(013) turns the designated bit ON for one cycle when the execution con-

dition goes from OFF to ON (rising edge).
DIFD(014) turns the designated bit ON for one cycle when the execution con-
dition goes from ON to OFF (falling edge).

Ladder Symbols

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operand Specifications

DIFU(013)

B

DIFD(014)

B

B: Bit

B: Bit

Variations Executed Each Cycle for ON Condition Not supported

Executed Once for Upward Differentiation DIFU(013)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !DIFU(013)

Variations Executed Each Cycle for ON Condition Not supported

Executed Once for Upward Differentiation DIFD(014)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !DIFD(014)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A44800 to A95915

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---
193

Sequence Output Instructions Section 3-4
Description When the execution condition goes from OFF to ON, DIFU(013) turns B ON.
When DIFU(013) is reached in the next cycle, B is turned OFF.

When the execution condition goes from ON to OFF, DIFD(014) turns B ON.
When DIFD(014) is reached in the next cycle, B is turned OFF.

DIFU(013) and DIFD(014) have immediate refreshing variations (!DIFU(013)
and !DIFD(014)). When an external output bit has been specified for B in one
of these instructions, any changes to B will be refreshed when the instruction
is executed and reflected immediately in the output bit. (The changes will not
be reflected immediately if the bit is allocated to a Group-2 High-density I/O
Unit, High-density Special I/O Unit, or a Unit mounted in a SYSMAC BUS
Remote I/O Slave Rack.)

UP(521) and DOWN(522) can be used to execute an instruction for just one
cycle when the execution condition goes from OFF → ON or ON → OFF.
Refer to 3-3-13 CONDITION ON/OFF: UP(521) and DOWN(522) for details.

Flags No flags are affected by DIFU(013) and DIFD(014).

Precautions The operation of DIFU(013) or DIFD(014) depends on the execution condition
for the instruction itself as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped pro-
gram section, or a subroutine. Refer to 3-5-4 INTERLOCK and INTERLOCK
CLEAR: IL(002) and ILC(003), 3-5-6 JUMP and JUMP END: JMP(004) and
JME(005), and 3-20 Interrupt Control Instructions for details.

If DIFU(013) is used in a FOR-NEXT loop and the loop repeats in a cycle, the
controlled bit will be always ON or always OFF within that loop.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to ,15–(– –) IR

Area B

Status of B

1 cycle

Execution condition

Status of B
1 cycle

Execution condition
194

Sequence Output Instructions Section 3-4
Examples Operation of DIFU(013)

When CIO 000000 goes from OFF to ON in the following example,
CIO 001000 is turned ON for one cycle.

Operation of DIFD(014)

When CIO 000000 goes from ON to OFF in the following example,
CIO 001000 is turned ON for one cycle.

Note Observe the following precaution when using DIFU(013) in a function
block definition.

The operation of DIFU(013) will not be consistent if the same function block
instance is executed more than once in the same cycle.

An instance will not be executed while EN is OFF. Caution is thus required
when using DIFU(013) in a function block definition. For details, refer to infor-
mation on restrictions on using ladder programming instructions in the CX-
Programmer Operation Manual: Function Blocks.

Observe the following precaution when using DIFU(013) in a subroutine.

The operation of DIFU(013) will not be consistent if the same subroutine is
executed more than once in the same cycle.

An subroutine will not be executed while the input condition for the subroutine
is OFF. Caution is thus required when using DIFU(013) in a function block def-
inition. For details, refer to information on SBS(091).

3-4-5 SET and RESET: SET and RSET
Purpose SET turns the operand bit ON when the execution condition is ON.

RSET turns the operand bit OFF when the execution condition is ON.

Ladder Symbols

001000

1 cycle 1 cycle

001000

001000

1 cycle 1 cycle

SET

B

RSET

B

B: Bit

B: Bit
195

Sequence Output Instructions Section 3-4
Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operand Specifications

Variations Executed Each Cycle for ON Condition SET

Executed Once for Upward Differentiation @SET

Executed Once for Downward Differentiation %SET

Immediate Refreshing Specification (See note.) !SET

Combined
variations

Executed Once and Bit Refreshed
Immediately for Upward Differentiation (See
note.)

!@SET

Executed Once and Bit Refreshed
Immediately for Downward Differentiation
(See note.)

!%SET

Variations Executed Each Cycle for ON Condition RSET

Executed Once for Upward Differentiation @RSET

Executed Once for Downward Differentiation %RSET

Immediate Refreshing Specification (See note.) !RSET

Combined
Variations

Immediate Refreshing Once for Upward
Differentiation (See note.)

!@RSET

Immediate Refreshing Once for Downward
Differentiation (See note.)

!%RSET

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A44800 to A95915

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to ,–(– –) IR15
196

Sequence Output Instructions Section 3-4
Description SET turns the operand bit ON when the execution condition is ON, and does
not affect the status of the operand bit when the execution condition is OFF.
Use RSET to turn OFF a bit that has been turned ON with SET.

RSET turns the operand bit OFF when the execution condition is ON, and
does not affect the status of the operand bit when the execution condition is
OFF. Use SET to turn ON a bit that has been turned OFF with RSET.

SET and RSET have immediate refreshing variations (!SET and !RSET).
When an external output bit has been specified for B in one of these instruc-
tions, any changes to B will be refreshed when the instruction is executed and
reflected immediately in the output bit. (The changes will not be reflected
immediately if the bit is allocated to a Group-2 High-density I/O Unit, High-
density Special I/O Unit, or a Unit mounted in a SYSMAC BUS Remote I/O
Slave Rack.)

The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SET and RSET instructions can be programmed
completely independently. Furthermore, the same bit may be used as the
operand in any number of SET or RSET instructions.

Flags No flags are affected by SET and RSET.

Precautions SET and RSET cannot be used to set and reset timers and counters.

When SET or RSET is programmed between IL(002) and ILC(003) or
JMP(004) and JME(005), the status of the specified bit will not be changed if
the program section is interlocked or jumped.

Note SET cannot be used for addresses in the DM and EM Areas. Use SETB(531)
instead.

Note RSET cannot be used for addresses in the DM and EM Areas. Use
RSTB(533) instead.

Example Differences between OUT/OUT NOT and SET/RSET

The operation of SET differs from that of OUT because the OUT instruction
turns the operand bit OFF when its execution condition is OFF. Likewise,
RSET differs from OUT NOT because OUT NOT turns the operand bit ON
when its execution condition is OFF.

Status of B

Execution condition
of SET

Execution condition
of RSET

Status of B
197

Sequence Output Instructions Section 3-4
3-4-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)
Purpose SETA(530) turns ON the specified number of consecutive bits.

RSTA(531) turns OFF the specified number of consecutive bits.

Ladder Symbols

Variations

Applicable Program Areas

Operands D: Beginning Word

Specifies the first word in which bits will be turned ON or OFF.

N1: Beginning Bit

Specifies the first bit which will be turned ON or OFF. N1 must be #0000 to
#000F (&0 to &15).

N2: Number of Bits

Specifies the number of bits which will be turned ON or OFF. N2 must be
#0000 to #FFFF (&0 to &65535).

000000

000001

000002

010000

CIO 010000 is turned ON when
CIO 000001 goes ON; it remains
ON until CIO 000002 goes ON.

CIO 010000 is turned ON/OFF
when CIO 000000 goes ON/OFF.

SETA(530)

D

N1

N2

RSTA(531)

D

N1

N2

D: Beginning word

N1: Beginning bit

N2: Number of bits

D: Beginning word

N1: Beginning bit

N2: Number of bits

Variations Executed Each Cycle for ON Condition SETA(530)

Executed Once for Upward Differentiation @SETA(530)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition RSTA(531)

Executed Once for Upward Differentiation @RSTA(531)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
198

Sequence Output Instructions Section 3-4
Note The bits being turned ON or OFF must be in the same data area. (The range
of words is roughly D to D+N2÷16.)

Operand Specifications

Description The operation of SETA(530) and RSTA(531) are described separately below.

Operation of SETA(530)

SETA(530) turns ON N2 bits, beginning from bit N1 of D, and continuing to the
left (more-significant bits). All other bits are left unchanged. (No changes will
be made if N2 is set to 0.)

Bits turned ON by SETA(530) can be turned OFF by any other instructions,
not just RSTA(531).

D

to

D: 256 words max.

Area D N1 N2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM addresses in
binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM addresses in
BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #000F
(binary) or &0 to
&15

#0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15
199

Sequence Output Instructions Section 3-4
SETA(530) can be used to turn ON bits in data areas that are normally
accessed by words only, such as the DM and EM areas.

Operation of RSTA(531)

RSTA(531) turns OFF N2 bits, beginning from bit N1 of D, and continuing to
the left (more-significant bits). All other bits are left unchanged. (No changes
will be made if N2 is set to 0.)

Bits turned OFF by RSTA(531) can be turned ON by any other instructions,
not just SETA(530).

RSTA(531) can be used to turn OFF bits in data areas that are normally
accessed by words only, such as the DM and EM areas.

Flags

Examples SETA(530) Example

When CIO 000000 is turned ON in the following example, the 20 bits (0014
hexadecimal) beginning with bit 5 of CIO 0100 are turned ON.

RSTA(531) Example

When CIO 000000 is turned ON in the following example, the 20 bits (0014
hexadecimal) beginning with bit 3 of CIO 0100 are turned OFF.

N2 bits are set to 1 (ON).

N2 bits are reset to 0 (OFF).

Name Label Operation

Error Flag ER ON if N1 is not within the specified range of 0000 to 000F.

OFF in all other cases.

&5

&20

N1: Bit 5

N2: 20 bits

&3

&20

N1: Bit 3

N2: 20 bits
200

Sequence Output Instructions Section 3-4
3-4-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)
Purpose SETB(532) turns ON the specified bit.

RSTB(533) turns OFF the specified bit.

These instructions are supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU
Units only.

Ladder Symbols

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operands D: Word Address

Specifies the word in which the bit will be turned ON or OFF.

N: Beginning Bit

Specifies the bit which will be turned ON or OFF. N must be #0000 to #000F
(&0 to &15).

RSTB(533)

D

N

SETB(532)

D

N

D: Word address
N: Bit number

D: Word address
N: Bit number

Variations Executed Each Cycle for ON Condition SETB(532)

Executed Once for Upward Differentiation @SETB(532)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !SETB(532)

Combined
Variations

Executed Once and Bit Refreshed
Immediately for Upward Differentiation (See
note.)

!@SETB(532)

Executed Once and Bit Refreshed
Immediately for Downward Differentiation

Not supported

Variations Executed Each Cycle for ON Condition RSTB(533)

Executed Once for Upward Differentiation @RSTB(533)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !RSTB(533)

Combined
Variations

Executed Once and Bit Refreshed
Immediately for Upward Differentiation (See
note.)

!@RSTB(533)

Executed Once and Bit Refreshed
Immediately for Downward Differentiation

Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
201

Sequence Output Instructions Section 3-4
Operand Specifications

Description The functions of SETB(532) and RSTB(533) are described separately below.

Operation of SETB(532)

SETB(532) turns ON bit N of word D when the execution condition is ON. The
status of the bit is not affected when the execution condition is OFF. Unlike
SET, SETB(532) can turn ON a bit in the DM area or EM area.

Bits turned ON by SETB(532) can be turned OFF by any other instruction, not
just RSTB(533).

SETB(532) is supported by CS1-H, CJ1-H, and CJ1M CPU Units only.

Area D N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM addresses in
binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM addresses in
BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #000F (binary)
or &0 to &15

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

ON
OFF

ON
OFF

15

This bit is turned ON.

Execution condition

Bit N of word D
202

Sequence Output Instructions Section 3-4
Operation of RSTB(533)

RSTB(533) turns OFF bit N of word D when the execution condition is ON.
The status of the bit is not affected when the execution condition is OFF. (Use
SETB(532) to turn ON the bit.) Unlike RST, RSTB(533) can turn OFF a bit in
the DM area or EM area.

Bits turned OFF by RSTB(533) can be turned ON by any other instruction, not
just SETB(532).

RSTB(533) is supported by CS1-H, CJ1-H, and CJ1M CPU Units only.

Flags

Precautions SETB(532) and RSTB(533) cannot set/reset timers and counters.

When SETB(532) or RSTB(533) is programmed between IL(002) and
ILC(003) or JMP(004) and JME(005), the status of the specified bit will not be
changed if the program section is interlocked or jumped, i.e., when the inter-
lock condition or jump condition is OFF.

SETB(532) and RSTB(533) have immediate refreshing variations
(!SETB(532) and !RSTB(533)). When an external output bit has been speci-
fied in one of these instructions, any changes to the specified bit will be
refreshed when the instruction is executed and reflected immediately in the
output bit. (The changes will not be reflected immediately if the bit is allocated
to a Group-2 High-density I/O Unit, High-density Special I/O Unit, or a Unit
mounted in a SYSMAC BUS Remote I/O Slave Rack.)

Differences between SET/RSET and SETB(532)/RSTB(533)

The SET and RSET instructions operate somewhat differently from
SETB(532) and RSTB(533).

1. The instructions operate in the same way when the specified bit is in the
CIO, W, H, or A Area.

2. The SETB(532) and RSTB(533) instructions can control bits in the DM and
EM Areas, unlike SET and RSET.

Differences between OUTB(534) and SETB(532)/RSTB(533)

The OUTB(534) instruction operates somewhat differently from SETB(532)
and RSTB(533).

1. The SETB(532) and RSTB(533) instructions change the status of the
specified bit only when their execution condition is ON. These instructions
have no effect on the status of the specified bit when their execution con-
dition is OFF.

ON
OFF

ON
OFF

15

This bit is turned OFF.

Execution condition

Bit N of word D

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 000F
(&0 to &15).

OFF in all other cases.
203

Sequence Output Instructions Section 3-4
2. The OUTB(534) instruction turns ON the specified bit when its execution
condition is ON and turns OFF the specified bit when its execution condi-
tion is OFF.

3. The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SETB(532) and RSTB(533) instructions can be
programmed completely independently. Furthermore, the same bit may be
used as the operand in any number of SETB(532) and RSTB(533) instruc-
tions.

3-4-8 SINGLE BIT OUTPUT: OUTB(534)
Purpose OUTB(534) outputs the status of the instruction’s execution condition to the

specified bit. OUTB(534) can control a bit in the DM Area or EM Area, unlike
OUT.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbols

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operands D: Word Address

Specifies the word containing the bit to be controlled.

N: Beginning Bit

Specifies the bit to be controlled. N must be #0000 to #000F (&0 to &15).

Operand Specifications

000000

SETB
D00000

&2

000001

RSTB
D00000

&2

Bit 02 of D00000 is turned ON
when CIO 000000 is ON.

Bit 02 of D00000 is turned OFF
when CIO 000001 is ON.

OUTB(534)

D

N

D: Word address
N: Bit number

Variations Executed Each Cycle for ON Condition OUTB(534)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !OUTB(534)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area D N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959
204

Sequence Output Instructions Section 3-4
Description When the execution condition is ON, OUTB(534) turns ON bit N of word D.
When the execution condition is OFF, OUTB(534) turns OFF bit N of word D.

If the immediate refreshing version is not used, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If the imme-
diate refreshing version is used, the status of the execution condition (power
flow) is written to the Basic Output Unit’s output terminal as well as the output
bit in I/O memory.

OUTB(534) is supported by CS1-H, CJ1-H, and CJ1M CPU Units only.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!OUTB(534)) can be specified. An immediate refresh
instruction updates the status of the output terminal just after the instruction is
executed on an output bit allocated to a Basic Output Unit (but not for C200H
Group 2 Multi-point Output Units or Basic Output Units on Slave Racks), at

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM addresses in
binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM addresses in
BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to #000F (binary)
or &0 to &15

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area D N

15 0

D

N

ON

OFF

ON

OFF

This bit is turned OFF.

Execution condition

Bit N of word D
205

Sequence Control Instructions Section 3-5
the same time as it writes the status of the execution condition (power flow) to
the specified output bit in I/O memory.

When OUTB(534) is programmed between IL(002) and ILC(003), the speci-
fied bit will be turned OFF if the program section is interlocked. (This is the
same as an OUT instruction in an interlocked program section.)

When a word is specified for the bit number (N), only bits 00 to 03 of N are
used. For example, if N contains FFFA hex, OUTB(534) will control bit 10 of
word D.

Note Difference between SETB(532)/RSTB(533) and OUTB(534)

For OUTB(534), the operand bit is turned ON when the input condition turns
ON and is turned OFF when the input condition turns OFF. For SETB(532)
and RSTB(533), the operand bit turns ON or OFF, respectively, when the input
condition turns ON and the operand bit does not change when the input con-
dition turns OFF.

Example

Note Precaution for Index Registers

OUTB(534) is executed even when the input condition turns OFF. Be particu-
larly careful when programming OUT using an indirect index register address.

3-5 Sequence Control Instructions

3-5-1 END: END(001)
Purpose Indicates the end of a program.

Ladder Symbol

Variations

Applicable Program Areas

000000

OUTB
D00000

&10

Bit 10 of D00000 is turned OFF
when CIO 000000 is OFF.

MOVR
D100
IR0

Input condition

OUTB
,IR0
&15

When the input condition is OFF,
MOVR(560) is not executed, but
OUTB(534) is executed for the address
stored in the index register.

END(001)

Variations Executed Each Cycle for ON Condition END(001)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed Not allowed OK
206

Sequence Control Instructions Section 3-5
Description END(001) completes the execution of a program for that cycle. No instructions
written after END(001) will be executed.

Execution proceeds to the program with the next task number. When the pro-
gram being executed has the highest task number in the program, END(001)
marks the end of the overall main program.

Precautions Always place END(001) at the end of each program. A programming error will
occur if there is not an END(001) instruction in the program.

3-5-2 NO OPERATION: NOP(000)
Purpose This instruction has no function. (No processing is performed for NOP(000).)

Ladder Symbol There is no ladder symbol associated with NOP(000).

Variations

Applicable Program Areas

Description No processing is performed for NOP(000), but this instruction can be used to
set aside lines in the program where instructions will be inserted later. When
the instructions are inserted later, there will be no change in program
addresses.

Flags No flags are affected by NOP(000).

I/O refreshing

Task 1

Task 2

Task n Program Z

Program A

Program B

To the next task number

To the next task number

End of the main program

Variations Executed Each Cycle for ON Condition NOP(000)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
207

Sequence Control Instructions Section 3-5
Precautions NOP(000) can only be used with mnemonic displays, not with ladder pro-
grams.

3-5-3 Overview of Interlock Instructions
Interlock Instructions The following instruction combinations can be used to interlock outputs in a

program section.

• INTERLOCK and INTERLOCK CLEAR (IL(002) and IL(003))

• MULTI-INTERLOCK DIFFERENTIATION HOLD and MULTI-INTERLOCK
CLEAR (MILH(517) and MILC(519))*

Note MILH(517) holds the status of the Differentiation Flag, so differentiat-
ed instructions that were interlocked are executed after the interlock
is cleared.

• MULTI-INTERLOCK DIFFERENTIATION RELEASE and MULTI-INTER-
LOCK CLEAR (MILR(518) and MILC(519))*

Note MILR(518) does not hold the status of the Differentiation Flag, so dif-
ferentiated instructions that were interlocked are not executed after
the interlock is cleared.

* These instructions are supported only by CS/CJ-series CPU Unit Ver. 2.0
or later.

Differences between
Interlocks and Multiple
Interlocks

Regular interlocks (IL(002) and IL(003)) cannot be nested, but multiple inter-
locks (MILH(517), MILR(518), and MILC(519)) can be nested. Ladder pro-
gramming can be simplified by nesting multiple interlocks, as shown in the
following diagram.

a
MILH

0

A1

b
MILH

1

A2

c
MILH

2

A3

MILC

2

MILC

1

MILC

0

a
IL

A1

ILC

a
IL

A2

b

b c

ILC

a
IL

A3

ILC

Interlocks with MILH and MILC Interlocks with IL and ILC
208

Sequence Control Instructions Section 3-5
Differences between
MILH(517) and MILR(518)

Differentiated instructions (DIFU, DIFD, or instructions with a @ or % prefix)
operate differently in interlocks created with MILH(517) and MILR(518).

The operation of differentiated instructions in an interlock created with
MILH(517) is identical to the operation in an interlock created with IL(002).

For details, refer to 3-5-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTER-
LOCK CLEAR: MILH(517), MILR(518), and MILC(519).

Precautions Do not combine interlocks created with different interlock instructions (IL-ILC,
MILH-MILC, and MILR-MILC). The interlocks may not operate properly if dif-
ferent interlock methods are used together. For details on combining instruc-
tions, refer to 3-5-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-
INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTERLOCK
CLEAR: MILH(517), MILR(518), and MILC(519).
For example, an MILH(517) instruction cannot be inserted between IL(002)
and IL(003).

Note The different interlocks (IL-ILC, MILH-MILC, and MILR-MILC) can be used
together as long as the interlocked program sections do not overlap.

For example, all three interlock methods can be used without overlapping, as
shown in the following diagram.

IL

MILH

ILC

MILH(517) is in an interlocked area
between IL(002) and ILC.(003).

IL

MILH

MILC

ILC

MILR

MILC

Different interlock methods can be
used as long as the interlocked
areas do not overlap.
209

Sequence Control Instructions Section 3-5
Differences between
Interlocks and Jumps

The following table shows the differences between interlocks (created with
IL(002)/ILC(003), MILH(517)/MILC(519), or MILR(518)/MILC(519)) and jumps
created with JMP(004)/JME(005).

3-5-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)
Purpose Interlocks all outputs between IL(002) and ILC(003) when the execution con-

dition for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs.

Ladder Symbols

Variations

Applicable Program Areas

Description When the execution condition for IL(002) is OFF, the outputs for all instruc-
tions between IL(002) and ILC(003) are interlocked. When the execution con-
dition for IL(002) is ON, the instructions between IL(002) and ILC(003) are
executed normally.

Item Treatment in IL(002)/ILC(003), MILH(517)/
MILC(519), or MILR(518)/MILC(519))

Treatment in
JMP(004)/JME(005)

Instruction execution Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are not
executed.

No instructions are executed.

Output status in instructions Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all out-
puts retain their previous status.

All outputs retain their previous status.

Bits in OUT, OUT NOT,
OUTB(534)

OFF All outputs retain their previous status.

Status of timer instructions
(except (TTIM(087),
TTIMX(555), MTIM(543), and
MTIMX(554))

Reset Operating timers (TIM, TIMX(550),
TIMH(015), TIMHX(551), TMHH(540),
TMHHX(552), TIMU(541), TIMUX(556),
TMUH(544), TMUHX(557) only) continue
timing because the PVs are updated even
when the timer instruction is not being exe-
cuted.

IL(002)

ILC(003)

Variations Interlocks when OFF/Does Not interlock when ON IL(002)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition ILC(003)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Execution
condition

Execution
condition ON

Execution
condition OFF

Interlocked section
of the program

Outputs
interlocked.

Normal
execution
210

Sequence Control Instructions Section 3-5
The following table shows the treatment of various outputs in an interlocked
section between IL(002) and ILC(003).

Note 1. These instructions are supported by the CJ1-H-R CPU Units only.

2. Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012), CN-
TRX(548), SFT, and KEEP(011) retain their previous status.

If there are bits which you want to remain ON in an interlocked program sec-
tion, set these bits to ON with SET just before IL(002).

It is often more efficient to switch a program section with IL(002) and
ILC(003). When several processes are controlled with the same execution
condition, it takes fewer program steps to put these processes between
IL(002) and ILC(003).

The following table shows the differences between IL(002)/ILC(003) and
JMP(004)/JME(005).

Flags

Instruction Treatment

Bits specified in OUT, OUT NOT, or OUTB(534) OFF

TIM, TIMX(550), TIMH(015),
TIMHX(551), TMHH(540),
TMHHX(552), TIML(542), and
TIMXL(553)

Completion Flag OFF (reset)

PV Time set value (reset)

TIMU(541), TIMUX(556),
TMUH(544), and TMUHX(557)
(See note 1.)

Cannot be refer-
enced.

Bits/words specified in all other instructions (See note 2.) Retain previous status.

Item Treatment in
IL(002)/ILC(003)

Treatment in
JMP(004)/JME(005)

Instruction execution Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are
not executed.

No instructions are executed.

Output status in instructions Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all
outputs retain their previous status.

All outputs retain their previous status.

Bits in OUT, OUT NOT, OUTB(534) OFF All outputs retain their previous status.

Status of timer instructions
(except (TTIM(087), TTIMX(555),
MTIM(543), and MTIMX(554))

Reset Operating timers (TIM, TIMX(550),
TIMH(015), TIMHX(551), TMHH(540),
TMHHX(552) only) continue timing
because the PVs are updated even
when the timer instruction is not being
executed.

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)
211

Sequence Control Instructions Section 3-5
Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units, the
Equals and Negative Flags are left unchanged.
In CS1 and CJ1 CPU Units, the Equals and Negative Flags are turned OFF.

Precautions The cycle time is not shortened when a section of the program is interlocked
because the interlocked instructions are executed internally.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between IL(002) and ILC(003). Changes in the execution condition
for DIFU(013), DIFD(014), or a differentiated instruction are not recorded if the
DIFU(013) or DIFD(014) is in an interlocked section and the execution condi-
tion for the IL(002) is OFF.

In general, IL(002) and ILC(003) are used in pairs, although it is possible to
use more than one IL(002) with a single ILC(003) as shown in the following
diagram. If IL(002) and ILC(003) are not paired, an error message will appear
when the program check is performed but the program will be executed prop-
erly.

IL(002) and ILC(003) cannot be nested, as in the following diagram. (Use
MILH(517)/MILR(518) and MILC(519) when it is necessary to nest interlocks.)

Execution
condition

Program section

a b A B

OFF ON Interlocked Interlocked

OFF OFF Interlocked Interlocked

ON OFF Not interlocked Interlocked

ON ON Not interlocked Not interlocked
212

Sequence Control Instructions Section 3-5
Examples When CIO 000000 is OFF in the following example, all outputs between
IL(002) and ILC(003) are interlocked. When CIO 000000 is ON in the follow-
ing example, the instructions between IL(002) and ILC(003) are executed nor-
mally.

CIO 000000
ON

CIO 000000
OFF

OFF

OFF

Reset

Retained

Retained

Normal
execution

Outputs
interlocked
213

Sequence Control Instructions Section 3-5
3-5-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-INTERLOCK
DIFFERENTIATION RELEASE, and MULTI-INTERLOCK CLEAR:
MILH(517), MILR(518), and MILC(519)

Purpose Interlocks all outputs between MILH(517) (or MILR(518)) and MILC(519)
when the execution condition for MILH(517) (or MILR(518)) is OFF. MILH(517)
(or MILR(518)) and MILC(519) are normally used in pairs.

Unlike the IL(002)/ILC(003) interlocks, the MILH(517)/MILC(519) and
MILR(518)/MILC(519) interlocks can be nested. The operation of differenti-
ated instructions is different for interlocks created with MILH(517) and
MILR(518).

These instructions are supported only by CS/CJ-series CPU Unit Ver. 2.0 or
later.

Ladder Symbols

Operands N: Interlock Number

The interlock number must be between 0 and 15. Match the interlock number
of the MILH(517) (or MILR(518)) instruction with the same number in the cor-
responding MILC(519) instruction.

The interlock numbers can be used in any order.

D: Interlock Status Bit

• ON when the program section is not interlocked.

• OFF when the program section is interlocked.

When the interlock is engaged, the Interlock Status Bit can be force-set to
release the interlock. Conversely, when the interlock is not engaged, the Inter-
lock Status Bit can be force-reset to engage the interlock.

Operand Specifications

MILH(517)

N

D

N: Interlock Number

D: Interlock Status Bit

MILR(518)

N

D

N: Interlock Number

D: Interlock Status Bit

MILC(519)

N N: Interlock Number

Area N D

CIO Area --- CIO 000000 to CIO 614315

Work Area --- W00000 to W51115

Holding Bit Area --- H00000 to H51115

Auxiliary Bit Area --- A00000 to A95915

Timer Area --- ---

Counter Area --- ---

DM Area --- ---

EM Area without bank --- ---

EM Area with bank --- ---

Indirect DM/EM
addresses in binary

--- ---
214

Sequence Control Instructions Section 3-5
Variations

Applicable Program Areas The following table shows the applicable program areas for MILH(517),
MILR(518), and MILC(519).

Description When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is OFF, the outputs for all instructions between that MILH(517)/
MILR(518) instruction and the next MILC(519) with interlock number N are
interlocked.

When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is ON, the instructions between that MILH(517)/MILR(518) instruc-
tion and the next MILC(519) with interlock number N are executed normally.

Interlock Status

The following table shows the treatment of various outputs in an interlocked
section between MILH(517)/MILR(518) instruction and the next MILC(519).

Note 1. These instructions are supported by the CJ1-H-R CPU Units only.

2. Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012), CN-
TRX(548), SFT, and KEEP(011) retain their previous status.

Indirect DM/EM
addresses in BCD

--- ---

Constants 0 to 15 ---

Data Registers --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to –
2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N D

Variations Interlocks when OFF/Does Not interlock when ON MILH(517) and
MILR(518)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition MILC(519)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Instruction Treatment

Bits specified in OUT, OUT NOT, or OUTB(534) OFF

TIM, TIMX(550), TIMH(015),
TIMHX(551), TMHH(540),
TMHHX(552), TIML(542), and
TIMXL(553)

Completion Flag OFF (reset)

PV Time set value (reset)

TIMU(541), TIMUX(556),
TMUH(544), and TMUHX(557)
(See note 1.)

Cannot be refer-
enced.

Bits/words specified in all other instructions (See note 2.) Retain previous status.
215

Sequence Control Instructions Section 3-5
The MILH(517)/MILR(518) instruction turns OFF the Interlock Status Bit
(operand D) when the interlock is in engaged and turns ON the bit when the
interlock is not engaged. Consequently, the Interlock Status Bit can be moni-
tored to check whether or not the interlock for a given interlock number is
engaged.

Nesting

Interlocks are nested when an interlocked program section (MILH(517)/
MILR(518) and MILC(519) combination) is placed within another interlocked
program section (MILH(517)/MILR(518) and MILC(519) combination). Inter-
locks can be nested up to 16 levels.

Nesting can be used for the following kinds of applications.

• Example 1

Interlocking the entire program with one condition and interlocking a part
of the program with another condition (1 nesting level)

• A1 and A2 are interlocked when the Emergency Stop Button is ON.

• A2 is interlocked when Conveyor RUN is OFF.

MILH

n

d

MILC

n

Input condition

Interlocked program
section

Input condition ON
(Normal operation) Input condition OFF

Normal
operation
Interlock
Status Bit
(d) ON

Outputs interlocked.
(Outputs OFF,
timers reset, etc.)
Interlock Status Bit
(d) OFF

Global interlock
(Emergency stop)

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)
216

Sequence Control Instructions Section 3-5
• Example 2

Interlocking the entire program with one condition and interlocking two
overlapping parts of the program with other conditions (2 nesting levels)

• A1, A2, and A3 are interlocked when the Emergency Stop Button is
ON.

• A2 and A3 are interlocked when Conveyor RUN is OFF.

• A3 is interlocked when Arm RUN is OFF.

MILH

0

MILC

1

MILC

0

MILH

1

Global interlock
(Emergency stop)

Partial interlock
(Conveyor RUN)

A1 (Peripheral processing)

A2 (Conveyor operation)

When the Emergency Stop is ON (input
condition OFF), both A1 and A2 are
interlocked.
When the Emergency Stop is OFF (input
condition ON), A1 is executed normally
and A2 is controlled by the Conveyor
RUN switch as described below.

When the Conveyor RUN switch is OFF
(input condition OFF), A2 is interlocked.
When the Conveyor RUN switch is ON
(input condition ON), A2 is executed
normally.

Global interlock
(Emergency stop)

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)

Partial interlock
(Arm RUN)

A3 (Arm operation)
217

Sequence Control Instructions Section 3-5
Differences between MILH(517) and MILR(518)

Differentiated instructions (DIFU, DIFD, or instructions with a @ or % prefix)
operate differently in interlocks created with MILH(517) and MILR(518).

When a program section is interlocked with MILR(518), a differentiated
instruction will not be executed when the interlock is cleared even if the differ-
entiation condition was activated during the interlock (comparing the status of
the execution condition when the interlock started to its status when the inter-
lock was cleared).

When a program section is interlocked with MILH(517), a differentiated
instruction will be executed when the interlock is cleared if the differentiation
condition was activated during the interlock (comparing the status of the exe-
cution condition when the interlock started to its status when the interlock was
cleared).

MILH

0

MILC

2

MILC

1

MILC

0

MILH

1

MILH

2

Global interlock
(Emergency stop)

Partial interlock
(Conveyor RUN)

A1 (Peripheral processing)

A2 (Conveyor operation)

Partial interlock
(Arm RUN)

A3 (Arm operation)

When the Emergency Stop is ON (input
condition OFF), A1, A2, and A3 are
interlocked.
When the Emergency Stop is OFF (input
condition ON), A1 is executed normally and A2
and A3 are controlled by the Conveyor RUN
and Arm RUN switches as described below.

When the Conveyor RUN switch is OFF (input
condition OFF), both A2 and A3 are interlocked.
When the Conveyor RUN switch is ON (input
condition ON), A2 is executed normally and A3 is
controlled by the Arm RUN switch as described
below.

When the Arm RUN switch is OFF (input
condition OFF), A3 is interlocked.
When the Arm RUN switch is ON (input
condition ON), A3 is executed normally.
218

Sequence Control Instructions Section 3-5
• Operation of Differentiated Instructions in an MILH(517) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILH(517) and the corresponding MILC(519), that in-
struction will be executed after the interlock is cleared if the differentiation
condition of the instruction was established. (The system compares the ex-
ecution condition’s status when the interlock started to its status when the
interlock was cleared.)

In the same way, a differentiated instruction will be executed if its execution
condition is established at the same time that the interlock is started or
cleared.

Many other conditions in the program may cause the differentiation condi-
tion to be reset even if it was established during the interlock. In this case,
the differentiation instruction will not be executed when the interlock is
cleared.

• Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will be executed when the interlock
is cleared. (Differentiated instructions operate the same in the
MILH(517) interlock as they would in an IL(002) interlock.)

Instruction Operation of Differentiated Instructions

MILH(517)
MULTI-INTERLOCK DIFFER-
ENTIATION HOLD

A differentiated instruction (DIFU, DIFD, or
instruction with a @ or % prefix) will be exe-
cuted after the interlock is cleared if the differ-
entiation condition of the instruction was
established while the instruction was inter-
locked. (The status of the execution condition
when the interlock started is compared to its
status when the interlock was cleared.)

MILR(518)
MULTI-INTERLOCK DIFFER-
ENTIATION RELEASE

A differentiated instruction (DIFU, DIFD, or
instruction with a @ or % prefix) will not be
executed after the interlock is cleared even if
the differentiation condition of the instruction
was established while the instruction was inter-
locked.

MILH

0

MILC

0

DIFU

001000

000000

000001

1. When CIO 000000 is OFF (interlock starts), the DIFU's CIO 000001 input condition is OFF.
2. The DIFU's CIO 000001 input condition goes from OFF to ON while CIO 000000 is OFF (DIFU interlocked),
3. When CIO 000000 goes from OFF to ON (interlock cleared), DIFU is executed if CIO 000001 is still ON.
219

Sequence Control Instructions Section 3-5
Timing Chart

• Operation of Differentiated Instructions in an MILR(518) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILR(518) and the corresponding MILC(519), that in-
struction will not be executed after the interlock is cleared even if the dif-
ferentiation condition of the instruction was established. (The system
compares the execution condition’s status in the cycle when the interlock
started to its status in the cycle when the interlock was cleared.)

In the same way, a differentiated instruction will not be executed if its exe-
cution condition is established at the same time that the interlock is started
or cleared.

• Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will not be executed when the in-
terlock is cleared.

ON
000000

000001

001000

OFF

OFF

ON
ON

OFF

ON

OFF

1 cycle

DIFU(013) is executed.
MILH(517) interlock

Not interlocked Interlocked Not interlocked

Status (OFF) at
start of interlock Differentiation condition established

Status (ON) when
interlock is cleared

MILR

0

MILC

0

DIFU

001000

000000

000001

1. When CIO 000000 is OFF (interlock starts), the DIFU's CIO 000001 input condition is OFF.

2. The DIFU's CIO 000001 input condition goes from OFF to ON while CIO 000000 is OFF (DIFU interlocked),

3. When CIO 000000 goes from OFF to ON (interlock cleared), DIFU is not executed even though CIO 000001 is still ON.
220

Sequence Control Instructions Section 3-5
Timing Chart

Controlling Interlock Status from a Programming Device

An interlock can be engaged or released manually by force-resetting or force-
setting the Interlock Status Bit (specified with operand D of MILH(517) and
MILR(518)) from a Programming Device. The forced status of the Interlock
Status Bit has priority and overrides the interlock status calculated by program
execution.

Force-set: Releases the interlock.

Force-reset: Engages the interlock.

Note Program operation can be switched more efficiently by using interlocks with
MILH(517) or MILR(518).

Instead of switching processing with compound conditions, insert an
MILH(517) or MILR(518) instruction before each process and an MILC(519)
instruction after each process.

ON
000000

000001

001000

OFF

OFF

ON
ON

OFF

ON

OFF

DIFU(013) is not executed.
MILR(518) interlock

Not interlocked Interlocked Not interlocked

MILC

n

OFF

MILH

n

010000

If CIO 010000 is force-set (ON), the interlock is released.

CIO 010000 is OFF when the interlock is engaged.

Program section
controlled by interlock

MILC

n

ON

MILH

n

010000

If CIO 010000 is force-reset (OFF), the interlock is engaged.

CIO 010000 is ON when the interlock is not engaged.

Program section
controlled by interlock
221

Sequence Control Instructions Section 3-5
Unlike the IL(002) interlocks, MILH(517) and MILR(518) interlocks can be
nested, so the operation of similar programs will be different if MILH(517) or
MILR(518) is used instead of ILC(002).

Program with MILH(517)/MILC(519) Interlocks

Execution
condition

Program section

a b A1 A2 A3

OFF ON Interlocked Interlocked Not interlocked

OFF

ON OFF Not interlocked Interlocked Not interlocked

ON ON Not interlocked Not interlocked Not interlocked

a

b

a

MILH

0

MILC

1

MILC

0

A1

A1

b

MILH

1

A2

A2

a

b

MILH

0

010000

MILC

1

MILC

0

A1

MILH

1

010001

A2

A3
222

Sequence Control Instructions Section 3-5
Program with IL(002)/ILC(003) Interlocks

If there are bits which you want to remain ON in a program section interlocked
by MILH(517) or MILR(518), set these bits to ON with SET just before the
MILH(517) or MILR(518) instruction.

Flags

Precautions The cycle time is not shortened when a section of the program is interlocked
by MILH(517) or MILR(518) because the interlocked instructions are executed
internally.

Execution
condition

Program section

a b A1 A2 A3

OFF ON Interlocked Interlocked Not interlocked
(Not controlled by
the IL(002)/
ILC(003) interlock.)

OFF

ON OFF Not interlocked Interlocked

ON ON Not interlocked Not interlocked

a

b

IL

ILC

ILC

A1

IL

A2

A3
This program section is not
controlled by the interlock.

This ILC(003)
instruction is ignored
so ...

Name Label Operation

Error Flag ER OFF
223

Sequence Control Instructions Section 3-5
When nesting interlocks, assign interlock numbers so that the nested program
section does not exceed the outer program section.

Execution
condition

Program section

a b A1 A2 A3

OFF ON Interlocked Interlocked Not interlocked

OFF

ON OFF Not interlocked Interlocked Interlocked

ON Not interlocked Not interlocked Not interlocked

a

b

MILH

0

MILC

0

MILC

1

A1

MILH

1

A2

A3

The nested program section
must not go beyond the outer
program section.
224

Sequence Control Instructions Section 3-5
Other instructions can be input between the MILC(519) instructions, as shown
in the following diagram.

If there is an ILC(003) instruction between an MILH(517) and MILC(519) pair,
the program section between MILH(517) and ILC(003) will be interlocked.

a

b

MILH

0

010000

MILC

1

MILC

0

A1

MILH

1

010001

A2

A3

Other instructions can be inserted between
two MILC(519) instructions. In this case,
sections A1 and A3 operate together. (They
are interlocked when "a" is OFF, regardless
of the ON/OFF status of "b".)

a

MILH

0

MILC

0

A1

ILC

A2

The MILC(519) instruction is ignored.

When input condition "a" is OFF, only
program section A1 is interlocked.

If there is an ILC(003) instruction,
the interlock is cleared at that point.
225

Sequence Control Instructions Section 3-5
If there is an ILC(003) instruction between an MILR(518) and MILC(519) pair,
the ILC(003) instruction will be ignored and the full program section between
MILR(518) and MILC(519) will be interlocked.

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is engaged, the second MILH(517)/MILR(518) will not
operate.

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is not engaged, the second MILH(517)/MILR(518) will
operate normally.

Note The MILR(518) interlocks operate in the same way if there is another
MILH(517) or MILR(518) instruction with the same interlock number between
an MILR(518) and MILC(519) pair.

If there is an MILC(519) instruction with a different interlock number between
an MILH(517)/MILR(518) and MILC(519) pair, that MILC(519) instruction will
be ignored.

a

MILR

0

MILC

0

A1

ILC

A2

The ILC(003) instruction is ignored.

When input condition "a" is OFF, program
sections A1 and A2 are interlocked.

a

MILH

0

MILC

0

A1

b

MILH

0

A2

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked,
even if input condition "b" is ON.

When input condition "a" is ON and "b"
is OFF, only program section A2 is
interlocked.
226

Sequence Control Instructions Section 3-5
If there is an MILH(517) instruction between an IL(002) and ILC(003) pair and
the IL(002) interlock is engaged, the MILH(517) instruction has no effect. In
this case, the program section between IL(002) and ILC(003) will be inter-
locked.

If the IL(002) interlock is not engaged and the MILH(517) instruction’s execu-
tion condition (b in this case) is OFF, the program section between MILH(517)
and ILC(003) will be interlocked.

If there is an MILC(519) instruction between an IL(002) and ILC(003) pair, that
MILC(519) instruction will be ignored and the entire program section between
IL(002) and ILC(003) will be interlocked.

Examples When W00000 and W00001 are both ON, the instructions between
MILH(517) with interlock number 0 and MILC(519) with interlock number 0 are
executed normally.

a

MILH

0

MILC

0

A1

MILC

1

A2

This MILC(519) instruction is ignored.

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.

a

b

IL

ILC

A1

MILH

0

A2

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.

If the program section is not interlocked
by IL(002) and "b" is OFF, program
section A2 is interlocked.

a

IL

ILC

A1

MILC

0

A2

The MILC(519) instruction is ignored.

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.
227

Sequence Control Instructions Section 3-5
When W00000 is OFF, the instructions between MILH(517) with interlock
number 0 and MILC(519) with interlock number 0 are interlocked.

When W00000 is ON and W00001 are OFF, the instructions between
MILH(517) with interlock number 1 and MILC(519) with interlock number 1 are
interlocked. The other instructions are executed normally.

3-5-6 JUMP and JUMP END: JMP(004) and JME(005)
Purpose When the execution condition for JMP(004) is OFF, program execution jumps

directly to the first JME(005) in the program with the same jump number.
JMP(004) and JME(005) are used in pairs.

Ladder Symbols

Variations

W00000

000001

000002

000200

H0000

OFF

OFF

W0000 OFF

MILH

0

010000

W00001
MILH

1

010001

CNT

1

#0010

SET

000003

MILC

1

MILC

0

W00000 and W00001
both ON

W00000 ON and W00001
OFF

Executed
normally.

Executed
normally.

Outputs
interlocked. Outputs

interlocked.
Held

Held
Executed
normally.

JMP(004)

N

JME(005)

N

N: Jump number

N: Jump number

Variations Jumps when OFF/Does Not Jump when ON JMP(004)

Immediate Refreshing Specification Not supported
228

Sequence Control Instructions Section 3-5
Applicable Program Areas

Operands N: Jump Number

The jump number must be 0000 to 03FF (&0 to &1,023 decimal).

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the jump number must be
between the range 0000 to 00FF hex or &0 to &255 decimal.

Operand Specifications

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is #0000 to #00FF
(binary) or &0 to &1023 (decimal).

Description When the execution condition for JMP(004) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first JME(005) in the program with the same jump number. The
instructions between JMP(004) and JME(005) are not executed, so the status
of outputs between JMP(004) and JME(005) is maintained. In block programs,

Variations Executed Each Cycle for ON Condition JME(005)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK Not allowed OK OK

Area N

JMP(004) JME(005)

CIO Area CIO 0000 to CIO 6143 ---

Work Area W000 to W511 ---

Holding Bit Area H000 to H511 ---

Auxiliary Bit Area A000 to A959 ---

Timer Area T0000 to T4095 ---

Counter Area C0000 to C4095 ---

DM Area D00000 to D32767 ---

EM Area without bank E00000 to E32767 ---

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM addresses
in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to
@ En_32767

(n = 0 to C)

Indirect DM/EM addresses
in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #03FF (binary) or
&0 to &1023 (See note.)

#0000 to #03FF (binary) or
&0 to &1023 (See note.)

Data Registers DR0 to DR15 ---

Index Registers --- ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to
–2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

229

Sequence Control Instructions Section 3-5
the instructions between JMP(004) and JME(005) are skipped regardless of
the status of the execution condition.

Because all of instructions between JMP(004)/CJP(510)/CJPN(511) and
JME(005) are skipped when the execution condition for JMP(004) is OFF, the
cycle time is reduced by the total execution time of the skipped instructions. In
contrast, processing time equivalent to NOP(000) processing is required for
instructions between JMP0(515) and JME0(516), so the cycle time is not
reduced as much with those jump instructions.

The following table compares the various jump instructions.

Flags (JMP)

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is 0 to 255 (0000
to 00FF hex).

Precautions All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TIMU(541), TIMUX(556), TMUH(544), and
TMUHX(557)) continue timing because the PVs are updated even when the
timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
jumped

Execution condition

Instructions
executed

Item JMP(004)
JME(005)

CJP(510)
JME(005)

CJPN(511)
JME(005)

JMP0(515)
JME0(516)

Execution condition for jump OFF ON OFF OFF

Number allowed 1,024 total (256 for CJ1M-CPU11/21.) No limit

Instruction processing when jumped Not executed. NOP(000) processing

Instruction execution time when
jumped

None Equivalent to
NOP(000) instructions

Status of outputs (bits and words)
when jumped

Bits and words maintain their previous status.

Status of operating timers when
jumped

Operating timers continue timing.

Processing in block programs Always jump. Jump when ON. Jump when OFF. Not allowed.

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 03FF.
(See note.)
ON if there is a JMP(004) in the program without a
JME(005) with the same jump number.
ON if there is a JMP(004) in the task without a JME(005)
with the same jump number in the task.

OFF in all other cases.
230

Sequence Control Instructions Section 3-5
When JME(005) precedes JMP(004) in the program, the instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execution
condition for JMP(004) is OFF. A Cycle Time Too Long error will occur if the
execution condition is not turned ON or END(001) is not executed within the
maximum cycle time.

In block programs, the instructions between JMP(004) and JME(005) are
always skipped regardless of the status of the execution condition for
JMP(004).

JMP(004) and JME(005) pairs must be in the same task because jumps
between tasks are not allowed. An error will occur if a JME(005) instruction is
not programmed in the same task as its corresponding JMP(004) instruction.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP(004) and JME(005). When DIFU(013), DIFD(014), or
a differentiated instruction is executed in an jumped section immediately after
the execution condition for the JMP(004) has gone ON, the execution condi-
tion for the DIFU(013), DIFD(014), or differentiated instruction will be com-
pared to the execution condition that existed before the jump became effective
(i.e., before the execution condition for JMP(004) went OFF).

Examples Basic Operation

When CIO 000000 is OFF in the following example, the instructions between
JMP(004) and JME(005) are not executed and the outputs maintain their pre-
vious status.
When CIO 000000 is ON in the following example, the instructions between
JMP(004) and JME(005) are executed normally.

Program section A is executed
repeatedly as long as
execution condition a is OFF.

JMP &1

JME &1
to

Block program section
231

Sequence Control Instructions Section 3-5
3-5-7 CONDITIONAL JUMP: CJP(510)/CJPN(511)
Purpose The operation of CJP(510) is the basically the opposite of JMP(004). When

the execution condition for CJP(510) is ON, program execution jumps directly
to the first JME(005) in the program with the same jump number. CJP(510)
and JME(005) are used in pairs.

The operation of CJPN(511) is almost identical to JMP(004). When the execu-
tion condition for CJP(004) is OFF, program execution jumps directly to the
first JME(005) in the program with the same jump number. CJPN(511) and
JME(005) are used in pairs.

Ladder Symbols

Variations

&1

CIO 000000
ON

CIO 000000
OFF&1

Normal
execution

Instructions
not executed.
(Outputs re-
main un-
changed.)

CJP(510)

N

CJPN(511)

N

N: Jump number

N: Jump number

Variations Jumps when ON/Does Not Jump when OFF CJP(510)

Immediate Refreshing Specification Not supported
232

Sequence Control Instructions Section 3-5
Applicable Program Areas

Operands N: Jump Number

The jump number must be 0000 to 03FF (0 to 1,023 decimal).

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the jump number must be
between the range 0000 to 00FF hex or &0 to &255 decimal.

Operand Specifications

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is #0000 to #00FF
(binary) or &0 to &1023 (decimal).

Description The operation of CJP(510) and CJPN(511) differs only in the execution condi-
tion. CJP(510) jumps to the first JME(005) when the execution condition is ON

Variations Jumps when OFF/Does Not Jump when ON CJPN(511)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition JME(005)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK Not allowed OK OK

Area N

CJP(510) CJPN(511) JME(005)

CIO Area CIO 0000 to CIO 6143 ---

Work Area W000 to W511 ---

Holding Bit Area H000 to H511 ---

Auxiliary Bit Area A000 to A959 ---

Timer Area T0000 to T4095 ---

Counter Area C0000 to C4095 ---

DM Area D00000 to D32767 ---

EM Area without
bank

E00000 to E32767 ---

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #03FF (binary) or &0 to &1023
(See note.)

#0000 to #03FF
(binary) or &0 to
&1023 (See note.)

Data Registers DR0 to DR15 ---

Index Registers --- ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047,
IR15
DR0 to DR15, IR0 to IR15

233

Sequence Control Instructions Section 3-5
and CJPN(511) jumps to the first JME(005) when the execution condition is
OFF.

Because the jumped instructions are not executed, the cycle time is reduced
by the total execution time of the jumped instructions.

Operation of CJP(510)

When the execution condition for CJP(510) is OFF, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJP(510) is ON, program execution jumps
directly to the first JME(005) in the program with the same jump number.

Operation of CJPN(511)

When the execution condition for CJPN(511) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJPN(511) is OFF, program execution
jumps directly to the first JME(005) in the program with the same jump num-
ber.

Flags The following table shows the flags affected by CJP(510) and CJPN(511).

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the jump number must be
between the range 0 to 255 (0000 to 00FF hex).

Precautions All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing be-cause the PVs are
updated even when the timer instruction is not being executed.

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
jumped

Execution
condition ON

Execution
condition OFF

Instructions
executed

Execution
condition ON

Execution
condition OFF

Instructions
jumped

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
executed

Name Label Operation

Error Flag ER ON if there is not a JME(005) with the same jump number
as CJP(510) or CJPN(511). (See note.)
ON if N is not within the specified range of 0000 to 03FF.
ON if there is a CJP(510) or CJPN(511) instruction in a
task without a JME(005) with the same jump number.
OFF in all other cases.
234

Sequence Control Instructions Section 3-5
When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

When JME(005) precedes the CJP(510) or CJPN(511) instruction in the pro-
gram, the instructions in-between will be executed repeatedly as long as the
execution condition remains OFF (CJP(510)) or ON (CJPN(511)). A Cycle
Time Too Long error will occur if the jump is not completed by changing the
execution condition executing END(001) within the maximum cycle time.

The CJP(510) or CJPN(511) instructions will operate normally in block pro-
grams.

When the execution condition for the CJP(510) is ON or the execution condi-
tion for CJPN(511) is OFF, program execution will jump directly to the JME
instruction without executing instructions between CJP(510)/CJPN(511) and
JME. No execution time will be required for these instructions and the cycle
time will thus be reduced.

When the execution condition for the JMP0 is OFF, NOP processing is exe-
cuted between the JMP0 and JME0, requiring execution time. Therefore, the
cycle time will not be reduced.

When a CJP(510) or CJPN(511) instruction is programmed in a task, there
must be a JME(005) with the same jump number because jumps between
tasks are not allowed. An error will occur if a corresponding JME(005) instruc-
tion is not programmed in the same task.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed in a jumped program section. When DIFU(013), DIFD(014), or a dif-
ferentiated instruction is executed in an jumped section immediately after the
execution condition for the CJP(510) has gone OFF (ON for CJPN(511)), the
execution condition for the DIFU(013), DIFD(014), or differentiated instruction
will be compared to the execution condition that existed before the jump
became effective.

Example When CIO 000000 is ON in the following example, the instructions between
CJP(510) and JME(005) are not executed and the outputs maintain their pre-
vious status.
When CIO 000000 is OFF in the following example, the instructions between
CJP(510) and JME(005) are executed normally.
235

Sequence Control Instructions Section 3-5
Note For CJPN(511), the ON/OFF status of CIO 000000 would be reversed.

3-5-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JME0(516)
Purpose When the execution condition for JMP0(515) is OFF, all instructions from

JMP0(515) to the next JME0(516) in the program are processed as
NOP(000). Use JMP0(515) and JME0(516) in pairs. There is no limit on the
number of pairs that can be used in the program.

Ladder Symbols

Variations

Applicable Program Areas

CIO 000000
OFF

CIO 000000
ON

&1

&1

Normal
execution

Instructions
not
executed.
(Outputs
remain un-
changed.)

JMP0(515)

JME0(516)

Variations Jumps when OFF/Does Not Jump when ON JMP0(515)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition JME0(516)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK
236

Sequence Control Instructions Section 3-5
Description When the execution condition for JMP0(515) is ON, no jump is made and the
program executed consecutively as written.

When the execution condition for JMP0(515) is OFF, all instructions from
JMP0(515) to the next JME0(516) in the program are processed as
NOP(000). Unlike JMP(004), CJP(510), and CJPN(511), JMP0(515) does not
use jump numbers, so these instructions can be placed anywhere in the pro-
gram.

Unlike JMP(004), CJP(510), and CJPN(511) which jump directly to the first
JME(005) instruction in the program, all of the instructions between
JMP0(515) and JME0(516) are executed as NOP(000). The execution time of
the jumped instructions will be reduced, but not eliminated. The jumped
instructions themselves are not executed and their outputs (bits and words)
maintain their previous status.

Precautions Multiple pairs of JMP0(515) and JME0(516) instructions can be used in the
program, but the pairs cannot be nested.

JMP0(515) and JME0(516) cannot be used in block programs.

JMP0(515) and JME0(516) pairs must be in the same tasks because jumps
between tasks are not allowed.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP0(515) and JME0(516). When DIFU(013), DIFD(014),
or a differentiated instruction is executed in an jumped section immediately
after the execution condition for the JMP0(515) has gone ON, the execution
condition for the DIFU(013), DIFD(014), or differentiated instruction will be
compared to the execution condition that existed before the jump became
effective (i.e., before the execution condition for JMP0(515) went OFF).

Example When CIO 000000 is OFF in the following example, the instructions between
JMP0(515) and JME0(516) are processed as NOP(000) instructions and the
outputs maintain their previous status.
When CIO 000000 is ON in the following example, the instructions between
JMP0(515) and JME0(516) are executed normally.

Instructions
executed

Instructions
executed

Execution
condition b ON Execution

condition b OFF

Instructions
jumped

Jumped instructions are processed as
NOP(000). Instruction execution times
are the same as NOP(000).

Instructions
jumped

Execution
condition a ON

Execution
condition a OFF
237

Sequence Control Instructions Section 3-5
3-5-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513)
Purpose The instructions between FOR(512) and NEXT(513) are repeated a specified

number of times. FOR(512) and NEXT(513) are used in pairs.

Ladder Symbols

Variations

Applicable Program Areas

Operands N: Number of Loops

The number of loops must be 0000 to FFFF (0 to 65,535 decimal).

CIO 000000
ON

CIO 000000
OFF

Instructions
processed
as
NOP(000).
(Outputs re-
main un-
changed.)

Normal
execution

FOR(512)

N

NEXT(513)

N: Number of loops

Variations Executed Each Cycle for ON Condition FOR(512)

Executed Each Cycle for ON Condition NEXT(513)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
238

Sequence Control Instructions Section 3-5
Operand Specifications

Description The instructions between FOR(512) and NEXT(513) are executed N times
and then program execution continues with the instruction after NEXT(513).
The BREAK(514) instruction can be used to cancel the loop.

If N is set to 0, the instructions between FOR(512) and NEXT(513) are pro-
cessed as NOP(000) instructions.

Loops can be used to process tables of data with a minimum amount of pro-
gramming.

FOR-NEXT loops can be nested up to 15 levels. In the example below, pro-
gram sections A, B, and C are executed as follows:
A → B → B → C, A → B → B → C, and A → B → B → C

Area N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF (binary) or &0 to &65,535

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Repeated N times

Repeated program section
239

Sequence Control Instructions Section 3-5
Use BREAK(514) to escape from a FOR-NEXT loop. Several BREAK(514)
instructions (the number of levels nested) are required to escape from nested
loops. The remaining instructions in the loop after BREAK(514) are processed
as NOP(000) instructions.

Alternative Looping Methods

There are two ways to repeat a program section until a given execution condi-
tion is input.

1,2,3... 1. FOR-NEXT Loop with BREAK

Start a FOR-NEXT loop with a maximum of N repetitions. Program
BREAK(514) within the loop with the desired execution condition. The loop
will end before N repetitions if the execution condition is input.

2. JME(005)-JMP(004) Loop

Program a loop with JME(005) before JMP(004). The instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execu-
tion condition for JMP(004) is OFF. (A Cycle Time Too Long error will occur
if the execution condition is not turned ON or END(001) is not executed
within the maximum cycle time.)

&3

&2

1 2

&3

&2

&3

Breaks FOR-NEXT loop 2.

Breaks FOR-NEXT loop 1.

Escapes from
loop when
condition a is
ON.
Remaining
instructions are
processed as
NOP(000).
240

Sequence Control Instructions Section 3-5
Flags

Precautions Program FOR(512) and NEXT(513) in the same task. Execution will not be
repeated if these instructions are not in the same task.

A jump instruction such as JMP(004) may be executed within a FOR-NEXT
loop, but do not jump beyond the FOR-NEXT loop.

The following instructions cannot be used within FOR-NEXT loops:

• Block programming instructions

• MULTIPLE JUMP and JUMP END: JMP(515) and JME(516)

• STEP DEFINE and STEP START: STEP(008)/SNXT(009)

Note If a loop repeats in one cycle and a differentiated bit is used in the FOR-NEXT
loop, that bit will be always ON or always OFF within that loop.

Example In the following example, the looped program section transfers the content of
D00100 to the address indicated in D00200 and then increments the content
of D00200 by 1.

3-5-10 BREAK LOOP: BREAK(514)
Purpose Programmed in a FOR-NEXT loop to cancel the execution of the loop for a

given execution condition. The remaining instructions in the loop are pro-
cessed as NOP(000) instructions.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER ON if more than 15 loops are nested.

OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

#0000

 D00200

@D00200

D00100

&3 Repeated 3 times.

BREAK(514)

Variations Executed Each Cycle for ON Condition BREAK(514)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
241

Timer and Counter Instructions Section 3-6
Applicable Program Areas

Description Program BREAK(514) between FOR(512) and NEXT(513) to cancel the
FOR-NEXT loop when BREAK(514) is executed. When BREAK(514) is exe-
cuted, the rest of the instructions up to NEXT(513) are processed as
NOP(000).

Flags

Precautions A BREAK(514) instruction cancels only one loop, so several BREAK(514)
instructions (the number of levels nested) are required to escape from nested
loops.

BREAK(514) can be used only in a FOR-NEXT loop.

3-6 Timer and Counter Instructions
This section describes instructions used to define and handle timers and
counters.

Note TIMU(541), TIIMUX(556), TMUH(544), and TMUHX(557) are supported by
CJ1-H-R CPU Units only.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

N repetitions
Condition a ON

Processed as NOP(000).

Repetitions
forced to end.

Name Label Operation

Error Flag ER OFF

Equals Flag = OFF

Negative Flag N OFF

Instruction Mnemonic Function code Page

HUNDRED-MS TIMER TIM/TIMX ---/551 245

TEN-MS TIMER TIMH/TIMHX 015/551 249

ONE-MS TIMER TMHH/TIMHHX 540/552 253

TENTH-MS TIMER (See note.) TIMU/TIMUX 541/556 256

HUNDREDTH-MS TIMER (See note.) TMUH/TMUHX 544/557 259

ACCUMULATIVE TIMER TTIM/TTIMX 087/555 262

LONG TIMER TIML/TIMLX 542/553 266

MULTI-OUTPUT TIMER MTIM/MTIMX 543/554 269

COUNTER CNT/CNTX ---/546 275

REVERSIBLE COUNTER CNTR/CNTRX 012/548 278

RESET TIMER/COUNTER CNR/CNRX 545/547 282
242

Timer and Counter Instructions Section 3-6
Refresh Methods for Timer/Counter PV

■ Overview

In the CS1-H, CS1D, CJ1-H, and CJ1M CPU Units, the PV refresh method
can be set to either BCD or binary for all of the timer/counter-related instruc-
tions. (See notes 1 and 2.)

Using binary data instead of BCD allows the SV range for timers and counter
to be increased from 0 to 9999 to 0 to 65535. It also enables using binary data
calculated with other instructions directly as a timer/counter SV. The refresh
method is valid even when setting an SV indirectly (i.e., using the contents of
memory word). (That is, the contents of the addressed word is taken as either
BCD or binary data according to the refresh method that is set.)

Refer to 6-4 Changing the Timer/Counter PV Refresh Mode in the CS/CJ
Series Programming Manual (W394) for details on refresh methods.

Note 1. With CS1-H and CJ1-H CPU Units manufactured prior to 31 May 2002, the
binary instructions will be displayed on the Programming Console with the
mnemonic of the equivalent instruction for BCD operation. (For example,
TIMX0 &16 will be displayed as TIM0 &16.) The instruction, however, will
operate using binary mode.

2. The refresh method can be selected only with CX-Programmer version 3.0
or later. It cannot be selected with version 2.1 or early, or from a Program-
ming Console.

3. User programs that use the binary update mode cannot be read with CX-
Programmer version 2.1 or lower. They can be read only by changing to
BCD mode.

■ Applicable Instructions

Note TIMU(541), TIMUX(556), TMUH(544), and TMUHX(557) are supported by
CJ1-H-R CPU Units only.

Classification Instruction Mnemonic

BCD Binary

Timer/counter
instructions

HUNDRED-MS TIMER TIM TIMX(550)

TEN-MS TIMER TIMH(015) TIMHX(551)

ONE-MS TIMER TMHH(540) TMHHX(552)

TENTH-MS TIMER (See note.) TIMU(541) TIMUX(556)

HUNDREDTH-MS TIMER (See note.) TMUH(544) TMUHX(557)

ACCUMULATIVE TIMER TTIM(087) TTIMX(555)

LONG TIMER TIML(542) TIMLX(553)

MULTI-OUTPUT TIMER MTIM(543) MTIMX(554)

COUNTER CNT CNTX(546)

REVERSIBLE COUNTER CNTR(012) CNTRX(548)

RESET TIMER/COUNTER CNR(545) CNRX(547)

Block
programming
instructions

HUNDRED-MS TIMER WAIT TIMW(813) TIMWX(816)

TEN-MS TIMER WAIT TMHW(815) TMHWX(817)

COUNTER WAIT CNTW(814) CNTWX(818)
243

Timer and Counter Instructions Section 3-6
Basic Timer Specifications
The following table shows the basic specifications of the timers.

Note 1. TIM PVs are refreshed at execution, at the end of program execution each
cycle, or every 80 ms by interrupt if the cycle time exceeds 80 ms.

2. TIMH(015)/TIMHX(551) PVs are refreshed at execution, at the end of pro-
gram execution each cycle, and every 10 ms by interrupt.

3. TIMU(541), TIMUX(556), TMUH(544), and TMUHX(557) are supported by
CJ1-H-R CPU Units only.

4. It is not possible to read the timer PVs of TIMU(541), TIMUX(556),
TMUH(544), and TMUHX(557).

5. Timers are refreshed at different times depending on the timer number.
Refer to the descriptions of individual timer instructions for details.

Timer Operation
The following table shows the effects of operating and programming condi-
tions on the operation of the timers.

Note 1. TIMU(541), TIMUX(556), TMUH(544), and TMUHX(557) are supported by
CJ1-H-R CPU Units only.

Item TIM/
TIMX(550)

TIMH(015)/
TIMHX(551)

TMHH(540)/
TMHHX(552)

TIMU(541)/
TIMUX(556)
(See note 3.)

TMUH(544)/
TMUHX(557)
(See note 3.)

TTIM(087)/
TTIMX(555)

TIML(542)/
TIMLX(553)

MTIM(543)/
MTIMX(554)

Timing method Decrement-
ing

Decrementing Decrementing Decrementing Decrementing Incrementing Decrementing Incrementing

Timing units 100 ms 10 ms 1 ms 0.1 ms 0.01 ms 100 ms 100 ms 100 ms

Maximum SV TIM: 999.9 s
TIMX:
6,553.5 s

TIMH: 99.99 s
TIMHX:
655.35 s

TMHH:
9.999 s
TMHHX:
65.535 s

TIMU:
0.9999 s
TIMUX:
6.5535 s

TMUH:
0.09999 s
TMUHX:
0.65535 s

TTIM: 999.9 s
TTIMX:
6,553.5 s

TIML:
115 days
TIMLX:
49,710 days

MTIM: 999.9 s
MTIMX:
6,553.5 s

Outputs/instruc-
tion

1 1 1 1 1 1 1 8

Timer numbers Used Used Used Used Used Used Not used Not used

Completion Flag
refreshing

At execution At execution At execution At execution At execution At execution At execution At execution

Timer PV
refreshing
(See note 5.)

See note 1. See note 2. Every 1 ms
At execution

At execution At execution At execution At execution At execution

Value
after
reset

Com-
pletion
Flags

OFF OFF OFF OFF OFF OFF OFF OFF

PVs SV SV SV --- (See note 4.) 0 SV 0

Item TIM/
TIMX(550)

TIMH(015)/
TIMHX(551)

TMHH(540)/
TMHHX(552)

TIMU(541)/
TIMUX(556)

TMUH(544)/
TMUHX(557)

TTIM(087)/
TTIMX(555)

TIML(542)/
TIMLX(553)

MTIM(543)/
MTIMX(554)

Operating mode
change

PV = 0
Completion Flag = OFF

--- ---

Power interrupt/reset PV = 0
Completion Flag = OFF

--- ---

Execution of
CNR(545)/CNRX(547)

Binary: PV = FFFF, Completion Flag = OFF
BCD: PV = FFFF or 9999, Completion Flag = OFF

Not applica-
ble

Not applica-
ble

Operation in jumped
program section
(JMP(004)-JME(005))

Operating timers continue timing. Timer status is maintained.

Operation in inter-
locked program sec-
tion (IL(002)-ILC(003))

PV = SV
Completion Flag = OFF

Timer status
maintained.

PV = SV
Completion
Flag = OFF

Timer sta-
tus main-
tained.

Forced
set

Comple-
tion Flag

ON --- ---

PVs Set to 0. --- (See note 2.) Set to 0. --- ---

Forced
reset

Comple-
tion Flags

OFF --- ---

PVs Reset to SV. --- (See note 2.) Set to 0. --- ---
244

Timer and Counter Instructions Section 3-6
2. It is not possible to read the timer PVs of TIMU(541), TIMUX(556),
TMUH(544), and TMUHX(557).

3-6-1 HUNDRED-MS TIMER: TIM/TIMX(550)
Purpose TIM or TIMX(550) operates a decrementing timer with units of 0.1-s. The set-

ting range for the set value (SV) is 0 to 999.9 s for TIM and 0 to 6,553.5 s for
TIMX(550). The timer accuracy is 0 to 0.01 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time. The timer
accuracy for unit version 4.1 of the CJ1-H-R CPU Units is −0.1 to 0 s. The
timer accuracy for other unit versions of the CJ1-H-R CPU Units is 0 to 0.01 s.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).
(If the set value is set to #0000, the Completion Flag will be turned ON when
TIM/TIMX(550) is executed.)

Operand Specifications

PV
refresh
method

Symbol Operands

BCD N: 0000 to 4095 (decimal)
S: #0000 to #9999 (BCD)

Binary N: 00000 to 4095 (decimal)

S: &0 to &65535 (decimal)
#0000 to #FFFF (hex)

TIM

N

S

N: Timer number

S: Set value

TIMX(550)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIM/TIMX(550)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767
245

Timer and Counter Instructions Section 3-6
Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIM/TIMX(550) starts decrement-
ing the PV. The PV will continue timing down as long as the timer input
remains ON and the timer’s Completion Flag will be turned ON when the PV
reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to
@ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_032767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15

Area N S

SV

Timer input

Timer PV

Completion
Flag

SV

Timer input

Timer PV

Completion
Flag
246

Timer and Counter Instructions Section 3-6
Flags

Note In CS1 and CJ1 CPU Units, these are turned OFF.
In CS1-H, CJ1-H, CJ1M, and CS1D CPU Units, these Flags are left
unchanged.

Precautions Timer numbers are shared with other timer instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 2048 to 4095 will not operate properly
when the CPU Unit cycle time exceeds 80 ms. Use timer numbers 0000 to
2047 when the cycle time is longer than 80 ms.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note 1. If the IOM Hold Bit (A50012) has been turned ON, the status of timer Com-
pletion Flags and PVs will be maintained when the operating mode is
changed.

2. If the IOM Hold Bit (A50012) has been turned ON and the status of the IOM
Hold Bit itself is protected in the PLC Setup, the status of timer Completion
Flags and PVs will be maintained even when the power is interrupted.

3. The PV will be set to the SV when TIM/TIMX(550) is executed.

When TIM/TIMX(550) is in a program section between IL(002) and ILC(003)
and the program section is interlocked, the PV will be reset to the SV and the
Completion Flag will be turned OFF.

When an operating TIM/TIMX(550) timer created with a timer number
between 0000 and 2047 is in a jumped program section (JMP(004),
CJMP(510), CJPN(511), JME(005)), the timer’s PV will continue timing. (See

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the address of
a timer Completion Flag or timer PV.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged (See note.)

Negative Flag N OFF or unchanged (See note.)

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode
or vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547),
the RESET TIMER/COUNTER
instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program sec-
tion
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues decre-
menting.

Retains previous sta-
tus.
247

Timer and Counter Instructions Section 3-6
note.) The jumped TIM/TIMX(550) instruction will not be executed, but the PV
will be refreshed each cycle after all tasks have been executed.

Note With the CS1D CPU Units, the PV will not be refreshed in the above case.

When a TIM/TIMX(550) timer is forced set, its Completion Flag will be turned
ON and its PV will be set to 0000. When a TIM/TIMX(550) timer is forced
reset, its Completion Flag will be turned OFF and its PV will be reset to the
SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

The timer’s Completion Flag is refreshed only when TIM/TIMX(550) is exe-
cuted, so a delay of up to one cycle may be required for the Completion Flag
to be turned ON after the timer times out.

If online editing is used to overwrite a timer instruction, always reset the Com-
pletion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIM/TIMX(550) instruction’s PV and Completion Flag can be refreshed in
the following ways depending on the timer number that is used.

Timers Created with Timer Numbers 0000 to 2047

Timers Created with Timer Numbers 2048 to 4095

Timers are reset (PV = SV, Completion Flag OFF) by power interruptions
unless the IOM Hold Bit (A50012) is ON and the bit is protected in the PLC
Setup. It is also possible use a clock pulse bit and a counter instruction to pro-
gram a timer that will retain its PV in the event of a power interruption, as
shown in the following diagram.

Example When timer input CIO 000000 goes from OFF to ON in the following example,
the timer PV will begin counting down from the SV. Timer Completion Flag
T0000 will be turned ON when the PV reaches 0000.
When CIO 000000 goes OFF, the timer PV will be reset to the SV and the
Completion Flag will be turned OFF.

Execution of TIM/
TIMX(550)

The PV is updated every time that TIM/TIMX(550) is exe-
cuted.
The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

After executing all tasks The PV is also updated every cycle at the end of pro-
gram execution.

80-ms interval refreshing If the cycle time exceeds 80 ms, the timer’s PV is
updated every 80 ms.

Execution of TIM The PV is updated every time that TIM is executed.

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

Count input

Reset input

Execution
condition

1-s clock
pulse bit
248

Timer and Counter Instructions Section 3-6
3-6-2 TEN-MS TIMER: TIMH(015)/TIMHX(551)
Purpose TIMH(015)/TIMHX(551) operates a decrementing timer with units of 10-ms.

The setting range for the set value (SV) is 0 to 99.99 s for TIMH(015) and 0 to
655.35 s for TIMHX(551). The timer accuracy is 0 to 0.01 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 in BCD mode.

CIO 000000

T0000

T0000

&0100

or

Timer input

Timer PV

Timer
Completion
Flag

PV
refresh
method

Symbol Operands

BCD N: 0000 to 4095 (decimal)

S: #0000 to #9999 (BCD)

Binary N: 00000 to 4095 (decimal)
S: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

TIMH(015)

N

S

N: Timer number

S: Set value

TIMHX(551)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIMH(015)/
TIMHX(551)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
249

Timer and Counter Instructions Section 3-6
Operand Specifications

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIMH(015)/TIMHX(551) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer’s Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to
@ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15

SV

Timer input

Timer PV

Completion
Flag
250

Timer and Counter Instructions Section 3-6
Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these are turned OFF.

Precautions Timer numbers are shared with other timer instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 2048 to 4095 will not operate properly
when the CPU Unit cycle time exceeds 80 ms. Use timer numbers 0000 to
2047 when the cycle time is longer than 80 ms.

TIMH(015)/TIMHX(551) timers created with timer numbers 0000 to 0255 are
refreshed every 10 ms. Use these timer numbers when the PV is being refer-
enced in the user program.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

The Completion Flags for TIMH(015)/TIMHX(551) timers will be updated
when the instruction is executed. (This operation differs from that for CV-
series and CVM1 PLCs.)

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

SV

Timer input

Timer PV

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the address of
a timer Completion Flag or timer PV.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the
RESET TIMER/COUNTER instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues
decrementing.

Retains previous status.
251

Timer and Counter Instructions Section 3-6
Note 1. If the IOM Hold Bit (A50012) has been turned ON, the status of timer Com-
pletion Flags and PVs will be maintained when the operating mode is
changed.

2. If the IOM Hold Bit (A50012) has been turned ON and the status of the IOM
Hold Bit itself is protected in the PLC Setup, the status of timer Completion
Flags and PVs will be maintained even when the power is interrupted.

3. The PV will be set to the SV when TIMH(015)/TIMHX(551) is executed.

When an operating TIMH(015)/TIMHX(551) timer created with a timer number
between 0000 and 2047 is in a jumped program section (JMP(004),
CJMP(510), CJPN(511), JME(005)), the timer’s PV will continue timing. (See
note.) (The jumped TIMH(015)/TIMHX(551) instruction will not be executed,
but the PV will be refreshed every 10 ms and each cycle after all tasks have
been executed.)

Note With the CS1D CPU Units, the PV will not be refreshed in the above case.

When TIMH(015)/TIMHX(551) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TIMH(015)/TIMHX(551) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0000. When a TIMH(015)/TIMHX(551)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to the SV.

The operation of the = Flag and N Flag depends or the model of CPU Unit.
Refer to Flags for details.

The timer’s Completion Flag is refreshed only when TIMH(015)/TIMHX(551)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

If online editing is used to overwrite a timer instruction, always reset the Com-
pletion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIMH(015)/TIMHX(551) instruction’s PV and Completion Flag can be
refreshed in the following ways depending on the timer number that is used.

Timers Created with Timer Numbers 0000 to 0255

Timers Created with Timer Numbers 0256 to 2047

Timers Created with Timer Numbers 2048 to 4095

Execution of
TIMH(015)/
TIMHX(551)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

10-ms interval
refreshing

The timer’s PV is updated every 10 ms.

Execution of
TIMH(015)/
TIMHX(551)

The PV is updated every time that TIMH(015)/TIMHX(551) is
executed.
The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

After executing all
tasks

The PV is also updated every cycle at the end of program execu-
tion.

80-ms interval
refreshing

If the cycle time exceeds 80 ms, the timer’s PV is updated every
80 ms.

Execution of
TIMH(015)/
TIMHX(551)

The PV is updated every time that TIMH(015) is executed.

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.
252

Timer and Counter Instructions Section 3-6
Example When timer input CIO 000000 goes from OFF to ON in the following example,
the timer PV will begin counting down from the SV (#0064 = 100 = 1.00 s).
The Timer Completion Flag, T0000, will be turned ON when the PV reaches
0000.
When CIO 000000 goes OFF, the timer PV will be reset to the SV and the
Completion Flag will be turned OFF.

3-6-3 ONE-MS TIMER: TMHH(540)/TMHHX(552)
Purpose TMHH(540)/TMHHX(552) operates a decrementing timer with units of 1-ms.

The setting range for the set value (SV) is 0 to 9.999 s for TMHH(540) and 0
to 65.535 for TMHHX(552). The timer accuracy is –0.001 to 0 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time. The timer
accuracy for unit version 4.1 of the CJ1-H-R CPU Units is −0.01 to 0 s. The
timer accuracy for other unit versions of the CJ1-H-R CPU Units is −0.001 to
0 s.

Ladder Symbol

Note In CJ1-H-R CPU Units other than those with unit version 4.1, N can be set to
between 0 and 4,095 decimal. In CJ1-H-R CPU Units with unit version 4.1, N
can be set only to between 16 and 4095 decimal. For details, refer to Refresh-
ing of TMHH(540) and TMHHX(552) PVs and Completion Flags on page 256.

Variations

CIO 000000

T0000

T0000

#0100
(1.00 s)

&0100

or

TIMHX

Timer input

Timer PV

Timer Completion
Flag

PV
refresh
method

Symbol Operands

BCD N: 0 to 15 decimal, or
0 to 4,095 decimal
(See note.)

S: #0000 to #9999 (BCD)

Binary N: 0 to 15 decimal, or
0 to 4,095 decimal
(See note.)

S: &0 to &65535 decimal
#0000 to #FFFF hex

TMHH(540)

N

S

N: Timer number

S: Set value

TMHHX(552)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TMHH(540)/
TMHHX(552)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
253

Timer and Counter Instructions Section 3-6
Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 0015 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

Operand Specifications

Note In CJ1-H-R CPU Units other than those with unit version 4.1, N can be set to
between 0 and 4,095 decimal. In CJ1-H-R CPU Units with unit version 4.1, N
can be set only to between 16 and 4095 decimal. For details, refer to Refresh-
ing of TMHH(540) and TMHHX(552) PVs and Completion Flags on page 256.

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TMHH(540)/TMHHX(552) starts
decrementing the PV. The PV will continue timing down as long as the timer

Block program areas Step program areas Subroutines Interrupt tasks

OK in CJ1-H-R CPU
Units only

OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area 0000 to 0015 decimal, or
0000 to 4095 (See note.)

T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
254

Timer and Counter Instructions Section 3-6
input remains ON and the timer’s Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these are turned OFF.

Precautions Timer numbers are shared with other timer instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

The Completion Flag is updated only when TMHH(540)/TMHHX(552) is exe-
cuted. The Completion Flag can thus be delayed by up to one cycle time from
the actual set value.

The present value of a high-speed timer with a timer number from 0 to 15 will
be refreshed even if the task is on standby. The present value of a high-speed
timer with a timer number from 16 to 4095 will be held if the task is on standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note 1. If the IOM Hold Bit (A50012) has been turned ON, the status of timer Com-
pletion Flags and PVs will be maintained when the operating mode is
changed.

2. If the IOM Hold Bit (A50012) has been turned ON and the status of the IOM
Hold Bit itself is protected in the PLC Setup, the status of timer Completion
Flags and PVs will be maintained even when the power is interrupted.

3. The PV will be set to the SV when TMHH(540)/TMHHX(552) is executed.

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the address of
a timer Completion Flag or timer PV.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the
RESET TIMER/COUNTER instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues
decrement-
ing.

Retains previous status.
255

Timer and Counter Instructions Section 3-6
For all CPU Units except CS1D CPU Units, the present value of all operating
timers with timer numbers 0 to 15 will be refreshed even if the timer is in a pro-
gram section that is jumped using JMP(004), CJMP(510), CJPN(511),
JME(005). (The jumped timer instruction will not be executed, but the PV will
be refreshed every 1 ms.) The present values will not be updated with a CS1D
CPU Unit.

When TMHH(540)/TMHHX(552) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TMHH(540)/TMHHX(552) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0000. When a TMHH(540)/
TMHHX(552) timer is forced reset, its Completion Flag will be turned OFF and
its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

If online editing is used to overwrite a timer instruction, always reset the Com-
pletion Flag. The timer will not operate properly unless the Completion Flag is
reset.

Refreshing of TMHH(540)
and TMHHX(552) PVs and
Completion Flags

A TMHH(540)/TMHHX(552) instruction’s PV and Completion Flag are
refreshed as shown in the following tables.

Timer numbers 0 to 15 (Cannot be used with unit version 4.1 of the CJ1-H-R
CPU Units, but can be used with other unit versions of the CJ1-H-R CPU
Units.):

Timer numbers 16 to 4,095 (CJ1-H-R CPU Units only):

3-6-4 TENTH-MS TIMER: TIMU(541)/TIMUX(556)
Purpose TIMU(541)/TIMUX(556) operates a decrementing timer with units of 0.1-ms.

The setting range for the set value (SV) is 0 to 0.9999 s for TIMU(541) and 0
to 6.5535 s for TIMUX(556). The timer accuracy is –0.1 to 0 ms.

Note These instructions can be used in the CJ1-H-R CPU Units only.

Refresh timing Data refreshed

Execution of
TMHH(540)/
TMHHX(552)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

1-ms interval refreshing The timer’s PV is refreshed every 1 ms.

Refresh timing Data refreshed

Execution of
TMHH(540)/
TMHHX(552)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.
256

Timer and Counter Instructions Section 3-6
Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

Operand Specifications

PV
refresh
method

Symbol Operands

BCD N: 0000 to 4095 (decimal)

S: #0000 to #9999 (BCD)

Binary N: 0000 to 4095 (decimal)
S: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

TIMU(541)

N

S

N: Timer number

S: Set value

TIMUX(556)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIMU(541)/
TIMUX(556)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to
@ En_32767
(n = 0 to C)
257

Timer and Counter Instructions Section 3-6
Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIMU(541)/TIMUX(556) starts
decrementing the PV. If the set value is reached while the timer input is ON,
the timer’s Completion Flag will be turned ON (the timer times out).

The status of the timer’s Completion Flag will be maintained after the timer
times out. To restart the timer, the timer input must be turned OFF and then
ON again.

Read this timer’s Completion Flag only. The timer’s PV is used by the system,
so it cannot be read.

Flags

Precautions Timer numbers are shared with other timer instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

The timer PV cannot be read.

The Completion Flag is updated only when TIMU(541)/TIMUX(556) is exe-
cuted. The Completion Flag can thus be delayed by up to one cycle time from
the actual set value.

The timer will not operate properly when the cycle time exceeds 100 ms.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N S

Name Label Operation

Error Flag ER ON if timer number N is indirectly addressed through an
Index Register but the address in the Index Register is not
the address of a timer’s Completion Flag or PV.
ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.

Equals Flag = Unchanged

Negative Flag N Unchanged

Condition Completion Flag

Operating mode changed from RUN or MONITOR mode
to PROGRAM mode or vice versa. (See note 1.)

OFF

Power supply interrupted and reset (See note 2.) OFF
258

Timer and Counter Instructions Section 3-6
Note 1. If the IOM Hold Bit (A50012) has been turned ON, the status of timer Com-
pletion Flags and PVs will be maintained when the operating mode is
changed.

2. If the IOM Hold Bit (A50012) has been turned ON and the status of the IOM
Hold Bit itself is protected in the PLC Setup, the status of timer Completion
Flags and PVs will be maintained even when the power is interrupted.

Note When TIMU(541)/TIMUX(556) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

TIMU(541)/TIMUX(556) timers may not time accurately when used in a pro-
gram section jumped by the JMP(004), CJMP(510), CJPN(511), and
JME(005) instructions.

When a TIMU(541)/TIMUX(556) timer is forced set, its Completion Flag will
be turned ON. When a TIMU(541)/TIMUX(556) timer is forced reset, its Com-
pletion Flag will be turned OFF.

If online editing is used to overwrite a timer instruction, always reset the Com-
pletion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIMU(541)/TIMUX(556) instruction’s Completion Flag is refreshed as
shown in the following table.

Operation Example

When timer input CIO 000000 goes from OFF to ON in this example, the timer
PV will begin counting down. The Timer Completion Flag, T0000, will be
turned ON after 12.3 ms.
When CIO 000000 goes OFF, the Timer Completion Flag, T0000, will be
turned OFF.

3-6-5 HUNDREDTH-MS TIMER: TMUH(544)/TMUHX(557)
Purpose TMUH(544)/TMUHX(557) operates a decrementing timer with units of 0.01-

ms. The setting range for the set value (SV) is 0 to 0.09999 s for TMUH(544)
and 0 to 0.65535 s for TMUHX(557). The timer accuracy is –0.01 to 0 ms.

Note These instructions can be used in the CJ1-H-R CPU Units only.

Execution of CNR(545)/CNRX(547), the RESET TIMER/
COUNTER instructions

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

OFF

Operation in jumped program section
(JMP(004)–JME(005))

Retains previous status.

Condition Completion Flag

Execution of TIMU(541)/
TIMUX(556)

The Completion Flag is turned ON if the SV is reached.
The Completion Flag is turned OFF if the SV has not been
reached.

or

TIMU

#0123

&0123

TIMUX
259

Timer and Counter Instructions Section 3-6
Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

Operand Specifications

PV
refresh
method

Symbol Operands

BCD N: 0000 to 4095 (decimal)

S: #0000 to #9999 (BCD)

Binary N: 0000 to 4095 (decimal)
S: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

TMUH(541)

N

S

N: Timer number

S: Set value

TMUHX(557)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TMUH(544)/
TMUHX(557)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to
@ En_32767
(n = 0 to C)
260

Timer and Counter Instructions Section 3-6
Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TMUH(544)/TMUHX(557) starts
decrementing the PV. If the set value is reached while the timer input is ON,
the timer’s Completion Flag will be turned ON (the timer times out).

The status of the timer’s Completion Flag will be maintained after the timer
times out. To restart the timer, the timer input must be turned OFF and then
ON again.

Read this timer’s Completion Flag only. The timer’s PV is used by the system,
so it cannot be read.

Flags

Precautions Timer numbers are shared with other timer instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

The timer PV cannot be read.

The Completion Flag is updated only when TIMU(541)/TIMUX(556) is exe-
cuted. The Completion Flag can thus be delayed by up to one cycle time from
the actual set value.

The timer will not operate properly when the cycle time exceeds 100 ms.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N S

Name Label Operation

Error Flag ER ON if timer number N is indirectly addressed through an
Index Register but the address in the Index Register is not
the address of a timer’s Completion Flag or PV.
ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.

Equals Flag = Unchanged

Negative Flag N Unchanged

Condition Completion Flag

Operating mode changed from RUN or MONITOR mode
to PROGRAM mode or vice versa. (See note 1.)

OFF

Power supply interrupted and reset (See note 2.) OFF
261

Timer and Counter Instructions Section 3-6
Note 1. If the IOM Hold Bit (A50012) has been turned ON, the status of timer Com-
pletion Flags and PVs will be maintained when the operating mode is
changed.

2. If the IOM Hold Bit (A50012) has been turned ON and the status of the IOM
Hold Bit itself is protected in the PLC Setup, the status of timer Completion
Flags and PVs will be maintained even when the power is interrupted.

Note When TIMU(541)/TIMUX(556) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

TIMUH(544)/TIMUHX(557) timers may not time accurately when used in a
program section jumped by the JMP(004), CJMP(510), CJPN(511), and
JME(005) instructions.

When a TIMU(541)/TIMUX(556) timer is forced set, its Completion Flag will
be turned ON. When a TIMU(541)/TIMUX(556) timer is forced reset, its Com-
pletion Flag will be turned OFF.

If online editing is used to overwrite a timer instruction, always reset the Com-
pletion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIMU(541)/TIMUX(556) instruction’s Completion Flag is refreshed as
shown in the following table.

Operation Example

When timer input CIO 000000 goes from OFF to ON in this example, the timer
PV will begin counting down. The Timer Completion Flag, T0000, will be
turned ON after 1.23 ms.
When CIO 000000 goes OFF, the Timer Completion Flag, T0000, will be
turned OFF.

3-6-6 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)
Purpose TTIM(087)/TTIMX(555) operates an incrementing timer with units of 0.1-s.

The setting range for the set value (SV) is 0 to 999.9 s for TTIM(087) and 0 to
6,553.5 s for TTIMX(555). The timer accuracy is –0.01 to 0 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time

Execution of CNR(545)/CNRX(547), the RESET TIMER/
COUNTER instructions

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

OFF

Operation in jumped program section
(JMP(004)–JME(005))

Retains previous status.

Condition Completion Flag

Execution of TMUH(544)
/TMUHX(557)

The Completion Flag is turned ON if the SV is reached.
The Completion Flag is turned OFF if the SV has not been
reached.

or

TMUH

#0123

&0123

TMUHX
262

Timer and Counter Instructions Section 3-6
Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 to 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

Operand Specifications

PV
refresh
method

Symbol Operands

BCD N: 0000 to 15
(decimal)

S: #0000 to #9999
(BCD)

Binary N: 00000 to 15
(decimal)

S: &0 to &65535
(decimal)
#0000 to #FFFF
(hex)

TTIM(087)

N

S

Timer input

Reset input

N: Timer number

S: Set value

TTIMX(555)

N

S

Timer input

Reset input

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TTIM(087)/
TTIMX(555)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to
@ En_32767

(n = 0 to C)
263

Timer and Counter Instructions Section 3-6
Description When the timer input is ON, TTIM(087)/TTIMX(555) increments the PV. When
the timer input goes OFF, the timer will stop incrementing the PV, but the PV
will retain its value. The PV will resume timing when the timer input goes ON
again. The timer’s Completion Flag will be turned ON when the PV reaches
the SV.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. There are three ways to restart the timer: the timer’s PV can
be changed to a non-zero value (by MOV(021), for example), the reset input
can be turned ON, or CNR(545)/CNRX(547) can be executed.

Flags

Precautions Timer numbers are shared with other timer instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N S

SV

Timer input

Timer PV

Reset input

PV maintained.

Timing resumes.

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the address of
a timer Completion Flag or timer PV.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.
264

Timer and Counter Instructions Section 3-6
Timers will be reset or paused in the following cases. (When a TTIM(087)/
TTIMX(555) timer is reset, its PV is reset to 0000 and its Completion Flag is
turned OFF.)

Note 1. If the IOM Hold Bit (A50012) has been turned ON, the status of timer Com-
pletion Flags and PVs will be maintained when the operating mode is
changed.

2. If the IOM Hold Bit (A50012) has been turned ON and the status of the IOM
Hold Bit itself is protected in the PLC Setup, the status of timer Completion
Flags and PVs will be maintained even when the power is interrupted.

3. The PV will be set to the SV when TTIM(087)/TTIMX(555) is executed.

When TTIM(087)/TTIMX(555) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between IL(002) and ILC(003).

When an operating TTIM(087)/TTIMX(555) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between JMP(004) and JME(005).

When a TTIM(087)/TTIMX(555) timer is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a TTIM(087)/TTIMX(555)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to 0000. The forced set and forced reset operations take priority over the
status of the timer and reset inputs.

The timer’s PV is refreshed only when TTIM(087)/TTIMX(555) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer’s Completion Flag is refreshed only when TTIM(087)/TTIMX(555) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

Typical timers such as TIM/TIMX(550) are decrementing counters and the PV
shows the time remaining until the timer times out. The PV of TTIM(087)/
TTIMX(555) shows how much time has elapsed, so the PV can be used
unchanged in many calculations and display outputs.

Example When timer input CIO 000000 is ON in the following example, the timer PV
will begin counting up from 0. Timer Completion Flag T0001 will be turned ON
when the PV reaches the SV.
If the reset input is turned ON, the timer PV will be reset to 0000 and the Com-
pletion Flag (T0001) will be turned OFF. (Usually the reset input is turned ON
to reset the timer and then the timer input is turned ON to start timing.)

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the
RESET TIMER/COUNTER instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Retains previ-
ous status.

Retains previous status.

Operation in jumped program section
(JMP(004)–JME(005))

Retains previ-
ous status.

Retains previous status.
265

Timer and Counter Instructions Section 3-6
If the timer input is turned OFF before the SV is reached, the timer will stop
timing but the PV will be maintained. The timer will resume from its previous
PV when the timer input is turned ON again.

3-6-7 LONG TIMER: TIML(542)/TIMLX(553)
Purpose TIML(542)/TIMLX(553) operates a decrementing timer with units of 0.1 s that

can time up to 115 days for TIML(542) and 4,971 days for TIMLX(543). The
timer accuracy is 0 to 0.01 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time

Ladder Symbol BCD

Binary

Variations

CIO 000000

T0001

CIO 000001

#
T0001

#

Timer input

Timer PV

Timer Completion
Flag

Reset input

PV maintained.

Timing resumes.

or

TTIM

0001

#0100

000000

000001

TTIMX

0001

&0100

000000

000001

ON
OFF

0

ON
OFF

ON
OFF

#0100

ON
OFF

0

ON
OFF

ON
OFF

#0100

TIML(542)

D1

D2

S

D1: Completion Flag

D2: PV word

S: SV word

TIMLX(543)

D1

D2

S

D1: Completion Flag

D2: PV word

S: SV word

Variations Executed Each Cycle for ON Condition TIML(542)/
TIMLX(553)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
266

Timer and Counter Instructions Section 3-6
Applicable Program Areas

Operands D1: Completion Flag
Bit 0 of D1 acts as the Completion Flag for TIML(542)/TIMLX(553).

D2: PV Word
D2+1 and D2 contain the 8-digit binary or BCD PV. (D2 and D2+1 must be in
the same data area.) The PV can range from #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967294 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

S: SV Word
S+1 and S contain the 8-digit binary or BCD SV. (S and S+1 must be in the
same data area.) The SV must be between #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967294 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

15
D1

0

Completion FlagDo not use.

D2D2+1D2

SS+1S

Area D1 D2 S

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A448 to A959 A448 to A958 A000 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area D00000 to
D32767

D00000 to D32766

EM Area without bank E00000 to
E32767

E00000 to E32766

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)
267

Timer and Counter Instructions Section 3-6
Description TIML(542)/TIMLX(553) is a decrementing ON-delay timer with units of 0.1-s
that uses an 8-digit SV and an 8-digit PV.

When the timer input is OFF, the timer is reset, i.e., the timer’s PV is reset to
the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIML(542)/TIMLX(553) starts
decrementing the PV in D2+1 and D2. The PV will continue timing down as
long as the timer input remains ON and the timer’s Completion Flag will be
turned ON when the PV reaches 0000 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

Flags

Precautions Unlike most timers, TIML(542)/TIMLX(553) does not use a timer number.
(Timer area PV refreshing is not performed for TIML(542)/TIMLX(553).)

Since the Completion Flag for TIML(542)/TIMLX(553) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

The timer’s PV is refreshed only when TIML(542)/TIMLX(553) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer’s Completion Flag is refreshed only when TIML(542)/TIMLX(553) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

Constants --- BCD:
#00000000 to
99999999 (BCD)
“&” cannot be
used.

Binary:
&00000000 to
&4294967294
(decimal) or
#00000000 to
#FFFFFFFF (hex)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15

Area D1 D2 S

SV

Timer input

Timer PV

Completion Flag
(Bit 00 of D1)

Name Label Operation

Error Flag ER ON if the PV contained in D2+1 and D2 is not BCD.
ON if the SV contained in S+1 and S is not BCD.
OFF in all other cases.
268

Timer and Counter Instructions Section 3-6
When TIML(542)/TIMLX(553) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When an operating TIML(542)/TIMLX(553) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TIML(542)/TIMLX(553) is programmed between JMP(004) and JME(005).

Be sure that the words specified for the Completion Flag and PV (D1, D2, and
D2+1) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

Example When timer input CIO 000000 is ON in the following example, the timer PV (in
D00101 and D00100) will be set to the SV (in D00101 and D00100) and the
PV will begin counting down. The timer Completion Flag (CIO 020000) will be
turned ON when the PV reaches 0000 0000.
When CIO 000000 goes OFF, the timer PV will be reset to the SV and the
Completion Flag will be turned OFF.

3-6-8 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
Purpose MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with eight inde-

pendent SVs and Completion Flags. The set value is 0 to 999.9 s for
MTIM(543) and 0 to 6,553.5 s for MTIMX(554), and the timer accuracy is 0 to
0.01 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time

D1: 00200

D2: D00100

S: D00200

D00101

D00201

CIO 000000

(CIO 020000)

(CIO 020000)

C 0 0

1 0

Timer input

Timer PV
(D00101 and D00100)

Timer SV:
(D00201 and D00200)

Timer SV:
(100,000 decimal= 10,000 s)

Timer's PV (LSB)
Timer's PV (MSB)

Timer Completion
Flag

Timer Completion
Flag
269

Timer and Counter Instructions Section 3-6
Ladder Symbol BCD

Binary

Variations

Applicable Program Areas

Operands D1: Completion Flags

D1 contains the eight Completion Flags as well as the pause and reset bits.

D2: PV Word

D2 contains the 4-digit binary or BCD PV.

S: First SV Word

S through S+7 contain the eight independent SVs.
Each SV must be as follows:

MTIM(543)

D1

D2

S

D1: Completion Flags

D2: PV word

S: First SV word

MTIMX(554)

D1

D2

S

D1: Completion Flags

D2: PV word

S: First SV word

Variations Executed Each Cycle for ON Condition MTIM(543)/
MTIMX(554)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)

#0000 to #FFFF (hex)

15 1
D1

9 8 6 4 27 5 3 0

Completion Flags
Reset bit

Do not use.

Pause bit
270

Timer and Counter Instructions Section 3-6
Note S through S+7 must be in the same data area.
Operand Specifications

Description When the execution condition for MTIM(543)/MTIMX(554) is ON and the reset
and timer bits are both OFF, MTIM(543)/MTIMX(554) increments the PV in
D2. If the pause bit is turned ON, the timer will stop incrementing the PV, but
the PV will retain its value. MTIM(543)/MTIMX(554) will resume timing when
the pause bit goes OFF again.

Data Range

BCD One word for each of 8 timer SV:
#0000 to #9999

Binary One word for each of 8 timer SV:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Corresponding bit
(Completion Flag) in D1

Area D1 D2 S

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6136

Work Area W000 to W511 W000 to W504

Holding Bit Area H000 to H511 H000 to H504

Auxiliary Bit Area A448 to A959 A000 to A952

Timer Area T0000 to T4095 T0000 to T4088

Counter Area C0000 to C4095 C0000 to C4088

DM Area D00000 to D32767 D00000 to
D32760

EM Area without bank E00000 to E32767 E00000 to
E32760

EM Area with bank En_00000 to En_32767

(n = 0 to C)

En_00000 to
En_32760
(n = 0 to C)

Indirect DM/EM addresses in
binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM addresses in
BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
271

Timer and Counter Instructions Section 3-6
The PV (content of D2) is compared to the eight SVs in S through S+7 each
time that MTIM(543)/MTIMX(554) is executed, and if any of the SVs is less
than or equal to the PV, the corresponding Completion Flag (D1 bits 00
through 07) is turned ON.

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF. If the reset bit is turned ON while the timer is
operating or paused, the PV will be reset to 0000 and all of the Completion
Flags will be turned OFF.

The following table shows the operation of MTIM(543)/MTIMX(554) for the
four possible combinations of the reset and pause bits.

The reset and pause bits are effective only when the execution condition for
MTIM(543)/MTIMX(554) is ON.

Flags

Precautions Unlike most timers, MTIM(543)/MTIMX(554) does not use a timer number.
(Timer area PV refreshing is not performed for MTIM(543)/MTIMX(554).)

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF.

Reset bit
(Bit 08)

Pause bit
(Bit 09)

Operation

OFF OFF The PV will be updated and the corresponding Completion
Flag will be turned ON when SV ≤ PV.

ON The PV will not be updated and MTIM(543)/MTIMX(554)
will be treated as NOP(000).

ON OFF The PV will be reset to 0000 and the Completion Flags will
be turned OFF. The PV will not be updated.ON

SV 7

SV 2

SV 1
SV 0

0

0

toto

Timer input

Timer PV (D2)

Bit 7

Timer PV

Timer SVs

Bit 2

Bit 1

Bit 0

Completion
flags (D1)

Name Label Operation

Error Flag ER ON if the PV contained in D2 is not BCD.
OFF in all other cases.
272

Timer and Counter Instructions Section 3-6
If in BCD mode and an SV in S through S+7 does not contain BCD data, that
SV will be ignored. An error will not occur and the Error Flag will not be turned
ON.

Since the Completion Flag for MTIM(543)/MTIMX(554) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

When eight or fewer SVs are required, set the word after the last SV to 0000.
MTIM(543)/MTIMX(554) will ignore the SV that is set to 0000 and all of the
remaining SVs.

The timer’s PV is refreshed only when MTIM(543)/MTIMX(554) is executed,
so the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units. To ensure precise timing and
prevent problems caused by long cycle times, input the same MTIM(543)/
MTIMX(554) instruction at several points in the program.

The timer’s Completion Flag is refreshed only when MTIM(543)/MTIMX(554)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When MTIM(543)/MTIMX(554) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between IL(002) and ILC(003).

When an operating MTIM(543)/MTIMX(554) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between JMP(004) and JME(005).

Be sure that the words specified for the Completion Flags and PV (D1 and
D2) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

If a word in the CIO area is specified for D1, the SET and RSET instructions
can be used to control the pause and reset bits.

Example When CIO 000000 is ON and the pause bit (CIO 010009) is OFF in the follow-
ing example, the timer will start operating when the reset bit (CIO 010009) is
turned from ON to OFF. The timer’s PV will begin timing up from 0000.

The eight SVs in D00200 through D00207 are compared to the PV and the
corresponding Completion Flags (CIO 010000 through CIO 010007) are
turned on when the SV ≤ PV.

to to

These SVs
are ignored.
273

Timer and Counter Instructions Section 3-6
D1: 0100CH

D2: D00100

S: D00200

S+1: D00201

S+2: D00202
S+3: D00203

S+4: D00204
S+5: D00205
S+6: D00206

S+7: D00207

Reset bit

Completion Flags

Timer PV

Timer SVs

(Incrementing)

Pause bit

Corresponding completion
flag ON when SV ≤ PV.

CIO 000000

CIO 010008

CIO 010009

SV 7

SV 1

SV 0

Timer input

Timer SVs

Reset bit

PV maintained.

Timing resumes.

Completion Flags

Pause bit

Max. PV = 9999

Timer input must remain ON
while the timer is timing.
274

Timer and Counter Instructions Section 3-6
3-6-9 COUNTER: CNT/CNTX(546)
Purpose CNT/CNTX(546) operates a decrementing counter. The setting range 0 to

9,999 for CNT and 0 to 65,535 for CNTX(546).

Ladder Symbol BCD

Binary

Variations

Applicable Program Areas

Operands N: Counter Number
The counter number must be between 0000 and 4095 (decimal).

S: Set Value

Operand Specifications

CNT

N

S

Count input

Reset input

N: Counter number

S: Set value

CNTX(546)

N

S

Count input

Reset input

N: Counter number

S: Set value

Variations Executed Each Cycle for ON Condition CNT/
CNTX(546)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit
Area

--- A000 to A959

Timer Area --- T0000 to T4095

Counter Area 0000 to 4095 (decimal) C0000 to C4095

DM Area --- D00000 to D32767

EM Area with-
out bank

--- E00000 to E32767

EM Area with
bank

--- En_00000 to En_32767
(n = 0 to C)
275

Timer and Counter Instructions Section 3-6
Description The counter PV is decremented by 1 every time that the count input goes from
OFF to ON. The Completion Flag is turned ON when the PV reaches 0.

Once the Completion Flag is turned ON, reset the counter by turning the reset
input ON or by using the CNR(545)/CNRX(547) instruction. Otherwise, the
counter cannot be restarted.

The counter is reset and the count input is ignored when the reset input is ON.
(When a counter is reset, its PV is reset to the SV and the Completion Flag is
turned OFF.)

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these are turned OFF.

Indirect DM/EM
addresses in
binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in
BCD

--- *D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect address-
ing using Index
Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N S

SV

Count input

Counter PV

Reset input

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the address of
a counter Completion Flag or counter PV.
ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)
276

Timer and Counter Instructions Section 3-6
Precautions Counter numbers are shared by the CNT, CNTX(546), CNTR(012),
CNTRX(548), CNTW(814), and CNTWX(818) instructions. If two counters
share the same counter number but are not used simultaneously, a duplica-
tion error will be generated when the program is checked but the counters will
operate normally. Counters which share the same counter number will not
operate properly if they are used simultaneously.

A counter’s PV is refreshed when the count input goes from OFF to ON and
the Completion Flag is refreshed each time that CNT/CNTX(546) is executed.
The Completion Flag is turned ON if the PV is 0 and it is turned OFF if the PV
is not 0.

When a CNT/CNTX(546) counter is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a CNT/CNTX(546) counter
is forced reset, its Completion Flag will be turned OFF and its PV will be set to
the SV.

Be sure to reset the counter by turning the reset input from
OFF → ON → OFF before beginning counting with the count input, as shown
in the following diagram. The count input will not be received if the reset input
is ON.

The reset input will take precedence and the counter will be reset if the reset
input and count input are both ON at the same time. (The PV will be reset to
the SV and the Completion Flag will be turned OFF.)

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

Note If online editing is used to add a counter, the counter must be reset before it
will work properly. If the counter is not reset, the previous value will be used as
the counter’s present value (PV), and the counter may not operate properly
after it is written.

SV

Reset input

Counter PV

Count input

Ready to start
counting

Completion
Flag

SV

Reset input

Counter PV

Count input

Completion
Flag

Count input
can be re-
ceived.

Reset input
takes pre-
cedence.

Count input
can be re-
ceived.
277

Timer and Counter Instructions Section 3-6
Counter PVs are retained even through a power interruption. If you want to
restart counting from the SV instead of resuming the count from the retained
PV, add the First Cycle Flag (A20011) as a reset input to the counter.

3-6-10 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
Purpose CNTR(012)/CNTRX(548) operates a reversible counter.

Ladder Symbol BCD

Binary

Variations

Applicable Program Areas

Operands N: Counter Number

The counter number must be between 0000 and 4095 (decimal).

S: Set Value

First Cycle Flag
(A20011)

CNTR(012)

N

S

Increment input

Reset input

Decrement input

N: Counter number

S: Set value

CNTRX(548)

N

S

Increment input

Reset input

Decrement input

S: Set value

N: Counter number

Variations Executed Each Cycle for ON Condition CNTR(012)/
CNTRX(548)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)
278

Timer and Counter Instructions Section 3-6
Operand Specifications

Description The counter PV is incremented by 1 every time that the increment input goes
from OFF to ON and it is decremented by 1 every time that the decrement
input goes from OFF to ON. The PV can fluctuate between 0 and the SV.

When incrementing, the Completion Flag will be turned ON when the PV is
incremented from the SV back to 0 and it will be turned OFF again when the
PV is incremented from 0 to 1.

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit
Area

--- A000 to A959

Timer Area --- T0000 to T4095

Counter Area 0000 to 4095 (decimal) C0000 to C4095

DM Area --- D00000 to D32767

EM Area with-
out bank

--- E00000 to E32767

EM Area with
bank

--- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in
binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in
BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect address-
ing using Index
Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Increment input

Counter PV

Decrement input
279

Timer and Counter Instructions Section 3-6
When decrementing, the Completion Flag will be turned ON when the PV is
decremented from 0 up to the SV and it will be turned OFF again when the PV
is decremented from the SV to SV–1.

Flags

Precautions Counter numbers are shared by the CNT, CNTX(546), CNTR(012),
CNTRX(548), CNTW(814), and CNTWX(818) instructions. If two counters
share the same counter number but are not used simultaneously, a duplica-
tion error will be generated when the program is checked but the counters will
operate normally. Counters which share the same counter number will not
operate properly if they are used simultaneously.

The PV will not be changed if the increment and decrement inputs both go
from OFF to ON at the same time. When the reset input is ON, the PV will be
reset to 0 and both count inputs will be ignored.

The Completion Flag will be ON only when the PV has been incremented
from the SV to 0 or decremented from 0 to the SV; it will be OFF in all other
cases.

When inputting the CNTR(012)/CNTRX(548) instruction with mnemonics, first
enter the increment input (II), then the decrement input (DI), the reset input
(R), and finally the CNTR(012)/CNTRX(548) instruction. When entering with
the ladder diagrams, first input the increment input (II), then the CNTR(012)/
CNTRX(548) instruction, the decrement input (DI), and finally the reset input
(R).

Examples Basic Operation of CNTR(012)/CNTRX(548)

The counter PV is reset to 0 by turning the reset input (CIO 000002) ON and
OFF. The PV is incremented by 1 each time that the increment input
(CIO 000000) goes from OFF to ON. When the PV is incremented from the
SV (3), it is automatically reset to 0 and the Completion Flag is turned ON.

Likewise, the PV is decremented by 1 each time that the decrement input
(CIO 000001) goes from OFF to ON. When the PV is decremented from 0, it
is automatically set to the SV (3) and the Completion Flag is turned ON.

SV

+1

Counter PV

Completion Flag

SV −1
Counter PV

Completion Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.
ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.
280

Timer and Counter Instructions Section 3-6
Specifying the SV in a Word

In the following example, the SV for CNTR(012) 0007 is determined by the
content of CIO 0001. When the content of CIO 0001 is controlled by an exter-
nal switch, the set value can be changed manually from the switch.

SV

Increment input
CIO 000000

Counter PV
C0001

Completion Flag
C0001

Decrement input
CIO 000001

Reset input
CIO 000002

Increment input

Reset input

Decrement
input

CNTR

0001

#0003

000000

000001

000002

CNTRX

0001

&0003

000000

000001

000002

or

ON

OFF

ON

OFF

ON

OFF

ON

OFF

3

0

Increment input

Reset input

Decrement
input

SV:
CIO 0001

Increment input

Decrement input

Completion Flag

Roll-over Roll-over

Fixed SV:
5000
281

Timer and Counter Instructions Section 3-6
3-6-11 RESET TIMER/COUNTER: CNR(545)/CNRX(547)
Purpose Resets the timers or counters within the specified range of timer or counter

numbers.

Ladder Symbol BCD

Binary

Variations

Applicable Program Areas

Operands N1: First Number in Range
N1 must be a timer number between T0000 and T4095 or a counter number
between C0000 and C4095.

N2: Last Number in Range
N2 must be a timer number between T0000 and T4095 or a counter number
between C0000 and C4095.

Note N1 and N2 must be in the same data area, i.e., N1 and N2 must be timer num-
bers or counter numbers.

Operand Specifications

CNR(545)

N1

N2

N1: First number in range

N2: Last number in range

CNRX(547)

N1

N2

N1: First number in range

N2: Last number in range

Variations Executed Each Cycle for ON Condition CNR(545)/
CNRX(547)

Executed Once for Upward Differentiation @CNR(545)/
CNRX(547)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N1 N2

CIO Area --- ---

Work Area --- ---

Holding Bit Area --- ---

Auxiliary Bit Area --- ---

Timer Area C0000 to C4095 C0000 to C4095

Counter Area T0000 to T4095 T0000 to T4095

DM Area --- ---

EM Area without bank --- ---

EM Area with bank --- ---

Indirect DM/EM
addresses in binary

--- ---

Indirect DM/EM
addresses in BCD

--- ---
282

Timer and Counter Instructions Section 3-6
Description CNR(545)/CNRX(547) resets the Completion Flags of all timers or counters
from N1 to N2. At the same time, the PVs will all be set to the maximum value
(9999 for BCD and FFFF for binary). (The PV will be set to the SV the next
time that the timer or counter instruction is executed.)

Operation of CNR(545)

The following table shows the timer and counter instructions (with BCD PVs),
which are reset by CNR(545).

Operation of CNRX(547)

The following table shows the timer and counter instructions (with binary
PVs), which are reset by CNRX(547).

Constants --- ---

Data Registers --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area N1 N2

Instructions reset Operation of CNR(545)

TIM: HUNDRED-MS TIMER
TIMH(015): TEN-MS TIMER
TMHH(540): ONE-MS TIMER
TTIM(087): ACCUMULATIVE TIMER
TIMW(813): HUNDRED-MS TIMER WAIT
TMHW(815): TEN-MS TIMER WAIT
CNT: COUNTER
CNTR(012): REVERSIBLE COUNTER
CNTW(814): COUNTER WAIT

The PV is set to its maximum value
(9,999 BCD) and the Completion Flag
is turned OFF.

TIMU(541): TENTH-MS TIMER
TMUH(544): HUNDREDTH-MS TIMER
(TIMU(541) and TMUH(544) are supported
by CJ1-H-R CPU Units only.)

The Completion Flag is turned OFF.
(The PV cannot be read.)

Instructions reset Operation of CNR(545)

TIMX(550): HUNDRED-MS TIMER
TIMHX(551): TEN-MS TIMER
TMHHX(552): ONE-MS TIMER
TTIMX(555): ACCUMULATIVE TIMER
TIMWX(816): HUNDRED-MS TIMER WAIT
TMHWX(817):TEN-MS TIMER WAIT
CNTX(546): COUNTER
CNTRX(548): REVERSIBLE COUNTER
CNTWX(818):COUNTER WAIT

The PV is set to its maximum value
(FFFF hex) and the Completion Flag is
turned OFF.

TIMUX(556): TENTH-MS TIMER
TMUHX(557): HUNDREDTH-MS TIMER

(TIMUX(556) and TMUHX(557) are sup-
ported by CJ1-H-R CPU Units only.)

The Completion Flag is turned OFF.
(The PV cannot be read.)
283

Timer and Counter Instructions Section 3-6
Flags

Precautions The CNR(545)/CNRX(547) instructions do not reset TIML(542), TIMLX(553),
MTIM(543), and MTIMX(554), because these timers do not use timer num-
bers.

The CNR(545)/CNRX(547) instructions do not reset the timer/counter instruc-
tions themselves, they reset the PVs and Completion Flags allocated to those
instructions. In most cases, the effect of CNR(545)/CNRX(547) is different
from directly resetting the instructions. For example, when a TIM/TIMX(550)
instruction is reset directly its PV is set to the SV, but when that timer is reset
by CNR(545)/CNRX(547) its PV is set to the maximum value (9999 for BCD
and FFFF for binary).

When N1 and N2 are specified with N1>N2, only the Completion Flag for the
timer/counter number will be reset.

Example When CIO 000000 is ON in the following example, the Completion Flags for
timers T0002 to T0005 are turned OFF and the timers’ PVs are set to the
maximum value (9999 for BCD and FFFF for binary).

When CIO 000001 is ON, the Completion Flags for counters C0003 to C0007
are turned OFF and the counters’ PVs are set to the maximum value (9999 for
BCD and FFFF for binary).

3-6-12 Example Timer and Counter Applications
The following examples show various applications of timer and counter
instructions including long-term timers, a two-stage counter, ON/OFF delay,
one-shot bit, and flicker bit.

Name Label Operation

Error Flag ER ON if N1 is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer or counter.
ON if N2 is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer or counter.
ON if N1 and N2 are not in the same data area.

OFF in all other cases.

CNR

T0002

T0005

000000

CNR

C0003

C0007

000001

CNRX

T0002

T0005

000000

CNRX

C0003

C0007

000001
284

Timer and Counter Instructions Section 3-6
Example 1:
Long-term Timers

The following program examples show three ways to create long-term timers
with standard TIM and CNT instructions.

Two TIM Instructions

In this example, two TIM instructions are combined to make a 30-minute
timer.

TIM and CNT Instructions

In this example, a TIM instruction and a CNT instruction are combined to
make a 500-second timer.

TIM 0001 generates a pulse every 5 s and CNT 0002 counts these pulses.
The set value for this combination is the timer interval × counter SV. In this
case, the timer SV would be 5 s × 100 = 500 s. With this combination, the
long-term timer’s PV is actually the PV of a counter, which is maintained
through power interruptions.

Clock Pulse and CNT Instruction

In this example, a CNT instruction counts the pulses from the 1-s clock pulse
to make a 700-second timer.

If the First Cycle Flag (A20011) is ORed with the counter’s reset input
(CIO 000001), the counter’s PV will be reset to the SV (0700) when program
execution begins rather than resuming the count from the previous PV.

000000 LD 000000
000001 TIM 0001
 #9000
000002 LD T0001
000003 TIM 0002
 #9000
000004 LD T0002
000005 OUT 000200

000000

T0001

T0002

Instruction OperandsAddress

000000 LD 010000
000001 LD 000001
000002 CNT 0002
 #0100
000003 LD 000000
000004 AND NOT 010000
000005 AND NOT C0002
000006 TIM 0001
 #0050
000007 LD T0001
000008 OUT 010000
000009 LD C0002
000010 OUT 000201

Instruction Operands

Count up

Address

Start
285

Timer and Counter Instructions Section 3-6
Example 2:
Two-stage Counter

When an SV higher than 9999 is required, two counters can be combined as
shown in the following example. In this case, two CNT instructions are com-
bined to make a BCD counter with an SV of 20,000.

Example 3:
ON/OFF Delay

In this example two TIM timers are combined with KEEP(011) to make an ON
delay and an OFF delay. CIO 000500 will be turned ON 5.0 seconds after
CIO 000000 goes ON and it will be turned OFF 3.0 seconds after CIO 000000
goes OFF.

000000

000001

A20011

C0001

000000 LD 000000
000001 AND 1 s
000002 LD 000001

000004 CNT 0001
 #0700

000005 LD C0001
000006 OUT 000202

000003 OR A20011

Instruction OperandsAddress1 s (1-s clock)

000000 LD 000000
000001 AND 000001
000002 LD NOT 000002
000003 OR C0001
000004 OR C0002
000005 CNT 0001
 #0100
000006 LD C0001
000007 LD NO 000002
000008 CNT 0002
 #0200
000009 LD C0002
000010 OUT 000203

Instruction OperandsAddress
286

Timer and Counter Instructions Section 3-6
Example 4:
One-shot Bit

A TIM timer can be combined with OUT or OUT NOT to control how long a
particular bit is ON or OFF. In this example, CIO 000204 will be ON for 1.5
seconds (the SV of T0001) after CIO 000000 goes ON.

Example 4:
Flicker Bit

The following program examples show two ways to create flicker bits. The
second example just mimics a clock pulse.

Two TIM Instructions

Two TIM timers can be combined to make a bit turn ON and OFF at regular
intervals while the execution condition is ON. In this example, CIO 000205 will
be OFF for 1.0 second and then ON for 1.5 seconds as long as CIO 000000 is
ON.

CIO 000000

CIO 000500

5.0 s 3.0 s

000000 LD 000000
000001 TIM 0001
 #0050
000002 LD 000500
000003 AND NOT 000000
000004 TIM 0002
 #0030
000005 LD T0001
000006 LD T0002
000007 KEEP(011) 000500

Instruction OperandsAddress

000000 LD 000000
000001 LD 001000
000002 AND NOT 010000
000003 OR 000000
000004 OUT 001000
000005 LD 001000
000006 TIM 0001
 #0015
000007 LD T0001
000008 OUT 010000
000009 LD 001000
000010 AND NOT 010000
000011 OUT 000204

CIO 000000

CIO 000204

1.5 s 1.5 s

Instruction OperandsAddress
287

Timer and Counter Instructions Section 3-6
Clock Pulse

The desired execution condition can be combined with a clock pulse to mimic
the clock pulse (0.1 s, 0.2 s, or 1.0 s).

3-6-13 Indirect Addressing of Timer/Counter Numbers
Timer and counter numbers can be indirectly addressed using Index Regis-
ters. When Index Registers will be used for indirect addressing, use
MOVRW(561) (MOVE TIMER/COUNTER PV TO REGISTER) to set the PLC
memory address of the desired timer or counter’s PV to the desired Index
Register.

The following timers and counters can be indirectly addressed using Index
Registers: TIM, TIMX(550), TIMH(015), TIMHX(551), TTIM(087),
TTIMX(555), TMHH(540), TMHHX(552), TIMW(813), TIMWX(816),
TMHW(815), TMHWX(817), CNT, CNTX(546), CNTR(012), CNTRX(548),
CNTW(814), and CNTWX(818). (These are the timers and counters that use
timer and counter numbers.)

The timer or counter instruction will not be executed if the PLC memory
address in the specified Index Register is not the address of a timer or counter
PV.

Using Index Registers to indirectly address timers and counters can reduce
the size of the program and increase flexibility. For example, common subrou-
tines can be created.

Example The following example shows a program section that uses indirect addressing
to define and start 100 timers with SVs contained in D00100 through D00199.

CIO 000000

CIO 000205

1.5 s1.0 s 1.5 s1.0 s

000000 LD 000000
000001 AND T0002
000002 TIM 0001
 #0010
000003 LD 000205
000004 TIM 0002
 #0015
000005 LD T0001
000006 OUT 000205

Instruction OperandsAddress

000000 LD 000000
000001 AND 1s
000002 OUT 000206

Instruction OperandsAddress1-s clock pulse

1-s clock
pulse
288

Timer and Counter Instructions Section 3-6
IR0 contains the PLC memory address of the timer PV and IR1 contains the
PLC memory address of the timer Completion Flag.

1,2,3... 1. MOVRW(561) moves the PLC memory address of the PV for timer T0000
to IR0. Afterwards IR0 can be used in place of the timer number.

2. MOVR(560) moves the PLC memory address of the Completion Flag for
timer T0000 to IR1.

3. MOVR(560) moves the PLC memory address of CIO 200000 into IR2.

4. MOV(021) moves &100 into D00000 for indirect addressing of the timer
SVs.

5. The content of IR0, IR1, IR2, and D00000 are incremented by 1 each time
as this loop is executed 100 times, starting timers T0000 through T0099.

DM address Content Function

D00100 0010 SV for T0000

D00101 0100 SV for T0001

D00102 0050 SV for T0002

.

.

.

.

.

.

.

.

.

D00199 0999 SV for T0099

1

2

3

4

5

P_On

P_On

&100

FOR
&100

@D00000

++

NEXT

(Always ON
Flag)

(Always ON
Flag)
289

Timer and Counter Instructions Section 3-6
The loop in the program above has 4 input parameters which are used to start
all 100 timers with this common subroutine.

IR0 The PLC memory address of the timer’s PV
IR1 The PLC memory address of the timer’s Completion Flag
IR2 The PLC memory address of the timer’s execution condition
D00000The DM address of the word containing the timer’s SV

The subroutine above is equivalent to the 400 instructions below.

000000 LD NOT 200000
000001 TIM 0000
 D00100
000002 LD T0000
000003 OUT 200000
000004 LD NOT 200001
000005 TIM 0001
 D00101
000006 LD T0001
000007 OUT 200001

000008 LD NOT 200002
000009 TIM 0002
 D00102
000010 LD T0002
000011 OUT 200002

000396 LD NOT 200602
000397 TIM 0099

 D00199
000398 LD T0000
000399 OUT 200602

200000

T0000

200001

T0001

200602

T0099

Instruction OperandsAddress
290

Comparison Instructions Section 3-7
3-7 Comparison Instructions
This section describes instructions used to compare data of various lengths
and in various ways.

3-7-1 Input Comparison Instructions (300 to 328)
Purpose Input comparison instructions compare two values (constants and/or the con-

tents of specified words) and create an ON execution condition when the
comparison condition is true. Input comparison instructions are available to
compare signed or unsigned data of one-word or double length data.

Note Refer to 3-15-24 Single-precision Floating-point Comparison Instructions for
details on single-precision floating-point input comparison instructions and 3-
16-21 Double-precision Floating-point Input Instructions for details on double-
precision floating-point input comparison instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications
for Instructions for One-
word Data

Instruction Mnemonic Function
code

Page

Input Comparison Instructions =, <>, <, <=, >, >=
(S, L) (LD, AND, OR)

300 to 328 291

Time Comparison Instructions =DT, <>DT, <DT, <=DT, >DT,
>=DT (LD, AND, OR)

341 to 346 297

COMPARE CMP 020 303

DOUBLE COMPARE CMPL 060 306

SIGNED BINARY COMPARE CPS 114 309

DOUBLE SIGNED BINARY
COMPARE

CPSL 115 312

MULTIPLE COMPARE MCMP 019 315

TABLE COMPARE TCMP 085 317

BLOCK COMPARE BCMP 068 320

EXPANDED BLOCK COMPARE BCMP2 502 322

AREA RANGE COMPARE ZCP 088 326

DOUBLE AREA RANGE COM-
PARE

ZCPL 116 329

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511
291

Comparison Instructions Section 3-7
Operand Specifications
for Instructions for
Double-length Data

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_ 32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2

Area S1 S2

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF (binary)

Data Registers ---
292

Comparison Instructions Section 3-7
Description The input comparison instruction compares S1 and S2 as signed or unsigned
values and creates an ON execution condition when the comparison condition
is true. Unlike instructions such as CMP(020) and CMPL(060), the result of an
input comparison instruction is reflected directly as an execution condition, so
it is not necessary to access the result of the comparison through an Arith-
metic Flag and the program is simpler and faster.

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Options

The input comparison instructions can compare signed or unsigned data and
they can compare one-word or double values. If no options are specified, the

Index Registers IR0 to IR15 (for unsigned data only)

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S1 S2

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.

<

<

<

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
293

Comparison Instructions Section 3-7
comparison will be for one-word unsigned data. With the three input types and
two options, there are 72 different input comparison instructions.

Unsigned input comparison instructions (i.e., instructions without the S option)
can handle unsigned binary or BCD data. Signed input comparison instruc-
tions (i.e., instructions with the S option) handle signed binary data.

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 72 input comparison instructions. (For one-word comparisons
C1=S1 and C2=S2; for double comparisons C1=S1+1, S1 and C2=S2+1, S2.)

Symbol Option (data format) Option (data length)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

None: Unsigned data

S: Signed data

None: One-word data

L: Double-length data

Code Mnemonic Name Function

300 LD= LOAD EQUAL True if
C1 = C2AND= AND EQUAL

OR= OR EQUAL

301 LD=L LOAD DOUBLE EQUAL

AND=L AND DOUBLE EQUAL

OR=L OR DOUBLE EQUAL

302 LD=S LOAD SIGNED EQUAL

AND=S AND SIGNED EQUAL

OR=S OR SIGNED EQUAL

303 LD=SL LOAD DOUBLE SIGNED EQUAL

AND=SL AND DOUBLE SIGNED EQUAL

OR=SL OR DOUBLE SIGNED EQUAL

305 LD<> LOAD NOT EQUAL True if
C1 ≠ C2AND<> AND NOT EQUAL

OR<> OR NOT EQUAL

306 LD<>L LOAD DOUBLE NOT EQUAL

AND<>L AND DOUBLE NOT EQUAL

OR<>L OR DOUBLE NOT EQUAL

307 LD<>S LOAD SIGNED NOT EQUAL

AND<>S AND SIGNED NOT EQUAL

OR<>S OR SIGNED NOT EQUAL

308 LD<>SL LOAD DOUBLE SIGNED NOT EQUAL

AND<>SL AND DOUBLE SIGNED NOT EQUAL

OR<>SL OR DOUBLE SIGNED NOT EQUAL
294

Comparison Instructions Section 3-7
310 LD< LOAD LESS THAN True if
C1 < C2AND< AND LESS THAN

OR< OR LESS THAN

311 LD<L LOAD DOUBLE LESS THAN

AND<L AND DOUBLE LESS THAN

OR<L OR DOUBLE LESS THAN

312 LD<S LOAD SIGNED LESS THAN

AND<S AND SIGNED LESS THAN

OR<S OR SIGNED LESS THAN

313 LD<SL LOAD DOUBLE SIGNED LESS THAN

AND<SL AND DOUBLE SIGNED LESS THAN

OR<SL OR DOUBLE SIGNED LESS THAN

315 LD<= LOAD LESS THAN OR EQUAL True if
C1 ≤ C2AND<= AND LESS THAN OR EQUAL

OR<= OR LESS THAN OR EQUAL

316 LD<=L LOAD DOUBLE LESS THAN OR EQUAL

AND<=L AND DOUBLE LESS THAN OR EQUAL

OR<=L OR DOUBLE LESS THAN OR EQUAL

317 LD<=S LOAD SIGNED LESS THAN OR EQUAL

AND<=S AND SIGNED LESS THAN OR EQUAL

OR<=S OR SIGNED LESS THAN OR EQUAL

318 LD<=SL LOAD DOUBLE SIGNED LESS THAN OR EQUAL True if
C1 ≤ C2AND<=SL AND DOUBLE SIGNED LESS THAN OR EQUAL

OR<=SL OR DOUBLE SIGNED LESS THAN OR EQUAL

320 LD> LOAD GREATER THAN True if
C1 > C2AND> AND GREATER THAN

OR> OR GREATER THAN

321 LD>L LOAD DOUBLE GREATER THAN

AND>L AND DOUBLE GREATER THAN

OR>L OR DOUBLE GREATER THAN

322 LD>S LOAD SIGNED GREATER THAN

AND>S AND SIGNED GREATER THAN

OR>S OR SIGNED GREATER THAN

323 LD>SL LOAD DOUBLE SIGNED GREATER THAN

AND>SL AND DOUBLE SIGNED GREATER THAN

OR>SL OR DOUBLE SIGNED GREATER THAN

325 LD>= LOAD GREATER THAN OR EQUAL True if
C1 ≥ C2AND>= AND GREATER THAN OR EQUAL

OR>= OR GREATER THAN OR EQUAL

326 LD>=L LOAD DOUBLE GREATER THAN OR EQUAL

AND>=L AND DOUBLE GREATER THAN OR EQUAL

OR>=L OR DOUBLE GREATER THAN OR EQUAL

327 LD>=S LOAD SIGNED GREATER THAN OR EQUAL

AND>=S AND SIGNED GREATER THAN OR EQUAL

OR>=S OR SIGNED GREATER THAN OR EQUAL

328 LD>=SL LOAD DBL SIGNED GREATER THAN OR EQUAL

AND>=SL AND DBL SIGNED GREATER THAN OR EQUAL

OR>=SL OR DBL SIGNED GREATER THAN OR EQUAL

Code Mnemonic Name Function
295

Comparison Instructions Section 3-7
Flags

Note In CS1 and CJ1 CPU Units, these Flags are turned OFF.
In CS1-H, CJ1-H, CJ1M, and CS1D CPU Units, these Flags are left
unchanged.

Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Examples AND LESS THAN: AND<(310)

When CIO 000000 is ON in the following example, the contents of D00100
and D00200 are compared in as unsigned binary data. If the content of
D00100 is less than that of D00200, CIO 005000 is turned ON and execution
proceeds to the next line. If the content of D00100 is not less than that of
D00200, the remainder of the instruction line is skipped and execution moves
to the next instruction line.

AND SIGNED LESS THAN: AND<S(312)

When CIO 000001 is ON in the following example, the contents of D00110
and D00210 are compared as signed binary data. If the content of D00110 is
less than that of D00210, CIO 005001 is turned ON and execution proceeds
to the next line. If the content of D00110 is not less than that of D00210, the

Name Label Operation

Error Flag ER OFF or unchanged (See note.)

Greater Than
Flag

> ON if S1 > S2 with one-word data.

ON if S1+1, S1 > S2+1, S2 with double-length data.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1 ≥ S2 with one-word data.

ON if S1+1, S1 ≥ S2+1, S2 with double-length data.

OFF in all other cases.

Equal Flag = ON if S1 = S2 with one-word data.

ON if S1+1, S1 = S2+1, S2 with double-length data.

OFF in all other cases.

Not Equal Flag = ON if S1 ≠ S2 with one-word data.

ON if S1+1, S1 ≠ S2+1, S2 with double-length data.

OFF in all other cases.

Less Than Flag < ON if S1 < S2 with one-word data.

ON if S1+1, S1 < S2+1, S2 with double-length data.

OFF in all other cases.

Less Than or
Equal Flag

< = ON if S1 ≤ S2 with one-word data.

ON if S1+1, S1 ≤ S2+1, S2 with double-length data.

OFF in all other cases.

Negative Flag N OFF or unchanged (See note.)

005000

005001

000000

000001

<

<S 34,580 > 14,876

S2: D00200S1: D00100

8714 3A1C

Unsigned
LESS THAN
Comparison

Decimal: 34,580 Decimal: 14,876

(Will not proceed to next line.)
296

Comparison Instructions Section 3-7
remainder of the instruction line is skipped and execution moves to the next
instruction line.

3-7-2 Time Comparison Instructions (341 to 346)
Purpose Time comparison instructions compare two BCD time values and create an

ON execution condition when the comparison condition is true.

The time comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

These instructions are supported only by CS/CJ-series CPU Unit Ver. 2.0 or
later.

Ladder Symbol

Variations

Applicable Program Areas

8714

S1: D00110

 −30,956

3A1C

S2: D00210

 14,876

−30,956 < 14,876

Decimal: Decimal:

Signed
LESS THAN
Comparison

(Will proceed to next line.)

S1

C

S2

LD

S1

C

S2

S1

C

S2

AND

OR

Symbol

Symbol

Symbol

C: Control word

S1: First word of present time

S2: First word of comparison time

C: Control word

S1: First word of present time

S2: First word of comparison time

C: Control word

S1: First word of present time

S2: First word of comparison time

Variations Creates ON Each Cycle Comparison is True Time compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
297

Comparison Instructions Section 3-7
Operands C: Control Word

Bits 00 to 05 of C specify whether or not the time data will be masked for the
comparison. Bits 00 to 05 mask the seconds, minutes, hours, day, month, and
year, respectively. If all 6 values are masked, the instruction will not be exe-
cuted, the execution condition will be OFF, and the Error Flag will be turned
ON.

S1 through S1+2: Present Time Data
S1 through S1+2 contain the present time data. S1 through S1+2 must be in
the same data area.

Note When using the CPU Unit’s internal clock data for the comparison, set S1 to
A351 to specify the CPU Unit’s internal clock data (A351 to A353).

01234567815
0000000000C

Masks seconds data when ON.
Masks minutes data when ON.
Masks hours data when ON.
Masks day data when ON.
Masks month data when ON.
Masks year data when ON.

15 8 07

S1

15 8 07

S1+1

15 8 07

S1+2

Seconds: 00 to 59 (BCD)

 Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

 Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)
298

Comparison Instructions Section 3-7
S2 through S2+2: Comparison Time Data
S2 through S2+2 contain the comparison time data. S2 through S2+2 must be
in the same data area.

Note The year value indicates the last two digits of the year. Values 00 to 97 are
interpreted as 2000 to 2097. Values 98 and 99 are interpreted as 1998 and
1999.

Operand Specifications

15 8 07

S2

15 8 07

S2+1

15 8 07

S2+2

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Day: 01 to 31 (BCD)

Hour: 00 to 23 (BCD)

Minutes: 00 to 59 (BCD)

Seconds: 00 to 59 (BCD)

Area C S1 S2

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to CIO 6141

Work Area W000 to W511 W000 to W509

Holding Bit Area H000 to H511 H000 to H509

Auxiliary Bit Area A448 to A959 A000 to A957

Timer Area T0000 to T4095 T0000 to T4093

Counter Area C0000 to C4095 C0000 to C4093

DM Area D00000 to D32767 D00000 to D32765

EM Area without bank E00000 to E32767 E00000 to E32765

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to En_32765
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)
299

Comparison Instructions Section 3-7
Description The time comparison instruction compares the unmasked values (corre-
sponding bit of C set to 0) of the present time data in S1 to S1+2 with the com-
parison time data in S2 to S2+2 and creates an ON execution condition when
the comparison condition is true. At the same time, the result of a time com-
parison instruction is reflected in the arithmetic flags (=, <>, <, <=, >, >=).

There are 18 possible combinations of time comparison instructions.

Any time values that are masked in the control word (C) are not included in
the comparison.

The following table shows the ON/OFF status of each flag for each compari-
son result.

Masking Time Values

Time values can be masked individually and excluded from the comparison
operation. To mask a time value, set the corresponding bit in the control word
(C) to 1. Bits 00 to 05 of C mask the seconds, minutes, hours, day, month, and
year, respectively.

Example:
When C = 39 hex, the rightmost 6 bits are 111001 (year=1, month=1, day=1,
hours=0, minutes=0, and seconds=1) so only the hours and minutes are com-
pared. This mask setting can be used to perform a particular operation at a
given time (hour and minute) each day.

Constants See previous page. See previous page. ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S1 S2

Result Flag status

= <> < <= > >=

S1 = S2 ON OFF OFF ON OFF ON

S1 > S2 OFF ON OFF OFF ON ON

S1 < S2 OFF ON ON ON OFF OFF

S1 S2

(=, <>, <, <=, >, >=)

Comparison

Result
Conditions Flags
300

Comparison Instructions Section 3-7
Previous data comparison instructions compared data in 16-bit units. The
time comparison instructions are limited to comparing 8-bit time values.

The following table shows the structure of the CPU Unit’s internal Calendar/
Clock Area.

The Calendar/Clock Area can be set with a Programming Device (including a
Programming Console), DATE(735) instruction, or “CLOCK WRITE” FINS
command (0702 hex).

Summary of Time Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 time comparison instructions.

Addresses Contents

A35100 to A35107 Second (00 to 59, BCD)

A35108 to A35115 Minute (00 to 59, BCD)

A35200 to A35207 Hour (00 to 23, BCD)

A35208 to A35215 Day of month (01 to 31, BCD)

A35300 to A35307 Month (01 to 12, BCD)

A35308 to A35315 Year (00 to 99, BCD)

Code Mnemonic Name Function

341 LD= DT LOAD EQUAL True if
S1 = S2AND=DT AND EQUAL

OR=DT OR EQUAL

342 LD<>DT LOAD NOT EQUAL True if
S1 ≠ S2AND<>DT AND NOT EQUAL

OR<>DT OR NOT EQUAL

343 LD<DT LOAD LESS THAN True if
S1 < S2AND<DT AND LESS THAN

OR<DT OR LESS THAN

344 LD<=DT LOAD LESS THAN OR EQUAL True if
S1 ≤ S2AND<=DT AND LESS THAN OR EQUAL

OR<=DT OR LESS THAN OR EQUAL

345 LD>DT LOAD GREATER THAN True if
S1 > S2AND>DT AND GREATER THAN

OR>DT OR GREATER THAN

346 LD>=DT LOAD GREATER THAN OR EQUAL True if
S1 ≥ S2AND>=DT AND GREATER THAN OR EQUAL

OR>=DT OR GREATER THAN OR EQUAL

00070815

S1

S1+1

S1+2

00070815

S2

S2+1

S2+2

Present time data Comparison time data

Compares only hours and
minutes data.

Year, month, day, and seconds
data is masked.

Second (00 to
59, BCD)

Second (00 to
59, BCD)

Minute (00 to
59, BCD)

Minute (00 to
59, BCD)

Hour (00 to
23, BCD)

Hour (00 to
23, BCD)

Day of month
(01 to 31, BCD)

Day of month
(01 to 31, BCD)

Month (01 to
12, BCD)

Month (01 to
12, BCD)

Year (00 to
99, BCD)

Year (00 to
99, BCD)
301

Comparison Instructions Section 3-7
Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions Time comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example When CIO 000000 is ON and the time is 13:00:00, CIO 005000 is turned ON.
The contents of A351 to A353 (the CPU Unit’s internal calendar/clock data)
are used as the present time data and the contents of D00100 to D00102 are
used as the comparison time data. The year, month, and day values are
masked, so only the hour, minute, and second data are compared.

Name Label Operation

Error Flag ER ON if all 6 of the mask bits (C bits 00 to 05) are ON.
OFF in all other cases.

Greater Than
Flag

> ON if S1 > S2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1 ≥ S2.

OFF in all other cases.

Equal Flag = ON if S1 = S2.

OFF in all other cases.

Not Equal Flag = ON if S1 ≠ S2.

OFF in all other cases.

Less Than Flag < ON if S1 < S2.

OFF in all other cases.

Less Than or
Equal Flag

< = ON if S1 ≤ S2.

OFF in all other cases.

Negative Flag N Unchanged (See note.)

01234567

- 1 1 1 0 0 0-D00000

000000

C

S1

S2

005000

=DT

D00000

A352

D00100

A351

A352

A353

07815

S2: D00100

S2+1: D00101

S2+2: D00102

00 00

13

07815

-

- -

D00000 set to 0038 hex

Shaded data is compared.

Minute Second

Day of month Hour

Year Month

Conditions Flags set as soon as
execution condition is turned ON.

Seconds compared.
Minutes compared.
Hours compared.
Day masked.
Month masked.
Year masked.
302

Comparison Instructions Section 3-7
3-7-3 COMPARE: CMP(020)
Purpose Compares two unsigned binary values (constants and/or the contents of

specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units for Duplex-CPU
Systems.

Applicable Program Areas

Operand Specifications

CMP(020)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CMP(020)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !CMP(020)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15
303

Comparison Instructions Section 3-7
Description CMP(020) compares the unsigned binary data in S1 and S2 and outputs the
result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

Condition Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMP(020). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CMP(020) Results in the Program

When CMP(020) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMP(020), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S1 =
S2.

Using CMP(020) Results in the Program

Do not program another instruction between CMP(020) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMP(020).

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S1 S2

CMP(020)
Result

Flag status

> > = = < = < < >

S1 > S2 ON ON OFF OFF OFF ON

S1 = S2 OFF ON ON ON OFF OFF

S1 < S2 OFF OFF OFF ON ON ON

(>, >=, =, <=, <, <>)

Unsigned binary
comparison

Arithmetic Flags

CMP

S1

S2

A

Arithmetic Flag
(Example: Equal Flag)

Correct Use of CMP(020)
304

Comparison Instructions Section 3-7
The immediate-refreshing variation (!CMP(020)) can be used with words allo-
cated to external inputs specified in S1 and/or S2. When !CMP(020) is exe-
cuted, input refreshing will be performed for the external input word specified
in S1 and/or S2 and that refreshed value will be compared. (Immediate
refreshing cannot be performed on inputs allocated to Group-2 High-density
I/O Units or Units mounted to Slave Racks.)

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions Do not program another instruction between CMP(020) and an input condition
that accesses the result of CMP(020) because the other instruction might
change the status of the Arithmetic Flags.

CMP

S1

S2

A

Incorrect Use of CMP(020)

Instruction
 B

Arithmetic Flag
(Example: Equal Flag)

Name CX-Programmer
label

Programming
Console label

Operation

Error Flag P_ER ER Unchanged (See note.)

Greater Than Flag P_GT > ON if S1 > S2.

OFF in all other cases.

Greater Than or Equal Flag P_GE > = ON if S1 ≥ S2.

OFF in all other cases.

Equal Flag P_EQ = ON if S1 = S2.

OFF in all other cases.

Not Equal Flag P_NE = ON if S1 ≠ S2.

OFF in all other cases.

Less Than Flag P_LT < ON if S1 < S2.

OFF in all other cases.

Less Than or Equal Flag P_LE < = ON if S1 ≤ S2.

OFF in all other cases.

Negative Flag P_N N Unchanged (See note.)
305

Comparison Instructions Section 3-7
3-7-4 DOUBLE COMPARE: CMPL(060)
Purpose Compares two double unsigned binary values (constants and/or the contents

of specified words) and outputs the result to the Arithmetic Flags in the Auxil-
iary Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

CMPL(060)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CMPL(060)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF

(binary)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
306

Comparison Instructions Section 3-7
Description CMPL(060) compares the unsigned binary data in S1 +1, S1 and S2+1, S2
and outputs the result to Arithmetic Flags (the Greater Than, Greater Than or
Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMPL(060). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CMPL(060) Results in the Program

When CMPL(060) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMPL(060), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S1 +1, S1 =
S2+1, S2.

Using CMPL(060) Results in the Program

Do not program another instruction between CMPL(060) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMPL(060).

CMPL(060)Result Flag status

> > = = < = < < >

S1 +1, S1 > S2+1, S2 ON ON OFF OFF OFF ON

S1+1, S1 = S2+1, S2 OFF ON ON ON OFF OFF

S1+1, S1 < S2+1, S2 OFF OFF OFF ON ON ON

(>, >=, =, <=, <, <>)

S2+1

Unsigned binary
comparison

Arithmetic Flags

CMPL

S1

S2

A

Correct Use of CMPL(060)

Arithmetic Flag
(Example: Equal Flag)
307

Comparison Instructions Section 3-7
Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions Do not program another instruction between CMPL(060) and an input condi-
tion that accesses the result of CMPL(060) because the other instruction
might change the status of the Arithmetic Flags.

Example When CIO 000000 is ON in the following example, the eight-digit unsigned
binary data in CIO 0011 and CIO 0010 is compared to the eight-digit
unsigned binary data in CIO 0009 and CIO 0008 and the result is output to
the Arithmetic Flags. The results recorded in the Greater Than, Equals, and
Less Than Flags are immediately saved to CIO 000200 (Greater Than),
CIO 000201 (Equals), and CIO 000202 (Less Than).

CMPL

S1

S2

A

Incorrect Use of CMPL(060)

Instruction
B

Arithmetic Flag
(Example: Equals Flag)

Name CX-Programmer
label

Programming
Console label

Operation

Error Flag P_ER ER Unchanged (See note.)

Greater Than Flag P_GT > ON if S1 +1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or Equal Flag P_GE > = ON if S1 +1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag P_EQ = ON if S1 +1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag P_NE <> ON if S1 +1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag P_LT < ON if S1 +1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or Equal Flag P_LE < = ON if S1 +1, S1 ≤ S2+1, S2.

OFF in all other cases.

Negative Flag P_N N Unchanged (See note.)
308

Comparison Instructions Section 3-7
3-7-5 SIGNED BINARY COMPARE: CPS(114)
Purpose Compares two signed binary values (constants and/or the contents of speci-

fied words) and outputs the result to the Arithmetic Flags in the Auxiliary Area.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operand Specifications

(0)

(0)

(1)

>

=

<

Flag status

Result
Comparison

CPS(114)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CPS(114)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !CPS(114)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)
309

Comparison Instructions Section 3-7
Description CPS(114) compares the signed binary data in S1 and S2 and outputs the
result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

Note CPS(114) treats the data in S1 and S2 as signed binary data which ranges
from 8000 to 7FFF (–32,768 to 32,767 decimal).

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPS(114). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CPS(114) Results in the Program

When CPS(114) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPS(114), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S1 =
S2.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S1 S2

(>, >=, =, <=, <, <>)
Arithmetic Flags

Signed binary
comparison

CPS(114)
Result

Flag status

> > = = < = < < >

S1 > S2 ON ON OFF OFF OFF ON

S1 = S2 OFF ON ON ON OFF OFF

S1 < S2 OFF OFF OFF ON ON ON

CPS

S1

S2

A

Correct Use of CPS(114)

Arithmetic Flag
(Example: Equal Flag)
310

Comparison Instructions Section 3-7
Using CPS(114) Results in the Program

Do not program another instruction between CPS(114) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPS(114).

The immediate-refreshing variation (!CPS(114)) can be used with words allo-
cated to external inputs specified in S1 and/or S2. When !CPS(114) is exe-
cuted, input refreshing will be performed for the external input word specified
in S1 and/or S2 and that refreshed value will be compared. (Immediate
refreshing cannot be performed on inputs allocated to Group-2 High-density
I/O Units or Units mounted to Slave Racks.)

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions Do not program another instruction between CPS(114) and an input condition
that accesses the result of CPS(114) because the other instruction might
change the status of the Arithmetic Flags.

CPS

S1

S2

A

Incorrect Use of CPS(114)

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

Name Label Operation

Error Flag ER Unchanged (See note.)

Greater Than Flag > ON if S1 > S2.
OFF in all other cases.

Greater Than or Equal Flag > = ON if S1 ≥ S2.
OFF in all other cases.

Equal Flag = ON if S1 = S2.
OFF in all other cases.

Not Equal Flag <> ON if S1 ≠ S2.
OFF in all other cases.

Less Than Flag < ON if S1 < S2.
OFF in all other cases.

Less Than or Equal Flag < = ON if S1 ≤ S2.
OFF in all other cases.

Negative Flag N Unchanged (See note.)
311

Comparison Instructions Section 3-7
3-7-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
Purpose Compares two double signed binary values (constants and/or the contents of

specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

CPSL(115)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CPSL(115)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF

(binary)

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
312

Comparison Instructions Section 3-7
Description CPSL(115) compares the double signed binary data in S1 +1, S1 and S2+1,
S2 and outputs the result to Arithmetic Flags (the Greater Than, Greater Than
or Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Note CPSL(115) treats the data in S1 and S2 as double signed binary data which
ranges from 8000 0000 to 7FFF FFFF (–2,147,483,648 to 2,147,483,647 dec-
imal).

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPSL(115). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CPSL(115) Results in the Program

When CPSL(115) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPSL(115), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S1 +1, S1 =
S2+1, S2.

Using CPSL(115) Results in the Program

Do not program another instruction between CPSL(115) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPSL(115).

(>, >=, =, <=, <, <>)

S2+1

Signed binary
comparison

Arithmetic Flags

CPSL(115)Result Flag status

> > = = < = < < >

S1 +1, S1 > S2+1, S2 ON ON OFF OFF OFF ON

S1+1, S1 = S2+1, S2 OFF ON ON ON OFF OFF

S1+1, S1 < S2+1, S2 OFF OFF OFF ON ON ON

CPSL

S1

S2

A

Correct Use of CPSL(115)

Arithmetic Flag
(Example: Equal Flag)
313

Comparison Instructions Section 3-7
Flags

Note In CS1 and CJ1 CPU Units, these Flags are turned OFF.
In CS1-H, CJ1-H, CJ1M, and CS1D CPU Units, these Flags are left
unchanged.

Precautions Do not program another instruction between CPSL(115) and an input condi-
tion that accesses the result of CPSL(115) because the other instruction
might change the status of the Arithmetic Flags.

Example When CIO 000000 is ON in the following example, the eight-digit signed
binary data in D00002 and D00001 is compared to the eight-digit signed
binary data in D00006 and D00005 and the result is output to the Arithmetic
Flags.

• If the content of D00002 and D00001 is greater than that of D00006 and
D00005, the Greater Than Flag will be turned ON, causing CIO 002000 to
be turned ON.

• If the content of D00002 and D00001 is equal to that of D00006 and
D00005, the Equals Flag will be turned ON, causing CIO 002001 to be
turned ON.

• If the content of D00002 and D00001 is less than that of D00006 and
D00005, the Less Than Flag will be turned ON, causing CIO 002002 to
be turned ON.

CPSL

S1

S2

A

Incorrect Use of CPSL(115)

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

Name Label Operation

Error Flag ER OFF or unchanged (See note.)

Greater Than Flag > ON if S1 +1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or Equal Flag > = ON if S1 +1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag = ON if S1 +1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag = ON if S1 +1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag < ON if S1 +1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or Equal Flag < = ON if S1 +1, S1 ≤ S2+1, S2.

OFF in all other cases.

Negative Flag N OFF or unchanged (See note.)
314

Comparison Instructions Section 3-7
3-7-7 MULTIPLE COMPARE: MCMP(019)
Purpose Compares 16 consecutive words with another 16 consecutive words and

turns ON the corresponding bit in the result word where the contents of the
words are not equal.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: First word of set 1

Specifies the beginning of the first 16-word range. S1 and S1+15 must be in
the same data area.

S2: First word of set 2

Specifies the beginning of the second 16-word range. S2 and S2+15 must be
in the same data area.

R: Result word

Each bit of R contains the result of a comparison between two words in the
16-word sets. Bit n of R (n = 00 to 15) contains the result of the comparison
between words S1+n and S2+n.

(1)
(0)

(0)

>
=

<

1234 5678

ABCD EF12

D0001

D0005

Flag status

Comparison

MCMP(019)

S1

S2

R

S1: First word of set 1

S2: First word of set 2

R: Result word

Variations Executed Each Cycle for ON Condition MCMP(019)

Executed Once for Upward Differentiation @MCMP(019)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 014

R
1

Comparison result for S1 and S2

Comparison result for S1+1 and S2+1

Comparison result for S1+14 and S2+14

Comparison result for S1+15 and S2+15
315

Comparison Instructions Section 3-7
Operand Specifications

Description MCMP(019) compares the contents of the 16 words S1 through S1+15 to the
contents of the 16 words S2 through S2+15, and turns ON the corresponding
bit in word R when the contents are not equal.

The content of S1 is compared to the content of S2, the content of S1+1 to the
content of S2+1, ..., and the content of S1+15 to the content of S2+15. Bit n of
R is turned OFF if the content of S1+n is equal to the content of S2+n; bit n of
R is turned ON if the contents are not equal. If the contents of all 16 pairs of
words are the same, the Equals Flag will turn ON after the instruction has
been executed.

Area S1 S2 R

CIO Area CIO 0000 to CIO 6128 CIO 0000 to
CIO 6143

Work Area W000 to W496 W000 to W511

Holding Bit Area H000 to H496 H000 to H511

Auxiliary Bit Area A000 to A944 A448 to A959

Timer Area T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4080 C0000 to C4095

DM Area D00000 to D32752 D00000 to
D32767

EM Area without bank E00000 to E32752 E00000 to
E32767

EM Area with bank En_00000 to 32752
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R
0: Words are equal.
1: Words aren't equal.

Comparison
316

Comparison Instructions Section 3-7
Flags

Example When CIO 000000 is ON in the following example, MCMP(019) compares
words D00100 through D00115 in order to words D00200 through D00215
and turns ON the corresponding bits in D00300 when the words are not
equal.

3-7-8 TABLE COMPARE: TCMP(085)
Purpose Compares the source data to the contents of 16 consecutive words and turns

ON the corresponding bit in the result word when the contents of the words
are equal.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(The two 16-word sets contain the same data.)

OFF in all other cases.

S1: S2:

R: D00300

TCMP(085)

S

T

R

S: Source data

T: First word of table

R: Result word

Variations Executed Each Cycle for ON Condition TCMP(085)

Executed Once for Upward Differentiation @TCMP(085)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
317

Comparison Instructions Section 3-7
Operands T: First word of table

Specifies the beginning of the 16-word table. T and T+15 must be in the same
data area.

R: Result word

Each bit of R contains the result of a comparison between S and a word in the
16-word table. Bit n of R (n = 00 to 15) contains the result of the comparison
between S and T+n.

Operand Specifications

15 014

R
1

to to

Comparison result for S and T

Comparison result for S and T+1

Comparison result for S and T+14

Comparison result for S and T+15

Comparison data 0

Comparison data 1

Comparison data 15

Area S T R

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6128

CIO 0000 to
CIO 6143

Work Area W000 to W511 W000 to W496 W000 to W511

Holding Bit Area H000 to H511 H000 to H496 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A944 A448 to A959

Timer Area T0000 to T4095 T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4080 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32752

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32752

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32752
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
318

Comparison Instructions Section 3-7
Description TCMP(085) compares the source data (S) to each of the 16 words T through
T+15 and turns ON the corresponding bit in word R when the data are equal.
Bit n of R is turned ON if the content of T+n is equal to S and it is turned OFF
if they are not equal.

S is compared to the content of T and bit 00 of R is turned ON if they are
equal or OFF if they are not equal, S is compared to the content of T+1 and bit
01 of R is turned ON if they are equal or OFF if they are not equal, ..., and S is
compared to the content of T+15 and bit 15 of R is turned ON if they are equal
or OFF if they are not equal.

Flags

Example When CIO 000000 is ON in the following example, TCMP(085) compares the
content of D00100 with the contents of words D00200 through D00215 and
turns ON the corresponding bits in D00300 when the contents are equal or
OFF when the contents are not equal.

R
1: Data are equal.
0: Data aren't equal.

Comparison

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(None of the 16 words in the table equals S.)
OFF in all other cases.

T:S: D00100

R: D00300
319

Comparison Instructions Section 3-7
3-7-9 BLOCK COMPARE: BCMP(068)
Purpose Compares the source data to 16 ranges (defined by 16 lower limits and 16

upper limits) and turns ON the corresponding bit in the result word when the
source data is within a range.

Ladder Symbol

Variations

Applicable Program Areas

Operands B: First word of block

Specifies the beginning of a 32-word block (16 lower/upper limit pairs). B and
B+31 must be in the same data area.

R: Result word

Each bit of R contains the result of a comparison between S and one of the 16
ranges defined the 32-word block. Bit n of R (n = 00 to 15) contains the result
of the comparison between S and the nth pair of words.

Operand Specifications

BCMP(068)

S

B

R

S: Source data

B: First word of block

R: Result word

Variations Executed Each Cycle for ON Condition BCMP(068)

Executed Once for Upward Differentiation @BCMP(068)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 014
R

1

Comparison result for S
and range B ↔ B+1

Comparison result for S
and range B+2 ↔ B+3Comparison result for S

and range B+28 ↔ B+29
Comparison result for S
and range B+30 ↔ B+31

Area S B R

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6112

CIO 0000 to
CIO 6143

Work Area W000 to W511 W0000 to W480 W000 to W511

Holding Bit Area H000 to H511 H000 to H480 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A928 A448 to A959

Timer Area T0000 to T4095 T0000 to T4064 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4064 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32736

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32736

E00000 to
E32767
320

Comparison Instructions Section 3-7
Description BCMP(068) compares the source data (S) to the 16 ranges defined by pairs
of lower and upper limit values in B through B+31. The first word in each pair
(B+2n) provides the lower limit and the second word (B+2n+1) provides the
upper limit of range n (n = 0 to 15). If S is within any of these ranges (inclusive
of the upper and lower limits), the corresponding bit in R is turned ON. The
rest of the bits in R will be turned OFF.

B ≤ S ≤ B+1 Bit 00 of R
B+2 ≤ S ≤ B+3 Bit 01 of R
B+4 ≤ S ≤ B+5 Bit 02 of R
B+6 ≤ S ≤ B+7 Bit 03 of R
B+8 ≤ S ≤ B+9 Bit 04 of R
B+10 ≤ S ≤ B+11 Bit 05 of R
B+12 ≤ S ≤ B+13 Bit 06 of R
B+14 ≤ S ≤ B+15 Bit 07 of R
B+16 ≤ S ≤ B+17 Bit 08 of R
B+18 ≤ S ≤ B+19 Bit 09 of R
B+20 ≤ S ≤ B+21 Bit 10 of R
B+22 ≤ S ≤ B+23 Bit 11 of R
B+24 ≤ S ≤ B+25 Bit 12 of R
B+26 ≤ S ≤ B+27 Bit 13 of R
B+28 ≤ S ≤ B+29 Bit 14 of R
B+30 ≤ S ≤ B+31 Bit 15 of R

For example, bit 00 of R is turned ON if S is within the first range (B ≤ S ≤
B+1), bit 01 of R is turned ON if S is within the second range (B+2 ≤ S ≤ B+3),
..., and bit 15 of R is turned ON if S is within the fifteenth range (B+30 ≤ S ≤
B+31). All other bits in R are turned OFF.

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32736

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S B R
321

Comparison Instructions Section 3-7
Flags

Precautions An error will not occur if the lower limit is greater than the upper limit, but 0
(not within the range) will be output to the corresponding bit of R.

Example When CIO 000000 is ON in the following example, BCMP(068) compares the
content of D00100 with the 16 ranges defined in D00200 through D00231 and
turns ON the corresponding bits in D00300 when S is within the range or OFF
when S is not within the range.

3-7-10 EXPANDED BLOCK COMPARE: BCMP2(502)
Purpose Compares the source data to up to 256 ranges (defined by 256 lower limits

and 256 upper limits) and turns ON the corresponding bit in the result word
when the source data is within a range. BCMP2(502) is supported only by the
CS1-H, CJ1-H, and CS1D CPU Unit Ver. 2.0 or later, and CJ1M CPU Unit
(Pre-Ver. 2.0 or Unit Ver. 2.0 or later).

Ladder Symbol

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(S is not within any of the 16 ranges.)

OFF in all other cases.

R: D00300

S: D00100 to

to

to

to

to

to

to

to
to

to

to

to

to

to

to

to

BCMP2(502)

S

B

R

S: Source data

B: First word of block

R: First result word
322

Comparison Instructions Section 3-7
Variations

Applicable Program Areas

Operands B: First word of block

Specifies the beginning of a comparison block containing up to 513 words
including up to 256 lower/upper limit pairs). All words must be in the same
data area.

R: First result word

Each bit of each R word contains the result of a comparison between S and
one of the ranges defined the comparison block. The maximum number of
result words is 16, i.e., m equals 0 to 15.

Variations Executed Each Cycle for ON Condition BCMP2(502)

Executed Once for Upward Differentiation @BCMP2(502)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

B+31

B+32

B+33

B+34

B+35

B+36

B+37

B+38

B+2N+1

B+2(N+1)

B

B+1

B+2

B+3

B+4

B+5

B+6

07815

Range 15 value A

Range 15 value B

Range 16 value A

Range 16 value B

Range 17 value A

Range 17 value B

Range 18 value A

Range 18 value B

Range N value A

Range N value B

Range 0 value A

Range 0 value B

Range 1 value A

Range 1 value B

Range 2 value A

Range 2 value B

Comparison block
Word

N: 00 to FF hex
(0 to 255)00 hex Last range "N"

Range 0

Range 1

Range 2

Range 15

Range 16

Range 17

Range 18

Range
data

Range N

15 014

Comparison result for
S and range 15m + 14

Comparison result for
S and range 15m + n

Comparison result for
S and range 15m

Comparison result for
S and range 15m + 15

R+m
n

323

Comparison Instructions Section 3-7
Operand Specifications

Description BCMP2(502) compares the source data (S) to the ranges defined by pairs of
lower and upper limit values in the comparison block. If S is within any of
these ranges (inclusive of the upper and lower limits), the corresponding bits
in the result words (R to R+15 max.) are turned ON. The rest of the bits in R
will be turned OFF.

The number of ranges is determined by the value N set in the lower byte of B.
N can be between 0 and 255. The upper byte of B must be 00 hex.

Number of Ranges

The number of ranges in the comparison block is set in the first word of the
block. Up to 256 ranges can be set.

Area S B R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

B+1

B+3

B+5

B+31

B+33

B+35

B+37

B+2N+1

B

0

1

2

15

0

1

2

R

R+1

07815

S
: :

::

B+2

B+4

B+6

B+32

B+34

B+36

B+38

B+2N+2

Bit

Bit

Result words
Comparison ranges

Comparison block

Source data

Range 0 value A

Range 1 value A

Range 2 value A

Range 15 value A

00 hex Last range
"N" N: 00 to FF hex (0 to 255)

Range 0 value B

Range 1 value B

Range 2 value B

Range 15 value B

In range: ON
Not in range: OFF

Ranges

Range 16 value A

Range 17 value A

Range 18 value A

Range N value A

Range 16 value B

Range 17 value B

Range 18 value B

Range N value B
324

Comparison Instructions Section 3-7
Setting Ranges

The values A and B for each range will determine how the comparison oper-
ates depending on which value is larger, as shown below.

Example

When B+1 ≤ B+2
If B+1 ≤ S ≤ B+2, then bit 0 of R will turn ON,
If B+3 ≤ S ≤ B+4, then bit 1 of R will turn ON,
If S < B+5 and B+6 < S, then bit 2 of R will turn OFF, and
If S < B+7 and B+8 < S, then bit 3 of R will turn OFF.

When B+1 > B+2
If S ≤ B+2 and B+1 ≤ S, then bit 0 of R will turn ON,
If S ≤ B+4 and B+3 ≤ S, then bit 1 of R will turn ON,
If B+6 < S < B+5, then bit 2 of R will turn OFF, and
If B+8 < S < B+7, then bit 3 of R will turn OFF.
Results Storage Location

The results are output to corresponding bits in word R. If there are more than
16 comparison ranges, consecutive words following R will be used. The maxi-
mum number of result words is 16, i.e., m equals 0 to 15.

Flags

Example When CIO 000000 is ON in the following example, BCMP2(502) compares
the content of CIO 0010 with the 24 ranges defined in D00200 through
D00247 (N = 17 hex = 23 decimal, i.e., 24 ranges) and turns ON the corre-
sponding bits in CIO 0100 and CIO 0101 when S is within the range and OFF
when S is not within the range. For example, if the source data in CIO 0010 is
in the range defined by D00201 and D00202, then bit 00 of CIO 0100 is
turned ON and if it in not in the range, then bit 00 of CIO 0100 is turned OFF.
Likewise, the source data in CIO 0010 is compared to the ranges defined by
D00203 and D00204, D00247 and D00248, and the other words in the com-

Value A Value B

Comparison range

Value B

Comparison
range

· If Value A ≤ Value B
Then, Value A ≤ Comparison range ≤ Value B

· If Value A > Value B
Then, Comparison range ≤ Value B and Value A ≤ Comparison range

Comparison
range

Value A

15 014

Comparison result for
S and range 15m + 14

Comparison result for
S and range 15m + n

Comparison result for
S and range 15m

Comparison result for
S and range 15m + 15

R+m
n

Name Label Operation

Error Flag ER OFF
325

Comparison Instructions Section 3-7
parison block, and bit 1 in CIO 0100, bit 7 in CIO 1010, and the other bits in
the result words are manipulated according to the results of comparison.

3-7-11 AREA RANGE COMPARE: ZCP(088)
Purpose Compares a 16-bit unsigned binary value (CD) with the range defined by

lower limit LL and upper limit UL. The results are output to the Arithmetic
Flags.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

BCMP2

0010

D00200

0100

000000

D00202

D00204

D00206

D00232

D00234

D00236

D00238

D00248

0 1 0 0

0 1 8 0

0 2 6 0

1 8 0 0

0 5 0 0

0 1 0 0

0 2 0 0

2 0 0 0

S: CIO 0010 0 1 7 5

0 0 1 7

D00201

D00203

D00205

D00231

D00233

D00235

D00237

D00247

0 0 0 0

0 0 8 0

0 1 6 0

1 2 0 0

1 5 0 0

1 9 0 0

1 8 0 0

0 1 0 0

R: CIO 0100

R: CIO 0101

Bit

ZCP(088)

CD

LL

UL

CD: Comparison Data

LL: Lower limit of range

UL: Upper limit of range

Variations Executed Each Cycle for ON Condition ZCP(088)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area CD LL UL

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
326

Comparison Instructions Section 3-7
Description ZCP(088) compares the 16-bit signed binary data in CD with the range
defined by LL and UL and outputs the result to the Greater Than, Equals, and
Less Than Flags in the Auxiliary Area. (The Less Than or Equal, Greater
Than or Equal, and Not Equal Flags are left unchanged.)

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCP(088).

Using ZCP(088) Results in the Program

When ZCP(088) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCP(088), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when
LL ≤ CD ≤ UL.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area CD LL UL

ZCP(088)Result Flag status

> = <

CD > UL ON OFF OFF

CD = UL OFF ON

LL < CD < UL

CD = LL

CD < LL OFF ON
327

Comparison Instructions Section 3-7
Do not program another instruction between ZCP(088) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of ZCP(088).

Flags

Precautions Do not program another instruction between ZCP(088) and an input condition
that accesses the result of ZCP(088) because the other instruction might
change the status of the Arithmetic Flags.

Example When CIO 000000 is ON in the following example, the 16-bit unsigned binary
data in D00000 is compared to the range 0005 to 001F hex (5 to 31 decimal)
and the result is output to the Arithmetic Flags.
CIO 000200 is turned ON if 0005 hex ≤ content of D00000 ≤ 001F hex.
CIO 000201 is turned ON if the content of D00000 > 001F hex.
CIO 000202 is turned ON if the content of D00000 < 0005 hex.

A

ZCP

CD

LL

UL

Correct Use of ZCP(088)

Arithmetic Flag
(Example: Equal Flag)

A

ZCPL

CD

LL

UL

Incorrect Use of ZCP(088)

Arithmetic Flag
(Example: Equal Flag)

Instruction
 B

Name Label Operation

Error Flag ER ON if LL > UL.

Greater Than Flag > ON if CD > UL.
OFF in all other cases.

Greater Than or Equal Flag > = Left unchanged.

Equal Flag = ON if LL ≤ CD ≤ UL.
OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD < LL.

OFF in all other cases.

Less Than or Equal Flag < = Left unchanged.

Negative Flag N Left unchanged.
328

Comparison Instructions Section 3-7
3-7-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)
Purpose Compares a 32-bit unsigned binary value (CD+1, CD) with the range defined

by lower limit (LL+1, LL) and upper limit (UL+1, UL). The results are output to
the Arithmetic Flags.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

D00000

LL CD UL

= ON(1)

D00000
> ON(1)

D00000
< ON(1)

≤

>

≤

>

0005Hex 001FHex

001FHex

0005Hex
002000

000000

>

002001

=

002002

<

ZCP

D00000

#0005

#001F

CD

LL

UL

Arithmetic
Flags

ZCPL(116)

CD

LL

UL

CD: First word of Comparison Data

LL: First word of Lower Limit

UL: First word of Upper Limit

Variations Executed Each Cycle for ON Condition ZCP(088)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area CD LL UL

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)
329

Comparison Instructions Section 3-7
Description ZCPL(116) compares the 32-bit signed binary data in CD+1, CD with the
range defined by LL+1, LL and UL+1, UL and outputs the result to the Greater
Than, Equals, and Less Than Flags in the Auxiliary Area. (The Less Than or
Equal, Greater Than or Equal, and Not Equal Flags are left unchanged.)

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCPL(116).

Using ZCPL(116) Results in the Program

When ZCPL(116) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCPL(116).

Do not program another instruction between ZCPL(116) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag.

The operation of ZCPL(116) is almost identical to that of ZCP(088) except that
ZCPL(116) compares 32-bit values instead of 16-bit values. Refer to 3-7-11
AREA RANGE COMPARE: ZCP(088) for diagrams showing how to use
results in the program and an example program section.

Flags

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 0000 to #FFFF FFFF
(binary)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area CD LL UL

ZCPL(116)Result Flag status

> = <

CD+1, CD > UL+1, UL ON OFF OFF

CD+1, CD = UL+1, UL OFF ON

LL+1, LL < CD+1, CD < UL+1, UL

CD+1, CD = LL+1, LL

CD+1, CD < LL+1, LL OFF ON

Name Label Operation

Error Flag ER ON if LL+1, LL > UL+1, UL.

Greater Than Flag > ON if CD > UL+1, UL.

OFF in all other cases.
330

Data Movement Instructions Section 3-8
Precautions Do not program another instruction between ZCPL(116) and an input condi-
tion that accesses the result of ZCPL(116) because the other instruction
might change the status of the Arithmetic Flags.

3-8 Data Movement Instructions
3-8-1 MOVE: MOV(021)
Purpose Transfers a word of data to the specified word.

Ladder Symbol

Variations

Note Immediate refreshing is not supported by CS1D CPU Units.

Applicable Program Areas

Operand Specifications

Greater Than or Equal Flag > = Left unchanged.

Equal Flag = ON if LL+1, LL ≤ CD+1, CD ≤ UL+1, UL.
OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD+1, CD < LL+1, LL.
OFF in all other cases.

Less Than or Equal Flag < = Left unchanged.

Negative Flag N Left unchanged.

Name Label Operation

S

D

MOV(021)

S: Source

D: Destination

Variations Executed Each Cycle for ON Condition MOV(021)

Executed Once for Upward Differentiation @MOV(021)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification (See note.) !MOV(021)

Combined
Variations

Executed Once and Destination Refreshed
Immediately for Upward Differentiation (See
note.)

!@MOV(021)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
331

Data Movement Instructions Section 3-8
Description Transfers S to D. If S is a constant, the value can be used for a data setting.

MOV(021) has an immediate refreshing variation (!MOV(021)). An external
input bits can be specified for S and external output bits can be specified for
D. Input bits used for S will refreshed just before, and output bits used for D
will be refreshed just after execution unless the bits are allocated to a Group-2
High-density I/O Unit, High-density Special I/O Unit, or a Unit mounted in a
SYSMAC BUS Remote I/O Slave Rack.

Flags

Example When CIO 000000 is ON in the following example, the content of CIO 0100 is
copied to D00100.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S D

Destination wordBit status not
changed.

Source word

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the data being transferred is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the data being transferred is 1.

OFF in all other cases.
332

Data Movement Instructions Section 3-8
3-8-2 MOVE NOT: MVN(022)
Purpose Transfers the complement of a word of data to the specified word.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

1 2 43

15 8 71112 34 0

D00010

MOV

#1234

D00010

MOV

+1234

D00011

00002

00001

0 4 2D

15 8 71112 34 0

D00011 (Decimal 1234)

MOV

-1234

D00012

00003

F B E2

15 8 71112 34 0

D00012 (Decimal -1234)

(Hexadecimal 1234)

MVN(022)

S

D

S: Source

D: Destination

Variations Executed Each Cycle for ON Condition MVN(022)

Executed Once for Upward Differentiation @MVN(022)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15
333

Data Movement Instructions Section 3-8
Description MVN(022) inverts the bits in S and transfers the result to D. The content of S
is left unchanged.

Flags

Example When CIO 000000 is ON in the following example, the status of the bits in
CIO 0100 is inverted and the result is copied to D00100.

3-8-3 DOUBLE MOVE: MOVL(498)
Purpose Transfers two words of data to the specified words.

Ladder Symbol

Variations

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S D

Destination word

Bit status
inverted.

Source word

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of D is 0000 after execution.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of D is 1 after execution.
OFF in all other cases.

S

D

MOVL(498)

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MOVL(498)

Executed Once for Upward Differentiation @MOVL(498)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
334

Data Movement Instructions Section 3-8
Applicable Program Areas

Operand Specifications

Description MOVL(498) transfers S+1 and S to D+1 and D. If S+1 and S are constants,
the value can be used for a data setting.

Flags

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, 1–(– –) IR5

S DS+1 D+1

Bit status
not changed.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.
335

Data Movement Instructions Section 3-8
Example When CIO 000000 is ON in the following example, the content of D00101 and
D00100 are copied to D00201 and D00200.

3-8-4 DOUBLE MOVE NOT: MVNL(499)
Purpose Transfers the complement of two words of data to the specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

MVNL(499)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MVNL(499)

Executed Once for Upward Differentiation @MVNL(499)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

336

Data Movement Instructions Section 3-8
Description MVNL(499) inverts the bits in S+1 and S and transfers the result to D+1 and
D. The contents of S+1 and S are left unchanged.

Flags

Examples When CIO 000000 is ON in the following example, the status of the bits in
D00101 and D00100 are inverted and the result is copied to D00201 and
D00200. (The original contents of D00101 and D00100 are left unchanged.)

3-8-5 MOVE BIT: MOVB(082)
Purpose Transfers the specified bit.

Ladder Symbol

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S D

S DS+1 D+1

Bit status
inverted.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.

S

C

D

MOVB(082)

S: Source word or data

C: Control word

D: Destination word
337

Data Movement Instructions Section 3-8
Variations

Applicable Program Areas

Operands C: Control Word

The rightmost two digits of C indicate which bit of S is the source bit and the
leftmost two digits of C indicate which bit of D is the destination bit.

Operand Specifications

Variations Executed Each Cycle for ON Condition MOVB(082)

Executed Once for Upward Differentiation @MOVB(082)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

Source bit: 00 to 0F
(0 to 15 decimal)

Destination bit: 00 to 0F
(0 to 15 decimal)

m n

Area S C D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15
338

Data Movement Instructions Section 3-8
Description MOVB(082) copies the specified bit (n) from S to the specified bit (m) in D.
The other bits in the destination word are left unchanged.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Examples When CIO 000000 is ON in the following example, the 5th bit of the source
word (CIO 0200) is copied to the 12th bit of the destination word (CIO 0300) in
accordance with the control word’s value of 0C05.

3-8-6 MOVE DIGIT: MOVD(083)
Purpose Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if the rightmost and leftmost two digits of C are not
within the specified range of 00 to 0F.
OFF in all other cases.

1 2 0 5

S

C

D

MOVD(083)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVD(083)

Executed Once for Upward Differentiation @MOVD(083)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
339

Data Movement Instructions Section 3-8
Operands S: Source Word

The source digits are read from right to left, wrapping back to the rightmost
digit (digit 0) if necessary.

C: Control Word

The first three digits of C indicate the first source digit (m), the number of dig-
its to transfer (n), and the first destination digit (l), as shown in the following
diagram.

D: Destination Word

The destination digits are written from right to left, wrapping back to the right-
most digit (digit 0) if necessary.

Operand Specifications

15 8 011 37 412

S Digit 3 Digit 2 Digit 1 Digit 0

15 8 011 37 412

C 0 l

First digit in S (m): 0 to 3

Number of digits (n): 0 to 3
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First digit in D (l): 0 to 3

Always 0.

n m

15 8 011 37 412

D Digit 3 Digit 2 Digit 1 Digit 0

Area S C D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15
340

Data Movement Instructions Section 3-8
Description MOVD(083) copies the content of n digits from S (beginning at digit m) to D
(beginning at digit l). Only the specified digits are changed; the rest are left
unchanged.

If the number of digits being read or written exceeds the leftmost digit of S or
D, MOVD(083) will wrap to the rightmost digit of the same word.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Examples Four-digit Transfer

When CIO 000000 is ON in the following example, four digits of data are cop-
ied from CIO 0200 to CIO 0300. The transfer begins with the digit 1 of
CIO 0200 and digit 0 or CIO 0300, in accordance with the control word’s value
of 0031.

Note After reading the leftmost digit of S (digit 3), MOVD(083) wraps to the right-
most digit (digit 0).

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S C D

l

Name Label Operation

Error Flag ER ON if one of the first three digits of C is not within the
specified range of 0 to 3.

OFF in all other cases.

Digit no.

Digit no.

First digit in D: Digit 0

Number of digits: 3 (4 digits)

First digit in S: Digit 1
341

Data Movement Instructions Section 3-8
Examples of C

The following diagram shows examples of data transfers for various values of
C.

3-8-7 MULTIPLE BIT TRANSFER: XFRB(062)
Purpose Transfers the specified number of consecutive bits.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

The first three digits of C indicate the first destination bit (m), the number of
bits to transfer (n), and the first source digit (l), as shown in the following dia-
gram.

S: First Source Word

Specifies the first source word. Bits are read from right to left, continuing with
consecutive words (up to S+16) when necessary.

Note The source words must be in the same data area.

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

C

S

D

XFRB(062)

C: Control word

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition XFRB(062)

Executed Once for Upward Differentiation @XFRB(062)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 037 4

C ln m

First bit in S (ll): 0 to F

First bit in D (m): 0 to F
Number of bits (n):
00 to FF (0 to 255)

15 0

S

to to

S+16 max.
342

Data Movement Instructions Section 3-8
D: First Destination Word

Specifies the first destination word. Bits are written from right to left, continu-
ing with consecutive words (up to D+16) when necessary.

Note The destination words must be in the same data area.

Operand Specifications

Description XFRB(062) transfers up to 255 consecutive bits from the source words (begin-
ning with bit l of S) to the destination words (beginning with bit m of D). Bits in
the destination words that are not overwritten by the source bits are left
unchanged.

The beginning bits and number of bits are specified in C, as shown in the fol-
lowing diagram.

15 0

D

D+16 max.

to to

Area C S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values
only

--- ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to 5+(++)

,–(– –) IR0 to, –(– –) IR15
343

Data Movement Instructions Section 3-8
It is possible for the source words and destination words to overlap. By trans-
ferring data overlapping several words, the data can be packed more effi-
ciently in the data area. (This is particularly useful when handling position
data for position control.)

Since the source words and destination words can overlap, XFRB(062) can
be combined with ANDW(034) to shift m bits by n spaces.

Flags

Precautions Up to 255 bits of data can be transferred per execution of XFRB(062).

Be sure that the source words and destination words do not exceed the end of
the data area.

Examples When CIO 000000 is ON in the following example, the 20 bits beginning with
CIO 020006 are copied to the 20 bits beginning with CIO 030000.

3-8-8 BLOCK TRANSFER: XFER(070)
Purpose Transfers the specified number of consecutive words.

Ladder Symbol

Name Label Operation

Error Flag ER OFF

20 bits

XFER(070)

N

S

D

N: Number of words

S: First source word

D: First destination word
344

Data Movement Instructions Section 3-8
Variations

Applicable Program Areas

Operands N: Number of Words

Specifies the number of words to be transferred. The possible range for N is
0000 to FFFF (0 to 65,535 decimal).

S: First Source Word

Specifies the first source word.

D: First Destination Word

Specifies the first destination word.

Operand Specifications

Variations Executed Each Cycle for ON Condition XFER(070)

Executed Once for Upward Differentiation @XFER(070)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

S+(N−1)

to to

15 0

D

D+(N−1)

to to

Area N S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF
(binary) or &0 to
&65535

--- ---

Data Registers DR0 to DR15 ---
345

Data Movement Instructions Section 3-8
Description XFER(070) copies N words beginning with S (S to S+(N–1)) to the N words
beginning with D (D to D+(N–1)).

It is possible for the source words and destination words to overlap, so
XFER(070) can perform word-shift operations.

Flags

Precautions Be sure that the source words (S to S+N–1) and destination words (D to
D+N–1) do not exceed the end of the data area.

Some time will be required to complete XFER(070) when a large number of
words is being transferred. In this case, the XFER(070) transfer might not be
completed if a power interruption occurs during execution of the instruction.

Example When CIO 000000 is ON in the following example, the 10 words D00100
through D00109 are copied to D00200 through D00209.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area N S D

D+S+(N−1)
(N−1)

to to
N words

&10

Name Label Operation

Error Flag ER OFF

&10

10
words
346

Data Movement Instructions Section 3-8
3-8-9 BLOCK SET: BSET(071)
Purpose Copies the same word to a range of consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word
Specifies the source data or the word containing the source data.

St: Starting Word

Specifies the first word in the destination range.

E: End Word

Specifies the last word in the destination range.

Note St and E must be in the same data area.

Operand Specifications

BSET(071)

S

E

S: Source word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition BSET(071)

Executed Once for Upward Differentiation @BSET(071)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

E

E

Source data

to

Destination range

St

St

Area S St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767
347

Data Movement Instructions Section 3-8
Description BSET(071) copies the same source word (S) to all of the destination words in
the range St to E.

Flags

Precautions Be sure that the starting word (St) and end word (E) are in the same data area
and that St ≤ E.

Some time will be required to complete BSET(071) when the source data is
being transferred to a large number of words. In this case, the BSET(071)
transfer might not be completed if a power interruption occurs during execu-
tion of the instruction.

Example When CIO 000000 is ON in the following example, the source data in D00100
is copied to D00200 through D00209.

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, 15–(– –) IR

Area S St E

E

Destination wordsSource word

St

Name Label Operation

Error Flag ER ON if St is greater than E.
OFF in all other cases.
348

Data Movement Instructions Section 3-8
3-8-10 DATA EXCHANGE: XCHG(073)
Purpose Exchanges the contents of the two specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S

E

E:

St
St:

XCHG(073)

E1

E2

E1: First exchange word

E2: Second exchange word

Variations Executed Each Cycle for ON Condition XCHG(073)

Executed Once for Upward Differentiation @XCHG(073)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area E1 E2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)
349

Data Movement Instructions Section 3-8
Description XCHG(073) exchanges the contents of E1 and E2.

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Example When CIO 000000 is ON in the following example, the content of D00100 is
exchanged with the content of D00200.

3-8-11 DOUBLE DATA EXCHANGE: XCGL(562)
Purpose Exchanges the contents of a pair of consecutive words with another pair of

consecutive words.

Ladder Symbol

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area E1 E2

E2E1

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)

XCGL(562)

E1

E2

E1: First exchange word

E2: Second exchange word
350

Data Movement Instructions Section 3-8
Variations

Applicable Program Areas

Operand Specifications

Description XCHG(073) exchanges the contents of E1+1 and E1 with the contents of
E2+1 and E2.

To exchange 3 or more words, use XFER(070) to transfer the words to a third
set of words (a buffer) as shown in the following diagram.

Variations Executed Each Cycle for ON Condition XCGL(562)

Executed Once for Upward Differentiation @XCGL(562)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area E1 E2

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- ---

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

E2E1 E1+1 E2+1
351

Data Movement Instructions Section 3-8
Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Example When CIO 000000 is ON in the following example, the contents of D00100
and D00101 are exchanged with the contents of D00200 and D00201.

3-8-12 SINGLE WORD DISTRIBUTE: DIST(080)
Purpose Transfers the source word to a destination word calculated by adding an offset

value to the base address.

Ladder Symbol

Variations

E2

E1

Buffer

1st XFER(070)
operation

2nd XFER(070)
operation

3rd XFER(070)
operation

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)

DIST(080)

S S: Source word

Bs: Destination base address

Of: Offset

Bs

Of

Variations Executed Each Cycle for ON Condition DIST(080)

Executed Once for Upward Differentiation @DIST(080)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
352

Data Movement Instructions Section 3-8
Applicable Program Areas

Operands Bs: Destination Base Address

Specifies the destination base address. The offset is added to this address to
calculate the destination word.

Of: Offset

This value is added to the base address to calculate the destination word. The
offset can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to
to

Bs

Bs+Of

Area S Bs Of

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

--- #0000 to #FFFF
(binary) or &0 to
&65535

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15
353

Data Movement Instructions Section 3-8
Description DIST(080) copies S to the destination word calculated by adding Of to Bs.
The same DIST(080) instruction can be used to distribute the source word to
various words in the data area by changing the value of Of.

Flags

Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.

Example When CIO 000000 is ON in the following example, the contents of D00100 will
be copied to D00210 (D00200 + 10) if the contents of D00300 is 10 (0A hexa-
decimal). The contents of D00100 can be copied to other words by changing
the offset in D00300.

3-8-13 DATA COLLECT: COLL(081)
Purpose Transfers the source word (calculated by adding an offset value to the base

address) to the destination word.

Ladder Symbol

Variations

S

Bs+n

OfBs

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the source data is 1.
OFF in all other cases.

S: D00100

D00210

S

0 0 0 A

Copied by DIST(080).

Offset +10 words

4-digit hexadecimal

Of:
Bs:

Bs

Of

COLL(081)

D

Bs: Source base address

Of: Offset

D: Destination word

Bs

Of

Variations Executed Each Cycle for ON Condition COLL(081)

Executed Once for Upward Differentiation @COLL(081)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
354

Data Movement Instructions Section 3-8
Applicable Program Areas

Operands Bs: Source Base Address

Specifies the source base address. The offset is added to this address to cal-
culate the source word.

Of: Offset

This value is added to the base address to calculate the source word. The off-
set can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to to

Bs

Of

Area Bs Of D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15
355

Data Movement Instructions Section 3-8
Description COLL(081) copies the source word (calculated by adding Of to Bs) to the des-
tination word. The same COLL(081) instruction can be used to collect data
from various source words in the data area by changing the value of Of.

Flags

Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.

Example When CIO 000000 is ON in the following example, the contents of D00110
(D00100 + 10) will be copied to D00300 if the content of D00200 is 10 (0A
hexadecimal). The contents of other words can be copied to D00300 by
changing the offset in D00200.

3-8-14 MOVE TO REGISTER: MOVR(560)
Purpose Sets the PLC memory address of the specified word, bit, or timer/counter

Completion Flag in the specified Index Register. (Use MOVRW(561) to set the
PLC memory address of a timer/counter PV in an Index Register.)

Ladder Symbol

Variations

Bs

Bs+n

Of

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the source data is 1.
OFF in all other cases.

D00110

 D00100
0

D

0 0 AD00200

D00101
4-digit hexadecimal

Offset +10 words

Copied by COLL(081).

Bs:
Bs

Of

MOVR(560)

S

D

S: Source (desired word or bit)

D: Destination (Index Register)

Variations Executed Each Cycle for ON Condition MOVR(560)

Executed Once for Upward Differentiation @MOVR(560)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
356

Data Movement Instructions Section 3-8
Applicable Program Areas

Operands D: Destination

The destination must be an Index Register (IR0 to IR15).

Operand Specifications

Description MOVR(560) finds the PLC memory address (absolute address) of S and
writes that address in D (an Index Register).

If a timer or counter is specified in S, MOVR(560) will write the PLC memory
address of the timer/counter Completion Flag in D. Use MOVRW(561) to write
the PLC memory address of the timer/counter PV in D.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6143
CIO 000000 to CIO 614315

Work Area W000 to W511
W00000 to W51115

Holding Bit Area H000 to H511
H00000 to H51115

Auxiliary Bit Area A000 to A447
A448 to A959
A00000 to A44715

A44800 to A95915

Timer Area T0000 to T4095
 (Completion Flag)

Counter Area C0000 to C4095
(Completion Flag)

Task Flag TK0000 to TK0031 ---

DM Area D00000 to D32767 ---

EM Area without bank E00000 to E32767 ---

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

Internal I/O memory address of S

Index Register
357

Data Movement Instructions Section 3-8
Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions MOVR(560) cannot set the PLC memory addresses of timer/counter PVs.
Use MOVRW(561) to set the PLC memory addresses of timer/counter PVs.

The contents of an index register in an interrupt task is not predictable until it
is set. Be sure to set a register using MOVR(560) in an interrupt task before
using the register.

Any changes to the contents of an IR or DR made in an interrupt task will not
affect the contents of the register in a cyclic task.

Example When CIO 000000 is ON in the following example, MOVR(560) writes the
PLC memory address of CIO 0020 to IR0.

3-8-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561)
Purpose Sets the PLC memory address of the specified timer or counter’s PV in the

specified Index Register. (Use MOVR(560) to set the PLC memory address of
a word, bit, or timer/counter Completion Flag in an Index Register.)

Ladder Symbol

Variations

Applicable Program Areas

Operands D: Destination

The destination must be an Index Register (IR0 to IR15).

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)

S: 0020

D: IR0

1 4

1 4

Internal I/O memory address

Internal I/O memory
address of CIO 0020

S

D

MOVRW(561)

S: Source (desired TC number)

D: Destination (Index Register)

Variations Executed Each Cycle for ON Condition MOVR(561)

Executed Once for Upward Differentiation @MOVR(561)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
358

Data Movement Instructions Section 3-8
Operand Specifications

Description MOVRW(561) finds the PLC memory address for the PV of the timer or
counter specified in S and writes that address in D (an Index Register).

MOVRW(561) will set the PLC memory address of the timer or counter’s PV in
D. Use MOVR(560) to set the PLC memory address of the timer or counter
Completion Flag.

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions MOVRW(561) cannot set the PLC memory addresses of data area words,
bits, or timer/counter Completion Flags. Use MOVR(560) to set these PLC
memory addresses.

Area S D

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area T0000 to T4095
(present value)

Counter Area C0000 to C4095
(present value)

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

Internal I/O memory address of S

Timer/counter PV only

Index Register

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Negative Flag N Unchanged (See note.)
359

Data Shift Instructions Section 3-9
Example When CIO 000000 is ON in the following example, MOVRW(561) writes the
PLC memory address for the PV of timer T0000 to IR1.

3-9 Data Shift Instructions
This section describes instructions used to shift data within or between words,
but in differing amounts and directions.

S:

Internal I/O memory address

Instruction Mnemonic Function code Page

SHIFT REGISTER SFT 010 361

REVERSIBLE SHIFT REGIS-
TER

SFTR 084 362

ASYNCHRONOUS SHIFT
REGISTER

ASFT 017 365

WORD SHIFT WSFT 016 368

ARITHMETIC SHIFT LEFT ASL 025 370

DOUBLE SHIFT LEFT ASLL 570 371

ARITHMETIC SHIFT RIGHT ASR 026 373

DOUBLE SHIFT RIGHT ASRL 571 374

ROTATE LEFT ROL 027 376

DOUBLE ROTATE LEFT ROLL 572 378

ROTATE LEFT WITHOUT
CARRY

RLNC 574 383

DOUBLE ROTATE LEFT WITH-
OUT CARRY

RLNL 576 385

ROTATE RIGHT ROR 028 380

DOUBLE ROTATE RIGHT RORL 573 381

ROTATE RIGHT WITHOUT
CARRY

RRNC 575 387

DOUBLE ROTATE RIGHT
WITHOUT CARRY

RRNL 577 388

ONE DIGIT SHIFT LEFT SLD 074 390

ONE DIGIT SHIFT RIGHT SRD 075 392

SHIFT N-BIT DATA LEFT NSFL 578 393

SHIFT N-BIT DATA RIGHT NSFR 579 395

SHIFT N-BITS LEFT NASL 580 397

DOUBLE SHIFT N-BITS LEFT NSLL 582 400

SHIFT N-BITS RIGHT NASR 581 403

DOUBLE SHIFT N-BITS
RIGHT

NSRL 583 405
360

Data Shift Instructions Section 3-9
3-9-1 SHIFT REGISTER: SFT(010)
Purpose Operates a shift register.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

SFT(010)

E

Data input

Shift input

Reset input

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition SFT(010)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
361

Data Shift Instructions Section 3-9
Description When the execution condition on the shift input changes from OFF to ON, all
the data from St to E is shifted to the left by one bit (from the rightmost bit to
the leftmost bit), and the ON/OFF status of the data input is placed in the
rightmost bit.

Flags

Precautions The results will not be predictable if two SFT(010) instructions are used with
overlapping shift registers. All words in the range ST to E must be used in only
one SFT(010) instruction.

The bit data shifted out of the shift register is discarded.

When the reset input turns ON, all bits in the shift register from the rightmost
designated word (St) to the leftmost designated word (E) will be reset (i.e., set
to 0). The reset input takes priority over other inputs.

St must be less than or equal to E, but even when St is set to greater than E
an error will not occur and one word of data in St will be shifted.

When St and E are designated indirectly using index registers and the actual
addresses in I/O memory are not within memory areas for data, an error will
occur and the Error Flag will turn ON.

Examples Shift Register Exceeding 16 Bits

The following example shows a 48-bit shift register using words CIO 0128 to
CIO 0130. A 1-s clock pulse is used so that the execution condition produced
by CIO 000005 is shifted into a 3-word register between CIO 012800 and
CIO 013015 every second.

3-9-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
Purpose Creates a shift register that shifts data to either the right or the left.

E

Status of data input
for each shift input

Lost

St+1, St+2, ... St

Name Label Operation

Error Flag ER ON if the indirect IR address for St and E is not in the CIO,
AR, HR, or WR data areas.

OFF in all other cases.

E: CIO 0130 CIO 0129 CIO 0128

(1-s clock)
Reset

Shift input

Data input

Lost

Contents of
CIO 000005

St+1: St:
362

Data Shift Instructions Section 3-9
Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Note St and E must be in the same data area.

Operand Specifications

SFTR(084)

C

E

C: Control word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition SFTR(084)

Executed Once for Upward Differentiation @SFTR(084)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 14 13 12

Data input

Reset

Shift input

Shift direction
1 (ON): Left
0 (OFF): Right

Area C St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 ---
363

Data Shift Instructions Section 3-9
Description When the execution condition of the shift input bit (bit 14 of C) changes to ON,
all the data from St to E is moved in the designated shift direction (designated
by bit 12 of C) by 1 bit, and the ON/OFF status of the data input is placed in
the rightmost or leftmost bit. The bit data shifted out of the shift register is
placed in the Carry Flag (CY).

Flags

Precautions The above shift operations are applicable when the reset bit (bit 15 of C) is set
to OFF.

When reset (bit 15 of C) turns ON all bits in the shift register, from St to E will
be reset (i.e., set to 0).

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Examples Shifting Data

If shift input CIO 030014 goes ON when CIO 000000 is ON, and the reset bit
CIO 030015 is OFF, words CIO 0100 through CIO 0102 will shift one bit in the
direction designated by CIO 030012 (e.g., 1: Right) and the contents of input
bit CIO 030013 will be shifted into the rightmost bit, CIO 010000. The con-
tents of CIO 010215 will be shifted to the Carry Flag (CY).

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C St E

StE

E St Shift direction

Data input

Data input

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into it.

OFF when 0 is shifted into it.
OFF when reset is set to 1.

C: 0300

C

E

St

Data input:
CIO 030013

Reset input bit: 0

Shift input bit: 1

Shift direction
364

Data Shift Instructions Section 3-9
Resetting Data

If CIO 030014 is ON when CIO 000000 is ON, and the reset bit, CIO 030015,
is ON, words CIO 0100 through CIO 0102 and the Carry Flag will be reset to
OFF.

Controlling Data

Resetting Data

All bits from St to E and the Carry Flag are set to 0 and no other data can be
received when the reset input bit (bit 15 of C) is ON.

Shifting Data Left (from Rightmost to Leftmost Bit)

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) is shifted to bit 00 of the starting word, and each bit thereafter is shifted
one bit to the left. The status of bit 15 of the end word is shifted to the Carry
Flag.

Shifting Data Right (from Leftmost to Rightmost Bit

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) (I/O) is shifted to bit 15 on the end word, and each bit thereafter is
shifted one bit to the right. The status of bit 00 of the starting word is shifted to
the Carry Flag.

3-9-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)
Purpose Shifts all non-zero word data within the specified word range either towards St

or toward E, replacing 0000Hex word data.

Ladder Symbol

Variations

Applicable Program Areas

Data
input

Data
input

ASFT(017)

C

E

C: Control word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition ASFT(017)

Executed Once for Upward Differentiation @ASFT(017)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
365

Data Shift Instructions Section 3-9
Operands C: Control Word

Note St and E must be in the same data area.

Operand Specifications

Description When the Shift Enable Bit (bit 14 of C) is ON, all of the words with non-zero
content within the range of words between St and E will be shifted one word in
the direction determined by the Shift Direction Bit (bit 13 of C) whenever the
word in the shift direction contains all zeros. If ASFT(017) is repeated suffi-
cient times, all all-zero words will be replaced by non-zero words. This will
result in all the data between St and E being divided into zero and non-zero
data.

15 14 13 12

Shift direction
0: Non-zero data shifted toward E
1: Non-zero data shifted toward St

Shift Enable Bit
0: Shift disabled
1: Shift enabled

Clear Bit
0: Data not reset
1: All data from St to E is reset

Area C St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
366

Data Shift Instructions Section 3-9
Note ASFT(017) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions When the Clear Flag (bit 15 of C) goes ON, all bits in the shift register, from St
to E, will be reset (i.e., set to 0). The Clear Flag has priority over the Shift
Enable Bit (bit 14 of C).

When St is greater than E an error will be generated and the Error Flag will
turn ON.

Examples Shifting Data:

If the Shift Enable Bit, CIO 030014, goes ON when CIO 000000 is ON, all
words with non-zero data content from CIO 0100 through CIO 0109 will be
shifted in the direction designated by the Shift Direction Bit, CIO 030013 (e.g.,
1: Toward St) if the word to the left of the non-zero data is all zeros.

. . .

E

E

. . .

Shift direction

Shift enabled

Clear
Convert

Convert

Non-zero data

Zero data

St

St

Name Label Operation

Error Flag ER ON when St is greater than E.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.
367

Data Shift Instructions Section 3-9
3-9-4 WORD SHIFT: WSFT(016)
Purpose Shifts data between St and E in word units.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

C: 0300

E:

C

E

Non-zero data is
shifted toward St

Shift direction
1: Non-zero data shifted toward E
Shift Enable Bit: 1

Clear

Before ASFT(017) is executed After one execution After two executions

St

St:

WSFT(016)

S

E

S: Source word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition WSFT(016)

Executed Once for Upward Differentiation @WSFT(016)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767
368

Data Shift Instructions Section 3-9
Description WSFT(016) shifts data from St to E in word units and the data from the source
word S is places into St. The contents of E is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while WSFT(016) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 000000 is ON, data from CIO 0100 through CIO 0102 will be
shifted one word toward E. The contents of CIO 0300 will be stored in
CIO 0100 and the contents of CIO 0102 will be lost.

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S St E

E

Lost

St

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

St
E

E: CIO 0100 St: CIO 0101 St: CIO 0102

S: CIO 0300

Lost
369

Data Shift Instructions Section 3-9
3-9-5 ARITHMETIC SHIFT LEFT: ASL(025)
Purpose Shifts the contents of Wd one bit to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ASL(025) shifts the contents of Wd one bit to the left (from rightmost bit to left-
most bit). “0” is placed in the rightmost bit and the data from the leftmost bit is
shifted into the Carry Flag (CY).

ASL(025)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ASL(025)

Executed Once for Upward Differentiation @ASL(025)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

15 0
370

Data Shift Instructions Section 3-9
Flags

Precautions When ASL(025) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON, CIO 0100 will be shifted one bit to the left. “0” will
be placed in CIO 010000 and the contents of CIO 010115 will be shifted to the
Carry Flag (CY).

3-9-6 DOUBLE SHIFT LEFT: ASLL(570)
Purpose Shifts the contents of Wd and Wd +1 one bit to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

Wd

ASLL(570)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ASLL(570)

Executed Once for Upward Differentiation @ASLL(570)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510
371

Data Shift Instructions Section 3-9
Description ASLL(570) shifts the contents of Wd and Wd +1 one bit to the left (from right-
most bit to leftmost bit). “0” is placed in the rightmost bit of Wd and the con-
tents of the leftmost bit of Wd and Wd +1 are shifted into the Carry Flag (CY).

Flags

Precautions When ASLL(570) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd +1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 000000 is ON, word CIO 0100 and CIO 0101 will shift one bit to
the left. “0” is placed into CIO 010000 and the contents of CIO 010015 will be
shifted to the Carry Flag (CY).

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.
372

Data Shift Instructions Section 3-9
3-9-7 ARITHMETIC SHIFT RIGHT: ASR(026)
Purpose Shifts the contents of Wd one bit to the right.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Wd

ASR(026)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ASR(026)

Executed Once for Upward Differentiation @ASR(026)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15
373

Data Shift Instructions Section 3-9
Description ASR(026) shifts the contents of Wd one bit to the right (from leftmost bit to
rightmost bit). “0” will be placed in the leftmost bit and the contents of the
rightmost bit will be shifted into the Carry Flag (CY).

Flags

Precautions When ASR(026) is executed, the Error Flag and the Negative Flag will turn
OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

Examples When CIO 000000 is ON, word CIO 0100 will shift one bit to the right. “0” will
be placed in CIO 010015 and the contents of CIO 010000 will be shifted to the
Carry Flag (CY).

3-9-8 DOUBLE SHIFT RIGHT: ASRL(571)
Purpose Shifts the contents of Wd and Wd +1 one bit to the right.

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N OFF

Wd

ASRL(571)

Wd: WordWd
374

Data Shift Instructions Section 3-9
Variations

Applicable Program Areas

Operand Specifications

Description ASRL(571) shifts the contents of Wd and Wd +1 one bit to the right (from left-
most bit to rightmost bit). “0” will be placed in the leftmost bit of Wd +1 and the
contents of the rightmost bit of Wd will be shifted into the Carry Flag (CY).

Flags

Variations Executed Each Cycle for ON Condition ASRL(571)

Executed Once for Upward Differentiation @ASRL(571)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.
375

Data Shift Instructions Section 3-9
Precautions When ASRL (571) is executed, the Error Flag and the Negative Flag will turn
OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

Examples When CIO 000000 is ON, word CIO 0100 and CIO 0101 will shift one bit to
the right. “0” will be placed into CIO 010115 and the contents of CIO 010000
will be shifted to the Carry Flag (CY).

3-9-9 ROTATE LEFT: ROL(027)
Purpose Shifts all Wd bits one bit to the left including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N OFF

Name Label Operation

Wd

ROL(027)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROL(027)

Executed Once for Upward Differentiation @ROL(027)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
376

Data Shift Instructions Section 3-9
Description ROL(027) shifts all bits of Wd including the Carry Flag (CY) to the left (from
rightmost bit to leftmost bit).

Flags

Precautions When ROL(027) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 000000 is ON, word CIO 0100 and the Carry Flag (CY) will shift
one bit to the left. The contents of CIO 010015 will be shifted to the Carry Flag
(CY) and the Carry Flag contents will be shifted to CIO 010000.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.
377

Data Shift Instructions Section 3-9
3-9-10 DOUBLE ROTATE LEFT: ROLL(572)
Purpose Shifts all Wd and Wd +1 bits one bit to the left including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

 CIO 0100

Instruction executed once

Wd:

Wd

ROLL(572)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROLL(572)

Executed Once for Upward Differentiation @ROLL(572)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---
378

Data Shift Instructions Section 3-9
Description ROLL(572) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the left (from rightmost bit to leftmost bit).

Flags

Precautions When ROLL(572) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 000000 is ON, word CIO 0100, CIO 0101 and the Carry Flag (CY)
will shift one bit to the left. The contents of CIO 010015 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 010000.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

Instruction executed once

Wd+1: CIO 0101 Wd: CIO 0100

Wd
379

Data Shift Instructions Section 3-9
3-9-11 ROTATE RIGHT: ROR(028)
Purpose Shifts all Wd bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ROR(028) shifts all bits of Wd including the Carry Flag (CY) to the right (from
leftmost bit to rightmost bit).

ROR(028)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROR(028)

Executed Once for Upward Differentiation @ROR(028)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
380

Data Shift Instructions Section 3-9
Flags

Precautions When ROR(028) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 000000 is ON, word CIO 0100 and the Carry Flag (CY) will shift
one bit to the right. The contents of CIO 010000 will be shifted to the Carry
Flag (CY) and the Carry Flag contents will be shifted to CIO 010015.

3-9-12 DOUBLE ROTATE RIGHT: RORL(573)
Purpose Shifts all Wd and Wd +1 bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

Variations

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

Instruction executed once

Wd

Wd: CIO 0100

RORL(573)

Wd: WordWd

Variations Executed Each Cycle for ON Condition RORL(573)

Executed Once for Upward Differentiation @RORL(573)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
381

Data Shift Instructions Section 3-9
Applicable Program Areas

Operand Specifications

Description RORL(573) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the right (from leftmost bit to rightmost bit).

Flags

Precautions When RORL(573) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
382

Data Shift Instructions Section 3-9
If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 000000 is ON, word CIO 0100, CIO 0101 and the Carry Flag (CY)
will shift one bit to the right. The contents of CIO 010000 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 010115.

3-9-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
Purpose Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Wd

Instruction executed once

Wd: CIO 0100Wd+1: CIO 0101

RLNC(574)

Wd: WordWd

Variations Executed Each Cycle for ON Condition RLNC(574)

Executed Once for Upward Differentiation @RLNC(574)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
383

Data Shift Instructions Section 3-9
Description RLNC(574) shifts all bits of Wd to the left (from rightmost bit to leftmost bit).
The contents of the leftmost bit of Wd shifts to the rightmost bit and to the
Carry Flag (CY).

Flags

Precautions When RLNC(574) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON, word CIO 0100 will shift one bit to the left (exclud-
ing the Carry Flag (CY)). The contents of CIO 010015 will be shifted to
CIO 010000.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
384

Data Shift Instructions Section 3-9
3-9-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)
Purpose Shifts all Wd and Wd +1 bits one bit to the left not including the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

1

Wd

Instruction executed once

Wd: CIO 0100

RLNL(576)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RLNL(576)

Executed Once for Upward Differentiation @RLNL(576)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---
385

Data Shift Instructions Section 3-9
Description RLNL(576) shifts all bits of Wd and Wd +1 to the left (from rightmost bit to left-
most bit). The contents of the leftmost bit of Wd +1 is shifted to the rightmost
bit of Wd, and to the Carry Flag (CY).

Flags

Precautions When RLNL(576) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 000000 is ON, word CIO 0100 and CIO 0101 will shift one bit to
the left (excluding the Carry Flag (CY)). The contents of CIO 010115 will be
shifted to CIO 010000.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

1

Wd

Instruction executed once

Wd: CIO 0100Wd+1: CIO 0101
386

Data Shift Instructions Section 3-9
3-9-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)
Purpose Shifts all Wd bits one bit to the right not including the Carry Flag (CY). The

contents of the rightmost bit of Wd shifts to the leftmost bit and to the Carry
Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description RRNC(575) shifts all bits of Wd to the right (from leftmost bit to rightmost bit)
not including the Carry Flag (CY).

RRNC(575)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNC(575)

Executed Once for Upward Differentiation @RRNC(575)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
387

Data Shift Instructions Section 3-9
Flags

Precautions When RRNC(575) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON, word CIO 0100 will shift one bit to the right (exclud-
ing the Carry Flag (CY)). The contents of CIO 010000 will be shifted to
CIO 010015.

3-9-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
Purpose Shifts all Wd and Wd +1 bits one bit to the right not including the Carry Flag

(CY). The contents of the rightmost bit of Wd +1 is shifted to the leftmost bit of
Wd, and to the Carry Flag (CY).

Ladder Symbol

Variations

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

CY

Wd

Instruction executed once

Wd: CIO 0100

RRNL(577)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNL(577)

Executed Once for Upward Differentiation @RRNL(577)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
388

Data Shift Instructions Section 3-9
Applicable Program Areas

Operand Specifications

Description RRNL(577) shifts all bits of Wd and Wd +1 to the right (from leftmost bit to
rightmost bit) not including the Carry Flag (CY).

Flags

Precautions When RRNL(577) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
389

Data Shift Instructions Section 3-9
If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 000000 is ON, words CIO 0100 and CIO 0101 will shift one bit to
the right, (excluding the Carry Flag (CY)). The contents of CIO 010000 will be
shifted to CIO 010115.

3-9-17 ONE DIGIT SHIFT LEFT: SLD(074)
Purpose Shifts data by one digit (4 bits) to the left.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

Wd

Instruction executed once

Wd: CIO 0100Wd+1: CIO 0101

SLD(074)

E

St St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition SLD(074)

Executed Once for Upward Differentiation @SLD(074)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
390

Data Shift Instructions Section 3-9
Description SLD(074) shifts data between St and E by one digit (4 bits) to the left. “0” is
placed in the rightmost digit (bits 3 to 0 of St), and the content of the leftmost
digit (bits 15 to 12 of E) is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while SLD(074) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 000000 is ON, words CIO 0100 through CIO 0102 will shift by one
digit (4 bits) to the left. A zero will be placed in bits 0 to 3 of word CIO 0100
and the contents of bits 12 to 15 of CIO 0102 will be lost.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area St E

E S t

Lost

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

E

St

Lost

E: CIO 0102 St+1: CIO 0101 St: CIO 0100
391

Data Shift Instructions Section 3-9
3-9-18 ONE DIGIT SHIFT RIGHT: SRD(075)
Purpose Shifts data by one digit (4 bits) to the right.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

SRD(075)

E

St St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition SRD(075)

Executed Once for Upward Differentiation @SRD(075)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
392

Data Shift Instructions Section 3-9
Description SRD(075) shifts data between St and E by one digit (4 bits) to the right. “0” is
placed in the leftmost digit (bits 15 to 12 of E), and the content of the rightmost
digit (bits 3 to 0 of St) is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

When SRD(075) is executed, the Equals Flag and Negative Flag will turn
OFF.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Always take care that the power is not cut while SRD(075) is being exe-
cuted, causing the shift operation to stop halfway through.

Examples When CIO 000000 is ON, words CIO 0100 through CIO 0102 will shift by one
digit (4 bits) to the right. A zero will be placed in bits 12 to 15 of CIO 0102 and
the contents of bits 0 to 3 of word CIO 0100 will be lost.

3-9-19 SHIFT N-BIT DATA LEFT: NSFL(578)
Purpose Shifts the specified number of bits to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: 0000 to 000F hex (0 to 15)
N: 0000 to FFFF hex (0 to 65535)

E S

Lost

t

Name Label Operation

Error Flag ER ON when St is greater than E.

OFF in all other cases.

E

Lost

St

St: CIO 0100St+1: CIO 0101E: CIO 0102

NSFL(578)

D

C

N

D: Beginning word for shift

C: Beginning bit

N: Shift data length

Variations Executed Each Cycle for ON Condition NSFL(578)

Executed Once for Upward Differentiation @NSFL(578)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
393

Data Shift Instructions Section 3-9
Note All words in the shift register must be in the same area.

Operand Specifications

Description NSFL(578) shifts the specified number of bits by the shift data length (N) from
the beginning bit (C) in the rightmost word, as designated by D one bit to the
left (towards the leftmost word and the leftmost bit). “0” is place into the begin-
ning bit and the contents of the leftmost bit in the shift area are shifted to the
Carry Flag (CY).

Area D C N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #000F
(binary) or &0 to
&15

#0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Shifts one bit to the left
N−1 bit

N−1 bit
394

Data Shift Instructions Section 3-9
Flags

Precautions When the shift data length (N) is 0, the contents of the beginning bit will be
copied to the Carry Flag (CY), and its contents will not be changed.

Only the bits shifted into rightmost word in the shift area (i.e. leftmost word
data) will be changed.

Examples When CIO 000000 is ON, all bits from the beginning bit 3 to the shift data
length (B hex) will be shifted one bit to the left (from the rightmost bit to the
leftmost bit). “0” will be placed into bit 3 of CIO 0100. The contents of the left-
most bit in the shift area (bit 13 of CIO 0100) are copied into the Carry Flag
(CY).

3-9-20 SHIFT N-BIT DATA RIGHT: NSFR(579)
Purpose Shifts the specified number of bits to the right.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON when C data is not between 0000 and 000F hex.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

0

D: CIO 0100

D: CIO 0100

&3

&11

D

C

N

C: Starting from bit 3
N: 11 bits

NSFR(579)

D

C

N

D: Beginning word for shift

C: Beginning bit

N: Shift data length

Variations Executed Each Cycle for ON Condition NSFR(579)

Executed Once for Upward Differentiation @NSFR(579)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
395

Data Shift Instructions Section 3-9
Operands C: 0000 to 000F hex (0 to 15)
N: 0000 to FFFF hex (0 to 65535)

Note All words in the shift register must be in the same area.

Operand Specifications

Description NSFR(579) shifts the specified number of bits by the shift data length (N) from
the beginning bit (C) in the rightmost word as designated by D one bit to the
right (towards the rightmost word and the rightmost bit). “0” will be placed into
the beginning bit and the contents of the rightmost bit in the shift area will be
shifted to the Carry Flag (CY).

Area D C N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to #000F
(binary) or &0 to
&15

#0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Shifts one bit to the right
N-1 bit

N-1 bit
396

Data Shift Instructions Section 3-9
Flags

Precautions When the shift data length (N) is 0, the contents of the beginning bit will be
copied to the Carry Flag (CY), and its contents will not be changed.

Only the bits shifted into rightmost word in the shift area (i.e. leftmost word
data) will be changed.

Examples When CIO 000000 is ON, all bits from the beginning bit 2 to end of the shift
data length 11 bits (B hex), will be shifted one bit to the right, (from the left-
most bit to the rightmost bit). “0” is shifted into bit 12 of CIO 0100. The con-
tents of the rightmost bit in the shift area (bit 2 of CIO 0100) are copied into
the Carry Flag (CY).

3-9-21 SHIFT N-BITS LEFT: NASL(580)
Purpose Shifts the specified 16 bits of word data to the left by the specified number of

bits.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON when C data is not between 0000 and 000F hex.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

0

&2

&11

C: Starting from bit 2
N: 11 bits

NASL(580)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NASL(580)

Executed Once for Upward Differentiation @NASL(580)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
397

Data Shift Instructions Section 3-9
Operands C: Control Word

Operand Specifications

Description NASL(580) shifts D (the shift word) by the specified number of binary bits
(specified in C) to the left (from the rightmost bit to the leftmost bit). Either
zeros or the value of the rightmost bit will be placed into the specified number
of bits of the shift word starting from the rightmost bit.

15 8 011 712
C

0

No. of bits to shift: 00 to 10 Hex

Always 0.
Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
398

Data Shift Instructions Section 3-9
Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C is out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000 hex, the Equals Flag will
turn ON.

If as a result of the shift the contents of the leftmost bit of D is 1, the Negative
Flag will turn ON.

Examples When CIO 000000 is ON, The contents of CIO 0100 is shifted 10 bits to the
left (from the rightmost bit to the leftmost bit). The number of bits to shift is
specified in bits 0 to 7 of word CIO 0300 (control data). The contents of bit 0 of
CIO 0100 is copied into bits from which data was shifted and the contents of
the rightmost bit which was shifted out of range is shifted into the Carry Flag
(CY). All other data is lost.

Shift n-bits

Contents of "a" or "0" shifted in

N bits

Lost

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.
OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.
399

Data Shift Instructions Section 3-9
3-9-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582)
Purpose Shifts the specified 32 bits of word data to the left by the specified number of

bits.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

15 8 011 37 412

C 08 A0

No. of bits to shift: 10 bits (0A Hex)

Always 0.

Data shifted into register
8 Hex: Contents of rightmost bit shifted in

Rightmost bit
Lost

No. of bits to shift: 10 bits
(Contents of the rightmost
bit is inserted.)

NSLL(582)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NSLL(582)

Executed Once for Upward Differentiation @NSLL(582)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
400

Data Shift Instructions Section 3-9
Operand Specifications

Description NSLL(582) shifts D and D+1 (the shift words) by the specified number of
binary bits (specified in C) to the left (from the rightmost bit to the leftmost bit).
Either zeros or the value of the rightmost bit will be placed into the specified
number of bits of the shift word starting from the rightmost bit.

15 8 011 712
C

0

No. of bits to shift: 00 to 20 Hex

Always 0.
Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A448 to A958 A000 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Shift n-bits

Contents of "a" or "0" shifted in

N bits

Lost
401

Data Shift Instructions Section 3-9
Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of D, D +1 is 1, the
Negative Flag will turn ON.

Examples When CIO 000000 is ON, CIO 0100 and CIO 0101 will be shifted to the left
(from the rightmost bit to the leftmost bit) by 10 bits. The number of bits to shift
is specified in bits 0 to 7 of word CIO 0300 (control data). The contents of bit 0
of CIO 0100 is copied into bits from which data was shifted and the contents
of the rightmost bit which was shifted out of range is shifted into the Carry
Flag (CY). All other data is lost.

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

15 8 011 37 412
C

08 0 A

No. of bits to shift: 10 bits (0A Hex)

Always 0.
Data shifted into register
8 Hex: Contents of right-
most bit shifted in
402

Data Shift Instructions Section 3-9
3-9-23 SHIFT N-BITS RIGHT: NASR(581)
Purpose Shifts the specified 16 bits of word data to the right by the specified number of

bits.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Operand Specifications

0100

0100

Rightmost bit a
Lost

No. of bits to shift: 10 bits
(Contents of the rightmost
bit is shifted in)

NASR(581)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NASR(581)

Executed Once for Upward Differentiation @NASR(581)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 712
C 0

No. of bits to shift: 00 to 10 Hex

Always 0.
Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A447
A448 to A959

Timer Area T0000 to T4095
403

Data Shift Instructions Section 3-9
Description NASR(581) shifts D (the shift word) by the specified number of binary bits
(specified in C) to the right (from the rightmost bit to the leftmost bit). Either
zeros or the value of the rightmost bit will be placed into the specified number
of bits of the shift word starting from the rightmost bit.

Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is discarded.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area D C

Lost

N bits

Contents of "a" or
"0" shifted in

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
404

Data Shift Instructions Section 3-9
When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000 hex, the Equals Flag will
turn ON.

If as a result of the shift the contents of the leftmost bit of D is 1, the Negative
Flag will turn ON.

Examples When CIO 000000 is ON, CIO 0100 will be shifted 10 bits to the right (from
the leftmost bit to the rightmost bit). The number of bits to shift is specified in
bits 0 to 7 of word CIO 0300. The contents of bit 15 of CIO 0100 is copied into
the bits from which data was shifted and the contents of the leftmost bit of
data which was shifted out of range, is shifted into the Carry Flag (CY). All
other data is lost.

3-9-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583)
Purpose Shifts the specified 32 bits of word data to the right by the specified number of

bits.

Ladder Symbol

Variations

15 8 011 37 412
C

08 0 A

No. of bits to shift: 10 bits (0A Hex)

Always 0.
Data shifted into register
8 Hex: Contents of leftmost bit shifted in

No. of bits to shift: 10 bits
(Contents of the leftmost bit is
inserted.)

Lost
Leftmost bit

NSRL(583)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NSRL(583)

Executed Once for Upward Differentiation @NSRL(583)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
405

Data Shift Instructions Section 3-9
Applicable Program Areas

Operands C: Control Word

Operand Specifications

Description NSRL(583) shifts D and D+1 (the shift words) by the specified number of
binary bits (specified in C) to the right (from the leftmost bit to the rightmost
bit). Either zeros or the value of the rightmost bit will be placed into the speci-
fied number of bits of the shift word starting from the rightmost bit.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 712

C 0

No. of bits to shift: 00 to 20 Hex

Always 0.

Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A448 to A958 A000 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to En_32766

(n = 0 to C)

En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- Specified values only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
-2048 to +2047 ,IR0 to -2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
406

Data Shift Instructions Section 3-9
Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON or OFF, however, according to data
in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D +1 is 00000000 hex, the Equals Flag
will turn ON.

If as a result of the shift the contents of the leftmost bit of D +1 is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON, CIO 0100 and CIO 0101 will be shifted 10 bits to
the right (from the leftmost bit to the rightmost bit). The number of bits to shift
is specified in bits 0 to 7 of word CIO 0300 (control data). The contents of bit
15 of CIO will be copied into the bits from which data was shifted and the con-
tents of the leftmost bit of data which was shifted out of range will be shifted
into the Carry Flag (CY). All other data is lost.

Shift n-bits

Lost

Contents of "a" or
"0" shifted in

N bits

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift)
is not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

15 8 011 37 412

C 08 0 A

No. of bits to shift: 10 bits (0A Hex)

Always 0.
Data shifted into register
8 Hex: Contents of leftmost bit shifted in
407

Data Shift Instructions Section 3-9
CY
1

Leftmost bit Lost

No. of bits to shift: 10 bits
(Contents of the leftmost
bit is inserted.)
408

Increment/Decrement Instructions Section 3-10
3-10 Increment/Decrement Instructions

3-10-1 INCREMENT BINARY: ++(590)
Purpose Increments the 4-digit hexadecimal content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The ++(590) instruction adds 1 to the binary content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++(590) is ON. When the up-differentiated variation of this instruction

++(590)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ++(590)

Executed Once for Upward Differentiation @++(590)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
409

Increment/Decrement Instructions Section 3-10
(@++(590)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000, the Carry Flag will be
turned ON when a digit changes from F to 0, and the Negative Flag will be
turned ON when bit 15 of Wd is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from FFFF to 0000.

Flags

Examples Operation of ++(590)
In the following example, the content of D00100 will be incremented by 1
every cycle as long as CIO 000000 is ON.

Operation of @++(590)

The up-differentiated variation is used in the following example, so the content
of D00100 will be incremented by 1 only when CIO 000000 has gone from
OFF to ON.

Wd Wd

Name Label Operation

Error Flag ER OFF

Equals
Flag

= ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from F to 0 during execution.
OFF in all other cases.

Negative
Flag

N ON if bit 15 of Wd is ON after execution.
OFF in all other cases.

 D00100 D00100
0 0 1 9

Wd:

Increment Increment Increment Increment

0 0 1 A

: Execution of ++(590)

Incremented every cycle
while CIO 000000 is ON.

Wd:

@++

0 0 1 9 0 0 1 A

Increment Increment

Wd: D00100 Wd: D00100

Incremented only for
up-differentiation.

: Execution of @++(590)
410

Increment/Decrement Instructions Section 3-10
3-10-2 DOUBLE INCREMENT BINARY: ++L(591)
Purpose Increments the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The ++L(591) instruction adds 1 to the 8-digit hexadecimal content of Wd+1
and Wd. The content of the specified words will be incremented by 1 every
cycle as long as the execution condition of ++L(591) is ON. When the up-dif-
ferentiated variation of this instruction (@++L(591)) is used, the content of the

++L(591)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition ++L(591)

Executed Once for Upward Differentiation @++L(591)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
411

Increment/Decrement Instructions Section 3-10
specified words is incremented only when the execution condition has gone
from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000, the Carry Flag
will be turned ON when a digit changes from F to 0, and the Negative Flag will
be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of changes from FFFF FFFF to 0000 0000.

Flags

Examples Operation of ++L(591)

In the following example, the 8-digit hexadecimal content of D00101 and
D00100 will be incremented by 1 every cycle as long as CIO 000000 is ON.

Operation of @++L(591)

The up-differentiated variation is used in the following example, so the content
of D00101 and D00100 will be incremented by 1 only when CIO 000000 has
gone from OFF to ON.

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from F to 0 during
execution.

OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.

OFF in all other cases.

 D00101 D00100 D00101 D00100Wd+1: Wd: Wd+1: Wd:

Increment Increment Increment Increment

: Execution of ++L(591)

Incremented every cycle
while CIO 000000 is ON.

 D00101 D00100 D00101 D00100

@++L

Wd+1: Wd: Wd+1: Wd:

Increment Increment

Incremented only for
up-differentiation.

: Execution of @++L(591)
412

Increment/Decrement Instructions Section 3-10
3-10-3 DECREMENT BINARY: – –(592)
Purpose Decrements the 4-digit hexadecimal content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The – –(592) instruction subtracts 1 from the binary content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of – –(592) is ON. When the up-differentiated variation of this instruction
(@– –(592)) is used, the specified word is decremented only when the execu-
tion condition has gone from OFF to ON.

− −(592)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition – – (592)

Executed Once for Upward Differentiation @– – (592)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Wd Wd
413

Increment/Decrement Instructions Section 3-10
The Equals Flag will be turned ON if the result is 0000, the Carry Flag will be
turned ON when a digit changes from 0 to F, and the Negative Flag will be
turned ON if bit 15 of Wd is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
of Wd changes from 0000 to FFFF.

Flags

Examples Operation of – –(592)

In the following example, the content of D00100 will be decremented by 1
every cycle as long as CIO 000000 is ON.

Operation of @– –(592)

The up-differentiated variation is used in the following example, so the content
of D00100 will be decremented by 1 only when CIO 000000 has gone from
OFF to ON.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 0 to F during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd is ON after execution.
OFF in all other cases.

 D00100 D00100
−1

Decrement Decrement Decrement Decrement

Wd: Wd:

Decremented every cycle
while CIO 000000 is ON.

: Execution of − −(592)

@− −

 D00100 D00100

Decrement Decrement

−1
Wd: Wd:

Decremented only
for up-differentiation.

: Execution of @− −(592)
414

Increment/Decrement Instructions Section 3-10
3-10-4 DOUBLE DECREMENT BINARY: – –L(593)
Purpose Decrements the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The – –L(593) instruction subtracts 1 from the 8-digit hexadecimal content of
Wd+1 and Wd. The content of the specified words will be decremented by 1
every cycle as long as the execution condition of – –L(593) is ON. When the
up-differentiated variation of this instruction (@– –L(593)) is used, the content

− −L(593)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition – –L(593)

Executed Once for Upward Differentiation @– –L(593)

Executed Once for Downward
Differentiation

Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
415

Increment/Decrement Instructions Section 3-10
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000, the Carry Flag
will be turned ON when a digit changes from 0 to F, and the Negative Flag will
be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
changes from 0000 0000 to FFFF FFFF.

Flags

Examples Operation of – –L(593)

In the following example, the 8-digit hexadecimal content of D00101 and
D00100 will be decremented by 1 every cycle as long as CIO 000000 is ON.

Operation of @– –L(593)

The up-differentiated variation is used in the following example, so the content
of D00101 and D00100 will be decremented by 1 only when CIO 000000 has
gone from OFF to ON.

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 0 to F during exe-
cution.

OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.

OFF in all other cases.

 D00101 D00100 D00101 D00100

−1

Decrement Decrement DecrementDecrement

Wd+1: Wd: Wd+1: Wd:

Decremented every cycle
while CIO 000000 is ON.

: Execution of − −L(593)

@

−1

 D00101 D00100 D00101 D00100

Decrement Decrement

− −L Wd+1: Wd: Wd+1: Wd:

: Execution of @ − −L(593)

Decremented only
for up-differentiation.
416

Increment/Decrement Instructions Section 3-10
3-10-5 INCREMENT BCD: ++B(594)
Purpose Increments the 4-digit BCD content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The ++B(594) instruction adds 1 to the BCD content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++B(594) is ON. When the up-differentiated variation of this instruction
(@++B(594)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

++B(594)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ++B(594)

Executed Once for Upward Differentiation @++B(594)

Executed Once for Downward
Differentiation

Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n= 0 to C)

Indirect DM/EM
addresses in BCD

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
417

Increment/Decrement Instructions Section 3-10
The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when a digit changes from 9 to 0.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from 9999 to 0000.

Flags

Precautions The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Examples Operation of ++B(594)

In the following example, the BCD content of D00100 will be incremented by 1
every cycle as long as CIO 000000 is ON.

Operation of @++B(594)

The up-differentiated variation is used in the following example, so the content
of D00100 will be incremented by 1 only when CIO 000000 has gone from
OFF to ON.

Wd Wd

Name Label Operation

Error Flag ER ON if the content of Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 9 to 0 during execution.

OFF in all other cases.

 D00100 D00100

Increment Increment Increment Increment

Wd: Wd:

: Execution of ++B(594)

Incremented every cycle
while CIO 000000 is ON.

@++B

 D00100 D00100

Increment Increment

Wd: Wd:

: Execution of @++B(594)

Incremented only for
up-differentiation.
418

Increment/Decrement Instructions Section 3-10
3-10-6 DOUBLE INCREMENT BCD: ++BL(595)
Purpose Increments the 8-digit BCD content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The ++BL(595) instruction adds 1 to the 8-digit BCD content of Wd+1 and
Wd. The content of the specified words will be incremented by 1 every cycle
as long as the execution condition of ++BL(595) is ON. When the up-differen-
tiated variation of this instruction (@++BL(595)) is used, the content of the

++BL(595)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition ++BL(595)

Executed Once for Upward Differentiation @++BL(595)

Executed Once for Downward
Differentiation

Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in BCD

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
419

Increment/Decrement Instructions Section 3-10
specified words is incremented only when the execution condition has gone
from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when a digit changes from 9 to 0.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of changes from 9999 9999 to 0000 0000.

Flags

Precautions The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur
and the Error Flag will be turned ON.

Examples Operation of ++BL(595)

In the following example, the 8-digit BCD content of D00101 and D00100 will
be incremented by 1 every cycle as long as CIO 000000 is ON.

Operation of @++BL(595)

The up-differentiated variation is used in the following example, so the BCD
content of D00101 and D00100 will be incremented by 1 only when
CIO 000000 has gone from OFF to ON.

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 9 to 0 during exe-
cution.
OFF in all other cases.

 D00101 D00100 D00101 D00100

Increment Increment Increment Increment

Wd+1: Wd: Wd+1: Wd:

: Execution of ++BL(595)

Incremented every cycle
while CIO 000000 is ON.

@++BL
 D00101 D00100 D00101 D00100

Increment Increment

Wd+1: Wd: Wd+1: Wd:

: Execution of @++BL(595)

Incremented only for
up-differentiation.
420

Increment/Decrement Instructions Section 3-10
3-10-7 DECREMENT BCD: – –B(596)
Purpose Decrements the 4-digit BCD content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The – –B(596) instruction subtracts 1 from the BCD content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of – –B(596) is ON. When the up-differentiated variation of this
instruction (@– –B(596)) is used, the specified word is decremented only
when the execution condition has gone from OFF to ON.

− −B(596)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition – –B(596)

Executed Once for Upward Differentiation @– –B(596)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
421

Increment/Decrement Instructions Section 3-10
The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when a digit changes from 0 to 9.

Flags

Precautions The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Examples Operation of – –B(596)

In the following example, the BCD content of D00100 will be decremented by
1 every cycle as long as CIO 000000 is ON.

Operation of @– –B(596)

The up-differentiated variation is used in the following example, so the BCD
content of D00100 will be decremented by 1 only when CIO 000000 has gone
from OFF to ON.

−1Wd Wd

Name Label Operation

Error Flag ER ON if the content of Wd is not BCD.

OFF in all other cases.

Equals Flag = ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 0 to 9 during execution.
OFF in all other cases.

 D00100 D00100

−1

Decrement Decrement Decrement Decrement

Wd: Wd:

Decremented every cycle
while CIO 000000 is ON.

: Execution of − − B(596)

@ − −B

 D00100 D00100

−1

Decrement Decrement

Wd: Wd:

Decremented only
for up-differentiation.

: Execution of @− −B(596)
422

Increment/Decrement Instructions Section 3-10
3-10-8 DOUBLE DECREMENT BCD: – –BL(597)
Purpose Decrements the 8-digit BCD content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The – –BL(597) instruction subtracts 1 from the 8-digit BCD content of Wd+1
and Wd. The content of the specified words will be decremented by 1 every
cycle as long as the execution condition of – –BL(597) is ON. When the up-
differentiated variation of this instruction (@– –BL(597)) is used, the content

 − −BL(597)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition – –BL(597)

Executed Once for Upward Differentiation @– –BL(597)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in BCD

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
423

Increment/Decrement Instructions Section 3-10
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when a digit changes from 0 to 9.

Flags

Precautions The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur
and the Error Flag will be turned ON.

Examples Operation of – –BL(597)

In the following example, the 8-digit BCD content of D00101 and D00100 will
be decremented by 1 every cycle as long as CIO 000000 is ON.

Operation of @– –BL(597)

The up-differentiated variation is used in the following example, so the BCD
content of D00101 and D00100 will be decremented by 1 only when
CIO 000000 has gone from OFF to ON.

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 0 to 9 during exe-
cution.
OFF in all other cases.

 D00100 D00101 D00100 D00101

Decrement Decrement Decrement Decrement

Wd:Wd+1: Wd:Wd+1:
−1

Decremented every cycle
while CIO 000000 is ON.

: Execution of − −BL(597)

@ − −BL

−1

 D00100 D00101 D00100 D00101

Decrement Decrement

Wd:Wd+1: Wd:Wd+1:

: Execution of @− −BL(597)

Decremented only
for up-differentiation.
424

Symbol Math Instructions Section 3-11
3-11 Symbol Math Instructions
This section describes the Symbol Math Instructions, which perform arith-
metic operations on BCD or binary data.

Instruction Mnemonic Function code Page

SIGNED BINARY ADD WITH-
OUT CARRY

+ 400 426

DOUBLE SIGNED BINARY
ADD WITHOUT CARRY

+L 401 428

SIGNED BINARY ADD WITH
CARRY

+C 402 430

DOUBLE SIGNED BINARY
ADD WITH CARRY

+CL 403 432

BCD ADD WITHOUT CARRY +B 404 434

DOUBLE BCD ADD WITHOUT
CARRY

+BL 405 435

BCD ADD WITH CARRY +BC 406 437

DOUBLE BCD ADD WITH
CARRY

+BCL 407 439

SIGNED BINARY SUBTRACT
WITHOUT CARRY

– 410 440

DOUBLE SIGNED BINARY
SUBTRACT WITHOUT CARRY

–L 411 442

SIGNED BINARY SUBTRACT
WITH CARRY

–C 412 446

DOUBLE SIGNED BINARY
SUBTRACT WITH CARRY

–CL 413 448

BCD SUBTRACT WITHOUT
CARRY

–B 414 451

DOUBLE BCD SUBTRACT
WITHOUT CARRY

–BL 415 452

BCD SUBTRACT WITH
CARRY

–BC 416 456

DOUBLE BCD SUBTRACT
WITH CARRY

–BCL 417 457

SIGNED BINARY MULTIPLY * 420 459

DOUBLE SIGNED BINARY
MULTIPLY

*L 421 461

UNSIGNED BINARY MULTI-
PLY

*U 422 463

DOUBLE UNSIGNED BINARY
MULTIPLY

*UL 423 465

BCD MULTIPLY *B 424 467

DOUBLE BCD MULTIPLY *BL 425 469

SIGNED BINARY DIVIDE / 430 471

DOUBLE SIGNED BINARY
DIVIDE

/L 431 473

UNSIGNED BINARY DIVIDE /U 432 475

DOUBLE UNSIGNED BINARY
DIVIDE

/UL 433 477

BCD DIVIDE /B 434 479

DOUBLE BCD DIVIDE /BL 435 481
425

Symbol Math Instructions Section 3-11
3-11-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
Purpose Adds 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+(400)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +(400)

Executed Once for Upward Differentiation @+(400)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
426

Symbol Math Instructions Section 3-11
Description +(400) adds the binary values in Au and Ad and outputs the result to R.

Flags

Precautions When +(400) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range 8000 to
FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range 0000 to
7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 and D00110 will
be added as 4-digit signed binary values and the result will be output to
D00120.

RCY

+

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers is in
the range 8000 to FFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers is in
the range 0000 to 7FFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
427

Symbol Math Instructions Section 3-11
3-11-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
Purpose Adds 8-digit (double-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+L(401)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +L(401)

Executed Once for Upward Differentiation @+L(401)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
428

Symbol Math Instructions Section 3-11
Description +L(401) adds the binary values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R.

Flags

Precautions When +L(401) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range
80000000 to FFFFFFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range
00000000 to 7FFFFFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Examples When CIO 000000 is ON, D00100 and D00110 and D00111 and D00110 will
be added as 8-digit signed binary values and the result will be output to
D00120 and D00120.

R+1CY

+

R

Au+1

Ad+1

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers is in
the range 80000000 to FFFFFFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers is in
the range 00000000 to 7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
429

Symbol Math Instructions Section 3-11
3-11-3 SIGNED BINARY ADD WITH CARRY: +C(402)
Purpose Adds 4-digit (single-word) hexadecimal data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+C(402)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +C(402)

Executed Once for Upward Differentiation @+C(402)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
430

Symbol Math Instructions Section 3-11
Description +C(402) adds the binary values in Au, Ad, and CY and outputs the result to R.

Flags

Precautions When +C(402) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON, D00100, D00110, and CY will be added as 4-digit
signed binary values and the result will be output to D00220.

CY+

RCY

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the addition result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the addition result of adding two positive num-
bers and CY is in the range 8000 to FFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the addition result of adding two negative num-
bers and CY is in the range 0000 to 7FFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
431

Symbol Math Instructions Section 3-11
3-11-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)
Purpose Adds 8-digit (double-word) hexadecimal data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+CL(403)

Au

Ad

R

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +CL(403)

Executed Once for Upward Differentiation @+CL(403)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
432

Symbol Math Instructions Section 3-11
Description +CL(403) adds the binary values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R.

Flags

Precautions When +CL(403) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
80000000 to FFFFFFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
00000000 to 7FFFFFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON, D00201, D00200, D00211, D00210, and CY will be
added as 8-digit signed binary values, and the result will be output to D00221
and D00220.

CY+

RCY

Au+1

Ad+1

R+1

Au

Ad (Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers and
CY is in the range 80000000 to FFFFFFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers and
CY is in the range 00000000 to 7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
433

Symbol Math Instructions Section 3-11
3-11-5 BCD ADD WITHOUT CARRY: +B(404)
Purpose Adds 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+B(404)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +B(404)

Executed Once for Upward Differentiation @+B(404)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants 0000 to 9999
(BCD)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
434

Symbol Math Instructions Section 3-11
Description +B(404) adds the BCD values in Au and Ad and outputs the result to R.

Flags

Precautions If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 and D00110 will
be added as 4-digit BCD values, and the result will be output to D00120.

3-11-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)
Purpose Adds 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

RCY

+

(BCD)

(BCD)

(BCD)

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

+BL(405)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +BL(405)

Executed Once for Upward Differentiation @+BL(405)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK
435

Symbol Math Instructions Section 3-11
Operand Specifications

Description +BL(405) adds the BCD values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R, R+1.

Flags

Area Au Ad R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #99999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

CY

+

R

(BCD)

(BCD)

(BCD)R+1

Au +1

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au, Au +1 is not BCD.

ON when Ad, Ad +1 is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.

OFF in all other cases.
436

Symbol Math Instructions Section 3-11
Precautions If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00101 and D00100 and
D00111 and D00110 will be added as 8-digit BCD values, and the result will
be output to D00121 and D00120.

3-11-7 BCD ADD WITH CARRY: +BC(406)
Purpose Adds 4-digit (single-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+BC(406)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +BC(406)

Executed Once for Upward Differentiation @+BC(406)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)
437

Symbol Math Instructions Section 3-11
Description +BC(406) adds BCD values in Au, Ad, and CY and outputs the result to R.

Flags

Precautions If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON in the following example, D00100, D00110, and CY
will be added as 4-digit BCD values, and the result will be output to D00120.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to 9999
(BCD)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Au Ad R

CY+

RCY

(BCD)

(BCD)

(BCD)

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au is not BCD.

ON when Ad is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.

OFF in all other cases.
438

Symbol Math Instructions Section 3-11
3-11-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)
Purpose Adds 8-digit (double-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+BCL(407)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +BCL(407)

Executed Once for Upward Differentiation @+BCL(407)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #99999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
439

Symbol Math Instructions Section 3-11
Description +BCL(407) adds the BCD values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R, R+1.

Flags

Precautions If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON in the following example, D00101, D00100, D00111,
D00110, and CY will be added as 8-digit BCD values, and the result will be
output to D00121 and D00120.

3-11-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410)
Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

R+1

CY+

RCY

(BCD)

(BCD)

(BCD)

Au +1

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au, Au +1 is not BCD.

ON when Ad, Ad +1 is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.

OFF in all other cases.

−(410)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –(410)

Executed Once for Upward Differentiation @–(410)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
440

Symbol Math Instructions Section 3-11
Applicable Program Areas

Operand Specifications

Description –(400) subtracts the binary values in Su from Mi and outputs the result to R.
When the result is negative, it is output to R as a 2’s complement. (Refer to 3-
11-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
for an example of handling 2’s complements.)

Flags

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0000 to D4095

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

RCY

−

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)CY will turn ON
when there is a
borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.
441

Symbol Math Instructions Section 3-11
Precautions When –(410) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00110 will be subtracted
from D00100 as 4-digit signed binary values and the result will be output to
D00120.

3-11-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number from
a positive number is in the range 8000 to FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a negative number from
a positive number is in the range 0000 to 7FFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

Name Label Operation

−

−L(411)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –L(411)

Executed Once for Upward Differentiation @–L(411)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
442

Symbol Math Instructions Section 3-11
Operand Specifications

Description –L(411) subtracts the binary values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. When the result is negative, it is output to R and
R+1 as a 2’s complement.

Flags

Area Mi Su R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Su+1

CY R

Mi+1

R+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

−

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number
from a positive number is in the range 80000000 to
FFFFFFFF hex.

OFF in all other cases.
443

Symbol Math Instructions Section 3-11
Precautions When –L(411) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 80000000 to FFFFFFFF hex), the Overflow Flag will turn
ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 00000000 to 7FFFFFFF hex), the Underflow Flag will turn
ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00111 and D00110 will
be subtracted from D00101 and D00100 as 8-digit signed binary values and
the result will be output to D00121 and D00120.

Examples If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as the 2’s complement and the Carry Flag
(CY) will turn ON to indicate that the result of the subtraction is negative. To
convert the 2’s complement to the true number, an instruction which subtracts
the result from 0 is necessary using the Carry Flag (CY) as an execution con-
dition.

Note 2’s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result. For example, the 2’s complement for 1101 is cal-
culated as follows: 1111 (F hexadecimal) – 1101 (D hexadecimal) + 1 (1 hexa-
decimal) = 0011 (3 hexadecimal). The 2’s complement for 3039 (hexadecimal)
is calculated as follows: FFFF (hexadecimal) – 3039 (hexadecimal) + 0001
(hexadecimal) – CFC7 (hexadecimal). Therefore, in case of 4-digit hexadeci-
mal value, the 2’s complement can be calculated as follows: FFFF (hexadeci-
mal) – a (hexadecimal) + 0001 (hexadecimal) = b (hexadecimal). To obtain the
true number from the 2’s complement b (hexadecimal): a (hexadecimal) =
10000 (hexadecimal) – b (hexadecimal). For example, to obtain the true num-
ber from the 2’s complement CFC7 (hexadecimal): 10000 (hexadecimal) –
CFC7 = 3039.

Underflow Flag UF ON when the result of subtracting a positive number from
a negative number is in the range 00000000 to
7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

Name Label Operation

−L
444

Symbol Math Instructions Section 3-11
Program Example 20F55A10 – B8A360E3 = –97AE06D3.
In this example, the eight-digit binary value in CIO 0121 and CIO 0120 is sub-
tracted from the value in CIO 0201 and CIO 0200, and the result is output in
eight-digit binary to D00101 and D00100. If the result is negative, the instruc-
tion at (2) will be executed, and the actual result will then be output to D00101
and D00100.

The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000 to
obtain the actual number.

−1
+1−)

65535
1−)

−)
−3
−1−)

65533
65535−)

−) Note 1.

 2.

 3.

 4.

Example 1 Signed data Unsigned data

Example 2 Signed data Unsigned data

FFFF Hex
0001 Hex

FFFE Hex −2 Note 1 65534 Note 2

FFFD Hex
FFFF Hex

FFFE Hex −2 Note 3 65534 Note 4

Carry Flag OFF

Negative Flag ON

Carry Flag OFF

Negative Flag ON

Since the Negative Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and is thus −2.

Since the Carry Flag is OFF, the result (FFFE hex) is an
unsigned positive value of 65534.

Since the Negative Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and is thus −2.

Since the Carry Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and becomes −2 when
converted to a true value.

−L

0200

0120

D00100

000000

(1)

CY

CY
(2)

RSET

002100

SET

002100

−L

#00000000

D00100

D00100

"−"display

1

R+1: D00101

 CIO 0121 CIO 0120

2 0 F 5 5 A 0

3E063A8B

6 5 1 F 9 2 D1

CY R+1: D00100

8

 CIO 0201 CIO 0200

−

Mi+1: Mi:

Subtraction at 1

Su+1: Su:
445

Symbol Math Instructions Section 3-11
The Carry Flag (CY) is turned ON, so the actual number is –97AE06D3.
Because the content of D00101 and D00100 is negative, CY is used to turn
ON CIO 002100 to indicate this.

3-11-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412)
Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants with the

Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0 00000 0 0

6 5 1 F 9 2 D8

R+1: D00101

3D60EA791

CY R+1: D00100

−
Su+1: D00101 Su: D00100

Subtraction at 2

R+1: D00101

 D00101 D00100

3D60EA79

6 5 1 F 9 2 D

1

CY R+1: D00100

1

 CIO 0201 CIO 0200

2 0 F 5 5 A 0

8−
Su+1: Su:

Final Subtraction Result

Mi+1: Mi:

−C(412)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –C(412)

Executed Once for Upward Differentiation @–C(412)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959
446

Symbol Math Instructions Section 3-11
Description –C(412) subtracts the binary values in Su and CY from Mi, and outputs the
result to R. When the result is negative, it is output to R as a 2’s complement.

Flags

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Mi Su R

CY–

RCY

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the subtraction result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 8000 to FFFF
hex.

OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 0000 to 7FFF
hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
447

Symbol Math Instructions Section 3-11
Precautions When –C(412) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number
is negative (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON in the following example, D00110 and CY will be
subtracted from D00100 as 4-digit signed binary values and the result will be
output to D00120.

3-11-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413)
Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants with the

Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–CL(413)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –CL(413)

Executed Once for Upward Differentiation @–CL(413)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094
448

Symbol Math Instructions Section 3-11
Description –CL(413) subtracts the binary values in Su and Su+1 and CY from Mi and
Mi+1, and outputs the result to R, R+1. When the result is negative, it is output
to R, R+1 as a 2’s complement.

Flags

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Mi Su R

R+1

CY–

RCY

Mi+1

Su+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 80000000 to
FFFFFFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 00000000 to
7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
449

Symbol Math Instructions Section 3-11
Precautions When –CL(413) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number
is negative (in the range 80000000 to FFFFFFFF hex), the Overflow Flag will
turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 00000000 to 7FFFFFFF hex), the Underflow Flag will
turn ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON in the following example, D00111, D00110 and CY
will be subtracted from D00101 and D00100 as 8-digit signed binary values,
and the result will be output to D00121 and D00120.

If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 2’s complement. The Carry Flag (CY) will
turn ON. To convert the 2’s complement to the true number, a program which
subtracts the result from 0 is necessary, as an input condition of the Carry
Flag (CY). The Carry Flag turning ON thus indicates that the result of the sub-
traction is negative.

Note 2’s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result.
Example: The 2’s complement for the binary number 1101 is as follows:

1111 (F hex) – 1101 (D hex) + 1 (1 hex) = 0011 (3 hex).
Example: The 2’s complement for the 4-digit hexadecimal number 3039 is as
follows:

FFFF hex – 3039 hex + 0001 hex = CFC7 hex.
Accordingly, the 2’s complement for the 4-digit hexadecimal value “a” is as fol-
lows:

FFFF hex – a hex + 0001 hex = b hex.
And to obtain the true number “a” hex from the 2’s complement “b” hex:

a hex + 10000 hex – b hex.
Example: To obtain the true number from the 2’s complement CFC& hex:

10000 hex – CFC7 hex = 3039 hex.
450

Symbol Math Instructions Section 3-11
3-11-13 BCD SUBTRACT WITHOUT CARRY: –B(414)
Purpose Subtracts 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–B(414)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –B(414)

Executed Once for Upward Differentiation @–B(414)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants 0000 to 9999
(BCD)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
451

Symbol Math Instructions Section 3-11
Description –B(414) subtracts the BCD values in Su from Mi and outputs the result to R. If
the result of the subtraction is negative, the result is output as a 10’s comple-
ment.

Flags

Precautions If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00110 is subtracted from
D00100 as 4-digit BCD values, and the result will be output to D00120.

3-11-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415)
Purpose Subtracts 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

RCY

–

(BCD)

(BCD)

(BCD)

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

–BL(415)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word

Variations Executed Each Cycle for ON Condition –BL(415)

Executed Once for Upward Differentiation @–BL(415)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
452

Symbol Math Instructions Section 3-11
Applicable Program Areas

Operand Specifications

Description –BL(415) subtracts the BCD values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. If the result is negative, it is output to R, R+1 as a
10’s complement.

Flags

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #99999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1CY

–

R

(BCD)

(BCD)

(BCD)

Mi +1

Su+1

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.
OFF in all other cases.
453

Symbol Math Instructions Section 3-11
Precautions If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00111 and D00110 will
be subtracted from D00101 and D00100 as 8-digit BCD values, and the result
will be output to D00121 and D00120.

If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 10’s complement. The Carry Flag (CY)
will turn ON. To convert the 10’s complement to the true number, a program
which subtracts the result from 0 is necessary, as an input condition of the
Carry Flag (CY). The Carry Flag turning ON thus indicates that the result of
the subtraction is negative.

Note 10’s Complement
A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 – 7556 + 1 = 2444. For a four digit number, the 10’s
complement of A is 9999 – A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 – B. For example, to obtain the true number from
the 10’s complement 2444: 10000 – 2444 = 7556.

Program Example 9,583,960 – 17,072,641 = –7,488,681.
In this example, the eight-digit BCD content of CIO 0121 and CIO 0120 is
subtracted from the content of CIO 0201 and CIO 0200, and the result is out-
put in eight-digit BCD to D00101 and D00100. The result is negative, so the
instruction at (2) will be executed, and the true value will then be output to
D00101 and D00100.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Name Label Operation
454

Symbol Math Instructions Section 3-11
The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000.

The Carry Flag (CY) will be turned ON, so the actual number is –7,488,681.
Because the content of D00101 and D00100 is negative, CY is used to turn
ON CIO 002100 to indicate this.

−BL

0200

0120

D00100

000000

(1)

CY

CY
(2)

RSET

002100

SET

002100

−BL

#00000000

D00100

D00100

"−" display

6

 CIO 0201 CIO 0200

R+1: D00101

 CIO 0121 CIO 0120

–

0 9 5 8 3 9 0

14627071

9 2 5 1 1 3 1 91

CY R+1: D00100

09583960 + (100000000 – 17072641)

Subtraction at 1

Mi+1: Mi:

Su+1: Su:

 D00101 D00100

–

0 0

9 2 5 1 1 3 1 9

0000 0 0

R+1: D00101

0 4 8 8 6 8 11

CY R+1: D00100

00000000 + (100000000 – 92511319)

7

Subtraction at 2

Su+1: Su:

R+1: D00101

 D00101 D00100

–

18688470

6 5 1 F 9 2 D

1

CY R+1: D00100

1

 CIO 0201 CIO 0200

2 0 F 5 5 A 0

8

Su+1: Su:

Final Subtraction Result

Mi+1: Mi:
455

Symbol Math Instructions Section 3-11
3-11-15 BCD SUBTRACT WITH CARRY: –BC(416)
Purpose Subtracts 4-digit (single-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–BC(416)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –BC(416)

Executed Once for Upward Differentiation @–BC(416)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to D32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #9999
(BCD)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
456

Symbol Math Instructions Section 3-11
Description –BC(416) subtracts BCD values in Su and CY from Mi and outputs the result
to R. If the result is negative, it is output to R as a 2’s complement.

Flags

Precautions If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON in the following example, D00110 and CY will be
subtracted from D00100 as 4-digit BCD values, and the result will be output to
D00120.

3-11-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417)
Purpose Subtracts 8-digit (double-word) BCD data and/or constants with the Carry

Flag (CY).

Ladder Symbol

CY

RCY

(BCD)

(BCD)

(BCD)

–

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

–BCL(417)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word
457

Symbol Math Instructions Section 3-11
Variations

Applicable Program Areas

Operand Specifications

Description –BCL(417)subtracts the BCD values in Su, Su+1, and CY from Mi and Mi+1
and outputs the result to R, R+1. If the result is negative, it is output to R, R+1
as a 10’s complement.

Variations Executed Each Cycle for ON Condition –BCL(417)

Executed Once for Upward Differentiation @–BCL(417)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #99999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1

CY

RCY

(BCD)

(BCD)

(BCD)

–

Mi +1

Su+1

Mi

Su

CY will turn
ON when there
is a borrow.
458

Symbol Math Instructions Section 3-11
Flags

Precautions If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an subtraction results in a borrow, the Carry Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 000000 is ON in the following example, D00111, D00110, and CY
will be subtracted from D00101 and D00100 as 8-digit BCD values, and the
result will be output to D00121 and D00120.

If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 10’s complement. The Carry Flag (CY)
will turn ON. To convert the 10’s complement to the true number, a program
which subtracts the result from 0 is necessary, as an input condition of the
Carry Flag (CY). The Carry Flag turning ON thus indicates that the result of
the subtraction is negative.

Note 10’s Complement
A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 – 7556 + 1 = 2444. For a four digit number, the 10’s
complement of A is 9999 – A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 – B. For example, to obtain the true number from
the 10’s complement 2444: 10000 – 2444 = 7556.

3-11-17 SIGNED BINARY MULTIPLY: *(420)
Purpose Multiplies 4-digit signed hexadecimal data and/or constants.

Ladder Symbol

Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

*(420)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: Result word
459

Symbol Math Instructions Section 3-11
Variations

Applicable Program Areas

Operand Specifications

Description *(420) multiplies the signed binary values in Md and Mr and outputs the result
to R, R+1.

Variations Executed Each Cycle for ON Condition *(420)

Executed Once for Upward Differentiation @*(420)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R +1 R

×

Md

Mr

(Signed binary)

(Signed binary)

(Signed binary)
460

Symbol Math Instructions Section 3-11
Flags

Precautions When *(420) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R is 0000 hex, the Equals
Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 and R
is 1, the Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 and D00110 will
be multiplied as 4-digit signed hexadecimal values and the result will be out-
put to D00120.

Example in Function Block Definition

In the following example, an array variable is used to get the result from the
function block as one word.

3-11-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)
Purpose Multiplies 8-digit signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

*

a

b

tmp[0]

MOV

tmp[0]

c

a * b → c

Function Block Variables
Multiplicand: a (data type: INT)
Multiplier: b (data type: INT)
Result: c (data type: INT)
Temporary variable: tmp (data type: WORD, 2-element array)

*L(421)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *L(421)

Executed Once for Upward Differentiation @*L(421)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
461

Symbol Math Instructions Section 3-11
Applicable Program Areas

Operand Specifications

Description *L(421) multiplies the signed binary values in Md and Md+1 and Mr and Mr+1
and outputs the result to R, R+1, R+2, and R+3.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to
CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to
D32764

EM Area without bank E00000 to E32766 E00000 to
E32764

EM Area with bank En_00000 to En_32766

(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF

(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R + 1 RR + 3 R + 2

×

Md + 1 Md

Mr + 1 Mr

(Signed binary)

(Signed binary)

(Signed binary)
462

Symbol Math Instructions Section 3-11
Flags

Precautions When *L(421) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is 0000
hex, the Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100, D00110, D00111,
and D00110 will be multiplied as 8-digit signed hexadecimal values and the
result will be output to D00121 and D00120.

3-11-19 UNSIGNED BINARY MULTIPLY: *U(422)
Purpose Multiplies 4-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

*U(422)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: Result word

Variations Executed Each Cycle for ON Condition *U(422)

Executed Once for Upward Differentiation @*U(422)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094
463

Symbol Math Instructions Section 3-11
Description *U(420) multiplies the binary values in Md and Mr and outputs the result to R,
R+1.

Flags

Precautions When *U(422) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1 is 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 and D00110 will
be multiplied as 4-digit unsigned binary values and the result will be output to
D00121 and D00120.

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767

(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_ 32767
(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R +1 R

Md

Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.
464

Symbol Math Instructions Section 3-11
Example in Function Block Definition

In the following example, an array variable is used to get the result from the
function block as one word.

3-11-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)
Purpose Multiplies 8-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

*U

a

b

tmp[0]

MOV

tmp[0]

c

a * b → c
Function Block Variables

Multiplicand: a (data type: UINT)
Multiplier: b (data type: UINT)
Result: c (data type: UINT)
Temporary variable: tmp (data type: WORD, 2-element array)

*UL(423)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *UL(423)

Executed Once for Upward Differentiation @*UL(423)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to
CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to
D32764
465

Symbol Math Instructions Section 3-11
Description *UL(423) multiplies the unsigned binary values in Md and Md+1 and Mr and
Mr+1 and outputs the result to R, R+1, R+2, and R+3.

Flags

Precautions When *UL(423) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is 0000
hex, the Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+3 is 1,
the Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100, D00110, D00111,
and D00110 will be multiplied as 8-digit unsigned binary values and the result
will be output to D00123, D00122, D00121, and D00120.

EM Area without bank E00000 to E32766 E00000 to
E32764

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to
En_32764

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R + 1 RR + 3 R + 2

Md + 1 Md

Mr + 1 Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
466

Symbol Math Instructions Section 3-11
3-11-21 BCD MULTIPLY: *B(424)
Purpose Multiplies 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

*B(424)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: Result word

Variations Executed Each Cycle for ON Condition *B(424)

Executed Once for Upward Differentiation @*B(424)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)
467

Symbol Math Instructions Section 3-11
Description *B(424) multiplies the BCD content of Md and Mr and outputs the result to R,
R+1.

Flags

Precautions If Md and/or Mr are not BCD, an error will be generated and the Error Flag will
turn ON.

If as a result of the multiplication, the content of R, R+1 is 0000 hex, the
Equals Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 and D00110 will
be multiplied as 4-digit BCD values and the result will be output to D00121
and D00120.

Constants #0000 to #9999
(BCD)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R +1 R

(BCD)

(BCD)

(BCD)

×

Md

Mr

Name Label Operation

Error Flag ER ON when Md is not BCD.
ON when Mr is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.
468

Symbol Math Instructions Section 3-11
Example in Function Block Definition

In the following example, an array variable is used to get the result from the
function block as one word.

3-11-22 DOUBLE BCD MULTIPLY: *BL(425)
Purpose Multiplies 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

*B

a

b

tmp[0]

MOV

tmp[0]

c

a * b → c
Function Block Variables

Multiplicand: a (data type: WORD)
Multiplier: b (data type: WORD)
Result: c (data type: WORD)
Temporary variable: tmp (data type: WORD, 2-element array)

*BL(425)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *BL(425)

Executed Once for Upward Differentiation @*BL(425)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to
CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to
D32764

EM Area without bank E00000 to E32766 E00000 to
E32764

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)
469

Symbol Math Instructions Section 3-11
Description *BL(425) multiplies BCD values in Md and Md+1 and Mr and Mr+1 and out-
puts the result to R, R+1, R+2, and R+3.

Flags

Precautions If Md, Md+1 and/or Mr, Mr+1 are not BCD, an error will be generated and the
Error Flag will turn ON.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is
00000000 hex, the Equals Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00101, D00100, D00111,
and D00110 will be multiplied as 8-digit unsigned BCD values and the result
will be output to D00123, D00122, D00121 and D00120.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #99999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

×

Md + 1 Md

Mr + 1 Mr

Name Label Operation

Error Flag ER ON when Md and/or Md+1 are not BCD.

ON when Mr and/or Mr +1 are not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.
470

Symbol Math Instructions Section 3-11
3-11-23 SIGNED BINARY DIVIDE: /(430)
Purpose Divides 4-digit (single-word) signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/(430)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: Result word

Variations Executed Each Cycle for ON Condition /(430)

Executed Once for Upward Differentiation @/(430)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF

(binary)

#0001 to #FFFF

(binary)

Data Registers DR0 to DR15 ---
471

Symbol Math Instructions Section 3-11
Description /(430) divides the signed binary (16 bit) values in Dd by those in Dr and out-
puts the result to R, R+1. The quotient is placed in R and the remainder in
R+1.

Flags

Precautions When the content of Dr is 0, an error will be generated and the Error Flag will
turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 will be divided by
D00110 as 4-digit signed binary values and the quotient will be output to
D00120 and the remainder to D00121.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R +1 R

÷

Dd

Dr

Remainder Quotient

(Signed binary)

(Signed binary)

(Signed binary)

Name Label Operation

Error Flag ER ON when the result is 0.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.
472

Symbol Math Instructions Section 3-11
Example in Function Block Definition

In the following example, an array variable is used to get the quotient and
remainder from the function block.

3-11-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)
Purpose Divides 8-digit (double-word) signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/

a

b

tmp[0]

MOV

tmp[0]

c

a / b → c ··· d
Function Block Variables

Dividend: a (data type: INT)
Divisor: b (data type: INT)
Quotient: c (data type: INT)
Remainder: d (data type: INT)
Temporary variable: tmp (data type: WORD, 2-element array)

MOV

tmp[0]

d

/L(431)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /L(431)

Executed Once for Upward Differentiation @/L(431)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to
CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to
D32764

EM Area without bank E00000 to E32766 E00000 to
E32764
473

Symbol Math Instructions Section 3-11
Description /L(431) divides the signed binary values in Dd and Dd+1 by those in Dr and
Dr+1 and outputs the result to R, R+1, R+2, and R+3. The quotient is output
to R and R+1 and the remainder is output to R+2 and R+3.

Flags

Precautions When the remainder of the result, R+3, R+2 is 0,the Error Flag will turn ON.

If as a result of the division, the content of R+1, R is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1, R is 1, the
Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00101 and D00100 are
divided by D00111 and D00110 as 8-digit signed hexadecimal values and the

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to
En_32764

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to
#FFFFFFFF
(binary)

#00000001 to
#FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

Remainder

(Signed binary)

(Signed binary)

(Signed binary)

Quotient

Name Label Operation

Error Flag ER ON when the result is 0.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R+1, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R+1, R is 1.
OFF in all other cases.
474

Symbol Math Instructions Section 3-11
quotient will be output to D00121 and D00120 and the remainder to D00123
and D00122.

3-11-25 UNSIGNED BINARY DIVIDE: /U(432)
Purpose Divides 4-digit (single-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/U(432)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: Result word

Variations Executed Each Cycle for ON Condition /U(432)

Executed Once for Upward Differentiation @/U(432)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)
475

Symbol Math Instructions Section 3-11
Description /U(432) divides the unsigned binary values in Dd by those in Dr and outputs
the quotient to R and the remainder to R+1.

Flags

Precautions If as a result of the division, the content of R+1 is 0, the Error Flag will turn
ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 will be divided by
D00110 as 4-digit unsigned binary values and the quotient will be output to
D00120 and the remainder will be output to D00121.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

#0001 to #FFFF
(binary)

Data Registers DR0 to 15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R +1 R

÷

Dd

Dr

Remainder

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Quotient

Name Label Operation

Error Flag ER ON when the result is 0.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.
476

Symbol Math Instructions Section 3-11
Example in Function Block Definition

In the following example, an array variable is used to get the quotient and
remainder from the function block.

3-11-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
Purpose Divides 8-digit (double-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/U

a

b

tmp[0]

MOV

tmp[0]

c

a / b → c ··· d
Function Block Variables

Dividend: a (data type: UINT)
Divisor: b (data type: UINT)
Quotient: c (data type: UINT)
Remainder: d (data type: UINT)
Temporary variable: tmp (data type: WORD, 2-element array)

MOV

tmp[0]

d

/UL(433)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /UL(433)

Executed Once for Upward Differentiation @/UL(433)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to
CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to
D32764

EM Area without bank E00000 to E32766 E00000 to
E32764
477

Symbol Math Instructions Section 3-11
Description /UL(433) divides the unsigned binary values in Dd and Dd+1 by those in Dr
and Dr+1 and outputs the quotient to R, R+1 and the remainder to R+2, and
R+3.

Flags

Precautions When the content of Dr, Dr+1 is 0, the Error Flag will turn ON.

If as a result of the division, the content of R, R+1, is 0000 hex, the Equals
Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00100 and D00101 will
be divided by D00111 and D00110 as 8-digit unsigned hexadecimal values

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to
En_32764

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to
#FFFFFFFF
(binary)

#00000001 to
#FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

Remainder Quotient

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Name Label Operation

Error Flag ER ON when the result is 0.
OFF in all other cases.

Equals Flag = ON when as a result of the division R+1, R is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R+1, R is 1.

OFF in all other cases.
478

Symbol Math Instructions Section 3-11
and the quotient will be output to D00121 and D00120 and the remainder to
D00123 and D00122.

3-11-27 BCD DIVIDE: /B(434)
Purpose Divides 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/B(434)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: Result word

Variations Executed Each Cycle for ON Condition /B(434)

Executed Once for Upward Differentiation @/B(434)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)
479

Symbol Math Instructions Section 3-11
Description /B(434) divides the BCD content of Dd by those of Dr and outputs the quotient
to R and the remainder to R+1.

Flags

Precautions If Dd or Dr are not BCD or if the remainder (R+1) is 0, an error will be gener-
ated and the Error Flag will turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the leftmost bit of R is 1, the Negative Flag will
turn ON.

Examples When CIO 000000 is ON in the following example, D00100 will be divided by
D00110 as 4-digit BCD values and the quotient will be output to D00120 and
the remainder to D00120.

Example in Function Block Definition

In the following example, an array variable is used to get the quotient and
remainder from the function block.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #9999
(BCD)

#0001 to #9999
(BCD)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R +1 R

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd is not BCD.
ON when Dr is not BCD.

ON when the remainder is 0.
OFF in all other cases.

Equals Flag = ON when R is 0.

OFF in all other cases.
480

Symbol Math Instructions Section 3-11
3-11-28 DOUBLE BCD DIVIDE: /BL(435)
Purpose Divides 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/B

a

b

tmp[0]

MOV

tmp[0]

c

a / b → c ··· d
Function Block Variables

Dividend: a (data type: WORD)
Divisor: b (data type: WORD)
Quotient: c (data type: WORD)
Remainder: d (data type: WORD)
Temporary variable: tmp (data type: WORD, 2-element array)

MOV

tmp[0]

d

/BL(435)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /BL(435)

Executed Once for Upward Differentiation @/BL(435)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to
CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to
D32764

EM Area without bank E00000 to E32766 E00000 to
E32764

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)
481

Symbol Math Instructions Section 3-11
Description /BL(435) divides BCD values in Dd and Dd+1 by those in Dr and Dr+1 and
outputs the quotient to R, R+1 and the remainder to R+2, R+3.

Flags

Precautions If Dd, Dd+1 and/or Dr, Dr+1 are not BCD or the content of Dr, Dr+1 is 0, an
error will be generated and the Error Flag will turn ON.

If as a result of the division, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

Examples When CIO 000000 is ON in the following example, D00101 and D00100 will
be divided by D00111 and D00110 as 8-digit BCD values and the quotient will
be output to D00121 and D00120 and the remainder to D00123 and D00122.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to
#99999999

(BCD)

#00000001 to
#99999999

(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

Dd + 1

Dr + 1

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd, Dd+1 is not BCD.
ON when Dr, Dr +1 is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.
482

Conversion Instructions Section 3-12
3-12 Conversion Instructions
This section describes instructions used for data conversion.

3-12-1 BCD TO BINARY: BIN(023)
Purpose Converts BCD data to binary data.

Ladder Symbol

Instruction Mnemonic Function code Page

BCD TO BINARY BIN 023 483

DOUBLE BCD TO DOUBLE
BINARY

BINL 058 485

BINARY TO BCD BCD 024 487

DOUBLE BINARY TO DOUBLE
BCD

BCDL 059 489

2’S COMPLEMENT NEG 160 491

DOUBLE 2’S COMPLEMENT NEGL 161 493

16-BIT TO 32-BIT SIGNED
BINARY

SIGN 600 494

DATA DECODER MLPX 076 496

DATA ENCODER DMPX 077 500

ASCII CONVERT ASC 086 504

ASCII TO HEX HEX 162 508

COLUMN TO LINE LINE 063 512

LINE TO COLUMN COLM 064 514

SIGNED BCD TO BINARY BINS 470 517

DOUBLE SIGNED BCD TO
BINARY

BISL 472 520

SIGNED BINARY TO BCD BCDS 471 523

DOUBLE SIGNED BINARY TO
BCD

BDSL 473 525

GRAY CODE CONVERSION GRY 474 529

FOUR-DIGIT NUMBER TO
ASCII

STR4 601 534

EIGHT-DIGIT NUMBER TO
ASCII

STR8 602 537

SIXTEEN-DIGIT NUMBER TO
ASCII

STR16 603 539

ASCII TO FOUR-DIGIT NUM-
BER

NUM4 604 541

ASCII TO EIGHT-DIGIT NUM-
BER

NUM8 605 544

ASCII TO SIXTEEN-DIGIT
NUMBER

NUM16 606 545

BIN(023)

S

R

S: Source word

R: Result word
483

Conversion Instructions Section 3-12
Variations

Applicable Program Areas

Operand Specifications

Description BIN(023) converts the BCD data in S to binary data and writes the result to R.

Flags

Variations Executed Each Cycle for ON Condition BIN(023)

Executed Once for Upward Differentiation @BIN(023)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

(BCD) (BIN)R

Name Label Operation

Error Flag ER ON if the content of S is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N OFF
484

Conversion Instructions Section 3-12
Example The following diagram shows an example BCD-to-binary conversion.

In this example, N words of BCD data is converted to binary data.

If N = 3, the three words of BCD starting from D00010 will be converted to
binary data one word at a time when CIO 00000 turns ON. The resulting
binary data will be stored starting from D00100.

3-12-2 DOUBLE BCD TO DOUBLE BINARY: BINL(058)
Purpose Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

×103 ×102 ×101 ×100 ×163 ×162 ×161 ×160

R

BCD#0200

D00100

BCD

BIN

BCD#0100

BCD#0300

D00101

D00102

D00010

D00011

D00012

NEXT

BIN

,IR0+

FOR

&3

,IR1+

MOVR

D10

IR0

MOVR

D100

IR1

00000

00000

Decimal &200

Decimal &100

Decimal &300

(Hexadecimal #00C8)

(Hexadecimal #0064)

(Hexadecimal #012C)

BINL(058)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition BINL(058)

Executed Once for Upward Differentiation @BINL(058)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766
485

Conversion Instructions Section 3-12
Description BINL(058) converts the 8-digit BCD data in S and S+1 to 8-digit hexadecimal
(32-bit binary) data and writes the result to R and R+1.

Flags

Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.

When CIO 000000 is ON in the following example, the 8-digit BCD value in
CIO 0010 and CIO 0011 is converted to hexadecimal and stored in D00200
and D00201.

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S R

RR+1

(BCD) (BCD)

S+1 S

(BIN) (BIN)

Name Label Operation

Error Flag ER ON if the contents of S+1, S are not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Negative Flag N OFF

×103×102×101×100 ×163 ×162×161×160×107×106×105×104 ×167×166×165×164

R+1 R
486

Conversion Instructions Section 3-12
3-12-3 BINARY TO BCD: BCD(024)
Purpose Converts a word of binary data to a word of BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

S must be between 0000 and 270F hexadecimal (0000 and 9999 decimal).

Operand Specifications

0 0 2 0 0 0 5 0

x103
 x102 x101 x100x107

 x106
 x105

 x104

0 0 0 3 0 D 7 2

 x163
 x162 x161 x160x167

 x166
 x165

 x164

S+1: CIO 0011 S: CIO 0010

R+1: D00201 R: D00200

200050=3X164+13X162+7X161+2X160

BCD(024)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition BCD(024)

Executed Once for Upward Differentiation @BCD(024)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
487

Conversion Instructions Section 3-12
Description BCD(024) converts the binary data in S to BCD data and writes the result to
R.

Flags

Precautions The content of S must not exceed 270F (9999 decimal).

Example The following diagram shows an example BCD-to-binary conversion.

In this example, N words of binary data is converted to BCD data.

If N = 3, the three words of binary starting from D00010 will be converted to
binary data one word at a time when CIO 00000 turns ON. The resulting BCD
data will be stored starting from D00100.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

(BCD)(BIN) R

Name Label Operation

Error Flag ER ON if the content of S exceeds 270F (9999 decimal).
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

R
×163 ×162 ×161 ×160 ×103 ×102 ×101 ×100
488

Conversion Instructions Section 3-12
3-12-4 DOUBLE BINARY TO DOUBLE BCD: BCDL(059)
Purpose Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

The content of S+1 and S must be between 0000 0000 and 05F5 E0FF hexa-
decimal (0000 0000 and 9999 9999 decimal).

Operand Specifications

D00100

BIN

BCD

D00101

D00102

D00010

D00011

D00012

NEXT

BCD

,IR0+

FOR

&3

,IR1+

MOVR

D10

IR0

MOVR

D100

IR1

00000

00000

BCD #0200

BCD #0100

BCD #0300

Decimal &200

Decimal &100

Decimal &300

(Hexadecimal #00C8)

(Hexadecimal #0064)

(Hexadecimal #012C)

BCDL(059)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition BCDL(059)

Executed Once for Upward Differentiation @BCDL(059)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766
489

Conversion Instructions Section 3-12
Description BCDL(059) converts the 8-digit hexadecimal (32-bit binary) data in S and S+1
to 8-digit BCD data and writes the result to R and R+1.

Flags

Precautions The content of S+1 and S must not exceed 05F5 E0FF (9999 9999 decimal).

Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.

When CIO 000000 is ON in the following example, the hexadecimal value in
CIO 0011 and CIO 0010 is converted to a BCD value and stored in D00200
and D00201.

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

RR+1

(BCD) (BCD)

S+1 S

(BIN) (BIN)

Name Label Operation

Error Flag ER ON if the contents of S and S+1 exceed 05F5 E0FF
(9999 9999 decimal).
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

R+1 R

×163×162×161×160×167×166×165×164 ×103 ×102×101×100×107×106×105×104
490

Conversion Instructions Section 3-12
3-12-5 2’S COMPLEMENT: NEG(160)
Purpose Calculates the 2’s complement of a word of hexadecimal data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

3 2 0 A0 0 2 D

x167
 x166

 x165
 x164

S+1: CIO 0011 S: CIO 0010

1 9 3 00 2 9 6

x107
 x106

 x105
 x104

 x163
 x162

 x161
 x160

 x103
 x102

 x101
 x100

2X165
 +13X164+3X163+2X162+10=2961930

R+1: D00101 R: D00100

MBS

MBS LSB

LSB

NEG(160)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition NEG(160)

Executed Once for Upward Differentiation @NEG(160)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)
491

Conversion Instructions Section 3-12
Description NEG(160) calculates the 2’s complement of S and writes the result to R. The
2’s complement calculation basically reverses the status of the bits in S and
adds 1.

Note This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S from 0000.

Flags

Note The result for 8000 hex will be 8000 hex.

Example When CIO 000000 is ON in the following example, NEG(160) calculates the
2’s complement of the content of D00100 and writes the result to D00200.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S R

(S) (R)

2's complement
(Complement + 1)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.

OFF in all other cases.

−)

Add 1

Actual
calculation

Equivalent
subtraction

Reverse bit status
492

Conversion Instructions Section 3-12
3-12-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
Purpose Calculates the 2’s complement of two words of hexadecimal data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Note R and R+1 must be in the same data area.

NEGL(161)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition NEGL(161)

Executed Once for Upward Differentiation @NEGL(161)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
493

Conversion Instructions Section 3-12
Description NEGL(161) calculates the 2’s complement of S+1 and S and writes the result
to R+1 and R. The 2’s complement calculation basically reverses the status of
the bits in S+1 and S and adds 1.

Note This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S+1 and S from 0000 0000.

Flags

Note The result for 8000 hex will be 8000 hex.

Example When CIO 000000 is ON in the following example, NEGL(161) calculates the
2’s complement of the content of D00101 and D00100 and writes the result to
D00201 and D00200.

3-12-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)
Purpose Expands a 16-bit signed binary value to its 32-bit equivalent.

Ladder Symbol

Variations

(S+1, S) (R+1, R)

2's complement
(Complement + 1)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON.
OFF in all other cases.

−)

Add 1

Actual
calculation

Equivalent
subtraction

Reverse bit status

SIGN(600)

S

R

S: Source word

R: First result word

Variations Executed Each Cycle for ON Condition SIGN(600)

Executed Once for Upward Differentiation @SIGN(600)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
494

Conversion Instructions Section 3-12
Applicable Program Areas

Operand Specifications

Note R and R+1 must be in the same data area.

Description SIGN(600) converts the 16-bit signed binary number in S to its 32-bit signed
binary equivalent and writes the result in R+1 and R.

The conversion is accomplished by copying the content of S to R and writing
FFFF to R+1 if bit 15 of S is 1 or writing 0000 to R+1 if bit 15 of S is 0.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to D32766

EM Area without bank E00000 to E32767 E00000 to E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The content of S is
transferred "as is" to R.

Source word (S)

1st result word (R)2nd result word (R+1)

If bit 15 of S is 1, FFFF is transferred to R+1.
If bit 15 of S is 0, 0000 is transferred to R+1.
495

Conversion Instructions Section 3-12
Flags

Example When CIO 000000 is ON in the following example, SIGN(600) converts the
16-bit signed binary content of D00100 (#8000 = –32,768 decimal) to its 32-
bit equivalent (#FFFF 8000 = –32,768 decimal) and writes that result to
D00201 and D00200.

3-12-8 DATA DECODER: MLPX(076)
Purpose Reads the numerical value in the specified digit (or byte) in the source word,

turns ON the corresponding bit in the result word (or 16-word range), and
turns OFF all other bits in the result word (or 16-word range).

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

The data in the source word indicates the location of the bit(s) that will be
turned ON.

C: Control Word

The control word specifies whether MLPX(076) will perform a 4-to-16 bit con-
version or an 8-to-256 bit conversion, the number of digits or bytes to be con-
verted, and the starting digit or byte.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON.

OFF in all other cases.

Example: 8000 Hex

MLPX(076)

S

C

R

S: Source word

C: Control word

R: First result word

Variations Executed Each Cycle for ON Condition MLPX(076)

Executed Once for Upward Differentiation @MLPX(076)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
496

Conversion Instructions Section 3-12
R: First result word

There can be anywhere from 1 to 32 result words, depending upon the type of
conversion process and number of digits/bytes being converted. The result
words must be in the same data area.

Operand Specifications

Description MLPX(076) can perform 4-to-16 bit or 8-to-256 bit conversions. Set the left-
most digit of C to 0 to specify 4-to-16 bit conversion and set it to 1 to specify 8-
to-256 bit conversion.

4-to-16 bit Conversion

When the leftmost digit of C is 0, MLPX(076) takes the value of the specified
digit in S (0 to F) and turns ON the corresponding bit in the result word. All

 3 2 1 0
0

Specifies the first digit/byte to be converted
4-to-16: 0 to 3 (digit 0 to 3)
8-to-256: 0 or 1 (byte 0 or 1)

Number of digits/bytes to be converted
4-to-16: 0 to 3 (1 to 4 digits)
8-to-256: 0 or 1 (1 or 2 bytes)

Conversion process
0: 4-to-16 bits (digit to word)
1: 8-to-256 bits (byte to 16-word range)

Digit number:

Area S C R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- Specified values
only

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
497

Conversion Instructions Section 3-12
other bits in the result word will be turned OFF. Up to four digits can be con-
verted.

When two or more digits are being converted, MLPX(076) will read the digits
in S from right to left and will wrap around to the rightmost digit after the left-
most digit, if necessary.

The following diagram shows some example values for C and the 4-to-16 bit
conversions that they produce.

8-to-256 bit Conversion

When the leftmost digit of C is 1, MLPX(076) takes the value of the specified
byte in S (00 to FF) and turns ON the corresponding bit in the range of 16
result words. All other bits in the result words will be turned OFF. Up to two
bytes can be converted.

When two bytes are being converted, MLPX(076) will read the bytes in S from
right to left and will wrap around to the rightmost byte if the leftmost byte
(byte 1) has been specified as the starting byte.

R
R+1

C

4-to-16 bit decoding
(Bit m of R is turned ON.)

n=2 (Start with third digit.)

l =1 (Convert 2 digits.)

C: #0010 C: #0030 C: #0031

R

R+1

R

R+1
R+2

R+3

R

R+1
R+2

R+3

R+1

R+14
R+15
R+16
R+17

R+30
R+31

C

16

l=1 (Convert 2 bytes.)

n=1 (Start with second byte.)

8-to-256 bit decoding
(Bit m of R to R+15 is turned ON.)
498

Conversion Instructions Section 3-12
The following diagram shows some example values for C and the 8-to-256 bit
conversions that they produce.

Flags

Examples 4-to-16 bit Conversion

When CIO 000000 is ON in the following example, MLPX(076) will convert 3
digits in S beginning with digit 1 (the second digit), as indicated by C (#0021).
The corresponding bits in D00100, D00101, and D00102 will be turned ON.

8-to-256 bit Conversion

When CIO 000000 is ON in the following example, MLPX(076) will convert the
2 bytes in S beginning with byte 1 (the leftmost byte), as indicated by C
(#1011). The corresponding bits in D00100 to D00115 and D00116 to D00131
will be turned ON.

C: #1011C: #1010

Digit 1 Digit 0 Digit 1 Digit 0

Name Label Operation

Error Flag ER ON if C is not within the specified ranges.
OFF in all other cases.

C: #

S: 0100

R:

S

C

R

Digits

Bits 0 to 3: Starting digit (Digit 1)

Bits 4 to 7: Number of digits (3 digits)

Digit 1 contains 6, so bit 6 is turned ON.

Digit 2 contains A, so bit 10 is turned ON.

Digit 3 contains F, so bit 15 is turned ON.
499

Conversion Instructions Section 3-12
3-12-9 DATA ENCODER: DMPX(077)
Purpose FInds the location of the first or last ON bit within the source word (or 16-word

range), and writes that value to the specified digit (or byte) in the result word.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

There can be anywhere from 1 to 32 source words, depending upon the type
of conversion process and number of digits/bytes being converted. The
source words must be in the same data area.

Bits 0 to 3: Starting byte (Byte 1)
Bits 4 to 7: Number of bytes (2 bytes)

Byte 1 contains 2D, so bit 13 (D)
of R+2 is turned ON.

Byte 0 contains 1A, so bit 10 (A)
of R+1 is turned ON.

MLPX

0100

#1011

D00100

000000

S

K

D

1

D: D00100

D00101

D00102

D00103

D00115

D00116

D00117

D00118

D00131

012345678915 14 13 12 11

0347815 12 11

10

S: 0100
Byte 0Byte 1

A1D2

C: # 1101

1

DMPX(077)

S

R

C

S: First source word

R: Result word

C: Control word

Variations Executed Each Cycle for ON Condition DMPX(077)

Executed Once for Upward Differentiation @DMPX(077)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
500

Conversion Instructions Section 3-12
R: Result Word

The locations of the bits that were ON in the source word(s) are written to the
digits/bytes in R starting with the specified first digit/byte.

C: Control Word

The control word specifies whether DMPX(077) will perform a 16-to-4 bit con-
version or an 256-to-8 bit conversion, whether the leftmost or rightmost ON bit
will be encoded, the number of digits or bytes that will be converted, and the
starting digit or byte where the results will be written.

Operand Specifications

 3 2 1 0

Conversion process
0: 16-to-4 bits (word to digit)
1: 256-to-8 bits (16-word range to byte)

Bit to encode
0: Leftmost bit (highest bit address)
1: Rightmost bit (lowest bit address)

Number of digits/bytes to be converted
16-to-4: 0 to 3 (1 to 4 digits)
256-to-8: 0 or 1 (1 or 2 bytes)

Specifies the first digit/byte to receive converted data.
16-to-4: 0 to 3 (digit 0 to 3)
256-to-8: 0 or 1 (byte 0 or 1)

Digit number:

Area S R C

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- --- Specified values
only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
501

Conversion Instructions Section 3-12
Description DMPX(077) can perform 16-to-4 bit or 256-to-8 bit conversions. Set the left-
most digit of C to 0 to specify 16-to-4 bit conversion and set it to 1 to specify
256-to-8 bit conversion.

16-to-4 bit Conversion

When the fourth (leftmost) digit of C is 0, DMPX(077) finds the locations of the
leftmost or rightmost ON bits in up to 4 source words and writes these loca-
tions to R beginning with the specified digit. (Set the third digit of C to 0 to find
the leftmost ON bits or 1 to find the rightmost ON bits.)

When two or more digits are being converted, DMPX(077) will write the values
to the digits in R from right to left and will wrap around to the rightmost digit
after the leftmost digit, if necessary.

The following diagram shows some example values for C and the 16-to-4 bit
conversions that they produce.

R

m

C

Leftmost bit

n=2 (Start with digit 2.)

l=1 (Convert
2 words.)

FInds leftmost bit
(Highest bit address)

16-to-4 bit decoding
(Location of leftmost bit (m)
is written to R.)

C: #0032

C: #0011 C: #0030 C: #0013

R

R

R

RDigit 1Digit 3 Digit 1Digit 3

Digit 1Digit 3

Digit 1Digit 3

Digit 2 Digit 0

Digit 2 Digit 0

Digit 2 Digit 0

Digit 2 Digit 0
502

Conversion Instructions Section 3-12
256-to-8 bit Conversion

When the fourth (leftmost) digit of C is 1, DMPX(077) finds the locations of the
leftmost (highest bit address) or rightmost (lowest bit address) ON bits in one
or two 16-word ranges of source words. The locations of these bits are written
to R beginning with the specified byte. (Set the third digit of C to 0 to find the
leftmost ON bits or 1 to find the rightmost ON bits.)

When two bytes are being converted, DMPX(077) will write the values to the
bytes in R from right to left and will wrap around to the rightmost byte if the
leftmost byte (byte 1) has been specified as the starting byte.

The following diagram shows some example values for C and the 256-to-8 bit
conversions that they produce.

Flags

Precautions If one word is 0 (no bit to encode) in any of the conversion data specified in S
(First Source Word), the error flag turns ON.

R

C

Leftmost
bit

Rightmost
bit

l =0 (Convert one 16-word range.)

Finds leftmost bit
(Highest bit address)

256-to-8 bit decoding
(The location of the leftmost bit in the
16-word range (m) is written to R.)

n=1 (Start with byte 1.)

C: #1010 C: #1011

Digit 1 Digit 0 Digit 1 Digit 0

Name Label Operation

Error Flag ER ON if any of the source words contains 0000 hex (i.e., no
bit to encode).

ON if C is not within the specified ranges.
OFF in all other cases.
503

Conversion Instructions Section 3-12
On the CS1G/H-CPU@@(-V1), the error flag turns ON, but Words that are not
0 in the conversion data specified in S are converted and output to the corre-
sponding digits of R (Result Word).

In models other than the above, the error flag turns ON and nothing is output
to R.

If the conversion data contains 0000 hex, but other data is to be encoded,
separate the conversion by using more than one DMPX(077) instructions.

DMPX(077) D0000 D0100 #0300
DMPX(077) D0000 D0100 #0000
DMPX(077) D0001 D0100 #0001
DMPX(077) D0002 D0100 #0002
DMPX(077) D0003 D0100 #0003

Examples When CIO 000000 is ON in the following example, DMPX(077) will find the left-
most ON bits in CIO 0100, CIO 0101, and CIO 0102 and write those locations to
3 digits in R beginning with digit 1 (the second digit), as indicated by C (#0021).

3-12-10 ASCII CONVERT: ASC(086)
Purpose Converts 4-bit hexadecimal digits in the source word into their 8-bit ASCII

equivalents.

Ladder Symbol

Variations

Applicable Program Areas

C: #

S:

R: D00100

S

R
C

Digits

DMPX(077) finds the
leftmost ON bits.

Starting digit
(Digit 1)

ASC(086)

S

D

Di

S: Source word

Di: Digit designator

D: First destination word

Variations Executed Each Cycle for ON Condition ASC(086)

Executed Once for Upward Differentiation @ASC(086)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
504

Conversion Instructions Section 3-12
Operands S: Source Word

Up to four digits in the source word can be converted. The digits are num-
bered 0 to 3, right to left.

Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

D: First destination word

The converted ASCII data is written to the destination word(s) beginning with
the specified byte in D. Three destination words (D to D+3) will be required if 4
digits are being converted and the leftmost byte is selected as the first byte in
D. The destination words must be in the same data area.

Any bytes in the destination word(s) that are not overwritten with ASCII data
will be left unchanged.

Operand Specifications

3 2 1 0

Specifies the first digit in S to be converted (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First byte of D to be used.
0: Rightmost byte
1: Leftmost byte

Parity 0: None
1: Even
2: Odd

Digit number:

Area S Di D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767

(n = 0 to C)

Constants --- Specified values
only

Data Registers DR0 to DR15 ---
505

Conversion Instructions Section 3-12
Description ASC(086) treats the contents of S as 4 hexadecimal digits, converts the des-
ignated digit(s) of S into their 8-bit ASCII equivalents, and writes this data into
the destination word(s) beginning with the specified byte in D.

Note Refer to Appendix A in the CS/CJ-series Programming Consoles Operation
Manual (W341) for a table of extended ASCII characters.

Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit of each ASCII character will be auto-
matically adjusted for even, odd, or no parity.

When no parity (0) is designated, the leftmost bit will always be zero. When
even parity (1) is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even. When odd parity (2) is designated, the leftmost bit
of each ASCII character will be adjusted so that there is an odd number of ON
bits. The status of the parity bit does not affect the meaning of the ASCII code.

Examples of even parity:
When adjusted for even parity, ASCII “31” (00110001) will be “B1” (10110001:
parity bit turned ON to create an even number of ON bits); ASCII “36”
(00110110) will be “36” (00110110: parity bit remains OFF because the num-
ber of ON bits is already even).

Examples of odd parity:
When adjusted for odd parity, ASCII “36” (00110110) will be “B6” (10110110:
parity bit turned ON to create an odd number of ON bits); ASCII “46”
(01000110) will be “46” (01000110: parity bit remains OFF because the num-
ber of ON bits is already odd).

Examples of Di

When two or more digits are being converted, ASC(086) will read the bytes in
S from right to left and will wrap around to the rightmost byte if necessary. The
following diagram shows some example values for Di and the conversions that
they produce.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S Di D

Right (0)Left (1)

Di

Number of
digits (n+1)

First digit to convert
506

Conversion Instructions Section 3-12
Flags

Example When CIO 000000 is ON in the following example, ASC(086) converts three
hexadecimal digits in D00100 (beginning with digit 1) into their ASCII equiva-
lents and writes this data to D00200 and D00201 beginning with the leftmost
byte in D00200. In this case, a digit designator of #0121 specifies no parity,
the starting byte (when writing) = leftmost byte, the number of digits to read =
3, and the starting digit (when reading) = digit 1.

With CPU Units with unit version 4.0 of later, there are instructions to convert
4, 8, and 16 digits of numeric data to ASCII (STR4(524), STR8(527), and
STR16(528)).

Di: #0011 Di: #0112 Di: #0030

Di: #0130

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost Rightmost

Digit 3 Digit 2 Digit 1 Digit 0 Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Leftmost Rightmost

Leftmost Rightmost

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Rightmost

Leftmost

Name Label Operation

Error Flag ER ON if the content of Di is not within the specified ranges.

OFF in all other cases.

D:

S

D

S: D00100

Di: #

Number of digits

Digits

Di

Starting digit

Starting byte
(leftmost byte)
507

Conversion Instructions Section 3-12
3-12-11 ASCII TO HEX: HEX(162)
Purpose Converts up to 4 bytes of ASCII data in the source word to their hexadecimal

equivalents and writes these digits in the specified destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

The contents of the source words are treated as ASCII data. Up to three
source words can be used. (Three source words will be required if 4 bytes are
being converted and the leftmost byte is selected as the first byte in S.) The
source words must be in the same data area.

Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

D: Destination word

The converted hexadecimal digits are written into D from right to left, begin-
ning with the specified first digit. Any digits in the destination word that are not
overwritten with the converted data will be left unchanged.

HEX(162)

S

D

Di

S: First source word

Di: Digit designator

D: Destination word

Variations Executed Each Cycle for ON Condition HEX(162)

Executed Once for Upward Differentiation @HEX(162)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

 3 2 1 0Digit number:

Specifies the first digit in D to receive converted data (0 to 3).

Number of bytes to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

0: Rightmost byte
1: Leftmost byte

Parity 0: None
1: Even
2: Odd

First byte of S to be converted.
508

Conversion Instructions Section 3-12
Operand Specifications

Description HEX(162) treats the contents of the source word(s) as ASCII data represent-
ing hexadecimal digits (0 to 9 and A to F), converts the specified number of
bytes to hexadecimal, and writes the hexadecimal data to the destination
word beginning at the specified digit.

An error will occur if the source words contain data which is not an ASCII
equivalent of hexadecimal digits. The following table shows hexadecimal dig-
its and their ASCII equivalents (excluding parity bits).

Flags

Note Refer to Appendix A in the CS/CJ-series Programming Consoles Operation
Manual (W341) for a table of extended ASCII characters.

Area S Di D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values
only

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Hexadecimal digits (4 bits) ASCII equivalent (2 hexadecimal digits)

0 to 9 30 to 39

A to F 41 to 46
509

Conversion Instructions Section 3-12
The following diagram shows the basic operation of HEX(162) with Di=0021.

Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit in each byte is the parity bit. With no
parity the parity bit should always be zero, with even parity the status of the
parity bit should result in an even number of ON bits, and with odd parity the
status of the parity bit should result in an odd number of ON bits.

The following table shows the operation of HEX(162) for each parity setting.

Examples of Di

When two or more bytes are being converted, HEX(162) will write the con-
verted digits to the destination word from right to left and will wrap around to
the rightmost digit if necessary. The following diagram shows some example
values for Di and the conversions that they produce.

Parity setting
(leftmost digit of Di)

Operation of HEX(162)

No parity (0) HEX(162) will be executed only when the parity bit in each
byte is 0. An error will occur if a parity bit is non-zero.

Even parity (1) HEX(162) will be executed only when there is an even num-
ber of ON bits in each byte. An error will occur if a byte has
an odd number of ON bits.

Odd parity (2) HEX(162) will be executed only when there is an odd num-
ber of ON bits in each byte. An error will occur if a byte has
an even number of ON bits.

C: 0021

Number of digits (n+1)

Right (0)Left (1)

Di

First digit to write

First byte to convert

Di: #0112 Di: #0030 Di: #0131

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Digit 3 Digit 2 Digit 1 Digit 0
Digit 3 Digit 2 Digit 1 Digit 0

Leftmost Rightmost

Leftmost Rightmost

Leftmost

Rightmost

Leftmost Rightmost
510

Conversion Instructions Section 3-12
Flags

Precautions An error will occur and the Error Flag will be turned ON if there is a parity error
in the ASCII data, the ASCII data in the source words is not equivalent to
hexadecimal digits, or the content of Di is not within the specified ranges.

Examples When CIO 000000 is ON in the following example, HEX(162) converts the
ASCII data in D00100 and D00101 according to the settings of the digit desig-
nator. (Di=#0121 specifies no parity, the starting byte (when reading) = left-
most byte, the number of bytes to read = 3, and the starting digit (when
writing) = digit 1.)

HEX(162) converts three bytes of ASCII data (3 characters) beginning with
the leftmost byte of D00100 into their hexadecimal equivalents and writes this
data to D00200 beginning with digit 1.

When CIO 000000 is ON in the following example, HEX(162) converts the
ASCII data in D00010 beginning with the rightmost byte and writes the hexa-
decimal equivalents in D00300 beginning with digit 1.

The digit designator setting of #1011 specifies even parity, the starting byte
(when reading) = rightmost byte, the number of bytes to read = 2, and the
starting digit (when writing) = digit 1.)

Name Label Operation

Error Flag ER ON if there is a parity error in the ASCII data.

ON if the ASCII data in the source words is not equivalent
to hexadecimal digits
ON if the content of Di is not within the specified ranges.

OFF in all other cases.

S:

D: D00200

S

D Di: #

Number of digits

3 digits

Di

Starting digit (digit 1)

Starting byte
(leftmost byte)
511

Conversion Instructions Section 3-12
With CPU Units with unit version 4.0 of later, there are instructions to convert
ASCII to 4, 8, and 16 digits of numeric data (NUM4(517), NUM8(520), and
NUM16(522)).

3-12-12 COLUMN TO LINE: LINE(063)
Purpose Converts a column of bits from a 16-word range (the same bit number in 16

consecutive words) to the 16 bits of the destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

Specifies the first source word. S and S+15 must be in the same data area.

N: Bit Number

Specifies the bit number (0000 to 000F or &0 to &15) to be copied from the
source words.

S: D00100

D: D00300

Number of bytes (2 bytes)

Starting digit (digit 1)

Parity bits: Result in even parity

Not changed

Not changed

Conversion

Parity: Even

Starting byte: rightmost

Starting digit in D: Digit 1
Number of bytes: 2
Starting byte in S: Rightmost

LINE(063)

S

N

D

S: First source word

N: Bit number

D: Destination word

Variations Executed Each Cycle for ON Condition LINE(063)

Executed Once for Upward Differentiation @LINE(063)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
512

Conversion Instructions Section 3-12
Operand Specifications

Description LINE(063) copies the 16 bits with bit number N from the 16-word range S to
S+15 to the destination word D. Bit N of S+m is copied to bit m of D, i.e., bit N
of S is copied to bit 00 of D and bit N of S+15 is copied to bit 15 of D.

Area S N D

CIO Area CIO 0000 to
CIO 6128

CIO 0000 to CIO 6143

Work Area W000 to W496 W000 to W511

Holding Bit Area H000 to H496 H000 to H511

Auxiliary Bit Area A000 to A944 A000 to A959 A448 to A959

Timer Area T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4080 C0000 to C4095

DM Area D00000 to
D32752

D00000 to D32767

EM Area without bank E00000 to
E32752

E00000 to E32767

EM Area with bank En_00000 to
En_32752

(n = 0 to C)

En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to 000F
(binary) or &0 to
&15

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

0

0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1

15 00

S

N

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1S+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1S+2

 .
 .
 .

 .
 .
 .

 . . .

 .
 .
 .

0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0S+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1S+3

0 1 1D 1

15 00

 .
 .
 .

Bit Bit

Bit Bit
513

Conversion Instructions Section 3-12
Flags

Example When CIO 000000 is ON in the following example, LINE(063) copies bit 5
from D00100 to D00115 to the 16 bits in D00200.

3-12-13 LINE TO COLUMN: COLM(064)
Purpose Converts the 16 bits of the source word to a column of bits in a 16-word range

of destination words (the same bit number in 16 consecutive words).

Ladder Symbol

Variations

Applicable Program Areas

Operands D: First Destination Word

Specifies the first destination word. D and D+15 must be in the same data
area.

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 000F.
OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.
OFF in all other cases.

N: #0005

S:

D: D00200

toto

&5

COLM(064)

S

D

N

S: Source word

D: First destination word

N: Bit number

Variations Executed Each Cycle for ON Condition COLM(064)

Executed Once for Upward Differentiation @COLM(064)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
514

Conversion Instructions Section 3-12
N: Bit Number

Specifies the bit number (0000 to 000F or &0 to &15) to be overwritten by the
source word.

Operand Specifications
Area S D N

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6128

CIO 0000 to
CIO 6143

Work Area W000 to W511 W000 to W496 W000 to W511

Holding Bit Area H000 to H511 H000 to H496 H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A944 A000 to A959

Timer Area T0000 to T4095 T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4080 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32752

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32752

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32752
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

--- #0000 to #000F
(binary) or &0 to
&15

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
515

Conversion Instructions Section 3-12
Description COLM(064) copies the 16 bits from S to the 16 bits with bit number N in the
16-word range D to D+15. Bit m of S is copied to bit N of D+m, i.e., bit 00 of S
is copied to bit N of D and bit 15 of S is copied to bit N of D+15.

Flags

Example When CIO 000000 is ON in the following example, COLM(064) copies the 16
bits in D00200 (bits 00 through 15) to bit 5 in D00100 through D00115.

0

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

15 00

D
1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1D+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1D+2

 .
 .
 .

 .
 .
 .

 .

 .
 .
 .

0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0D+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1D+3

0 1 1S 1

15 00

 .
 .
 .

Bit Bit Bi

Bit Bit

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 000F.
OFF in all other cases.

Equals Flag = ON if bit N is 0 in all 16 words D to D+15 after execution.
OFF in all other cases.

S: D00200

D:

toto
516

Conversion Instructions Section 3-12
3-12-14 SIGNED BCD TO BINARY: BINS(470)
Purpose Converts one word of signed BCD data to one word of signed binary data.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

Operand Specifications

BINS(470)

C

S

D

C: Control word

S: Source word

D: Destination word

Variations Executed Each Cycle for ON Condition BINS(470)

Executed Once for Upward Differentiation @BINS(470)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area C S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #0003

(binary)

Data Registers DR0 to DR15
517

Conversion Instructions Section 3-12
Description BINS(470) converts signed BCD data to signed binary data. First the signed
BCD data format and range in word S are checked against the setting in the
control word (C). If the source data is correct, the signed BCD data in S is
converted to signed binary and output to D. If the source data is incorrect, the
Error Flag will be turned ON and the instruction will not be executed.

When the converted data is negative, it will be output as the 2’s complement
and the Negative Flag be will turned ON. NEG(160) can be used to determine
the absolute value of a negative signed binary number. Refer to 3-12-52’S
COMPLEMENT: NEG(160) for details.

A value of –0 in the source data will be treated as 0 and will not cause an
error. Also, the status of bits 13 to 15 of S is not checked when C=0000.

Note Some Special I/O Units output signed BCD data. Calculations using this data
will normally be easier if it is first converted to signed binary data with
BINS(470).

The control word specifies the signed BCD format as shown below.

C = 0000 (Input Data Range: –999 to 999 BCD)

C = 0001 (Input Data Range: –7999 to 7999 BCD)

C = 0002 (Input Data Range: –999 to 9999 BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCD Signed binary

Signed BCD format
specified in C

3 digits BCD, 12 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

Sign bit (0: Positive; 1: Negative)

3 bits of digit 4 (0 to 7)

3 digits BCD, 12 bits

3 digits BCD, 12 bits

0 to 9: Fourth digit BCD
F: Negative (−)
A to E: Error
518

Conversion Instructions Section 3-12
C = 0003 (Input Data Range: –1999 to 9999 BCD)

The following table shows the possible BCD values for each signed BCD for-
mat and the corresponding signed binary values.

Flags

Examples BCD Format 0 (C=#0000)

When CIO 000000 is ON in the following example, the signed BCD data for-
mat and range in D00100 are checked against the format specified in the con-
trol word (0000). The source data is correct, so the signed BCD data in
D00100 is converted to signed binary and output to D00200.

BCD Format 0 (C=#0003)

When CIO 000001 is ON in the following example, the signed BCD data for-
mat and range in D00100 are checked against the format specified in the con-
trol word (0003). The source data is correct, so the signed BCD data in
D00300 is converted to signed binary and output to D00400.

Setting Signed BCD values Signed binary values

C=0000 –999 to –1 and 0 to 999 FC19 to FFFF and 0000 to 03E7

C=0001 –7999 to –1 and 0 to 7999 E0C1 to FFFF and 0000 to 1F3F

C=0002 –999 to –1 and 0 to 9999 FC19 to FFFF and 0000 to 270F

C=0003 –1999 to –1 and 0 to 9999 F831 to FFFF and 0000 to 270F

3 digits BCD, 12 bits
0 to 9: Fourth digit BCD
A: Negative (−1)
F: Negative (−)
B to E: Error

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.

ON if C=0002 and the leftmost digit of S is A to E.
ON if C=0003 and the leftmost digit of S is B to E.
ON if the content of S is not BCD.

OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of D is ON after execution.
OFF in all other cases.

S: D00100

1 1 2 3

D: D00200

F F 8 5 Signed binary data

Signed BCD data (–123)

S: D00300

A 3 6 9

D: D00400

F A A 7

Signed BCD data
(–1,369)

Signed binary data
519

Conversion Instructions Section 3-12
3-12-15 DOUBLE SIGNED BCD TO BINARY: BISL(472)
Purpose Converts double signed BCD data to double signed binary data.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

Operand Specifications

BISL(472)

C

S

D

C: Control word

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition BISL(472)

Executed Once for Upward Differentiation @BISL(472)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area C S D

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A000 to A958 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to
D32767

D00000 to D32766

EM Area without bank E00000 to
E32767

E00000 to E32766

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #0003
(binary)

Data Registers DR0 to DR15 ---
520

Conversion Instructions Section 3-12
Description BISL(472) converts the double signed BCD data in S+1 and S to double
signed binary data and writes the result in D+1 and D. First the signed BCD
data format and range in words S+1 and S are checked against the setting in
the control word (C). If the source data is correct, the signed BCD data S+1
and S is converted to signed binary and output to D+1 and D. If the source
data is incorrect, the Error Flag will be turned ON and the instruction will not
be executed.

When the converted data is negative, it will be output as the 2’s complement
and the Negative Flag be will turned ON. NEGL(161) can be used to deter-
mine the absolute value of a negative double signed binary number. Refer to
3-12-6 DOUBLE 2’S COMPLEMENT: NEGL(161) for details.

Values of –0 in the source data will be treated as 0 and will not cause an error.
Also, the status of bits 13 to 15 of S+1 is not checked when C=0000.

Note Some Special I/O Units output signed BCD data. Calculations using this data
will normally be easier if it is first converted to signed binary data with
BISL(472).

The control word specifies the signed BCD format as shown below.

C = 0000 (Input Data Range: –999 9999 to 999 9999 BCD)

C = 0001 (Input Data Range: –7999 9999 to 7999 9999 BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCD
Signed BCD

Signed binary

Signed binary

Signed BCD format
specified in C

S+1 S

7 digits BCD, 28 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

S+1 S

7 digits BCD, 28 bits

3 bits of digit 8 (0 to 7)

Sign bit (0: Positive; 1: Negative)
521

Conversion Instructions Section 3-12
C = 0002 (Input Data Range: –999 9999 to 9999 9999 BCD)

C = 0003 (Input Data Range: –1999 9999 to 9999 9999 BCD)

The following table shows the possible BCD values for each signed BCD for-
mat and the corresponding signed binary values.

Flags

Example When CIO 000000 is ON in the following example, the double signed BCD
data format and range in D00101 and D00100 are checked against the format
specified in the control word (0002). The source data is correct, so the double
signed BCD data in D00101 and D00100 is converted to double signed binary
and output to D00201 and D00200.

Setting Signed BCD values Signed binary values

C=0000 –999 9999 to –1 FF67 6981 to FFFF FFFF

0 to 999 9999 0000 0000 to 0098 967F

C=0001 –7999 9999 to –1 FB3B 4C01 to FFFF FFFF

0 to 7999 9999 0000 0000 to 04C4 B3FF

C=0002 –999 9999 to –1 FF67 6981 to FFFF FFFF

0 to 9999 9999 0000 0000 to 05F5 E0FF

C=0003 –1999 9999 to –1 FECE D301 to FFFF FFFF

0 to 9999 9999 0000 0000 to 05F5 E0FF

S+1 S

7 digits BCD, 28 bits

0 to 9: Eighth digit BCD
F: Negative (–)
A to E: Error

S+1 S

7 digits BCD, 28 bits

0 to 9: Eighth digit BCD
A: Negative (–1)
F: Negative (–)
B to E: Error

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.
ON if C=0002 and the leftmost digit of S+1 is A to E.

ON if C=0003 and the leftmost digit of S+1 is B to E.
ON if the content of S+1 and S is not BCD.
OFF in all other cases.

Equals Flag = ON if D+1 contains 0000 0000 after execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of D+1 is ON after execution.
OFF in all other cases.

F 3 4 5

F F C B

6 7 8 9

4 0 E B

S+1: D00101

D+1: D00201

S: D00100

D: D00200

Double signed BCD data
(–3,456,789)

Double signed binary data
522

Conversion Instructions Section 3-12
3-12-16 SIGNED BINARY TO BCD: BCDS(471)
Purpose Converts one word of signed binary data to one word of signed BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operand C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

S: Source Word

Contains the signed binary data to be converted. The content of S must be
within the valid range of the BCD format specified in C.

D: Destination word

Contains the converted signed BCD data. See the description section below
for an explanation of the BCD formats.

Operand Specifications

BCDS(471)

C

S

D

C: Control word

S: Source word

D: Destination word

Variations Executed Each Cycle for ON Condition BCDS(471)

Executed Once for Upward Differentiation @BCDS(471)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Setting Allowed values for S

C=0000 FC19 to FFFF or 0000 to 03E7

C=0001 E0C1 to FFFF or 0000 to 1F3F

C=0002 FC19 to FFFF or 0000 to 270F

C=0003 F831 to FFFF or 0000 to 270F

Area C S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
523

Conversion Instructions Section 3-12
Description BCDS(471) converts signed binary data to signed BCD data. First the signed
binary data in word S is checked to verify that it is within the valid range for the
signed BCD format specified in the control word (C). If the source data is cor-
rect, the signed binary data in S is converted to signed BCD and output to D.
If the source data is incorrect, the Error Flag will be turned ON and the
instruction will not be executed.

Note 1. Values of –0 in the source data will be treated as 0 and will not cause an
error.

2. Some Special I/O Units require signed BCD data inputs. BCDS(471) can
be used to convert signed binary data for output to these Units.

The control word specifies the signed BCD format that will be used for the
result, as shown below.

C = 0000 (Output Data Range: –999 to 999 BCD)

C = 0001 (Output Data Range: –7999 to 7999 BCD)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #0003
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to 1–2048 to +2047 ,IR5

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCDSigned binary

Signed BCD format
specified in C

3 digits BCD, 12 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

3 digits BCD, 12 bits

3 bits of digit 4 (0 to 7)

Sign bit (0: Positive; 1: Negative)
524

Conversion Instructions Section 3-12
C = 0002 (Output Data Range: –999 to 9999 BCD)

C = 0003 (Output Data Range: –1999 to 9999 BCD)

The following table shows the possible signed binary values for each signed
BCD format. An error will occur if the source data is not within the allowed
range for the specified signed BCD format.

Flags

3-12-17 DOUBLE SIGNED BINARY TO BCD: BDSL(473)
Purpose Converts double signed binary data to double signed BCD data.

Ladder Symbol

Setting Signed binary values Signed BCD values

C=0000 FC19 to FFFF and 0000 to 03E7 –999 to –1 and 0 to 999

C=0001 E0C1 to FFFF and 0000 to 1F3F –7999 to –1 and 0 to 7999

C=0002 FC19 to FFFF and 0000 to 270F –999 to –1 and 0 to 9999

C=0003 F831 to FFFF and 0000 to 270F –1999 to –1 and 0 to 9999

3 digits BCD, 12 bits

0 to 9: Fourth digit BCD
F: Negative (–)

0 to 9: Fourth digit BCD
A: Negative (–1)
F: Negative (–)

3 digits BCD, 12 bits

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.
ON if C=0000 and the source data is not within the allowed
ranges (FC19 to FFFF or 0000 to 03E7).

ON if C=0001 and the source data is not within the allowed
ranges (E0C1 to FFFF or 0000 to 1F3F).
ON if C=0002 and the source data is not within the allowed
ranges (FC19 to FFFF or 0000 to 270F).
ON if C=0003 and the source data is not within the allowed
ranges (F831 to FFFF or 0000 to 270F).

OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.

OFF in all other cases.

Negative Flag N ON if C=0000 or 0001 and the result’s sign bit is ON after
execution.

ON if C=0002 and the leftmost digit of the result is F.
ON if C=0003 and the leftmost digit of the result is A or F.

OFF in all other cases.

BDSL(473)

C

S

D

C: Control word

S: First source word

D: First destination word
525

Conversion Instructions Section 3-12
Variations

Operands C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

S: First Source Word

Source words S+1 and S contain the double signed binary data to be con-
verted. Their content must be within the valid range of the BCD format speci-
fied in C.

D: First destination word

Destination words D+1 and D contain the converted double signed BCD data.
See the description section below for an explanation of the BCD formats.

Operand Specifications

Variations Executed Each Cycle for ON Condition BDSL(473)

Executed Once for Upward Differentiation @BDSL(473)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Setting Allowed values for S+1 and S

C=0000 FF67 6981 to FFFF FFFF or 0000 0000 to 0098 967F

C=0001 FB3B 4C01 to FFFF FFFF or 0000 0000 to 04C4 B3FF

C=0002 FF67 6981 to FFFF FFFF or 0000 0000 to 05F5 E0FF

C=0003 FECE D301 to FFFF FFFF or 0000 0000 to 05F5 E0FF

Area C S D

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A000 to A958 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to
D32767

D00000 to D32766

EM Area without bank E00000 to
E32767

E00000 to E32766

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #0003
(binary)

Data Registers DR0 to DR15 ---
526

Conversion Instructions Section 3-12
Description BDSL(473) converts double signed binary data to double signed BCD data.
First the double signed binary data in S+1 and S is checked to verify that it is
within the valid range for the signed BCD format specified in the control word
(C). If the source data is correct, the double signed binary data in S+1 and S
is converted to double signed BCD and output to D+1 and D. If the source
data is incorrect, the Error Flag will be turned ON and the instruction will not
be executed.

Note 1. Values of –0 in the source data will be treated as 0 and will not cause an
error.

2. Some Special I/O Units require signed BCD data inputs. BDSL(473) can
be used to convert double signed binary data for output to these Units.

The control word specifies the signed BCD format that will be used for the
result, as shown below.

C = 0000 (Output Data Range: –999 9999 to 999 9999 BCD)

C = 0001 (Output Data Range: –7999 9999 to 7999 9999 BCD)

C = 0002 (Output Data Range: –999 9999 to 9999 9999 BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCD
Signed BCD

Signed binary

Signed binary

Signed BCD format
specified in C

S+1 S

7 digits BCD, 28 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

S+1 S

3 bits of digit 8 (0 to 7)

7 digits BCD, 28 bits

Sign bit (0: Positive; 1: Negative)

S+1 S

0 to 9: Eighth digit BCD
F: Negative (–)

7 digits BCD, 28 bits
527

Conversion Instructions Section 3-12
C = 0003 (Output Data Range: –1999 9999 to 9999 9999 BCD)

The following table shows the possible double signed binary values for each
signed BCD format. An error will occur if the source data is not within the
allowed range for the specified signed BCD format.

Flags

Example When CIO 000000 is ON in the following example, the double signed binary
data in D00101 and D00100 are checked against the format specified in the
control word (0003). The source data is correct, so the double signed binary
data in D00101 and D00100 is converted to double signed BCD and output to
D00201 and D00200.

Setting Signed binary values Signed BCD values

C=0000 FF67 6981 to FFFF FFFF –999 9999 to –1

0000 0000 to 0098 967F 0 to 999 9999

C=0001 FB3B 4C01 to FFFF FFFF –7999 9999 to –1

0000 0000 to 04C4 B3FF 0 to 7999 9999

C=0002 FF67 6981 to FFFF FFFF –999 9999 to –1

0000 0000 to 05F5 E0FF 0 to 9999 9999

C=0003 FECE D301 to FFFF FFFF –1999 9999 to –1

0000 0000 to 05F5 E0FF 0 to 9999 9999

S+1 S

0 to 9: Eighth digit BCD
A: Negative (–1)
F: Negative (–)

7 digits BCD, 28 bits

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.
ON if C=0000 and the source data is not within the range:
FF67 6981 to FFFF FFFF or 0000 0000 to 0098 967F.
ON if C=0001 and the source data is not within the range:
FB3B 4C01 to FFFF FFFF or 0000 0000 to 04C4 B3FF.

ON if C=0002 and the source data is not within the range:
FF67 6981 to FFFF FFFF or 0000 0000 to 05F5 E0FF.
ON if C=0003 and the source data is not within the range:
FECE D301 to FFFF FFFF or 0000 0000 to 05F5 E0FF.
OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.
OFF in all other cases.

Negative Flag N ON if C=0000 or 0001 and the result’s sign bit is ON after
execution.
ON if C=0002 and the leftmost digit of the result is F.
ON if C=0003 and the leftmost digit of the result is A or F.

OFF in all other cases.

S+1: D00101

F F 8 B

D+1: D00201

F 7 6 5

S: D00100

3 4 4 F

D: D00200

4 3 2 1

Double signed binary data

Double signed BCD data
(–7,654,321)
528

Conversion Instructions Section 3-12
3-12-18 GRAY CODE CONVERT: GRY(474)
Purpose Converts the gray binary code in a specified word to standard binary data,

BCD data, or an angle at the specified resolution.

This instruction is supported by only CS/CJ-series CPU Unit Ver. 2.0 or later
(including CS1-H, CJ1-H, and CJ1M CPU Units from lot number 030201 or
later).

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Specifies the parameters for the conversion as shown below.

GRY(474)

C

S

D

C: First control word

S: Source word

D: First destination word

Variations Executed Each Cycle for ON Condition GRY(474)

Executed Once for Upward Differentiation @GRY(474)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C

 0 4 3 7 8111215

C+1

C+2

15 1112 0

Do not
use (0).

Operating Mode
0 hex = Gray binary code conversion

Conversion Mode
0 hex = Binary Mode, 1 hex = BCD Mode, 2 hex = 360° Mode

Resolution
0 or 1 to F hex (1 to 15 decimal) bits
0 hex = User specified in bits 12 to 15 of C+2.

Zero Point Compensation (0000 to 7FFF Hex (Binary Data))
Note: Zero point compensation that exceeds the resolution set in the word C of the control

data cannot be specified.

User-specified Resolution
0 hex = 256, 1 hex = 360, 2 hex = 720, 3 hex = 1,024, 4 to F hex = Do not use.

Encoder Remainder Compensation (Binary Data)
Note: The range that can be set depends on the user-specified resolution.

Note: The above setting is valid when the resolution is set to 0 hex in bits 00 to 03 of C.
529

Conversion Instructions Section 3-12
S: Source Word

Contains the gray binary code to be converted. The range must be within the
number of bits determined by the resolution specified in bits 00 to 03 of C. All
bits outside of the number of bits for the specified resolution will be ignored.
For example, if the specified resolution is 08 hex and S contains FFFF hex,
the gray binary code will be taken as 00FF hex.

D: First destination word

Destination words D+1 and D contain the results of converting the gray binary
code at the resolution specified in bits 00 to 03 of the control data word C and
the conversion mode specified in bits 04 to 07 of the control data word C. The
leftmost word is output to D+1 and the rightmost word is output to D. The
ranges of data that are output are as follows:

Binary Mode: 0000 0000 to 0000 7FFF hex
BCD Mode: 0000 0000 to 0003 2767
360° Mode: 0000 0000 to 0000 3599

(0.0° to 359.9° in 0.1° increments, BCD)

Operand Specifications

S

D

D+1

Rightmost word

Leftmost word

Area C S D

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6142

Work Area W000 to W510 W000 to W511 W000 to W510

Holding Bit Area H000 to H510 H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A958 A000 to A959 A448 to A958

Timer Area T0000 to T4094 T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4094 C0000 to C4095 C0000 to C4094

DM Area D00000 to
D32766

D00000 to
D32767

D00000 to
D32766

EM Area without bank E00000 to
E32766

E00000 to
E32767

E00000 to
E32766

EM Area with bank En_00000 to
En_32766

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #FFFF

(binary)

Data Registers --- DR0 to DR15 ---
530

Conversion Instructions Section 3-12
Description GRY(474) converts the gray binary code in the word specified in S at the res-
olution specified in C using one of the following conversion modes (binary,
BCD, or 360°), also specified in C, and places the results in D and D+1.

Note 1. GRY(474) is normally used when inputting, through a DC Input Unit, a par-

allel signal (2n) from an absolute encoder that outputs a gray binary code.

2. If the word specified for S is allocated to an Input Unit, the input data con-
verted by GRY(474) will be for the gray binary code from the previous CPU
Unit cycle, i.e., it will be one cycle time old.

Restrictions The following restrictions apply to GRY(474).

■ Restrictions on the CPU Unit

GRY(474) can be used only for the following models of CPU Unit and only for
CPU Units manufactured on or after 1 February 2003 (lot number 030201 or
later, including CPU Unit Ver. 2.0 or later).

• CJ1H-CPU@@H-R

• CJ1M-CPU@@
• CJ1G-CPU@@H

• CJ1H-CPU@@H

• CS1G-CPU@@H

• CS1H-CPU@@H

• CS1D-CPU@@S

The manufacturing date can be confirmed using the lot number given on the
side or bottom of the CPU Unit. Lot numbers indicate the manufacturing date
as follows:

YYMMDD nnnn

YY = Rightmost two digits of the year, MM = Month as a numeric value,
DD = Day of month, nnnn = Serial number

Note If GRY(474) is transferred to a CPU Unit that does not support it and the pro-
gram is read from a Programming Console, “?” will be displayed for GRY(474)
to indicate an illegal instruction. If GRY(474) is executed with an ON input

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Conversion mode Function

Binary Mode Gray binary code is converted to binary data between
0000 0000 and 0000 7FFF hex. Zero point offset and remainder
compensation is applied and then the result is output to D and
D+1.

BCD Mode Gray binary code is converted to BCD data. Zero point offset
and remainder compensation is applied, the data is converted
to BCD between 0000 0000 and 0003 2767, and then the result
is output to D and D+1.

360° Mode Gray binary code is converted to BCD data. Zero point offset
and remainder compensation is applied, the data is converted
to an angle between 0000 0000 and 0000 3599 (0.0° to 359.9°
in 0.1° increments), and then the result is output to D and D+1.
531

Conversion Instructions Section 3-12
condition in a CPU Unit that does not support it, an error will occur and pro-
gram execution will stop.

■ Restrictions on the CX-Programmer

GRY(474) can be used only with CX-Programmer version 3.2 or later.

Flags

Examples When CIO 000000 is ON in the following example, the gray binary code in
CIO 0010 is converted according to the settings in the control data in D00000
to D00002 and the result is output to D00200 and D00201.

Name Label Operation

Error Flag ER ON if bits 12 to 15 of C are not 0 hex (operating mode =
gray binary code conversion).
ON if the zero point offset in C+1 is not within the specified
resolution (including user-specified resolutions).
ON if bits 04 to 07 of C are not 0 hex (= Binary Mode),
1 hex (= BCD Mode), or 2 hex (= 360° Mode).

ON if the specified encoder remainder compensation
exceeds the set user-specified resolution when bits 00 to
03 of C are 0 hex (= user-specified resolution).

ON if the converted binary value is less than the encoder
remainder compensation when bits 00 to 03 of C are 0 hex
(= user-specified resolution).

ON if the converted binary value is less than the resolution
when bits 00 to 03 of C are 0 hex (= user-specified resolu-
tion).

OFF in all other cases.

Equals Flag = OFF in all cases.

Negative Flag N OFF in all cases.

GRY

0010

D00000

D00200

000000

C

S

D

532

Conversion Instructions Section 3-12
■ Example 1: Converting to Binary Data with an 8-bit Resolution and Zero
Point Offset of 001A Hex

■ Example 2: Converting to Angle Data with a 10-bit Resolution and Zero
Point Offset of 0151 Hex

0 0C: D00000

 0

80

 4 3 7 8111215

001AC+1: D00001

S: 0010 1001010000000000

0017D: D00200

0000D+1: D00201

000C+2: D00002 0

Operating mode: Gray binary code conversion

Conversion mode: Binary Mode

Resolution: 8-bit

Zero point offset: 001A hex

User-specified resolution: Not used.

Gray binary code

Converted and offset.

Result of binary conversion and offsetting stored.

0 2C: D00000

 0

A0

 4 3 7 8111215

0151C+1: D00001

S: 0010 1001010110000000

3488D: D00200

0000D+1: D00201

000C+2: D00002 0

Operating mode: Gray binary code conversion

Conversion mode: 360° Mode

Resolution: 10-bit

Zero point offset: 0151 hex

User-specified resolution: Not used.

Gray binary code

Converted and offset.

Angle data stored.
533

Conversion Instructions Section 3-12
■ Example 3: Converting to BCD Data with for an OMRON E6C2-AG5C
Absolute Encoder (Resolution: 360/rotation, Encoder Remainder
Compensation: 76) and Zero Point Offset of 0000 Hex

■ Example 4: Converting to BCD Data with for an OMRON E6C2-AG5C
Absolute Encoder (Resolution: 360/rotation, Encoder Remainder
Compensation: 76) and Zero Point Offset of 000A Hex

3-12-19 FOUR-DIGIT NUMBER TO ASCII: STR4(601)
Purpose Converts a 4-digit hexadecimal number (#0000 to #FFFF) to ASCII data (4

characters).

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

0 1C: D00000

 0

00

 4 3 7 8111215

0000C+1: D00001

S: 0010 0001011100000000

0100D: D00200

0000D+1: D00201

04CC+2: D00002 1

Operating mode: Gray binary code conversion

Conversion mode: BCD Mode

Resolution: User-specified

Zero point offset: 0000 hex

User-specified resolution: 360, Encoder remainder compensation: 04C hex (76 decimal)

Gray binary code

Converted and offset.

Result of BCD conversion and offsetting stored.

0 1C: D00000

 0

00

 4 3 7 8111215

000AC+1: D00001

S: 0010 1110011100000000

0100D: D00200

0000D+1: D00201

04CC+2: D00002 1

Operating mode: Gray binary code conversion

Conversion mode: BCD Mode

Resolution: User-specified

Zero point offset: 000A hex

User-specified resolution: 360, Encoder remainder compensation: 04C hex (76 decimal)

Gray binary code

Converted and offset.

Result of BCD conversion and offsetting stored.
534

Conversion Instructions Section 3-12
Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description STR4(601) converts the numerical data in S (4-digit hexadecimal, #0000 to
#FFFF) to ASCII data (4 characters) and writes the result to D and D+1.

STR4

S

D

S: Number

D: ASCII text

Variations Executed Each Cycle for ON Condition STR4(601)

Executed Once for Upward Differentiation @STR4(601)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to D32766

EM Area without bank E00000 to E32767 E00000 to E32766

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF ---

Data Registers --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
535

Conversion Instructions Section 3-12
Note If the source data is 0, the Equals Flag will turn ON.
If the leftmost bit of the source data is 1, the Negative Flag will turn ON.

Restrictions The following restrictions apply to STR4(601).

■ Restrictions on the CPU Unit

STR4(601) can be used in CPU Units with unit version 4.0 or later only.

■ Restrictions on the CX-Programmer

STR4(601) can be used in CX-Programmer version 7 or higher only.

Flags

Examples

■ Example 1: Converting 3 Words of Numerical Data to ASCII Data

When CIO 000000 is ON in the following example, the 3 words of numerical
data starting at D00010 are converted, one word at a time, to ASCII data. The
converted ASCII data is stored in the DM Area starting at D00100.

1 2 4 3

31 32

33 34

15 8 7 0

15 8 7 0 11 12 3 4

D+1

D

ASCII

Hexadecimal: #1234

S

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the source data is 1.

OFF in all other cases.
536

Conversion Instructions Section 3-12
■ Example 2: Converting Hexadecimal Data to ASCII Data in BCD Format

When CIO 000001 is ON in the following example, the source data in D00000
(&1234 in decimal) is converted to BCD data and the result is stored tempo-
rarily in D00010. Next, the BCD data is converted to ASCII data and the result
is output to D00100 and D00101.

3-12-20 EIGHT-DIGIT NUMBER TO ASCII: STR8(602)
Purpose Converts an 8-digit hexadecimal number (#0000 0000 to #FFFF FFFF) to

ASCII data (8 characters).

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

4 5 7 6

30 31

32 33

0 1 3 2

34 35

36 37

8 9 B A

38 39

41 42

15 8 7 11 12 3 4 0

15 8 7 0

NEXT

STR4

,IR0+

FOR

&3

,IR1++

MOVR

D00010

IR0

MOVR

D00100

IR1

00000

000000

000000

S

D

Hexadecimal

S: D00010
S+1: D00011
S+2: D00012

ASCII

D: D00100
D+1: D00101
D+2: D00102
D+3: D00103
D+4: D00104
D+5: D00105

31 32

33 34

BCD

1 2 4 3

15 8 7 11 12 3 4 0

15 8 7 0

STR4

D00010

D00100

BCD

D00000

D00010

000001

S

D

0 4 2 D

15 8 7 11 12 3 4 0

D00000 &1234 Decimal
(#04D2 hexadecimal)

Binary (hexadecimal)

ASCII (BCD)

BCD

S: D00010

D: D00100
D+1: D00101
537

Conversion Instructions Section 3-12
Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description STR8(602) converts the numerical data in S and S+1 (8-digit hexadecimal,
#0000 0000 to #FFFF FFFF) to ASCII data (8 characters) and writes the
result to D, D+1, D+2, and D+3.

STR8

S

D

S: Number

D: ASCII text

Variations Executed Each Cycle for ON Condition STR8(602)

Executed Once for Upward Differentiation @STR8(602)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A448 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to D32764

EM Area without bank E00000 to E32766 E00000 to E32764

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 0000 to #FFFF FFFF ---

Data Registers --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
538

Conversion Instructions Section 3-12
Note If the source data is 0, the Equals Flag will turn ON.
If the leftmost bit of the source data is 1, the Negative Flag will turn ON.

Restrictions The following restrictions apply to STR8(602).

■ Restrictions on the CPU Unit

STR8(602) can be used in CPU Units with unit version 4.0 or later only.

■ Restrictions on the CX-Programmer

STR8(602) can be used in CX-Programmer version 7 or higher only.

Flags

3-12-21 SIXTEEN-DIGIT NUMBER TO ASCII: STR16(603)
Purpose Converts a 16-digit hexadecimal number (#0000 0000 0000 0000 to

#FFFF FFFF FFFF FFFF) to ASCII data (16 characters).

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

Ladder Symbol

Variations

Applicable Program Areas

1 2 4 3

31 32

33 34

ASCII

5 6 8 7

35 36

37 38

15 8 7 11 12 3 4 0

15 8 7 0

D+1
D+2
D+3

D

Hexadecimal: #12345678

S

S+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the source data is 1.
OFF in all other cases.

STR16

S

D

S: Number

D: ASCII text

Variations Executed Each Cycle for ON Condition STR16(603)

Executed Once for Upward Differentiation @STR16(603)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK
539

Conversion Instructions Section 3-12
Operand Specifications

Description STR16(603) converts the numerical data in S to S+3 (16-digit hexadecimal,
#0000 0000 0000 0000 to #FFFF FFFF FFFF FFFF) to ASCII data (16 char-
acters) and writes the result to D to D+7.

Area S D

CIO Area CIO 0000 to CIO 6140 CIO 0000 to CIO 6136

Work Area W000 to W508 W000 to W504

Holding Bit Area H000 to H508 H000 to H504

Auxiliary Bit Area A448 to A956 A448 to A952

Timer Area T0000 to T4092 T0000 to T4088

Counter Area C0000 to C4092 C0000 to C4088

DM Area D00000 to D32764 D00000 to D32760

EM Area without bank E00000 to E32764 E00000 to E32760

EM Area with bank En_00000 to En_32764
(n = 0 to C)

En_00000 to En_32760
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- ---

Data Registers --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

8 9 B A

30 31

32 33

C D F E

34 35

36 37

4 5 7 6

38 39

41 42
43 44

45 46

0 1 2 3

15 8 7 11 12 3 4 0

15 8 7 0
ASCII

D+1
D+2
D+3
D+4
D+5
D+6
D+7

D

S

S+1
S+2
S+3

Hexadecimal: #1234567890ABCDEF
540

Conversion Instructions Section 3-12
Note If the source data is 0, the Equals Flag will turn ON.
If the leftmost bit of the source data is 1, the Negative Flag will turn ON.

Restrictions The following restrictions apply to STR16(603).

■ Restrictions on the CPU Unit

STR16(603) can be used in CPU Units with unit version 4.0 or later only.

■ Restrictions on the CX-Programmer

STR16(603) can be used in CX-Programmer version 7 or higher only.

Flags

3-12-22 ASCII TO FOUR-DIGIT NUMBER: NUM4(604)
Purpose Converts 4 characters of ASCII data to a 4-digit hexadecimal number.

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the source data is 1.

OFF in all other cases.

NUM4

S

D

S: ASCII text

D: Number

Variations Executed Each Cycle for ON Condition NUM4(604)

Executed Once for Upward Differentiation @NUM4(604)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A448 to A958 A000 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)
541

Conversion Instructions Section 3-12
Description NUM4(604) converts the 4 characters of ASCII data in S and S+1 to numeri-
cal data (4-digit hexadecimal) and writes the result to D.

The Error Flag will be turned ON if the ASCII data in S and S+1 contains any
characters that are not hexadecimal digits. In this case, the instruction will not
be executed.

Note If the numerical data is 0, the Equals Flag will turn ON.
If the leftmost bit of the numerical data is 1, the Negative Flag will turn ON.

Restrictions The following restrictions apply to NUM4(604).

■ Restrictions on the CPU Unit

NUM4(604) can be used in CPU Units with unit version 4.0 or later only.

■ Restrictions on the CX-Programmer

NUM4(604) can be used in CX-Programmer version 7 or higher only.

Flags

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- ---

Data Registers --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

31 32

33 34

1 2 4 3

15 8 7 0

15 8 7 11 12 3 4 0

ASCII

D

S

S+1

Hexadecimal

Name Label Operation

Error Flag ER ON if the source words contain any ASCII characters that
are not hexadecimal equivalents (0 to 9, a to f, or A to F).

OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the source data is 1.
OFF in all other cases.
542

Conversion Instructions Section 3-12
Examples

■ Example 1: Converting 3 Sets of 4 ASCII Characters to the Equivalent
Hexadecimal Digits

When CIO 000000 is ON in the following example, the 6 words of ASCII data
starting at D00010 are converted, two words at a time, to numerical data. The
converted numerical data is stored in the DM Area starting at D00100.

■ Example 2: Converting ASCII Data in BCD Format to Hexadecimal Data

When CIO 000001 is ON in the following example, the ASCII characters in
D00000 and D00001 are converted to BCD data and the result is stored tem-
porarily in D00010. Next, the BCD data is converted to hexadecimal and the
result is output to D00100.

8 9 F E

1 2 B A

0 0 0 0

15 8 7 11 12 3 4 0

NEXT

NUM4

,IR0++

FOR

&3

,IR1+

MOVR

D00010

IR0

MOVR

D00100

IR1

000000

000000

000000
31 32

41 42

38 39

45 46

30 30

30 30

15 8 7 0

S

D

Hexadecimal

S: D00010
S+1: D00011
S+2: D00012
S+3: D00013
S+4: D00014
S+5: D00015

ASCII

D: D00100
D+1: D00101
D+2: D00102

31 32

33 34

1 2 4

15 8 7 11 12 3 4 0

15 8 0

BIN

D00010

D00100

NUM4

D00000

D00010

S

D

000001

0 4 2 D

15 8 7 11 12 3 4

7

0

3

BCD

S: D00000
S+1: D00001

Binary (hexadecimal)

ASCII (BCD)

BCD

D: D00010

D00100
&1234 Decimal
(#04D2 hexadecimal)
543

Conversion Instructions Section 3-12
3-12-23 ASCII TO EIGHT-DIGIT NUMBER: NUM8(605)
Purpose Converts 8 characters of ASCII data to an 8-digit hexadecimal number.

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description NUM8(605) converts the 8 characters of ASCII data in S to S+3 to numerical
data (4-digit hexadecimal) and writes the result to D and D+1.

NUM8

S

D

S: ASCII text

D: Number

Variations Executed Each Cycle for ON Condition NUM8(605)

Executed Once for Upward Differentiation @NUM8(605)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140 CIO 0000 to CIO 6142

Work Area W000 to W508 W000 to W510

Holding Bit Area H000 to H508 H000 to H510

Auxiliary Bit Area A448 to A956 A448 to A958

Timer Area T0000 to T4092 T0000 to T4094

Counter Area C0000 to C4092 C0000 to C4094

DM Area D00000 to D32764 D00000 to D32766

EM Area without bank E00000 to E32764 E00000 to E32766

EM Area with bank En_00000 to En_32764

(n = 0 to C)

En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- ---

Data Registers --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
544

Conversion Instructions Section 3-12
The Error Flag will be turned ON if the ASCII data contains any characters
that are not hexadecimal digits. In this case, the instruction will not be exe-
cuted.

Note If the numerical data is 0, the Equals Flag will turn ON.
If the leftmost bit of the numerical data is 1, the Negative Flag will turn ON.

Restrictions The following restrictions apply to NUM8(605).

■ Restrictions on the CPU Unit

NUM8(605) can be used in CPU Units with unit version 4.0 or later only.

■ Restrictions on the CX-Programmer

NUM8(605) can be used in CX-Programmer version 7 or higher only.

Flags

3-12-24 ASCII TO SIXTEEN-DIGIT NUMBER: NUM16(606)
Purpose Converts 16 characters of ASCII data to an 16-digit hexadecimal number.

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

Ladder Symbol

Variations

31 32

33 34

35 36

37 38

1 2 4 3

5 6 8 7

15 8 7 0

15 8 7 11 12 3 4 0

ASCII

D

S

S+1
S+2
S+3

Hexadecimal

D+1

Name Label Operation

Error Flag ER ON if the source words contain any ASCII characters that
are not hexadecimal equivalents (0 to 9, a to f, or A to F).
OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the source data is 1.

OFF in all other cases.

NUM16

S

D

S: ASCII text

D: Number

Variations Executed Each Cycle for ON Condition NUM16(606)

Executed Once for Upward Differentiation @NUM16(606)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
545

Conversion Instructions Section 3-12
Applicable Program Areas

Operand Specifications

Description NUM16(606) converts the 16 characters of ASCII data in S to S+7 to numeri-
cal data (4-digit hexadecimal) and writes the result to D and D+3.

The Error Flag will be turned ON if the ASCII data contains any characters
that are not hexadecimal digits. In this case, the instruction will not be exe-
cuted.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6136 CIO 0000 to CIO 6140

Work Area W000 to W504 W000 to W508

Holding Bit Area H000 to H504 H000 to H508

Auxiliary Bit Area A448 to A952 A448 to A956

Timer Area T0000 to T4088 T0000 to T4092

Counter Area C0000 to C4088 C0000 to C4092

DM Area D00000 to D32760 D00000 to D32764

EM Area without bank E00000 to E32760 E00000 to E32764

EM Area with bank En_00000 to En_32760

(n = 0 to C)

En_00000 to En_32764

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- ---

Data Registers --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
546

Conversion Instructions Section 3-12
Note If the numerical data is 0, the Equals Flag will turn ON.
If the leftmost bit of the numerical data is 1, the Negative Flag will turn ON.

Restrictions The following restrictions apply to NUM16(606).

■ Restrictions on the CPU Unit

NUM16(606) can be used in CPU Units with unit version 4.0 or later only.

■ Restrictions on the CX-Programmer

NUM16(606) can be used in CX-Programmer version 7 or higher only.

Flags

8 9 B A

C D F E

0

15 8 7 11 12 3 4 0

30 31

32 33

34 35

36 37

38 39

41 42
43 44

45 46

0 1 3 2

4 5 7 6

15 8 7

ASCII

D

S

S+1
S+2
S+3
S+4
S+5
S+6
S+7

Hexadecimal

D+1
D+2
D+3

Name Label Operation

Error Flag ER ON if the source words contain any ASCII characters that
are not hexadecimal equivalents (0 to 9, a to f, or A to F).
OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the source data is 1.

OFF in all other cases.
547

Logic Instructions Section 3-13
3-13 Logic Instructions
This section describes instructions which perform logic operations on word
data.

3-13-1 LOGICAL AND: ANDW(034)
Purpose Takes the logical AND of corresponding bits in single words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function code Page

LOGICAL AND ANDW 034 548

DOUBLE LOGICAL AND ANDL 610 550

LOGICAL OR ORW 035 551

DOUBLE LOGICAL OR ORWL 611 553

EXCLUSIVE OR XORW 036 555

DOUBLE EXCLUSIVE OR XORL 612 557

EXCLUSIVE NOR XNRW 037 559

DOUBLE EXCLUSIVE NOR XNRL 613 560

COMPLEMENT COM 029 562

DOUBLE COMPLEMENT COML 614 564

ANDW(034)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ANDW(034)

Executed Once for Upward Differentiation @ANDW(034)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
548

Logic Instructions Section 3-13
Description ANDW(034) takes the logical AND of data specified in I1 and I2 and outputs
the result to R.

• The logical AND is taken of corresponding bits in I1 and I2 in succession.

• When the content of corresponding bits in both I1 and I2 are 1 or when
either is 0, a 0 will be output to the corresponding bit in R.

I1, I2 → R

Flags

Precautions When ANDW(034) is executed, the Error Flag will turn OFF.

If as a result of the AND, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the AND, the leftmost bit of R is 1, the Negative Flag will turn
ON.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
549

Logic Instructions Section 3-13
3-13-2 DOUBLE LOGICAL AND: ANDL(610)
Purpose Takes the logical AND of corresponding bits in double words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

ANDL(610)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ANDL(610)

Executed Once for Upward Differentiation @ANDL(610)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF

(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
550

Logic Instructions Section 3-13
Description ANDL(610) takes the logical AND of data specified in I1, I1+1 and I2, I2+1 and
outputs the result to R, R+1.

(I1, I1+1), (I2, I2+1) → (R, R+1)

Flags

Precautions When ANDL(610) is executed, the Error Flag will turn OFF.

If as a result of the AND, the content of R, R+1 is 00000000 hex, the Equals
Flag will turn ON.

If as a result of the AND, the leftmost bit of R+1 is 1, the Negative Flag will
turn ON.

Examples When the execution condition CIO 00000000 is ON, the logical AND is taken
of corresponding bits in CIO 0011, CIO 0010 and CIO 0021, CIO 0020 and
the results will be output to corresponding bits in D00201 and D00200.

3-13-3 LOGICAL OR: ORW(035)
Purpose Takes the logical OR of corresponding bits in single words of word data and/or

constants.

Ladder Symbol

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

S1: 0010 CH
S1+1: 0011 CH

S2: 0020 CH
S2+1: 0021 CH

D: D00200
D+1: D00201

Note: The vertical arrow indicates logical AND.

ORW(035)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word
551

Logic Instructions Section 3-13
Variations

Applicable Program Areas

Operand Specifications

Description ORW(035) takes the logical OR of data specified in I1 and I2 and outputs the
result to R.

• The logical OR is taken of corresponding bits in I1 and I2 in succession.

• When either one of the corresponding bits in I1 and I2 are 1 or when both
of them are 0, a 0 will be output to the corresponding bit in R.

I1 + I2 → R

Variations Executed Each Cycle for ON Condition ORW(035)

Executed Once for Upward Differentiation @ORW(035)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to+2047 ,IR0 to –2048 to+2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

I1 I2 R

1 1 1

1 0 1
552

Logic Instructions Section 3-13
Flags

Precautions When ORW(035) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of the OR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

3-13-4 DOUBLE LOGICAL OR: ORWL(611)
Purpose Takes the logical OR of corresponding bits in double words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0 1 1

0 0 0

I1 I2 R

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

ORWL(611)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ORWL(611)

Executed Once for Upward Differentiation @ORWL(611)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766
553

Logic Instructions Section 3-13
Description ORWL(611) takes the logical OR of data specified in I1 and I2 as double-word
data and outputs the result to R, R+1.

• When any of the corresponding bits in I1, I1+1, I2, and I2 +1are 1, a 1 will
be output to the corresponding bit it R+1. When any of them are 0, a 0 will
be output to the corresponding bit in R+1.

(I1, I1+1) + (I2, I2+1) → (R, R+1)

Flags

Precautions When ORWL(611) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R, R+1 is 00000000 hex, the Equals
Flag will turn ON.

If as a result of the OR, the leftmost bit of R+1 is 1, the Negative Flag will turn
ON.

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.
554

Logic Instructions Section 3-13
Examples When the execution condition CIO 00000000 is ON, the logical OR is taken of
corresponding bits in CIO 0021, CIO 0020 and CIO 0301, CIO 0300 and the
results will be output to corresponding bits in D00501 and D00500.

3-13-5 EXCLUSIVE OR: XORW(036)
Purpose Takes the logical exclusive OR of corresponding bits in single words of word

data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S1: 0020 CH
S1+1: 0021 CH

S2: 0300 CH
S2+1: 0301 CH

D: D00500
D+1: D00501

Note: The vertical arrow indicates logical OR.

XORW(036)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XORW(036)

Executed Once for Upward Differentiation @XORW(036)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)
555

Logic Instructions Section 3-13
Description XORW(036) takes the logical exclusive OR of data specified in I1 and I2 and
outputs the result to R.

• The logical exclusive OR is taken of corresponding bits in I1 and I2 in suc-
cession.

• When the content of corresponding bits of I1 and I2 are different, a 1 will
be output to the corresponding bit of R and when there are different, 0 will
be output to the corresponding bit in R.

I1, I2 + I1, I2 → R

Flags

Precautions When XORW(036) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of the OR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1 I2 R

1 1 0

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
556

Logic Instructions Section 3-13
3-13-6 DOUBLE EXCLUSIVE OR: XORL(612)
Purpose Takes the logical exclusive OR of corresponding bits in double words of word

data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

XORL(612)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XORL(612)

Executed Once for Upward Differentiation @XORL(612)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF

(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
557

Logic Instructions Section 3-13
Description XORL(612) takes the logical exclusive OR of data specified in I1 and I2 as
double-word data and outputs the result to R, R+1.

• When the content of any of the corresponding bits in I1, I1+1, I2, and I2
+1are different, a 1 will be output to the corresponding bit it R, R+1. When
any of them are the same, a 0 will be output to the corresponding bit in R,
R+1.

(I1, I1+1), (I2, I2+1) + (I1, I1+1), (I2, I2+1)→ (R, R+1)

Flags

Precautions When XORL(612) is executed, the Error Flag will turn OFF.

If as a result of the exclusive OR, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the exclusive OR, the leftmost bit of R+1 is 1, the Negative
Flag will turn ON.

Examples When the execution condition CIO 00000000 is ON, the logical exclusive OR
is taken of corresponding bits in CIO 0901, CIO 0900 and D01001, D01000
and the results will be output to corresponding bits in D01201 and D01200.

I1, I1+1 I2, I2+1 R, R+1

1 1 0

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

S: 0900 CH
S1+1: 0901 CH

S: D01000
S2+1: D01001

D: D01200
D+1: D01201

Note: The symbol indicates exclusive logical OR.
558

Logic Instructions Section 3-13
3-13-7 EXCLUSIVE NOR: XNRW(037)
Purpose Takes the logical exclusive NOR of corresponding single words of word data

and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

XNRW(037)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XNRW(037)

Executed Once for Upward Differentiation @XNRW(037)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
559

Logic Instructions Section 3-13
Description XNRW(037) takes the logical exclusive NOR of data specified in I1 and I2 and
outputs the result to R.

• The logical exclusive NOR is taken of corresponding bits in I1 and I2 in
succession.

• When the content of corresponding bits of I1 and I2 are different, a 0 will
be output to the corresponding bit of R and when they are different, 1 will
be output to the corresponding bit in R.

I1, I2 + I1, I2 → R

Flags

Precautions When XNRW(037) is executed, the Error Flag will turn OFF.

If as a result of the NOR, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the NOR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

3-13-8 DOUBLE EXCLUSIVE NOR: XNRL(613)
Purpose Takes the logical exclusive NOR of corresponding bits in double words of

word data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

XNRL(613)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XNRL(613)

Executed Once for Upward Differentiation @XNRL(613)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
560

Logic Instructions Section 3-13
Operand Specifications

Description XNRL(613) takes the logical exclusive NOR of data specified in I1 and I2 and
outputs the result to R, R+1.

• When the content of any of the corresponding bits in I1, I1+1, I2, and I2
+1are different, a 0 will be output to the corresponding bit in R, R+1.
When any of them are the same, a 1 will be output to the corresponding
bit in R, R+1.

(I1, I1+1), (I2, I2+1) + (I1, I1+1), (I2, I2+1) → (R, R+1)

Flags

Area I1 I2 R

CIO Area CIO 0000 to CIO 6142

Work Area W000 toW 510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
561

Logic Instructions Section 3-13
Precautions When XNRL(613) is executed, the Error Flag will turn OFF.

If as a result of the exclusive NOR, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the exclusive NOR, the leftmost bit of R+1 is 1, the Negative
Flag will turn ON.

Examples When the execution condition CIO 00000000 is ON, the logical exclusive
NOR is taken of corresponding bits in CIO 0801, CIO 0800, and CIO 0101,
CIO 0100 and the results will be output to corresponding bits in D00501 and
D00500.

3-13-9 COMPLEMENT: COM(029)
Purpose Turns OFF all ON bits and turns ON all OFF bits in Wd.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S1: 0800 CH
S1+1: 0801 CH

S2: 0100 CH
S2+1: 0101 CH

D: D00500
D+1: D00501

Note: The symbol indicates exclusive logical NOR.

COM(029)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition COM(029)

Executed Once for Upward Differentiation @COM(029)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767
562

Logic Instructions Section 3-13
Description COM(029) reverses the status of every specified bit in Wd.
Wd→Wd: 1 → 0 and 0 → 1

Note When using the COM instruction, be aware that the status of each bit will
change each cycle in which the execution condition is ON.

Flags

Precautions When COM(029) is executed, the Error Flag will turn OFF.

If as a result of COM, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of COM, the leftmost bit of R is 1, the Negative Flag will turn ON.

Examples When CIO 000000 is ON in the following example, the status of each bit will
be D00100 is reversed.

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
563

Logic Instructions Section 3-13
3-13-10 DOUBLE COMPLEMENT: COML(614)
Purpose Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description COML(614) reverses the status of every specified bit in Wd and Wd+1.
(Wd+1, Wd)→(Wd+1, Wd)

Note When using the COM instruction, be aware that the status of each bit will
change each cycle in which the execution condition is ON.

COML(614)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition COML(614)

Executed Once for Upward Differentiation @COML(614)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
564

Special Math Instructions Section 3-14
Flags

Precautions When COML(614) is executed, the Error Flag will turn OFF.

If as a result of COML, the content of R, R+1 is 00000000 hex, the Equals
Flag will turn ON.

If as a result of COML, the leftmost bit of R+1 is 1, the Negative Flag will turn
ON.

Examples When CIO 000000 is ON in the following example, the status of each bit in
D00100 and D00101 will be reversed.

3-14 Special Math Instructions
This section describes instructions used for special math calculations.

3-14-1 BINARY ROOT: ROTB(620)
Purpose Computes the square root of the 32-bit signed binary contents (positive value)

of the specified words and outputs the integer portion of the result to the spec-
ified result word.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.

Instruction Mnemonic Function code Page

BINARY ROOT ROTB 620 565

BCD SQUARE ROOT ROOT 072 567

ARITHMETIC PROCESS APR 069 571

FLOATING POINT DIVIDE FDIV 079 583

BIT COUNTER BCNT 067 587

ROTB(620)

S

R

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition ROTB(620)

Executed Once for Upward Differentiation @ROTB(620)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
565

Special Math Instructions Section 3-14
Applicable Program Areas

Operand Specifications

Description ROTB(620) computes the square root of the 32-bit binary number in S+1 and
S and outputs the integer portion of the result to R. The non-integer remainder
is eliminated.

The range of data that can be specified for words S+1 and S is 0000 0000 to
3FFF FFFF. If a number from 4000 0000 to 7FFF FFFF is specified, it will be
treated as 3FFF FFFF for the square root computation. An error will occur if
the content of the source words is greater than 7FFF FFFF, i.e., if bit 15 of
S+1 is 1.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A958 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

RS+1 S

Binary data (32 bits) Binary data (16 bits)
566

Special Math Instructions Section 3-14
Flags

Precautions The content of S+1 and S must be less than 8000 0000.
The operands of this instruction (S+1, S, and R) are all treated as binary val-
ues. If the input data is BCD, use the ROOT(072) instruction.

Example When CIO 000000 is ON in the following example, ROTB(620) calculates the
square root of the data in CIO 0002 and CIO 0001, and writes the integer por-
tion of the result in D00100.

3-14-2 BCD SQUARE ROOT: ROOT(072)
Purpose Computes the square root of an 8-digit BCD number and outputs the integer

portion of the result to the specified result word.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if bit 15 of S+1 is 1 (ON).
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Overflow Flag OF ON if the content of S+1 and S is 4000 0000 to
7FFF FFFF.
OFF in all other cases.

Underflow Flag UF OFF

Negative Flag N OFF

014B 5A91

1234

D00100

CIO 0002 CIO 0001

Square root computation
(remainder eliminated)

ROOT(072)

S

R

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition ROOT(072)

Executed Once for Upward Differentiation @ROOT(072)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A958 A448 to A959
567

Special Math Instructions Section 3-14
Description ROOT(072) computes the square root of the 8-digit BCD number in S+1 and
S and outputs the integer portion of the result to R. The non-integer remainder
is eliminated.

Flags

Precautions The operands of this instruction (S+1, S, and R) are all treated as BCD val-
ues. If the input data is binary, use the ROTB(620) instruction.

Examples Square Root of 8-digit Number
When CIO 000000 is ON in the following example, ROOT(072) calculates the
square root of the data in D00001 and D00000, and writes the integer portion
of the result in D00100.

Note Figures after the decimal point are truncated for 8-digit numbers.

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #99999999
(BCD)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

RS+1 S

BCD data (8 digits) BCD data (4 digits)

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.
568

Special Math Instructions Section 3-14
Square Root of a 4-digit Number
The following example shows how to take the square root of a 4-digit number
and round off the result. This program example calculates the square root of
the 4-digit number in CIO 0010, rounds off the result, and writes it to
CIO 0011. (Basically, the 4-digit number is multiplied by 10,000 (1002) and the
result is divided by 100, increasing the precision of the calculation by a factor
of 100.)

Note Figures after the decimal point are rounded for 4-digit numbers.

Truncated
569

Special Math Instructions Section 3-14
1,2,3... 1. The source words (D00101 and D00100) to be are cleared to 0000 0000.

2. The 4-digit number is moved to D00101.

3. ROOT(072) calculates the square root of D00101 and D00100 and writes
the result to D00102.

1

2

3

4

5

@BSET

@MOV

@ROOT

@MOV

@MOV

@MOVD

@MOVD

@INC

The values after the decimal point
should be rounded.

D00101 D00100
0 0 0 0 0 0 0 0

00000000

 010
6 0 1 7

 D00101 D00100
6 0 1 7 0 0 0 0
570

Special Math Instructions Section 3-14
4. D00103 and the result word, CIO 0011, are cleared to 0000 0000.

5. The result of the square root calculation is divided by 100, with the integer
portion written to CIO 0011 and the remainder going to D00103.

6. If the content of D00103 is greater than 4900, CIO 0011 is incremented by
1. In this case, the result is 78.

3-14-3 ARITHMETIC PROCESS: APR(069)
Purpose Calculates the sine, cosine, or a linear extrapolation of the source data.

The linear extrapolation function allows any relationship between X and Y to
be approximated with line segments.

Ladder Symbol

Variations

Applicable Program Areas

6017 0000

7756

D00100

D00101 D00100

Square root computation
(Remainder eliminated)

60 170 000, , 7 756.932…,=

D00103 CIO 0011
0 0 0 0 0 0 0 0

00000000

 D00102
7 7 5 6

CIO 0011 D00103
0 0 7 7 5 6 0 0

5600 > 4900?
CIO 0011

0 0 7 8

APR(069)

C

S

R

C: Control word

S: Source data

R: Result word

Variations Executed Each Cycle for ON Condition APR(069)

Executed Once for Upward Differentiation @APR(069)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
571

Special Math Instructions Section 3-14
Operands Sine Function (C = 0000 Hex)

Cosine Function (C = 0001 Hex)

Linear Extrapolation Function (C = Data area address)

Note 1. Signed binary data and floating-point data are supported by CS1-H, CJ1-
H, CJ1M, and CS1D CPU Units only.

2. If C is a word address, APR(069) extrapolates the Y value for the X value
in S based on coordinates (forming line segments) entered in advance in
a table beginning at C. Refer to the Description section below for details.

Operand Specifications

Operand Value Data range

C 0000 hex ---

S 0000 to 0900 (BCD) 0° to 90°
D 0000 to 9999 (BCD) 0.0000 to 0.9999

9999 (BCD) 1.0000

Operand Value Data range

C 0001 hex ---

S 0000 to 0900 (BCD) 0° to 90°
D 0000 to 9999 (BCD) 0.0000 to 0.9999

9999 (BCD) 1.0000

Operand Value Data range

C Data area address ---

S 16-bit unsigned BCD data 0000 to 9999

16-bit unsigned binary data 0 to 65,535

16-bit signed binary data1 −32,768 to 32,767

32-bit signed binary data1 −2,147,483,648 to 2,147,483,647

Floating-point data1 −∞,
−3.402823 × 1038 to −1.175494 × 10−38,
1.175494 × 10−38 to 3.402823 × 1038,
+∞

D 16-bit unsigned BCD data 0000 to 9999

16-bit unsigned binary data 0 to 65,535

16-bit signed binary data1 −32,768 to 32,767

32-bit signed binary data1 −2,147,483,648 to 2,147,483,647

Floating-point data1 −∞,
−3.402823 × 1038 to −1.175494 × 10−38,
1.175494 × 10−38 to 3.402823 × 1038,
+∞

Area C S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
572

Special Math Instructions Section 3-14
Description The operation of APR(069) depends on the control word C. If C is 0000 or
0001, APR(069) computes the sine or cosine of S with S in units of tenths of
degrees.

If C is a word address, APR(069) extrapolates the Y value for the X value in S
based on coordinates (forming line segments) entered in advance in a table
beginning at C.

Sine Function (C=0000)

When C is 0000, APR(069) calculates the SIN(S) and writes the result to R.
The range for S is 0000 to 0900 BCD (0.0° to 90.0°) and the range for R is
0000 to 9999 BCD (0.0000 to 0.9999). The remainder of the result beyond the
fourth decimal place is eliminated.

Cosine Function (C=0001)

When C is 0001, APR(069) calculates the COS(S) and writes the result to R.
The range for S is 0000 to 0900 BCD (0.0° to 90.0°) and the range for R is
0000 to 9999 BCD (0.0000 to 0.9999). The remainder of the result beyond the
fourth decimal place is eliminated.

Linear Extrapolation

APR(069) linear extrapolation is specified when C is a word address.

The content of word C specifies the number of coordinates in a data table
starting at C+2, the form of the source data, and whether data is BCD or

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values only ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area C S R
573

Special Math Instructions Section 3-14
binary. In CS1-H, CJ1-H, CJ1M, and CS1D CPU Units, the source data can
also be signed binary data or floating-point data.

Unsigned Integer Data (Binary or BCD)

Signed Integer Data (Binary)

Single-precision Floating-point Data

If 16-bit binary or BCD data is being used, the line-segment data is contained
in words C+ 1 through C+2m+2. If 32-bit binary or floating point data is being
used (CS1-H, CJ1-H, and CJ1M CPU Units only), the line-segment data is
contained in words C+ 1 through C+4m+4.

Bits 00 to 07 contain the number (binary) of line coordinates less 1, m–1. Bits
08 to 12 are not used. Bit 13 specifies either f(x)=f(S) or f(x)=f(Xm–S): OFF
specifies f(x)=f(S) and ON specifies f(x)=f(Xm–S). Bit 14 determines whether
the output is BCD or binary: OFF specifies binary and ON specifies BCD. Bit

C 0

314 13 12 11 910 8 7 6 5 4 2 115

0

0

000

Number of coordinates minus one (m−1),
00 to FF hex (1 ≤ m ≤ 256)

Source data form
0: f(x) = f(S)
1: f(x) = f(Xm − S)

Output (D) data format
0: Binary
1: BCD

Input (S) data format
0: Binary
1: BCD

Floating-point specification for S and D
0: Integer data

Signed data specification for S and D
0: Unsigned binary data

C 0

314 13 12 11 910 8 7 6 5 4 2 115

0

0

00 10 0

Number of coordinates minus one (m−1),
00 to FF hex (1 ≤ m ≤ 256)

Floating-point specification for S and D
0: Integer data

Signed data specification for S and D
1: Signed binary data

Data length specification for S and D (note 1)
0: 16-bit signed binary data
1: 32-bit signed binary data

C 0

314 13 12 11 910 8 7 6 5 4 2 115

0

0

10 0 0 0 0

Number of coordinates minus one (m−1),
00 to FF hex (1 ≤ m ≤ 256)

Floating-point specification for S and D
1: Single-precision floating-point data
574

Special Math Instructions Section 3-14
15 determines whether the input is BCD or binary: OFF specifies binary and
ON specifies BCD.

Note The X coordinates must be in ascending order: X1 < X2 < ... < Xm. Input all
values of (Xn, Yn) as binary data, regardless of the data format specified in
control word C.

Operation of the Linear Extrapolation Function

APR(069) processes the input data specified in S with the following equation
and the line-segment data (Xn, Yn) specified in the table beginning at C+1.
The result is output to the destination word(s) specified with D.

1. For S < X0
Converted value = Y0

2. For X0 ≤ S ≤ Xmax, if Xn < S < Xn+1
Converted value = Yn +[{Yn + 1 − Yn}/{Xn + 1 − Xn}] × {Input data S − Xn}

C+1

C+2

C+3

C+4

C+5

C+6

C+ (2m+1)

C+ (2m+2)

X0 (*1)

Y0

X1

Y1

X2

Y2

Xn

Yn

Xm

Ym

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

Note: Write Xm (max. X
value in the table) in word
C+1 when the I/O data in
S and D contain unsigned
data (bit 11 of C = 0).

16-bit BCD16-bit binary (signed
or unsigned) or 16-bit BCD data

32-bit signed binary data Floating-point data

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to

to

to

Y0

X0

A B C

Y (Binary data)

Ymax

Xmax X (Binary data)
575

Special Math Instructions Section 3-14
3. Xmax < S
Converted value = Ymax

Up to 256 endpoints can be stored in the line-segment data table beginning at
C+1. The following 5 kinds of I/O data can be used:

• 16-bit unsigned BCD data

• 16-bit unsigned binary data

• 16-bit signed binary data (CS1-H/CJ1-H/CJ1M Only)

• 32-bit signed binary data (CS1-H/CJ1-H/CJ1M Only)

• Single-precision floating-point data (CS1-H/CJ1-H/CJ1M Only)

Setting the Data Format in Control Word C

• 16-bit Unsigned BCD Data
The input data and/or the output data can be 16-bit unsigned BCD data.
Also, the linear extrapolation function can be set to operate on the value
specified in S directly or on Xm–S. (Xm is the maximum value of X in the
line-segment data.)

Setting name Bit in C Setting

Input data (S) format 15 0: Binary
1: BCD

Output data (D) format 14 0: Binary
1: BCD

Source data form 13 0: Operate on S
1: Operate on Xm–S

Signed data specification for S and D 11 0: Unsigned data

Data length specification for S and D 10 Invalid (fixed at 16 bits)

Floating-point specification 09 0: Integer data

Yn

Yn+1

Xn Xn+1S

S−Xn

Xn+1−Xn

Yn+1−Yn

f(Y)=
Yn+1−Yn

Xn+1−Xn

D

Yn+ (S−Xn)

Y (binary data)

Equation:

Calculation
result

X (binary data)

Input data
576

Special Math Instructions Section 3-14
• 16-bit Unsigned Binary Data
The input data and/or the output data can be 16-bit unsigned binary data.
Also, the linear extrapolation function can be set to operate on the value
specified in S directly or on Xm–S. (Xm is the maximum value of X in the
line-segment data.)

• 16-bit Signed Binary Data (CS1-H, CJ1-H, CJ1M, and CS1D Only)

• 32-bit Signed Binary Data (CS1-H, CJ1-H, CJ1M, and CS1D Only)

Note If the “Data length specification for S and D” in bit 10 of C is set to 1
and a 16-bit constant is input for S, the input data will be converted
to 32-bit signed binary before the linear extrapolation calculation.

• Floating-point Data (CS1-H, CJ1-H, CJ1M, and CS1D Only)

Note If the “Floating-point specification” in bit 09 of C is set to 1, a constant
cannot be input for S.

Setting name Bit in C Setting

Input data (S) format 15 0: Binary
1: BCD

Output data (D) format 14 0: Binary
1: BCD

Source data form 13 0: Operate on S
1: Operate on Xm–S

Signed data specification for S and D 11 0: Unsigned data

Data length specification for S and D 10 Invalid (fixed at 16 bits)

Floating-point specification 09 0: Integer data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary

Output data (D) format 14 0: Binary

Source data form 13 0

Signed data specification for S and D 11 1: Signed data

Data length specification for S and D 10 0: 16-bit signed binary data

Floating-point specification 09 0: Integer data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary

Output data (D) format 14 0: Binary

Source data form 13 0

Signed data specification for S and D 11 1: Signed data

Data length specification for S and D 10 1: 32-bit signed binary data

Floating-point specification 09 0: Integer data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary

Output data (D) format 14 0: Binary

Source data form 13 0

Signed data specification for S and D 11 0

Data length specification for S and D 10 0

Floating-point specification 09 1: Floating-point data
577

Special Math Instructions Section 3-14
Flags

Precautions The actual result for SIN(90°) and COS(0°) is 1, but 9999 (0.9999) will be out-
put to R.

An error will occur if C is a constant greater than 0001.

An error will occur if linear extrapolation is specified but the X coordinates are
not in ascending order (X1 < X2 < ... < Xn< S< Xn+1).

An error will occur if linear extrapolation is specified and BCD input is speci-
fied (bit 15 of C ON) but S is not BCD.

An error will occur if a trigonometric function is specified (C=0000 or 0001) but
S is not BCD between 0000 and 0900.

Examples Sine Function (C: #0000)

The following example shows APR(069) used to calculate the sine of 30°.

Cosine Function (C: #0001)

The following example shows APR(069) used to calculate the cosine of 30°.
(SIN(30) = 0.8660)

Name Label Operation

Error Flag ER ON if C is a constant greater than 0001.
ON if C is a word address but the X coordinates are not in
ascending order (X1 ≤ X2 ≤ ... ≤ Xm).

ON if C is a word address and bits 9, 11, and 15 of C indi-
cate BCD input, but S is not BCD.
ON if C is a word address and bit 9 of C indicates floating-
point data, but S is a one-word constant.
ON if C is 0000 or 0001 but S is not BCD between 0000
and 0900.

OFF in all other cases.

Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of R is ON.
OFF in all other cases.

 S: D00000 R: D00100

 0 101 100 10–1 10–1 10–2 10–3 10–4

 0 3 0 0 5 0 0 0

Source data Result

Set the source data in 10–1 degrees.
(0000 to 0900, BCD)

Result data has four significant digits,
fifth and higher digits are ignored.
(0000 to 9999, BCD)

 S: D00010 R: D00200

 0 101
 100

 10–1
 10–1

 10–2
 10–3

 10–4

 0 3 0 0 8 6 6 0

Source data Result

Set the source data in 10–1 degrees.
(0000 to 0900, BCD)

Result data has four significant digits,
fifth and higher digits are ignored.
(0000 to 9999, BCD)
578

Special Math Instructions Section 3-14
Linear Extrapolation (C: Word Address)
Using 16-bit Unsigned BCD or Binary Data

APR(069) processes the input data specified in S based on the control data in
C and the line-segment data specified in the table beginning at C+1. The
result is output to D.

• Yn = f(Xn), Y0 = f(X0)

• Be sure that Xn–1 < Xn in all cases.

• Input all values of (Xn, Yn) as binary data.

This example shows how to construct a linear extrapolation with 12 coordi-
nates. The block of data is continuous, as it must be, from D00000 to D00026
(C to C + (2 × 12 + 2)). The input data is taken from CIO 0010, and the result
is output to CIO 0011.

In this case, the source word, CIO 0010, contains 0014, and f(0014) = 0726 is
output to R, CIO 0011.

Word Coordinate

C+1 Xm (max. X
value)

C+2 Y0

C+3 X1

C+4 Y1

C+5 X2

C+6 Y2

 ↓ ↓
C+(2m+1) Xm (max. X

value)

C+(2m+2) Ym

Y0

Y2

Y1

Y3

Y4

Ym

X0 X1 X2 X3 X4 Xm

X

Y

Y

Y0

Y1

Y2
Y4

Y3
Ym

X0 X1 X2 X3 X4 Xm X

D00000 000B Hex
D00001 05F0 Hex
D00002 0000 Hex
D00003 0005 Hex
D00004 0F00 Hex
D00005 001A Hex
D00006 0402 Hex

D00025 05F0 Hex
D00026 1F20 Hex

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

15 00

x=S
X12

Y0

X1

Y1

Y2

X2

X12
Y12

Bit Bit Content Coordinate

Output and input
both binary

(m–1 = 11: 12 line
segments)

↓ ↓ ↓
579

Special Math Instructions Section 3-14

The linear-extrapolation calculation is shown below.

X

Y

$1F20

$0F00

$0726

$0402

(0,0)
$0005 $0014 $001A $05F0

(x,y)

Values are all hexadecimal (Hex).

Y 0F00 0402 0F00–
001A 0005–
--------------------------------- 0014 0015–()×+=

Ω 0726=

Ω 0F00 0086 000F)×(–=
580

Special Math Instructions Section 3-14
Linear Extrapolation (C: Word Address)
Using 32-bit Signed Binary Data (CS1-H, CJ1-H, CJ1M, and CS1D Only)

In this example, APR(069) is used to convert the fluid height in a tank to fluid
volume based on the shape of the holding tank.

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

APR

C

S

R

X0
Y0

Ym

Xm

R
R+1

S
S+1

0

000000

Variation from
standard = X

Fluid volume= Y

Fluid height to volume
conversion table
(32-bit signed binary data)

Y data range:
−2,147,483,648 to
2,147,483,647

Y: Fluid volume

X: Variation from standard

Linear extrapolation of table

The linear extrapolation can use
signed source data if 32-bit signed
binary data is used.

High-resolution 32-bit
signed binary data X data range: −2,147,483,648 to 2,147,483,647

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to
581

Special Math Instructions Section 3-14
Linear Extrapolation (C: Word Address)
Using Floating-point Data (CS1-H, CJ1-H, CJ1M, and CS1D Only)

In this example, APR(069) is used to convert the fluid height in a tank to fluid
volume based on the shape of the holding tank.

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

X0

Y0

Ym

Xm

R
R+1

S
S+1

0

APR

C

S

R

000000

Fluid height = XFluid volume
= Y

Fluid height to volume
conversion table
(Floating-point data)

Y data range:
−∞, −3.402823 × 1038 to
−1.175494 × 10−38,
1.175494 × 10−38 to
3.402823 × 1038, or +∞

Y: Fluid volume

X: Fluid height

Linear extrapolation of table

The linear extrapolation can
provide a smooth, high-resolution
curve floating-point data is used.

High-resolution
floating point data

X data range:
−∞, −3.402823 × 1038 to −1.175494 × 10−38,
1.175494 × 10−38 to 3.402823 × 1038, or +∞

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to
582

Special Math Instructions Section 3-14
3-14-4 FLOATING POINT DIVIDE: FDIV(079)
Purpose Divides one 7-digit floating-point number by another. The floating-point num-

bers are expressed in scientific notation (7-digit mantissa and 1-digit expo-
nent).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

FDIV(079)

R

Dd

Dr

Dd: First dividend word

Dr: First divisor word

R: First result word

Variations Executed Each Cycle for ON Condition FDIV(079)

Executed Once for Upward Differentiation @FDIV(079)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
583

Special Math Instructions Section 3-14
Description FDIV(079) divides the floating-point value in Dd and Dd+1 by that in Dr and
Dr+1 and places the result in R and R+1.

To represent the floating-point values, the rightmost seven digits are used for
the mantissa and the leftmost digit is used for the exponent, as shown in the
diagram below. The leftmost digit can range from 0 to F; positive exponents
range from 0 to 7 and negative exponents range from 8 to F (0 to –7). The
rightmost 7 digits must be BCD.

Two more examples of floating-point values are:

6123 4567: 0.1234567 × 106 (6 = 0110 binary)

B123 4567: 0.1234567 × 10–3 (B = 1011 binary)

The following table shows the maximum and minimum values allowed.

Flags

Precautions The result is expressed as a floating-point value, so it has 7 significant digits.
The eighth and higher digits are eliminated.

The result must be between 0.1000000 × 10–7 and 0.9999999 × 107.

R+1 R

Quotient

Dr+1 Dr Dd+1 Dd

 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0: +
1: –

 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1

 = 0.1111113 x 10–2

mantissa (leftmost 3 digits)

First word Second word

mantissa (rightmost 4 digits)

sign of exponent

exponent (0 to 7)

Limit 8-digit hexadecimal Floating-point

Maximum value 7999 9999 0.9999999 × 107

Minimum value
(Divisor and dividend)

F000 0001 0.0000001 × 10–7

Minimum value
(Result)

F100 0000 0.1000000 × 10–7

Name Label Operation

Error Flag ER ON if the mantissa (leftmost 7 digits) in Dd+1 and Dd is
not BCD.
ON if the mantissa (leftmost 7 digits) in Dr+1 and Dr is not
BCD.
ON if the divisor (Dr+1 and Dr) is 0.

ON if the result is not between 0.1000000 × 10–7 and
0.9999999 × 107.
OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.
584

Special Math Instructions Section 3-14
Examples Basic Floating-point Division

When CIO 000000 is ON in the following example, FDIV(079) divides the
floating-point number in D00101 and D00100 by the floating-point number in
CIO 0021 and CIO 0020 and writes the result to D00301 and D00300.

Floating-point Division of Two BCD Numbers

In this example, the 4-digit BCD number in D00000 is divided by the 4-digit
BCD number in D00001 and the floating-point result is written to D00003 and
D00002.

To perform the floating point division, the BCD value in D00000 is converted
to floating-point format in D00101 and D00100 and the BCD value in D00001
is converted to floating-point format in D00103 and D00102.

 D00101 D00100
A 5 6 7 0 0 0 0 0.5670000 10–2

 CIO 0021 CIO 0020
B 1 2 3 4 5 6 7 0.1234567 10–3

 D00301 D00300
2 4 5 9 2 7 0 3 0.4592703 102

÷

×

×

×

585

Special Math Instructions Section 3-14
1,2,3... 1. D00100 and D00102 are set to 0000.

2. D00101 and D00103 are set to 4000.

3. MOVD(083) is used to move the digits of the original source words to the
proper digits in the 2-word floating-point formats.

1

2

3

4

5

6

7

@MOV

@MOV

@MOV

@MOV

@MOVD

@MOVD

@MOVD

@MOVD

@FDIV

 D00101 D00100
4 0 0 0 0 0 0 0

00004000

 D00103 D00102
4 0 0 0 0 0 0 0

00004000
586

Special Math Instructions Section 3-14
4. FDIV(079) divides the floating-point number in D00101 and D00100 by the
floating-point number in D00103 and D00102.

3-14-5 BIT COUNTER: BCNT(067)
Purpose Counts the total number of ON bits in the specified word(s).

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of words

The number of words must be 0001 to FFFF (1 to 65,535 words).

S: First source word

S and S+(N–1) must be in the same data area.

Operand Specifications

 D00000
3 4 5 2

 D00101 D00100
4 3 4 5 2 0 0 0

 D00001
0 0 7 9

 D00103 D00102
4 0 0 7 9 0 0 0

 D00101 D00100
4 3 4 5 2 0 0 0 0.3452000 104

 D00103 D00102
4 0 0 7 9 0 0 0 0.0079000 104

 D00003 D00002
2 4 3 6 9 6 2 0 0.4369620 102

÷

×

×

×

BCNT(067)

N

S

R

N: Number of words

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition BCNT(067)

Executed Once for Upward Differentiation @BCNT(067)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767
587

Special Math Instructions Section 3-14
Description BCNT(067) counts the total number of bits that are ON in all words between S
and S+(N–1) and places the result in R.

Flags

Precautions An error will occur if N=0000 or the result exceeds FFFF.

Example When CIO 000000 is ON in the following example, BCNT(067) counts the
total number of ON bits in the 10 words from CIO 0100 through CIO 0109 and
writes the result to D00100.

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0001 to #FFFF
(binary) or &1 to
&65,535

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N S R

S+(N–1)

R

to

N words

Binary result

Counts the number
of ON bits.

Name Label Operation

Error Flag ER ON if N is 0000.
ON if result exceeds FFFF.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

R:D00100

000000

&10

D100

D00100

N
S
R

BCNT

to to

Counts the number
of ON bits (35).

23 hexadecimal
(35 decimal)
588

Floating-point Math Instructions Section 3-15
3-15 Floating-point Math Instructions
The Floating-point Math Instructions convert data and perform floating-point
arithmetic operations. CS/CJ-series CPU Units support the following instruc-
tions.

In addition to the instructions listed above, the CS1-H/CJ1-H CPU Units sup-
port the following floating-point comparison and conversion instructions. Refer
to 3-16-21 Double-precision Floating-point Input Instructions for details on
double-precision floating-point instructions.

Data Format Floating-point data expresses real numbers using a sign, exponent, and man-
tissa. When data is expressed in floating-point format, the following formula
applies.

Instruction Mnemonic Function code Page

FLOATING TO 16-BIT FIX 450 594

FLOATING TO 32-BIT FIXL 451 596

16-BIT TO FLOATING FLT 452 597

32-BIT TO FLOATING FLTL 453 599

FLOATING-POINT ADD +F 454 601

FLOATING-POINT SUB-
TRACT

–F 455 603

FLOATING-POINT MULTI-
PLY

*F 456 605

FLOATING-POINT DIVIDE /F 457 607

DEGREES TO RADIANS RAD 458 609

RADIANS TO DEGREES DEG 459 610

SINE SIN 460 612

HIGH-SPEED SINE SINQ 475 614

COSINE COS 461 615

HIGH-SPEED COSINE COSQ 476 617

TANGENT TAN 462 619

HIGH-SPEED TANGENT TANQ 477 621

ARC SINE ASIN 463 623

ARC COSINE ACOS 464 625

ARC TANGENT ATAN 465 627

SQUARE ROOT SQRT 466 629

EXPONENT EXP 467 631

LOGARITHM LOG 468 633

EXPONENTIAL POWER PWR 840 635

MOVE FLOATING-POINT
(SINGLE)

MOVF 469 649

Instruction Mnemonic Function code Page

Single-precision Floating-
point Symbol Comparison
Instructions
(*CS1-H/CJ1-H/CJ1M
Only)

LD, AND, OR
+
=F, <>F, <F, <=F, >F,
or >=F

329 to 334 636

FLOATING-POINT TO
ASCII (*CS1-H/CJ1-H/
CJ1M Only)

FSTR 448 640

ASCII TO FLOATING-
POINT (*CS1-H/CJ1-H/
CJ1M Only)

FVAL 449 645
589

Floating-point Math Instructions Section 3-15
Real number = (–1)s 2e–127 (1.f)

s: Sign
e: Exponent
f: Mantissa

The floating-point data format conforms to the IEEE754 standards. Data is
expressed in 32 bits, as follows:

Number of Digits The number of effective digits for floating-point data is seven digits for deci-
mal.

Floating-point Data The following data can be expressed by floating-point data:

• –∞

• –3.402823 x 1038 ≤ value ≤ –1.402398 x 10–45

• 0

• 1.402398 x 10–45 ≤ value ≤ 3.402823 x 1038

• +∞
• Not a number (NaN)

Special Numbers The formats for NaN, ±∞, and 0 are as follows:

NaN*: e = 255, f ≠ 0
+∞: e = 255, f = 0, s= 0
–∞: e = 255, f = 0, s= 1
0: e = 0

*NaN (not a number) is not a valid floating-point number. Executing floating-
point calculation instructions will not result in NaN.

Writing Floating-point
Data

When floating-point is specified for the data format in the I/O memory edit dis-
play in the CX-Programmer, standard decimal numbers input in the display
are automatically converted to the floating-point format shown above
(IEEE754-format) and written to I/O Memory. Data written in the IEEE754-for-
mat is automatically converted to standard decimal format when monitored on
the display.

Data No. of bits Contents

s: sign 1 0: positive; 1: negative

e: exponent 8 The exponent (e) value ranges from 0 to 255.
The actual exponent is the value remaining after
127 is subtracted from e, resulting in a range of
–127 to 128. “e=0” and “e=255” express special
numbers.

f: mantissa 23 The mantissa portion of binary floating-point
data fits the formal 2.0 > 1.f ≥1.0.

s e f

31 30 23 22 0

Sign Exponent Mantissa

−1.402398 x 10
–45

1.402398 x 10
–45

– ∞ +–3.402823 x 1038 3.402823 x 1038–1 0 1 ∞
590

Floating-point Math Instructions Section 3-15
It is not necessary for the user to be aware of the IEEE754 data format when
reading and writing floating-point data. It is only necessary to remember that
floating point values occupy two words each.

Numbers Expressed as Floating-point Values
The following types of floating-point numbers can be used.

Note A non-normalized number is one whose absolute value is too small to be
expressed as a normalized number. Non-normalized numbers have fewer sig-
nificant digits. If the result of calculations is a non-normalized number (includ-
ing intermediate results), the number of significant digits will be reduced.

Normalized Numbers Normalized numbers express real numbers. The sign bit will be 0 for a positive
number and 1 for a negative number.

The exponent (e) will be expressed from 1 to 254, and the real exponent will
be 127 less, i.e., –126 to 127.

The mantissa (f) will be expressed from 0 to 233 – 1, and it is assume that, in
the real mantissa, bit 233 is 1 and the binary point follows immediately after it.

Normalized numbers are expressed as follows:

(–1)(sign s) x 2(exponent e)–127 x (1 + mantissa x 2–23)

Example

Sign: –
Exponent: 128 – 127 = 1
Mantissa: 1 + (222 + 221) x 2–23 = 1 + (2–1 + 2–2) = 1 + 0.75 = 1.75
Value: –1.75 x 21 = –3.5

Non-normalized Numbers Non-normalized numbers express real numbers with very small absolute val-
ues. The sign bit will be 0 for a positive number and 1 for a negative number.

The exponent (e) will be 0, and the real exponent will be –126.

The mantissa (f) will be expressed from 1 to 233 – 1, and it is assume that, in
the real mantissa, bit 233 is 0 and the binary point follows immediately after it.

Non-normalized numbers are expressed as follows:

(–1)(sign s) x 2–126 x (mantissa x 2–23)

Example

Sign: –
Exponent: –126
Mantissa: 0 + (222 + 221) x 2–23 = 0 + (2–1 + 2–2) = 0 + 0.75 = 0.75
Value: –0.75 x 2–126

15

n+1

n
7 0

f

s e

6

Mantissa (f) Exponent (e)

0 Not 0 and
not all 1’s

All 1’s (255)

0 0 Normalized number Infinity

Not 0 Non-normalized
number

NaN

1 1 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0

0 0 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0
591

Floating-point Math Instructions Section 3-15
Zero Values of +0.0 and –0.0 can be expressed by setting the sign to 0 for positive
or 1 for negative. The exponent and mantissa will both be 0. Both +0.0 and
–0.0 are equivalent to 0.0. Refer to Floating-point Arithmetic Results, below,
for differences produced by the sign of 0.0.

Infinity Values of +∞ and –∞ can be expressed by setting the sign to 0 for positive or 1
for negative. The exponent will be 255 (28 – 1) and the mantissa will be 0.

NaN NaN (not a number) is produced when the result of calculations, such as 0.0/
0.0, ∞/∞, or ∞–∞, does not correspond to a number or infinity. The exponent
will be 255 (28 – 1) and the mantissa will be not 0.

Note There are no specifications for the sign of NaN or the value of the mantissa
field (other than to be not 0).

Floating-point Arithmetic Results

Rounding Results The following methods will be used to round results when the number of digits
in the accurate result of floating-point arithmetic exceeds the significant digits
of internal processing expressions.

If the result is close to one of two internal floating-point expressions, the
closer expression will be used. If the result is midway between two internal
floating-point expressions, the result will be rounded so that the last digit of
the mantissa is 0.

Overflows, Underflows,
and Illegal Calculations

Overflows will be output as either positive or negative infinity, depending on
the sign of the result. Underflows will be output as either positive or negative
zero, depending on the sign of the result.

Illegal calculations will result in NaN. Illegal calculations include adding infinity
to a number with the opposite sign, subtracting infinity from a number with the
opposite sign, multiplying zero and infinity, dividing zero by zero, or dividing
infinity by infinity.

The value of the result may not be correct if an overflow occurs when convert-
ing a floating-point number to an integer.

Precautions in Handling
Special Values

The following precautions apply to handling zero, infinity, and NaN.

• The sum of positive zero and negative zero is positive zero.

• The difference between zeros of the same sign is positive zero.

• If any operand is a NaN, the results will be a NaN.

• Positive zero and negative zero are treated as equivalent in comparisons.

• Comparison or equivalency tests on one or more NaN will always be true
for != and always be false for all other instructions.

Floating-point Calculation Results
When the absolute value of the result is greater than the maximum value that
can be expressed for floating-point data, the Overflow Flag will turn ON and
the result will be output as ±∞. If the result is positive, it will be output as +∞; if
negative, then –∞.

The Equals Flag will only turn ON when both the exponent (e) and the man-
tissa (f) are zero after a calculation. A calculation result will also be output as
zero when the absolute value of the result is less than the minimum value that
can be expressed for floating-point data. In that case the Underflow Flag will
turn ON.

Example In this program example, the X-axis and Y-axis coordinates (x, y) are provided
by 4-digit BCD content of D00000 and D00001. The distance (r) from the ori-
592

Floating-point Math Instructions Section 3-15
gin and the angle (θ, in degrees) are found and output to D00100 and
D00101. In the result, everything to the right of the decimal point is truncated.

0

y

x

P (100, 100)

r

θ

(2)

(3)

(4)

(1)
D00000
D00200

D00001
D00201

D00201
D00204

D00202
D00202
D00206

D00204
D00204
D00208

D00206
D00208
D00210

D00210
D00212

D00204
D00202
D00214

D00214
D00216

D00216
D00218

D00212
D00220

D00218
D00221

D00220
D00100

D00221
D00101

D00200
D00202

000000
593

Floating-point Math Instructions Section 3-15
1. This section of the program converts the data from BCD to floating-point.

a) The data area from D00200 onwards is used as a work area.

b) First BIN(023) is used to temporarily convert the BCD data to binary
data, and then FLT(452) is used to convert the binary data to floating-
point data.

c) The value of x that has been converted to floating-point data is output
to D00203 and D00202.

d) The value of y that has been converted to floating-point data is output
to D00205 and D00204.

2. In order to find the distance r, Floating-point Math Instructions are used to

calculate the square root of x2+y2. The result is then output to D00213 and
D00212 as floating-point data.

3. In order to find the angle θ, Floating-point Math Instructions are used to

calculate tan–1 (y/x). ATAN(465) outputs the result in radians, so DEG(459)
is used to convert to degrees. The result is then output to D00219 and
D00218 as floating-point data.

4. The data is converted back from floating-point to BCD.

a) First FIX(450) is used to temporarily convert the floating-point data to
binary data, and then BCD(024) is used to convert the binary data to
BCD data.

b) The distance r is output to D00100.

c) The angle θ is output to D00101.

3-15-1 FLOATING TO 16-BIT: FIX(450)
Purpose Converts a 32-bit floating-point value to 16-bit signed binary data and places

the result in the specified result word.

Ladder Symbol

Variations

DM Contents

D00000 #0100

D00001 #0100

x

y

D00100 0 1 4 1

D00101 0 0 4 5

r

(BCD)

(BCD)

(BCD)

(BCD)

Distance r =

Angle θ = tan−1

χ2 y2+

y
χ--- 

 

Calculations

Distance r =

Angle θ = tan−1

1002 1002
+ 141.4214=

100
100

 
  180 π÷× 45.0=

Examples

FIX(450)

S

R

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition FIX(450)

Executed Once for Upward Differentiation @FIX(450)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
594

Floating-point Math Instructions Section 3-15
Applicable Program Areas

Operand Specifications

Description FIX(450) converts the integer portion of the 32-bit floating-point number in
S+1 and S (IEEE754-format) to 16-bit signed binary data and places the
result in R.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. The integer portion of the floating-point data must be
within the range of –32,768 to 32,767.

Example conversions:
A floating-point value of 3.5 is converted to 3.
A floating-point value of –3.5 is converted to –3.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A958 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+1 S

R

Floating-point data (32 bits)

Signed binary data (16 bits)
595

Floating-point Math Instructions Section 3-15
Flags

Precautions The content of S+1 and S must be floating-point data and the integer portion
must be in the range of –32,768 to 32,767.

3-15-2 FLOATING TO 32-BIT: FIXL(451)
Purpose Converts a 32-bit floating-point value to 32-bit signed binary data and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a number (NaN).
ON if the integer portion of S+1 and S is not within the
range of –32,768 to 32,767.
OFF in all other cases.

Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.

OFF in all other cases.

FIXL(451)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition FIXL(451)

Executed Once for Upward Differentiation @FIXL(451)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)
596

Floating-point Math Instructions Section 3-15
Description FIXL(451) converts the integer portion of the 32-bit floating-point number in
S+1 and S (IEEE754-format) to 32-bit signed binary data and places the
result in R+1 and R.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. (The integer portion of the floating-point data must be
within the range of –2,147,483,648 to 2,147,483,647.)

Example conversions:
A floating-point value of 2,147,483,640.5 is converted to 2,147,483,640.
A floating-point value of –214,748,340.5 is converted to –214,748,340.

Flags

Precautions The content of S+1 and S must be floating-point data and the integer portion
must be in the range of –2,147,483,648 to 2,147,483,647.

3-15-3 16-BIT TO FLOATING: FLT(452)
Purpose Converts a 16-bit signed binary value to 32-bit floating-point data and places

the result in the specified result words.

Ladder Symbol

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –()IR15

Area S R

S+1 S

R+1 R

Floating-point data (32 bits)

Signed binary data (32 bits)

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a number (NaN).
ON if the integer portion of S+1 and S is not within the
range of –2,147,483,648 to 2,147,483,647.

OFF in all other cases.

Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON after execution.
OFF in all other cases.

FLT(452)

S

R

S: Source word

R: First result word
597

Floating-point Math Instructions Section 3-15
Variations

Applicable Program Areas

Operand Specifications

Description FLT(452) converts the 16-bit signed binary value in S to 32-bit floating-point
data (IEEE754-format) and places the result in R+1 and R. A single 0 is
added after the decimal point in the floating-point result.

Only values within the range of –32,768 to 32,767 can be specified for S. To
convert signed binary data outside of that range, use FLTL(453).

Variations Executed Each Cycle for ON Condition FLT(452)

Executed Once for Upward Differentiation @FLT(452)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO 6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to D32766

EM Area without bank E00000 to E32767 E00000 to E32766

EM Area with bank En_00000 to En_32767
(n= 0 to C)

En_00000 to En_32766
(n= 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

S

Floating-point data (32 bits)

Signed binary data (16 bits)
598

Floating-point Math Instructions Section 3-15
Example conversions:
A signed binary value of 3 is converted to 3.0.
A signed binary value of –3 is converted to –3.0.

Flags

Precautions The content of S must contain signed binary data with a (decimal) value in the
range of –32,768 to 32,767.

3-15-4 32-BIT TO FLOATING: FLTL(453)
Purpose Converts a 32-bit signed binary value to 32-bit floating-point data and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Negative Flag N ON if the result is negative.
OFF in all other cases.

FLTL(453)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition FLTL(453)

Executed Once for Upward Differentiation @FLTL(453)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)
599

Floating-point Math Instructions Section 3-15
Description FLTL(453) converts the 32-bit signed binary value in S+1 and S to 32-bit float-
ing-point data (IEEE754-format) and places the result in R+1 and R. A single
0 is added after the decimal point in the floating-point result.

Signed binary data within the range of –2,147,483,648 to 2,147,483,647 can
be specified for S+1 and S. The floating point value has 24 significant binary
digits (bits). The result will not be exact if a number greater than 16,777,215
(the maximum value that can be expressed in 24-bits) is converted by
FLTL(453).

Example Conversions:
A signed binary value of 16,777,215 is converted to 16,777,215.0.
A signed binary value of –16,777,215 is converted to –15,777,215.0.

Flags

Precautions The result will not be exact if a number with an absolute value greater than
16,777,215 (the maximum value that can be expressed in 24-bits) is con-
verted.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1

Floating-point data (32 bits)

Signed binary data (32 bits)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Negative Flag N ON if the result is negative.

OFF in all other cases.
600

Floating-point Math Instructions Section 3-15
3-15-5 FLOATING-POINT ADD: +F(454)
Purpose Adds two 32-bit floating-point numbers and places the result in the specified

result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+F(454)

R

Au

Ad

Au: First augend word

AD: First addend word

R: First result word

Variations Executed Each Cycle for ON Condition +F(454)

Executed Once for Upward Differentiation @+F(454)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
601

Floating-point Math Instructions Section 3-15
Description +F(454) adds the 32-bit floating-point number in Ad+1 and Ad to the 32-bit
floating-point number in Au+1 and Au and places the result in R+1 and R.
(The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of augend and addend data will produce the results
shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. With CJ1H-CPU@@H-R CPU Units, an undetermined value will be output.

3. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The augend (Au+1 and Au) and Addend (Ad+1 and Ad) data must be in
IEEE754 floating-point data format.

Augend

Addend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞

(See note 2.)
–∞

(See note 2.)

+∞ +∞ +∞
(See note 2.)

+∞ See note 3.

–∞ –∞ –∞
(See note 2.)

See note 3. –∞

NaN See note 3.

R+1 R

+

AuAu+1

AdAd+1

Result (floating-point data, 32 bits)

Augend (floating-point data, 32 bits)

Addend (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the augend or addend data is not recognized as
floating-point data.
ON if the augend or addend data is not a number (NaN).

ON if +∞ and –∞ are added.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
602

Floating-point Math Instructions Section 3-15
3-15-6 FLOATING-POINT SUBTRACT: –F(455)
Purpose Subtracts one 32-bit floating-point number from another and places the result

in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–F(455)

R

Mi

Su

Mi: First Minuend word

Su: First Subtrahend word

R: First result word

Variations Executed Each Cycle for ON Condition –F(455)

Executed Once for Upward Differentiation @–F(455)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
603

Floating-point Math Instructions Section 3-15
Description –F(455) subtracts the 32-bit floating-point number in Su+1 and Su from the
32-bit floating-point number in Mi+1 and Mi and places the result in R+1 and
R. (The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of minuend and subtrahend data will produce the
results shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. With CJ1H-CPU@@H-R CPU Units, an undetermined value will be output.

3. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Minuend (Mi+1 and Mi) and Subtrahend (Su+1 and Su) data must be in
IEEE754 floating-point data format.

Minuend

Subtrahend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞

(See note 2.)
–∞

(See note 2.)

+∞ –∞
(See note 2.)

–∞
(See note 2.)

See note 3. –∞

–∞ +∞ +∞ +∞ See note 3.

NaN See note 3.

R+1 R

–

MiMi+1

SuSu+1

Result (floating-point data, 32 bits)

Subtrahend (floating-point data, 32 bits)

Minuend (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the minuend or subtrahend data is not recognized
as floating-point data.
ON if the minuend or subtrahend is not a number (NaN).
ON if +∞ is subtracted from +∞.

ON if –∞ is subtracted from –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
604

Floating-point Math Instructions Section 3-15
3-15-7 FLOATING-POINT MULTIPLY: *F(456)
Purpose Multiplies two 32-bit floating-point numbers and places the result in the speci-

fied result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

*F(456)

R

Md

Mr

Md: First Multiplicand word

Mr: First Multiplier word

R: First result word

Variations Executed Each Cycle for ON Condition *F(456)

Executed Once for Upward Differentiation @*F(456)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
605

Floating-point Math Instructions Section 3-15
Description *F(456) multiplies the 32-bit floating-point number in Md+1 and Md by the 32-
bit floating-point number in Mr+1 and Mr and places the result in R+1 and R.
(The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of multiplicand and multiplier data will produce the
results shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. With CJ1H-CPU@@H-R CPU Units, an undetermined value will be output.

3. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Multiplicand (Md+1 and Md) and Multiplier (Mr+1 and Mr) data must be in
IEEE754 floating-point data format.

Multiplicand

Multiplier 0 Numeral +∞ –∞ NaN

0 0 0 See note 3. See note 3.

Numeral 0 See note 1. +/–∞
(See note 2.)

+/–∞
(See note 2.)

+∞ See note 3. +/–∞
(See note 2.)

+∞ –∞

–∞ See note 3. +/–∞
(See note 2.)

–∞ +∞

NaN See note 3.

R+1 R

Md Multiplicand (floating-point data, 32 bits)Md+1

Mr Multiplier (floating-point data, 32 bits)Mr+1

Result (floating-point data, 32 bits)

×

Name Label Operation

Error Flag ER ON if the multiplicand or multiplier data is not recognized
as floating-point data.
ON if the multiplicand or multiplier is not a number (NaN).

ON if +∞ and 0 are multiplied.
ON if –∞ and 0 are multiplied.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.
606

Floating-point Math Instructions Section 3-15
3-15-8 FLOATING-POINT DIVIDE: /F(457)
Purpose Divides one 32-bit floating-point number by another and places the result in

the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/F(457)

R

Dd

Dr

Dd: First Dividend word

Dr: First Divisor word

R: First result word

Variations Executed Each Cycle for ON Condition /F(457)

Executed Once for Upward Differentiation @/F(457)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
607

Floating-point Math Instructions Section 3-15
Description /F(457) divides the 32-bit floating-point number in Dd+1 and Dd by the 32-bit
floating-point number in Dr+1 and Dr and places the result in R+1 and R. (The
floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of dividend and divisor data will produce the results
shown in the following table.

Note 1. The results will be zero for underflows.

2. The results could be zero (including underflows), a numeral, +∞, or –∞.

3. With CJ1H-CPU@@H-R CPU Units, an undetermined value will be output.

4. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Dividend (Dd+1 and Dd) and Divisor (Dr+1 and Dr) data must be in
IEEE754 floating-point data format.

Multiplicand

Multiplier 0 Numeral +∞ –∞ NaN

0 See note 4. +/–∞
(See note 3.)

+∞
(See note 3.)

–∞
(See note 3.)

Numeral 0 See note 2. +/–∞ +/–∞
+∞ 0 0 (See notes

1 and 3.)
See note 4. See note 4.

–∞ 0 0 (See notes
1 and 3.)

See note 4. See note 4.

NaN See note 4.

R+1 R

÷

Dd Dividend (floating-point data, 32 bits)Dd+1

Dr Divisor (floating-point data, 32 bits)Dr+1

Result (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the dividend or divisor data is not recognized as
floating-point data.
ON if the dividend or divisor is not a number (NaN).
ON if the dividend and divisor are both 0.

ON if the dividend and divisor are both +∞ or –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
608

Floating-point Math Instructions Section 3-15
3-15-9 DEGREES TO RADIANS: RAD(458)
Purpose Converts a 32-bit floating-point number from degrees to radians and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

RAD(458)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition RAD(458)

Executed Once for Upward Differentiation @RAD(458)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
609

Floating-point Math Instructions Section 3-15
Description RAD(458) converts the 32-bit floating-point number in S+1 and S from
degrees to radians and places the result in R and R+1. (The floating point
source data must be in IEEE754 format.)

Degrees are converted to radians by means of the following formula:

Degrees × π/180 = radians

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-15-10 RADIANS TO DEGREES: DEG(459)
Purpose Converts a 32-bit floating-point number from radians to degrees and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

R+1 R

SS+1 Source (degrees, 32-bit floating-point data)

Result (radians, 32-bit floating-point data)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

DEG(459)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition DEG(459)

Executed Once for Upward Differentiation @DEG(459)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
610

Floating-point Math Instructions Section 3-15
Operand Specifications

Description DEG(459) converts the 32-bit floating-point number in S+1 and S from radians
to degrees and places the result in R+1 and R. (The floating point source data
must be in IEEE754 format.)

Radians are converted to degrees by means of the following formula:

Radians × 180/π = degrees

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to+2047 ,IR0 to –2048 to+2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1 Source (radians, 32-bit floating-point data)

Result (degrees, 32-bit floating-point data)
611

Floating-point Math Instructions Section 3-15
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-15-11 SINE: SIN(460)
Purpose Calculates the sine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

SIN(460)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SIN(460)

Executed Once for Upward Differentiation @SIN(460)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)
612

Floating-point Math Instructions Section 3-15
Description SIN(460) calculates the sine of the angle (in radians) expressed as a 32-bit
floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-15-22 LOGARITHM: LOG(468) DEGREES TO RADIANS:
RAD(458).

The following diagram shows the relationship between the angle and result.

Flags

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1SIN Source (32-bit floating-point data)

Result (32-bit floating-point data)

R S: Angle (radian) data
R: Result (sine)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF OFF
613

Floating-point Math Instructions Section 3-15
Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-15-12 HIGH-SPEED SINE: SINQ(475)
Purpose Calculates the sine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Note These instructions can be used in the CJ1-H-R CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

Name Label Operation

SINQ(475)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SINQ(475)

Executed Once for Upward Differentiation @SINQ(475)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Can be specified. ---

Data Registers ---
614

Floating-point Math Instructions Section 3-15
Description SINQ(475) calculates the sine of the angle (in radians) expressed as a 32-bit
floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an unpredictable value will be
output, but the Error Flag will not be turned ON. For information on converting
between degrees and radians, see 3-15-9 DEGREES TO RADIANS:
RAD(458) and 3-15-10 RADIANS TO DEGREES: DEG(459).
The following diagram shows the relationship between the angle and result.

Precautions SINQ(475) differs from SIN(460) in the following respects:

• The instruction has improved performance.

• The instruction length is 8 steps.

• The Condition Flags are not refreshed.

• An unpredictable value will be output if the angle data is out-of-range.

• The data cannot be input or output at a Programming Console. A question
mark will be displayed.

3-15-13 COSINE: COS(461)
Purpose Calculates the cosine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1SIN Source (32-bit floating-point data)

Result (32-bit floating-point data)

3
2

π
2

π
2

3
2 π π−2 π −π

0
π 2 π

−1

1

S

R

S: Angle (radian) data
R: Result (sine)

−−

COS(461)

S

R

S: First source word

R: First result word
615

Floating-point Math Instructions Section 3-15
Variations

Applicable Program Areas

Operand Specifications

Description COS(461) calculates the cosine of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the

Variations Executed Each Cycle for ON Condition COS(461)

Executed Once for Upward Differentiation @COS(461)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1COS Source (32-bit floating-point data)

Result (32-bit floating-point data)
616

Floating-point Math Instructions Section 3-15
instruction will not be executed. For information on converting from degrees to
radians, see 3-15-9 DEGREES TO RADIANS: RAD(458).

The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-15-14 HIGH-SPEED COSINE: COSQ(476)
Purpose Calculates the cosine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Note These instructions can be used in the CJ1-H-R CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

R S: Angle (radian) data
R: Result (cosine)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

COSQ(476)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition COSQ(476)

Executed Once for Upward Differentiation @COSQ(476)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK
617

Floating-point Math Instructions Section 3-15
Operand Specifications

Description COSQ(476) calculates the cosine of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an unpredictable value will be
output, but the Error Flag will not be turned ON. For information on converting
between degrees and radians, see 3-15-9 DEGREES TO RADIANS:
RAD(458) and 3-15-10 RADIANS TO DEGREES: DEG(459).
The following diagram shows the relationship between the angle and result.

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants Can be specified. ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1COS Source (32-bit floating-point data)

Result (32-bit floating-point data)

3
2

π
2

π
2

3
2π π−2 π −π

0

−1

1

π 2 π

S

D
S: Angle (radian) data
R: Result (cosine)

−−
618

Floating-point Math Instructions Section 3-15
Precautions COSQ(476) differs from COS(461) in the following respects:

• The instruction has improved performance.

• The instruction length is 8 steps.

• The Condition Flags are not refreshed.

• An unpredictable value will be output if the angle data is out-of-range.

• The data cannot be input or output at a Programming Console. A question
mark will be displayed.

3-15-15 TANGENT: TAN(462)
Purpose Calculates the tangent of a 32-bit floating-point number (in radians) and

places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

TAN(462)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition TAN(462)

Executed Once for Upward Differentiation @TAN(462)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

619

Floating-point Math Instructions Section 3-15
Description TAN(462) calculates the tangent of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-15-9 DEGREES TO RADIANS: RAD(458).

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the angle and result.

Flags

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1TAN Source (32-bit floating-point data)

Result (32-bit floating-point data)

R S: Angle (radian) data

R: Result (tangent)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.
620

Floating-point Math Instructions Section 3-15
Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-15-16 HIGH-SPEED TANGENT: TANQ(477)
Purpose Calculates the tangent of a 32-bit floating-point number (in radians) and

places the result in the specified result words.

Note These instructions can be used in the CJ1-H-R CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

Name Label Operation

TANQ(477)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition TANQ(477)

Executed Once for Upward Differentiation @TANQ(477)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants Can be specified. ---
621

Floating-point Math Instructions Section 3-15
Description TANQ(477) calculates the tangent of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an unpredictable value will be
output, but the Error Flag will not be turned ON. For information on converting
between degrees and radians, see 3-15-9 DEGREES TO RADIANS:
RAD(458) and 3-15-10 RADIANS TO DEGREES: DEG(459).
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the result will be output as ±∞ or 0.

The following diagram shows the relationship between the angle and result.

Precautions TANQ(477) differs from TAN(462) in the following respects:

• The instruction has improved performance.

• The instruction length is 15 steps.

• The Condition Flags are not refreshed.

• An unpredictable value will be output if the angle data is out-of-range.

• The data cannot be input or output at a Programming Console. A question
mark will be displayed.

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1TAN Source (32-bit floating-point data)

Result (32-bit floating-point data)

3
2

π
2

π
2

3
2π π−2 π −π

0

−1

1

π 2 π
S

R

R: Result (tangent)
S: Angle (radian) data

− −
622

Floating-point Math Instructions Section 3-15
• An unpredictable value will be output if the angle data is nπ/2
(n =, -3, -1, 1, 3.....).

3-15-17 ARC SINE: ASIN(463)
Purpose Calculates the arc sine of a 32-bit floating-point number and places the result

in the specified result words. (The arc sine function is the inverse of the sine
function; it returns the angle that produces a given sine value between –1 and
1.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

ASIN(463)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ASIN(463)

Executed Once for Upward Differentiation @ASIN(463)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---
623

Floating-point Math Instructions Section 3-15
Description ASIN(463) computes the angle (in radians) for a sine value expressed as a
32-bit floating-point number in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words R+1 and R as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1SIN
–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data (sine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.
624

Floating-point Math Instructions Section 3-15
Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-15-18 ARC COSINE: ACOS(464)
Purpose Calculates the arc cosine of a 32-bit floating-point number and places the

result in the specified result words. (The arc cosine function is the inverse of
the cosine function; it returns the angle that produces a given cosine value
between –1 and 1.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

ACOS(464)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ACOS(464)

Executed Once for Upward Differentiation @ACOS(464)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF

(binary)

Data Registers ---
625

Floating-point Math Instructions Section 3-15
Description ACOS(464) computes the angle (in radians) for a cosine value expressed as a
32-bit floating-point number in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words R+1 and R as an angle (in radians) within the
range of 0 to π.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1COS–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R
S: Input data (cosine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.
626

Floating-point Math Instructions Section 3-15
3-15-19 ARC TANGENT: ATAN(465)
Purpose Calculates the arc tangent of a 32-bit floating-point number and places the

result in the specified result words. (The arc tangent function is the inverse of
the tangent function; it returns the angle that produces a given tangent value.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S

R

ATAN(465)

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ATAN(465)

Executed Once for Upward Differentiation @ATAN(465)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
627

Floating-point Math Instructions Section 3-15
Description ATAN(465) computes the angle (in radians) for a tangent value expressed as
a 32-bit floating-point number in S+1 and S and places the result in R+1 and
R.
(The floating point source data must be in IEEE754 format.)

The result is output to words R+1 and R as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

R+1 R

SS+1TAN–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data (tangent)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.
628

Floating-point Math Instructions Section 3-15
3-15-20 SQUARE ROOT: SQRT(466)
Purpose Calculates the square root of a 32-bit floating-point number and places the

result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

SQRT(466)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SQRT(466)

Executed Once for Upward Differentiation @SQRT(466)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
629

Floating-point Math Instructions Section 3-15
Description SQRT(466) calculates the square root of the 32-bit floating-point number in
S+1 and S and places the result in R+1 and R. (The floating point source data
must be in IEEE754 format.)

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

R+1 R

SS+1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is negative.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N OFF
630

Floating-point Math Instructions Section 3-15
3-15-21 EXPONENT: EXP(467)
Purpose Calculates the natural (base e) exponential of a 32-bit floating-point number

and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

EXP(467)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition EXP(467)

Executed Once for Upward Differentiation @EXP(467)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to 4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
631

Floating-point Math Instructions Section 3-15
Description EXP(467) calculates the natural (base e) exponential of the 32-bit floating-
point number in S+1 and S and places the result in R+1 and R. In other words,
EXP(467) calculates ex (x = source) and places the result in R+1 and R.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

R+1 R

SS+1

e
Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N OFF
632

Floating-point Math Instructions Section 3-15
3-15-22 LOGARITHM: LOG(468)
Purpose Calculates the natural (base e) logarithm of a 32-bit floating-point number and

places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

LOG(468)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition LOG(468)

Executed Once for Upward Differentiation @LOG(468)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
633

Floating-point Math Instructions Section 3-15
Description LOG(468) calculates the natural (base e) logarithm of the 32-bit floating-point
number in S+1 and S and places the result in R+1 and R.

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

R+1 R

SS+1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

loge

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is negative.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.
634

Floating-point Math Instructions Section 3-15
3-15-23 EXPONENTIAL POWER: PWR(840)
Purpose Raises a 32-bit floating-point number to the power of another 32-bit floating-

point number.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

PWR(840)

B

E

R

B: First base word

E: First exponent word

R: First result word

Variations Executed Each Cycle for ON Condition PWR(840)

Executed Once for Upward Differentiation @PWR(840)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B E R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
635

Floating-point Math Instructions Section 3-15
Description PWR(840) raises the 32-bit floating-point number in B+1 and B to the power
of the 32-bit floating-point number in E+1 and E. In other words, PWR(840)
calculates XY (X = B+1 and B; Y = E+1 and E).

For example, when the base words (B+1 and B) contain 3.1 and the exponent
words (E+1 and E) contain 3, the result is 3.13 or 29.791.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON.

Flags

Precautions The base (B+1 and B) and the exponent (E+1 and E) must be in IEEE754
floating-point data format.

3-15-24 Single-precision Floating-point Comparison Instructions
Purpose These input comparison instructions compare two single-precision floating

point values (32-bit IEEE754 constants and/or the contents of specified
words) and create an ON execution condition when the comparison condition
is true.

These instructions are supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU
Units only.

Note Refer to 3-7-1 Input Comparison Instructions (300 to 328) for details on the
signed and unsigned binary input comparison instructions and 3-16-21 Dou-
ble-precision Floating-point Input Instructions for details on double-precision
floating-point input comparison instructions.

E+1 E

B+1 B R+1 R

Exponent data

Base data

Name Label Operation

Error Flag ER ON if the base (B+1 and B) or exponent (E+1 and E) is
not recognized as floating-point data.
ON if the base (B+1 and B) or exponent (E+1 and E) is
not a number (NaN).
ON if the base (B+1 and B) is 0 and the exponent (E+1
and E) is less than 0. (Division by 0)

ON if the base (B+1 and B) is negative and the exponent
(E+1 and E) is non-integer. (Root of a negative number)
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
636

Floating-point Math Instructions Section 3-15
Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The input comparison instruction compares the data specified in S1 and S2 as
single-precision floating point values (32-bit IEEE754 data) and creates an
ON execution condition when the comparison condition is true. When the data
is stored in words, S1 and S2 specify the first of two words containing the 32-
bit data. It is also possible to input the floating-point data as an 8-digit hexa-
decimal constant.

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF (binary)

Data Registers ---

Index Registers IR0 to IR15 (for unsigned data only)

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
637

Floating-point Math Instructions Section 3-15
Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Options

With the three input types and six symbols, there are 18 different possible
combinations.

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 single-precision floating-point input comparison instructions.
(C1=S1+1, S1 and C2=S2+1, S2.)

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.

Symbol Option (data format)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

F: Single-precision floating-point data

Code Mnemonic Name Function

329 LD=F LOAD FLOATING EQUAL True if
C1 = C2AND=F AND FLOATING EQUAL

OR=F OR FLOATING EQUAL

<F

<F

<F

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
638

Floating-point Math Instructions Section 3-15
Flags

Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example AND FLOATING LESS THAN: AND<F(331)

When CIO 000000 is ON in the following example, the floating point data in
D00101, D00100 is compared to the floating point data in D00201, D00200. If
the content of D00101, D00100 is less than that of D00201, D00200, execu-
tion proceeds to the next line and CIO 005000 is turned ON. If the content of
D00101, D00100 is not less than that of D00201, D00200, execution does not
proceed to the next instruction line.

330 LD<>F LOAD FLOATING NOT EQUAL True if
C1 ≠ C2AND<>F AND FLOATING NOT EQUAL

OR<>F OR FLOATING NOT EQUAL

331 LD<F LOAD FLOATING LESS THAN True if
C1 < C2AND<F AND FLOATING LESS THAN

OR<F OR FLOATING LESS THAN

332 LD<=F LOAD FLOATING LESS THAN OR EQUAL True if
C1 ≤ C2AND<=F AND FLOATING LESS THAN OR EQUAL

OR<=F OR FLOATING LESS THAN OR EQUAL

333 LD>F LOAD FLOATING GREATER THAN True if
C1 > C2AND>F AND FLOATING GREATER THAN

OR>F OR FLOATING GREATER THAN

325 LD>=F LOAD FLOATING GREATER THAN OR EQUAL True if
C1 ≥ C2AND>=F AND FLOATING GREATER THAN OR EQUAL

OR>=F OR FLOATING GREATER THAN OR EQUAL

Code Mnemonic Name Function

Name Label Operation

Error Flag ER OFF

Greater Than
Flag

> ON if S1+1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1+1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag = ON if S1+1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag = ON if S1+1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag < ON if S1+1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or
Equal Flag

< = ON if S1+1, S1 ≤ S2+1, S2.

OFF in all other cases.

Negative Flag N Unchanged

<F

D00100

D00200

000000 005000
639

Floating-point Math Instructions Section 3-15
3-15-25 FLOATING-POINT TO ASCII: FSTR(448)
Purpose Expresses a 32-bit floating-point value (IEEE754-format) in standard decimal

notation or scientific notation and converts that value to ASCII text.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

2.3>−3.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

15 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

15 0

S1 :D00100
S1+1:D00101

S2 :D00200
S2+1:D00201

4294967296<5566555656

1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1
0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1

15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0

15 0

S1 :D00100
S1+1:D00101

S2 :D00200
S2+1:D00201

FLOATING LESS THAN Comparison (<F)

Yields an ON condition.

Decimal value: 4,294,967,296

Decimal value: −3.5

Does not yield an ON condition.

Decimal value: 2.3

Decimal value: 5,566,555,656

FSTR(448)

S

C

D

S: First source word

C: First control word

D: First destination word

Variations Executed Each Cycle for ON Condition FSTR(448)

Executed Once for Upward Differentiation @FSTR(448)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to
CIO 6141

CIO 0000 to
CIO 6143

Work Area W000 to W510 W000 to W509 W000 to W511

Holding Bit Area H000 to H510 H000 to H509 H000 to H511

Auxiliary Bit Area A000 to A958 A000 to A957 A448 to A959

Timer Area T0000 to T4094 T0000 to T4093 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4093 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32765 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32765 E00000 to E32767
640

Floating-point Math Instructions Section 3-15
Description FSTR(448) expresses the 32-bit floating-point number in S+1 and S
(IEEE754-format) in decimal notation or scientific notation according to the
control data in words C to C+2, converts the number to ASCII text, and out-
puts the result to the destination words starting at D.

The following diagram shows the contents of the 3 control words.

• The content of C (Data format) specifies whether to express the number
in S+1, S in decimal notation or scientific notation.

• Decimal notation
Expresses a real number as an integer and fractional part.
Example: 124.56

• Scientific notation
Expresses a real number as an integer part, fractional part, and expo-
nent part.

Example: 1.2456E-2 (1.2456×10-2)

EM Area with bank En_00000 to
En_32766

(n = 0 to C)

En_00000 to
En_32765

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to
@ D32767
@ E00000 to
@ E32767

@ En_00000 to
@ En_32767
(n = 0 to C)

@ D00000 to
@ D32767
@ E00000 to
@ E32767

@ En_00000 to
@ En_32767
(n = 0 to C)

@ D00000 to
@ D32767
@ E00000 to
@ E32767

@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to
*D32767
*E00000 to
*E32767
*En_00000 to
*En_32767

(n = 0 to C)

*D00000 to
*D32767
*E00000 to
*E32767
*En_00000 to
*En_32767

(n = 0 to C)

*D00000 to
*D32767
*E00000 to
*E32767
*En_00000 to
*En_32767

(n = 0 to C)

Constants #00000000 to
#FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –()IR15
,IR0 to ,IR15

Area S C D

0000 hex: Decimal format
0001 hex: Scientific notation

0002 to 0018 hex (2 to 24 characters, see note)

0000 to 0007 hex (see note)

Note: There are limits on the total number of characters
and the number of fractional digits. See Limits on the
Number of ASCII Characters on page 643 for details.

Data format
Total characters
Fractional digits
641

Floating-point Math Instructions Section 3-15
• The content of C+1 (Total characters) specifies the number of ASCII char-
acters after conversion including the sign symbol, numbers, decimal point
and spaces.

• The content of C+2 (Fractional digits) specifies the number of digits (char-
acters) below the decimal point.

The ASCII text is stored in D and subsequent words in the following order:
leftmost byte of D, rightmost byte of D, leftmost byte of D+1, rightmost byte of
D+1, etc.

S
S+1

 2D 20 20 31 2E 32 33 34 35 36
(−) (SP)(SP) (1) (,) (2) (3) (4) (5) (6)

15 87 0

 2D 20 31 2E 32 33 45 2B 30 31
(−) (SP) (1) (,) (2) (3) (E) (+) (0) (0)

15 87 0

D: 20
31
32
34
00

2D
20
2E
33
00

20
2E
33
2B
30
00

2D
31
32
45
30
00

Decimal notation (C=0000 hex)
−1.23456

Example: −1.23456

Floating-point
data

Scientific notation (C=0001 hex)
− 1.23E+00

Conversion to
ASCII text

Conversion to
ASCII text

Rounded off
(SP represents a space.)

(SP represents a space.)

Stored in destination words beginning with D.
Total characters = 8 (C+1 = 0008 hex)
Fractional digits = 3 (C+2 = 0003 hex)

ASCII characters are stored in order.
(Leftmost byte → rightmost byte)

Stored in destination words beginning with D.
Total characters = 10 (C+1 = 000A hex)
Fractional digits = 2 (C+2 = 0002 hex)

ASCII characters are stored in order.
(Leftmost byte → rightmost byte)
642

Floating-point Math Instructions Section 3-15
Note Either one or two bytes of zeroes are added to the end of ASCII text as an end
code.
Total number of characters odd: 00 hex is stored after the ASCII text.
Total number of characters even: 0000 hex is stored after the ASCII text.

Limits on the Number of ASCII Characters

There are limits on the number of ASCII characters in the converted number.
The Error Flag will be turned ON if the number of characters exceeds the
maximum allowed.

1. Limits on the Total Number of ASCII Characters

a) Decimal Notation (C = 0000 hex)

• When there is no fractional part (C+2 = 0000 hex):
2 ≤ Total Characters ≤ 24

• When there is a fractional part (C+2 = 0001 to 0007 hex):
(Fractional digits + 3) ≤ Total Characters ≤ 24

b) Scientific Notation (C = 0001 hex)

• When there is no fractional part (C+2 = 0000 hex):
6 ≤ Total Characters ≤ 24

• When there is a fractional part (C+2 = 0001 to 0007 hex):
(Fractional digits + 7) ≤ Total Characters ≤ 24

2. Limits on the Number of Digits in the Integer Part

.

Decimal notation (C=0000 hex)

Integer part

Positive number: Space (20 hex)
Negative number: Minus sign (2D hex)

Sign

Total number of characters

If there are more fractional digits in the source data than specified in C+1, the extra digits will be rounded
off. If there are fewer fractional digits, zeroes (ASCII: 30 hex) will added to the end of the source data.

A decimal point (ASCII: 2E hex) is added if the number fractional digits is greater than 0.
Spaces (ASCII: 20 hex) are added if the integer part of the floating-point data is shorter than the integer part of the result
(total number of characters - sign digit - decimal point - fractional digits).

Fractional part
Decimal point

Storage of ASCII Text

After the floating-point number is converted to ASCII text, the ASCII characters are stored in the destina-
tion words beginning with D, as shown in the following diagrams. Different storage methods are used for
decimal notation and scientific notation.

. E

Scientific notation (C=0001 hex)

Integer part

Positive: Plus sign (2B hex)
Negative: Minus sign (2D hex)

Sign

Total number of characters

If there are more fractional digits in the source data than specified in C+1, the extra digits will be rounded off.
If there are fewer fractional digits, zeroes (ASCII: 30 hex) will added to the end of the source data.

A decimal point (ASCII: 2E hex) is added if the number fractional digits is greater than 0.
Spaces (ASCII: 20 hex) are added if the integer part of the floating-point data is shorter than the integer part of the result (total
number of characters - sign digit - decimal point - fractional digits - E digit).

Fractional
part

Decimal point

Exponential part

0 to 9 are written as 00 to 09.

Letter E (ASCII: 45 hex) is written here.

Positive number: Space (20 hex)
Negative number: Minus sign (2D hex)

Sign
643

Floating-point Math Instructions Section 3-15
a) Decimal Notation (C = 0000 hex)

• When there is no fractional part (C+2 = 0000 hex):
1 ≤ Number of Integer Digits ≤ 24

• When there is a fractional part (C+2 = 0001 to 0007 hex):
1 ≤ Number of Integer Digits ≤ (24 − Fractional digits − 2)

b) Scientific Notation (C = 0001 hex)
1 digit (fixed)

3. Limits on the Number of Digits in the Fractional Part

a) Decimal Notation (C = 0000 hex)

• Fractional Digits ≤ 7

• Also: Fractional Digits ≤ (Total Number of ASCII Characters − 3)

b) Scientific Notation (C = 0001 hex)

• Fractional Digits ≤ 7

• Also: Fractional Digits ≤ (Total Number of ASCII Characters − 3)

Flags

Examples Converting to ASCII Text in Decimal Notation
When CIO 000000 is ON in the following example, FSTR(448) converts the
floating-point data in D00001 and D00000 to decimal-notation ASCII text and
writes the ASCII text to the destination words beginning with D00100. The
contents of the control words (D00010 to D00012) specify the details on the
data format (decimal notation, 7 characters total, 3 fractional digits).

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a valid floating-point
number (NaN).

ON if the data in S+1 and S is +∞ or –∞.

ON if the Data Format setting in C is not 0000 or 0001.

ON if the Total Characters setting in C+1 is not within the
allowed range. (See 1. Limits on the Total Number of
ASCII Characters above for details.)

ON if the Fractional Digits setting in C+2 is not within the
allowed range. (See 3. Limits on the Number of Digits in
the Fractional Part above for details.)

OFF in all other cases.

Equals Flag = ON if the conversion result is 0.

OFF in all other cases.
644

Floating-point Math Instructions Section 3-15
Converting to ASCII Text in Scientific Notation
When CIO 000000 is ON in the following example, FSTR(448) converts the
floating-point data in D00001 and D00000 to scientific-notation ASCII text and
writes the ASCII text to the destination words beginning with D00100. The
contents of the control words (D00010 to D00012) specify the details on the
data format (scientific notation, 11 characters total, 3 fractional digits).

3-15-26 ASCII TO FLOATING-POINT: FVAL(449)
Purpose Converts a number expressed in ASCII text (decimal or scientific notation) to

a 32-bit floating-point value (IEEE754-format) and outputs the floating-point
value to the specified words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

2E (.)
32 (2)
00

1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0
0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1

FSTR
D00000
D00010
D00100

000000

15 0

D00000
D00001

0000(Hex)
0007(Hex)
0003(Hex)

D00010
D00011
D00012

0.327457

30 (0)
33 (3)
37 (7)

D00100
D00101
D00102
D00103

 0 . 3 2 7 4 5 7

20 (Space)20 (Space)

Decimal notation
Total characters = 7 characters
Fractional digits = 3 digits (characters)

Conversion

Rounded off

Storage
conditions

Spaces

Total number of characters

Fractional part

2E (.)
37 (7)
45 (E)
30 (0)
00

1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0
0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1

FSTR
D00000
D00010
D00100

000000

15 0

D00000
D00001

0001(Hex)
000B(Hex)
0003(Hex)

D00010
D00011
D00012

0.327457

33 (3)
32 (2)
35 (5)
2D (−)
31 (1)

D00100
D00101
D00102
D00103
D00104
D00105

 3 . 2 7 4 5 7 E - 0 1

20 (Space)20 (Space)

Scientific notation
Total characters = 11 characters
Fractional digits = 3 digits (characters)

Conversion

Rounded off

Storage
conditions

Spaces

Total number of characters

Fractional
part
645

Floating-point Math Instructions Section 3-15
Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description FVAL(449) converts the specified ASCII text number (starting at word S) to a
32-bit floating-point number (IEEE754-format) and outputs the result to the
destination words starting at D.

FVAL(449) can convert ASCII text in decimal or scientific notation if it meets
the following conditions:

Up to 6 characters are valid, excluding the sign, decimal point, and exponent.
Any characters beyond the 6th character will be ignored.

• Decimal Notation
Real numbers expressed with an integer and fractional part.
Example: 124.56

• Scientific Notation
Real numbers expressed as an integer part, fractional part, and exponent
part.

Example: 1.2456E-2 (1.2456×10-2)

The data format (decimal or scientific notation) is detected automatically.

The ASCII text must be stored in S and subsequent words in the following
order: leftmost byte of S, rightmost byte of S, leftmost byte of S+1, rightmost
byte of S+1, etc.

FVAL(449)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition FVAL(449)

Executed Once for Upward Differentiation @FVAL(449)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

2D 20
20 31
32 33
2E 34
35 36
37 38
00 00

 − SP SP 1 2 3 . 4 5 6 7 8
(2D)(20)(20)(31)(32)(33)(2E)(34)(35)(36)(37)(38)

15 87 0

−123.456
1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

D
D+1

1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

15 0

Decimal notation

Exponent

Spaces are
ignored during
conversion

Sign

32-bit floating-point data

If there are more than 6 digits, the 7th
and higher digits are ignored.
(Digits do not include the sign, decimal
point, and exponent characters.)

Conversion of ASCII text number to
32-bit floating-point data

Stored in D and D+1.
646

Floating-point Math Instructions Section 3-15
Storage of ASCII Text The following diagrams show how the ASCII text number is converted to float-
ing-point data. Different conversion methods are used for numbers stored with
decimal notation and scientific notation.

2D 20
20 31
2E 32
33 34
45 2B
30 32
00 00

− SP SP 1 . 2 3 4 E + 0 2
(2D)(20)(20)(31)(2E)(32)(33)(34)(45)(2D)(31)(38)

15 87 0

−1.234×102 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

D
D+1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

15 0

Scientific notation

Exponent

Spaces are
ignored during
conversion

Sign

32-bit floating-point data
Conversion of ASCII text number
to 32-bit floating-point data

Stored in D and D+1.

00

S

ASCII Character Storage

Up to 00 hex
(25 characters max.)

FVAL(449) converts the ASCII characters
starting with the leftmost byte of S and
continuing until a byte containing 00 hex is
reached. There must be a byte containing
00 hex within the first 25 bytes.

15 078

00SP SP

(20)

(20)

00

Decimal notation

Digit

25 characters max.

The 7th and higher digits are ignored.
(The sign, decimal point, and exponent
characters are not counted as digits.)

Any spaces (20 hex) or zeroes (30 hex)
before the first digit are ignored.

Positive number: Space (20 hex) or Plus sign (2B hex)
Negative number: Minus sign (2D hex)

Integer part
Sign

Fractional part

Decimal
point

Sign

15 078

(20)

00SP E

(20)

. (2E)

E (45)

00

Scientific notation

25 characters max.

The 7th and higher digits are ignored.
(The sign, decimal point, and exponent
characters are not counted as digits.)

Any spaces (20 hex) or zeroes (30 hex)
before the first digit are ignored.

Positive number: Space (20 hex) or Plus sign (2B hex)
Negative number: Minus sign (2D hex)

Positive: + (2B hex)
Negative: - (2D hex)

Exponential part

Sign

Fractional part

Decimal
point

Integer part

Sign

E (45)

Sign
Digit

Digit
Digit

Sign

Digit Digit
647

Floating-point Math Instructions Section 3-15
Flags

Examples Converting ASCII Text in Decimal Notation to Floating-point Data
When CIO 000000 is ON in the following example, FVAL(449) converts the
specified decimal-notation ASCII text number in the source words starting at
D00000 to floating-point data and writes the result to destination words
D00100 and D00101.

Converting ASCII Text in Scientific Notation
When CIO 000000 is ON in the following example, FVAL(449) converts the
specified scientific-notation ASCII text number in the source words starting at
D00000 to floating-point data and writes the result to destination words
D00100 and D00101.

Name Label Operation

Error Flag ER ON if the digits (integer and fractional parts) in the source
data starting at S are not 30 to 39 hex (0 to 9).

ON if the first two digits of the exponential part do not con-
tain 45 and 2B hex (E+) or 45 and 2D hex (E-). (integer
and fractional parts) in the source data starting at S are
not 30 to 39 hex (0 to 9).
ON if there are two or more exponential parts in the
source data.

ON if the data is +∞ or –∞ after conversion.

ON is the are 0 characters in the text data.

ON if a byte containing 00 hex is not found within the first
25 characters.
OFF in all other cases.

Equals Flag = ON if the conversion result is 0.
OFF in all other cases.

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0

000000

15 0

D00100
D00101

20 (Space)
31 (1)
32 (2)
34 (4)
32 (2)
00

2D (−)
30 (0)
2E (.)
33 (3)
35 (5)
31 (1)

D00000
D00001
D00002
D00003
D00004
D00005

− 0 1 . 2 3 4 5 2 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0

15 0

FVAL
D00000
D00100

Conversion

Storage

Ignored

The 7th and higher digits are ignored.
(The sign, decimal point, and leading
zeroes/spaces are not counted.)
648

Floating-point Math Instructions Section 3-15
3-15-27 MOVE FLOATING-POINT (SINGLE): MOVF(469)
Purpose Transfers the specified 32-bit floating-point number to the destination words.

This instruction is supported by CJ1-H-R CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0

000000

15 0

D00100
D00101

2E (.)
33 (3)
35 (5)
2D (−)
32 (2)
00

2D (−)
31 (1)
32 (2)
34 (4)
45 (E)
30 (0)
00

D00000
D00001
D00002
D00003
D00004
D00005
D00006

−

0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0

15 0

FVAL
D00000
D00100

1 . 2 3 4 5 E - 0 2

20 (Space) Conversion

Storage

Ignored Ignored

MOVF(469)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MOVF(469)

Executed Once for Upward Differentiation @MOVF(469)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)
649

Floating-point Math Instructions Section 3-15
Description MOVF(469) outputs the single-precision floating-point number (32-bit source
data in IEEE754 format) from source words S+1 and S to destination words
D+1 and D.

Flags

Precautions When MOVF(469) is executed, the Error Flag is turned OFF.

If the source data in S+1 and S is 0, the Equals Flag is turned ON. If the
source data is non-zero, the Equals Flag is turned OFF.

If the source data in S+1 and S is negative, the Negative Flag is turned ON.

Operation Example

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

D+1 D

SS+1 Source words

Destination words

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0.

OFF in all other cases.

Negative Flag N ON if the source data is negative.

OFF in all other cases.

MOVF
 +3.0

W00000 When input condition W00000 is ON, the content of D00000 and D00001 (+3.0)
is stored in floating-point format (IEEE754 format).

#4040 #0000

D00000
D00001 D00000

Equivalent to +3.0 in floating-point format
650

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-
H, CJ1M, or CS1D Only)

The Double-precision Floating-point Instructions convert data and perform
floating-point arithmetic operations on double-precision floating-point data.
The CS1-H/CJ1-H CPU Units support the following 20 instructions.

Data Format Floating-point data expresses real numbers using a sign, exponent, and man-
tissa. When data is expressed in floating-point format, the following formula
applies.

Real number = (–1)s 2e–1,023 (1.f)

s: Sign
e: Exponent
f: Mantissa

The floating-point data format conforms to the IEEE754 standards. Data is
expressed in 32 bits, as follows:

Instruction Mnemonic Function code Page

DOUBLE FLOATING TO 16-BIT FIXD 841 657

DOUBLE FLOATING TO 32-BIT FIXLD 842 658

16-BIT TO DOUBLE FLOATING DBL 843 660

32-BIT TO DOUBLE FLOATING DBLL 844 661

DOUBLE FLOATING-POINT ADD +D 845 663

DOUBLE FLOATING-POINT SUBTRACT –D 846 665

DOUBLE FLOATING-POINT MULTIPLY *D 847 667

DOUBLE FLOATING-POINT DIVIDE /D 848 669

DOUBLE DEGREES TO RADIANS RADD 849 671

DOUBLE RADIANS TO DEGREES DEGD 850 673

DOUBLE SINE SIND 851 674

DOUBLE COSINE COSD 852 676

DOUBLE TANGENT TAND 853 678

DOUBLE ARC SINE ASIND 854 680

DOUBLE ARC COSINE ACOSD 855 682

DOUBLE ARC TANGENT ATAND 856 684

DOUBLE SQUARE ROOT SQRTD 857 686

DOUBLE EXPONENT EXPD 858 688

DOUBLE LOGARITHM LOGD 859 690

DOUBLE EXPONENTIAL POWER PWRD 860 692

Double-precision Floating-point Symbol
Comparison Instructions

LD, AND,
OR
+
=D, <>D,
<D, <=D,
>D, or >=D

335 to 340 694

63 62 52 51 0

Sign

s e f

Exponent Mantissa
651

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Number of Digits Fifteen digits are effective for double-precision floating-point data.

Floating-point Data The following data can be expressed by floating-point data:

• –∞

• –1.79769313486232 x 10308 ≤ value ≤ –2.22507385850720 x 10–308

• 0

• 2.22507385850720 x 10–308 ≤ value ≤ 1.79769313486232 x 1030

• +∞
• Not a number (NaN)

Special Numbers The formats for NaN, ±∞, and 0 are as follows:

NaN*: e = 2,047 and f ≠ 0
+∞: e = 2,047, f = 0, and s= 0
–∞: e = 2,047, f = 0, and s= 1
0: e = 0 and f = 0

*NaN (not a number) is not a valid floating-point number. Executing Double-
precision Floating-point instructions will not result in NaN.

Writing Floating-point
Data

When double-precision floating-point is specified for the data format in the I/O
memory edit display in the CX-Programmer, standard decimal numbers input
in the display are automatically converted to the double-precision floating-
point format shown above (IEEE754-format) and written to I/O Memory. Data
written in the IEEE754-format is automatically converted to standard decimal
format when monitored on the display.

It is not necessary for the user to be aware of the IEEE754 data format when
reading and writing double-precision floating-point data. It is only necessary to
remember that double-precision floating point values occupy four words each.

Data No. of bits Contents

s: sign 1 0: positive; 1: negative

e: exponent 11 The exponent (e) value ranges from 0 to 2,047.
The actual exponent is the value remaining after
1,023 is subtracted from e, resulting in a range
of –1,023 to 1,024. “e=0” and “e=2,047” express
special numbers.

f: mantissa 52 The mantissa portion of binary floating-point
data fits the format 2.0 > 1.f ≥1.0.

−∞

−1 0

+∞

1

−2.22507385850720×10-308

−1.79769313486232×10308

2.22507385850720×10-308

1.79769313486232×10308

06362 5251 161532314847
f

n

s e

n+3 n+2 n+1
652

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Numbers Expressed as Floating-point Values
The following types of floating-point numbers can be used.

Note A non-normalized number is one whose absolute value is too small to be
expressed as a normalized number. Non-normalized numbers have fewer sig-
nificant digits. If the result of calculations is a non-normalized number (includ-
ing intermediate results), the number of significant digits will be reduced.

Normalized Numbers Normalized numbers express real numbers. The sign bit will be 0 for a positive
number and 1 for a negative number.

The exponent (e) will be expressed from 1 to 2,046, and the real exponent will
be 1,023 less, i.e., –1,022 to 1,023.

The mantissa (f) will be expressed from 0 to (252 – 1), and it is assumed that,
in the real mantissa, bit 252 is 1 and the decimal point follows immediately
after it.

Normalized numbers are expressed as follows:

(–1)(sign s) x 2(exponent e)–1,023 x (1 + mantissa x 2–52)

Example

Sign: –
Exponent: 1,024 – 1,023 = 1
Mantissa: 1 + (251 + 250) x 2–52 = 1 + (2–1 + 2–2) = 1 + (0.75) = 1.75
Value: –1.75 x 21 = –3.5

Non-normalized numbers Non-normalized numbers express real numbers with very small absolute val-
ues. The sign bit will be 0 for a positive number and 1 for a negative number.

The exponent (e) will be 0, and the real exponent will be –1,022.

The mantissa (f) will be expressed from 1 to (252 – 1), and it is assumed that,
in the real mantissa, bit 252 is 0 and the decimal point follows immediately
after it.

Non-normalized numbers are expressed as follows:

(–1)(sign s) x 2–1,022 x (mantissa x 2–52)

Example

Sign: –
Exponent: –1,022
Mantissa: 0 + (251 + 250) x 2–52 = 0 + (2–1 + 2–2) = 0 + (0.75) = 0.75
Value: –0.75 x 2–1,022 = 1.668805 x 10–308

Mantissa (f) Exponent (e)

0 Not 0 and
not all 1’s (1,024)

All 1’s (1,024)

0 0 Normalized number Infinity

Not 0 Non-normalized
number

NaN

0 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 62 52 51 33

32 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6463 5152 33

32 0
653

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Zero Values of +0.0 and –0.0 can be expressed by setting the sign to 0 for positive
or 1 for negative. The exponent and mantissa will both be 0. Both +0.0 and –
0.0 are equivalent to 0.0. Refer to Floating-point Arithmetic Results, below, for
differences produced by the sign of 0.0.

Infinity Values of +∞ and –∞ can be expressed by setting the sign to 0 for positive or 1
for negative. The exponent will be 2,047 (211 – 1) and the mantissa will be 0.

NaN NaN (not a number) is produced when the result of calculations, such as 0.0/
0.0, ∞/∞, or ∞–∞, does not correspond to a number or infinity. The exponent
will be 255 (28 – 1) and the mantissa will be not 0.

Note There are no specifications for the sign of NaN or the value of the mantissa
field (other than to be not 0).

Floating-point Arithmetic Results

Rounding Results The following methods will be used to round results when the number of digits
in the accurate result of floating-point arithmetic exceeds the significant digits
of internal processing expressions.

If the result is close to one of two internal floating-point expressions, the
closer expression will be used. If the result is midway between two internal
floating-point expressions, the result will be rounded so that the last digit of
the mantissa is 0.

Overflows, Underflows,
and Illegal Calculations

Overflows will be output as either positive or negative infinity, depending on
the sign of the result. Underflows will be output as either positive or negative
zero, depending on the sign of the result.

Illegal calculations will result in NaN. Illegal calculations include adding infinity
to a number with the opposite sign, subtracting infinity from a number with the
opposite sign, multiplying zero and infinity, dividing zero by zero, or dividing
infinity by infinity.

The value of the result may not be correct if an overflow occurs when convert-
ing a floating-point number to an integer.

Precautions in Handling
Special Values

The following precautions apply to handling zero, infinity, and NaN.

• The sum of positive zero and negative zero is positive zero.

• The difference between zeros of the same sign is positive zero.

• If any operand is a NaN, the results will be a NaN.

• Positive zero and negative zero are treated as equivalent in comparisons.

• Comparison or equivalency tests on one or more NaN will always be true
for != and always be false for all other instructions.

Double-precision Floating-point Calculation Results
When the absolute value of the result is greater than the maximum value that
can be expressed for floating-point data, the Overflow Flag will turn ON and
the result will be output as ±∞. If the result is positive, it will be output as +∞; if
negative, then –∞.

The Equals Flag will only turn ON when both the exponent (e) and the man-
tissa (f) are zero after a calculation. A calculation result will also be output as
zero when the absolute value of the result is less than the minimum value that
can be expressed for floating-point data. In that case the Underflow Flag will
turn ON.
654

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Comparing Single-precision and Double-precision Calculations
This example shows the differences in between single-precision and double-
precision calculations when the following vector expressed in polar coordi-
nates is converted to rectangular coordinates A (x,y).

In this example, the 4-digit BCD angle (θ, in degrees) is read from D00000
and the 4-digit BCD distance (r) is read from D01000.

r = re
j θ

360
π

Y

0

r

θ

X

r
A (x, y) = A (rcos θ, rsin θ)

000000
BIN

D00000
D00100

BIN
D01000
D01000

SIN
D00200
D00400

COS
D00200
D00300

END

*F
D01200
D00300
D10000

*F
D01200
D00400
D20000

FLT
D00100
D00200

FLT
D01000
D01200

RAD
D00200
D00200

000000
BIN

D00000
D00100

BIN
D01000
D01000

SIND
D00200
D00400

COSD
D00200
D00300

END

*D
D01200
D00300
D10000

*D
D01200
D00400
D20000

DBL
D00100
D00200

DBL
D01000
D01200

RADD
D00200
D00200

• Ladder Program for the
Single-precision Calculation

• Ladder Program for the
Double-precision Calculation
655

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Comparison of the Calculation Results

When the real-number results are compared, it is clear that the double-preci-
sion calculation yields a more accurate result.

1. This program section converts the BCD data
to single-precision floating-point data (32 bits,
IEEE754-format).

a) The BIN(023) instructions convert the
BCD data to binary and the FLT(452) in-
structions convert the binary data to sin-
gle-precision floating-point data.

b) The floating-point data for the angle θ is
output to D00200 and D00201.

c) RAD(458) converts the angle data in
D00200 and D00201 to radians.

d) The floating-point data for the radius r is
output to D01200 and D01201.

2. This program section calculates the sin θ and
the cos θ as single-precision floating-point val-
ues.

a) The value for cos θ is output to D00300
and D00301.

b) The value for sin θ is output to D00400
and D00401.

3. This program section calculates x (r × cos θ)
and y (r × sin θ).

a) The value for x (r × cos θ) is output to
D10000 and D10001.

b) The value for y (r × sin θ) is output to
D20000 and D20001.

Coordinate Floating-point
number

Real number

x 4116 59CF 3.4202015399933

y 405A E495 9.3969259262085

1. This program section converts the BCD data
to double-precision floating-point data (64
bits, IEEE754-format).

a) The BIN(023) instructions convert the
BCD data to binary and the DBL(843) in-
structions convert the binary data to dou-
ble-precision floating-point data.

b) The floating-point data for the angle θ is
output to words D00200 to D00203.

c) RADD(849) converts the angle data in
words D00200 to D00203 to radians.

d) The floating-point data for the radius r is
output to words D01200 to D01203.

2. This program section calculates the sin θ and
the cos θ as double-precision floating-point
values.

a) The value for cos θ is output to words
D00300 to D00303.

b) The value for sin θ is output to words
D00400 and D00403.

3. This program section calculates x (r × cos θ)
and y (r × sin θ).

a) The value for x (r × cos θ) is output to
words D10000 to D10003.

b) The value for y (r × sin θ) is output to
D20000 and D20003.

Coordinate Floating-point
number

Real number

x 4022 CB39
E973 5C32

3.4202014332567

y 400B 5C92
91AC 8EEB

9.3969262078591
656

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
3-16-1 DOUBLE FLOATING TO 16-BIT: FIXD(841)
Purpose Converts a double-precision (64-bit) floating-point value to 16-bit signed

binary data and places the result in the specified result word.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

FIXD(841)

S

D

S: First source word
D: Destination word

Variations Executed Each Cycle for ON Condition FIXD(841)

Executed Once for Upward Differentiation @FIXD(841)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140 CIO 0000 to CIO 6143

Work Area W000 to W508 W000 to W511

Holding Bit Area H000 to H508 H000 to H511

Auxiliary Bit Area A000 to A956 A448 to A959

Timer Area T0000 to T4092 T0000 to T4095

Counter Area C0000 to C4092 C0000 to C4095

DM Area D00000 to D32764 D00000 to D32767

EM Area without bank E00000 to E32764 E00000 to E32767

EM Area with bank En_00000 to En_32766

(n = 0 to C)

En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
657

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description FIXD(841) converts the integer portion of the double-precision (64-bit) float-
ing-point number in words S to S+3 (IEEE754-format) to 16-bit signed binary
data and places the result in D.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. The integer portion of the floating-point data must be
within the range of –32,768 to 32,767.

Example conversions:
A floating-point value of 3.5 is converted to 3.
A floating-point value of –3.5 is converted to –3.

Flags

3-16-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842)
Purpose Converts a double-precision (64-bit) floating-point value to 32-bit signed

binary data and places the result in the specified result words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S+3CH SCH

DCH

S+1CHS+2CH
Floating-point data (64 bits)

Signed binary data (16 bits)

Name Label Operation

Error Flag ER ON if the source data (S to S+3) is not a number (NaN).
ON if the integer portion of the source data (S to S+3) is
not within the range of –32,768 to 32,767.

OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.
OFF in all other cases.

FIXDL(842)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition FIXLD(842)

Executed Once for Upward Differentiation @FIXLD(842)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140 CIO 0000 to CIO 6142

Work Area W000 to W508 W000 to W510
658

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description FIXLD(842) converts the integer portion of the double-precision (64-bit) float-
ing-point number in words S to S+3 (IEEE754-format) to 32-bit signed binary
data and places the result in D+1 and D.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. (The integer portion of the floating-point data must be
within the range of –2,147,483,648 to 2,147,483,647.)

Example conversions:
A floating-point value of 2,147,483,640.5 is converted to 2,147,483,640.
A floating-point value of –2,147,483,640.5 is converted to –2,147,483,640.

Flags

Holding Bit Area H000 to H508 H000 to H510

Auxiliary Bit Area A000 to A956 A448 to A958

Timer Area T0000 to T4092 T0000 to T4094

Counter Area C0000 to C4092 C0000 to C4094

DM Area D00000 to D32764 D00000 to D32766

EM Area without bank E00000 to E32764 E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

S+3CH

D+1CH

SCH

DCH

S+2CH S+1CH
Floating-point data (64 bits)

Signed binary data (32 bits)

Name Label Operation

Error Flag ER ON if the data in words S to S+3 is not a number (NaN).
ON if the integer portion of words S to S+3 is not within
the range of –2,147,483,648 to 2,147,483,647.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of D+1 is ON after execution.

OFF in all other cases.
659

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Precautions The content of words S to S+3 must be floating-point data and the integer por-
tion must be in the range of –2,147,483,648 to 2,147,483,647.

3-16-3 16-BIT TO DOUBLE FLOATING: DBL(843)
Purpose Converts a 16-bit signed binary value to double-precision (64-bit) floating-

point data and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

DBL(843)

S

D

S: Source word
D: First destination word

Variations Executed Each Cycle for ON Condition DBL(843)

Executed Once for Upward Differentiation @DBL(843)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO 6140

Work Area W000 to W511 W000 to W508

Holding Bit Area H000 to H511 H000 to H508

Auxiliary Bit Area A000 to A959 A448 to A956

Timer Area T0000 to T4095 T0000 to T4092

Counter Area C0000 to C4095 C0000 to C4092

DM Area D00000 to D32767 D00000 to D32764

EM Area without bank E00000 to E32767 E00000 to E32764

EM Area with bank En_00000 to En_32767
(n= 0 to C)

En_00000 to En_32764
(n= 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---
660

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description DBL(843) converts the 16-bit signed binary value in S to double-precision (64-
bit) floating-point data (IEEE754-format) and places the result in words D to
D+3. A single 0 is added after the decimal point in the floating-point result.

Only values within the range of –32,768 to 32,767 can be specified for S. To
convert signed binary data outside of that range, use DBLL(844).

Example conversions:
A signed binary value of 3 is converted to 3.0.
A signed binary value of –3 is converted to –3.0.

Flags

Precautions The content of S must contain signed binary data with a (decimal) value in the
range of –32,768 to 32,767.

3-16-4 32-BIT TO DOUBLE FLOATING: DBLL(844)
Purpose Converts a 32-bit signed binary value to double-precision (64-bit) floating-

point data and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

D+1CH

SCH

DCHD+2CHD+3CH
Floating-point data (64 bits)

Signed binary data (16 bits)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Negative Flag N ON if the result is negative.
OFF in all other cases.

DBLL(844)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition DBLL(844)

Executed Once for Upward Differentiation @DBLL(844)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
661

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Applicable Program Areas

Operand Specifications

Description DBLL(844) converts the 32-bit signed binary value in S+1 and S to double-
precision (64-bit) floating-point data (IEEE754-format) and places the result in
words D to D+3. A single 0 is added after the decimal point in the floating-
point result.

Signed binary data within the range of –2,147,483,648 to 2,147,483,647 can
be specified for S+1 and S. The floating point value has 24 significant binary
digits (bits). The result will not be exact if a number greater than 16,777,215
(the maximum value that can be expressed in 24-bits) is converted by
DBLL(844).

Example Conversions:
A signed binary value of 16,777,215 is converted to 16,777,215.0.
A signed binary value of –16,777,215 is converted to –15,777,215.0.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6142 CIO 0000 to CIO 6140

Work Area W000 to W510 W000 to W508

Holding Bit Area H000 to H510 H000 to H508

Auxiliary Bit Area A000 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D00000 to D32766 D00000 to D32764

EM Area without bank E00000 to E32766 E00000 to E32764

EM Area with bank En_00000 to En_32766
(n = 0 to C)

En_00000 to En_32764
(n= 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+1CH

D+1CH

SCH

DCHD+2CHD+3CH
Floating-point data (64 bits)

Signed binary data (32 bits)
662

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The result will not be exact if a number with an absolute value greater than
16,777,215 (the maximum value that can be expressed in 24-bits) is con-
verted.

3-16-5 DOUBLE FLOATING-POINT ADD: +D(845)
Purpose Adds two double-precision (64-bit) floating-point numbers and places the

result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Negative Flag N ON if the result is negative.

OFF in all other cases.

+D(845)

D

Au

Ad

Au: First augend word
Ad: First addend word
D: First destination word

Variations Executed Each Cycle for ON Condition +D(845)

Executed Once for Upward Differentiation @+D(845)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)
663

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description +D(845) adds the double-precision (64-bit) floating-point number in words Ad
to Ad+3 the double-precision (64-bit) floating-point number in words Au to
Au+3 and places the result in words D to D+3. (The floating point data must
be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of augend and addend data will produce the results
shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The Error Flag will be turned ON and the instruction will not be executed.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Au Ad D

Augend

Addend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞ –∞

+∞ +∞ +∞ +∞ See note 2.

–∞ –∞ –∞ See note 2. –∞
NaN See note 2.

S1+3CH

S2+3CH
+

S1CH

S2CH

D+3CH DCH

S1+1CH

S2+1CH

D+1CH

S1+2CH

S2+2CH

D+2CH
Result (floating-point data, 64-bits)

Addend (floating-point data, 64-bits)

Augend (floating-point data, 64-bits)
664

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The augend (Au to Au+3) and Addend (Ad to Ad+3) data must be in IEEE754
floating-point data format.

3-16-6 DOUBLE FLOATING-POINT SUBTRACT: –D(846)
Purpose Subtracts one double-precision (64-bit) floating-point number from another

and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the augend or addend data is not recognized as
floating-point data.

ON if the augend or addend data is not a number (NaN).
ON if +∞ is to –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.

–D(846)

D

Mi

Su

Mi: First Minuend word
Su: First Subtrahend word
D: First destination word

Variations Executed Each Cycle for ON Condition –D(846)

Executed Once for Upward Differentiation @–D(846)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764
665

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description –D(846) subtracts the double-precision (64-bit) floating-point number in words
Su to Su+3 from the double-precision (64-bit) floating-point number in Mi to
Mi+3 and places the result in words D to D+3. (The floating point data must be
in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of minuend and subtrahend data will produce the
results shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The Error Flag will be turned ON and the instruction will not be executed.

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Mi Su D

Minuend

Subtrahend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞ –∞

+∞ –∞ –∞ See note 2. –∞
–∞ +∞ +∞ +∞ See note 2.

NaN See note 2.

S1+1CH

S2+1CH
−

S1CH

S2CH

D+1CH DCH

S1+2CH

S2+2CH

D+2CH

S1+3CH

S2+3CH

D+3CH
Result (floating-point data, 64-bits)

Subtrahend (floating-point data, 64-bits)

Minuend (floating-point data, 64-bits)
666

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The Minuend (Mi to Mi+3) and Subtrahend (Su to Su+3) data must be in
IEEE754 floating-point data format.

3-16-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847)
Purpose Multiplies two double-precision (64-bit) floating-point numbers and places the

result in the specified result words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the minuend or subtrahend data is not recognized
as floating-point data.

ON if the minuend or subtrahend is not a number (NaN).
ON if +∞ is subtracted from +∞.
ON if –∞ is subtracted from –∞.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

*D(847)

D

Md

Mr

Md: First Multiplicand word
Mr: First Multiplier word
D: First destination word

Variations Executed Each Cycle for ON Condition *D(847)

Executed Once for Upward Differentiation @*D(847)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764
667

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description *D(847) multiplies the double-precision (64-bit) floating-point number in words
Md to Md+3 by the double-precision (64-bit) floating-point number in words Mr
to Mr+3 and places the result in words D to D+3. (The floating point data must
be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of multiplicand and multiplier data will produce the
results shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The Error Flag will be turned ON and the instruction will not be executed.

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr D

Multiplicand

Multiplier 0 Numeral +∞ –∞ NaN

0 0 0 See note 2. See note 2.

Numeral 0 See note 1. +/–∞ +/–∞
+∞ See note 2. +/–∞ +∞ –∞
–∞ See note 2 +/–∞ –∞ +∞

NaN See note 2.

S1+1CH

S2+1CH
×

S1CH

S2CH

D+1CH DCH

S1+2CH

S2+2CH

D+2CH

S1+3CH

S2+3CH

D+3CH
Result (floating-point data, 64-bits)

Multiplier (floating-point data, 64-bits)

Multiplicand (floating-point data, 64-bits)
668

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The Multiplicand (Md to Md+3) and Multiplier (Mr to Mr+3) data must be in
IEEE754 floating-point data format.

3-16-8 DOUBLE FLOATING-POINT DIVIDE: /D(848)
Purpose Divides one double-precision (64-bit) floating-point number by another and

places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the multiplicand or multiplier data is not recognized
as floating-point data.

ON if the multiplicand or multiplier is not a number (NaN).
ON if +∞ and 0 are multiplied.
ON if –∞ and 0 are multiplied.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

/D(848)

D

Dd

Dr

Dd: First Dividend word
Dr: First Divisor word
D: First destination word

Variations Executed Each Cycle for ON Condition /D(848)

Executed Once for Upward Differentiation @/D(848)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764
669

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description /D(848) divides the double-precision (64-bit) floating-point number in words
Dd to Dd+3 by the double-precision (64-bit) floating-point number in words Dr
to Dr+3 and places the result in words D to D+3. (The floating point data must
be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of dividend and divisor data will produce the results
shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The results will be zero for underflows.

3. The Error Flag will be turned ON and the instruction will not be executed.

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Dd Dr D

Dividend

Divisor 0 Numeral +∞ –∞ NaN

0 See note 3. +/–∞ +∞ –∞
Numeral 0 See note 1. +/–∞ +/–∞

+∞ 0 See note 2. See note 3. See note 3.

–∞ 0 See note 2. See note 3. See note 3.

NaN See note 3.

S1+1

S2+1
÷

S1

S2

D+1 DCH

S1+2

S2+2

D+2

S1+3

S2+3

D+3
Result (floating-point data, 64-bits)

Divisor (floating-point data, 64-bits)

Dividend (floating-point data, 64-bits)
670

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The Dividend (Dd to Dd+3) and Divisor (Dr to Dr+3) data must be in IEEE754
floating-point data format.

3-16-9 DOUBLE DEGREES TO RADIANS: RADD(849)
Purpose Converts a double-precision (64-bit) floating-point number from degrees to

radians and places the result in the specified result words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the dividend or divisor data is not recognized as
floating-point data.

ON if the dividend or divisor is not a number (NaN).
ON if the dividend and divisor are both 0.
ON if the dividend and divisor are both +∞ or –∞.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

RADD(849)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition RADD(849)

Executed Once for Upward Differentiation @RADD(849)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764
671

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description RADD(849) converts the double-precision (64-bit) floating-point number in
words S to S+3 from degrees to radians and places the result in words D to
D+3. (The floating point source data must be in IEEE754 format.)

Degrees are converted to radians by means of the following formula:

Degrees × π/180 = radians

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

S+1CH

D+1CH

SCH

DCH

S+2CH

D+2CH

S+3CH

D+3CH
Result (radians, 64-bit floating-point data)

Source (degrees, 64-bit floating-point data)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
672

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-10 DOUBLE RADIANS TO DEGREES: DEGD(850)
Purpose Converts a double-precision (64-bit) floating-point number from radians to

degrees and places the result in the specified result words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

DEGD(850)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition DEGD(850)

Executed Once for Upward Differentiation @DEGD(850)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---
673

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description DEGD(850) converts the double-precision (64-bit) floating-point number in
words S to S+3 from radians to degrees and places the result in words D to
D+3. (The floating point source data must be in IEEE754 format.)

Radians are converted to degrees by means of the following formula:

Radians × 180/π = degrees

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-11 DOUBLE SINE: SIND(851)
Purpose Calculates the sine of a double-precision (64-bit) floating-point number (in

radians) and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1CH

D+1CH

SCH

DCH

S+2CH

D+2CH

S+3CH

D+3CH
Result (degrees, 64-bit floating-point data)

Source (radians, 64-bit floating-point data)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
674

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description SIND(851) calculates the sine of the angle (in radians) expressed as a dou-
ble-precision (64-bit) floating-point value in words S to S+3 and places the
result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

SIND(851)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition SIND(851)

Executed Once for Upward Differentiation @SIND(851)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1 S) →SIN(S+3 S+2 D+1 DD+3 D+2
675

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Specify the desired angle (–65,535 to 65,535) in radians in words S to S+3. If
the angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting between
degrees and radians, see 3-16-9 DOUBLE DEGREES TO RADIANS:
RADD(849) or 3-16-10 DOUBLE RADIANS TO DEGREES: DEGD(850).
The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-12 DOUBLE COSINE: COSD(852)
Purpose Calculates the cosine of a double-precision (64-bit) floating-point number (in

radians) and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

R S: Angle (radian) data
R: Result (sine)

Name Label Operation
Error Flag ER ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF Unchanged
Underflow Flag UF Unchanged
Negative Flag N ON if the result is negative.

OFF in all other cases.

COSD(852)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition COSD(852)

Executed Once for Upward Differentiation @COSD(852)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
676

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Operand Specifications

Description COSD(852) calculates the cosine of the angle (in radians) expressed as a
double-precision (64-bit) floating-point value in words S to S+3 and places the
result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in words S to S+3. If
the angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting between
degrees and radians, see 3-16-9 DOUBLE DEGREES TO RADIANS:
RADD(849) or 3-16-10 DOUBLE RADIANS TO DEGREES: DEGD(850).
The following diagram shows the relationship between the angle and result.

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1 S) →COS(S+3 S+2 D+1 DD+3 D+2

R S: Angle (radian) data
R: Result (cosine)
677

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-13 DOUBLE TANGENT: TAND(853)
Purpose Calculates the tangent of a double-precision (64-bit) floating-point number (in

radians) and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.

OFF in all other cases.

TAND(853)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition TAND(853)

Executed Once for Upward Differentiation @TAND(853)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764

(n = 0 to C)
678

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description TAND(853) calculates the tangent of the angle (in radians) expressed as a
double-precision (64-bit) floating-point value in words S to S+3 and places the
result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in words S to S+3. If
the angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting between
degrees and radians, see 3-16-9 DOUBLE DEGREES TO RADIANS:
RADD(849) or 3-16-10 DOUBLE RADIANS TO DEGREES: DEGD(850).
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the angle and result.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S) →TAN(S+3 S+2 D+1 DD+3 D+2

R S: Angle (radian) data

R: Result (tangent)
679

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-14 DOUBLE ARC SINE: ASIND(854)
Purpose Calculates the arc sine of a double-precision (64-bit) floating-point number

and places the result in the specified destination words. (The arc sine function
is the inverse of the sine function; it returns the angle that produces a given
sine value between –1 and 1.)

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.
OFF in all other cases.

ASIND(854)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition ASIND(854)

Executed Once for Upward Differentiation @ASIND(854)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764
680

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description ASIND(854) computes the angle (in radians) for a sine value expressed as a
double-precision (64-bit) floating-point number in words S to S+3 and places
the result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words D to D+3 as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S) →SIN–1(S+3 S+2 D+1 DD+3 D+2

R

S: Input data (sine value)
R: Result (radians)
681

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-15 DOUBLE ARC COSINE: ACOSD(855)
Purpose Calculates the arc cosine of a double-precision (64-bit) floating-point number

and places the result in the specified result words. (The arc cosine function is
the inverse of the cosine function; it returns the angle that produces a given
cosine value between –1 and 1.)

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.
OFF in all other cases.

ACOSD(855)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition ACOSD(855)

Executed Once for Upward Differentiation @ACOSD(855)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764
682

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description ACOSD(855) computes the angle (in radians) for a cosine value expressed as
a double-precision (64-bit) floating-point number in words S to S+3 and places
the result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words D to D+3 as an angle (in radians) within the
range of 0 to π.

The following diagram shows the relationship between the input data and
result.

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S) →COS–1(S+3 S+2 D+1 DD+3 D+2

R
S: Input data (cosine value)
R: Result (radians)
683

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-16 DOUBLE ARC TANGENT: ATAND(856)
Purpose Calculates the arc tangent of a double-precision (64-bit) floating-point number

and places the result in the specified result words. (The arc tangent function is
the inverse of the tangent function; it returns the angle that produces a given
tangent value.)

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N Unchanged

ATAND(856)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition ATAND(856)

Executed Once for Upward Differentiation @ATAND(856)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764

(n = 0 to C)
684

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description ATAND(856) computes the angle (in radians) for a tangent value expressed as
a double-precision (64-bit) floating-point number in words S to S+3 and places
the result in D to D+3.
(The floating point source data must be in IEEE754 format.)

The result is output to words D to D+3 as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S) →TAN–1(S+3 S+2 D+1 DD+3 D+2

R

S: Input data (tangent)
R: Result (radians)
685

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-17 DOUBLE SQUARE ROOT: SQRTD(857)
Purpose Calculates the square root of a double-precision (64-bit) floating-point number

and places the result in the specified result words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.

OFF in all other cases.

SQRTD(857)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition SQRTD(857)

Executed Once for Upward Differentiation @SQRTD(857)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764

(n = 0 to C)
686

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description SQRTD(857) calculates the square root of the double-precision (64-bit) float-
ing-point number in words S to S+3 and places the result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the input data and
result.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S →S+3 S+2 D+1 DD+3 D+2

R

S: Input data
R: Result
687

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-18 DOUBLE EXPONENT: EXPD(858)
Purpose Calculates the natural (base e) exponential of a double-precision (64-bit) float-

ing-point number and places the result in the specified result words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is negative.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF Unchanged

Negative Flag N Unchanged

EXPD(858)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition EXPD(858)

Executed Once for Upward Differentiation @EXPD(858)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764
(n = 0 to C)
688

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description EXPD(858) calculates the natural (base e) exponential of the double-precision
(64-bit) floating-point number in words S to S+3 and places the result in words
D to D+3. In other words, EXP(467) calculates ex (x = source) and places the
result in words D to D+3.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S
→

S+3 S+2
D+1 DD+3 D+2e

R

S: Input data
R: Result
689

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-19 DOUBLE LOGARITHM: LOGD(859)
Purpose Calculates the natural (base e) logarithm of a double-precision (64-bit) float-

ing-point number and places the result in the specified destination words.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision (64-bit) floating-point
value.

Negative Flag N Unchanged

LOGD(859)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition LOGD(859)

Executed Once for Upward Differentiation @LOGD(859)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764

(n = 0 to C)
690

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description LOGD(859) calculates the natural (base e) logarithm of the double-precision
(64-bit) floating-point number in words S to S+3 and places the result in words
D to D+3.

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S →S+3 S+2 D+1 DD+3 D+2loge

R

S: Input data
R: Result
691

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-16-20 DOUBLE EXPONENTIAL POWER: PWRD(860)
Purpose Raises a double-precision (64-bit) floating-point number to the power of

another double-precision (64-bit) floating-point number.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is negative.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.

OFF in all other cases.

PWRD(860)

B

E

D

B: First base word
E: First exponent word
D: First destination word

Variations Executed Each Cycle for ON Condition PWRD(860)

Executed Once for Upward Differentiation @PWRD(860)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B E D

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764
692

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description PWRD(860) raises the double-precision (64-bit) floating-point number in
words B to B+3 to the power of the double-precision (64-bit) floating-point
number in words E to E+3. In other words, PWR(840) calculates XY (X = con-
tent of B to B+3; Y = content of E to E+3).

For example, when the base words (B to B+3) contain 3.1 and the exponent
words (E to E+3) contain 3, the result is 3.13 or 29.791.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON.

Flags

EM Area with bank En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area B E D

→S1+1 S1S1+3 S1+2 D+1 DD+3 D+2

S2+1 S2S2+3 S2+2

Exponent data

Base data

Name Label Operation

Error Flag ER ON if the base data (B to B+3) or exponent data (E to
E+3) is not recognized as floating-point data.

ON if the base data (B to B+3) or exponent data (E to
E+3) is not a number (NaN).
ON if the base data (B to B+3) is 0 and the exponent data
(E to E+3) is less than 0. (Division by 0)
ON if the base data (B to B+3) is negative and the expo-
nent data (E to E+3) is non-integer. (Root of a negative
number)
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.
693

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Precautions The base data (B to B+3) and the exponent data (E to E+3) must be in
IEEE754 floating-point data format.

3-16-21 Double-precision Floating-point Input Instructions
Purpose These input comparison instructions compare two double-precision floating

point values (64-bit IEEE754 format) and create an ON execution condition
when the comparison condition is true.

These instructions are supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU
Units only.

Note Refer to 3-7-1 Input Comparison Instructions (300 to 328) for details on the
signed and unsigned binary input comparison instructions and 3-15-24 Sin-
gle-precision Floating-point Comparison Instructions for details on single-pre-
cision floating-point input comparison instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

Name Label Operation

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)
694

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Description The input comparison instruction compares the data specified in S1 and S2 as
double-precision floating point values (64-bit IEEE754 data) and creates an
ON execution condition when the comparison condition is true. When the data
is stored in words, S1 and S2 specify the first of four words containing the 64-
bit data. The 64-bit floating-point data cannot be input as constants.

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.

<D

<D

<D

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
695

Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-16
Options

With the three input types and six symbols, there are 18 different possible
combinations.

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 single-precision floating-point input comparison instructions.
(C1=S1+3, S1+2, S1+1, S1 and C2=S2+3, S2+2, S2+1, S2.)

Flags In this table, C1 = content of S1 to S1+3 and C2 = content of S2 to S2+3.

Symbol Option (data format)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

D: Double-precision floating-point data

Code Mnemonic Name Function

335 LD=D LOAD DOUBLE FLOATING EQUAL True if
C1 = C2AND=D AND DOUBLE FLOATING EQUAL

OR=D OR DOUBLE FLOATING EQUAL

336 LD<>D LOAD DOUBLE FLOATING NOT EQUAL True if
C1 ≠ C2AND<>D AND DOUBLE FLOATING NOT EQUAL

OR<>D OR DOUBLE FLOATING NOT EQUAL

337 LD<D LOAD DOUBLE FLOATING LESS THAN True if
C1 < C2AND<D AND DOUBLE FLOATING LESS THAN

OR<D OR DOUBLE FLOATING LESS THAN

338 LD<=D LOAD DOUBLE FLOATING LESS THAN OR
EQUAL

True if
C1 ≤ C2

AND<=D AND DOUBLE FLOATING LESS THAN OR EQUAL

OR<=D OR DOUBLE FLOATING LESS THAN OR EQUAL

339 LD>D LOAD DOUBLE FLOATING GREATER THAN True if
C1 > C2AND>D AND DOUBLE FLOATING GREATER THAN

OR>D OR DOUBLE FLOATING GREATER THAN

340 LD>=D LOAD DOUBLE FLOATING GREATER THAN OR
EQUAL

True if
C1 ≥ C2

AND>=D AND DOUBLE FLOATING GREATER THAN OR
EQUAL

OR>=D OR DOUBLE FLOATING GREATER THAN OR
EQUAL

Name Label Operation

Error Flag ER OFF

Greater Than
Flag

> ON if C1 > C2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if C1 ≥ C2.
OFF in all other cases.

Equal Flag = ON if C1 = C2.
OFF in all other cases.

Not Equal Flag = ON if C1 ≠ C2.
OFF in all other cases.
696

Table Data Processing Instructions Section 3-17
Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example AND DOUBLE FLOATING LESS THAN: AND<D(331)

When CIO 000000 is ON in the following example, the floating point data in
words D00100 to D00103 is compared to the floating point data in words
D00200 to D00203. If the content of D00100 to D00103 is less than that of
D00200 to D00203, execution proceeds to the next line and CIO 005000 is
turned ON. If the content of D00100 to D00103 is not less than that of D00200
to D00203, execution does not proceed to the next instruction line.

3-17 Table Data Processing Instructions
This section describes instructions used to handle table data, stacks, and
other ranges of data. The 5 instructions at the bottom of the table (marked
with an asterisk) are supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU
Units only.

Less Than Flag < ON if C1 < C2.
OFF in all other cases.

Less Than or
Equal Flag

< = ON if C1 ≤ C2.
OFF in all other cases.

Negative Flag N Unchanged

Name Label Operation

<D

D00100

D00200

000000 005000

34580>14876

−3.4580E+48<1.4876E+48

1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0
1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

15 0

S1 :D00100
S1+1:D00101
S1+2:D00102
S1+3:D00103

0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0
1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0
1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1
0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

15 0

S1 :D00100
S2+1:D00101
S2+2:D00102
S2+3:D00103

1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1
1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0

15 0

S1 :D00100
S1+1:D00101
S1+2:D00102
S1+3:D00103

0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0

15 0

S1 :D00100
S2+1:D00101
S2+2:D00102
S2+3:D00103

DOUBLE FLOATING LESS THAN Comparison (<D)

Yields an ON condition.

Decimal value: −3.4580E+48

Decimal value: –1.4876

Does not yield an ON condition.

Decimal value: 3.4580

Decimal value: 1.4876E+48

Instruction Mnemonic Function code Page

SET STACK SSET 630 703

PUSH ONTO STACK PUSH 632 706

FIRST IN FIRST OUT FIFO 633 709

LAST IN FIRST OUT LIFO 634 712

DIMENSION RECORD TABLE DIM 631 715
697

Table Data Processing Instructions Section 3-17
All of these instructions define or operate on a group of words. The group of
words in a stack are defined by SSET(630), the group of words in a record-
table are defined by DIM(631), and the group of words used in a range
instruction are defined independently in each instruction.

Stack Instructions Stack instructions act on specially defined data tables called stacks. The first
two words of the stack contain the PLC memory address of the last word in
the stack and the second two words contain the stack pointer (the PLC mem-
ory address of the word that will be overwritten by the next PUSH(632)
instruction).

SET RECORD LOCATION SETR 635 718

GET RECORD NUMBER GETR 636 720

DATA SEARCH SRCH 181 722

SWAP BYTES SWAP 637 725

FIND MAXIMUM MAX 182 727

FIND MINIMUM MIN 183 731

SUM SUM 184 735

FRAME CHECKSUM FCS 180 738

STACK NUMBER OUTPUT SNUM 638 742

STACK DATA READ SREAD 639 744

STACK DATA OVERWRITE SWRIT 640 747

STACK DATA INSERT SINS 641 750

STACK DATA DELETE SDEL 642 753

Group Purpose Instructions

Stack Operate FIFO (first-in first-out) or LIFO
(last-in first-out) data tables.

SSET(630), PUSH(632),
FIFO(633), LIFO(634),
SREAD(639), SWRIT(640),
SINS(641), SDEL(642), and
SNUM(638)

Record-table Operate tables of data made up of
records. (Record size is user-defined.)

DIM(631), SETR(635), and
GETR(636)

Range Operates on a range of words to find
values such as the checksum, a particu-
lar value, the maximum value, or mini-
mum value in the range.

FCS(180), SRCH(181),
MAX(182), MIN(183),
SUM(184), and SWAP(637)

Instruction Mnemonic Function code Page

I/O memory

Stack region
698

Table Data Processing Instructions Section 3-17
The following diagram shows the basic structure of a stack.

The following instructions define or act on stack regions. Basically,
PUSH(632) stores data in the next available data word in the stack. FIFO(633)
and LIFO(634) read data from the stack. FIFO(633) reads the first word that
was stored, while LIFO(634) reads the last word that was stored.

The last five instructions are supported by CS1-H, CJ1-H, CJ1M, and CS1D
CPU Units only. SNUM(638) counts the number of data elements (words) in
the specified stack; for example, this instruction could be used to indicate the
number of items on a conveyor. Use the SREAD(639), SWRIT(640),
SINS(641), and SDEL(642) instructions to read, overwrite, insert, and delete
data elements in a stack. For example, when items are being handled on a
conveyor, these instructions can add, remove, or change a data element in
the stack that corresponds to an item on the conveyor.

PUSH(632)
Stores data in the address indicated by the stack pointer and increments the
pointer by one.

FIFO(633)
Reads first (oldest) word of data that was stored in the stack, shifts the
remaining data down one word, and decrements the pointer by one.

Data region

ExampleStack region
P

oi
nt

er

End of
stack

Words in
stack region

PC memory address of the
last word in the stack

PC memory address of the
next data word (stack pointer)

Stack region
PC memory
address

16 words

Pointer

APointer
Pointer

Stack Stack

to
to

Data region Data region

Stack Stack
Pointer to last
word in stack

Pointer

Reads the content of A, decrements the pointer
by 1, deletes A, and shifts remaining data down.

Pointer
Pointer
699

Table Data Processing Instructions Section 3-17
LIFO(634)
Reads the last (most recent) word of data that was stored in the stack. Decre-
ments the pointer by one and reads the data at this address (the most recent
data stored in the stack). The read data will not be cleared.

SREAD(639)
Reads the data from the specified data element in the stack. The offset value
indicates the location of the desired word (the number of words before the cur-
rent pointer position).

A
B

A
B

Data region
Pointer

Stack

A is the last word
stored in the stack.

Pointer

Stack

Data region

Decrements the pointer by one
and reads content of A.

A

:
A
B
C

:
A
B
CData region

Pointer Pointer
(Unchanged)

Last word of
data in stack

Stack

Data region

Data in pointer position - n
(n=3 in this example.)

Stack

Pointer to last
word in stack

Pointer

Reads data from pointer
position - n.
(n=3 in this example.)

-n
(n=3)
700

Table Data Processing Instructions Section 3-17
SWRIT(640)
Writes the source data to the specified data element in the stack (overwriting
the existing data). The offset value indicates the location of the desired word
(the number of words before the current pointer position).

SINS(641)
Inserts the source data at the specified location in the stack and shifts the rest
of the data in the stack downward. The offset value indicates the location of
the desired word (the number of words before the current pointer position).

M

:
A
B
C

:
M
B
C

Stack

Data region

Pointer Pointer
(Unchanged)

Last word of
data in stack

Stack

Data region

Pointer to last
word in stack

Data in pointer position - n
(n=3 in this example.)

Pointer

Overwrites data at pointer
position - n.
(n=3 in this example.)

-n
(n=3)

M

:
A
B
C

:
M
A
B
C

Stack

Data region

Pointer Pointer
(Incremented by 1)

Last word of
data in stack

Stack

Data region

Pointer to last
word in stack

Data in pointer position - n
(n=3 in this example.)

Pointer

Inserts data element M at pointer
position - n, shifts the existing data
(A, B, and C) down, and increments
the pointer value by 1.

Pointer to last
word in stack

Pointer

-n
(n=3)

Insert

Data in pointer
position n
701

Table Data Processing Instructions Section 3-17
SDEL(642)
Deletes the data element at the specified location in the stack and shifts the
rest of the data in the stack upward. The offset value indicates the location of
the desired word (the number of words before the current pointer position).

SNUM(638)
Counts the amount of stack data (number of words of data) from the stack
pointer to the beginning of the data region.

Record-table Instructions A series of data consisting of more than one record with the same number of
words in each record is called table data. Table data stored in the specified I/O
memory are can be registered as the table area using the DIM instruction. Up
to 16 separate tables can be defined with table numbers 0 to 15.

A

:
A
B
C

:
B
C
C

Stack

Data
region

Pointer
Pointer
(Decre-
mented by 1)

Last word of
data in stack

Stack

Data region

Pointer to last
word in stack

Data in pointer position - n
(n=3 in this example.)

Pointer

Deletes the data element at pointer
position - n, shifts the remaining
data upward, and decrements the
pointer value by 1.

Pointer to last
word in stack

Pointer

-n
(n=3)

0005

A
B
C
D
E

A
B
C
D
E

Stack

Data
region

Pointer Pointer
(Unchanged)

Stack

Data region

Pointer to last
word in stack

Pointer

Counts data elements (N).

Pointer to last
word in stack

Pointer

Table number 0

Table number 1
702

Table Data Processing Instructions Section 3-17
The following diagram shows the basic structure of a record table. Each
record in a table has the same number of words.

Index Registers (IR) can be used to indirectly reference table data. Address
calculation of the record can be easily made by using the SETR(635) (SET
RECORD NUMBER) instruction and GETR(636) (GET RECORD NUMBER).

Range Instructions The range instructions included here act on a specified range of words to find
the maximum value (MAX(182)) or minimum value (MIN(183)), search for a
particular value (SRCH(181)), calculate the sum (SUM(184)) or FCS
(FCS(180)), or swap the contents of the leftmost and rightmost bytes in the
words (SWAP(637)).

3-17-1 SET STACK: SSET(630)
Purpose Defines a stack of the specified length beginning at the specified word.

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

Record

Record

Record

Table

Same number of words
in each record

Range
specified in
instruction

MAX or
MIN
search

SRCH
search SWAP

operation
SUM
calculation or
FCS
calculation

SSET(630)

TB

N

TB: First stack address

N: Number of words

Variations Executed Each Cycle for ON Condition SSET(630)

Executed Once for Upward Differentiation @SSET(630)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
703

Table Data Processing Instructions Section 3-17
TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Note 1. The initial value of the stack pointer is always the PLC memory address of
TB+4.

2. TB and TB+(N–1) must be in the same data area.

Operand Specifications

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

Stack pointer (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

PC memory address of the last
word in the stack (leftmost 4 digits)

PC memory address of the last
word in the stack (rightmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0005 to #FFFF (binary) or
&5 to &65,535
704

Table Data Processing Instructions Section 3-17
Description SSET(630) secures a stack with N words beginning at TB and ending at
TB+(N–1). The first two words of the stack (TB+1 and TB) contain the 8-digit
hexadecimal PLC memory address of the last word in the stack. The next two
words (TB+3 and TB+2) contain the stack pointer. The stack pointer is the
PLC memory address of the next word in the stack that will be overwritten by
PUSH(632); its initial value is the address of TB+4.

SSET(630) automatically initializes the data region of the stack (TB+4 through
TB+(N–1)) to zeroes. The following diagram shows the basic structure of a
stack.

SSET(630) just establishes and initializes a stack. Use the following instruc-
tions to store in the stack and read data from the stack.

1,2,3... 1. PUSH(632) stores data in the stack one word at a time.

2. FIFO(633) and LIFO(634) read data from the stack. FIFO(633) reads the
first word that was stored; LIFO(634) reads the last word that was stored.

3. The stack pointer value in the stack control word is automatically updated
when PUSH(632), FIFO(633), or LIFO(634) is executed. Normally, users
need not be concerned about the stack control word. When accessing the
contents of the stack other than by using the above instructions, set the
stack pointer value using the Index Register (IR) for indirect referencing.

Flags

Precautions The minimum value for the number of words in the stack (N) is 5 because N
includes the four words that contain the pointer to the last word in the stack
and the stack pointer. An error will occur if N is not in the range 0005 to FFFF.

Examples When CIO 000000 is ON in the following example, SSET(630) secures a 10-
word stack from D00000 to D00009. D00000 and D00001 contain the PLC
memory address of the last word in the stack. D00002 and D00003 contain
the stack pointer. The stack itself begins in D00004.

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB N

m+(N–1)

m+(N–1)

TB

TB+1

TB+2

TB+3
Last word
in stack

Stack
pointer

N words
in stack

PC memory
address

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0005 to FFFF.
OFF in all other cases.
705

Table Data Processing Instructions Section 3-17
3-17-2 PUSH ONTO STACK: PUSH(632)
Purpose Writes one word of data to the specified stack.

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

&10

PC memory address

Last word
in stack

Stack
pointer

PC memory address
of last word in stack

Stack pointer

10 words

PUSH(632)

TB

S

TB: First stack address

S: Source word

Variations Executed Each Cycle for ON Condition PUSH(632)

Executed Once for Upward Differentiation @PUSH(632)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
706

Table Data Processing Instructions Section 3-17
TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

Stack pointer (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

PC memory address of the last
word in the stack (leftmost 4 digits)

PC memory address of the last
word in the stack (rightmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #FFFF (binary)

Data Registers --- DR0 to DR15
707

Table Data Processing Instructions Section 3-17
Description PUSH(632) writes the content of S to the address indicated by the stack
pointer (TB+3 and TB+2) and increments the stack pointer by one.

After PUSH(632) has been used to write data into a stack, FIFO(633) and
LIFO(634) can be used to read data from the stack.

Flags

Precautions The stack must be defined in advance with SSET(630).

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB S

m

n

n

m

D
D+1
D+2
D+3

S
m
m+1

n

n

m+1

D
D+1
D+2
D+3

A
A

A

PLC memory
address

PLC
memory

Write A.

Pointer

Increment
pointer by 1.

Pointer

Name Label Operation

Error Flag ER ON if the address specified by the stack pointer (TB+3
and TB+2) exceeds the last word in the stack.
(This is a stack overflow error.)
OFF in all other cases.
708

Table Data Processing Instructions Section 3-17
Examples When CIO 000000 is ON in the following example, PUSH(632) copies the
content of D00200 to the stack beginning at D00000. In this case, the stack
pointer indicates D00007.

3-17-3 FIRST IN FIRST OUT: FIFO(633)
Purpose Reads the first word of data written to the specified stack (the oldest data in

the stack).

Ladder Symbol

Variations

Applicable Program Areas

PC memory address

Write A.Last word
in stack

Stack
pointer

PC memory address
of last word in stack

Stack pointer

A

PC memory address

After the data is written to
D00007, the stack pointer
is incremented by one.

PC memory address
of last word in stack

Stack pointer

Last word
in stack

FIFO(633)

TB

D

TB: First stack address

D: Destination word

Variations Executed Each Cycle for ON Condition FIFO(633)

Executed Once for Upward Differentiation @FIFO(633)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
709

Table Data Processing Instructions Section 3-17
Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

PC memory address of the last
word in the stack (rightmost 4 digits)

PC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

Stack pointer (leftmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---
710

Table Data Processing Instructions Section 3-17
Description FIFO(633) reads the oldest word of data from the stack (TB+4) and outputs
that data to D. Next, the stack pointer (TB+3 and TB+2) is decremented by
one, all of the remaining data in the stack is shifted downward by one word,
and the data read from TB+4 is deleted. The data at the end of the stack (the
address that was indicated by the stack pointer) is left unchanged.

Use FIFO(633) in combination with PUSH(632). After PUSH(632) has been
used to write data into a stack, FIFO(633) can be used to read data from the
stack on a first-in first-out basis.

FIFO(633) reads the beginning data from the stack and deletes this data to
move the next one forward.

Flags

Precautions The stack must be defined in advance with SSET(630).

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB D

m–1

TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3

TB+4 TB+4

m–1

PC memory
address

Oldest
data

Stack
pointer

PC memory
address

First-in first-out

Stack
pointer

Name Label Operation

Error Flag ER ON if the contents of the stack pointer (TB+3 and TB+2) is
less than or equal to the PLC memory address of first
word in the data region of the stack (TB+4).
(This is a stack underflow error.)
OFF in all other cases.
711

Table Data Processing Instructions Section 3-17
Examples When CIO 000000 is ON in the following example, FIFO(633) reads the con-
tent of D00004 (TB+4 for the stack beginning at D00000) and writes that data
to D00300.

After the data is written to D00300, the stack pointer is decremented by one
and the remaining data is shifted down. (The content of D00005 is shifted to
D00004 and the content of D00006 is shifted to D00005.)

3-17-4 LAST IN FIRST OUT: LIFO(634)
Purpose Reads the last word of data written to the specified stack (the newest data in

the stack).

Ladder Symbol

Variations

Applicable Program Areas

TB:

D: D00300

TB

Read by FIFO(633).

Stack pointer

PC memory address
of last word in stack

Last word
in stack

Stack
pointer

D: D00300–1
Last word
in stack

Stack
pointer

PC memory address
of last word in stack

Stack pointer

LIFO(634)

TB

D

TB: First stack address

D: Destination word

Variations Executed Each Cycle for ON Condition LIFO(634)

Executed Once for Upward Differentiation @LIFO(634)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
712

Table Data Processing Instructions Section 3-17
Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

Stack pointer (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

PC memory address of the last
word in the stack (leftmost 4 digits)

PC memory address of the last
word in the stack (rightmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers --- DR0 to DR15
713

Table Data Processing Instructions Section 3-17
Description LIFO(634) reads the data from the address indicated by the stack pointer (the
newest word of data in the stack), decrements the stack pointer by one, and
outputs the data to D. The word that was read is left unchanged.

Use LIFO(634) in combination with PUSH(632). After PUSH(632) has been
used to write data into a stack, LIFO(634) can be used to read data from the
stack on a last-in first-out basis. After data is stored by PUSH(632), the stack
pointer indicates the address next to the last data.

Flags

Precautions The stack must be defined in advance with SSET(630).

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB D

TB

TB+1

TB+2

TB+3

TB
TB+1

TB+2

TB+3

m–1 m–1

m–1

Reading

A is left unchanged.

Stack
pointer

PC memory
address

PC memory
address

Newest
data

Stack
pointer

The pointer is
decremented.

Name Label Operation

Error Flag ER ON if the contents of the stack pointer (TB+3 and TB+2) is
less than or equal to the PLC memory address of first
word in the data region of the stack (TB+4).
(This is a stack underflow error.)

OFF in all other cases.
714

Table Data Processing Instructions Section 3-17
Examples When CIO 000000 is ON in the following example, LIFO(634) reads the con-
tent of the word indicated by the stack pointer (D00006) and writes that data
to D00300.

After the data is written to D00300, the stack pointer is decremented by one.
The content of D00006 is left unchanged.

3-17-5 DIMENSION RECORD TABLE: DIM(631)
Purpose Defines the specified I/O memory area as a record table by declaring the

length of each record and the number of records. Up to 16 record tables can
be defined.

Ladder Symbol

Variations

–1

TB:

Last word
in stack

Stack
pointer

Stack pointer

PC memory address
of last word in stack

D: D00300

Stack pointer

PC memory address
of last word in stack

Read by LIFO(634).
Last word
in stack

Stack
pointer

DIM(631)

N

LR

NR

TB

N: Table number

LR: Length of each record

NR: Number of records

TB: First table word

Variations Executed Each Cycle for ON Condition DIM(631)

Executed Once for Upward Differentiation @DIM(631)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
715

Table Data Processing Instructions Section 3-17
Applicable Program Areas

Operands N: Table number
Indicates the table number. N must be between 0 and15.

LR: Length of each record
Indicates the number of words in each record. LR must be 0001 to FFFF
hexadecimal (1 to 65,535 words).

NR: Number of records
Indicates the number of records in the table. NR must be 0001 to FFFF hexa-
decimal (1 to 65,535 words).

TB: First table word
Indicates the first word of the table. All of the words in the table must be in the
same data area. In other words TB and TB+LR×NR–1 must be in the same
data area.

Operand Specifications

Description DIM(631) registers the words from TB to TB+LR×NR–1 as table number N.
Table number N has NR records and each record is LR words long. The data
within this region cannot be changed once the region has been declared as
records.

Use DIM(631) in combination with SETR(635) (SET RECORD NUMBER) or
GETR(636) (GET RECORD NUMBER) to simplify the calculation of

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N LR NR TB

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959 A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants 0 to 15 #0001 to #FFFF (binary) or &1
to &65,535

Data Registers --- DR0 to DR15 ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15 ,IR0+(++) to
,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
716

Table Data Processing Instructions Section 3-17
addresses in data tables. Use DIM(631) to divide data into records and then
use SETR(635) to store the first address of the desired record in an Index
Register. The Index Register can then be used as a pointer in other instruc-
tions, such as read, write, search, or compare instructions.

As an example, if temperatures, pressures, or other set values are stored as
records and the records for various models are combined into a table, it is
easy to read the set values for each models for any particular conditions.

The two record-table instructions associated with DIM(631) are SETR(635)
and GETR(636). SETR(635) sets the leading PLC memory address of the
specified record number in the specified Index Register. GETR(636) outputs
the record number of the record that includes the specified Index Register
value (PLC memory address).

Flags

Precautions Records in a registered table are identified by their record numbers, which
range from 0 to NR–1.

Depending on the settings for the record length (LR) and number of records
(NR), it is possible that a single table (from TB and TB+LR×NR–1) will overlap
two data areas. Verify that no problems will arise before specifying a table that
overlaps a data area boundary.

Examples When CIO 000000 is ON in the following example, DIM(631) defines record
table number 2 with three 10-word records. The table begins at D00300.

Number of records

Table number (N)

Record 0

Record 1

Record NR–1

LR × NR words

Name Label Operation

Error Flag ER ON if LR or NR is 0000.

OFF in all other cases.

LR: D00100

NR: D00200

N

LR
NR

TB

Record 0

Record 1

Record 2

Record length: 10 words

Number of records: 3

10 words

10 words

10 words

Table number 2
717

Table Data Processing Instructions Section 3-17
3-17-6 SET RECORD LOCATION: SETR(635)
Purpose Writes the location of the specified record (the PLC memory address of the

beginning of the record) in the specified Index Register.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Table number
Indicates the table number. N must be between 0 and 15.

R: Record number
Indicates the record number of the desired record. R must be 0000 to FFFE
hexadecimal (0 to 65,534). Record numbers begin with 0, so the valid record
numbers are 0 to NR–1 for a table with NR records.

D: Destination Index Register
Indicates the desired Index Register. D must be IR0 to IR15.

Operand Specifications

SETR(635)

N

R

D

N: Table number

R: Record number

D: Destination Index Register

Variations Executed Each Cycle for ON Condition SETR(635)

Executed Once for Upward Differentiation @SETR(635)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N R D

CIO Area --- CIO 0000 to CIO 6143 ---

Work Area --- W000 to W511 ---

Holding Bit Area --- H000 to H511 ---

Auxiliary Bit Area --- A000 to A959 ---

Timer Area --- T0000 to T4095 ---

Counter Area --- C0000 to C4095 ---

DM Area --- D00000 to D32767 ---

EM Area without bank --- E00000 to E32767 ---

EM Area with bank --- En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

Constants 0 to 15 #0000 to #FFFE (binary) or
&0 to 65534

Data Registers --- DR0 to DR15 ---
718

Table Data Processing Instructions Section 3-17
Description SETR(635) stores the PLC memory address of the first word of the specified
record in the specified Index Register. The following diagram shows the basic
operation of SETR(635).

Flags

Precautions The record table must be defined in advance with DIM(631).

Valid record numbers range from 0 to NR–1, where NR is the number of
records specified when the table was defined with DIM(631).

Examples When CIO 000000 is ON in the following example, SETR(635) finds the PLC
memory address of the first word of record 3 of table number 10 and stores
this address in Index Register IR11.

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048
to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,– (– –)IR0 to, – (– –)IR15

Area N R D

R

IR@

SETR(635) writes the PC memory address (m)
of the first word of record R to Index Register D.

PC memory
address

Table number (N)

Record
number (R)

Name Label Operation

Error Flag ER ON if the specified table number (N) has not been defined
with DIM(631).
ON if the specified record number (R) exceeds the high-
est record number in the table (NR–1).

OFF in all other cases.

R

to

Table number 10

Record number: 0

Record number 3

PC memory
address
719

Table Data Processing Instructions Section 3-17
3-17-7 GET RECORD NUMBER: GETR(636)
Purpose Returns the record number of the record at the PLC memory address con-

tained in the specified Index Register.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Table number
Indicates the table number. N must be between 0 and 15.

IR: Index Register
Indicates the desired Index Register. D must be IR0 to IR15.

D: Destination word
Indicates the word where the record number will be written.

Operand Specifications

GETR(636)

N

IR

D

N: Table number

IR: Index Register

D: Destination word

Variations Executed Each Cycle for ON Condition GETR(636)

Executed Once for Upward Differentiation @GETR(636)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N IR D

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to
@ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants 0 to 15 --- ---

Data Registers --- DR0 to DR15
720

Table Data Processing Instructions Section 3-17
Description GETR(636) finds which record includes the PLC memory address contained
in the specified Index Register and writes that record number in D. The PLC
memory address contained in the Index Register does not have to be the first
word in the record; it can be any word in the record.

The following diagram shows the basic operation of GETR(636).

Flags

Precautions The record table must be defined in advance with DIM(631) and the PLC
memory address in the specified Index Register must be within the specified
table.

Examples When CIO 000000 is ON in the following example, GETR(636) finds the
record number of the record that contains the PLC memory address in Index
Register IR11 and writes this record number to D01000.

Index Registers --- IR0 to IR15 ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N IR D

IR

n

GETR(636) writes the record number
of the record that includes PC memory
address m to D.

PC memory
addressTable number (N)

Record number
(R)

Name Label Operation

Error Flag ER ON if the PLC memory address in the specified Index
Register is not within the specified table (N).
ON if the specified table number (N) has not been defined
with DIM(631).

OFF in all other cases.

IR

to

Table number 10

Record number: 0

Record number 3

PC memory
address

Record containing
address 10000.
721

Table Data Processing Instructions Section 3-17
3-17-8 DATA SEARCH: SRCH(181)
Purpose Searches for a word of data within a range of words.

In CS1D CPU Units for Single-CPU Systems and CS1-H, CJ1-H, and CJ1M
CPU Units, this instruction can be run in the background. Refer to the CS/CJ
Series Programmable Controllers Programming Manual for details on back-
ground execution.

Ladder Symbol

Variations

Applicable Program Areas

Operands C and C+1: Control words
C specifies the number of words in the range and bit 15 of C+1 indicates
whether or not to output the number of matches to DR00.

Note C and C+1 must be in the same data area.

R1: First word in range
R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the desired data. (C is the number of words set in C.)

SRCH(181)

C

R1

Cd

C: First control word

R1: First word in range

Cd: Comparison data

Variations Executed Each Cycle for ON Condition SRCH(181)

Executed Once for Upward Differentiation @SRCH(181)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

C

15 014

C+1 000 0000 0000 0000

0
Output selection Output selection

0000 hex: Does not output number of
matches.
8000 hex: Outputs number of matches.

Number of words in range

0: Does not output number of
matches.
1: Outputs number of matches.

R1

R1+(C–1)

15 0

---to

Search range
722

Table Data Processing Instructions Section 3-17
Note R1 and R1+C–1 must be in the same data area.

Operand Specifications

Description SRCH(181) searches the range of memory from R1 to R1+C–1 for words that
contain the comparison data (Cd). If a match is found, SRCH(181) writes the
PLC memory address of the word to IR00 and turns the Equals Flag ON.
(If there are two or more matches, just the address of the first word containing
the comparison data is written to IR00.)

When bit 15 of C+1 has been set to 1, SRCH(181) writes the number of
matches to DR00. When bit 15 of C+1 is 0, DR00 is left unchanged.

Area C R1 Cd

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A958 A000 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32766

D00000 to D32767

EM Area without bank E00000 to
E32766

E00000 to E32767

EM Area with bank En_00000 to
En_32766
(n = 0 to C)

En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values
only

--- #0000 to #FFFF
(binary)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R1+(C–1)

C

R1 Search

Match

Cd

PC memory
address
723

Table Data Processing Instructions Section 3-17
SRCH(181) searches table data that contains one word in each record. For
searching data that contains more than one word per record, use DIM(631),
SETR(635), GETR(636), FOR(512)–NEXT(513), or BREAK(514) together
with an Index Register (IR).

The status of the Equals Flag can be checked immediately after execution to
determine whether or not there was a match.

Note SRCH(181) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Related Memory Area
Words

Flags

Precautions If no match is found, the contents of IR00 and DR00 are left unchanged.

If background execution is enabled in the PLC Setup, the PLC memory
address of the first word containing a match will be output to Auxiliary Area
words A595 and A596 instead of IR00.

If background execution is enabled in the PLC Setup and control word C+1 is
set to output the total number of matches to DR00 (C+1 = 8000 hex), the total
number of matches will be output to Auxiliary Area word A597 instead of
DR00.

Examples When CIO 000000 is ON in the following example, SRCH(181) searches the
10-word range beginning at D00100 for words that have the same content as
D00200. The PLC memory address of the first word containing a match is
written to IR00 and the total number of matches is written to DR00.

Name Address Operation

IR00 Output for
Background Execution

A595 and
A596

When an index register is specified as the out-
put for an instruction processed in the back-
ground, A595 and A596 receive the output
instead of IR00.

(A595 contains the rightmost digits, and A596
contains the leftmost digits.)

DR00 Output for
Background Execution

A597 When a data register is specified as the output
for an instruction processed in the background,
A597 receives the output instead of DR00.

Equals Flag for
Background Execution

A59801 This flag is turned ON if matching data is found
for a SRCH(181) instruction executed in the
background.

ER/AER Flag for
Background Execution

A39510 This flag is turned ON if an error or illegal
access occurs during background execution.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.
OFF in all other cases.

Equals Flag = ON if one or more of the words in the search range con-
tain the comparison data.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.
724

Table Data Processing Instructions Section 3-17
If the table length is specified as &10 (10 decimal) or A hexadecimal, the num-
ber of matches will not be output to the data register DR00.

3-17-9 SWAP BYTES: SWAP(637)
Purpose Switches the leftmost and rightmost bytes in all of the words in the range.

In CS1D CPU Units for Single-CPU Systems and CS1-H, CJ1-H, and CJ1M
CPU Units, this instruction can be run in the background. Refer to CS/CJ
Series Programmable Controllers Programming Manual for details on back-
ground execution.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of words
N specifies the number of words in the range and must be 0001 to FFFF
hexadecimal (or &1 to &65,535).

R1: First word in range
R1 specifies the first word in the range. R1 and R1+(N–1) must be in the
same data area.

D00200

#8000000A

R1

Cd
10067

00010067

0003

Search

Number of matches

Number of matches

PC memory
address

SWAP(637)

N

R1

N: Number of words

R1: First word in range

Variations Executed Each Cycle for ON Condition SWAP(637)

Executed Once for Upward Differentiation @SWAP(637)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

R1

R1+(N–1)

15 08 7

to

Leftmost byte Rightmost byte
725

Table Data Processing Instructions Section 3-17
Operand Specifications

Description SWAP(637) switches the position of the two bytes in all of the words in the
range of memory from R1 to R1+N–1. This instruction can be used to reverse
the order of ASCII-code characters in each word.

Note SWAP(637) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Area N R1

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0001 to #FFFF (binary) or
&1 to &65,535

Data Registers DR00 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

N

R1

Byte position is swapped.

Name Label Operation

Error Flag ER ON if the N is 0000.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.
726

Table Data Processing Instructions Section 3-17
Examples When CIO 000000 is ON in the following example, SWAP(637) switches the
data in the leftmost bytes with the data in the rightmost bytes in each word in
the 10-word range from W000 to W009.

3-17-10 FIND MAXIMUM: MAX(182)
Purpose Finds the maximum value in the range.

In CS1D CPU Units for Single-CPU Systems and CS1-H, CJ1-H, and CJ1M
CPU Units, this instruction can be run in the background. Refer to CS/CJ
Series Programmable Controllers Programming Manual for details on back-
ground execution.

Ladder Symbol

Variations

Applicable Program Areas

Operands C and C+1: Control words
C specifies the number of words in the range, bit 15 of C+1 indicates whether
the data will be treated as signed binary or unsigned binary, and bit 14 of C+1
indicates whether or not to output the PLC memory address of the word that
contains the maximum value to IR00.

Note C and C+1 must be in the same data area.

&10N

R1

to to to to

MAX(182)

C

R1

D

C: First control word

R1: First word in range

D: Destination word

Variations Executed Each Cycle for ON Condition MAX(182)

Executed Once for Upward Differentiation @MAX(182)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
727

Table Data Processing Instructions Section 3-17
The following table shows the possible values of C.

R1: First word in range
R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the maximum value. (C is the number of words specified in
C.)

Note R1 and R1+(C–1) must be in the same data area.

Operand Specifications

C+1 Data type Index Register output

0000 Unsigned binary No

4000 Unsigned binary Yes

8000 Signed binary No

C000 Signed binary Yes

15 0

C

15 014

0

C+1

13

00 0000 0000 0000

Output selection

Data type

Number of words in range

0: Does not output address to IR00.
1: Outputs address to IR00.

0: Unsigned binary data
1: Signed binary data

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 D

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A958 A000 to A959 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to D32766 D00000 to D32767

EM Area without bank E00000 to E32766 E00000 to E32767

EM Area with bank En_00000 to
En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)
728

Table Data Processing Instructions Section 3-17
Description MAX(182) searches the range of memory from R1 to R1+C–1 for the maxi-
mum value in the range and outputs that maximum value to D.

When bit 14 of C+1 has been set to 1, MAX(182) writes the PLC memory
address of the word containing the maximum value to IR00. (If two or more
words within the range contain the maximum value, the address of the first
word containing the maximum value is written to IR00.)

When bit 15 of C+1 has been set to 1, MAX(182) treats the data within the
range as signed binary data.

Note MAX(182) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Related Memory Area
Words

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants Specified values only ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C R1 D

R1+(W–1)

C W

Max.

C words

PC memory
address

value

Name Address Operation

IR00 Output for
Background Execution

A595 and
A596

When an index register is specified as the out-
put for an instruction processed in the back-
ground, A595 and A596 receive the output
instead of IR00.

(A595 contains the rightmost digits, and A596
contains the leftmost digits.)

ER/AER Flag for
Background Execution

A39510 This flag is turned ON if an error or illegal
access occurs during background execution.
729

Table Data Processing Instructions Section 3-17
Flags

Precautions When bit 15 of C+1 has been set to 1, the data within the range is treated as
signed binary data and hexadecimal values 8000 to FFFF are considered
negative. Thus, the results of the search will differ depending on the data-type
setting.

If background execution is enabled in the PLC Setup, the PLC memory
address of the word containing the maximum value will be output to Auxiliary
Area words A595 and A596 instead of IR00.

Examples When CIO 000000 turns ON in the following example, MAX(182) searches
the 10-word range beginning at D00200 for the maximum value. The maxi-
mum value is written to D00300 and the PLC memory address of the word
containing the maximum value is written to IR00.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if the maximum value is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the word containing the maximum
value.
OFF in all other cases.
730

Table Data Processing Instructions Section 3-17
3-17-11 FIND MINIMUM: MIN(183)
Purpose Finds the minimum value in the range.

In CS1D CPU Units for Single-CPU Systems and CS1-H, CJ1-H, and CJ1M
CPU Units, this instruction can be run in the background. Refer to the CS/CJ
Series Programmable Controllers Programming Manual for details on back-
ground execution.

Ladder Symbol

Variations

C: D00100

C+1: D00101

D: D00300

R1:

1

R1

–2

–1
–3

000100CA

100CA

 0 0 0 A 10 words

Number of words

Always 0.

1: Outputs address to IR00.

1: Treats data as signed binary.

Decimal
equivalent

Max. value
PC memory
address

MIN(183)

C

R1

D

C: First control word

R1: First word in range

D: Destination word

Variations Executed Each Cycle for ON Condition MIN(183)

Executed Once for Upward Differentiation @MIN(183)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
731

Table Data Processing Instructions Section 3-17
Applicable Program Areas

Operands C and C+1: Control words
C specifies the number of words in the range, bit 15 of C+1 indicates whether
the data will be treated as signed binary or unsigned binary, and bit 14 of C+1
indicates whether or not to output the PLC memory address of the word that
contains the minimum value to IR00.

Note C and C+1 must be in the same data area.

The following table shows the possible values of C.

R1: First word in range
R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the minimum value. (C is the number of words specified in
C.)

Note R1 and R1+C–1 must be in the same data area.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C+1 Data type Index Register output

0000 Unsigned binary No

4000 Unsigned binary Yes

8000 Signed binary No

C000 Signed binary Yes

15 0

C

15 014

0

C+1
13

00 0000 0000 0000

Output selection

Data type
0: Unsigned binary data
1: Signed binary data

0: Does not output address to IR00.
1: Outputs address to IR00.

Number of words in range

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 D

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511
732

Table Data Processing Instructions Section 3-17
Description MIN(183) searches the range of memory from R1 to R1+C–1 for the minimum
value in the range and outputs that minimum value to D.

When bit 14 of C+1 has been set to 1, MIN(183) writes the PLC memory
address of the word containing the minimum value to IR00. (If two or more
words within the range contain the minimum value, the address of the first
word containing the minimum value is written to IR00.)

When bit 15 of C+1 has been set to 1, MIN(183) treats the data within the
range as signed binary data.

Note MIN(183) can be processed in the background. Refer to the SYSMAC CS/CJ/
NSJ Series PLC Programming Manual (W394) for details.

Auxiliary Bit Area A000 to A958 A000 to A959 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32766

D00000 to D32767

EM Area without bank E00000 to
E32766

E00000 to E32767

EM Area with bank En_00000 to
En_32766
(n = 0 to C)

En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D0000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values
only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area C R1 D

R1+(W–1)

R1
C W

C words

Min. value

PC memory
address
733

Table Data Processing Instructions Section 3-17
Related Memory Area
Words

Flags

Precautions When bit 15 of C+1 has been set to 1, the data within the range is treated as
signed binary data and hexadecimal values 8000 to FFFF are considered
negative. Thus, the results of the search will differ depending on the data-type
setting.

If background execution is enabled in the PLC Setup, the PLC memory
address of the word containing the minimum value will be output to Auxiliary
Area words A595 and A596 instead of IR00.

Examples When CIO 000000 turns ON in the following example, MIN(183) searches the
10-word range beginning at D00200 for the minimum value. The minimum
value is written to D00300 and the PLC memory address of the word contain-
ing the minimum value is written to IR00.

Name Address Operation

IR00 Output for
Background Execution

A595 and
A596

When an index register is specified as the out-
put for an instruction processed in the back-
ground, A595 and A596 receive the output
instead of IR00.
(A595 contains the rightmost digits, and A596
contains the leftmost digits.)

ER/AER Flag for
Background Execution

A39510 This flag is turned ON if an error or illegal
access occurs during background execution.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if the minimum value is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the word containing the minimum
value.
OFF in all other cases.
734

Table Data Processing Instructions Section 3-17
3-17-12 SUM: SUM(184)
Purpose Adds the bytes or words in the range and outputs the result to two words.

Ladder Symbol

Variations

Applicable Program Areas

C: D00100

C+1: D00101

R1:

D: D00300

R1

100CF

–2

–1

–3

1

000100CF

 0 0 0 A

1: Treats data as signed binary.

1: Outputs address to IR00.

Always 0.

PC memory
address

Decimal
equivalent

Min. value

10 words

Number of words

SUM(184)

C

R1

D

C: First control word

R1: First word in range

D: First destination word

Variations Executed Each Cycle for ON Condition SUM(184)

Executed Once for Upward Differentiation @SUM(184)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
735

Table Data Processing Instructions Section 3-17
Operands C and C+1: Control words
C specifies the number of units (bytes or words) to be summed. (Bit 13 of C+1
determines whether bytes or words are being summed.)

Bits 12 to 15 of C+1 indicate what type of data is being summed, as shown in
the following diagram.

Note C and C+1 must be in the same data area.

R1: First word in range
R1 specifies the first word in the range. The length of the range depends on
the number of units as well as the starting byte, if bytes are being added.

Note All of the words in the calculation range must be in the same data area.

D: First destination word
The result of the calculation is output to D+1 and D. The leftmost four digits
are stored in D+1 and the rightmost four digits are stored in D.

Operand Specifications

15 0

C

15 014

0

C+1
13 12 11

0000 0000 0000

Data type (Effective if bit 14 is 0.)

Data type

Units

Starting byte (Effective if bit 13 is 1.)

0: Unsigned binary data
1: Signed binary data

0: Binary
1: BCD

0: Words
1: Bytes

0: Leftmost byte
1: Rightmost byte

Number of words/bytes in range

R1

15 0

R1+(C units–1)

to

Calculation range

Area C R1 D

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6142

Work Area W000 to W510 W000 to W511 W000 to W510

Holding Bit Area H000 to H510 H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A958 A000 to A959 A448 to A958

Timer Area T0000 to T4094 T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4094 C0000 to C4095 C0000 to C4094

DM Area D00000 to
D32766

D00000 to
D32767

D00000 to
D32766
736

Table Data Processing Instructions Section 3-17
Description SUM(184) adds C units of data beginning with the data in R1 and outputs the
result to D+1 and D. The settings in C+1 determine whether the units are
words or bytes, whether the data is binary (signed or unsigned) or BCD, and
whether to start with the right or left byte of R1 if bytes are being added.

When bit 14 of C+1 has been set to 0, SUM(184) treats the data as binary. In
this case, bit 15 determines whether the data is signed (bit 15 = 1) or
unsigned (bit 15 = 0).

When bit 13 of C+1 has been set to 1, SUM(184) adds bytes of data. In this
case, bit 12 determines whether the calculation starts with the rightmost byte
of R1 (bit 12 = 1) or the leftmost byte of R1 (bit 12 = 0).

Note SUM(184) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

EM Area without bank E00000 to
E32766

E00000 to
E32767

E00000 to
E32766

EM Area with bank En_00000 to
En_32766

(n = 0 to C)

En_00000 to
En_32767

(n= 0 to C)

En_00000 to
En_32766

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants Specified values
only

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C R1 D

+)

S

D+1 D

The actual table length specified
in C depends upon the units
(words or bytes) set in C+1.

Table length
specified in C
737

Table Data Processing Instructions Section 3-17
Flags

Examples When CIO 000000 is ON in the following example, SUM(184) adds 10 bytes
of unsigned binary data beginning with the rightmost byte of D00100 and
writes the result to D00201 and D00200.

3-17-13 FRAME CHECKSUM: FCS(180)
Purpose Calculates the FCS value for the specified range and outputs the result in

ASCII.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.

ON if the BCD data has been specified, but the range
contains binary data.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the result.
OFF in all other cases.

C: D00300

C+1: D00301

R1:

D: D00200

D+1: D00201

R1

C 3

9 F

2 7

2 A

D C

2 A

2 A

2 0

2 0

5 5

0 3

0 0

7 8

0 0

Number of words/bytes

Always 0.

Starting byte
1: Rightmost byte

Units
1: Bytes

Data type
0: Binary

Data type
0: Unsigned binary data

10 bytes

Table length

The shaded bytes are added.
738

Table Data Processing Instructions Section 3-17
Ladder Symbol

Variations

Applicable Program Areas

Operands C and C+1: Control words
C specifies the number of units (bytes or words) to be used in the FCS calcu-
lation. (Bit 13 of C+1 determines whether bytes or words are being used.)

When bit 13 of C+1 has been set to 1, FCS(180) calculates the FCS value for
bytes of data. In this case, bit 12 determines whether the calculation starts
with the rightmost byte of R1 (bit 12 = 1) or the leftmost byte of R1 (bit 12 = 0).

Note C and C+1 must be in the same data area.

R1: First word in range
R1 specifies the first word in the range. The length of the range depends on
the number of units as well as the starting byte, if bytes are being used in the
calculation.

Note All of the words in the calculation range must be in the same data area.

FCS(180)

C

R1

D

C: First control word

R1: First word in range

D: First destination word

Variations Executed Each Cycle for ON Condition FCS(180)

Executed Once for Upward Differentiation @FCS(180)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

C

15 014

0

C+1
13 12 11

0000 0000 000000

0

Calculation units

Number of words/bytes in range

Starting byte (Valid only when bit 13 is 1.)
0: Leftmost byte
1: Rightmost byte

0: Words
1: Bytes

R1

15 0

R1+(C units–1)

toto

Calculation range
739

Table Data Processing Instructions Section 3-17
D: First destination word
The result of the calculation is output to D if bytes have been selected.

The result of the calculation is output to D+1 and D if words have been
selected. In this case, the leftmost four digits are stored in D+1 and the right-
most four digits are stored in D.

Operand Specifications

Description FCS(180) calculates the FCS value for C units of data beginning with the data
in R1, converts the value to ASCII code, and outputs the result to D (for bytes)
or D+1 and D (for words). The settings in C+1 determine whether the units are
words or bytes, whether the data is binary (signed or unsigned) or BCD, and
whether to start with the right or left byte of R1 if bytes are being added.

When bit 13 of C+1 has been set to 1, FCS(180) operates on bytes of data. In
this case, bit 12 determines whether the calculation starts with the rightmost
byte of R1 (bit 12 = 1) or the leftmost byte of R1 (bit 12 = 0).

Area C R1 D

CIO Area CIO 0000 to
CIO 6142

CIO 0000 to CIO 6143

Work Area W000 to W510 W000 to W511

Holding Bit Area H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A958 A000 to A959 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32766

D00000 to D32767

EM Area without bank E00000 to
E32766

E00000 to E32767

EM Area with bank En_00000 to
En_32766
(n = 0 to C)

En_0000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values
only

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
740

Table Data Processing Instructions Section 3-17
Note FCS(180) can be processed in the background. Refer to the SYSMAC CS/CJ/
NSJ Series PLC Programming Manual (W394) for details.

Flags

Examples When CIO 000000 is ON in the following example, FCS(180) calculates the
FCS value for the 10 bytes of data beginning with the rightmost byte of
D00100 and writes the result to D00200.

R1

Calculation

C (Table length)

ASCII conversion

FCS value

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

C: D00300

C+1: D00301

R1:

D: D00200

0 2

0 4

0 6

0 8

0 0

3 0

0 1

0 3

0 5

0 7

0 0

3 8

R1

Always 0.

Units
1: Bytes

Starting byte (Effective only if bit 13 is 1.)
1: Rightmost byte

Always 0.

The FCS value for the
shaded bytes is calculated
and converted to ASCII.

Table length

10 bytes
741

Table Data Processing Instructions Section 3-17
3-17-14 STACK SIZE READ: SNUM(638)
Purpose Counts the amount of stack data (number of words) in the specified stack.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

SNUM(638)

TB

D

TB: First stack address
D: Destination word

Variations Executed Each Cycle for ON Condition SNUM(638)

Executed Once for Upward Differentiation @SNUM(638)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region
742

Table Data Processing Instructions Section 3-17
Operand Specifications

Description SNUM(638) counts the number of data words in the specified stack from the
beginning of the data region at TB+4 to the address before the one indicated
by the stack pointer (TB+3 and TB+2). SNUM(638) does not change the data
in the stack or the stack pointer.

Flags

Area TB D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

A

TB
TB+1
TB+2
TB+3
TB+4

N
m

n

D

n

m

Counts the number of words
(N) from the address of the
beginning of the stack (TB+4)
to the pointer position −1.

PLC memory
address

Pointer

Last word
in stack

Stack

Name Label Operation

Error Flag ER ON if the number of words of data in the stack (the value
output to D) is 0.

OFF in all other cases.
743

Table Data Processing Instructions Section 3-17
Precautions The stack must be defined in advance with SSET(630).

Examples When CIO 000000 is ON in the following example, SNUM(638) counts the
number of words from the beginning of the data region at D00004 to the stack
pointer position - 1 (D00006) and outputs the result to D00300. (In this case,
the stack pointer indicates D00007.)

3-17-15 STACK DATA READ: SREAD(639)
Purpose Reads the data from the specified data element in the stack. The offset value

indicates the location of the desired data element (how many data elements
before the current pointer position).

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

SNUM

D00000

D00300

000000

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

D:D00300 0003Hex

PLC memory
address

Stack
pointer

Stack pointer

Last word
in stack

PLC memory address of
last word in the stack

Counts number of data
words. (3 in this example.)

SREAD(639)

TB

C

D

TB: First stack address
C: Offset value
D: Destination word

Variations Executed Each Cycle for ON Condition SREAD(639)

Executed Once for Upward Differentiation @SREAD(639)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
744

Table Data Processing Instructions Section 3-17
TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB C D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0001 to #FFFB
(Hexadecimal)

Data Registers --- DR0 to DR15
745

Table Data Processing Instructions Section 3-17
Description SREAD(639) reads the data from the address specified by the stack pointer
(TB+3 and TB+2) minus the offset value in C. SREAD(639) does not change
the data in the stack or the stack pointer.

SREAD(639) can be used to read the data for an item currently on a conveyor.
The position of the desired item is simply the number of items back (the offset
value) from the most recent item added to the conveyor.

Flags

Precautions The stack must be defined in advance with SSET(630).

The address in the stack pointer must be greater than the PLC memory
address of the beginning of the data region (TB+4). An error will occur if the
stack pointer is less than the PLC memory address of TB+4, i.e., if a stack
underflow error occurs.

Examples When CIO 000000 is ON in the following example, SREAD(639) reads the
data in the specified word in the stack starting at D00000 and outputs the data
to D00100. In this case, the stack pointer indicates D00007 and the offset
value is 3, so the data is read from D00004.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB C D

A

A
B
C

TB
TB+1
TB+2
TB+3
TB+4

D

m

n

C

n

m

PLC memory
address

Pointer

Reads the data (A) in the specified
word and outputs that data to D.
The address of the desired word is
calculated by subtracting the offset
value from the stack pointer address.

Last word
in stack

Stack

Offset value

Reads the data (A) without
changing the stack pointer.

The data (A) is
not changed.

Name Label Operation

Error Flag ER ON if the specified read location is not within the stack
area.
ON if the offset value specified in C is 0 or greater than
the maximum data region size (FFFB hex).

OFF in all other cases.

Equals Flag = ON if the output data in D is 0000.
OFF in all other cases.
746

Table Data Processing Instructions Section 3-17
3-17-16 STACK DATA OVERWRITE: SWRIT(640)
Purpose Writes the source data to the specified data element in the stack (overwriting

the existing data). The offset value indicates the location of the desired data
element (how many data elements before the current pointer position).

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

SREAD

D00000

&3

D00100

000000

A

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

A

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

D00100 A
−3

PLC memory
address

Stack pointer

Last word
in stack

Stack
pointer

Stack pointer

Last word
in stack

PLC memory address of
last word in the stack

The stack pointer position remains
unchanged after the data is read.

PLC memory address
of last word in the stack

Stack
pointer

SWRIT(640)

TB

C

S

TB: First stack address
C: Offset value
S: Source word

Variations Executed Each Cycle for ON Condition SWRIT(640)

Executed Once for Upward Differentiation @SWRIT(640)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
747

Table Data Processing Instructions Section 3-17
Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB C S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)
748

Table Data Processing Instructions Section 3-17
Description SWRIT(640) overwrites the data in the desired word with the data specified in
S. The location of the desired word is calculated by subtracting the offset
value in C from the stack pointer (TB+3 and TB+2). SWRIT(640) does not
change the stack pointer.

SWRIT(640) can be used to change the data for an item currently on a con-
veyor. The position of the desired item is simply the number of items back (the
offset value) from the most recent item added to the conveyor.

Flags

Precautions The stack must be defined in advance with SSET(630).

The address in the stack pointer must be greater than the PLC memory
address of the beginning of the data region (TB+4). An error will occur if the
stack pointer is less than the PLC memory address of TB+4, i.e., if a stack
underflow error occurs.

Examples When CIO 000000 is ON in the following example, SWRIT(640) writes the
data in D00100 to the specified word in the stack starting at D00000. In this

Constants --- #0001 to #FFFB
(Hexadecimal)

#0000 to #FFFF
(Hexadecimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB C S

AS

B
C
D

TB
TB+1
TB+2
TB+3
TB+4

m

n

A
C
D

TB
TB+1
TB+2
TB+3
TB+4

m

n

C

n

m

n

m

PLC memory
address

Pointer

Overwrites the data in the desired
word with the data in S.
The address of the desired word is
calculated by subtracting the offset
value from the stack pointer address.

Last word
in stack

Stack

Offset value

Writes the data (A) without
changing the stack pointer.

Pointer

Stack

Last word
in stack

Name Label Operation

Error Flag ER ON if the specified write location is not within the stack
area.

ON if the offset value specified in C is 0 or greater than
the maximum data region size (FFFB hex).
OFF in all other cases.
749

Table Data Processing Instructions Section 3-17
case, the stack pointer indicates D00007 and the offset value is 3, so the data
in D00004 is overwritten.

3-17-17 STACK DATA INSERT: SINS(641)
Purpose Inserts the source data at the specified location in the stack and shifts the rest

of the data in the stack downward. The offset value indicates the location of
the desired data element (how many data elements before the current pointer
position).

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

SWRIT

D00000

&3

D00100

000000

B

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

A

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

D00100 A

−3

PLC memory
address

Stack pointer

Last word
in stack

Stack
pointer

Stack pointer

Last word
in stack

PLC memory address of
last word in the stack

The stack pointer position remains
unchanged after the data is written.

(Overwrite)

Stack
pointer

PLC memory address of
last word in the stack

SINS(641)

TB

C

S

TB: First stack address
C: Offset value
S: Source word

Variations Executed Each Cycle for ON Condition SINS(641)

Executed Once for Upward Differentiation @SINS(641)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
750

Table Data Processing Instructions Section 3-17
Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB C S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)
751

Table Data Processing Instructions Section 3-17
Description SINS(641) inserts the source data at the desired address and shifts the exist-
ing data down one word. At the same time, SINS(641) increments the stack
pointer (TB+3 and TB+2) by 1. The location of the desired address is calcu-
lated by subtracting the offset value in C from the stack pointer.

SINS(641) can be used to insert the data for an item that is inserted in the
midst of items already on a conveyor. The position of the insertion point is
simply the number of items back (the offset value) from the most recent item
added to the conveyor.

Flags

Precautions The stack must be defined in advance with SSET(630).

SINS(641) inserts one word of data into the stack, so there must be at least
one available word at the end of the stack. If the stack is full, an error will
occur and the source data will not be inserted.

If the address indicated by the stack pointer (TB+3 and TB+2) is already
greater than the address of the last word in the stack (TB+1 and TB) when
SINS(641) is executed, a stack overflow error will occur and the source data
will not be inserted.

Constants --- #0001 to #FFFB
(Hexadecimal)

#0000 to #FFFF
(Hexadecimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB C S

A
B
C
D

n

m

TB
TB+1
TB+2
TB+3
TB+4

m

n

A
B
C
D

n

m+1

TB
TB+1
TB+2
TB+3
TB+4

m
m+1

C

PLC memory
address

Pointer

The address of the desired word is
calculated by subtracting the offset
value from the stack pointer address.

Last word
in stack

Stack

Offset value

Inserts the source data (A)
and increments the stack
pointer.

Pointer

Stack

Last word
in stack

The stack pointer is
incremented by +1.

PLC
memory

Name Label Operation

Error Flag ER ON if the address indicated by the stack pointer (TB+3
and TB+2) is greater than the PLC memory address of
last word in the data region of the stack.
(This is a stack overflow error.)
ON if the offset value specified is greater than the maxi-
mum data region size - 1 (FFFA hex).

OFF in all other cases.
752

Table Data Processing Instructions Section 3-17
Examples When CIO 000000 is ON in the following example, SINS(641) inserts the
source data in D00100 at the specified address in the stack starting at
D00000. In this case, the stack pointer indicates D00007 and the offset value
is 3, so the source data is inserted in D00004. The existing data is shifted
down one word and the data in D00007 is overwritten. At the same time the
stack pointer will be incremented from D00007 to D00008.

3-17-18 STACK DATA DELETE: SDEL(642)
Purpose Deletes the data element at the specified location in the stack, outputs that

data to the specified destination word, and shifts the remaining the data in the
stack upward. The offset value indicates the location of the desired data ele-
ment (how many data elements before the current pointer position).

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

SINS

D00000

#0003

D00100

000000

B
C
D

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

A
B
C
D

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

D00100 A

−3

+1

PLC
memory

Stack
pointer

Stack pointer

Last word
in stack

Stack
pointer

Stack pointer

Last word
in stack

PLC memory address
of last word in the stack

The stack pointer is incremented
by +1 after the data is inserted.

(Insert)

+1

PLC memory address
of last word in the stack

SDEL(642)

TB

C

D

TB: First stack address
C: Offset value
D: Destination word
753

Table Data Processing Instructions Section 3-17
Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words
The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region
The remainder of the stack is used to store data.

Operand Specifications

Variations Executed Each Cycle for ON Condition SDEL(642)

Executed Once for Upward Differentiation @SDEL(642)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB C D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
754

Table Data Processing Instructions Section 3-17
Description SDEL(642) deletes the data at the specified location in the stack, outputs that
data to the specified destination word, and shifts the remaining the data in the
stack upward. At the same time, SDEL(642) decrements the stack pointer
(TB+3 and TB+2) by 1. The location of the desired address is calculated by
subtracting the offset value in C from the stack pointer.

SDEL(642) can be used to delete the data for an item that is rejected from the
items on a conveyor. The position of the deletion point is simply the number of
items back (the offset value) from the most recent item added to the conveyor.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0001 to #FFFB
(Hexadecimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB C D

A

A
B
C

n

m

TB
TB+1
TB+2
TB+3
TB+4

D

m

n

C

B
C

n

m-1

TB
TB+1
TB+2
TB+3
TB+4

m

n

PLC memory
address

Pointer

The address of the desired word
is calculated by subtracting the
offset value from the stack
pointer address.

Last word
in stack

Stack

Offset value

The stack pointer is
decremented by 1.

Pointer

Stack

Last word
in stack

Deletes the specified
word and decrements
the stack pointer.

PLC memory
address
755

Table Data Processing Instructions Section 3-17
Flags

Precautions The stack must be defined in advance with SSET(630).

The address in the stack pointer must be greater than the PLC memory
address of the beginning of the data region (TB+4). An error will occur if the
stack pointer is less than the PLC memory address of TB+4, i.e., if a stack
underflow error occurs.

Examples When CIO 000000 is ON in the following example, SDEL(642) deletes the
word at the specified address in the stack starting at D00000, outputs the
deleted data to D00100, shifts the remaining data upward, and decrements
the stack pointer.

In this case, the stack pointer indicates D00007 and the offset value is 3, so
the data is deleted from D00004. The remaining data is shifted up one word
and the stack pointer is decremented from D00007 to D00006.

Name Label Operation

Error Flag ER ON if the content of the stack pointer (TB+3 and TB+2) is
less than or equal to the PLC memory address of first
word in the data region of the stack (TB+4).
(This is a stack underflow error.)
ON if the offset value specified in C is 0 or greater than
the maximum data region size (FFFB hex).
OFF in all other cases.

Equals Flag = ON if the output data in D is 0000.

OFF in all other cases.

SDEL

D00000

&3

D00100

000000

A
B
C

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

B
C
C

D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009

D00100 A−3

−1

PLC memory
address

Stack
pointer

Stack pointer

Last word
in stack

Stack
pointer

Stack pointer

Last word
in stack

PLC memory address
of last word in the stack

The stack pointer is decremented
by 1 after the data is deleted.

(Delete/output)

-1

PLC memory address
of last word in the stack
756

Data Control Instructions Section 3-18
3-18 Data Control Instructions

3-18-1 PID CONTROL: PID(190)
Purpose Executes PID control according to the specified parameters.

Ladder Symbol

Variations

Applicable Program Areas

Parameters The following diagrams show the locations of the parameter data. For details
on the parameters, refer to PID Parameter Settings in this section.

PID(190)

S

C

D

S: Input word

C: First parameter word

D: Output word

Variations Executed Each Cycle for ON Condition PID(190)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

15 8 07

C+5 0
3 2 14

PID starting integral manipulated variable
designation

Set value (SV)

Proportional band (P)
Integral constant (Tik)

Derivative constant (Tdk)

Sampling period (τ)

Forward/reverse designation
PID constant update timing designation

Manipulated variable output setting

2-PID parameter (α)

Output range

Integral and derivative unit

Input range

Manipulated variable output limit control
757

Data Control Instructions Section 3-18
Operand Specifications

Description When the execution condition is ON, PID(190) carries out target value filtered
PID control with two degrees of freedom according to the parameters desig-
nated by C (set value, PID constant, etc.). It takes the specified input range of
binary data from the contents of input word S and carries out the PID action
according to the parameters that are set. The result is then stored as the
manipulated variable in output word D.

The parameters are obtained when the execution condition turns from OFF to
ON, and the Error Flag will turn ON if the settings are outside of the permissi-
ble range.

If the settings are within the permissible range, PID processing will be exe-
cuted using the initial values. Bumpless operation is not performed at this
time. It will be used for manipulated variables in subsequent PID processing
execution. (Bumpless operation is processing that gradually and continuously
changes the manipulated variable in order to avoid the adverse effects of sud-
den changes.)

When the execution condition turns ON, the PV for the specified sampling
period is entered and processing is performed.

Area S C D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to
CIO 6105

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W473 W000 to W511

Holding Bit Area H000 to H511 H000 to H473 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A921 A448 to A959

Timer Area T0000 to T4095 T0000 to T4057 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4057 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32729

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32729

E00000 to
E32767

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32729

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants DR0 to DR15 --- DR0 to DR15

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
758

Data Control Instructions Section 3-18
The number of valid input data bits within the 16 bits of the PV input (S) is
designated by the input range setting in C+6, bits 08 to 11. For example, if 12
bits (4 hex) is designated for the input range, the range from 0000 hex to 0FFF
hex will be enabled as the PV. (Values greater than 0FFF hex will be regarded
as 0FFF hex.)

The set value range also depends on the input range.

Measured values (PV) and set values (SV) are in binary without sign, from
0000 hex to the maximum value of the input range.

The number of valid output data bits within the 16 bits of the manipulated vari-
able output is designated by the output range setting in C+6, bits 00 to 03. For
example, if 12 bits (4 hex) is designated for the output range, the range from
0000 hex to 0FFF hex will be output as the manipulated variable.

For proportional operation only, the manipulated variable output when the PV
equals the SV can be designated as follows:

0: Output 0%
1: Output 50%.

The direction of proportional operation can be designated as either forward or
reverse.

The upper and lower limits of the manipulated variable output can be desig-
nated.

The sampling period can be designated in units of 10 ms (0.01 to 99.99 s), but
the actual PID action is determined by a combination of the sampling period
and the time of PID(190) instruction execution (with each cycle).

The timing of enabling changes made to PID constants can be set to either 1)
the beginning of PID instruction execution or 2) the beginning of PID instruc-
tion execution and each sampling period. Only the proportional band (P), inte-
gral constant (Tik), and derivative constant (Tdk) can be changed each
sampling cycle (i.e., during PID instruction execution). The timing is set in bit 1
of C+5.

Note The setting in bit 1 of C+5 is supported only by CJ1, CS1-H, CJ1-H CPU Units
and CS1 CPU Units with lot numbers of 001201@@@@ or later (manufactured
December 1, 2000 or later).

Of the PID parameters (C to C+38), only the set value (SV) can be changed
when the execution condition is ON. When changing other values, be sure to
change the execution condition from OFF to ON.

Parameters (C to C+8)

Manipulated variable (D)

PV input (S) PID control
759

Data Control Instructions Section 3-18
Flags

Precautions The same words cannot be used to store the PID parameters for more than
one PID(190) instruction. Even if the same parameters are used, use different
words to store the PID parameters for different PID(190) instructions.

PID(190) is executed as if the execution condition was a STOP-RUN signal.
PID calculations are executed when the execution condition remains ON for
the next cycle after C+9 to C+38 are initialized. Therefore, when using the
Always ON Flag (ON) as an execution condition for PID(190), provide a sepa-
rate process where C+9 to C+38 are initialized when operation is started.

If the C data is out of range, an error will occur and the Error Flag will turn ON.

If the actual sampling period is more than twice the designated sampling
period, an error will occur and the Error Flag will turn ON. PID control will still
be executed, however.

The Carry Flag turns ON while PID control is being executed.

The Greater Than Flag turns ON if the manipulated variable after the PID
action exceeds the upper limit. At this time, the results are output at the upper
limit.

The Less Than Flag turns ON if the manipulated variable after the PID action
is below the lower limit. At this time, the results are output at the lower limit.

Within the PID parameters (C to C+38), the only value that can be changed
while the input condition is ON is the set value for C. If any other value is
changed, be sure to turn the input condition from OFF to ON to enable the
new value.

Example At the rising edge of CIO 000000 (OFF to ON), the work area in D00209 to
D00238 is initialized according to the parameters (shown below) set in
D00200 to D00208. After the work area has been initialized, PID control is
executed and the manipulated variable is output to CIO 0020.

When CIO 000000 is turned ON, PID control is executed at the sampling
period intervals according to the parameters set in D00200 to D00208. The
manipulated variable is output to CIO 0020.

The PID constants used in PID calculations will not be changed if the propor-
tional band (P), integral constant (Tik), or derivative constant is changed after
CIP 000000 turns ON.

Name Label Operation

Error Flag ER ON if the C data is out of range.
ON if the actual sampling period is more than twice the
designated sampling period.
OFF in all other cases.

Greater Than
Flag

> ON if the manipulated variable after the PID action
exceeds the upper limit.
OFF in all other cases.

Less Than Flag < ON if the manipulated variable after the PID action is
below the lower limit.
OFF in all other cases.

Carry Flag CY ON while PID control is being executed.
OFF in all other cases.
760

Data Control Instructions Section 3-18
Input Values and
Manipulated Variable
Ranges

The number of valid input data bits for the measured value is designated by
the input range setting in C+6, bits 08 to 11, and the number of valid output
data bits for the manipulated variable output is designated by the output range
setting in C+6, bits 0 to 3. These ranges are shown in the following table.

If the range of data handled by an Analog Input Unit or Analog Output Unit
cannot be set accurately by setting the number of valid bits, APR(069)
(ARITHMETIC PROCESS) can be used to convert to the proper ranges
before and after PID(190).

The following program section shows an example for a DRT1-AD04 Analog
Input Unit and DRT1-DA02 Analog Output Unit operating as DeviceNet
slaves. The data ranges for these two Units is 0000 to 1770 hex, which cannot
be specified merely by setting the valid number of digits. APR(069) is thus
used to convert the 0000 to 1770 hex range of the Analog Input Unit to 0000

C: D00200
C+1: D00201

C+2: D00202

C+3: D00203

C+4: D00204

C+5: D00205

C+6: D00206

C+7: D00207

C+8: D00208
C+9: D00209

C+38: D00238

012C

0064

04B0

0190

0032

0000

0494

0000

00000010

to

Note

PID control

Reverse operation (bit 00: 0), PID constant updating
timing = input condition is ON (bit 01: 0), Manipulated
variable output designation: 0% (bit 03: 0),
2-PID parameter = 0.65 (bits 04 to 15: 000 hex)
Manipulated variable output range: 12 bits (bits 00 to 03: 4
hex), Integral/derivative constants: time designation (bits 04
to 07: 9 hex), Input range: 12 bits (bits 08 to 11: 4 hex),
Manipulated variable limit control: No (bits 12: 0 hex), PID
starting integral manipulated variable designation = start
from same integral manipulated value as manipulated
variable output designation (bit 14: 0 and bit 13: 0)

Set value: 300

Proportional band: 10.0%

Integral time: 120.0 s

Derivative time: 40.0 s

Sampling period: 0.5 s

When CIO 000000 is OFF, operation can be the same
as manual operation by writing to CIO 0020.
When changing from manual operation to automatic
operation by executing PID(190), extreme changes in
the manipulated value are restricted. (The manipulated
variable after switching to automatic operation will start
at the previous value of the integral manipulated
variable.)

Manipulated variable output:
CIO 0020

PV: word

Parameters

Work Area

C+6, bits 08 to 11 or
C+6, bits 00 to 03

Number of valid bits Range

0 8 0000 to 00FF hex

1 9 0000 to 01FF hex

2 10 0000 to 03FF hex

3 11 0000 to 07FF hex

4 12 0000 to 0FFF hex

5 13 0000 to 1FFF hex

6 14 0000 to 3FFF hex

7 15 0000 to 7FFF hex

8 16 0000 to FFFF hex
761

Data Control Instructions Section 3-18
to FFFF hex for input to PID(190) and then the manipulated variable output
from PID(190) is converted back to the range 0000 to 1770 hex, again using
APR(069), for output from the Analog Output Unit.

Performance Specifications

Calculation Method Calculations in PID control are performed by the target value filtered control
with two degrees of freedom.

Block Diagram for Target Value PID with Two Degrees of Freedom
When overshooting is prevented with simple PID control, stabilization of dis-
turbances is slowed (1). If stabilization of disturbances is speeded up, on the
other hand, overshooting occurs and response toward the target value is
slowed (2).

When target-value PID control with two degrees of freedom is used, on the
other hand, there is no overshooting, and response toward the target value
and stabilization of disturbances can both be speeded up (3).

Item Specifications

PID control method --- Target value filter-type two-degrees-of-freedom PID method (forward/
reverse)

Number of PID control loops --- Unlimited (1 loop per instruction)

Sampling period τ 0.01 to 99.99 s

PID constant Proportional band P 0.1 to 999.9%

Integral constant Tik 1 to 8191, 9999 (No integral action for sampling period multiple, 9999.)

Derivative constant Tdk 0 to 8191 (No derivative action for sampling period multiple, 0.)

Set value SV 0 to 65535 (Valid up to maximum value of input range.)

Measured value PV 0 to 65535 (Valid up to maximum value of input range.)

Manipulated variable MV 0 to 65535 (Valid up to maximum value of output range.)

ARP

PID

ARP

D01000

D02000

D02000

D02500

D03000

D03000

D01500
C (D01500):
C+1 (D01501):
C+2 (D01502):
C+3 (D01503):
C+4 (D01504):

C+1 (D01001):
C+2 (D01002):
C+3 (D01003):
C+4 (D01004):

C (D01000):

C+6 (D02506):
@8@8

Control Data
0000 Hex (binary with one table)
1770 Hex (Xm)
0000 Hex (Yo)
1770 Hex (X1)
FFFF Hex (Y1)

Control Data
0000 Hex (binary with one table)
FFFF Hex (Xm)
0000 Hex (Yo)
FFFF Hex (X1)
1770 Hex (Y1)

Control Data

Valid number of bits: 16 (0000 to FFFF Hex)
Valid number of bits: 16 (0000 to FFFF Hex)

From Analog Input Unit
Execution
condition

To Analog Output Unit

Analog input value

Analog output value

1 + (1 – λ) Ti · s

1 + Ti · s

+

–

+

–

Kp + Kp
Ti · s

Kp Td/ s
 1 + λ Td · s .

Measured
value (PV)

Set value
(target value)

Target value filter Proportional + integral elements

Preceding derivative-
type elements

Manipulated variable

Kp: Proportional constant
Ti: Integral time
Td: Derivative time
s: Laplace operator
α: 2-PID parameter
λ: Incomplete derivative coefficient
762

Data Control Instructions Section 3-18
PID Parameter Settings

Control
data

Item Contents Setting range Change with
ON input
condition

C Set value (SV) The target value of the process
being controlled.

Binary data (of the same number
of bits as specified for the input
range)

Allowed

C+1 Proportional band The parameter for P action
expressing the proportional con-
trol range/total control range.

0001 to 270F hex (1 to 9999);
(0.1% to 999.9%, in units of
0.1%)

Can be
changed with
input condition
ON if bit 1 of
C+5 is 1.

C+2 Tik
Integral Constant

A constant expressing the
strength of the integral action. As
this value increases, the integral
strength decreases.

0001 to 1FFF hex (1 to 8191);
(9999 = Integral operation not
executed) (See note 1.)

C+3 Tdk
Derivative Constant

A constant expressing the
strength of the derivative action.
As this value increases, the
derivative strength decreases.

0001 to 1FFF hex (1 to 8191);
(0000 = Derivative operation not
executed) (See note 1.)

C+4 Sampling period (τ) Sets the period for executing the
PID action.

0001 to 270F hex (1 to 9999);
(0.01 to 99.99 s, in units of
10 ms)

Not allowed

Bits 04 to 15
of C+5

2-PID parameter (α) The input filter coefficient. Nor-
mally use 0.65 (i.e., a setting of
000). The filter efficiency
decreases as the coefficient
approaches 0.

000 hex: α = 0.65
Setting from 100 to 163 hex
means that the value of the right-
most two digits is set from α=
0.00 to α= 0.99. (See note 2.)

Bit 03 of C+5 Manipulated vari-
able output designa-
tion

Designates the manipulated vari-
able output when the PV equals
the SV.
Note This setting is enabled

when there is no integral
operation.

0: Output 0%
1: Output 50%

Bit 01 of C+5 PID constant
change enable set-
ting

The timing of enabling changes
made to the proportional band
(P), integral constant (Tik), and
derivative constant (Tdk) for use
in PID calculations.

0: At start of PID instruction exe-
cution
1: At start of PID instruction exe-
cution and each sampling period

Allowed

(1)

(2)

(3)

Disturbance response

Simple PID Control Feed-forward PID Control

As the target response is slowed,
the disturbance response worsens.

As the disturbance response is
slowed, the target response worsens.

Overshoot

Target response
763

Data Control Instructions Section 3-18
Note 1. When the unit is designated as 1, the range is from 1 to 8,191 times the
period. When the unit is designated as 9, the range is from 0.1 to 819.1 s.
When 9 is designated, set the integral and derivative times to within a
range of 1 to 8,191 times the sampling period.

2. Setting the 2-PID parameter (α) to 000 yields 0.65, the normal value.

3. When the manipulated variable output limit control is enabled (i.e., set to
“1”), set the values as follows:

0000 ≤ MV output lower limit ≤ MV output upper limit ≤ Max. value of output range

Sampling Period and
Cycle Time

The sampling period can be designated in units of 10 ms (0.01 to 99.99 s), but
the actual PID action is determined by a combination of the sampling period
and the time of PID instruction execution (with each cycle). The relationship
between the sampling period and the cycle time is as follows:

• If the sampling period is less than the cycle time, PID control is executed
with each cycle and not with each sampling period.

Bit 00 of C+5 PID forward/reverse
designation

Determines the direction of the
proportional action.

0: Reverse action
1: Forward action

Not allowed

Bits 13 to 14
of C+6

ID starting integral
manipulated vari-
able designation
(unit version 4.0 or
later only)

Determines the initial integral
manipulated variable when PID
control is started (i.e., when the
input turns ON).

Bit 14 = 0 and bit 13=0:
Start from same integral manipu-
lated value as manipulated vari-
able output designation (Pre-Ver.
4.0 operation).
Bit 14 = 0 or 1 and bit 13 = 1:
Bumpless operation (i.e., start
from an integral manipulated
variable that will not abruptly
change the manipulated vari-
able output and result in a con-
tinuous change).

Bit 14 = 1 and bit 13 = 0:
Start with integral manipulated
variable = 0.

Bit 12 of C+6 Manipulated vari-
able output limit
control

Determines whether or not limit
control will apply to the manipu-
lated variable output.

0: Disabled (no limit control)
1: Enabled (limit control)

Bits 08 to 11
of C+6

Input range The number of input data bits. 0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits 7: 15 bits
3: 11 bits 8: 16 bits
4: 12 bits

Bits 04 to 07
of C+6

Integral and deriva-
tive unit

Determines the unit for express-
ing the integral and derivative
constants.

1: Sampling period multiple
9: Time (unit: 100 ms)

Bits 00 to 03
of C+6

Output range The number of output data bits. 0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits 7: 15 bits
3: 11 bits 8: 16 bits
4: 12 bits

C+7 Manipulated vari-
able output lower
limit

The lower limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

C+8 Manipulated vari-
able output upper
limit

The upper limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

Control
data

Item Contents Setting range Change with
ON input
condition
764

Data Control Instructions Section 3-18
• If the sampling period is greater than or equal to the cycle time, PID con-
trol is not executed with each cycle, but PID(190) is executed when the
cumulative value of the cycle time (the time between PID instructions) is
greater than or equal to the sampling period. The surplus portion of the
cumulative value (i.e., the cycle time’s cumulative value minus the sam-
pling period) is carried forward to the next cumulative value.

For example, suppose that the sampling period is 100 ms and that the cy-
cle time is consistently 60 ms. For the first cycle after the initial execution,
PID(190) will not be executed because 60 ms is less than 100 ms. For the
second cycle, 60 ms + 60 ms is greater than 100 ms, so PID(190) will be
executed. The surplus of 20 ms (i.e., 120 ms – 100 ms = 20 ms) will be
carried forward.

For the third cycle, the surplus 20 ms is added to 60 ms. Because the sum
of 80 ms is less than 100 ms, PID(190) will not be executed. For the fourth
cycle, the 80 ms is added to 60 ms. Because the sum of 140 ms is greater
than 100 ms, PID(190) will be executed and the surplus of 40 ms (i.e.,
120 ms – 100 ms = 20 ms) will be carried forward. This procedure is re-
peated for subsequent cycles.

Control Actions Proportional Action (P)
Proportional action is an operation in which a proportional band is established
with respect to the set value (SV), and within that band the manipulated vari-
able (MV) is made proportional to the deviation. An example for reverse oper-
ation is shown in the following illustration.

If the proportional action is used and the present value (PV) becomes smaller
than the proportional band, the manipulated variable (MV) is 100% (i.e., the
maximum value). Within the proportional band, the MV is made proportional
to the deviation (the difference between from SV and PV) and gradually
decreased until the SV and PV match (i.e., until the deviation is 0), at which
time the MV will be at the minimum value of 0% (or 50%, depending on the
setting of the manipulated variable output designation parameter). The MV
will also be 0% when the PV is larger than the SV.

The proportional band is expressed as a percentage of the total input range.
The smaller the proportional band, the larger the proportional constant and
the stronger the corrective action will be. With proportional action an offset
(residual deviation) generally occurs, but the offset can be reduced by making
the proportional band smaller. If it is made too small, however, hunting will
occur.

1 cycle 1 cycle 1 cycle 1 cycle 1 cycle

Processing
Initial processing (60 ms) (60 ms + 60 ms = 120 ms) (20 ms + 60 ms = 80 ms)

(80 ms + 60 ms = 140 ms)

(PID processing
with initial values)

Reading of
measurement
time

Less than 100 ms, so
PID is not executed.

Greater than 100 ms,
so PID is executed
and 20 ms is carried
forward.

Less than 100 ms, so
PID is not executed.

Not executed. Executed Not executed. Executed

Greater than 100 ms,
so PID is executed and
40 ms is carried
forward.
765

Data Control Instructions Section 3-18
Integral Action (I)
Combining integral action with proportional action reduces the offset accord-
ing to the time that has passed, so that the PV will match the SV. The strength
of the integral action is indicated by the integral time, which is the time
required for the manipulated variable of the integral action to reach the same
level as the manipulated variable of the proportional action with respect to the
step deviation, as shown in the following illustration. The shorter the integral
time, the stronger the correction by the integral action will be. If the integral
time is too short, the correction will be too strong and will cause hunting to
occur.

Derivative Action (D)
Proportional action and integral action both make corrections with respect to
the control results, so there is inevitably a response delay. Derivative action
compensates for that drawback. In response to a sudden disturbance it deliv-
ers a large manipulated variable and rapidly restores the original status. A
correction is executed with the manipulated variable made proportional to the
incline (derivative coefficient) caused by the deviation.

The strength of the derivative action is indicated by the derivative time, which
is the time required for the manipulated variable of the derivative action to
reach the same level as the manipulated variable of the proportional action
with respect to the step deviation, as shown in the following illustration. The
longer the derivative time, the stronger the correction by the derivative action
will be.

SV

Adjusting the Proportional BandProportional Action (Reverse Action)

Proportional band too narrow (hunting occurring)

Offset

Proportional band just right

Proportional band too wide (large offset)

100%

50%

0%

M
anipulated variable

Set point

Proportional band when
MV output designation is
0 (output 0%)

Proportional band when
MV output designation is
0 (output 0%)

Proportional band when
MV output designation is
1 (output 50%)

Proportional band when
MV output designation is
1 (output 50%)

0

0

PI action

P action

Step response

I action

Integral Action

Step response

Ti: Integral time

Manipulated
variable

Deviation

Manipulated
variable

Deviation

Pi Action and Integral Time
766

Data Control Instructions Section 3-18
PID Action
PID action combines proportional action (P), integral action (I), and derivative
action (D). It produces superior control results even for control objects with
dead time. It employs proportional action to provide smooth control without
hunting, integral action to automatically correct any offset, and derivative
action to speed up the response to disturbances.

Direction of Action When using PID control, select either of the following two control directions. In
either direction, the MV increases as the difference between the SV and the
PV increases.

• Forward action: MV is increased when the PV is larger than the SV.

• Reverse action: MV is increased when the PV is smaller than the SV.

0

0

0

0

Ramp response

Step response

PD action
P action
D action

Td: Derivative time

Manipulated
variable

Deviation

Manipulated
variable

Deviation

Derivative Action

PD Action and Derivative Time

0

0

0

0

PID action
I action
P action
D action

Step response

PID action

I action
P action
D action

Ramp response

Manipulated
variable

Manipulated
variable

Step Response of PID Control Action Output

Ramp Response of PID Control Action Output

Deviation

Deviation
767

Data Control Instructions Section 3-18
Adjusting PID Parameters The general relationship between PID parameters and control status is shown
below.

• When it is not a problem if a certain amount of time is required for stabili-
zation (settlement time), but it is important not to cause overshooting,
then enlarge the proportional band.

• When overshooting is not a problem but it is desirable to quickly stabilize
control, then narrow the proportional band. If the proportional band is nar-
rowed too much, however, then hunting may occur.

• When there is broad hunting, or when operation is tied up by overshooting
and undershooting, it is probably because integral action is too strong.
The hunting will be reduced if the integral time is increased or the propor-
tional band is enlarged.

• If the period is short and hunting occurs, it may be that the control system
response is quick and the derivative action is too strong. In that case, set
the derivative action lower.

SV SV

Output Output

Forward ActionReverse Action

Low
temperature

High
temperature

Low
temperature

High
temperature

(MV output designation: 50%)

SV

Control by measured PID

When P is enlarged

SV

When P is narrowed

Control by measured PID

SV

Control by measured PID
(when loose hunting occurs)

Enlarge I or P.

SV

Control by measured PID
(when hunting occurs in a short period)

Lower D.
768

Data Control Instructions Section 3-18
3-18-2 PID CONTROL WITH AUTOTUNING: PIDAT(191)
Purpose Executes PID control according to the specified parameters. The PID con-

stants can be autotuned.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

PIDAT(191)

S

C

D

S: Input word
C: First parameter word
D: Output word

Variations Executed Each Cycle for ON Condition PIDAT(191)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
769

Data Control Instructions Section 3-18
Parameters The following diagrams show the locations of the parameter data. For details
on the parameters, refer to PID Parameter Settings in this section.

Operand Specifications

15 8 07

C+5 0
3 2 14

PID starting integral manipulated variable
designation

Set value (SV)

Proportional band (P)
Integral constant (Tik)

Derivative constant (Tdk)

Sampling period (τ)

Forward/reverse designation
PID constant update timing designation

Manipulated variable output setting

2-PID parameter (α)

Output range

Integral and derivative unit

Input range

Manipulated variable output limit control

C+7

C+8

015

C+11

C+40

C+9

C+10
015

015 1214 13
0 0 0

Manipulated variable output lower limit
Manipulated variable output upper limit

Work area
(30 words: Cannot be used by user.)

AT Command Bit

AT Calculation Gain

Limit-cycle Hysteresis

Area S C D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to
CIO 6105

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W473 W000 to W511

Holding Bit Area H000 to H511 H000 to H473 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A921 A448 to A959

Timer Area T0000 to T4095 T0000 to T4057 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4057 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32729

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32729

E00000 to
E32767
770

Data Control Instructions Section 3-18
Description When the execution condition is ON, PIDAT(191) carries out target value fil-
tered PID control with two degrees of freedom according to the parameters
designated by C (set value, PID constant, etc.). It takes the specified input
range of binary data from the contents of input word S and carries out the PID
action according to the parameters that are set. The result is then stored as
the manipulated variable in output word D.

The parameter settings are read when the execution condition turns from OFF
to ON, and the Error Flag will turn ON if the settings are outside of the permis-
sible range.

If the settings are within the permissible range, PID processing will be exe-
cuted using the initial values. Bumpless operation is not performed at this
time. It will be used for manipulated variables in subsequent PID processing
execution. (Bumpless operation is processing that gradually and continuously
changes the manipulated variable in order to avoid the adverse effects of sud-
den changes.)

When the execution condition turns ON, the PV for the specified sampling
period is entered and processing is performed.

Autotuning

The status of the AT Command Bit (bit 15 of C+9) is checked every cycle. If
this control bit is turned ON in a given cycle, PIDAT(191) will begin autotuning
the PID constants. (The changes in the SV will not be reflected while autotun-
ing is being performed.)

The limit-cycle method is used for autotuning. PIDAT(191) forcibly changes
the manipulated variable (max. manipulated variable ↔ min. manipulated
variable) and monitors the characteristics of the controlled system. The PID
constants are calculated based on the characteristics that were observed,

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32729

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants DR0 to DR15 --- DR0 to DR15

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area S C D

Parameters (C to C+8)

Manipulated variable (D)

PV input (S) PID control
771

Data Control Instructions Section 3-18
and the new P, I, and D constants are stored automatically in C+1, C+2, and
C+3. At this point, the AT Command Bit (bit 15 of C+9) is turned OFF and PID
control resumes with the new PID constants in C+1, C+2, and C+3.

• If the AT Command Bit is ON when PIDAT(191) execution begins, auto-
tuning will be performed first and then PID control will start with the calcu-
lated PID constants.

• If the AT Command Bit is turned ON during PIDAT(191) execution,
PIDAT(191) interrupts the PID control being performed with the user-set
PID constants, performs autotuning, and then resumes PID control with
the calculated PID constants.

The following flowchart shows the autotuning procedure:

Note 1. If autotuning is interrupted by turning OFF the AT Command Bit during au-
totuning, PID control will start with the PID constants that were being used
before autotuning began.

2. Also, if an AT execution error occurs, PID control will start with the PID con-
stants that were being used before autotuning began.

In both cases described in notes 1 and 2, the PID constants will be enabled if
they were already calculated when autotuning was interrupted.

PID Control

The number of valid input data bits within the 16 bits of the PV input (S) is
designated by the input range setting in C+6, bits 08 to 11. For example, if 12
bits (4 hex) is designated for the input range, the range from 0000 hex to 0FFF
hex will be enabled as the PV. (Values greater than 0FFF hex will be regarded
as 0FFF hex.)

The set value range also depends on the input range.

Measured values (PV) and set values (SV) are in binary without sign, from
0000 hex to the maximum value of the input range.

The number of valid output data bits within the 16 bits of the manipulated vari-
able output is designated by the output range setting in C+6, bits 00 to 03. For
example, if 12 bits (4 hex) is designated for the output range, the range from
0000 hex to 0FFF hex will be output as the manipulated variable.

For proportional operation only, the manipulated variable output when the PV
equals the SV can be designated as follows:

0: Output 0%
1: Output 50%.

The calculated P, I, and D constants are
set in C+1, C+2, and C+3 respectively.
The AT Command Bit is turned OFF.

PID control is interrupted, the PV is
forcibly changed, and the PID constants
are calculated automatically.

The AT Command Bit (bit 15 of C+9) is
ON at the start of PIDAT(191) execution
or it is turned ON during execution.

PID control starts (or restarts) with the
new PID constants.
772

Data Control Instructions Section 3-18
The direction of proportional operation can be designated as either forward or
reverse.

The upper and lower limits of the manipulated variable output can be desig-
nated.

The sampling period can be designated in units of 10 ms (0.01 to 99.99 s), but
the actual PID action is determined by a combination of the sampling period
and the time of PIDAT(191) instruction execution (with each cycle).

The timing of enabling changes made to PID constants can be set to either 1)
the beginning of PIDAT(191) instruction execution or 2) the beginning of PID
instruction execution and each sampling period. Only the proportional band
(P), integral constant (Tik), and derivative constant (Tdk) can be changed
each sampling cycle (i.e., during PID instruction execution). The timing is set
in bit 1 of C+5.

The same words cannot be used to store the PID parameters for more than
one PIDAT(191) instruction. Even if the same parameters are used, use differ-
ent words to store the PID parameters for different PIDAT(191) instructions.

When changing the PID constants manually, set the PID constant change
enable setting (bit 1 of C+5) to 1 so that the values in C+1, C+2, and C+3 are
refreshed each sampling period in the PID calculation. This setting also allows
the PID constants to be adjusted manually after autotuning.

Of the PID parameters (C to C+38), only the following parameters can be
changed when the execution condition is ON. When any other values have
been changed, be sure to change the execution condition from OFF to ON to
enable the new settings.

• Set value (SV) in C
(Can be changed during PID control only. An SV change during autotun-
ing will not be reflected.)

• PID constant change enable setting (bit 1 of C+5)

• P, I, and D constants in C+1, C+2, and C+3
(Changes to these constants will be reflected each sampling period only if
the PID constant change enable setting (bit 1 of C+5) is set to 1.)

• AT Command Bit (bit 15 of C+9)

• AT Calculation Gain (bits 0 to 14 of C+9) and Limit-cycle Hysteresis
(C+10) (These values are read when autotuning starts.)

Note The PIDAT(191) instruction is the same as the PID(190) instruction with the
added autotuning (AT) function, so the PID control operations are identical.
Refer to 3-18-1 PID CONTROL: PID(190) for details on PID control operations
and examples.

Flags

Name Label Operation

Error Flag ER ON if the C data is out of range.

ON if the actual sampling period is more than twice the
designated sampling period.
ON if an error occurred during autotuning.

OFF in all other cases.

Greater Than
Flag

> ON if the manipulated variable after the PID action
exceeds the upper limit.
OFF in all other cases.
773

Data Control Instructions Section 3-18
Precautions PIDAT(191) is executed as if the execution condition was a STOP-RUN signal.
PID calculations are executed when the execution condition remains ON for
the next cycle after C+11 to C+40 are initialized. Therefore, when using the
Always ON Flag (ON) as an execution condition for PIDAT(191), provide a
separate process where C+11 to C+40 are initialized when operation is
started.

If the C data is out of range, an error will occur and the Error Flag will turn ON.

If an error occurred during autotuning, the Error Flag will turn ON.

If the actual sampling period is more than twice the designated sampling
period, an error will occur and the Error Flag will turn ON. PID control will still
be executed, however.

The Carry Flag turns ON while PID control is being executed.

The Greater Than Flag turns ON if the manipulated variable after the PID
action exceeds the upper limit. At this time, the results are output at the upper
limit.

The Less Than Flag turns ON if the manipulated variable after the PID action
is below the lower limit. At this time, the results are output at the lower limit.

PID Parameter Settings

Less Than Flag < ON if the manipulated variable after the PID action is
below the lower limit.

OFF in all other cases.

Carry Flag CY ON while PID control is being executed.

OFF in all other cases.

Name Label Operation

Control
data

Item Contents Setting range Change with
ON input
condition

C Set value (SV) The target value of the process
being controlled.

Binary data (of the same number
of bits as specified for the input
range)

Allowed

C+1 Proportional band The parameter for P action
expressing the proportional con-
trol range/total control range.

0001 to 270F hex (1 to 9999);
(0.1% to 999.9%, in units of
0.1%)

Can be
changed with
input condition
ON if bit 1 of
C+5 is 1.

C+2 Tik
Integral Constant

A constant expressing the
strength of the integral action. As
this value increases, the integral
strength decreases.

0001 to 1FFF hex (1 to 8191);
(9999 = Integral operation not
executed) (See note 1.)

C+3 Tdk
Derivative Constant

A constant expressing the
strength of the derivative action.
As this value increases, the
derivative strength decreases.

0001 to 1FFF hex (1 to 8191);
(0000 = Derivative operation not
executed) (See note 1.)

C+4 Sampling period (τ) Sets the period for executing the
PID action.

0001 to 270F hex (1 to 9999);
(0.01 to 99.99 s, in units of
10 ms)

Not allowed

Bits 04 to 15
of C+5

2-PID parameter (α) The input filter coefficient. Nor-
mally use 0.65 (i.e., a setting of
000). The filter efficiency
decreases as the coefficient
approaches 0.

000 hex: α = 0.65
Setting from 100 to 163 hex
means that the value of the right-
most two digits is set from α=
0.00 to α= 0.99. (See note 2.)

Bit 03 of C+5 Manipulated vari-
able output designa-
tion

Designates the manipulated vari-
able output for when the PV
equals the SV.

0: Output 0%
1: Output 50%
774

Data Control Instructions Section 3-18
Bit 01 of C+5 PID constant
change enable set-
ting

The timing of enabling changes
made to the proportional band
(P), integral constant (Tik), and
derivative constant (Tdk) for use
in PID calculations.

0: At start of PID instruction exe-
cution
1: At start of PID instruction exe-
cution and each sampling period

Allowed

Bit 00 of C+5 PID forward/reverse
designation

Determines the direction of the
proportional action.

0: Reverse action
1: Forward action

Not allowed

Bits 13 to 14
of C+6

ID starting integral
manipulated vari-
able designation
(unit version 4.0 or
later only)

Determines the initial integral
manipulated variable when PID
control is started (i.e., when the
input turns ON) .

Bit 14 = 0 and bit 13=0:
Start from same integral manipu-
lated value as manipulated vari-
able output designation (Pre-Ver.
4.0 operation).
Bit 14 = 0 or 1 and bit 13 = 1:
Bumpless operation (i.e., start
from an integral manipulated
variable that will not abruptly
change the manipulated vari-
able output and result in a con-
tinuous change).
Bit 14 = 1 and bit 13 = 0:
Start with integral manipulated
variable = 0.

Bit 12 of C+6 Manipulated vari-
able output limit
control

Determines whether or not limit
control will apply to the manipu-
lated variable output.

0: Disabled (no limit control)
1: Enabled (limit control)

Bits 08 to 11
of C+6

Input range The number of input data bits. 0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits 7: 15 bits
3: 11 bits 8: 16 bits
4: 12 bits

Bits 04 to 07
of C+6

Integral and deriva-
tive unit

Determines the unit for express-
ing the integral and derivative
constants.

1: Sampling period multiple
9: Time (unit: 100 ms)

Bits 00 to 03
of C+6

Output range The number of output data bits.
(The number of output bits is
automatically the same as the
number of input bits.)

0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits 7: 15 bits
3: 11 bits 8: 16 bits
4: 12 bits

C+7 Manipulated vari-
able output lower
limit

The lower limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

C+8 Manipulated vari-
able output upper
limit

The upper limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

Control
data

Item Contents Setting range Change with
ON input
condition
775

Data Control Instructions Section 3-18
Note 1. When the unit is designated as 1, the range is from 1 to 8,191 times the
period. When the unit is designated as 9, the range is from 0.1 to 819.1 s.
When 9 is designated, set the integral and derivative times to within a
range of 1 to 8,191 times the sampling period.

2. Setting the 2-PID parameter (α) to 000 yields 0.65, the normal value.

When the manipulated variable output limit control is enabled (i.e., set to
“1”), set the values as follows:

0000 ≤ MV output lower limit ≤ MV output upper limit ≤ Max. value of output range

Example 1:
Interrupting PID Control to
Perform Autotuning

At the rising edge of CIO 000000 (OFF to ON), the work area in D00211 to
D00240 is initialized according to the parameters (shown below) set in
D00200 to D00208. After the work area has been initialized, PID control is
executed and the manipulated variable is output to CIO 0020.

While CIO 000000 is ON, PID control is executed at the sampling period
intervals according to the parameters set in D00200 to D00210. The manipu-
lated variable is output to CIO 0020.

The PID constants used in PID calculations will not be changed even if the
proportional band (P), integral constant (Tik), or derivative constant is
changed after CIO 000000 turns ON.

Bit 15 of C+9 AT Command Bit This control bit starts autotuning.
• Set the AT Command Bit to 1

to perform autotuning. (Auto-
tuning can be started while
PIDAT(191) is being exe-
cuted.)

• This bit is turned OFF auto-
matically when autotuning is
completed.

Autotuning will be interrupted if
the AT Command Bit is turned
OFF manually. In this case, the
PID constants will be enabled if
they were already calculated
when autotuning was inter-
rupted.

As a Control Bit:

• 0 → 1:
Executes autotuning.

• 1 → 0:
Interrupts autotuning.
(PID(191) turns the bit OFF
automatically when autotun-
ing is completed.

As a Flag:
0: Autotuning is not being exe-
cuted.

1: Autotuning is being executed.

Allowed

Bits 00 to 11
of C+9

AT Calculation Gain Set this parameter to adjust the
contribution of the PID calcula-
tion results to the stored values.
Normally, leave this parameter
set to its default (0000).

• Increase the value when
emphasizing stability.

• Decrease the value when
emphasizing responsiveness.

0000 hex: 1.00 (Default)
0001 to 03E8 hex (1 to 1000);
(0.01 to 10.00, in units of 0.01)

Allowed
(These param-
eters are read
when autotun-
ing starts.)

C+10 Limit-cycle Hystere-
sis

Sets the hysteresis when the
limit cycle is generated. The
default setting for reverse opera-
tion turns ON the MV with a hys-
teresis of SV−20%.

Increase this setting if a proper
limit cycle cannot be generated
because the PV is unstable.
However, the AT accuracy will
decline if the Limit-cycle Hyster-
esis is higher than necessary.

0000 hex: 0.20% (Default)
0001 to 03E8 hex:
0.01 to 10.00% in units of 0.01%

FFFF hex: 0.00%
Note The percentage is with

respect to the input range.

Control
data

Item Contents Setting range Change with
ON input
condition
776

Data Control Instructions Section 3-18
At the rising edge of W 000000 (OFF to ON), SETB(532) turns ON bit 15 of
D00209 (C+9) and starts autotuning. When autotuning is completed, the cal-
culated P, I, and D constants are written to C+1, C+2, and C+3. PID control is
then restarted with the new PID constants.

PIDAT

0010

D00200

0020

000000

S

C

D

C: D00200
C+1: D00201
C+2: D00202
C+3: D00203
C+4: D00204
C+5: D00205
C+6: D00206
C+7: D00207
C+8: D00208
C+9: D00209

C+10: D00210
C+11: D00211

C+40: D00240

0 1 2 C

0 0 6 4

0 4 B 0

0 1 9 0

0 0 3 2

0 0 0 0

0 4 9 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

W00000
SETB

D00209

#000F

Work area

Proportional band: 10.0%

Integral time: 120.0 s
Derivative time: 40.0 s

Sampling
period: 0.5 s

Reverse operation (bit 00: 0), PID constant change enable setting =
OFF (bit 01: 0), set value = manipulated variable output 50% (bit
03: 1), 2-PID parameter = 0.65 (bits 04 to 15: 000 hex)

Manipulated variable output range: 12 bits (bits 00 to 03: 4 hex),
Integral/derivative constant: time designation (bits 04 to 07: 9 hex)
Input range: 12 bits (bits 08 to 11: 4 hex),
Manipulated variable output limit control disabled (bit 12: 0)

AT Command Bit OFF (bit 15: 0),
AT Calculation Gain = 1.00 (bits 00 to 11: 000 hex)
Limit-cycle Hysteresis = 0.20%
PID starting integral manipulated variable
designation = start from same integral
manipulated value as manipulated variable
output designation (bit 14: 0 and bit 13: 0)

Parameters

PV:
CIO 0010

MV output: CIO 0020
to

PID calculation

Set value: 300

CIO 000000

W000000

PV

SV

MV

PID control PID controlAT executing

PID control starts.
Calculated PID
constants are set.

Bit 15 of
D00209

Time

Time
777

Data Control Instructions Section 3-18
Example 2:
Starting PIDAT(191) with
Autotuning

At the rising edge of CIO 000000 (OFF to ON), autotuning will be performed
first if bit 15 of D00209 (C+9) is ON. When autotuning is completed, the calcu-
lated P, I, and D constants are written to C+1, C+2, and C+3. PID control is
then started with the calculated PID constants.

Example 3:
Interrupting Autotuning
Before Completion

Autotuning can be interrupted by turning bit 15 of D00209 (C+9) from ON to
OFF. PID control will be restarted with the P, I, and D constants that were in
effect before autotuning was started.

CIO 000000

PV

SV

MV

PID

0010

D00200

0020

000000

S

C

D

PID control and
autotuning start.

Calculated PID
constants are set.

PID controlAT executing

Bit 15 of
D00209

Time

Time

CIO 000000

PV

SV

PID control starts.

PID control PID controlAT executing

Bit 15 of
D00209

Time

AT starts AT is interrupted.

PID control is restarted with
the existing PID constants.
778

Data Control Instructions Section 3-18
3-18-3 LIMIT CONTROL: LMT(680)
Purpose Controls output data according to whether or not input data is within upper

and lower limits.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

LMT(680)

S

C

D

S: Input word

C: First limit word

D: Output word

Variations Executed Each Cycle for ON Condition LMT(680)

Executed Once for Upward Differentiation @LMT(680)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6142

CIO 0000 to
CIO 6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to 959 A000 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 --- DR0 to DR15
779

Data Control Instructions Section 3-18
Description When the execution condition is ON, LMT(680) controls output data according
to whether or not the specified input data (signed 16-bit binary) is within the
upper and lower limits. The contents of words C and C+1 are as follows:

C and C+1 must have the same area classification.

If the input data (S) is less than the lower limit (C), the lower limit data will be
output to D and the Less Than Flag will turn ON.

If the input data (S) is greater than the upper limit (C+1), the upper limit data
will be output to D and the Greater Than Flag will turn ON.

If the input data (S) is greater than or equal to the lower limit (C) and less than
or equal to the upper limit (C+1), the input data (S) will be output to D.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C D

C Lower limit data (minimum output data)

C+1 Upper limit data (maximum output data)

C+1

CLower limit

Upper limit

Name Label Operation

Error Flag ER ON if the upper limit is less than the lower limit.

OFF in all other cases.

Greater Than
Flag

> ON if the input data (S) is greater than the upper limit.

OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Less Than Flag < ON if the input data (S) is less than the lower limit.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the result is “1.”
OFF in all other cases.
780

Data Control Instructions Section 3-18
Precautions If the upper limit is less than the lower limit, an error will occur and the Error
Flag will turn ON.

If the input data (S) is greater than the upper limit, the Greater Than Flag will
turn ON.

If the output word D is 0000 hex, the Equals Flag will turn ON.

If the input data (S) is less than the lower limit, the Less Than Flag will turn
ON.

If the status of the leftmost bit of the output word D is “1,” the Negative Flag
will turn ON.

Example If D00100 is 0050 hex (80), then 0064 hex (100) will be output to D00300
because 80 is less than the lower limit of 100.

If D00100 is 00C8 hex (200), then 0064 hex (100) will be output to D00300
because 200 is within the upper and lower limits.

If D00100 is 012C hex (300), then 015E hex (350) will be output to D00300
because 350 is greater than the upper limit of 300.

3-18-4 DEAD BAND CONTROL: BAND(681)
Purpose Controls output data according to whether or not input data is within the lower

and upper limits of the range (dead band range.)

Ladder Symbol

C: Lower limit: 100

Upper limit: 300

BAND(681)

S

C

D

S: Input word

C: First limit word

D: Output word
781

Data Control Instructions Section 3-18
Variations

Applicable Program Areas

Operand Specifications

Description When the execution condition is ON, BAND(681) controls output data accord-
ing to whether or not the specified input data (signed 16-bit binary) is within
the upper and lower limits (dead band). The contents of words C and C+1 are
as follows:

C and C+1 must have the same area classification.

Variations Executed Each Cycle for ON Condition BAND(681)

Executed Once for Upward Differentiation @BAND(681)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6142

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

C Lower limit data (dead band lower limit)

C+1 Upper limit data (dead band upper limit)
782

Data Control Instructions Section 3-18
If the input data (S) is greater than or equal to the lower limit (C) and less than
or equal to the upper limit (C+1), 0000 (hex) will be output to D and the Equals
Flag will turn ON.

If the input data (S) is less than the lower limit (C), the difference between the
input data minus the lower limit data will be output to D and the Less Than
Flag will turn ON.

If the input data (S) is greater than the upper limit (C+1), the difference
between the input data minus the upper limit data will be output to D and the
Greater Than Flag will turn ON.

If the output data is smaller than the 8000 (hex) or if is greater than 7FFF, the
sign will be reversed. For example, for a lower limit of 0100 (hex) and input
data of 8000 (hex), the output data will be as follows:
8000 (hex) [–32768] – 0100 (hex) [256] = 7F00 (hex) [32512]

Flags

Precautions If the upper limit is less than the lower limit, an error will occur and the Error
Flag will turn ON.

If the input data (S) is greater than the upper limit, the Greater Than Flag will
turn ON.

If the output word D is 0000 hex, the Equals Flag will turn ON.

If the input data (S) is less than the lower limit, the Less Than Flag will turn
ON.

If the status of the leftmost bit of the output word D is “1,” the Negative Flag
will turn ON.

Example If D00100 is 00B4 hex (180), then 180–200=FFEC hex (–20) will be output to
D00300 because 180 is less than the lower limit of 200.

If D00100 is 00E6 hex (230), then 0 will be output to D00300 because 230 is
within the upper and lower limits.

If D00100 is 015E hex (350), then 350–300=0032 hex (50) will be output to
D00300 because 350 is greater than the upper limit of 300.

Upper limit (C+1)

Output

Input

Lower limit (C)

Name Label Operation

Error Flag ER ON if the upper limit is less than the lower limit.
OFF in all other cases.

Greater Than
Flag

> ON if the input data (S) is greater than the upper limit.
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Less Than Flag < ON if the input data (S) is less than the lower limit.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of the result is “1.”

OFF in all other cases.
783

Data Control Instructions Section 3-18
3-18-5 DEAD ZONE CONTROL: ZONE(682)
Purpose Adds the specified bias to input data and outputs the result.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Upper limit

Lower limit: 200

Upper limit: 300

Upper
limit:
300

Lower
limit:
200

Lower limit

ZONE(682)

S

C

D

S: Input word

C: First limit word

D: Output word

Variations Executed Each Cycle for ON Condition ZONE(682)

Executed Once for Upward Differentiation @ZONE(682)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6142

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767
784

Data Control Instructions Section 3-18
Description When the execution condition is ON, ZONE(682) adds the specified bias to
the specified input data (signed 16-bit binary) and places the result in a speci-
fied word. The contents of words C and C+1 are as follows:

C and C+1 must have the same area classification.

If the input data (S) is less than zero, the input data plus the negative bias will
be output to D and the Less Than Flag will turn ON.

If the input data (S) is greater than zero, the input data plus the positive bias
will be output to D and the Greater Than Flag will turn ON.

If the input data (S) is equal to zero, 0000 will be output to D and the Equals
Flag will turn ON.

If the output data is smaller than the 8000 (hex) or if is greater than 7FFF, the
sign will be reversed. For example, for a negative bias value of FF00 (hex) and
input data of 8000 (hex), the output data will be as follows:
8000 (hex) [–32768] – FF00 (hex) [–256] = 7F00 (hex) [32512]

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF

(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C D

C Negative bias

C+1 Positive bias

Input

Negative bias (C)

Positive bias (C+1)

Output
785

Data Control Instructions Section 3-18
Flags

Precautions If the upper limit is less than the lower limit, an error will occur and the Error
Flag will turn ON.

If the input data (S) is greater than the upper limit, the Greater Than Flag will
turn ON.

If the output word D is 0000 hex, the Equals Flag will turn ON.

If the input data (S) is less than the lower limit, the Less Than Flag will turn
ON.

If the status of the leftmost bit of the output word D is “1,” the Negative Flag
will turn ON.

Example When CIO 000000 is ON, a bias of –100 will be applied to the value of
D00100 if that value is less than 0, and the resulting value will be stored in
D00300.

If the value of D00100 is 0, then 0000 hex will be stored in D00300.

If the value of D00100 is greater than 0, then a bias of +100 will be applied
and the resulting value will be stored in D00300.

Name Label Operation

Error Flag ER ON if the upper limit is less than the lower limit.
OFF in all other cases.

Greater Than
Flag

> ON if the input data (S) is greater than the upper limit.
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Less Than Flag < ON if the input data (S) is less than the lower limit.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of the result is “1.”

OFF in all other cases.

–100C:

Decimal values

Negative bias

Positive biasContents of D00300

Contents of D00200
786

Data Control Instructions Section 3-18
3-18-6 TIME-PROPORTIONAL OUTPUT: TPO(685)
Purpose Inputs the duty ratio or manipulated variable from the specified word, converts

the duty ratio to a time-proportional output based on the specified parameters,
and outputs the result from the specified output.

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Input Word
Specifies the input word containing the input duty ratio or manipulated vari-
able. Bits 04 to 07 of C specify the input type, i.e., whether the input word con-
tains an input duty ratio or manipulated variable. (Set these bits to 0 hex to
specify a input duty ratio or to 1 hex to specify a manipulated variable.)

• Input duty ratio: 0000 to 2710 hex (0.00% to 100.00%)

• Input manipulated variable (See note.): 0000 to FFFF hex (0 to 65,535
max.) (Bits 00 to 03 of C specify the manipulated variable range, i.e., the
number of valid bits in the manipulated variable. Specify the same number
of bits as specified for the output range setting in PID(190).)

Note If S is a manipulated variable, specify the word containing the manip-
ulated variable output from a PID(190) or PIDAT(191) instruction.

C to C+6: Parameters

The following diagram shows the locations of the parameter data. For details
on the parameters, refer to Parameter Settings in this section.

TPO

S

C

R

S: Input word

C: First parameter word

R: Pulse output bit

Variations Executed Each Cycle for ON Condition TPO(685)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
787

Data Control Instructions Section 3-18
R: Pulse Output Bit
Specifies the destination output bit for the pulse output.

Normally, specify an output bit allocated to a Transistor Output Unit and con-
nect a solid state relay to the Transistor Output Unit.

Operand Specifications

C+1

C+2

C+3

C+4

C+5

C+6

015

C

815 1211 0347

Manipulated variable range

Input type

Input read timing

Output limit function

Note: For details, see the description of each parameter.

Control period

Output lower limit

Output upper limit

Work area
(3 words, cannot be used by user)

Area S C R

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6137

CIO 000000 to
CIO 614315

Work Area W000 to W511 W000 to W505 W00000 to
W51115

Holding Bit Area H000 to H511 H000 to H505 H00000 to
H51115

Auxiliary Bit Area A000 to 959 A000 to A953 A44800 to
A95915

Timer Area T0000 to T4095 T0000 to T4089 ---

Counter Area C0000 to C4095 C0000 to C4089 ---

DM Area D00000 to
D32767

D00000 to
D32761

EM Area without bank E00000 to
E32767

E00000 to
E32761

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32761

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF
(binary)

--- ---

Data Registers DR0 to DR15 --- ---
788

Data Control Instructions Section 3-18
Description Receives a duty ratio or manipulated variable input from the word address
specified by S, converts the duty ratio to a time-proportional output (see note)
based on the parameters specified in words C to C+3, and outputs a pulse
output to the bit specified by R.

Note A time-proportional output is changed proportionally based on the ON/OFF
ratio in input word S. The period in which the ON and OFF status changes is
known as the control period and is set in parameter word C+1.
Example: When the control period is 1 s and the input value is 50%, the bit is
ON for 0.5 s and OFF for 0.5 s. When the control period is 1 s and the input
value is 80%, the bit is ON for 0.8 s and OFF for 0.2 s.

Generally, TPO(685) is used together with PID(190) or PIDAT(191) and the
PID instruction’s manipulated variable result word (D) is specified as the input
word (S) for the TPO(685) instruction. Also, an output bit allocated to a Tran-
sistor Output Unit is generally specified as R and a solid state relay is con-
nected to the Transistor Output Unit to perform time-proportional control of a
heater (proportional control of the ON/OFF ratio).

Combining TPO(685) with a PID Control Instruction

When combining TPO(685) with a PID control instruction, the manipulated
variable input is divided by the manipulated variable range to calculate the
duty ratio, that duty ratio is converted to a time-proportional output, and pulses
are output.

In this case, set the same value for the PID Control instruction’s output range
and the TPO(685) instruction’s manipulated variable range. For example,
when the PID Control instruction’s output range and the TPO(685) instruc-
tion’s manipulated variable range are both set to 12 bits (0000 to 0FFF hex),
the duty ratio is calculated by dividing the manipulated variable from the PID
Control instruction by 0FFF hex and TPO(685) converts that duty ratio to a
time-proportional output.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C R

000000
PID

S

C

D00000

TPO

D00000

C

R

MVD00000

PV input

PID parameters

MV

Parameters

Pulse output

Manipulated variable (MV)

Output range

= MV range

MV ÷ MV range

Duty ratio (0.00% to 100.00%)

Manipulated
variable

PID calculation

Conversion to time-proportional
output
789

Data Control Instructions Section 3-18
External Wiring Example

Connect the Transistor Output Unit to a solid state relay (SSR) as shown in
the following diagram.

Parameter Settings

Note When the output limit control function is enabled, set the lower and upper lim-
its as follows: 0000 hex ≤ lower limit ≤ upper limit ≤ 2710 hex.

Execution • The instruction is executed while the input condition is ON.

• When instruction execution starts, the output bit (R) is turned ON/OFF
according to the duty ratio.

COM
SSR

AC

+

−

Transistor Output Unit
Heater

12 to 24 VDC

Control data Item Contents Setting range Change with
ON input
condition

Word Bits

C 00 to 03 Manipulated
variable range

Specifies the number of input
data bits.

0 hex: 8 bits 5 hex: 13 bits
1 hex: 9 bits 6 hex: 14 bits
2 hex: 10 bits 7 hex: 15 bits
3 hex: 11 bits 8 hex: 16 bits
4 hex: 12 bits

Allowed

04 to 07 Input type Specifies whether S contains a
duty ratio or manipulated vari-
able.

0 hex: Duty ratio
Setting range for S: 0000 to
2710 hex (0.00 to 100.00%)

1 hex: Manipulated variable
Setting range for S: 0000 to
FFFF hex (0 to 65,535)
(The maximum setting
depends on the MV range set
with bits 00 to 03 of C.)

Allowed

08 to 11 Input read timing Specifies the input read timing. 0 hex: Use the beginning value of
the control period

1 hex: Use lower value
2 hex: Use higher value
3 hex: Continuous adjustment

Allowed

12 to 15 Output limit con-
trol

Specifies whether the output
limit function is enabled or dis-
abled.

0 hex: Disabled
1 hex: Enabled (See note.)

Allowed

C+1 00 to 15 Control period Control period
(Time period in which the ON/
OFF changes are made.)

0064 to 270F hex (1.00 to 99.99 s)
Note: For example, 1.00 s is set as
0064 hex, and not 0001 hex.

Allowed

C +2 00 to 15 Output lower
limit

Specifies the lower limit when
the output limit is enabled.

0000 to 2710 hex (0 to 100.00%) Allowed

C +3 00 to 15 Output upper
limit

Specifies the upper limit when
the output limit is enabled.

0000 to 2710 hex (0 to 100.00%) Allowed

C+4 00 to 15 Work area This work area is used by the
system. It cannot be used by the
user.

Cannot be used. ---

C+5 00 to 15

C+6 00 to 15
790

Data Control Instructions Section 3-18
• The parameters (in C to C+3) are read in real time each time that the
instruction is executed. When changing the parameters, change all of
them at the same time so that different sets of parameters are not mixed.

• The output (R) is turned ON/OFF when the instruction is executed and the
accuracy of the output’s ON/OFF timing is 10 ms max.

• Execution of the instruction stops when the input condition goes OFF. At
that time, the elapsed time value will be reset and the control period will
be initialized.

• The input type setting (bits 04 to 07 of C) determines whether the input
word (S) contains a duty ratio or manipulated variable. When S contains
the manipulated variable, the duty ratio is calculated by dividing the
manipulated variable input by the manipulated variable range (bits 00 to
03 of C).

Input Read Timing Setting
(C bits 08 to 11)

The input read timing setting (bits 08 to 11 of C) specifies when the input word
(S) is read, as shown in the following table:

The following diagrams show the operation of each input read timing setting.

• Input time setting = 0 (Use the beginning value of the control period.)

Input read timing Description

0: Use the beginning
value of the control
period

The duty ratio input is read at the beginning of the control
period and the ratio cannot be changed during the control
period.

1: Use lower value If the duty ratio input falls below the duty ratio at the
beginning of the control period, the lower value will take
precedence and the output ON time will be reduced
accordingly.

2: Use higher value If the duty ratio input rises above the duty ratio at the
beginning of the control period, the higher value will take
precedence and the output ON time will be increased
accordingly.

3: Continuous adjustment The duty ratio will be read in real time each time the
instruction is executed and the ON/OFF operation will be
repeated within the control period.

100%

a × 0.55 s a × 0.45 s a × 0.70 s a × 0.30 s

70%
55%

0%

Control period (a)

Read only at the beginning of the control period.

Control period (a)

Time

Output

Duty ratio
(MV/MV range)

Each control period's output is determined by the duty ratio at the beginning of that period.
Use this setting for general applications.
791

Data Control Instructions Section 3-18
• Input time setting = 1 (Use lower value.)

• Input time setting = 2 (Use higher value.)

100%

a × 0.35 s a × 0.65 s a × 0.70 s a × 0.30 s

70%
55%

35%

0%

Control period (a) Control period (a)

Time

Output

Duty ratio
(MV/MV range)

55% target
cut to 35%.

70% target
is kept.

If the duty ratio falls below the initial value early enough, the duty ratio will be
adjusted and the output will be turned OFF sooner.
Use this setting for applications such as avoiding overshooting when using time-
proportional control to control heating and using a relatively long control period.

100%

a × 0.45 s a × 0.55 s a × 0.80 s

80%
70%
55%

0%

a ×
0.20 s

70% target is kept.

Control period (a) Control period (a)

Time

Output

Duty ratio
(MV/MV range)

70% target
raised to 80%.

If the duty ratio rises above the initial value early enough, the duty ratio will be
adjusted and the output will be turned ON sooner. (With this setting the output's
ON/OFF order is reversed and the output goes from OFF to ON.)
Use this setting for applications such as avoiding undershooting when using time-
proportional control to control cooling and using relatively long control period.
792

Data Control Instructions Section 3-18
• Input time setting = 3 (Continuous adjustment)

Flags

Example Example 1: Combining TPO(685) with PID(190)

When CIO 000000 is ON, TPO(685) takes the manipulated variable output
from PID(190) (contained in D00000), calculates the duty ratio from that
manipulated variable value (Duty ratio = MV ÷ MV range), converts the duty
ratio to a time-proportional output, and outputs the pulses to CIO 002001.

In this case, CIO 0020 is allocated to a Transistor Output Unit and bit
CIO 002001 is connected to a solid state relay for heater control.

100%

100%

a × 0.35 s

0%
a ×
0.20 s

a ×
0.20 s

a ×
0.20 s

Control period (a)Control period (a)

Output

Duty ratio
(MV/MV range)

: Output ON

: Output OFF

Time
Changes in the duty ratio are monitored in real time. If the duty ratio falls
below the initial value early enough, the duty ratio will be adjusted and the
output will be turned OFF sooner. If the duty ratio rises again after that,
the ratio will be adjusted again and the output will be turned ON. This
process is repeated continuously.
Use this setting to improve responsiveness when the control period is
relatively long and the duty ratio changes quickly. This setting is also
appropriate for lighting or power applications that require precise control.

Name Label Operation

Error Flag ER ON if the input data in S is out of range. (The input data
setting range depends on the input type setting.)

ON if the C data is out of range. (The manipulated vari-
able range will cause an error only when the input type is
set to manipulated variable.)

ON if the control period in C+1 is out of range.
ON if the output limit function is enabled but the output
lower limit (C+2) or output upper limit (C+3) is out of
range.
ON if the output limit function is enabled but the output
lower limit (C+2) is less than or equal to the output upper
limit (C+3).
OFF in all other cases.
793

Data Control Instructions Section 3-18
Note When using TPO(685) in combination with PID(190) in a cyclic task and also
using an interrupt task, temporarily disable interrupts by executing DI(693)
(DISABLE INTERRUPTS) ahead PID(190) and TPO(685). If interrupts are not
disabled and an interrupt occurs between the PID(190) and TPO(685), the
control period may be shifted.

Example 2: Using TPO(685) Alone

When CIO 000000 is ON, TPO(685) takes the duty ratio in D00010, converts
the duty ratio to a time-proportional output, and outputs the pulses to
CIO 000100.

In this case, the control period is 1 s and the output limit function is enabled
with a lower limit 20.00% and an upper limit of 80.00%.

000000
PID

0010

D00200

D00000

TPO

D00000

D05000

002001

S

C

D

D00200
D00201

:
D00206

:
:

D05000

S

C

R

4

41

PV input

PID parameters

Manipulated variable

Manipulated variable

Parameters

Pulse output

Set value (SV)
Proportional band (P)

When CIO 000000 goes from OFF to ON, PID(190)
reads the parameters, performs the PID calculation
with the PV input in CIO 0010, and outputs the
manipulated variable (MV) to D00000.

TPO(685) calculates the duty ratio by dividing the
MV in D00000 by the MV range (0FFF Hex since
the range is set to 12 bits), converts that duty ratio
to a time-proportional output, and outputs the pulse
output to bit 01 of CIO 0020.

Output range: 4 hex
(12 bits: 0000 to 0FFF hex)

MV range: 4 hex
(12 bits: 0000 to 0FFF hex)

Input type: 1 hex (MV)

DI

EI

S

C

D

S

C

R

Reception prohibited

Reception allowed

Interrupt task

Interrupt task

Cyclic task

PID

PV input

PID parameters

TPO

Parameters

Pulse output

Manipulated
variable

Manipulated
variable
794

Data Control Instructions Section 3-18
3-18-7 SCALING: SCL(194)
Purpose Converts unsigned binary data into unsigned BCD data according to the

specified linear function.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the four words starting with the first parameter word (P1) are
shown in the following diagram.

000000
TPO

D00010

D00000

000100

S

C

R

D00000
D00001
D00002
D00003
D00004
D00005
D00006

:
:

D00010

0
4

0
0

0
6

D
4

1
0

7
F

1
0

0
1

Duty ratio

Parameters

Pulse output

Duty ratio input, read initial value, and enable output limit function.
Control period = 1.00 s
Output lower limit = 20.00%
Output upper limit = 80.00%

0 to 100.00%

Do not set.
Do not set.
Do not set.

0 to 2710 hex

TPO(685) takes the duty ratio in D00010, converts
that duty ratio to a time-proportional output, and
outputs the pulse output to bit 00 of CIO 0001.

SCL(194)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL(194)

Executed Once for Upward Differentiation @SCL(194)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK
795

Data Control Instructions Section 3-18
Note P1 to P1+3 must be in the same area.

Operand Specifications

P1

P1+1

P1+2

P1+3

15 0

15 0

15 0

15 0

Scaled value for point A (Ar)
0000 to 9999 (4-digit BCD)

Unscaled value for point A (As)
0000 to FFFF (binary)

Scaled value for point B (Br)
0000 to 9999 (4-digit BCD)

Unscaled value for point B (Bs)
0000 to FFFF (binary)

Area S P1 R

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6140

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W508 W000 to W511

Holding Bit Area H000 to H511 H000 to H508 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A956 A448 to A959

Timer Area T0000 to T4095 T0000 to T4092 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4092 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32764

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32764

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15
796

Data Control Instructions Section 3-18
Description SCL(194) is used to convert the unsigned binary data contained in the source
word S into unsigned BCD data and place the result in the result word R
according to the linear function defined by points (As, Ad) and (Bs, Bd). The
address of the first word containing the coordinates of points (As, Ar) and (Bs,
Br) is specified for the first parameter word P1. These points define by 2 val-
ues (As and Bs) before scaling and 2 values (Ar and Br) after scaling.

The following equations are used for the conversion.

Points A and B can define a line with either a positive or negative slope. Using
a negative slope enables reverse scaling.

The result will be rounded to the nearest integer. If the result is less than
0000, 0000 will be output as the result. If the result is greater than 9999, 9999
will be output.

SCL(194) can be used to scale the results of analog signal conversion values
from Analog Input Units according to user-defined scale parameters. For
example, if a 1 to 5-V input to an Analog Input Unit is input to memory as 0000
to 0FA0 hexadecimal, the value in memory can be scaled to 50 to 200°C
using SCL(194).

SCL(194) converts unsigned binary to unsigned BCD. To convert a negative
value, it will be necessary to first add the maximum negative value in the pro-
gram before using SCL(194) (see example).

SCL(194) cannot output a negative value to the result word, R. If the result is
a negative value, 0000 will be output to R.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S P1 R

– ×

–

(Bd – Ad)
R = Bd

R = Bd

BCD conversion of (Bs – As)
 BCD conversion of (Bs – S)

The slope of the line is as follows:

 (Bd – Ad)

 BCD conversion of (Bs – As)

P

P1+1

P1+2

P1+3

(BCD)

(BIN)

(BCD)

(BIN)

R (unsigned BCD) Scaling is performed according
to the linear function defined by
points A and B.

Converted value

Converted value

S (unsigned binary)

Point B

Point A
797

Data Control Instructions Section 3-18
Flags

Precautions An error will occur and the Error Flag will turn ON if the values for Ar (C) and
Br (C+2) are not in BCD, or if the values for As (C+1) and Bs (C+3) are equal.

The Equals Flag will turn ON when the contents of the result word D is 0000.

Examples In the following example, it is assume that an analog signal from 1 to 5 V is
converted and input to D00000 as 0000 to 0FA0 hexadecimal. SCL(194) is
used to convert (scale) the value in CIO 0200 to a value between 0000 and
0300 BCD.

When CIO 000000 is ON, the contents of D00000 is scaled using the linear
function defined by point A (0000, 0000) and point B (0FA0, 0300). The coor-
dinates of these points are contained in D00100 to D00103, and the result is
output to D00200.

Negative Values

An Analog Input Unit actually inputs values from FF38 to 1068 hexadecimal
for 0.8 to 5.2 V. SCL(194), however, can handle only unsigned binary values
between 0000 and FFFF hexadecimal, making it impossible to use SCL(194)
directly to handle signed binary values below 1 V (0000 hexadecimal), i.e.,
FF38 to FFFF hexadecimal. In an actual application, it is thus necessary to
add 00C8 hexadecimal to all values so that FF38 hexadecimal is represented
as 0000 hexadecimal before using SCL(194), as shown in the following exam-
ple.

Name Label Operation

Error Flag ER ON if the contents of C (Ar) or C+1 (Br) is not BCD.
ON if the contents of C+1 (As) and C+3 (Bs) are equal.

OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

(BCD)

(BIN)

(BCD)

(BIN)

P1: D00100

P1+1: D00101

P1+2: D00102

P1+3: D00103

P1

R

D00000

Contents of D00200 (R)

Contents of D00000 (S)

Point B

Point A
798

Data Control Instructions Section 3-18
In this example, values from 0000 to 00C8 hexadecimal will be converted to
negative values. SCL(194), however, can output only unsigned BCD values
from 0000 to 9999, so 0000 BCD will be output whenever the contents of
D00000 is between 0000 and 00C8 hexadecimal.

Reverse Scaling

Reverse scaling can also be used by setting As < Bs and Ar > Br. The follow-
ing relationship will result.

Reverse scaling can be used, for example, to convert (reverse scale) 1 to 5 V
(0000 to 0FA0 hexadecimal) to 0300 to 0000, respectively, as shown in the fol-
lowing diagram.

(BCD)

(BIN)

(BCD)
(BIN)

P1: D00100

P1+1: D00101

P1+2: D00102

P1+3: D00103

+

+00C8 Hex

Contents of D 00200 (R)

Point B

Point A
Contents of D 00000 (S)

Point A (00C8 Hex → 0000 (BCD))
Point B (1068 Hex → 0300 (BCD))

The value in CIO
0200 plus 00C8
hexadecimal

S (unsigned binary)

Point B

Point A

R (unsigned BCD)

R

Point B

Point A
799

Data Control Instructions Section 3-18
3-18-8 SCALING 2: SCL2(486)
Purpose Converts signed binary data into signed BCD data according to the specified

linear function. An offset can be input in defining the linear function.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the three words starting with the first parameter word (P1) are
shown in the following diagram.

Note P1 to P1+2 must be in the same area.

Operand Specifications

SCL2(486)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL2(486)

Executed Once for Upward Differentiation @SCL2(486)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

∆Y

∆X

P1

P1+1

P1+2

15 0

15 0

15 0

Offset of linear function
8000 to 7FFF (signed binary)

8000 to 7FFF (signed binary)

0000 to 9999 (BCD)

Area S P1 R

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6141

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W509 W000 to W511

Holding Bit Area H000 to H511 H000 to H509 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A957 A448 to A959

Timer Area T0000 to T4095 T0000 to T4093 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4093 C0000 to C4095
800

Data Control Instructions Section 3-18
Description SCL2(486) is used to convert the signed binary data contained in the source
word S into signed BCD data (the BCD data contains the absolute value and
the Carry Flag shows the sign) and place the result in the result word R
according to the linear function defined by the slope (∆X, ∆Y) and an offset.
The address of the first word containing ∆X, ∆Y, and the offset is specified for
the first parameter word P1. The sign of the result is indicated by the status of
the Carry Flag (ON: negative, OFF: positive).

The following equations are used for the conversion.

The offset and slope can be a positive value, 0, or a negative value. Using a
negative slope enables reverse scaling.

The result will be rounded to the nearest integer.

The result in R will be the absolute BCD conversion value and the sign will be
indicated by the Carry Flag. The result can thus be between –9999 and 9999.

If the result is less than –9999, –9999 will be output as the result. If the result
is greater than 9999, 9999 will be output.

DM Area D00000 to
D32767

D00000 to
D32765

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32765

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32765
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S P1 R

∆Y
R = BCD conversion of ∆X

The slope of the line is ∆Y/∆X.

 x ((BCD conversion of S) – (BCD conversion of offset)
801

Data Control Instructions Section 3-18
SCL2(486) can be used to scale the results of analog signal conversion val-
ues from Analog Input Units according to user-defined scale parameters. For
example, if a 1 to 5-V input to an Analog Input Unit is input to memory as 0000
to 0FA0 hexadecimal, the value in memory can be scaled to –100 to 200°C
using SCL2(486).

SCL2(486) converts signed binary to signed BCD. Negative values can thus
be handled directly for S. The result of scaling in R and the Carry Flag can
also be used to output negative values for the scaling result.

Flags

Precautions An error will occur and the Error Flag will turn ON if the value for ∆X (C+1) is
0000 or if the value for ∆Y (C+2) is not BCD.

The Equals Flag will turn ON when the contents of the result word D is 0000.

The Carry Flag will turn ON if the value placed in the result word is negative.

Examples Scaling 1 to 5-V Analog Input to 0 to 300
In the following example, it is assumed that an analog signal from 1 to 5 V is
converted and input to CIO 0205 as 0000 to 0FA0 hexadecimal. SCL2(486) is
used to convert (scale) the value in CIO 0205 to a value between 0000 and
0300 BCD.

When CIO 000000 is ON, the contents of CIO 0205 is scaled using the linear
function defined by ∆X (0FA0), ∆Y (0300), and the offset (0). These values are
contained in D00100 to D00102, and the result is output to D00200.

∆Y

∆X

∆Y

∆X

∆Y

∆X

∆Y

∆X

P1

P1+1

P1+2

R (signed BCD)

S (signed binary)

Offset

R (signed BCD)

S (signed binary)
Offset

R (signed BCD)

S (signed binary)

Offset of 0000

Offset = 0000 hex

Offset (Signed binary)

(Signed binary)

(Signed BCD)

Positive Offset Negative Offset

Name Label Operation

Error Flag ER ON if the contents of C+1 (∆X) is 0000.
ON if the contents of C+2 (∆Y) is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Carry Flag CY ON if the result is negative.
OFF if the result is zero or positive.
802

Data Control Instructions Section 3-18
Scaling 1 to 5-V Analog Input to –200 to 200

In the following example, it is assume that an analog signal from 1 to 5 V is
converted and input to CIO 2005 as 0000 to 0FA0 hexadecimal. SCL2(486) is
used to convert (scale) the value in CIO 2005 to a value between –0200 and
0200 BCD.

When CIO 000000 is ON, the contents of CIO 2005 is scaled using the linear
function defined by ∆X (0FA0), ∆Y (0400), and the offset (07D0). These values
are contained in D00100 to D00102, and the result is output to D00200.

∆X

∆Y

(∆X)

P1:

P1+1:

P1+2:

P1

R
Contents of R (D00200)

Contents of S (CIO 0205)

Offset

1068Hex

X

∆

P1:

P1+1:

P1+2:

0400 (∆Y)

P1

R

0 F A 0

D00100

D00101

D00102

∆
Y

Offset

Contents of R (D00200)

Offset
07D0 Hex

Contents of S (CIO 0200)

0FA0 Hex
(∆X)
803

Data Control Instructions Section 3-18
3-18-9 SCALING 3: SCL3(487)
Purpose Converts signed BCD data into signed binary data according to the specified

linear function. An offset can be input in defining the linear function.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the five words starting with the first parameter word (P1) are
shown in the following diagram.

Note P1 to P1+4 must be in the same area.

SCL3(487)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL3(487)

Executed Once for Upward Differentiation @SCL3(487)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

∆Y

∆X

P1

P1+1

P1+2

P1+3

P1+4

15 0

15 0

15 0

15 0

15 0

Offset of linear function
8000 to 7FFF (signed binary)

0001 to 9999 (BCD)

8000 to 7FFF (signed binary)

Maximum conversion
8000 to 7FFF (signed binary)

Minimum conversion
8000 to 7FFF (signed binary)
804

Data Control Instructions Section 3-18
Operand Specifications

Description SCL3(487) is used to convert the signed BCD data (the BCD data contains
the absolute value and the Carry Flag shows the sign) contained in the source
word S into signed binary data and place the result in the result word R
according to the linear function defined by the slope (∆X, ∆Y) and an offset.
The maximum and minimum conversion values are also specified. The
address of the first word containing ∆X, ∆Y, the offset, the maximum conver-
sion, and the minimum conversion is specified for the first parameter word P1.

The sign of the result is indicated by the status of the Carry Flag (ON: nega-
tive, OFF: positive). Use STC(040) and CLC(041) to turn the Carry Flag ON
and OFF.

The following equations are used for the conversion.

The offset and slope can be a positive value, 0, or a negative value. Using a
negative slope enables reverse scaling.

The result will be rounded to the nearest integer.

Area S P1 R

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6139

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W507 W000 to W511

Holding Bit Area H000 to H511 H000 to H507 H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A000 to A443
A448 to A955

A448 to A959

Timer Area T0000 to T4095 T0000 to T4091 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4091 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32763

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32763

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32763
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

∆Y
R = Binary conversion of ∆X

x ((Binary conversion of S)+(Offset))

The slope of the line is ∆Y/∆X.
805

Data Control Instructions Section 3-18
The source value in S is treated as an absolute BCD value and the sign is
indicated by the Carry Flag. The source value can thus be between –9999
and 9999.

If the result is less than the minimum conversion value, the minimum conver-
sion value will be output as the result. If the result is greater than the maxi-
mum conversion value, the maximum conversion value will be output.

SCL3(487) is used to convert data using a user-defined scale to signed binary
for Analog Output Units. For example, SCL3(487) can convert 0 to 200 °C to
0000 to 0FA0 (hex) and output an analog output signal 1 to 5 V from the Ana-
log Output Unit.

Flags

Precautions An error will occur and the Error Flag will turn ON if the contents of S is not
BCD or if the value for ∆X (C+1) is not between 0001 and 9999 BCD.

The Equals Flag will turn ON when the contents of the result word D is 0000.

The Negative Flag will turn ON if the MSB of the result in R is 1, i.e., if the
result is negative.

Examples When a value from 0 to 200 is scaled to an analog signal (1 to 5 V, for exam-
ple), a signed BCD value of 0000 to 0200 is converted (scaled) to signed

∆X

∆Y

∆X

∆Y

∆X

∆Y

S (signed BCD)

Offset Offset

S (signed BCD)

Offset of 0000

Positive Offset

R (signed binary)

Negative Offset

R (signed binary)

Max conversionMax conversion

Min. conversion S (signed BCD)

Min. conversion

R (signed binary)

Max conversion

Min. conversion

Name Label Operation

Error Flag ER ON if the contents of S is not BCD.
ON if the contents of C+1 (∆X) is not between 0001 and
9999 BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.

Negative Flag N ON when the MSB of the R (the result) is 1.

OFF in all other cases.
806

Data Control Instructions Section 3-18
binary value of 0000 to 0FA0 for an Analog Output Unit. When CIO 000000
turns ON in the following example, the contents of D00000 is scaled using the
linear function defined by ∆X (0200), ∆Y (0FA0), and the offset (0). These val-
ues are contained in D00100 to D00102. The sign of the BCD value in
D00000 is indicated by the Carry Flag. The result is output to CIO 2011.

3-18-10 AVERAGE: AVG(195)
Purpose Calculates the average value of an input word for the specified number of

cycles.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of Cycles
The number of cycles must be between 0001 and 0040 hexadecimal (0 to 64
cycles).

R: Result Word and R+1: First Work Area Word

R will contain the average value after the specified number of cycles. R+1 pro-
vides information on the averaging process and R+2 to R+N+1 contain the
previous values of S as shown in the following diagram.

∆X (0200)

∆Y

∆X

P1

R

Offset
Contents of R (2011, signed binary)

 ∆Y (0FA0 Hex)

Contents of S (D00000, signed BCD)

Max. conversion

Min. conversion

P1:

P1+1:

P1+2:

P1+3:

P1+4:

S

N

R

AVG(195)

S: Source word

N: Number of cycles

R: Result word

R+1: First work area word

Variations Executed Each Cycle for ON Condition AVG(195)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

Not allowed OK OK OK
807

Data Control Instructions Section 3-18
Note R to R+N+1 must be in the same area.

Operand Specifications

Description For the first N–1 cycles when the execution condition is ON, AVG(195) writes
the values of S in order to words starting with R+2. The Previous Value
Pointer (bits 00 to 07 of R+1) is incremented each time a value is written. Until
the Nth value is written, the contents of S will be output unchanged to R and
the Average Value Flag (bit 15 of R+1) will remain OFF.

When the Nth value is written to R+N+1, the average of all the values that
have been stored will be computed, the average will be output to R as an
unsigned binary value, and the Average Value Flag (bit 15 of R+1) will be

R+1

R+2:

15 014

R+N+1:

Used by system.

 Previous value #1

 Previous value #N

R: Average
R+1: Processing information

Average Valid Flag
OFF: Not valid (AVG(195) has not yet been executed the specified number of cycles.)
ON: Valid.

Area S N R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

#0001 to #0040
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
808

Data Control Instructions Section 3-18
turned ON. For all further cycles, the value in R will be updated for the most
current N values of S.

The maximum value of N is 64. If a value greater than 64 is specified, opera-
tion will use a value of 64.

The Previous Value Pointer will be reset to 0 after N–1 values have been writ-
ten.

The average value output to R will be rounded to the nearest integer.

Flags

Precautions The contents of the First Work Area Word (D+1) is cleared to 0000 each time
the execution condition changes from OFF to ON.

The contents of the First Work Area Word (D+1) will not be cleared to 0000
the first time the program is executed at the start of operation. If AVG(195) is
to be executed in the first program scan, clear the First Work Area Word from
the program.

If N (Number of Cycles) contains 0000, an error will occur and the Error Flag
will turn ON.

When CIO 000000 is ON in the following example, the contents of D00100 will
be stored one time each scan for the number of scans specified in D00200.
The contents will be stored in order in the ten words from CIO 0302 to CIO
0311. The average of the contents of these ten words will be placed in CIO
0300 and then bit 15 of CIO 0301 will be turned ON.

R+N+1

R

R+1

R+2

R+3

S Cycle 1

S Cycle 2

S Cycle N

S: Source word

N: Number of cycles

Average

N values

Average Valid Flag

Pointer

Name Label Operation

Error Flag ER ON if the contents of N is 0.

OFF in all other cases.
809

Data Control Instructions Section 3-18
Examples In the following example, the content of CIO 0040 is set to #0000 and then
incremented by 1 each cycle. For the first two cycles, AVG(195) moves the
content of CIO 0040 to D01002 and D01003. The contents of D01001 will
also change (which can be used to confirm that the results of AVG(195) has
changed). On the third and later cycles AVG(195) calculates the average
value of the contents of D01002 to D01004 and writes that average value to
D01000.

S: D00100

N: D00200

R: CIO 0300

R+1: CIO 0301

R+2: CIO 0302

R+3: CIO 0303

R+11: CIO 0311

S

N

R

Average

Pointer

Average Valid Flag

(10 times)

D01000 0000 0001 0001 0002
D01001 0001 0002 8000 8001
D01002 0000 0000 0000 0003
D01003 --- 0001 0001 0001
D01004 --- --- 0002 0002

CIO 0040 0000 0001 0002 0003

@MOV

 1st cycle 2nd cycle 3rd cycle 4th cycle

Average

Pointer

3 previous values of IR 40
810

Subroutines Section 3-19
3-19 Subroutines

3-19-1 SUBROUTINE CALL: SBS(091)
Purpose Calls the subroutine with the specified subroutine number and executes that

program.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Subroutine number
Specifies the subroutine number between 0 and 1023 decimal.

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the subroutine number must
be between the range &0 to &255 decimal.

Operand Specifications

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is &0 to &255 dec-
imal.

Description SBS(091) calls the subroutine with the specified subroutine number. The sub-
routine is the program section between SBN(092) and RET(093). When the

SBS(091)

N N: Subroutine number

Variations Executed Each Cycle for ON Condition SBS(091)

Executed Once for Upward Differentiation @SBS(091)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0 to 1023 (decimal) (See note.)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

811

Subroutines Section 3-19
subroutine is completed, program execution continues with the next instruc-
tion after SBS(091).

Subroutines can be nested up to 16 levels. Nesting is when another subrou-
tine is called from within a subroutine program, such as shown in the following
example, which is nested to 3 levels.

Subroutine
program
(SBN(092) to
RET(093))

Main program

Execution condition ON

Program end

SBN 10

SBN 11

RET

SBN 11

SBS 12

RET RET

SBN 12
812

Subroutines Section 3-19
Note A subroutine can be called more than once in a program.

Subroutines and
Differentiation

Observe the following precautions when using differentiated instructions
(DIFU(013), DIFU(014), or up/down differentiated instructions) in subroutines.

The operation of differentiated instructions in a subroutine is unpredictable if a
subroutine is executed more than once in the same cycle. In the following
example, subroutine 0001 is executed when CIO 000000 is ON and
CIO 000100 is turned ON by DIFU(013) when CIO 000001 has gone from
OFF to ON. If CIO 000001 is ON in the same cycle, subroutine 0001 will be
executed again but this time DIFU(013) will turn CIO 000100 OFF without
checking the status of CIO 000001.

Execution condition ON

Main program

Execution condition ONSubroutine
program n

Two-level
nesting

Subroutine
program m

Program end

1

3

2

4

5

1

1

1

Subroutine
0001 The subroutine is

executed again.
813

Subroutines Section 3-19
In contrast, a differentiated instruction (UP, DOWN, DIFU(013) or DIFD(014))
would maintain the ON status if the instruction was executed and the output
was turned ON but the same subroutine was not called a second time.

In the following example, subroutine 0001 is executed if CIO 000000 is ON.
Output CIO 000100 is turned ON by DIFU(013) when CIO 000001 has gone
from OFF to ON. If CIO 000000 is OFF in the following cycle, subroutine
0001 will not be executed again and output CIO 000100 will remain ON.

Flags

Precautions Each subroutine must have a unique subroutine number. Do not use the same
subroutine number for more than one subroutine.

SBS(091) and the corresponding SBN(092) must be programmed in the same
task. An error will occur if the corresponding SBN(092) is not in the task.

SBS(091) will be treated as NOP(000) when it is within a program section
interlocked by IL(002) and ILC(003).

When SBS(091) is executed in the following cases, the subroutine will not
actually be called and the Error Flag will be turned ON:

1,2,3... 1. The specified subroutine is not defined within the current task.

2. The subroutine is calling itself.

3. Subroutine nesting exceeds 16 levels.

4. The specified subroutine is being executed.

Examples Example 1: Sequential (Non-nested) Subroutines
When CIO 000000 is ON in the following example, subroutine 1 is executed
and program execution returns to the next instruction after SBS(091). The
remainder of the main program (through the instruction just before SBN(092)
1) is then executed.

1

3

2

1

1

000100

The subroutine is not executed
in following cycles.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels.
ON if the specified subroutine number does not exist.

ON if a subroutine calls itself.
ON if a subroutine being executed is called.
ON if the specified subroutine is not defined in the current
task.
OFF in all other cases.
814

Subroutines Section 3-19
Example 2: Sequential (Non-nested) Subroutines
When CIO 000000 is ON in the following example, subroutine 1 is executed
and program execution returns to the next instruction after SBS(091) 1. When
CIO 000001 is ON, subroutine 2 is executed and program execution returns
to the next instruction after SBS(091) 2.

1

3

A S→B

A→B

CIO 000000 ON

2 →
Subroutine 1

Main program

Subroutine program:
S

Order of execution
815

Subroutines Section 3-19
Example 3: Nested Subroutines
When CIO 000000 is ON in the following example, subroutine 1 is executed.
If CIO 000001 is ON, subroutine 2 is executed from within subroutine 1 and
program execution returns to the next instruction after SBS(091) 2 when sub-
routine 2 is completed. Execution of subroutine 1 continues and program exe-
cution returns to the next instruction after SBS(091) 1 when subroutine 1 is
completed.

1

3

5

2

4

A→S1→B→S2→C

A→S1→B→C

A→B→S2→C

A→B→C

CIO 000000 ON

CIO 000001 ON

Subroutines

Program end

Main program

Order of execution
816

Subroutines Section 3-19
3-19-2 MACRO: MCRO(099)
Purpose Calls the subroutine with the specified subroutine number and executes that

program using the input parameters in S to S+3 and the output parameters in
D to D+3.

Ladder Symbol

Variations

1

5

2

4

3

CIO 000000 ON

CIO 000001 ON

1

2

2

1

A→S1-1→S2→S1-2→B

A→S1-1→S1-2→B

A→B

A→B

Subroutine 1

Subroutine 2

Order of execution

MCRO(099)

N

S

D

N: Subroutine number

S: First input parameter word

D: First output parameter word

Variations Executed Each Cycle for ON Condition MCRO(099)

Executed Once for Upward Differentiation @MCRO(099)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
817

Subroutines Section 3-19
Applicable Program Areas

Operands N: Subroutine number
Specifies the subroutine number between 0 and 1023 decimal.

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the subroutine number must
be between the range 0 to 255 decimal.

Operand Specifications

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is 0 to 255 deci-
mal.

Description MCRO(099) calls the subroutine with the specified subroutine number just like
SBS(091). Unlike SBS(091), MCRO(099) operands S and D can be used to
change bit and word addresses in the subroutine, although the structure of
the subroutine is constant.

When MCRO(099) is executed, the contents of S through S+3 are copied to
A600 through A603 (macro area inputs) and the specified subroutine is exe-
cuted. When the subroutine is completed, the contents of A604 through A607
(macro area outputs) are copied to D through D+3 and program execution
continues with the next instruction after MCRO(099).

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S D

CIO Area --- CIO 0000 to CIO 6140

Work Area --- W000 to W508

Holding Bit Area --- H000 to H508

Auxiliary Bit Area --- A000 to A444
A448 to A956

A448 to A956

Timer Area --- T0000 to T4092

Counter Area --- C0000 to C4092

DM Area --- D00000 to D32764

EM Area without bank --- E00000 to E32764

EM Area with bank --- En_00000 to En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants 0 to 1023 (deci-
mal) (See note.)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to
+2047, IR15
DR0 to DR15, IR0 to IR15, IR0+(++)
to IR015+(++)
,–(– –)IR0 to, –(– –)IR15
818

Subroutines Section 3-19
MCRO(099) can be used to consolidate two or more subroutines with the
same structure but different input and output addresses into a single subrou-
tine program. When MCRO(099) is executed, the specified input and output
data is transferred to the specified subroutine.

Flags

The following table shows relevant words in the Auxiliary Area.

Precautions The four words of input data (words or bits) in A600 to A603 and the four
words of output data (words or bits) in A604 to A607 must be used in the sub-
routine called by MCRO(099). It is not possible to pass more than four words
of data.

It is possible to nest MCRO(099) instructions, but the data in the macro area
input and output words (A600 to A607) must be saved before calling another
subroutine because all MCRO(099) instructions use the same 8 words.

Example When CIO 000000 is ON in the following example, two MCRO(099) instruc-
tions pass different input and output data to subroutine 1.

1,2,3... 1. The first MCRO(099) instruction passes the input data in CIO 0100 to
CIO 0103 and executes the subroutine. When the subroutine is complet-
ed, the output data is stored in CIO 0300 to CIO 0303.

MCRO(099)

MCRO(099)

Execution of subrou-
tine between
SBN(092) and
RET(093).

The subroutine uses A600 to
A603 as inputs and A604 to
A607 as outputs.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels.

ON if the specified subroutine number does not exist.
ON if a subroutine calls itself.
ON if a subroutine being executed is called.

ON if the specified subroutine is not defined in the current
task.
OFF in all other cases.

Name Address Operation

Macro area input
words

A600 to
A603

When MCRO(099) is executed the four words
from S to S+3 are copied to A600 to A603. These
input words are passed to the subroutine.

Macro area input
words

A604 to
A607

After the subroutine specified in MCRO(099) has
been executed, the output data in these output
words and copied to D to D+3.
819

Subroutines Section 3-19
2. The second MCRO(099) instruction passes the input data in CIO 0200 to
CIO 0203 and executes the subroutine. When the subroutine is complet-
ed, the output data is stored in CIO 0400 to CIO 0403.

The second MCRO(099) instruction operates in the same way, but the input
data in CIO 0200 to CIO 0203 is passed to A600 to A603 and the output
data in A604 to A607 is passed to CIO 0400 to CIO 0403.

D: 0300

D+1: 0301

D+2: 0302

D+3: 0303

A604

A605

A606

A607

1

1

1

Input

Output

Subroutine 1
Output data is passed when
returning from the subroutine. Macro area output words

Input data is passed when
the subroutine is called. Macro area input words

Execution of
subroutine 1

Just the addresses
are different.
820

Subroutines Section 3-19
3-19-3 SUBROUTINE ENTRY: SBN(092)
Purpose Indicates the beginning of the subroutine program with the specified subrou-

tine number. Used in combination with RET(093) to define a subroutine
region.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Subroutine number
Specifies the subroutine number between 0 and 1023 decimal.

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the subroutine number must
be between the range 0 to 255 decimal.

Operand Specifications

Description SBN(092) indicates the beginning of the subroutine with the specified subrou-
tine number. The end of the subroutine is indicated by RET(093).

The region of the program beginning at the first SBN(092) instruction is the
subroutine region. A subroutine is executed only when it has been called by
SBS(091) or MCRO(099).

SBN(092)

N N: Subroutine number

Variations Executed Each Cycle for ON Condition SBN(092)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0 to 1023 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

821

Subroutines Section 3-19
Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Place the subroutines after the main program and just before the END(001)
instruction in the program for each task. If part of the main program is placed
after the subroutine region, that program section will be ignored.

Note The input method for the subroutine number, N, is different for the CX-Pro-
grammer and a Programming Console. Input #0 to #1023 on the CX-Program-
mer and 0000 to 1023 on a Programming Console.

Be sure to place each subroutine in the same program (task) as its corre-
sponding SBS(091) or MCRO(099) instruction. A subroutine in one task can-
not be called from another task. It is possible to program a subroutine within
an interrupt task.

SBS

n

MCRO

n

SBN

n

RET

Subroutine
region

Subroutine region

OR

This part of the
program won't be
executed.
822

Subroutines Section 3-19
The step instructions, STEP(008) and SNXT(009) cannot be used in subrou-
tines.

Example When CIO 000000 is ON in the following example, subroutine 10 is executed
and program execution returns to the next instruction after the SBS(091) or
MCRO(099) instruction that called the subroutine.

OK

Task 2

Task 1 Task

Not allowed

Not allowed

OR
#10

#10

#10

Subroutine 10
823

Subroutines Section 3-19
3-19-4 SUBROUTINE RETURN: RET(093)
Purpose Indicates the end of a subroutine program. Used in combination with

SBN(092) to define a subroutine region.

Ladder Symbol

Variations

Applicable Program Areas

Description RET(093) indicates the end of a subroutine and SBN(092) indicates the
beginning of a subroutine. See 3-19-3 SUBROUTINE ENTRY: SBN(092) for
more details on the operation of subroutines.

When program execution reaches RET(093), it is automatically returned to
the next instruction after the SBS(091) or MCRO(099) instruction that called
the subroutine. When the subroutine has been called by MCRO(099), the out-
put data in A604 through A607 is written to D through D+3 before program
execution is returned.

Place the subroutine program area (SBN(092) to RET(093)) in the same task
as the SBS(091) or MCRO(099) instruction of the same number. Subroutines
in other tasks cannot be called.

Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Example See 3-19-3 SUBROUTINE ENTRY: SBN(092) for examples of the operation
of RET(093).

3-19-5 GLOBAL SUBROUTINE CALL: GSBS(750)
Purpose Calls the global subroutine with the specified subroutine number and exe-

cutes that program. The same global subroutine can be called from two or
more tasks.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

GSBS(750) is used in combination with GSBN(751) and GRET(752), the
GLOBAL SUBROUTINE ENTRY and GLOBAL SUBROUTINE RETURN
instructions.

Ladder Symbol

Variations

RET(093)

Variations Executed Each Cycle for ON Condition RET(093)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

N: Global subroutine number
GSBS(750)

N

Variations Executed Each Cycle for ON Condition GSBS(750)

Executed Once for Upward Differentiation @GSBS(750)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
824

Subroutines Section 3-19
Applicable Program Areas

Operands N: Global subroutine number
Specifies the global subroutine number between 0 and 1023 decimal.

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the subroutine number must
be between the range 0 to 255 decimal.

Operand Specifications

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is 0 to 255 deci-
mal.

Description GSBS(750) calls the global subroutine with the specified global subroutine
number. The global subroutine is the program section between GSBN(751)
and GRET(752). When the global subroutine is completed, program execution
continues with the next instruction after GSBS(750).

This instruction can be written into multiple tasks with the same global subrou-
tine number to call that program from the different tasks. The program can be
modularized by making global subroutines into standard subroutines that are
common to many tasks.

The global subroutine region (between GSBN(751) and GRET(752)) must be
defined in interrupt task 0. If it is defined in another task, an error will occur
and the Error Flag will be turned ON when the GSBS(750) instruction is exe-
cuted.

The GSBS(750) instruction can be written in both cyclic tasks (including extra
cyclic tasks) and interrupt tasks.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0 to 1023 (decimal) (See note.)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

825

Subroutines Section 3-19
Multiple global subroutine regions (GSBN(751) to GRET(752)) can be defined
in interrupt task 0.

B

A

END

A

GSBN

n

GRET

C

A

B

GSBS

n

000000

C

GSBS

n

000001

Execution
condition ON

Execution
condition ON

Main
program

Cyclic or interrupt task Cyclic or interrupt task

Interrupt task 0

Global subroutine
program
(GSBN(751) to
GRET(752))
826

Subroutines Section 3-19
An SBS(091) or GSBS(750) instruction can be written within a subroutine
region (SBN(092) to RET(093)) or global subroutine region (GSBN(751) to
GRET(752)) to “nest” subroutines. Subroutines can be nested up to 16 levels.

Global Subroutines and
Differentiation

Observe the following precautions when using differentiated instructions (UP,
DOWN, DIFU(013), DIFU(014), or up/down differentiated instructions) in sub-
routines.

The operation of differentiated instructions in a global subroutine is unpredict-
able if a subroutine is executed more than once in the same cycle. In the fol-
lowing example, global subroutine 0001 is executed when CIO 000000 is ON

B

A

D

C

B

GSBS

n

000000

D

GSBS

m

000001

END

A

GSBN

n

C

GSBN

m

GRET

END

GRET

Execution
condition ON

Execution
condition ON

Cyclic or interrupt task

Interrupt task 0

Subroutine functions
divided by task.

GSBN 10

GSBS 11

GRET

GSBN 11

GSBS 12

GRET

GSBN 12

GRET
to

Interrupt task 0

to

to

to

to
827

Subroutines Section 3-19
and CIO 000100 is turned ON by DIFU(013) when CIO 000001 has gone
from OFF to ON. If CIO 000001 is ON in the same cycle, global subroutine
0001 will be executed again but this time DIFU(013) will not detect the rising
edge of CIO 000001 and CIO 000100 will be turned OFF.

In contrast, the output of a differentiated instruction (DIFU(013) or DIFD(014))
would remain ON if the instruction was executed and the output was turned
ON but the same global subroutine was not called a second time.

In the following example, global subroutine 0001 is executed if CIO 000000 is
ON. Output CIO 000100 is turned ON by DIFU(013) when CIO 000001 has
gone from OFF to ON. If CIO 000000 is OFF in the following cycle, subrou-
tine 0001 will not be executed again and output CIO 000100 will remain ON.

GSBS

1

000000

GSBS

1

000001

GSBN

1

DIFU

000100

000001

GRET

Cyclic task 1

Cyclic task 2

Interrupt task 0

Executed
again
828

Subroutines Section 3-19
Flags

Precautions The GLOBAL SUBROUTINE ENTRY instruction, GSBN(751), and the corre-
sponding GLOBAL SUBROUTINE RETURN instruction, GRET(752) must be
programmed in interrupt task 0. If the global subroutine region is not pro-
grammed in interrupt task 0, an error will occur and the Error Flag will be
turned ON when the GSBS(750) instruction is executed.

The regular SUBROUTINE CALL instruction, SBS(091), cannot call a global
subroutine region (GSBN(751) to GRET(752)).

GSBS(750) will not be executed when it is within a program section inter-
locked by IL(002) and ILC(003), so interlocks are not allowed within global
subroutine regions.

The same global subroutine region (GSBN(751) to GRET(752)) can be called
more than once.

When GSBS(750) is executed in the following cases, the global subroutine will
not actually be called and the Error Flag will be turned ON:

1,2,3... 1. The specified global subroutine is not defined.

2. Subroutine nesting (counting both regular and global subroutines) ex-
ceeds 16 levels.

3. The global subroutine is calling itself.

4. The specified global subroutine is being executed.

5. The specified global subroutine is not defined in interrupt task 0.

GSBS

1

000000

GSBN

1

DIFU

000100

000001

GRET

Cyclic task 1

Interrupt task 0 The subroutine is
not executed in
following cycles.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels (counting both regular
and global subroutines).
ON if the specified global subroutine does not exist.

ON if a global subroutine calls itself.
ON if a global subroutine being executed is called.
ON if the specified subroutine is not defined in interrupt
task 0.
OFF in all other cases.
829

Subroutines Section 3-19
Examples Example 1
When CIO 000000 is ON in the following example, global subroutine 1 is exe-
cuted and program execution returns to the next instruction after GSBS(750).

When CIO 000001 is ON in the following example, global subroutine 1 is exe-
cuted and program execution returns to the next instruction after GSBS(750).

Example 2
Two or more global subroutine programs can be programmed in interrupt task
0. In this case, interrupt task 0 can be divided and used as the subroutine
function’s task.

Status of CIO 000000 Order of program execution

ON A → S → B

OFF A → B

Status of CIO 000000 Order of program execution

ON C → S → D

OFF C → D

GSBN

1

END

B

GSBS

n

A

000000

GRET

END

END

D

GSBS

n

C

000001CIO 000000 ON

Cyclic or interrupt task Cyclic or interrupt task

Interrupt task 0

Global
subroutine
program S

CIO 000000 ON
830

Subroutines Section 3-19
When CIO 000000 is ON, global subroutine program 1 is executed.
When CIO 000001 is ON, global subroutine program 2 is executed.

B

GSBS

1

A

GSBS

2

END

000000

GSBN

1

GSBN

2

GRET

GRET

000001

CIO 000000 ON

Cyclic or interrupt task

It is possible to debug problems
within particular tasks by using
regular subroutines in the local task
only as well as global subroutines
that are shared with other tasks.

Interrupt task 0

Global subroutine
program S1

Global subroutine
program S2

Subroutine program
S

CIO 000001
OFF

CIO 000001 ON
831

Subroutines Section 3-19
3-19-6 GLOBAL SUBROUTINE ENTRY: GSBN(751)
Purpose Indicates the beginning of the global subroutine program with the specified

subroutine number. Used in combination with GRET(752) to define a global
subroutine region.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

GSBN(751) is used in combination with GSBS(750) and GRET(752), the
GLOBAL SUBROUTINE CALL and GLOBAL SUBROUTINE RETURN
instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Global subroutine number
Specifies the global subroutine number between 0 and 1023 decimal.

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the subroutine number must
be between the range 0 to 255 decimal.

Operand Specifications

Note For CJ1M-CPU11 and CJ1M-CPU21 CPU Units, the range is 0 to 255 deci-
mal.

Description GSBN(751) indicates the beginning of the global subroutine with the specified
subroutine number. The end of the subroutine is indicated by GRET(752).

GSBN(751)

N
N: Global subroutine number

Variations Executed Each Cycle for ON Condition GSBN(751)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed --- OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0 to 1023 (decimal) (See note.)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

832

Subroutines Section 3-19
The region of the program beginning at the first GSBN(751) instruction is the
subroutine region. A subroutine is executed only when it has been called by
GSBS(750).

The global subroutine region (between GSBN(751) and GRET(752)) must be
defined in interrupt task 0. If it is defined in another task, an error will occur
and the Error Flag will be turned ON when the GSBS(750) instruction is exe-
cuted.

The GSBS(750) instruction can be written both cyclic tasks (including extra
cyclic tasks) and interrupt tasks.

Precautions • When the subroutine is not being executed, the instructions are treated as
NOP(000).

• Place the global subroutine region (GSBN(751) to GRET(752)) in inter-
rupt task 0 just before the END(001) instruction. When two or more global
subroutines are being used, group them together in interrupt task 0 after
the end of the main program. If part of the main program is placed after
the global subroutine region, that program section will be ignored.

GSBS

n

GSBN

n

GRET

END

Cyclic or interrupt task

Interrupt task 0

Global
subroutine
region

GSBN

n

GRET

END

Global
subroutine
region

This part of the
program will not
be executed.

Interrupt task 1
833

Subroutines Section 3-19
• The input method for the global subroutine number, N, is different for the
CX-Programmer and a Programming Console. Input #0 to #1023 on the
CX-Programmer and 0000 to 1023 on a Programming Console.

• Always place the global subroutines in interrupt task 0. An error will occur
if a global subroutine is called and the subroutine is not in interrupt task 0.

• The step instructions, STEP(008) and SNXT(009) cannot be used in glo-
bal subroutines.

GSBS

n

END

GSBN

n

GRET

END

GSBS

n

END

GSBN

n

GRET

END

Cyclic task 1

Not allowed OK

Cyclic task 1

Cyclic task 2 Interrupt task 0

GSBN

SNXT

STEP

GRET

Not allowed
834

Subroutines Section 3-19
Example When CIO 000000 is ON in the following example, global subroutine 10 is
executed and program execution returns to the next instruction after the
GSBS(750) instruction that called the subroutine.

3-19-7 GLOBAL SUBROUTINE RETURN: GRET(752)
Purpose Indicates the end of a subroutine program. Used in combination with

GSBN(751) to define a subroutine region.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

GRET(752) is used in combination with GSBS(750) and GSBN(751), the
GLOBAL SUBROUTINE CALL and GLOBAL SUBROUTINE ENTRY instruc-
tions.

Ladder Symbol

Variations

Applicable Program Areas

Description GRET(752) indicates the end of a global subroutine and GSBN(751) indicates
the beginning of a global subroutine. See 3-19-6 GLOBAL SUBROUTINE
ENTRY: GSBN(751) for more details on the operation of global subroutines.

When program execution reaches GRET(752) it is automatically returned to
the next instruction after the GSBS(750) instruction that called the global sub-
routine.

Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Example See 3-19-6 GLOBAL SUBROUTINE ENTRY: GSBN(751) for examples of the
operation of GRET(752).

GSBS

#10

000000

GSBN

#10

GRET

END

Global subroutine
region

Cyclic or interrupt task

Interrupt task 0

GRET(752)

Variations Executed Each Cycle for ON Condition GRET(752)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed Not allowed OK
835

Interrupt Control Instructions Section 3-20
3-20 Interrupt Control Instructions
The CS/CJ-series CPU Units support the following interrupts. For details,
refer to the SYSMAC CS/CJ/NSJ Series Programmable Controllers Program-
ming Manual (W394).

Outline of Interrupt Control Instructions

SET INTERRUPT MASK:
MSKS(690)

Both I/O interrupt tasks and scheduled interrupt tasks are masked (disabled)
when the PLC enters RUN mode. MSKS(690) can be used to unmask or
mask I/O interrupts and set the time intervals for scheduled interrupts.

Note The power OFF interrupt is set in the PLC Setup.

CLEAR INTERRUPT:
CLI(691)

CLI(691) clears or retains recorded interrupt inputs for I/O interrupts or sets
the time to the first scheduled interrupt for scheduled interrupts. It also clears
or retains recorded high-speed counter interrupts for CJ1M CPU Units.

READ INTERRUPT MASK:
MSKR(692)

MSKR(692) reads the current interrupt processing settings that were set with
MSKS(690).

DISABLE INTERRUPTS:
DI(693)

DI(693) disables execution of all interrupt tasks except the power OFF inter-
rupt.

ENABLE INTERRUPTS:
EI(694)

EI(694) enables execution of all interrupt tasks except the power OFF inter-
rupt.

Precautions in Using Interrupt Tasks
Precautions for All Interrupts

When IORF(097), FIORF(225) (CJ1-H-R only), IORD(222), or IOWR(223) is
being executed within an interrupt task to refresh I/O in a Special I/O Unit,
cyclic refreshing with that Special I/O Unit must be disabled in the PLC Setup.

If cyclic refreshing with the Special I/O Unit is enabled in the PLC Setup and
one of the following operations occurs during an interrupt task, a non-fatal
Duplicate Refresh Error will occur and the Interrupt Task Error Flag (A40213)
will be turned ON.

• I/O refreshing is performed for the same Special I/O Unit by IORF(097) or
FIORF(225) (CJ1-H-R only).

• The same Special I/O Unit’s data area is read by IORD(222) or written by
IOWR(223).

Be sure that the interrupt task does not require more than 10 ms if a C200H
Special I/O Unit or SYSMAC BUS Remote I/O Slave Rack is connected. If an

Type Execution condition Setting procedure

I/O Interrupts Interrupt input from the Interrupt
Input Unit on the CPU Rack
turns ON/OFF.

Use the MSKS instruction to assign
inputs from Interrupt Input Units on
the CPU Rack.

Scheduled
Interrupts

Scheduled (fixed intervals) Use the MSKS instruction to set the
interrupt interval. See Scheduled
Interrupt Time Units in PLC Setup.

Power OFF
Interrupt

When power turns OFF (After
the default power OFF detec-
tion time + power OFF detec-
tion delay time)

See Power OFF Interrupt Task and
Power OFF Detection Delay Time in
PLC Setup.

External
Interrupts

When requested by an Special
I/O Unit or CPU Bus Unit on the
CPU Rack or by an Inner Board
(CS Series only)

None (always valid)
836

Interrupt Control Instructions Section 3-20
interrupt task longer than 10 ms is executed during I/O refreshing with the
Special I/O Unit or Slave Rack, a non-fatal will occur and the Interrupt Task
Error Flag (A40213) will be turned ON.

Interrupts have different priority levels. A power OFF interrupt is given the
highest priority, followed by I/O interrupts, external interrupts, and finally
scheduled interrupts. Lower numbered I/O interrupts are given priority over a
higher numbered I/O interrupts.

Precautions for I/O Interrupts

Only interrupt inputs from regular CS/CJ-series Interrupt Input Units and
C200H Interrupt Input Units are supported for interrupt tasks. Interrupt inputs
from Inner Boards and Special I/O Units are not supported.

Mount the Interrupt Input Unit in the CPU Rack. If a CJ1-H CPU Unit is being
used, mount the Unit in slots 0 to 4, and if a CJ1M CPU Unit is being used,
slots 0 to 2. It will not be possible to start the I/O interrupt task unless the
Interrupt Input Unit is mounted in one of these slots.

Words are allocated to Interrupt Input Units in the order that they are mounted
from left to right.

All interrupt inputs that have been detected will be cleared when the interrupt
mask is cleared.

The CS1W-INT01 and the C200HS-INT01 cannot be used at the same time.

There is no limit on the number of I/O interrupt inputs that can be recorded,
but only one interrupt is recorded for each I/O interrupt number. Furthermore,
the recorded interrupt is not cleared until its interrupt task has been com-
pleted, so a new interrupt input will be ignored if it is received while its inter-
rupt task is being executed.

Precautions for Scheduled Interrupts

Be sure that the time interval is longer than the time required to execute the
scheduled interrupt task.

For scheduled interrupts, MSKS(690) is used only to set the scheduled inter-
rupt interval and does not set the time to the first scheduled interrupt. To accu-
rately control the time to the first interrupt and the interrupt interval, program
CLI(691) to set the time to the first schedule interrupt just before programming
MSKS(690). If MSKS(690) is used to restart a schedule interrupt for a CJ1M
CPU Unit, however, the time to the first scheduled interrupt will be accurate
even if CLI(691) is not used.

The time unit for the scheduled interrupt is set in the PLC Setup as the Sched-
uled Interrupt Interval.

Related Memory Area
Words Name Address Operation

Maximum Interrupt
Task Processing
Time

A440 The maximum processing time for an interrupt
task is stored in binary data in 0.1-ms units and is
cleared at the start of operation.

Interrupt Task with
Maximum Process-
ing Time

A441 The interrupt task number with maximum pro-
cessing time is stored in binary data. Here, 8000
to 80FF Hex correspond to task numbers 00 to
FF Hex.
A44115 will turn ON when the first interrupt
occurs after the start of operation. The maximum
processing time for subsequent interrupt tasks
will be stored in the rightmost two digits in hexa-
decimal and will be cleared at the start of opera-
tion.
837

Interrupt Control Instructions Section 3-20
Related PLC Setup
Settings Scheduled Interrupts

Note CJ1-H-R and CJ1M CPU Units only.

Power OFF Interrupt

Interrupt Task Error
Flag

A40213 ON in the following cases:
1) An interrupt task longer than 10 ms was exe-
cuted during I/O refreshing with a C200H Special
I/O Unit or Remote I/O Slave Rack. (CS Series
only)

2) Interrupt Task Error Detection is enabled in the
PLC Setup, and one of the following conditions
occurs for the same Special I/O Unit.

• There is a conflict between an IORF(097),
FIORF(225) (CJ1-H-R only), IORD(222), or
IOWR(223) instruction executed in the inter-
rupt task and an IORF(097), FIORF(225) (CJ1-
H-R only), IORD(222), or IOWR(223) instruc-
tion executed in the cyclic task.

• There is a conflict between an IORF(097),
FIORF(225) (CJ1-H-R only), IORD(222), or
IOWR(223) instruction executed in the inter-
rupt task and the CPU Unit’s I/O refreshing
(END refreshing).

Note When a Special I/O Unit’s Cyclic Refresh-
ing is enabled in the PLC Setup, and an
IORF(097), FIORF(225) (CJ1-H-R only),
IORD(222), or IOWR(223) instruction is
executed for the same Special I/O Unit,
there will be duplicate refreshing and an
Interrupt Task Error will occur.

Interrupt Task Error
Cause Flag

A42615 Indicates whether Interrupt Task Error 1 or 2
occurred.

Interrupt Task Error
Task Number

A42600 to
A42611

For error 1:
Indicates the interrupt task number.

For error 2:
Indicates the unit number of the Special I/O Unit
where the multiple I/O refreshing occurred.

Name Address Operation

Name Description Settings

Scheduled
Interrupt Inter-
val

Specifies the time unit to use to specify the sched-
uled interrupt time. Set the time unit when executing
scheduled interrupts.
The scheduled interrupt time is set using
MSKS(690).

0: 10 ms
(default)
1: 1.0 ms
2: 0.1 ms
(See note.)

Name Description Settings

Power OFF
Interrupt Task

If the Power OFF Interrupt Task setting is turned ON,
then a power OFF interrupt task will start if power
turns OFF.

0: OFF,
1: ON

Power OFF
Detection
Delay Time

Power OFF is recognized when this time plus the
default power OFF detection time (10 to 25 ms for AC
power supplies and 2 to 25 ms for DC power sup-
plies) expires.

0 to 10 ms (1-
ms units)
838

Interrupt Control Instructions Section 3-20
3-20-1 SET INTERRUPT MASK: MSKS(690)
Purpose Controls whether I/O interrupt tasks and scheduled interrupt tasks are exe-

cuted. When the program execution starts, the interrupt inputs that generate
I/O interrupt tasks are masked (disabled), and the internal timers creating the
timer interrupts that generate scheduled interrupt tasks are stopped.

Use MSKS(690) to enable the I/O interrupts and timer interrupts, so that the
corresponding interrupt tasks can be executed.

Ladder Symbol

Variations

Applicable Program Areas

MSKS(690)

N

C

N: Interrupt identifier

C: Control data

Variations Executed Each Cycle for ON Condition MSKS(690)

Executed Once for Upward Differentiation @MSKS(690)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK
839

Interrupt Control Instructions Section 3-20
Operands

■ Disabling/Enabling an I/O Interrupt Task’s Interrupt Input

Inputs to a CS1W-INT01/CJ1W-INT01 Interrupt Input Unit (16 inputs/Unit)

Inputs to a C200HS-INT01 Interrupt Input Unit (8 inputs/Unit)

Inputs to a CJ1M CPU Unit’s Built-in Inputs (4 inputs/Unit)

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

0: Unit number 0 (interrupt tasks 100 to 115)
1: Unit number 1 (interrupt tasks 116 to 131)

C Interrupt mask.
Set to 0000 to FFFF hex.
Bits 0 to 15 correspond to each interrupt task. Individual bit settings
are as follows:
0: Enable (unmask) the interrupt.
1: Disable (mask) the interrupt.

Operand Contents

N Specify the Interrupt Input Unit’s unit number.
0: Unit number 0 (interrupt tasks 100 to 107)
1: Unit number 1 (interrupt tasks 108 to 115)
2: Unit number 2 (interrupt tasks 116 to 123)
3: Unit number 3 (interrupt tasks 124 to 131)

C Interrupt mask.

Set to 0000 to 00FF hex
Bits 0 to 7 correspond to each interrupt task. Individual bit settings
are as follows:

0: Enable (unmasks) the interrupt.
1: Disable (masks) the interrupt.

Operand Contents

N Specify the interrupt input number.
10: Interrupt input 0 (interrupt task 140)
11: Interrupt input 1 (interrupt task 141)
12: Interrupt input 2 (interrupt task 142)
13: Interrupt input 3 (interrupt task 143)

C Interrupt mask.

0000 hex: Enable (unmask) the interrupt (direct mode).
0001 hex: Disable (mask) the interrupt (direct mode).
0002 hex: Start decrementing counter and enable interrupt (counter

mode).
0003 hex: Start incrementing counter and enable interrupt (counter

mode).
840

Interrupt Control Instructions Section 3-20
■ Specifying Up/Down Differentiation of an Interrupt Input
(CS1W-INT01, CJ1W-INT01, and CJ1M CPU Unit Built-in Inputs Only)

Inputs to a CS1W-INT01/CJ1W-INT01 Interrupt Input Unit (16 inputs/Unit)

Inputs to a CJ1M CPU Unit’s Built-in Inputs (4 inputs/Unit)

Note When the up/down differentiation setting is changed, all detected in-
terrupt inputs will be cleared.

■ Disabling/Enabling a Scheduled Interrupt Task’s Timer Interrupt

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

2: Unit number 0 (interrupt tasks 100 to 115)
3: Unit number 1 (interrupt tasks 116 to 131)

C Specify either the rising or falling edge of the interrupt input signal.
Set to 0000 to FFFF hex. Bits 0 to 15 correspond to each interrupt
task. Individual bit settings are as follows:

0: Up-differentiation (Detect rising edge.)
1: Down-differentiation (Detect falling edge.)

Operand Contents

N Specify the interrupt input number.

10: Interrupt input 0 (interrupt task 140)
11: Interrupt input 1 (interrupt task 141)
12: Interrupt input 2 (interrupt task 142)
13: Interrupt input 3 (interrupt task 143)

C Interrupt mask.
0000 hex: Up-differentiation (Detect rising edge.)

0001 hex: Down-differentiation (Detect falling edge.)

Operand Contents

N Specify the scheduled interrupt number.
4: Interrupt task 0 (interrupt task 2)
5: Interrupt task 1 (interrupt task 3)

Note Only scheduled interrupt 0 can be used with the CJ1M-CPU11/21.

C Scheduled interrupt
time units (Set in the
PLC Setup.)

Scheduled interrupt set time

Any time unit setting 0 decimal (0000 hex):
Disable interrupt. (Stop internal timer.)

10 ms 1 to 9,999 decimal (0001 to 270F hex):
Enable interrupt. (Start internal timer with inter-
rupt interval between 10 and 99,990 ms.)

1 ms 1 to 9,999 decimal (0001 to 270F hex):
Enable interrupt. (Start internal timer with inter-
rupt interval between 1 and 9,999 ms.)

0.1 ms CJ1M CPU Units

5 to 9,999 decimal (0005 to 270F hex):
Enable interrupt. (Start internal timer with inter-
rupt interval between 0.5 and 999.9 ms.)

Note Settings 0001 to 0004 cannot be used. An error
will occur if one of these settings is used.

CJ1-H-R CPU Units

2 to 9,999 decimal (0002 to 270F hex):
Enable interrupt. (Start internal timer with inter-
rupt interval between 0.2 and 999.9 ms.)

Note Setting 0001 cannot be used. An error will occur
if 0001 is set.
841

Interrupt Control Instructions Section 3-20
■ Resetting and Starting Scheduled Interrupts (CJ1M CPU Units Only)

Operand Specifications

Operand Contents

N Specify the scheduled interrupt number.
14: Scheduled interrupt 0 (interrupt task 2)
15: Scheduled interrupt 1 (interrupt task 3)
Note Only scheduled interrupt 0 can be used with the CJ1M-CPU11/21.

C Scheduled interrupt
time units (Set in the
PLC Setup.)

Scheduled interrupt set time

Any time unit setting 0 decimal (0000 hex):
Disable interrupt. (Stop internal timer.)

10 ms 1 to 9,999 decimal (0001 to 270F hex):
Enable interrupt. (Reset internal timer value, and
then start the timer with an interrupt interval
between 10 and 99,990 ms.)

1 ms 1 to 9,999 decimal (0001 to 270F hex):
Enable interrupt. (Reset internal timer value, and
then start timer with an interrupt interval
between 1 and 9,999 ms.)

0.1 ms 5 to 9,999 decimal (0005 to 270F hex):
Enable interrupt. (Reset internal timer value, and
then start timer with interrupt interval between
0.5 and 999.9 ms.)

Note Settings 0001 to 0004 cannot be used. An error
will occur if one of these settings is used.

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ 32767
@ E00000 to @ 32767
@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants Specified values only

Data Registers --- DR0 to DR15
842

Interrupt Control Instructions Section 3-20
Description MSKS(690) controls the execution of interrupt tasks. The value of N specifies
the interrupt task and the kind of processing that will be performed.

1. N = 0 to 3: Enabling/Disabling the Interrupt Inputs of I/O Interrupt Tasks

• Enables or disables the interrupt inputs specified by N, based on the sta-
tus of the bits in C. With this function, MSKS(690) can control whether or
not each task is executed.

• When an interrupt input is enabled, any interrupts detected up to that
point will be cleared.

2. N = 6 to 13: Specifying the Differentiation of Interrupt Inputs

• Specifies whether the interrupt inputs specified by N are up-differentiated
or down-differentiated, based on the status of the bits in C.

• Use the differentiation specification together with the enabling/disabling
function. If MSKS(690) is not executed to specify up or down differentia-
tion, the interrupt inputs are up-differentiated (the default setting).

• When MSKS(690) is executed to specify an interrupt input’s up or down
differentiation, any interrupts detected up to that point will be cleared.

3. N = 4 or 5: Specifying Timer Interrupts of Scheduled Interrupt Tasks

• Sets the time interval (specified by C) for the specified scheduled interrupt
task (specified by N) and starts the internal timer. The internal timer can
also be stopped by setting C to 0. With this function, MSKS(690) can con-
trol whether or not each scheduled task is executed.

• When MSKS(690) is used to restart the internal timer, the time from the
execution of MSKS(690) to the start of the first scheduled interrupt task is
uncertain, because the existing internal timer PV is used.

• When you want to specify the interrupt start time, use CLI(691) together
with MSKS(690).

4. N = 14 or 15: Resetting and Restarting Scheduled Interrupt Tasks

• Sets the time interval (specified by C) for the specified scheduled interrupt
task (specified by N), resets the internal timer’s PV, and starts the internal
timer. Since the internal timer’s PV is reset, this function maintains the
proper interval from the execution of MSKS(690) until the start of the first
interrupt (CJ1M CPU Units only).

Note 1. The CJ1M-CPU11/21 supports only one scheduled interrupt task, interrupt
task 2 for scheduled interrupt 0.

2. The time unit used to set the scheduled interrupt time is set as the Sched-
ule Interrupt Interval in the PLC Setup.

Precautions 1. Be sure that the time interval is longer than the time required to execute
the scheduled interrupt task.

2. For scheduled interrupts, MSKS(690) is used only to set the scheduled in-
terrupt interval and does not set the time to the first scheduled interrupt. To
accurately control the time to the first interrupt and the interrupt interval,

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047, IR0 to
–2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area N S
843

Interrupt Control Instructions Section 3-20
program CLI(691) to set the time to the first schedule interrupt just before
programming MSKS(690). If MSKS(690) is used to restart a schedule in-
terrupt for a CJ1M CPU Unit, however, the time to the first scheduled inter-
rupt will be accurate even if CLI(691) is not used.

3. The longest interrupt task processing time is stored in A440 (Maximum In-
terrupt Task Processing Time). At the same time, the task number of the
interrupt task with the longest interrupt task processing time is stored in
A441 (Interrupt Task with Maximum Processing Time).

Related PLC Setup
Settings

Scheduled Interrupts

Flags

Name Description Settings

Scheduled Inter-
rupt Interval

Specifies the time unit to use to spec-
ify the scheduled interrupt time. Set
the time unit when executing sched-
uled interrupts.

The scheduled interrupt time is set
using MSKS(690).

0:10 ms (default)

1: 1.0 ms
2: 0.1 ms
(CJ1M and CJ1-H-R CPU
Units only)

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 5 (0 to 15 for
the CJ1M CPU Unit’s built-in interrupt inputs).

Errors when specifying I/O Interrupts:
• When using C200HS-INT01 interrupt inputs, the Error Flag

will go ON if C is not between 0000 and 00FF hex.
• When using the CJ1M CPU Unit’s built-in interrupt inputs,

the Error Flag will go ON if C is not between 0 and 3.
Errors when specifying Scheduled Interrupts:
• When the time units are set to 10 ms or 1 ms, the Error Flag

will go ON if C is not between 0 and 9,999 decimal (0000 to
270F hex).

• When using a CJ1M CPU Unit with the time units set to 0.1
ms, the Error Flag will go ON if C is not between 5 and
9,999 decimal (0005 to 270F hex).

• When using a CJ1-H-R CPU Unit with the time units set to
0.1 ms, the Error Flag will go ON if C is not between 2 and
9,999 decimal (0002 to 270F hex).

OFF in all other cases.

Equals Flag = OFF

Negative
Flag

N OFF
844

Interrupt Control Instructions Section 3-20
Related Auxiliary Area
Flags and Words

Operation Examples Examples for CS1W-INT01/CJ1W-INT01

When CIO 000000 turns ON in the following example, MSKS(690) unmasks
(enables) interrupt inputs in Interrupt Input Unit 0.

When CIO 000001 turns ON in the following example, MSKS(690) sets the
rising/falling edge designations for Interrupt Input Unit 0.

Example for Scheduled Interrupts

1. When W00000 goes from OFF to ON in the following example, MSKS(690)
sets a 15-second time interval for scheduled interrupt 0, and starts the in-
ternal timer. (In this case, the scheduled time interval units are set to 1 ms.)

2. When W00001 goes from OFF to ON, the internal timer is stopped for
scheduled interrupt 0, which stops the generation of timer interrupts.

Name Address Operation

Interrupt Task
Error Flag

A40213 ON in the following cases:
1. An interrupt task longer than 10 ms was executed dur-

ing I/O refreshing with a C200H Special
I/O Unit or Remote I/O Slave Rack. (CS Series only)

2. If Interrupt Task Error Detection is enabled in the PLC
Setup, the Interrupt Task Error Flag will turn ON if the
following conditions occur for the same Special I/O
Unit.
• There is a conflict between an IORF, FIORF (CJ1-

H-R only), IORD, or IOWR instruction executed in
the interrupt task and an IORF, FIORF (CJ1-H-R
only), IORD, or IOWR instruction executed in the
cyclic task.

• There is a conflict between an IORF, FIORF (CJ1-
H-R only), IORD, or IOWR instruction executed in
the interrupt task and the CPU Unit’s I/O refreshing
(END refreshing).

Note When Special I/O Unit Cyclic Refreshing is enabled in the
PLC Setup, and an IORF, FIORF (CJ1-H-R only), IORD, or
IOWR instruction is executed for the same Special I/O Unit,
there will be duplicate refreshing and an Interrupt Task
Error will occur.

Interrupt Task
Error Task
Number

A42600
to
A42611

Indicates the unit number of the Special I/O Unit where
the simultaneous duplicate I/O refreshing occurred.

MSKS

 0

 D00100

000000

N

S

0 0 1 1

15 14 13 12

1 1 1 1

11 10 9 8

0 0 1 0

7 6 5 4

0 1 1 1

3 2 1 0

3 F 2 7

D00100

0: Enabled
1: Masked

MSKS

 2

 D00101

000001

N

S

0 0 0 0
15 14 13 12

0 1 0 1
11 10 9 8

0 0 0 0
7 6 5 4

0 0 1 1
3 2 1 0

0 5 0 2

D00101

0: Rising edge
1: Falling edge
845

Interrupt Control Instructions Section 3-20
3-20-2 READ INTERRUPT MASK: MSKR(692)
Purpose Reads the current interrupt control settings that were set with MSKS(690).

Ladder Symbol

Variations

Applicable Program Areas

1. Execution of MSKS(690)
(Interrupt enabled, 15 ms)

Cyclic task 15 ms

Scheduled interrupt task number 2

15 ms 15 ms

15 ms

@MSKS

4

& 15

W00000

4

& 0

W00001

N

C

N

C

2. Execution of MSKS(690)
(Interrupt stopped)

@MSKS

MSKR(692)

N

D

N: Interrupt number

D: Destination word

Variations Executed Each Cycle for ON Condition MSKR(692)

Executed Once for Upward Differentiation @MSKR(692)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK
846

Interrupt Control Instructions Section 3-20
Operands

■ Reading the Interrupt Mask Settings Set for I/O Interrupt Tasks

Inputs to a CS1W-INT01/CJ1W-INT01 Interrupt Input Unit (16 inputs/Unit)

Inputs to a C200HS-INT01 Interrupt Input Unit (8 inputs/Unit)

Inputs to a CJ1M CPU Unit’s Built-in Inputs (4 inputs/Unit)

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

0: Unit number 0 (interrupt tasks 100 to 115)
1: Unit number 1 (interrupt tasks 116 to 131)

D Range: 0000 to FFFF hex
Bits 0 to 15 correspond to each interrupt task. The meaning of the
individual flags is as follows:

0: Interrupt enabled (unmasked).
1: Interrupt disabled (masked).

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

0: Unit number 0 (interrupt tasks 100 to 107)
1: Unit number 1 (interrupt tasks 108 to 115)
2: Unit number 2 (interrupt tasks 116 to 123)
3: Unit number 3 (interrupt tasks 124 to 131)

D Range: 0000 to 00FF hex
Bits 0 to 7 correspond to each interrupt task. The meaning of the
individual flags is as follows:
0: Interrupt enabled (unmasked).
1: Interrupt disabled (masked).

Operand Contents

N Specify the interrupt input number.
6: Interrupt input 0 (interrupt task 140)
7: Interrupt input 1 (interrupt task 141)
8: Interrupt input 2 (interrupt task 142)
9: Interrupt input 3 (interrupt task 143)

D 0000 hex: Interrupts enabled (unmasked) in direct mode.
0001 hex: Interrupts disabled (masked) in direct mode.
0002 hex: Interrupts enabled for decrementing counter in counter

mode.
0003 hex: Interrupts enabled for incrementing counter in counter

mode.
847

Interrupt Control Instructions Section 3-20
■ Reading the Up/Down Differentiation Settings of I/O Interrupt Tasks
(CS1W-INT01, CJ1W-INT01, and CJ1M CPU Unit Built-in Inputs Only)

Inputs to a CS1W-INT01/CJ1W-INT01 Interrupt Input Unit (16 inputs/Unit)

Inputs to a CJ1M CPU Unit’s Built-in Inputs (4 inputs/Unit)

■ Reading the Set Value of a Scheduled Interrupt Task’s Internal Timer

■ Reading the Present Value of a Scheduled Interrupt Task’s Internal Timer
(CJ1M CPU Units Only)

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

2: Unit number 0 (interrupt tasks 100 to 115)
3: Unit number 1 (interrupt tasks 116 to 131)

D Range: 0000 to FFFF hex.
Bits 0 to 15 correspond to each interrupt task. The meaning of the
individual flags is as follows:

0: Up-differentiation (Detect rising edge.)
1: Down-differentiation (Detect falling edge.)

Operand Contents

N Specify the interrupt input number.

10: Interrupt input 0 (interrupt task 140)
11: Interrupt input 1 (interrupt task 141)
12: Interrupt input 2 (interrupt task 142)
13: Interrupt input 3 (interrupt task 143)

D 0000 hex: Up-differentiation (Detect rising edge.)
0001 hex: Down-differentiation (Detect falling edge.)

Operand Contents

N Specify the scheduled interrupt number.
4: Interrupt task 0 (interrupt task 2)
5: Interrupt task 1 (interrupt task 3)
Note Only scheduled interrupt 0 can be used with the CJ1M-CPU11/21.

C Scheduled interrupt
time units (Set in the
PLC Setup.)

Scheduled interrupt set time

Any time unit setting 0 decimal (0000 hex):
Interrupt disabled. (Internal timer stopped.)

10 ms 1 to 9,999 decimal (0001 to 270F hex):
Interrupt enabled. (Internal timer started with
interrupt interval between 10 and 99,990 ms.)

1 ms 1 to 9,999 decimal (0001 to 270F hex):
Interrupt enabled. (Internal timer started with
interrupt interval between 1 and 9,999 ms.)

0.1 ms 1 to 9,999 decimal (0001 to 270F hex):
Interrupt enabled. (Internal timer started with
interrupt interval between 0.1 and 999.9 ms.)

Operand Contents

N Specify the scheduled interrupt number.

14: Scheduled interrupt 0 (interrupt task 2)
15: Scheduled interrupt 1 (interrupt task 3)
Note Only scheduled interrupt 0 can be used with the CJ1M-CPU11/21.
848

Interrupt Control Instructions Section 3-20
Operand Specifications

Description MSKR(692) reads the interrupt task settings that were set with MSKS(690).
The value of N specifies the interrupt task and the kind of information that will
be read.

1. N = 0 to 3: Reading the Interrupt Mask Status of I/O Interrupt Tasks

Reads the masked/unmasked status of the interrupt inputs specified by N,
and outputs that information to the bits in D.

2. N = 6 to 13: Reading the Up/Down Differentiation of Interrupt Inputs

Reads the up/down differentiation settings of the interrupt inputs specified
by N, and outputs that information to the bits in D.

3. N = 4 or 5: Reading a Scheduled Interrupt Task’s Time Interval

C Scheduled interrupt
time units (Set in the
PLC Setup.)

Internal timer PV

10 ms 0 to 9,999 decimal (0000 to 270F hex):
Interrupt timer PV between 0 and 99,990 ms

1 ms 0 to 9,999 decimal (0000 to 270F hex):
Interrupt timer PV between 1 and 9,999 ms.

0.1 ms 0 to 9,999 decimal (0000 to 270F hex):
Interrupt timer PV between 0.0 and 999.9 ms.)

Operand Contents

Area N D

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values only ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047, IR0 to
–2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15
849

Interrupt Control Instructions Section 3-20
Reads the operating status of the internal timer of the scheduled interrupt
task specified by N, and outputs that information to D. With this function,
MSKR(692) can indicate whether the internal timer is stopped or operat-
ing, and indicate the interrupt time interval if it is operating.

4. N = 14 or 15: Reading a Scheduled Interrupt Task’s Internal Timer PV

Reads the internal timer PV of the scheduled interrupt task specified by N,
and outputs that information to D. The internal timer’s PV is the time that
has elapsed since the scheduled interrupt started (when MSKS(690) was
executed), or the time that has elapsed since the last scheduled interrupt
started (CJ1M CPU Units only).

Note 1. The CJ1M-CPU11/21 supports only one scheduled interrupt task, interrupt
task 2 for scheduled interrupt 0.

2. The time unit used to set the scheduled interrupt time is set as the Sched-
ule Interrupt Interval in the PLC Setup.

Flags

Precautions MSKR(692) can be executed in the main program or in interrupt tasks.

Operation Examples Example for CS1W-INT01/CJ1W-INT01

When CIO 000000 turns ON in the following example, MSKR(692) reads the
current mask status of Interrupt Input Unit 2 and stores it in D00100.

When CIO 000001 turns ON in the following example, MSKS(690) reads the
rising/falling edge designations for Interrupt Input Unit 0 and stores it in
D00101.

Example for Scheduled Interrupts

When W00000 goes from OFF to ON while the internal timer is operating for
scheduled interrupt 1, MSKR(692) reads the interrupt time interval setting and
outputs the setting to D00100.

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 5 (0 to 15
for the CJ1M).
OFF in all other cases.

MSKR

 0

 D00100

000000

N

D

1 1 1 1
15 14 13 12

0 1 0 1
11 10 9 8

1 1 1 1
7 6 5 4

0 0 1 0
3 2 1 0

F 5 F 2

D00100

0: Interrupt enabled
1: Interrupt masked

MSKR

 2

 D00101

000001

N

D

0 0 0 0
15 14 13 12

0 0 1 1
11 10 9 8

0 0 0 1
7 6 5 4

1 0 0 1
3 2 1 0

0 3 1 9

D00101

0: Rising edge
1: Falling edge
850

Interrupt Control Instructions Section 3-20
3-20-3 CLEAR INTERRUPT: CLI(691)
Purpose Clears/retains recorded interrupt inputs, sets the time to the first scheduled

interrupt for scheduled interrupt tasks, or clears/retains recorded high speed
counter interrupts (CJ1M CPU Units only).

Ladder Symbol

Variations

Applicable Program Areas

Execution of MSKS
(Interrupt enabled, 24 ms)

Cyclic task 24 ms 24 ms

24 ms

@MSKR

5

D00100

W00000

N

D

Scheduled interrupt task number 3

24 ms 12 ms 12 ms

Execution of MSKR
(Reads 24.)

Execution of MSKS
(Interrupt enabled, 12 ms)

Execution of MSKR
(Reads 12.)

CLI(691)

N

C

N: Interrupt number

C: Control data

Variations Executed Each Cycle for ON Condition CLI(691)

Executed Once for Upward Differentiation @CLI(691)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK
851

Interrupt Control Instructions Section 3-20
Operands

■ Clearing/Retaining an I/O Interrupt Task’s Recorded Interrupt Inputs

Inputs to a CS1W-INT01/CJ1W-INT01 Interrupt Input Unit (16 inputs/Unit)

Inputs to a C200HS-INT01 Interrupt Input Unit (8 inputs/Unit)

Inputs to a CJ1M CPU Unit’s Built-in Inputs (4 inputs/Unit)

■ Setting the TIme to the First Scheduled Interrupts

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

0: Unit number 0 (interrupt tasks 100 to 115)
1: Unit number 1 (interrupt tasks 116 to 131)

C Set to 0000 to FFFF hex.
Bits 0 to 15 correspond to each interrupt task. Individual bit settings
are as follows:

0: Retain the recorded interrupt.
1: Clear the recorded interrupt.

Operand Contents

N Specify the Interrupt Input Unit’s unit number.

0: Unit number 0 (interrupt tasks 100 to 107)
1: Unit number 1 (interrupt tasks 108 to 115)
2: Unit number 2 (interrupt tasks 116 to 123)
3: Unit number 3 (interrupt tasks 124 to 131)

C Set to 0000 to 00FF hex
Bits 0 to 7 correspond to each interrupt task. Individual bit settings
are as follows:
0: Retain the recorded interrupt.
1: Clear the recorded interrupt.

Operand Contents

N Specify the interrupt input number.
6: Interrupt input 0 (interrupt task 140)
7: Interrupt input 1 (interrupt task 141)
8: Interrupt input 2 (interrupt task 142)
9: Interrupt input 3 (interrupt task 143)

C 0000 hex: Retain the recorded interrupt.
0001 hex: Clear the recorded interrupt.

Operand Contents

N Specify the scheduled interrupt number.
4: Interrupt task 0 (interrupt task 2)
5: Interrupt task 1 (interrupt task 3)

Note Only scheduled interrupt 0 can be used with the CJ1M-
CPU11/21.

C Scheduled interrupt
time units (Set in the
PLC Setup.)

Scheduled interrupt set time

10 ms 0 to 9,999 decimal (0000 to 270F hex):
Sets time to first interrupt between 10 and
99,990 ms.

1 ms 0 to 9,999 decimal (0000 to 270F hex):
Sets time to first interrupt between 1 and
9,999 ms.)

0.1 ms 0 to 9,999 decimal (0000 to 270F hex):
Sets time to first interrupt between 0.1 and
999.9 ms.)
852

Interrupt Control Instructions Section 3-20
■ Clearing/Retaining High-speed Counter Interrupts (CJ1M Only)

Operand Specifications

Description Depending on the value of N, CLI(691) clears the specified recorded I/O inter-
rupts, sets the time before execution of the first scheduled interrupt, or clears
the specified recorded high-speed counter interrupts (CJM1 CPU Units only).
With the CJ1M, it can also be used to clear interrupts for the high-speed
counters.

N = 0 to 3, or 6 to 9: Clearing Interrupt Inputs
CLI(691) clears a recorded interrupt input specified by N, when the corre-

Operand Contents

N Specify the high-speed counter input.

10: High-speed counter input 0 (interrupt task 2)
11: High-speed counter input 1 (interrupt task 3)

C 0000 hex: Retain the recorded interrupt.
0001 hex: Clear the recorded interrupt.

Area N C

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- DR0 to DR15

Data Registers Specified values only

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047, IR0 to –
2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15
853

Interrupt Control Instructions Section 3-20
sponding bit of C is ON and retains the recorded interrupt input when the cor-
responding bit is OFF.

If an I/O interrupt task is being executed and an interrupt input with a different
interrupt number is received, that interrupt number is recorded internally. The
recorded I/O interrupts are executed later in order of their priority (from the
lowest number to the highest).

If you want to ignore interrupt inputs that are received while an interrupt task is
being executed, use CLI(691) to clear the recorded interrupts before they are
executed.

N = 4 or 5: Setting the Time to the First Scheduled Interrupt Task
When N is 4 or 5, the content of C specifies the time interval to the first sched-
uled interrupt task.

Note 1. The CJ1M-CPU11/21 supports only one scheduled interrupt task, interrupt
task 2 for scheduled interrupt 0.

2. The time unit for the scheduled interrupt tasks is set in the PLC Setup as
the Scheduled Interrupt Interval.

■ N = 10 or 11: Clearing High-speed Counter Interrupts (CJ1M Only)

When N is 10 or 11, CLI(691) clears or retains the recorded high-speed
counter interrupt (either target or range comparison) specified by N.

Flags

Interrupts have different priority levels. A power OFF interrupt is given the
highest priority, followed by I/O interrupts, external interrupts, and finally
scheduled interrupts. Lower numbered I/O interrupts are given priority over a
higher numbered I/O interrupts.

Operation Examples Example for CS1W-INT01/CJ1W-INT01

When CIO 000000 is ON in the following example, CLI(691) clears the
recorded interrupts for the specified interrupt inputs in Interrupt Input Unit 0.

Interrupt
input n

Internal
status

Recorded interrupt retainedRecorded interrupt cleared

Internal status

Interrupt input n

MSKS(690)
Execution of scheduled
interrupt task.

Time to first
scheduled interrupt

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 5 (0, 1, or
4 to 11 for CJ1M).
ON if C is not within the specified range of 0000 to 00FF
hex when N is 0 to 3 (for I/O interrupts and C200HS-INT
only).
ON if C is not 0000 or 0001 hex (for high-speed counter
interrupts and CJ1M built-in interrupt inputs only).

ON if C is not within the specified range of 0 to 9,999 dec-
imal (0000 to 270F hex) for scheduled interrupts.
OFF in all other cases.
854

Interrupt Control Instructions Section 3-20
Setting the Time to the First Scheduled Interrupt

1. When W00000 goes from OFF to ON, CLI(691) sets the time to the first
execution of scheduled interrupt 0 to 24 ms. (In this case, the scheduled
time interval units are set to 1 ms in the PLC Setup.)

2. When W00001 goes from OFF to ON, CLI(691) sets the time to the first
execution of scheduled interrupt 0 to 12 ms, and starts the internal timer.
(In this case, the scheduled time interval units are set to 1 ms in the PLC
Setup.)

3-20-4 DISABLE INTERRUPTS: DI(693)
Purpose Disables execution of all interrupt tasks except the power OFF interrupt.

When a CS1D CPU Unit for Single-CPU System or a CS1-H, CJ1-H, or CJ1M
CPU Unit is being used and the power OFF interrupt task is disabled, it is pos-
sible to disable power OFF interrupt processing simultaneously.

Ladder Symbol

Variations

CL1

 0

 D00100

000000

N

S

1 1 1 1

15 14 13 12

0 1 0 1

11 10 9 8

1 1 1 1

7 6 5 4

0 0 1 0

3 2 1 0

F 5 F 2

D00100

0: Recorded interrupt input retained
1: Recorded interrupt input cleared

Scheduled interrupt task 2

 @CLI

4

&24

W00000

@MSKS

4

&12

W00001

N

C

N

C

12 ms 12 ms

24 ms

Cyclic task

1. Execution of CLI(691)
(Sets 24 ms to first task.)

2. Execution of CLI(691)
(Enables interrupt and sets 12 ms.)

DI(693)

Variations Executed Each Cycle for ON Condition DI(693)

Executed Once for Upward Differentiation @DI(693)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
855

Interrupt Control Instructions Section 3-20
Applicable Program Areas

Description DI(693) is executed from the main program to temporarily disable all interrupt
tasks except the power OFF interrupt (I/O interrupts, scheduled interrupts,
and external interrupts).

All interrupt tasks will be disabled until they are enabled again by execution of
EI(694).

CS1-H, CJ1-H, and CJ1M CPU Units and Power OFF Interrupts

When a CS1-H, CJ1-H, and CJ1M CPU Unit is being used, power OFF inter-
rupt processing can be disabled simultaneously when A503 (the Disable Set-
ting for Power OFF Interrupts) is set to A5A5 hex. Even if a power interruption
is detected after DI(693) has been executed, the CPU Unit will be reset after
the program’s instructions have been executed in order up to EI(694) or the
END(001) instruction in the last task.

If the power OFF interrupt task is enabled, the CPU Unit will be reset after
execution of the power OFF interrupt task. For details, refer to information on
the power OFF interrupt task in the CS/CJ Series Programming Manual.

Flags

Related Flags and Words The following word is in the Auxiliary Area.

Precautions All interrupt tasks will remain disabled until EI(694) is executed.

DI(693) cannot be executed from an interrupt task.

DI(693) cannot be executed for more than one cyclic task. To disable more
than one cycle execution task, insert DI(693) in each cyclic task. Any inter-
rupts that occur while one cycle execution task is being executed will be exe-
cuted after the cycle execution task has been completed unless they are
disabled by CLI(691) as shown in the following example.

When using DI(693) to disable Power OFF Interrupt Processing in a CS1-H,
CJ1-H, and CJ1M CPU Unit, it is possible to disable the processing through
the cyclic tasks. (The disabled condition is released after the completion of all
tasks that were started.)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Name Label Operation

Error Flag ER ON if DI(693) is executed from an interrupt task.
OFF in all other cases.

Name Address Contents

Disable Setting for Power
OFF Interrupts

A530 A5A5 hex:
Enables the Disable Setting for Power
OFF Interrupts. Power OFF processing
(excluding execution of the Power OFF
interrupt task) is masked between the
DI(694) and EI(694) instructions, so
instructions up to EI(694) are exe-
cuted.
856

Interrupt Control Instructions Section 3-20
When a CS1D CPU Unit for Single-CPU System or a CS1-H, CJ1-H, or CJ1M
CPU Unit is being used, the power OFF interrupt task is disabled, and A530 is
set to A5A5 hex, the CPU Unit will be reset after execution of EI(694) in the
event that a power interruption is detected during execution of the instructions
between DI(693) and EI(694).

Examples When CIO 000000 is ON in the following example, DI(693) disables all inter-
rupt tasks other than the power OFF interrupt task.

DI

END

DI

END

DI instruction is valid.

Interrupt tasks are executed under
registered conditions.

DI instruction is valid.

Task No. 0

Task No. 1

DI

END

EI

END

The mask on power
OFF interrupt
processing is enabled.

Task No. 0

Task No. 1

000000

Disables execution of all interrupt tasks
(except the power OFF interrupt).

With CS1D CPU Units for Single-CPU
Systems or CS1-H, CJ1-H, or CJ1M
CPU Units:
Power OFF interrupt processing can be
disabled at the same time if the power
OFF interrupt task is disabled.
857

Interrupt Control Instructions Section 3-20
3-20-5 ENABLE INTERRUPTS: EI(694)
Purpose Enables execution of all interrupt tasks that were disabled with DI(693).

When a CS1D CPU Unit for Single-CPU System or a CS1-H, CJ1-H, or CJ1M
CPU Unit is being used and the power OFF interrupt task is disabled, EI(694)
simultaneously releases the disabled power OFF interrupt processing.

Ladder Symbol

Variations

Applicable Program Areas

Description EI(694) is executed from the main program to temporarily enable all interrupt
tasks that were disabled by DI(693). DI(693) disables all interrupts except the
power OFF interrupt (I/O interrupts, scheduled interrupts, and external inter-
rupts).

CS1-H, CJ1-H, and CJ1M CPU Units and Power OFF Interrupts

When a CS1-H, CJ1-H, and CJ1M CPU Unit is being used and power OFF
interrupt processing has been disabled with DI(693), EI(694) will also release
the hold on power OFF interrupt processing. After DI(593) has been executed,
the CPU Unit will not be reset even if a power interruption is detected. The
CPU Unit will be reset after all of the instruction s between DI(693) and
EI(694) have been executed. Refer to 3-20-4 DISABLE INTERRUPTS:
DI(693) for details on using DI(693) to disable power OFF interrupt process-
ing.

Flags

Related Flags and Words The following word is in the Auxiliary Area.

EI(694)

Variations Executed Each Cycle for Normally ON
Condition

EI(694)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Name Label Operation

Error Flag ER ON if EI(694) is executed from an interrupt task.
OFF in all other cases.

Name Address Contents

Disable Setting for Power
OFF Interrupts

A530 A5A5 hex:
Enables the Disable Setting for Power
OFF Interrupts. Power OFF processing
(excluding execution of the Power OFF
interrupt task) is masked between the
DI(694) and EI(694) instructions, so
instructions up to EI(694) are exe-
cuted.
Any other value:
Disables the Power OFF Processing
mask.
858

Interrupt Control Instructions Section 3-20
Precautions EI(694) does not require an execution condition. It is always executed with an
ON execution condition. EI(694) enables the interrupt tasks that were disabled
by DI(693).

It cannot unmask I/O interrupts that have not been unmasked by MSKS(690)
or set scheduled interrupts that have not been set by MSKS(690).

EI(694) cannot be executed in an interrupt task.

Examples In the following example, EI(694) enables all interrupt tasks that were disabled
by DI(693).

Note When the power OFF interrupt task is disabled for a CS1-H, CJ1-H, CJ1M
CPU Unit, or CS1D CPU Unit for Single-CPU System, power OFF processing
will also be enabled at the same time.

3-20-6 Summary of Interrupt Control
The interrupt control instructions control or read settings for I/O interrupts and
scheduled interrupts. (DI(693) and EI(694) control the operation of external
interrupts as well as I/O interrupts and scheduled interrupts.)

000000

Disables execution of all interrupt tasks
(except the power OFF interrupt).

Enables execution of all disabled
interrupt tasks.

DI

END

EI

END

All interrupt
tasks disabled.

Power OFF
processing
disabled.

Task No. 0

Task No. 1
859

Interrupt Control Instructions Section 3-20
The instructions that act on individual interrupts have an operand, N, that
identifies the source of the interrupt. Numbers 0 to 3 indicate Interrupt Input
Units 0 to 3 and numbers 4 and 5 indicate scheduled interrupts 2 and 3.

I/O Interrupt Processing (N=0 to 3)
An I/O interrupt is caused by an input signal from an Interrupt Input Unit. Up to
four Interrupt Input Units can be connected to the PLC. Unit numbers 0 to 3
are assigned to the Units based on their position in the PLC from left to right.

The following program example demonstrates the operation of MSKS(690)
and CLI(691) when they are used to control I/O interrupts.

Operation of MSKS(690) Both I/O interrupt tasks and scheduled interrupt tasks are masked (disabled)
when the PLC is first turned on. MSKS(690) can be used to unmask or mask
I/O interrupts and set the time intervals for scheduled interrupts.

In this example, MSKS(690) uses the contents of D00100 to unmask interrupt
inputs 0 to 3 and mask interrupt inputs 4 to 7 from Interrupt Input Unit 0.

When interrupt input 3 goes from OFF to ON, execution of the main program
will be interrupted and I/O interrupt task 3 (interrupt task 103) will be exe-
cuted. Execution of the main program execution is resumed at the point of
interruption after I/O interrupt task 3 has been completed.

I/O Interrupt Task
Priority Levels

When two or more interrupt inputs are received simultaneously, the interrupts
will be executed in order of their interrupt numbers from lowest to highest (100
to 131).

When more interrupt inputs are received while an interrupt task is being exe-
cuted, the recorded interrupts will be executed in order of their priority after
the current interrupt task is completed.

If a scheduled interrupt occurs, the scheduled interrupt task will take priority
over the I/O interrupt tasks.

F 0

Interrupt inputs from Unit 0

Interrupt mask settings

1=Mask (Disable) 0=Unmask (Enable)

Unit Interrupt tasks

Interrupt Input Unit 0 Inputs 0 to 7 correspond to I/O interrupt tasks 100 to 107.

Interrupt Input Unit 1 Inputs 0 to 7 correspond to I/O interrupt tasks 108 to 115.

Interrupt Input Unit 2 Inputs 0 to 7 correspond to I/O interrupt tasks 116 to 123.

Interrupt Input Unit 3 Inputs 0 to 7 correspond to I/O interrupt tasks 124 to 131.
860

Interrupt Control Instructions Section 3-20
Operation of CLI(691) If an interrupt input is received while a different I/O interrupt task is being exe-
cuted, the input’s interrupt number is recorded internally until the current task
and any higher priority tasks have been completed. CLI(691) can be used to
clear recorded interrupts before they are executed, but cannot clear interrupt
tasks that are being executed.

In this example, CLI(691) uses the contents of D00101 to clear all of the
recorded interrupt inputs from Interrupt Input Unit 0 except inputs 0, 2, and 3.

After completion of interrupt task 3, recorded interrupts are executed in order
of their priority. Since an input from interrupt input 0 was recorded, I/O inter-
rupt task 0 (interrupt task 100) will be executed when task 3 is completed.
Interrupt input 1 is not retained by CLI(691), so that input is cleared.

If interrupt inputs 0 through 3 all go ON and CLI(691) is not executed, all of the
inputs will be recorded and the interrupt tasks will be executed in order after
interrupt task 3 is completed. (The interrupt tasks are executed in order of
their priority, from the lowest interrupt number to the highest.)

Note 1. It is not always necessary to use CLI(691).

2. When CLI(691) is not executed, all of the I/O interrupt inputs received dur-
ing the execution of an interrupt task will be recorded. If a recorded input
is received again, the later input will be ignored.

3. When two or more I/O interrupt inputs are recorded, they are executed in
order of their priority. The order in which the recorded inputs were received
is irrelevant.

F 2

Interrupt inputs from Unit 0

Interrupt clear/retain settings

1=Clear recorded input 0=Retain recorded input

Interrupt input 0

Interrupt input 1

Interrupt input 2

Recorded interrupts

I/O Interrupt task
Task 3 Task 0 Task 3

CLI(691) is executed. Interrupt inputs 0 and 3
are retained and input 1 is cleared.

Already recorded, so
later input is ignored.

Interrupt input 1 is cleared by CLI(691).

Interrupt task 3

Interrupt task 0

Interrupt task 1

Interrupt task 2

Interrupt task 3
861

Interrupt Control Instructions Section 3-20
Scheduled Interrupt Processing (N=4 or 5)
A scheduled interrupt is repeated at regular intervals set with MSKS(690) and
independent of the timing of the PLC cycle. N numbers 4 and 5 correspond to
scheduled interrupt numbers 2 and 3, respectively.

Scheduled Interrupt
Processing

The main features of scheduled interrupt processing are listed below.

1,2,3... 1. The scheduled interrupts are masked (disabled) when the PLC is first
turned on.

2. Set the time to the first scheduled interrupt (after execution of MSKS(690))
with CLI(691). The time to the first scheduled interrupt is unpredictable if it
is not set with CLI(691).

3. The scheduled time interval setting and interrupt processing

• Set the scheduled time interval with MSKS(690).

• After MSKS(690) has been executed and the time to the first sched-
uled interrupt (set with CLI(691)) has passed, the task currently being
processed will be interrupted and the scheduled interrupt task will be
executed.

• When the scheduled interrupt task execution reaches an END(001) in-
struction, program execution will resume at the point where the sched-
uled interrupt occurred.

• Program execution will be interrupted and the scheduled interrupt task
will be executed again when the scheduled time interval has passed.
The scheduled interrupt task will be executed repeatedly until it is dis-
abled.

4. Disabling a Scheduled Interrupt

• A scheduled interrupt task can be disabled by setting the scheduled
time interval to 0000 with MSKS(690).

• When enabling the scheduled interrupt task again, be sure to set the
time to the first scheduled interrupt with CLI(691) before setting the
scheduled time interval again with MSKS(690).

Scheduled Interrupt
Operation

In the following example, the scheduled time interval units are set to 10 ms in
the PLC Setup.
862

Interrupt Control Instructions Section 3-20
1,2,3... 1. The time to the first scheduled interrupt is set to 20 ms with CLI(691).

2. The scheduled time interval is set to 100 ms and execution of scheduled
interrupt 2 is enabled with MSKS(690).

3. Scheduled interrupt 2 is executed 20 ms after execution of MSKS(690) and
every 100 ms thereafter.

4. After scheduled interrupt processing has begun, the time to the next
scheduled interrupt can be changed with CLI(690), but this setting is effec-
tive only one time.

5. After scheduled interrupt processing has begun, the scheduled time inter-
val can be changed by executing MSKS(690). In this case, the time interval
is changed from 100 ms to 200 ms.

6. Scheduled interrupt processing is disabled by executing MSKS(690) with
a time interval of 0000.

The following timing chart shows the operation of the example listed above.

Precautions Be sure that the scheduled time interval is longer than the time required to
execute the scheduled interrupt task. If the scheduled time interval is too
short, the interrupt task will be executed continuously and a Cycle Time Too
Long Error will occur. (A long scheduled interrupt task can seriously affect the
main program’s overall execution time.)

The scheduled interrupt is executed after the specified time interval plus the
execution time for one instruction. Normally the time required to execute one
instruction is negligible, but it can cause errors when instructions that take a

1

2

4

5

6

1-cycle
ON Flag
at startup

1, 2 4 5 6

3 3 3 33 3 3 3

20 ms 100 ms 100 ms 50 ms 100 ms100 ms 200 ms

Main program
execution

Scheduled interrupt
task execution
863

High-speed Counter/Pulse Output Instructions Section 3-21
long time are being used; it can also cause errors in timers (TIM and TIMH)
and data tracing. Be particularly careful when the scheduled time interval
units are set to 0.5 ms or 1 ms in the PLC Setup.

Interrupts are accepted even while one instruction is being executed. There-
fore, if an interrupt is accepted while an instruction requiring a long processing
time is being executed, correct processing results may not be obtained
because both the interrupt task and the instruction may access the same
data. In such a case, use DI(693) and EI(694) to disable and enable the inter-
rupt.

3-21 High-speed Counter/Pulse Output Instructions
This section describes instructions used to control the high-speed counters
and pulse outputs.

3-21-1 MODE CONTROL: INI(880) (CJ1M-CPU21/22/23 Only)
Purpose INI(880) can be used to execute the following operations for built-in I/O of

CJ1M CPU Units:

• To start comparison with the high-speed counter comparison table

• To stop comparison with the high-speed counter comparison table

• To change the PV of the high-speed counter.

• To change the PV of interrupt inputs in counter mode.

Interrupts
disabled

Interrupt
during
execution

Interrupt task

Instruction Mnemonic Function
code

Page

MODE CONTROL INI 880 864

HIGH-SPEED COUNTER PV READ PRV 881 868

COUNTER FREQUENCY CONVERT PRV2 881 874

REGISTER COMPARISON TABLE CTBL 882 878

SPEED OUTPUT SPED 885 882

SET PULSES PULS 886 887

PULSE OUTPUT PLS2 887 890

ACCELERATION CONTROL ACC 888 896

ORIGIN SEARCH ORG 889 903

PULSE WITH VARIABLE DUTY FACTOR PWM 891 906
864

High-speed Counter/Pulse Output Instructions Section 3-21
• To change the PV of the pulse output (origin fixed at 0).

• To stop pulse output.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
P specifies the port to which the operation applies.

C: Control Data
The function of INI(880) is determined by the control data, C.

NV: First Word with New PV

NV and NV+1 contain the new PV when changing the PV.

If C is 0002 hex (i.e., when changing a PV), NV and NV+1 contain the new PV.
Any values in NV and NV+1 are ignored when C is not 0002 hex.

INI(880)

P

C

NV

P: Port specifier
C: Control data
NV: First word with new PV

Variations Executed Each Cycle for ON Condition INI(880)

Executed Once for Upward Differentiation @INI(880)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0010 hex High-speed counter 0

0011 hex High-speed counter 1

0100 hex Interrupt input 0 in counter mode

0101 hex Interrupt input 1 in counter mode

0102 hex Interrupt input 2 in counter mode

0103 hex Interrupt input 3 in counter mode

1000 hex PWM(891) output 0

1001 hex PWM(891) output 1

C INI(880) function

0000 hex Starts comparison.

0001 hex Stops comparison.

0002 hex Changes the PV.

0003 hex Stops pulse output.
865

High-speed Counter/Pulse Output Instructions Section 3-21
Operand Specifications

Description INI(880) performs the operation specified in C for the port specified in P. The
possible combinations of operations and ports are shown in the following
table.

S

S+1

015

For Pulse Output or High-speed Counter Input:
 0000 0000 to FFFF FFFF hex

For Interrupt Input in Counter Mode:
 0000 0000 to 0000 FFFF hex

Lower word of new PV

Upper word of new PV

Area P C NV

CIO Area --- --- CIO 0000 to CIO 6142

Work Area --- --- W000 to W510

Holding Bit Area --- --- H000 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D00000 to D32766

EM Area without bank --- --- ---

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @ D32767

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to

–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

P: Port specifier C: Control data

0000 hex:
Start

comparison

0001 hex:
Stop

comparison

0002 hex:
Change PV

0003 hex:
Stop pulse

output

0000 or 0001 hex:
Pulse output

Not allowed. Not allowed. OK OK

0010 or 0011 hex:
High-speed counter
input

OK OK OK Not allowed.

0100, 0101, 0102, or
0103 hex: Interrupt
input in counter mode

Not allowed. Not allowed. OK Not allowed.

1000 or 1001 hex:
PWM (891) output

Not allowed. Not allowed. Not allowed. OK
866

High-speed Counter/Pulse Output Instructions Section 3-21
■ Starting Comparison (C = 0000 hex)

If C is 0000 hex, INI(880) starts comparison of a high-speed counter’s PV to
the comparison table registered with CTBL(882).

Note A target value comparison table must be registered in advance with
CTBL(882). If INI(880) is executed without registering a table, the Error Flag
will turn ON.

■ Stopping Comparison (C = 0001 hex)

If C is 0001 hex, INI(880) stops comparison of a high-speed counter’s PV to
the comparison table registered with CTBL(882).

■ Changing a PV (C = 0002 hex)

If C is 0002 hex, INI(880) changes a PV as shown in the following table.

■ Stopping Pulse Output (P = 1000 or 1001 hex and C = 0003 hex)

If C is 0003 hex, INI(880) immediately stops pulse output for the specified
port. If this instruction is executed when pulse output is already stopped, then
the pulse amount setting will be cleared.

Port and mode Operation Setting range

Pulse output (P = 0000 or 0001
hex)

The present value of the
pulse output is changed.
The new value is speci-
fied in NV and NV+1.

Note: This instruction
can be executed only
when pulse output is
stopped. An error will
occur if it is executed
during pulse output.

8000 0000 to 7FFF
FFFF hex
(-2,147,483,648 to
2,147,483,647)

High-
speed
counter
input (P =
0010 or
0011
hex)

Linear
Mode

Differential
inputs,
increment/
decrement
pulses, or
pulse +
direction
inputs

The present value of the
high-speed counter is
changed. The new value
is specified in NV and
NV+1.

Note: An error will occur
for the instruction if the
specified port is not set
for a high-speed
counter.

8000 0000 to 7FFF
FFFF hex
(-2,147,483,648 to
2,147,483,647)

Increment
pulse input

0000 0000 to FFFF
FFFF hex
(0 to 4,294,967,295)

Ring Mode 0000 0000 to FFFF
FFFF hex
(0 to 4,294,967,295)

Interrupt inputs in counter
mode (P = 0100, 0101, 0102,
or 0103 hex)

The present value of the
interrupt input is
changed. The new value
is specified in NV and
NV+1.

0000 0000 to 0000
FFFF hex
(0 to 65,535)
Note: An error will occur
if a value outside this
range is specified.
867

High-speed Counter/Pulse Output Instructions Section 3-21
Flags

Example When CIO 000000 turns ON in the following example, SPED(885) starts out-
putting pulses from pulse output 0 in Continuous Mode at 500 Hz. When CIO
000001 turns ON, pulse output is stopped by INI(880).

3-21-2 HIGH-SPEED COUNTER PV READ: PRV(881) (CJ1M-CPU21/22/23
Only)

Purpose PRV(881) reads the following data on the built-in I/O of CJ1M CPU Units.

• PVs: High-speed counter PV, pulse output PV, interrupt input PV in
counter mode.

• The following status information.

Name Label Operation

Error Flag ER ON if the specified range for P, C, or NV is exceeded.
ON if the combination of P and C is not allowed.

ON if a comparison table has not been registered but
starting comparison is specified.
ON if a new PV is specified for a port that is currently out-
putting pulses.
ON if changing the PV of a high-speed counter is speci-
fied for a port that is not specified for a high-speed
counter.
ON if a value that is out of range is specified as the PV for
an interrupt input in counter mode.

ON if INI(880) is executed in an interrupt task for a high-
speed counter and an interrupt occurs when CTBL(882)
is executed.

ON if executed for a port not set for an interrupt input in
counter mode.

@SPED

#0000

#0000

D00100

01F4

0000

000000

@INI

#0000

#0003

0000

000001

D00100

D00101Pulse output 0

CW/CCW method, CW, Continuous Mode

Target frequency: 500 Hz

Pulse output 0

Stop pulse output

(Not used.)

Status type Contents

Pulse output status Pulse Output Status Flag

PV Underflow/Overflow Flag
Pulse Output Amount Set Flag
Pulse Output Completed Flag

Pulse Output Flag
No-origin Flag
At Origin Flag

Pulse Output Stopped Error Flag

High-speed counter input status Comparison In-progress Flag

PV Underflow/Overflow Flag

PWM(891) output status Pulse Output In-progress Flag
868

High-speed Counter/Pulse Output Instructions Section 3-21
• Range comparison results

• Pulse output frequency of pulse output 0 or pulse output 1
(Supported only by CJ1M CPU Units Ver. 2.0 or later.)

• High-speed counter frequency for high-speed counter input 0.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
P specifies the port to which the operation applies.

C: Control Data
The function of INI(880) is determined by the control data, C.

PRV(881)

P

C

D

P: Port specifier

C: Control data

D: First destination word

Variations Executed Each Cycle for ON Condition PRV(881)

Executed Once for Upward Differentiation @PRV(881)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0010 hex High-speed counter 0

0011 hex High-speed counter 1

0100 hex Interrupt input 0 in counter mode

0101 hex Interrupt input 1 in counter mode

0102 hex Interrupt input 2 in counter mode

0103 hex Interrupt input 3 in counter mode

1000 hex PWM(891) output 0

1001 hex PWM(891) output 1

C PRV(881) function Variations

0000 hex Reads the PV. ---

0001 hex Reads status. ---
869

High-speed Counter/Pulse Output Instructions Section 3-21
D: First Destination Word

The PV is output to D or to D and D+1.

Operand Specifications

0002 hex Reads range comparison results. ---

00@3 hex P = 0000 or 0001:
Reads the output frequency of
pulse output 0 or pulse output 1.

P = 0010:
Reads the frequency of high-
speed counter input 0.

C = 0003 hex:
Standard operation
C = 0013 hex:
10-ms sampling method for high fre-
quency (supported only by CJ1M
CPU Units Ver. 3.0 or later)

C = 0023 hex:
100-ms sampling method for high
frequency (supported only by CJ1M
CPU Units Ver. 3.0 or later)
C = 0033 hex:
1-s sampling method for high fre-
quency (supported only by CJ1M
CPU Units Ver. 3.0 or later)

C PRV(881) function Variations

D

D+1

015

D PV

015

Lower word of PV

Upper word of PV

2-word PV
Pulse output PV, high-speed counter input PV,
high-speed counter input frequency for high-speed counter input 0

1-word PV
Interrupt input PV in counter mode, status, range comparison results

Area P C D

CIO Area --- --- CIO 0000 to CIO 6142

Work Area --- --- W000 to W510

Holding Bit Area --- --- H000 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D00000 to D32766

EM Area without bank --- --- ---

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @ D32766

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32766

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

Data Registers --- --- ---
870

High-speed Counter/Pulse Output Instructions Section 3-21
Description PRV(881) reads the data specified in C for the port specified in P. The possi-
ble combinations of data and ports are shown in the following table.

Note CJ1M CPU Units with unit version 3.0 or later only.

■ Reading a PV (C = 0000 hex)

If C is 0000 hex, PRV(881) reads a PV as shown in the following table.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area P C D

P: Port specifier C: Control data

0000 hex:
Read PV

0001 hex:
Read status

0002 hex:
Read range
comparison

results

00@3 hex: Read frequency

0003 hex:
Pulse

output read
high-speed

counter
frequency

0013 hex:
10-ms

sampling
method

0013 hex:
100-ms

sampling
method

0013 hex:
1-s

sampling
method

0000 or 0001 hex:
Pulse output

OK OK Not allowed. OK (See
note.)

Not allowed. Not allowed. Not allowed.

0010 or 0011 hex:
High-speed
counter input

OK OK OK OK (high-
speed
counter 0
only)

OK (See
note.)
(high-speed
counter 0
only)

OK (See
note.)
(high-speed
counter 0
only)

OK (See
note.)
(high-speed
counter 0
only)

0100, 0101, 0102,
or 0103 hex:
Interrupt input in
counter mode

OK Not allowed. Not allowed. Not allowed. Not allowed. Not allowed. Not allowed.

1000 or 1001 hex:
PWM (891) output

Not allowed. OK Not allowed. Not allowed. Not allowed. Not allowed. Not allowed.

Port and mode Operation Setting range

Pulse output (P =
0000 or 0001 hex)

The present value of the
pulse output is stored in
D and D+1.

8000 0000 to 7FFF FFFF hex
(−2,147,483,648 to
2,147,483,647)

High-speed
counter
input (P =
0010 or
0011 hex)

Linear
Mode

The present value of the
high-speed counter is
stored in D and D+1.

8000 0000 to 7FFF FFFF hex
(−2,147,483,648 to
2,147,483,647)

Ring
Mode

0000 0000 to FFFF FFFF hex
(0 to 4,294,967,295)

Interrupt inputs in
counter mode
(P = 0100, 0101,
0102, or 0103 hex)

The present value of the
interrupt input is stored
in D.

0000 to FFFF hex
(0 to 65,535)
871

High-speed Counter/Pulse Output Instructions Section 3-21
■ Reading Status (C = 0001 hex)

If C is 0001 hex, PRV(881) reads status as shown in the following table.

■ Reading the Results of Range Comparison (C = 0002 hex)

If C is 0002 hex, PRV(881) reads the results of range comparison and stores it
in D as shown in the following diagram.

■ Reading Pulse Output or High-speed Counter Frequency (C = 00@3 hex)

If C is 00@3 hex, PRV(881) reads the frequency being output from pulse out-
put 0 or 1 or the frequency being input to high-speed counter 0 and stores it in
D and D+1.

Port and
mode

Operation Results of reading

Pulse out-
put

The pulse
output sta-
tus is
stored in
D.

High-
speed
counter
input

The high-
speed
counter
status is
stored in
D.

PWM(891)
output

The
PWM(891)
output is
stored in
D.

015

D 0 0 0 0 0 0 0 0

Pulse Output Stopped Error Flag
 OFF: No error
 ON: Pulse output stopped due to error

Pulse Output Status Flag
 OFF: Constant speed
 ON: Accelerating/decelerating
PV Overflow/Underflow Flag
 OFF: Normal
 ON: Error

Pulse Output Amount Set Flag
 OFF: Not set
 ON: Set
Pulse Output Completed Flag
 OFF: Output not completed
 ON: Output completed

Pulse Output In-progress Flag
 OFF: Stopped
 ON: Outputting
No-origin Flag
 OFF: Origin established
 ON: Origin not established

At-origin Flag
 OFF: Not stopped at origin
 ON: Stopped at origin

015

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Comparison In-progress Flag
 OFF: Stopped
 ON: Comparing

PV Overflow/Underflow Flag
 OFF: Normal
 ON: Error

015

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pulse Output In-progress Flag
 OFF: Stopped
 ON: Outputting

015

D 0 0 0 0 0 0 0 0

Comparison Result 1
 OFF: Not in range ON: In range

Comparison Result 2
 OFF: Not in range ON: In range

Comparison Result 3
 OFF: Not in range ON: In range

Comparison Result 4
 OFF: Not in range ON: In range

Comparison Result 5
 OFF: Not in range ON: In range

Comparison Result 6
 OFF: Not in range ON: In range

Comparison Result 7
 OFF: Not in range ON: In range

Comparison Result 8
 OFF: Not in range ON: In range
872

High-speed Counter/Pulse Output Instructions Section 3-21
Frequency Ranges

Pulse Frequency Calculation Methods

When the CPU Unit is a CJ1M CPU Unit with version number 3.0 or later,
there are two ways to calculate the frequency of pulses output from pulse out-
put 0 or 1 or pulses input to high-speed counter 0.

1. Standard Calculation Method (Earlier Method)

The count is calculated by counting each pulse regardless of the frequen-
cy. At high frequencies, the rising or falling edges of some pulses will be
corrupted, resulting in errors (roughly 1% error max. at 100 kHz).

2. High-frequency Calculation Method

In this case, the counting method is switched at high and low frequencies.

• High-frequency counting

At high frequencies (above 1 kHz), the function counts the number of
pulses within a fixed interval (the sampling time) and calculates the fre-
quency from that count. One of the following three sampling times can
be selected by setting the rightmost two digits of C.

• Low-frequency counting

At frequencies below 1 kHz, the Standard Calculation Method is used,
regardless of the sampling time setting.

Value of P Conversion result

0000 or 0001 hex

(Reading the frequency
of pulse output 0 or 1)

0000 0000 to 0001 86A0 hex (0 to 100,000)

0010 hex
(Reading the frequency
of high-speed counter 0)

Counter input method: Any input method other than 4×
differential phase mode
Result = 00000000 to 000186A0 hex (0 to 100,000)

Note If a frequency higher than 100 kHz has been input,
the output will remain at the maximum value of
000186A0 hex.

Counter input method: 4× differential phase mode
Result = 00000000 to 00030D40 hex (0 to 200,000)
Note If a frequency higher than 200 kHz has been input,

the output will remain at the maximum value of
00030D40 hex.

Sampling time Value of C Description

10 ms 0013 hex Counts the number of pulses every 10 ms.
The error is 10% max. at 1 kHz.

100 ms 0023 hex Counts the number of pulses every 100 ms.
The error is 1% max. at 1 kHz.

1 s 0033 hex Counts the number of pulses every 1 s. The
error is 0.1% max. at 1 kHz.
873

High-speed Counter/Pulse Output Instructions Section 3-21
Flags

Precautions If the counter is reset when P is 0010 hex (high-speed counter 0) and C is
0013, 0023, or 0033 hex (sampling method for high frequency), the data read
during the sampling time when the counter was reset will not be dependable.

Examples

■ Example 1

When CIO 000000 turns ON in the following programming example,
CTBL(882) registers a range comparison table for high-speed counter 0 and
starts comparison. When CIO 000001 turns ON, PRV(881) reads the range
comparison results at that time and stores them in CIO 0100.

■ Example 2

When CIO 000100 turns ON in the following programming example, PRV(881)
reads the frequency of the pulse being input to high-speed counter 0 at that
time and stores it as a hexadecimal value in D00200 and D00201.

3-21-3 COUNTER FREQUENCY CONVERT: PRV2(883)
Purpose PRV2(883) reads the pulse frequency input from a high-speed counter and

either converts the frequency to a rotational speed or converts the counter PV
to the total number of revolutions. The result is output to the destination words
as 8-digit hexadecimal. Pulses can be input from high-speed counter 0 only.

This instruction is supported only by the CJ1M-CPU21/22/23 CPU Unit Ver.
2.0 or later.

Name Label Operation

Error Flag ER ON if the specified range for P or C is exceeded.
ON if the combination of P and C is not allowed.

ON if reading range comparison results is specified even
though range comparison is not being executed.
ON if reading the output frequency is specified for any-
thing except for high-speed counter 0.
ON if specified for a port not set for a high-speed counter.
ON if executed for a port not set for an interrupt input in
counter mode.

@CTBL

#0000

#0001

D00100

000000

@PRV

#0010

#0002

0100

000001

Range comparison table
registration and comparison start

High-speed counter input 0

Read range comparison results

High-speed counter input 0

PRV

#0010

#0003

D00200

000100

High-speed counter input 0
Read input frequency
874

High-speed Counter/Pulse Output Instructions Section 3-21
Ladder Symbol

Variations

Applicable Program Areas

Operands C1: Control Data
The function of PRV2(883) is determined by the control data, C1.

Note The second digit of C (@) specifies the units and the third digit (*) specifies
the frequency calculation method.

C2: Pulses per Revolution
Specifies the number of pulses per revolution (0001 to FFFF hex).

D: First Destination Word

The PV is output to D or to D and D+1.

Operand Specifications

PRV2

C1

C2

D

C1: Control data

C2: Pulses per revolution

D: First destination word

Variations Executed Each Cycle for ON Condition PRV2(883)

Executed Once for Upward Differentiation @PRV2(883)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C1 PRV2(883) function

0@*0 hex

(See note.)

Converts frequency to rotation speed.

0001 hex Converts counter PV to total number of revolutions.

C1 0

Conversion Type
0 hex: Frequency to speed
1 hex: Counter PV to total revolutions

(When Conversion Type is "Frequency to speed")
Pulse Frequency Calculation Method
0 hex: Standard calculation method
1 hex: High-frequency calculation method, 10-ms sampling (See note.)
2 hex: High-frequency calculation method, 100-ms sampling (See note.)
3 hex: High-frequency calculation method, 1,000-ms sampling (See note.)

(When Conversion Type is "Frequency to speed")
Speed Unit
0 hex: r/min
1 hex: r/s (See note.)
2 hex: r/h (See note.)

D

D+1

015

Conversion result (Rightmost 4 digits)

Conversion result (Leftmost 4 digits)

Area C1 C2 D

CIO Area --- CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6142

Work Area --- W000 to W511 W000 to W510
875

High-speed Counter/Pulse Output Instructions Section 3-21
Description PRV2(883) converts the pulse frequency input from high-speed counter 0,
according to the conversion method specified in C1 and the pulses/revolution
coefficient specified in C2, and outputs the result to D and D+1.

Select one of the following conversion methods by setting C1 to 0000 hex or
0001 hex.

Converting Frequency to Rotation Speed (C1 = 0@*0 hex)

If C1 is 0@*0 hex, PRV2(883) calculates the rotation speed (r/min) from the
frequency data and pulses/revolution setting. The second digit of C (@) speci-
fies the units and the third digit (*) specifies the frequency calculation method.

1. Rotation Speed Units

• Rotation Speed Units = r/min

When the second digit of C (@) is 0, PRV2(883) calculates the rotation
speed in r/min from the frequency data and pulses/revolution setting.

Rotation speed (r/min) = (Frequency ÷ Pulses/revolution) × 60

• Rotation Speed Units = r/s (CJM1 CPU Unit Ver. 3.0 or later only)

When the second digit of C (@) is 1, PRV2(883) calculates the rotation
speed in r/s from the frequency data and pulses/revolution setting.

Rotation speed (r/s) = Frequency ÷ Pulses/revolution

• Rotation Speed Units = r/h (CJM1 CPU Unit Ver. 3.0 or later only)

When the second digit of C (@) is 2, PRV2(883) calculates the rotation
speed in r/h from the frequency data and pulses/revolution setting.

Rotation speed (r/h) = (Frequency ÷ Pulses/revolution) × 60 × 60

• Range of Conversion Results

• Counter input method: Any method besides 4× differential phase mode
Conversion result = 00000000 to 000186A0 hex (0 to 100,000)

Holding Bit Area --- H000 to H511 H000 to H510

Auxiliary Bit Area --- A448 to A959 A448 to A958

Timer Area --- T0000 to T4095 T0000 to T4094

Counter Area --- C0000 to C4095 C0000 to C4094

DM Area --- D00000 to D32767 D00000 to D32766

EM Area without bank --- --- ---

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- @ D00000 to @
D32767

@ D00000 to @
D32767

Indirect DM/EM
addresses in BCD

--- *D00000 to
*D32767

*D00000 to
*D32767

Constants See descrip-
tion of oper-
and.

--- ---

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C1 C2 D
876

High-speed Counter/Pulse Output Instructions Section 3-21
(If a frequency higher than 100 kHz has been input, the output will re-
main at the maximum value of 000186A0 hex.)

• Counter input method: 4× differential phase mode
Conversion result = 00000000 to 00030D40 hex (0 to 200,000)
(If a frequency higher than 200 kHz has been input, the output will re-
main at the maximum value of 00030D40 hex.)

2. Frequency Calculation Method

When the CPU Unit is a CJ1M CPU Unit with version number 3.0 or later,
there are two ways to calculate the frequency of pulses input to high-speed
counter 0.

a) Standard Calculation Method (C1 = 0@00)

The count is calculated by counting each pulse regardless of the fre-
quency. At high frequencies, the rising or falling edges of some pulses
will be corrupted, resulting in errors (about 1% error max. at 100 kHz).

b) High-frequency Calculation Method

In this case, the counting method is switched at high and low frequen-
cies. (Supported by CJM1 CPU Unit Ver. 3.0 or later only)

• High-frequency counting (C1 = 0@10, 0@20, or 0@30)

At high frequencies (above 1 kHz), the function counts the number of
pulses within a fixed interval (the sampling time) and calculates the fre-
quency from that count. One of the following three sampling times can
be selected by the third digit of C1.

• Low-frequency counting

At frequencies below 1 kHz, the Standard Calculation Method is used,
regardless of the sampling time setting.

Converting Counter PV to Total Number of Revolutions (C1 = 0001 hex)

If C1 is 0001 hex, PRV2(883) calculates the cumulative number of revolutions
from the counter PV and pulses/revolution setting.

Conversion result = Counter PV ÷ Pulses/revolution

Flags

Precautions If the counter is reset when C1 specifies frequency-rotational speed conver-
sion for a high frequency, the data read during the sampling time when the
counter was reset will not be dependable.

Sampling time Value of C1 Description

10 ms 0@10 hex Counts the number of pulses every 10 ms.
The error is 10% max. at 1 kHz.

100 ms 0@20 hex Counts the number of pulses every 100 ms.
The error is 1% max. at 1 kHz.

1 s 0@30 hex Counts the number of pulses every 1 s. The
error is 0.1% max. at 1 kHz.

Name Label Operation

Error Flag ER ON if high-speed counter 0 is disabled in the settings.
ON if C1 is not in the specified range (0000 or 0001).

ON if the pulses/revolution setting in C2 is 0000.
877

High-speed Counter/Pulse Output Instructions Section 3-21
Examples

■ Example 1

When CIO 000100 is ON in the following programming example, PRV2(883)
reads the present pulse frequency at high-speed counter 0, converts that
value to rotation speed (r/min), and outputs the hexadecimal result to D00201
and D00200.

■ Example 2

When CIO 000100 is ON in the following programming example, PRV2(883)
reads the counter PV, converts that value to number of revolutions, and out-
puts the hexadecimal result to D00301 and D00300.

3-21-4 REGISTER COMPARISON TABLE: CTBL(882) (CJ1M-CPU21/22/23
Only)

Purpose CTBL(882) is used to register a comparison table and perform comparisons
for a high-speed counter PV. Either target value or range comparisons are
possible. An interrupt task is executed when a specified condition is met.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

PRV2

#0000

#0003

D00200

000100

Converting frequency to rotation speed

Pulses per revolution

PRV2

#0001

#0003

D00300

000100

Converting counter PV to total number of revolutions

Pulses per revolution

CTBL(882)

P

C

TB

P: Port specifier
C: Control data
TB: First comparison table word

Variations Executed Each Cycle for ON Condition CTBL(882)

Executed Once for Upward Differentiation @CTBL(882)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
878

High-speed Counter/Pulse Output Instructions Section 3-21
Operands P: Port Specifier
P specifies the port for which pulses are to be counted as shown in the follow-
ing table.

C: Control Data
The function of CTBL(882) is determined by the control data, C, as shown in
the following table.

TB: First Table Comparison Word
TB is the first word of the comparison table. The structure of the comparison
table depends on the type of comparison being performed.

For target value comparison, the length of the comparison table is determined
by the number of target values specified in TB. The table can be between 4
and 145 words long, as shown below.

For range comparison, the comparison table always contains eight ranges.
The table is 40 words long, as shown below. If it is not necessary to set eight
ranges, set the interrupt task number to FFFF hex for all unused ranges.

P Port

0000 hex High-speed counter 0

0001 hex High-speed counter 1

C CTBL(882) function

0000 hex Registers a target value comparison table and starts comparison.

0001 hex Registers a range comparison table and performs one comparison.

0002 hex Registers a target value comparison table. Comparison is started with
INI(880).

0003 hex Registers a range comparison table. Comparison is started with INI(880).

TB+1

TB+2

TB+3

TB

015

03478

0 0 0 0 0 0 0

11121415

TB+142

TB+143

TB+144

Lower word of target value 1

Upper word of target value 1

Interrupt task number for target value 1

00000000 to FFFFFFFF hex

00000000 to FFFFFFFF hex

Number of target values 0001 to 0030 hex (1 to 48 target values)

Interrupt Task Number

Interrupt task number
 00 to FF hex (0 to 255)Direction

 OFF: Incrementing,
 ON: Decrementing

Lower word of target value 48

Upper word of target value 48

Interrupt task number for target value 48
879

High-speed Counter/Pulse Output Instructions Section 3-21
Note Always set the upper limit greater than or equal to the lower limit for any one
range.

Operand Specifications

Description CTBL(882) registers a comparison table or registers and comparison table
and starts comparison for the port specified in P and the method specified in
C. Once a comparison table is registered, it is valid until a different table is
registered or until the CPU Unit is switched to PROGRAM mode.

Each time CTBL(882) is executed, comparison is started under the specified
conditions. When using CTBL(882) to start comparison, it is normally suffi-

TB

TB+1

TB+2

TB+3

015

TB+35

TB+36

TB+37

TB+38

TB+39

Lower word of range 1 lower limit

Upper word of range 1 lower limit

Lower word of range 1 upper limit

Upper word of range 1 upper limit

Range 1 interrupt task number

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

Interrupt task number
 0000 to 00FF hex: Interrupt task number 0 to 255
 AAAA hex: Do not execute interrupt task.
 FFFF hex: Ignore the settings for this range.

Lower word of range 8 lower limit

Upper word of range 8 lower limit

Lower word of range 8 upper limit

Upper word of range 8 upper limit

Range 8 interrupt task number

Area P C TB

CIO Area --- --- CIO 0000 to CIO 6143

Work Area --- --- W000 to W511

Holding Bit Area --- --- H000 to H511

Auxiliary Bit Area --- --- A448 to A959

Timer Area --- --- T0000 to T4095

Counter Area --- --- C0000 to C4095

DM Area --- --- D00000 to D32767

EM Area without bank --- --- ---

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @ D32767

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to

–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
880

High-speed Counter/Pulse Output Instructions Section 3-21
cient to use the differentiated version (@CTBL(882)) of the instruction or an
execution condition that is turned ON only for one scan.

Note If an interrupt task that has not been registered is specified, a fatal program
error will occur the first time an interrupt is generated.

■ Registering a Comparison Table (C = 0002 or 0003 hex)

If C is set to 0002 or 0003 hex, a comparison table will be registered, but com-
parison will not be started. Comparison is started with INI(880).

■ Registering a Comparison Table and Starting Comparison (C = 0000 or
0001 hex)

If C is set to 0000 or 0001 hex, a comparison table will be registered, and
comparison will be started.

■ Stopping Comparison

Comparison is stopped with INI(880). It makes no difference what instruction
was used to start comparison.

■ Target Value Comparison

The corresponding interrupt task is called and executed when the PV
matches a target value.

• The same interrupt task number can be specified for more than one target
value.

• The direction can be set to specify whether the target value is valid when
the PV is being incremented or decremented. If bit 15 in the word used to
specify the interrupt task number for the range is OFF, the PV will be com-
pared to the target value only when the PV is being incremented, and if bit
00 is ON, only when the PV is being decremented.

• The comparison table can contain up to 48 target values, and the number
of target values is specified in TB (i.e., the length of the table depends on
the number of target values that is specified).

• Comparisons are performed for all target values registered in the table.

Note 1. An error will occur if the same target value with the same comparison di-
rection is registered more than once in the same table.

2. If the high-speed counter is set for incremental pulse mode, an error will
occur if decrementing is set in the table as the direction for comparison.

3. If the count direction changes while the PV equals a target value that was
reached in the direction opposite to that set as the comparison direction,
the comparison condition for that target value will not be met. Do not set
target values at peak and bottom values of the count value.

Range Comparison

The corresponding interrupt task is called and executed when the PV enters a
set range.

• The same interrupt task number can be specified for more than one target
value.

• The range comparison table contains 8 ranges, each of which is defined
by a lower limit and an upper limit. If a range is not to be used, set the
interrupt task number to FFFF hex to disable the range.

• The interrupt task is executed only once when the PV enters the range.

• If the PV is within more than one range when the comparison is made, the
interrupt task for the range closest to the beginning of the table will be
given priority and other interrupt tasks will be executed in following cycles.
881

High-speed Counter/Pulse Output Instructions Section 3-21
• If there is no reason to execute an interrupt task, specify AAAA hex as the
interrupt task number. The range comparison results can be read with
PRV(881) or using the Range Comparison In-progress Flags.

Note An error will occur if the upper limit is less than the lower limit for any one
range.

Flags

Example When CIO 000000 turns ON in the following programming example,
CTBL(882) registers a target value comparison table and starts comparison
for high-speed counter 0. The PV of the high-speed counter is counted incre-
mentally and when it reaches 500, it equals target value 1 and interrupt task 1
is executed. When the PV is incremented to 1000, it equals target value 2 and
interrupt task 2 is executed.

3-21-5 SPEED OUTPUT: SPED(885) (CJ1M-CPU21/22/23 Only)
Purpose SPED(885) is used to set the output pulse frequency for a specific port and

start pulse output without acceleration or deceleration. Either independent
mode positioning or continuous mode speed control is possible. For indepen-
dent mode positioning, the number of pulses is set using PULS(886).

SPED(885) can also be executed during pulse output to change the output
frequency, creating stepwise changes in the speed.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Name Label Operation

Error Flag ER ON if the specified range for P or C is exceeded.
ON if the number of target values specified for target
value comparison is set to 0.

ON if the number of target values specified for target
value comparison exceeds 48.
ON if the same target value is specified more than once in
the same comparison direction for target comparison.
ON if the upper value is less than the lower value for any
range.

ON if the set values for all ranges are disabled during a
range comparison.
ON if the high-speed counter is set for incremental pulse
mode and decrementing is set in the table as the direction
for comparison.
ON if an instruction is executed when the high-speed
counter is set to Ring Mode and the specified value
exceeds the maximum ring value.
ON if specified for a port not set for a high-speed counter.

ON if executed for a different comparison method while
comparison is already in progress.

@CTBL

#0000

#0000

D00100

0002

01F4

0000

0001

03E8

0000

0002

000000
D00100

D00101

D00102

D00103

D00104

D00105

D00106

Two target values

Target value 1: 0000 01F4 hex (500)

Incrementing, Interrupt task number 1

Target value 2: 0000 03E8 hex (1000)

Incrementing, Interrupt task number 2

Register target comparison table
and start comparison

High-speed counter input 0
882

High-speed Counter/Pulse Output Instructions Section 3-21
Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier specifies the port where the pulses will be output.

M: Output Mode
The value of M determines the output mode.

F: First Pulse Frequency Word
The value of F and F+1 sets the pulse frequency in Hz.

Operand Specifications

SPED(885)

P

M

F

P: Port specifier
M: Output mode
F: First pulse frequency word

Variations Executed Each Cycle for ON Condition SPED(885)

Executed Once for Upward Differentiation @SPED(885)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

03478111215

M

Mode
 0 hex: Continuous
 1 hex: Independent

Direction
 0 hex: CW

 1 hex: CCW

Pulse output method (See note.)
 0 hex: CW/CCW

 1 hex: Pulse + direction
Always 0 hex.

Note: Use the same pulse output method when using both pulse outputs 0 and 1.

F

F+1

015

Lower word of target frequency

Upper word of target frequency
0 to 100,000 Hz
(0000 0000 to 0001 86A0 hex)

Area P M F

CIO Area --- --- CIO 0000 to CIO 6142

Work Area --- --- W000 to W510

Holding Bit Area --- --- H000 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D00000 to D32766

EM Area without bank --- --- ---
883

High-speed Counter/Pulse Output Instructions Section 3-21
Description SPED(885) starts pulse output on the port specified in P using the method
specified in M at the frequency specified in F. Pulse output will be started each
time SPED(885) is executed. It is thus normally sufficient to use the differenti-
ated version (@SPED(885)) of the instruction or an execution condition that is
turned ON only for one scan.

In independent mode, pulse output will stop automatically when the number of
pulses set with PULS(886) in advance have been output. In continuous mode,
pulse output will continue until stopped from the program.

An error will occur if the mode is changed between independent and continu-
ous mode while pulses are being output.

■ Continuous Mode Speed Control

When continuous mode operation is started, pulse output will be continued
until it is stopped from the program.

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @ D32767

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

See description of oper-
and.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area P M F

Target frequency

Time

SPED(885) executed.

Pulse frequency
884

High-speed Counter/Pulse Output Instructions Section 3-21
Note Pulse output will stop immediately if the CPU Unit is changed to PROGRAM
mode.

■ Independent Mode Positioning

When independent mode operation is started, pulse output will be continued
until the specified number of pulses has been output.

Note 1. Pulse output will stop immediately if the CPU Unit is changed to PRO-
GRAM mode.

2. The number of output pulses must be set each time output is restarted.

3. The number of output pulses must be set in advance with PULS(881).
Pulses will not be output for SPED(885) if PULS(881) is not executed first.

Operation Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse output

To output
with spec-
ified
speed

Changing the
speed (fre-
quency) in
one step

Outputs pulses at a
specified frequency.

SPED(885) (Con-
tinuous)

Changing
settings

To
change
speed in
one step

Changing the
speed during
operation

Changes the fre-
quency (higher or
lower) of the pulse
output in one step.

SPED(885) (Con-
tinuous)
↓
SPED(885) (Con-
tinuous)

Stopping
pulse output

Stop
pulse out-
put

Immediate
stop

Stops the pulse out-
put immediately.

SPED(885) (Con-
tinuous)
↓
INI(880)

Stop
pulse out-
put

Immediate
stop

Stops the pulse out-
put immediately.

SPED(885) (Con-
tinuous)
↓
SPED(885) (Con-
tinuous, Target fre-
quency of 0 Hz)

Pulse frequency

Target frequency

Execution of SPED(885)

Time

Pulse frequency

Target frequency

Present frequency

Execution of
SPED(885)

Time

Pulse frequency

Present frequency

Execution of INI(880)

Time

Pulse frequency

Present frequency

Execution of SPED(885)

Time
885

High-speed Counter/Pulse Output Instructions Section 3-21
4. The direction set in the SPED(885) operand will be ignored if the number
of pulses is set with PULS(881) as an absolute value.

Operation Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse output

To output
with spec-
ified
speed

Positioning
without accel-
eration or
deceleration

Starts outputting
pulses at the speci-
fied frequency and
stops immediately
when the specified
number of pulses
has been output.

Note The target
position (spec-
ified number of
pulses) can-
not be
changed dur-
ing position-
ing.

PULS(886)
↓
SPED(885)
(Independent)

Changing
settings

To
change
speed in
one step

Changing the
speed in one
step during
operation

SPED(885) can be
executed during
positioning to
change (raise or
lower) the pulse out-
put frequency in one
step.
The target position
(specified number of
pulses) is not
changed.

PULS(886)
↓
SPED(885)
(Independent)
↓
SPED(885)
(Independent)

Stopping
pulse output

To stop
pulse out-
put (Num-
ber of
pulses
setting is
not pre-
served.)

Immediate
stop

Stops the pulse out-
put immediately and
clears the number of
output pulses set-
ting.

PULS(886)
↓
SPED(885)
(Independent)
↓
INI(880)

PLS2(887)
↓
INI(880)

Stop
pulse out-
put (Num-
ber of
pulses
setting is
not pre-
served.)

Immediate
stop

Stops the pulse out-
put immediately and
clears the number of
output pulses set-
ting.

PULS(886)
↓
SPED(885)
(Independent)
↓
SPED(885),
(Indepen-
dent, Target
frequency of
0 Hz)

Pulse frequency

Target
frequency

Specified number of
pulses (Specified with
PULS(886).)

Execution of
SPED(885)

Outputs the specified
number of pulses
and then stops.

Time

Pulse
frequency

New target
frequency

Original target
frequency

Specified number
of pulses
(Specified with
PULS(886).)

Number of pulses
specified with
PULS(886) does
not change.

Execution of SPED(885)
(independent mode) SPED(885) (independent

mode) executed again to
change the target
frequency. (The target
position is not changed.)

Time

Pulse frequency

Present
frequency

Execution of
SPED(885)

Execution
of INI(880)

Time

Pulse frequency

Present frequency

Execution of
SPED(885)

Execution of
SPED(885)

Time
886

High-speed Counter/Pulse Output Instructions Section 3-21
Flags

Example When CIO 000000 turns ON in the following programming example,
PULS(886) sets the number of output pulses for pulse output 0. An absolute
value of 5,000 pulses is set. SPED(885) is executed next to start pulse output
using the CW/CCW method in the clockwise direction in independent mode at
a target frequency of 500 Hz.

3-21-6 SET PULSES: PULS(886) (CJ1M-CPU21/22/23 Only)
Purpose PULS(886) is used to set the pulse output amount (number of output pulses)

for pulse outputs that are started later in the program using SPED(885) or
ACC(888) in independent mode.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER ON if the specified range for P, M, or F is exceeded.
ON if PLS2(887) or ORG(889) is already being executed
to control pulse output for the specified port.
ON if SPED(885) or INI(880) is used to change the mode
between continuous and independent output during pulse
output.
ON if SPED(885) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if SPEC(885) is executed in independent mode with
an absolute number of pulses and the origin has not been
established.

@PULS

#0000

#0000

D00100

1388

0000

000000

@SPED

#0000

#0001

D00110

D00100

D00101

01F4

0000

D00110

D00111

Number of output pulses: 5,000

Target frequency: 500 Hz

Time

5,000 pulses

Target frequency:
500 Hz

Pulse frequency

PULS(881) and the
SPED(885) executed.

PULS(886)

P

T

N

P: Port specifier
T: Pulse type
N: Number of pulses

Variations Executed Each Cycle for ON Condition PULS(886)

Executed Once for Upward Differentiation @PULS(886)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
887

High-speed Counter/Pulse Output Instructions Section 3-21
Applicable Program Areas

Operands P: Port Specifier
The port specifier indicates the port. The parameters set in D and N will apply
to the next SPED(885) or ACC(888) instruction in which the same port output
location is specified.

T: Pulse Type
T specifies the type of pulses that are output as follows:

N and N+1: Number of Pulses
N and N+1 specify the number of pulses for relative pulse output or the abso-
lute target position for absolute pulse in 8-digit hexadecimal.

The actual number of movement pulses that will be output are as follows:

For relative pulse output, the number of movement pulses = the set number of
pulses. For absolute pulse output, the number of movement pulses = the set
number of pulses − the PV.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

T Pulse type

0000 hex Relative

0001 hex Absolute

N

N+1

015

Lower word with number of pulses

Upper word with number of pulses

Relative pulse output:
0 to 2,147,483,647 (0000 0000 to 7FFF FFFF hex)

Absolute pulse output:
−2,147,483,648 to 2,147,483,647 (8000 0000 to 7FFF FFFF hex)

Area P T N

CIO Area --- --- CIO 0000 to CIO 6142

Work Area --- --- W000 to W510

Holding Bit Area --- --- H000 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D00000 to D32766

EM Area without bank --- --- ---

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @ D32767

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

See description of oper-
and.

Data Registers --- --- ---
888

High-speed Counter/Pulse Output Instructions Section 3-21
Description PULS(886) sets the pulse type and number of pulses specified in T and N for
the port specified in P. Actual output of the pulses is started later in the pro-
gram using SPED(885) or ACC(888) in independent mode.

Flags

Precautions • An error will occur if PULS(886) is executed when pulses are already
being output. Use the differentiated version (@PULS(886)) of the instruc-
tion or an execution condition that is turned ON only for one scan to pre-
vent this.

• The calculated number of pulses output for PULS(886) will not change
even if INI(880) is used to change the PV of the pulse output.

• The direction set for SPED(885) or ACC(888) will be ignored if the num-
ber of pulses is set with PULS(881) as an absolute value.

• It is possible to move outside of the range of the PV of the pulse output
amount (−2,147,483,648 to 2,147,483,647).

Example When CIO 000000 turns ON in the following programming example,
PULS(886) sets the number of output pulses for pulse output 0. An absolute
value of 5,000 pulses is set. SPED(885) is executed next to start pulse output
using the CW/CCW method in the clockwise direction in independent mode at
a target frequency of 500 Hz.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area P T N

Name Label Operation

Error Flag ER ON if the specified range for P, T, or N is exceeded.

ON if PULS(886) is executed for a port that is already out-
putting pulses.
ON if PULS(886) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.

@PULS

#0000

#0000

D00100

000000

@SPED

#0000

#0001

D00110

1388

0000

D00100

D00101

01F4

0000

D00110

D00111

Number of output pulses: 5,000

Target frequency: 500 Hz
889

High-speed Counter/Pulse Output Instructions Section 3-21
3-21-7 PULSE OUTPUT: PLS2(887) (CJ1M-CPU21/22/23 Only)
Purpose PLS2(887) outputs a specified number of pulses to the specified port. Pulse

output starts at a specified startup frequency, accelerates to the target fre-
quency at a specified acceleration rate, decelerates at the specified decelera-
tion rate, and stops at approximately the same frequency as the startup
frequency. Only independent mode positioning is supported.

PLS2(887) can also be executed during pulse output to change the number of
output pulses, target frequency, acceleration rate, or deceleration rate.
PLS2(887) can thus be used for sloped speed changes with different acceler-
ation and deceleration rates, target position changes, target and speed
changes, or direction changes.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier indicates the port.

M: Output Mode
The content of M specifies the parameters for the pulse output as follows:

PLS2(887)

P

M

S

F

P: Port specifier
M: Output mode
S: First word of settings table
F: First word of starting frequency

Variations Executed Each Cycle for ON Condition PLS2(887)

Executed Once for Upward Differentiation @PLS2(887)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

03478111215

M

Relative/absolute specifier
 0 hex: Relative pulses

 1 hex: Absolute pulses

Direction
 0 hex: CW

 1 hex: CCW

Pulse output method (See note.)
 0 hex: CW/CCW

 1 hex: Pulse + direction

Always 0 hex.

Note: Use the same pulse output method when using both pulse outputs 0 and 1.
890

High-speed Counter/Pulse Output Instructions Section 3-21
S: First Word of Settings Table
The contents of S to S+5 control the pulse output as shown in the following
diagrams.

The actual number of movement pulses that will be output are as follows:

For relative pulse output, the number of movement pulses = the set number of
pulses. For absolute pulse output, the number of movement pulses = the set
number of pulses − the PV.

F: First Word of Starting Frequency
The starting frequency is given in F and F+1.

Operand Specifications

S1+4

S1+5

S1+2

S1+3

S1

S1+1

015

Lower word with number of output pulses

Upper word with number of output pulses

Relative pulse output: 0 to 2,147,483,647
(0000 0000 to 7FFF FFFF hex)

Absolute pulse output: −2,147,483,648 to 2,147,483,647
(8000 0000 to 7FFF FFFF hex)

Lower word with target frequency

Upper word with target frequency

1 to 100,000 Hz
(0000 0000 to 0001 86A0 hex)

Specify the frequency after acceleration in Hz.

Acceleration rate

Deceleration rate

1 to 2,000 Hz (0001 to 07D0 hex)

1 to 2,000 Hz (0001 to 07D0 hex)

Specify the increase or decrease in the frequency per pulse control period (4 ms).

F

F+1

015

Lower word with starting frequency

Upper word with starting frequency

0 to 100,000 Hz
(0000 0000 to 0001 86A0 hex)

Specify the starting frequency in Hz.

Area P M S F

CIO Area --- --- CIO 0000 to CIO 6138 CIO 0000 to CIO 6142

Work Area --- --- W000 to W506 W000 to W510

Holding Bit Area --- --- H000 to H506 H000 to H510

Auxiliary Bit Area --- --- A448 to A954 A448 to A958

Timer Area --- --- T0000 to T4090 T0000 to T4094

Counter Area --- --- C0000 to C4090 C0000 to C4094

DM Area --- --- D00000 to D32762 D00000 to D32766

EM Area without bank --- --- --- ---

EM Area with bank --- --- --- ---

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @ D32767 @ D00000 to @ D32767

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32767 *D00000 to *D32767

Constants See description
of operand.

See description
of operand.

--- See description of oper-
and.

Data Registers --- --- --- ---
891

High-speed Counter/Pulse Output Instructions Section 3-21
Description PLS2(887) starts pulse output on the port specified in P using the mode spec-
ified in M at the start frequency specified in F (1 in diagram). The frequency is
increased every pulse control period (4 ms) at the acceleration rate specified
in S until the target frequency specified in S is reached (2 in diagram). When
the target frequency has been reached, acceleration is stopped and pulse
output continues at a constant speed (3 in diagram).
The deceleration point is calculated from the number of output pulses and
deceleration rate set in S and when that point is reached, the frequency is
decreased every pulse control period (4 ms) at the deceleration rate specified
in S until the starting frequency specified in S is reached, at which point pulse
output is stopped (4 in diagram).
Pulse output is started each time PLS2(887) is executed. It is thus normally
sufficient to use the differentiated version (@PLS2(887)) of the instruction or
an execution condition that is turned ON only for one scan.

PLS2(887) can be used only for positioning.
With the CJ1M CPU Units, PLS2(887) can be executed during pulse output
for ACC(888) in either independent or continuous mode, and during accelera-
tion, constant speed, or deceleration. (See note 1. 2.) ACC(888) can also be
executed during pulse output for PLS2(887) during acceleration, constant
speed, or deceleration.

Note 1. Executing PLS2(887) during speed control with ACC(888) (continuous
mode) with the same target frequency as ACC(888) can be used to
achieve interrupt feeding of a fixed distance. Acceleration will not be per-
formed by PLS2(887) for this application, but if the acceleration rate is set
to 0, the Error Flag will turn ON and PLS2(887) will not be executed. Al-
ways set the acceleration rate to a value other than 0.

2. If an ACC(888) in either independent or continuous mode is executed at
the target frequency of 0 Hz and this PLS2(887) is executed immediately
before pulse output stops, the pulse output will stop without the target fre-
quency being changed. Execute the PLS2(887) after pulse output stops,
not immediately before pulse output stops.

Index Registers --- --- --- ---
Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area P M S F

A

B

C

DTarget frequency

Starting frequency

Time

PLS2(887) executed.

Pulse frequency
892

High-speed Counter/Pulse Output Instructions Section 3-21
■ Independent Mode Positioning

Note Pulse output will stop immediately if the CPU Unit is changed to PROGRAM
mode.

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Start-
ing
pulse
output

Complex
trapezoi-
dal con-
trol

Positioning with
trapezoidal accel-
eration and
deceleration
(Separate rates
used for acceler-
ation and decel-
eration; starting
speed)
The number of
pulses can be
changed during
positioning.

Accelerates and decel-
erates at a fixed rates.
The pulse output is
stopped when the
specified number of
pulses has been out-
put. (See note.)

Note The target posi-
tion (specified
number of
pulses) can be
changed during
positioning.

PLS2(887)

Chang-
ing set-
tings

To
change
speed
smoothly
(with
unequal
accelera-
tion and
decelera-
tion rates)

Changing the tar-
get speed (fre-
quency) during
positioning
(different acceler-
ation and decel-
eration rates)

PLS2(887) can be exe-
cuted during position-
ing to change the
acceleration rate,
deceleration rate, and
target frequency.

Note To prevent the
target position
from being
changed inten-
tionally, the origi-
nal target
position must be
specified in
absolute coordi-
nates.

PLS2(887)
↓
PLS2(887)

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

To
change
target
position

Changing the tar-
get position dur-
ing positioning
(multiple start
function)

PLS2(887) can be exe-
cuted during position-
ing to change the
target position (num-
ber of pulses), acceler-
ation rate, deceleration
rate, and target fre-
quency.

Note If a constant
speed cannot be
maintained after
changing the set-
tings, an error
will occur and
the original oper-
ation will con-
tinue to the
original target
position.

PLS2(887)
↓
PLS2(887)

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

Pulse frequency

Target
frequency

Starting
frequency

Acceler-
ation
rate

Specified number
of pulses

Deceleration
rate

Execution of
PLS2(887) Target

frequency
reached.

Deceleration point
Output stops.

Stop
frequency

Time

Pulse
frequency

Changed target
frequency
Target frequency

Specified number of
pulses (Specified with
PULS(886).)

Acceleration/
deceleration
rate

Execution of
ACC(888)
(independent
mode)

PLS2(887) executed to change
the target frequency and accel-
eration/deceleration rates.
(The target position is not
changed. The original target
position is specified again.)

Time

Execution of
PLS2(887)

PLS2(887) executed to
change the target position.
(The target frequency and
acceleration/deceleration
rates are not changed.)

Pulse
frequency

Target
frequency Acceleration/

deceleration
rate

Specified
number of
pulses

Number of pulses
changed with
PLS2(887).

Time
893

High-speed Counter/Pulse Output Instructions Section 3-21
Chang-
ing set-
tings,
contin-
ued

To
change
target
position
and
speed
smoothly

Changing the tar-
get position and
target speed (fre-
quency) during
positioning (mul-
tiple start func-
tion)

PLS2(887) can be exe-
cuted during position-
ing to change the
target position (num-
ber of pulses), acceler-
ation rate, deceleration
rate, and target fre-
quency.

Note If a constant
speed cannot be
maintained after
changing the set-
tings, an error
will occur and
the original oper-
ation will con-
tinue to the
original target
position.

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

Changing the
acceleration and
deceleration
rates during posi-
tioning (multiple
start function)

PLS2(887) can be exe-
cuted during position-
ing (acceleration or
deceleration) to
change the accelera-
tion rate or decelera-
tion rate.

PLS2(887)
↓
PLS2(887)

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

To
change
direction

Changing the
direction during
positioning

PLS2(887) can be exe-
cuted during position-
ing with absolute pulse
specification to change
to absolute pulses and
reverse direction.

PLS2(887)
↓
PLS2(887)

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

Stop-
ping
pulse
output

Stop
pulse out-
put (Num-
ber of
pulses
setting is
not pre-
served.)

Immediate stop Stops the pulse output
immediately and clears
the number of output
pulses.

PLS2(887)
↓
INI(880)

Stop
pulse out-
put
smoothly.
(Number
of pulses
setting is
not pre-
served.)

Decelerate to a
stop

Decelerates the pulse
output to a stop.

PLS2(887)
↓
ACC(888)
(Indepen-
dent, target
frequency of
0 Hz)

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Pulse
frequency

Target frequency
Acceleration/
deceleration
rate

Number of
pulses specified
with PLS2(887).

Execution of
PLS2(887) PLS2(887) executed to

change the target frequency,
acceleration rate and
deceleration rate.

Time

Number of pulses
changed with
PLS2(887).

Changed target
frequency

Pulse
frequency

New target
frequency

Original target
frequency

Acceleration rate n

Acceleration
rate 3

Acceleration
rate 2

Acceleration
rate 1

Number of pulses
specified by
PLS2(887) #N.

Execution of
PLS2(887) #1

Execution of
PLS2(887) #2

Execution of PLS2(887) #3
Execution of PLS2(887) #N

Time

Pulse
frequency

Target
frequency

Specified
number of
pulses

Change of direction at the
specified deceleration rate

Number of pulses
(position) changed
by PLS2(887)

Execution
of PLS2
(887) Execution of

PLS2(887)

Time

Pulse frequency

Present
frequency

Execution of
SPED(885)

Execution
of INI(880)

Time

Pulse frequency

Present
frequency

 Target
frequency = 0

Execution of
ACC(888)

Deceleration rate

Time

Execution of
PLS2(887)
894

High-speed Counter/Pulse Output Instructions Section 3-21
Note Triangular Control
If the specified number of pulses is less than the number required to reach the
target frequency and return to zero, the function will automatically reduce the
acceleration/deceleration time and perform triangular control (acceleration
and deceleration only.) An error will not occur.

■ Switching from Continuous Mode Speed Control to Independent Mode
Positioning

Pulse frequency

Target
frequency

Specified number
of pulses
(Specified with
PLS2(887).)

Execution of
PLS2(887)

Time

Example application Frequency changes Description Procedure/
instruction

Change from speed
control to fixed distance
positioning during oper-
ation

PLS2(887) can be exe-
cuted during a speed
control operation started
with ACC(888) to
change to positioning
operation.

ACC(888)
(Continu-
ous)
↓
PLS2(887)

Fixed distance feed
interrupt

Pulse frequency

Target
frequency

Outputs the number of
pulses specified in
PLS2(887) (Both relative
and absolute pulse
specification can be used.)

Execution of
ACC(888)
(continuous
mode)

Execution of
PLS2(887)

Time

Pulse
frequency

Present
frequency

Execution of
ACC(888)
(continuous
mode)

Execution of PLS2(887)
with the following settings
• Number of pulses = num-

ber of pulses until stop
• Relative pulse specification
• Target frequency = present

frequency
• Acceleration rate = 0001 to

07D0 hex
• Deceleration rate = target

deceleration rate

Time
895

High-speed Counter/Pulse Output Instructions Section 3-21
Flags

Example When CIO 000000 turns ON in the following programming example,
PLS2(887) starts pulse output from pulse output 0 with an absolute pulse
specification of 100,000 pulses. Pulse output is accelerated at a rate of
500 Hz every 4 ms starting at 200 Hz until the target speed of 50 kHz is
reached. From the deceleration point, the pulse output is decelerated at a rate
of 250 Hz every 4 ms starting until the starting speed of at 200 Hz is reached,
at which point pulse output is stopped.

3-21-8 ACCELERATION CONTROL: ACC(888) (CJ1M-CPU21/22/23 Only)
Purpose ACC(888) outputs pulses to the specified output port at the specified fre-

quency using the specified acceleration and deceleration rate. (Acceleration
rate is the same as the deceleration rate.) Either independent mode position-
ing or constant mode speed control is possible. For positioning, ACC(888) is
used in combination with PULS(886). ACC(888) can also be executed during
pulse output to change the target frequency or acceleration/deceleration rate,
enabling smooth (sloped) speed changes.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Name Label Operation

Error Flag ER ON if the specified range for P, M, S, or F is exceeded.
ON if PLS2(887) is executed for a port that is already out-
putting pulses for SPED(885) or ORG(889).
ON if PLS2(887) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if PLS2(887) is executed for an absolute pulse output
but the origin has not been established.

@PLS2

#0000

#0000

D00100

D00110

01F4

00FA

C350

0000

86A0

0001

00C8

0000

000000
D00100

D00101

D00102

D00103

D00104

D00105

D00110

D00111

Acceleration rate: 500 Hz/4 ms

Deceleration rate: 250 Hz/4 ms

Target frequency: 50 kHz

Pulse output amount: 100,000 pulses

Time

100,000 pulses

Target frequency
50 kHz

Start frequency
200 Hz

Pulse frequency

PLS2(887) executed.

Start frequency: 200 Hz

ACC(888)

P

M

S

P: Port specifier
M: Output mode
S: First word of settings table
896

High-speed Counter/Pulse Output Instructions Section 3-21
Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier specifies the port where the pulses will be output.

M: Output Mode
The content of M specifies the parameters for the pulse output as follows:

S: First Word of Settings Table
The content of S to S+2 controls the pulse output as shown in the following
diagrams.

Operand Specifications

Variations Executed Each Cycle for ON Condition ACC(888)

Executed Once for Upward Differentiation @ACC(888)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

03478111215

M

Mode
 0 hex: Continuous mode
 1 hex: Independent mode

Direction
 0 hex: CW
 1 hex: CCW

Pulse output method (See note.)
 0 hex: CW/CCW
 1 hex: Pulse + direction

Always 0 hex.
Note: Use the same pulse output method when using both pulse outputs 0 and 1.

S+1

S+2

S

015

Lower word with target frequency

Upper word with target frequency

0 to 100,000 Hz
(0000 0000 to 0001 86A0 hex)

Specify the frequency after acceleration in Hz.

Acceleration/deceleration rate 1 to 2,000 Hz (0001 to 07D0 hex)

Specify the increase or decrease in the frequency per pulse control period (4 ms).

Area P M S

CIO Area --- --- CIO 0000 to CIO 6141

Work Area --- --- W000 to W509

Holding Bit Area --- --- H000 to H509

Auxiliary Bit Area --- --- A448 to A957

Timer Area --- --- T0000 to T4093

Counter Area --- --- C0000 to C4093

DM Area --- --- D00000 to D32765

EM Area without bank --- --- ---

EM Area with bank --- --- ---
897

High-speed Counter/Pulse Output Instructions Section 3-21
Description ACC(888) starts pulse output on the port specified in P using the mode speci-
fied in M using the target frequency and acceleration/deceleration rate speci-
fied in S. The frequency is increased every pulse control period (4 ms) at the
acceleration rate specified in S until the target frequency specified in S is
reached.
Pulse output is started each time ACC(888) is executed. It is thus normally
sufficient to use the differentiated version (@ACC(888)) of the instruction or
an execution condition that is turned ON only for one scan.

In independent mode, pulse output stops automatically when the specified
number of pulses has been output. In continuous mode, pulse output contin-
ues until it is stopped from the program.
An error will occur if an attempt is made to switch between independent and
continuous mode during pulse output.
With the CJ1M CPU Units, PLS2(887) can be executed during pulse output
for ACC(888) in either independent or continuous mode, and during accelera-
tion, constant speed, or deceleration. (See note.) ACC(888) can also be exe-
cuted during pulse output for PLS2(887) during acceleration, constant speed,
or deceleration.
If this ACC(888) in either independent or continuous mode is executed at the
target frequency of 0 Hz and the ACC(888) or PLS2(887) is executed immedi-
ately before pulse output stops, the pulse output will stop without the target
frequency being changed. Execute the ACC(888) or PLS2(887) after pulse
output stops, not immediately before pulse output stops.

Indirect DM/EM
addresses in binary

--- --- @ D00000 to @
D32767

Indirect DM/EM
addresses in BCD

--- --- *D00000 to *D32767

Constants See description
of operand.

See description
of operand.

Data Registers --- --- ---
Index Registers --- --- ---
Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –
)IR15

Area P M S

Target frequency

Time

Acceleration/deceleration rate

ACC(888) executed.

Pulse frequency

ACC(888) executed.
898

High-speed Counter/Pulse Output Instructions Section 3-21
Note Executing PLS2(887) during speed control with ACC(888) (continuous mode)
with the same target frequency as ACC(888) can be used to achieved inter-
rupt feeding of a fixed distance. Acceleration will not be performed by
PLS2(887) for this application, but if the acceleration rate is set to 0, the Error
Flag will turn ON and PLS2(887) will not be executed. Always set the acceler-
ation rate to a value other than 0.

■ Continuous Mode Speed Control

Pulse output will continue until it is stopped from the program.

Note Pulse output will stop immediately if the CPU Unit is changed to PROGRAM
mode.

Operation Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse output

To output
with speci-
fied accel-
eration and
speed

Accelerating the
speed (frequency)
at a fixed rate

Outputs pulses and
changes the fre-
quency at a fixed
rate.

ACC(888)
(Continu-
ous)

Changing
settings

To change
speed
smoothly

Changing the
speed smoothly
during operation

Changes the fre-
quency from the
present frequency
at a fixed rate. The
frequency can be
accelerated or
decelerated.

ACC(888) or
SPED(885)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous)

Changing the
speed in a
polyline curve
during operation

Changes the accel-
eration or decelera-
tion rate during
acceleration or
deceleration.

ACC(888)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous)

Decelerating to a
stop

The deceleration
rate is changed
while decelerating.

Note If the target
frequency is
set to 0 Hz,
the current
deceleration
rate will be
used.

ACC(888)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous)
↓ACC(888)
(Continu-
ous, target
frequency of
0 Hz)

Pulse frequency

Target frequency

Present frequency

Acceleration/
deceleration
rate

Execution of
ACC(888)

Time

Pulse frequency

Target frequency

Present frequency

Acceleration/
deceleration
rate

Execution of
ACC(888)

Time

Pulse frequency

Target frequency

Present frequency

Acceleration rate n

Acceleration
rate 2

Acceleration
rate 1

Execution of ACC(888)
Execution of ACC(888)

Execution of ACC(888)

Time

Acceleration/deceleration rate 1

Time

Pulse frequency

Execution of ACC(888)

Execution of ACC(888)

Execution of ACC(888)
(target frequency = 0)

Acceleration/
deceleration rate 2

Present
frequency

Target
frequency = 0
899

High-speed Counter/Pulse Output Instructions Section 3-21
■ Independent Mode Positioning

When independent mode operation is started, pulse output will be continued
until the specified number of pulses has been output.

The deceleration point is calculated from the number of output pulses and
deceleration rate set in S and when that point is reached, the frequency is
decreased every pulse control period (4 ms) at the deceleration rate specified
in S until the specified number of points has been output, at which point pulse
output is stopped.

Note 1. Pulse output will stop immediately if the CPU Unit is changed to PRO-
GRAM mode.

2. The number of output pulses must be set each time output is restarted.

3. The number of output pulses must be set in advance with PULS(881).
Pulses will not be output for ACC(888) if PULS(881) is not executed first.

4. The direction set in the ACC(888) operand will be ignored if the number of
pulses is set with PULS(881) as an absolute value.

Stopping
pulse output

To stop
pulse out-
put

Immediate stop Immediately stops
pulse output.

ACC(888)
(Continu-
ous)
↓
INI(880)
(Continu-
ous)

To stop
pulse out-
put

Immediate stop Immediately stops
pulse output.

ACC(888)
(Continu-
ous)
↓
SPED(885)
(Continu-
ous, target
frequency of
0)

To stop
pulse out-
put
smoothly

Decelerating to a
stop

Decelerated pulse
output to a stop.

Note If the target
frequency of
the second
ACC(888)
instruction is
0 Hz, the
deceleration
rate from the
first
ACC(888)
instruction
will be used.

ACC(888)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous, target
frequency of
0)

Operation Purpose Application Frequency changes Description Procedure/
instruction

Pulse frequency

Present frequency

Execution of ACC(888) Execution of INI(880)

Time

Pulse frequency

Present frequency

Execution of ACC(888) Execution of SPED(885)

Time

Pulse frequency

Present frequency

Execution of ACC(888)
Execution of ACC(888)

Time

Acceleration/deceleration rate
(value set when starting)

Target frequency = 0
900

High-speed Counter/Pulse Output Instructions Section 3-21
Note Triangular Control
If the specified number of pulses is less than the number required to reach the
target frequency and return to zero, the function will automatically reduce the
acceleration/deceleration time and perform triangular control (acceleration

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse out-
put

Simple trap-
ezoidal con-
trol

Positioning with
trapezoidal accel-
eration and decel-
eration (Same
rate used for
acceleration and
deceleration; no
starting speed)
The number of
pulses cannot be
changed during
positioning.

Accelerates and
decelerates at the
same fixed rate and
stops immediately
when the specified
number of pulses
has been output.
(See note.)

Note The target
position
(specified
number of
pulses) can-
not be
changed dur-
ing position-
ing.

PULS(886)
↓
ACC(888)
(Indepen-
dent)

Changing
settings

To change
speed
smoothly
(with the
same accel-
eration and
decelera-
tion rates)

Changing the tar-
get speed (fre-
quency) during
positioning
(acceleration rate
= deceleration
rate)

ACC(888) can be
executed during
positioning to
change the acceler-
ation/deceleration
rate and target fre-
quency.
The target position
(specified number
of pulses) is not
changed.

PULS(886)
↓
ACC(888) or
SPED(885)
(Indepen-
dent)
↓
ACC(888)
(Indepen-
dent)

Stopping
pulse out-
put

To stop
pulse out-
put. (Num-
ber of
pulses set-
ting is not
preserved.)

Immediate stop Pulse output is
stopped immedi-
ately and the
remaining number
of output pulses is
cleared.

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
INI(880)

To stop
pulse output
smoothly.
(Number of
pulses set-
ting is not
preserved.)

Decelerating to a
stop

Decelerates the
pulse output to a
stop.

Note If ACC(888)
started the
operation, the
original
acceleration/
deceleration
rate will
remain in
effect.
If SPED(885)
started the
operation, the
acceleration/
deceleration
rate will be
invalid and
the pulse out-
put will stop
immediately.

PULS(886)
↓
ACC(888) or
SPED(885)
(Indepen-
dent)
↓
ACC(888)
(Indepen-
dent, inde-
pendent,
target fre-
quency of 0)

PLS2(887)
↓
ACC(888)
(Indepen-
dent, target
frequency of
0)

Pulse frequency

Target
frequency

Specified number of
pulses (Specified
with PULS(886).)

Acceleration/
deceleration
rate

Execution of
ACC(888)

Outputs the specified
number of pulses and
then stops.

Time

 Changed target
frequency
Target frequency

Specified
number of
pulses
(Specified with
PULS(886).)

Number of pulses
specified with
PULS(886) does
not change.

Pulse
frequency

Acceleration/
deceleration
rate

Execution of
ACC(888)
(independent
mode)

ACC(888) (independent
mode) executed again to
change the target frequency.
(The target position is not
changed, but the
acceleration/deceleration rate
is changed.)

Time

Pulse frequency

Present
frequency

Execution of
ACC(888)

Time
Execution of
INI(880)

Pulse frequency

Present
frequency

 Target
frequency = 0

Execution of
ACC(888)

Deceleration rate

Time

Execution of
PLS2(887)
901

High-speed Counter/Pulse Output Instructions Section 3-21
and deceleration only.) An error will not occur.

Flags

Example When CIO 000000 turns ON in the following programming example,
ACC(888) starts pulse output from pulse output 0 in continuous mode in the
clockwise direction using the CW/CCW method. Pulse output is accelerated
at a rate of 20 Hz every 4 ms until the target frequency of 500 Hz is reached.
When CIO 000001 turns ON, ACC(888) changes to an acceleration rate of
10 Hz every 4 ms until the target frequency of 1,000 Hz is reached.

Pulse frequency

Target
frequency

Specified number
of pulses
(Specified with
PLS2(887).)

Execution of
PLS2(887)

Time

Name Label Operation

Error Flag ER ON if the specified range for P, M, or S is exceeded.

ON if pulses are being output using ORG(889) for the
specified port.
ON if ACC(888) is executed to switch between indepen-
dent and continuous mode for a port that is outputting
pulses for SPED(885), ACC(888), or PLS2(887).
ON if ACC(888) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if ACC(888) is executed for an absolute pulse output
in independent mode but the origin has not been estab-
lished.

0014

01F4

0000

D00100

D00101

D00102

000A

03E8

0000

D00105

D00106

D00107

@ACC

#0000

#0000

D00100

000000

@ACC

#0000

#0000

D00105

000001

500 Hz

10 Hz/4 ms

20 Hz/4 ms

1000 Hz

Target frequency: 500 Hz

Acceleration/deceleration rate: 20 Hz

Target frequency: 1,000 Hz

Acceleration/deceleration rate: 10 Hz

Time

Target frequency

Pulse frequency

ACC(888) executed. ACC(888) executed.
902

High-speed Counter/Pulse Output Instructions Section 3-21
3-21-9 ORIGIN SEARCH: ORG(889) (CJ1M-CPU21/22/23 Only)
Purpose ORG(889) performs an origin search or origin return operation.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

■ Origin Search

Pulses are output using the specified method to actually drive the motor and
establish the origin based on origin proximity input and origin input signals.

■ Origin Return

The positioning system is returned to the pre-established origin.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier specifies the port where the pulses will be output.

C: Control Data
The value of C determines the origin search method.

Operand Specifications

ORG(889)

P

C
P: Port specifier
C: Control data

Variations Executed Each Cycle for ON Condition ORG(889)

Executed Once for Upward Differentiation @ORG(889)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

03478111215

C

Always 0 hex.

Always 0 hex.

Pulse output method (See note.)
 0 hex: CW/CCW
 1 hex: Pulse + direction

Mode
 0 hex: Origin search
 1 hex: Origin return

Note: Use the same pulse output method when using both pulse outputs 0 and 1.

Area P C

CIO Area --- ---

Work Area --- ---

Holding Bit Area --- ---

Auxiliary Bit Area --- ---

Timer Area --- ---
903

High-speed Counter/Pulse Output Instructions Section 3-21
Description ORG(889) performs an origin search or origin return operation for the port
specified in P using the method specified in C.

The following parameters must be set in the PLC Setup before ORG(889) can
be executed. Refer to the CJ-series Built-in I/O Operation Manual for details.

An origin search or origin return is started each time ORG(889) is executed. It
is thus normally sufficient to use the differentiated version (@ORG(889)) of
the instruction or an execution condition that is turned ON only for one scan.

■ Origin Search (Bits 12 to 15 of C = 0 hex)

ORG(889) starts outputting pulses using the specified method at the Origin
Search Initial Speed (1 in diagram). Pulse output is accelerated to the Origin
Search High Speed using the Origin Search Acceleration Rate (2 in diagram).
Pulse output is then continued at constant speed until the Origin Proximity
Input Signal turns ON (3 in diagram), from which point pulse output is deceler-
ated to the Origin Search Proximity Speed using the Origin Search Decelera-
tion Rate (4 in diagram). Pulses are then output at constant speed until the
Origin Input Signal turns ON (5 in diagram). Pulse output is stopped when the
Origin Input Signal turns ON (6 in diagram).

When the origin search operation has been completed, the Error Counter
Reset Output will be turned ON. The above operation, however, depends on
the operating mode, origin detection method, and other parameters. Refer to
the CJ-series Built-in I/O Operation Manual for details.

Counter Area --- ---

DM Area --- ---

EM Area without bank --- ---

EM Area with bank --- ---

Indirect DM/EM
addresses in binary

--- ---

Indirect DM/EM
addresses in BCD

--- ---

Constants See description of operand. See description of operand.

Data Registers --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ---

Area P C

Origin search Origin return

Origin Search Function Enable/Disable
Origin Search Operating Mode

Origin Search Operation Setting
Origin Detection Method
Origin Search Direction Setting

Origin Search/Return Initial Speed
Origin Search High Speed
Origin Search Proximity Speed

Origin Compensation
Origin Search Acceleration Rate
Origin Search Deceleration Rate

Limit Input Signal Type
Origin Proximity Input Signal Type
Origin Input Signal Type

Origin Search/Return Initial Speed
Origin Return Target Speed

Origin Return Acceleration Rate
Origin Return Deceleration Rate
904

High-speed Counter/Pulse Output Instructions Section 3-21
■ Origin Return (Bits 12 to 15 of C = 1 hex)

ORG(889) starts outputting pulses using the specified method at the Origin
Return Initial Speed (1 in diagram). Pulse output is accelerated to the Origin
Return Target Speed using the Origin Return Acceleration Rate (2 in diagram)
and pulse output is continued at constant speed (3 in diagram). The decelera-
tion point is calculated from the number of pulses remaining to the origin and
the deceleration rate and when that point is reached, the pulse output is
decelerated (4 in diagram) at the Origin Return Deceleration Rate until the
Origin Return Start Speed is reached, at which point pulse output is stopped
at the origin (5 in diagram).

Flags

A

B
C

D

E

F

Pulse frequency

Origin search
initial speed

Origin search
high speed

Origin search
proximity speed

ORG(889) executed.

Origin Proximity Input Signal

Stop

Origin Input Signal

Time

Origin search
acceleration rate

Origin search
deceleration rate

A

B
C

D

E

Pulse frequency

ORG(889) executed.

Origin return
target speed

Origin return
deceleration rate

Stop

Time

Origin return
initial speed

Origin return
acceleration
rate

Name Label Operation

Error Flag ER ON if the specified range for P or C is exceeded.
ON if ORG(889) is specified for a port during pulse output
for SPED(885), ACC(888), or PLS2(887).
ON if ORG(889) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if the origin search or origin return parameters set in
the PLC Setup are not within range.

ON if the Origin Search High Speed is less than or equal
to the Origin Search Proximity Speed or the Origin Search
Proximity Speed is less than or equal to the Origin Search
Initial Speed.
ON if the Origin Return Target speed is less than or equal
to the Origin Return Initial Speed.

ON if an origin return operation is attempted when the ori-
gin has not been established.
905

High-speed Counter/Pulse Output Instructions Section 3-21
Example When CIO 000000 turns ON in the following programming example,
ORG(889) starts an origin return operation for pulse output 0 by outputting
pulses using the CW/CCW method. According to the PLC Setup, the initial
speed is 100 pps, the target speed is 200 pps, and the acceleration and
deceleration rates are 50 Hz/4 ms.

The PLC Setup parameters are as follows:

3-21-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891) (CJ1M-CPU21/
22/23 Only)

Purpose PWM(891) is used to output pulses with the specified duty factor from the
specified port.

This instruction is supported by CJ1M-CPU21/22/23 CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier specifies the port where the pulses will be output.

@ORG

#0000

#1000

000000

200 pps

100 pps

Pulse output 0

Origin return, CW/CWW method

Time

Speed

ORG(889) executed. Output stopped.

Parameter Setting

Pulse Output 0 Starting Speed for Origin Search and
Origin Return

0000 0064 hex: 100 pps

Pulse Output 0 Origin Return Target Speed 0000 00C8 hex: 200 pps

Pulse Output 0 Origin Return Acceleration Rate 0032 hex: 50 hex/4 ms

Pulse Output 0 Origin Return Deceleration Rate 0032 hex: 50 hex/4 ms

PWM

P

F

D

P: Port specifier
F: Frequency
D: Duty factor

Variations Executed Each Cycle for ON Condition PWM(891)

Executed Once for Upward Differentiation @PWM(891)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0 (duty factor: in increments of 1%)

0001 hex Pulse output 1 (duty factor: in increments of 1%)

1000 hex
(CJ1M CPU Unit Ver. 2.0 only)

Pulse output 0 (duty factor: in increments of 0.1%)

1001hex
(CJ1M CPU Unit Ver. 2.0 only)

Pulse output 1 (duty factor: in increments of 0.1%)
906

High-speed Counter/Pulse Output Instructions Section 3-21
F: Frequency
F specifies the frequency of the pulse output between 0.1 and 6,553.5 Hz
(0.1 Hz units, 0001 to FFFF hex). The accuracy of the PMW(891) waveform
that is actually output (ON duty +5%/−0%) applies only to 0.1 to 1,000.0 Hz
due to limitations in the output circuits.

D: Duty Factor

D specifies the duty factor of the pulse output, i.e., the percentage of time that
the output is ON. The value of D must be between the following range.

• Pre-Ver. 2.0 CJ1m CPU Units
0% and 100% (1% units, 0000 to 0064 hex)

• Ver. 2.0 CJ1m CPU Units
0.0% and 100.0% (0.1% units, 0000 to 03E8 hex)

Operand Specifications

Description PWM(891) outputs the frequency specified in F at the duty factor specified in
D from the port specified in P. PWM(891) can be executed during duty-factor
pulse output to change the duty factor without stopping pulse output. Any
attempts to change the frequency will be ignored.

Pulse output is started each time PWM(891) is executed. It is thus normally
sufficient to use the differentiated version (@PWM(891)) of the instruction or
an execution condition that is turned ON only for one scan.

The pulse output will continue either until INI(880) is executed to stop it (C =
0003 hex: stop pulse output) or until the CPU Unit is switched to PROGRAM
mode.

Area P F D

CIO Area --- CIO 0000 to CIO 6143 CIO 0000 to CIO 6143

Work Area --- W000 to W511 W000 to W511

Holding Bit Area --- H000 to H511 H000 to H511

Auxiliary Bit Area --- A448 to A959 A448 to A959

Timer Area --- T0000 to T4095 T0000 to T4095

Counter Area --- C0000 to C4095 C0000 to C4095

DM Area --- D00000 to D32767 D00000 to D32767

EM Area without bank --- --- ---

EM Area with bank --- --- ---

Indirect DM/EM
addresses in binary

--- @ D00000 to @
D32767

@ D00000 to @
D32767

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767 *D00000 to *D32767

Constants See
descrip-
tion of
operand.

0000 to FFFF hex 0000 to 0064 hex

Data Registers --- DR0 to DR15 DR0 to DR15

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
907

Step Instructions Section 3-22
Flags

Example When CIO 000000 turns ON in the following programming example,
PWM(891) starts pulse output from pulse output 0 at 200 Hz with a duty factor
of 50%. When CIO 000001 turns ON, the duty factor is changed to 25%.

3-22 Step Instructions
This section describes Step Instructions, which are used to set up break
points between sections in a large program so that the sections can be exe-
cuted as units and reset upon completion.

In CS/CJ-series PLCs, STEP(008)/SNXT(009) can be used together to create
step programs.

Name Label Operation

Error Flag ER ON if the specified range for P, F, or D is exceeded.
ON if pulses are being output using ORG(889) for the
specified port.
ON if PWM(891) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.

@PWM

#0000

#07D0

#0032

000000

@PWM

#0000

#07D0

#0019

000001

CIO 000000 ON CIO 000001 ON

Pulse output 0

Frequency: 200.0 Hz

Duty factor: 50%

Pulse output 0

Frequency: 200.0 Hz

Duty factor: 25%

Duty factor: 50% Duty factor: 25%

Instruction Mnemonic Function code Page

STEP DEFINE STEP 008 909

STEP START SNXT 009 909

Instruction Operation Diagram

SNXT(009): STEP START Controls progression to the
next step of the program.

Corresponds

STEP(008): STEP DEFINE Indicates the start of a
step. Repeats the same
step program until the con-
ditions for progression to
the next step are estab-
lished.

Corresponds
908

Step Instructions Section 3-22
Note Work bits are used as the control bits for A, B, C and D.

3-22-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)
Purpose SNXT(009) is placed immediately before the STEP(008) instruction and con-

trols step execution by turning the specified control bit ON. If there is another
step immediately before SNXT(009), it also turns OFF the control bit of that
process.

STEP(008) is placed immediately after the SNXT(009) instruction and before
each process. It defines the start of each process and specified the control bit
for it. It is also placed at the end of the step programming area after the last
SNXT(009) to indicate the end of the step programming area. When it
appears at the end of the step programming area, STEP(008) does not take a
control bit.

Ladder Symbols

Process A

Process B

Process C

End

Corresponds

Process A

Process B

Process C

a turns ON

Starts the step programming area

Proceeds to the next step

Process A repeated until b turns ON.

b turns ON

Process B repeated until c turns ON.

c turns ON

Process C repeated until d turns ON.

Proceeds to the end of the ladder
step programming area

d turns ON

Step programming area completed

SNXT(009)

B B: Bit
909

Step Instructions Section 3-22
When defining the beginning of a step, a control bit is specified as follows:

When defining the end of a step a control bit is not specified as follows:

Variations

Applicable Program Areas

Operand Specifications

Description SNXT(009)
SNXT(009) is used in the following three ways:

1,2,3... 1. To start step programming execution.

2. To proceed to the next step control bit.

3. To end step programming execution.

STEP(008)

B B: Bit

STEP(008)

Variations Executed Each Cycle for ON Condition STEP(008)/
SNXT(009)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

Not allowed OK Not allowed Not allowed

Area B

CIO Area ---

Work Area W00000 to W51115

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
910

Step Instructions Section 3-22
The step programming area is from the first STEP(008) instruction (which
always takes a control bit) to the last STEP(008) instruction (which never
takes a control bit).

Starting Step Execution

SNXT(009) is placed at the beginning of the step programming area to start
step execution. It turns ON the control bit specified for B for the next
STEP(008) and proceeds to step B (all instructions after STEP(008) B). A dif-
ferentiated execution condition must be used for the SNXT(009) instruction
that starts step programming area execution, or step execution will last for
only one cycle.

Proceeding to the Next Step

When SNXT(009) occurs in the middle of the step programming area, it is
used to proceed to the next step. It turns OFF the previous control bit and
turns ON the next control bit B, for the next step, thereby starting step B (all
instructions after STEP(008) B).

Ending the Step Programming Area

When SNXT(009) is placed at the very end of the step programming area, it
ends step execution and turns OFF the previous control bit. The control bit
specified for B is a dummy bit. This bit will however be turned ON, so be sure
to select a bit that will not cause problems.

STEP(008)

STEP(008) functionS in following 2 ways, depending on its position and
whether or not a control bit has been specified.

1,2,3... 1. Starts a specific step.

2. Ends the step programming area (i.e., step execution).

Starting a Step

STEP(008) is placed at the beginning of each step with an operand, B, that
serves as the control bit for the step.

The control bit B will be turned ON by SNXT(009) and the instruction in the
step will be executed from the one immediately following STEP(008). A20012
(Step Flag) will also turn ON when execution of a step begins.

After the first cycle, step execution will continue until the conditions for chang-
ing the step are established, i.e., until the SNXT(009) instruction turns ON the
control bit in the next STEP(008).

When SNXT (009) turns ON the control bit for a step, the control bit B of the
current instruction will be reset (turned OFF) and the step controlled by bit B
will become interlocked.

Handling of outputs and instructions in a step will change according to the
ON/OFF status of the control bit B. (The status of the control bit is controlled
by SNXT(009)). When control bit B is turned OFF, the instructions in the step
are reset and are interlocked. Refer to the following tables.

Control bit status Handling

ON Instructions in the step are executed normally.

ON→OFF Bits and instructions in the step are interlocked
as shown in the next table.

OFF All instructions in the step are processed as
NOPs.
911

Step Instructions Section 3-22
Interlock Status (IL)

Note Indicates all other instructions, such as TTIM(087), TTIMX(555), MTIM(543),
MTIMX(554), SET, REST, CNT, CNTX(546), CNTR(012), CNTRX(548),
SFT(010), and KEEP(011).

The STEP(008) instruction must be placed at the beginning of each step.
STEP(008) is placed at the beginning of a step area to define the start of the
step.

Ending the Step Programming Area

STEP(008) is placed at the end of the step programming area without an
operand to define the end of step programming When the control bit preced-
ing a SNXT(009) instruction is turned OFF, step execute is stopped by
SNXT(009).

Flags:STEP(008)

Flags:SNXT(009)

Precautions The control bit, B, must be in the Work Area for STEP(008)/SNXT(009).

A control bit for STEP(008)/SNXT(009) cannot be use anywhere else in the
ladder diagram. If the same bit is used twice, as duplication bit error will occur.

If SBS(091) is used to call a subroutine from within a step, the subroutine out-
puts and instructions will not be interlocked when the control bit turns OFF.

Control bits within one section of step programming must be sequential and
from the same word.

SNXT(009) will be executed only once, i.e., on the rising edge of the execution
condition.

Input SNXT(009) at the end of the step programming area and make sure that
the control bit is a dummy bit in the Work Area. If a control bit for a step is
used in the last SNXT(009) in the step programming area, the corresponding
step will be started when SNXT(009) is executed.

An error will occur and the Error Flag will turn ON if the operand B specified
for SNXT(009) or STEP(008) is not in the Work Area or if the step program
has been placed anywhere but in a cyclic task.

Instruction output Status

Bits specified for OUT, OUT NOT All OFF

TIM, TIMX(551), TIMH(015),
TIMHX(551), TMHH(540), TIM-
HHX(552), TIML(542), and TIMLX(553)

PV 0000 hex (reset)

Completion Flag OFF (reset)

TIMU(541), TIMUX(556), TMUH(544),
and TMUHX(557)

(CJ1-H-R CPU Units only)

PV Cannot be read.

Completion Flag OFF (reset)

Bits or words specified for other instructions (see note) Holds the previous sta-
tus (but the instructions
are not executed)

Name Label Operation

Error Flag ER ON when the specified bit B is not in the WR area.

ON when STEP(008) is used in an interrupt program.
OFF in all other cases.

Name Label Operation

Error Flag ER ON when the specified bit B is not in the WR area.
ON when SNXT(009) is used in an interrupt program.

OFF in all other cases.
912

Step Instructions Section 3-22
A20012 (Step Flag) is turned ON for one cycle when STEP(008) is executed.
This flag can be used to conduct initialization once the step execution has
started.

Placement Conditions for Step Programming Areas (STEP B to STEP)

STEP(008) and SNXT(009) cannot be used inside of subroutines, interrupt
programs, or block programs.

Be sure that two steps are not executed during the same cycle.

Instructions that Cannot be Used Within Step Programs

The instructions that cannot be used within step programs are listed in the fol-
lowing table.

Related Bits

Function Mnemonic Name

Sequence Control Instruc-
tions

END(001) END

IL(002) INTERLOCK

ILC(003 INTERLOCK CLEAR

JMP(004) JUMP

JME(005) JUMP END

CJP(510) CONDITIONAL JUMP

CJPN(511) CONDITIONAL JUMP
NOT

JMP0(515) MULTIPLE JUMP

JME0(516) MULTIPLE JUMP END

Subroutine Instructions SBN(092) SUBROUTINE ENTRY

RET(093) SUBROUTINE RETURN

Name Address Details

Step Flag A20012 ON for one cycle when a
step program is started
using STEP(008). Can be
used to reset timers and
perform other processing
when starting a new step.

1 cycle

Start
913

Step Instructions Section 3-22
Step a starts when C turns ON

A executed

When d turns ON, b starts (A is interlocked)

B executed

e turns ON (B is interlocked)

End of step programming area

Normal ladder
program Returns to normal ladder program
914

Step Instructions Section 3-22
Examples Sequential Control

Step (A) ladder program

Step (B) ladder program

Normal ladder program

CIO 00000 turns ON, step W00000 starts

Step W00000 starts from the next instruction

Step W00000

W00000 turns OFF, W00001 turns ON and step W00001 starts

Step W00001 starts from the next instruction

W00001 turns OFF and dummy bit W10000 turns ON

End of step programming area

Step W00001

E
nd of step program

m
ing area

W00000

W00001

W00002

Step (A)

Step (B)

Step (C)

End

000001 (Step (A) starting condition)

000002 (Step (A) → Step (B) transition condition)

000003 (Step (B) → Step (C) transition condition)

000004 (Step (C) reset conditions)
915

Step Instructions Section 3-22
Branching Control

Step W00000 (A)

Step W00001 (B)

Step W00002 (C)
Step (C) ladder program

Step (B) ladder program

Step (A) ladder program

W00000 W00001

W00002

Step (A) Step (B)

Step (C)

End

000005 (Step (C) reset conditions)

000001 (Step (A)
starting condition)

000002 (Step (B) starting condition)

000003 (Step (A) →
Step (C) transition
condition)

000004 (Step (B) → Step (C) transition condition)
916

Step Instructions Section 3-22
The above programming is used when steps A and B cannot be executed
simultaneously. For simultaneous execution of A and B, delete the execution
conditions illustrated below.

Note In the above example, where SNXT(009) is executed for W00002, the branch-
ing moves onto the next steps even though the same control bit is used twice.
This is not picked up as an error in the program check using the CX-Program-
mer. A duplicate bit error will only occur in a step ladder program only when a
control bit in a step instructions is also used in the normal ladder diagram.

Step (A) ladder program

Step (B) ladder program

Step (C) ladder program

Step W00000
(A)

Step W00001
(B)

Step W00002
(C)

000002 000001
917

Step Instructions Section 3-22
Parallel Control

W00000

W00001

W00002

W00002

W00004

Step (A)

Step (B)

Step (C)

End

000005 (Step (C) reset conditions)

Step (D)

Step (E)

000004 (When both Step (B) and Step (D)
are complete, moves to Step (E)

000003 (Step (C) → Step (D)
transition condition)

000001 (Step (A), (C) simultaneous starting condition)

000002 (Step (A) →
Step (B) transition
condition)
918

Step Instructions Section 3-22
Step (A) ladder program
Step W00000 (A)

Step W00001
(B)Step (B) ladder program

Step W00002 (C)
Step (C) ladder program

Step W00003
(D)

Step (D) ladder program

Step W00004
(E)

Step (E) ladder program
919

Step Instructions Section 3-22
Application Examples The following three examples demonstrate the three types of execution con-
trol possible with step programming. Example 1 demonstrates sequential exe-
cution; Example 2, branching execution; and Example 3, parallel execution.

Example 1:
Sequential Execution

The following process requires that three processes, loading, part installation,
and inspection/discharge, be executed in sequence with each process being
reset before continuing on the next process. Various sensors (SW1, SW2,
SW3, and SW4) are positioned to signal when processes are to start and end.

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

The program for this process, shown below, utilizes the most basic type of
step programming: each step is completed by a unique SNXT(009) that starts
the next step. Each step starts when the switch that indicates the previous
step has been completed turns ON.

SW 1

SW 2
SW 3

SW 4

Solenoid 1 Robot hand

Solenoid 2

Conveyor belt 1

Loading

Conveyor belt 2

Part installation

Conveyor belt 3

Inspection/discharge

Photomicro-
sensor

SW1

SW2

SW3

SW4

Process A

Process B

Process C

Loading

End

Part Installation

Inspection/discharge
920

Step Instructions Section 3-22
Example 2:
Branching Execution

The following process requires that a product is processed in one of two ways,
depending on its weight, before it is printed. The printing process is the same
regardless of which of the first processes is used. Various sensors are posi-
tioned to signal when processes are to start and end.

 000000 @LD 000001

 000001 SNXT(009) W00000
 000002 STEP(008) W00000

 000100 LD 000002

 000101 SNXT(009) W00001

 000102 STEP(008) W00001

 000100 LD 000003
 000101 SNXT(009) W00002
 000102 STEP(008) W00002

 000200 LD 000004

 000201 SNXT(009) W00003

 000202 STEP(008) W00003

 Process A

 Process B

 Process C

Address Instruction OperandsProcess
A started.

Process
A reset.
Process
B started.

Process
B reset.
Process
C started.

Process
C reset.

Programming for process A

Programming for process B

Programming for process C

SW A1 SW A2

SW C1

SW C2

SW D

SW B2SW B1

Process C

Process B

Process A

Guide

Weight scale

Conveyer B

Conveyer A

Printer
921

Step Instructions Section 3-22
The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is
used depending on the status of SW A1 and SW B1.

SW A1 SW B1

SW A2 SW B2

SW D

Process A

Process C

End

Process B
922

Step Instructions Section 3-22
The program for this process, shown below, starts with two SNXT(009)
instructions that start processes A and B. Because of the way CIO 000001
(SW A1) and CIO 000002 (SW B1) are programmed, only one of these will be
executed with an ON execution condition to start either process A or process
B. Both of the steps for these processes end with a SNXT(009) that starts the
step (process C).

 000201 SNXT(009) 024614

 000000 @LD 000001
 000001 AND NOT 000002
 000002 SNXT(009) 010000
 000003 LD NOT 000001
 000004 @AND 000002
 000005 SNXT(009) 010001
 000006 STEP(008) 010000

 000100 LD 000003
 000101 SNXT(009) 010002
 000102 STEP(008) 010001

 000100 LD 000004
 000101 SNXT(009) 010002
 000102 STEP(008) 010002

 000200 LD 000005

 000202 STEP(008) ---

 Process A

 Process B

 Process C

Instruction OperandsAddress

Note In the above programming, CIO 010002 is used in two
SNXT(009) instructions. This will not produce a duplication
error during the program check.

Process
C reset.

Process B
reset.
Process C
started.

Process
A reset.
Process
C started.

Process
A started.

Programming for process C

Programming for process B

Programming for process A
923

Step Instructions Section 3-22
Example 3:
Parallel Execution

The following process requires that two parts of a product pass simulta-
neously through two processes each before they are joined together in a fifth
process. Various sensors are positioned to signal when processes are to start
and end.

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are started
together. When process A finishes, process B starts; when process C fin-
ishes, process D starts. When both processes B and D have finished, process
E starts.

The program for this operation, shown below, starts with two SNXT(009)
instructions that start processes A and C. These instructions branch from the
same instruction line and are always executed together, starting steps for both
A and C. When the steps for both A and C have finished, the steps for process
B and D begin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(009) at the end
of the programming for process B. Although there is no SNXT(009) at the end
of process D, the control bit for it is turned OFF by executing SNXT(009)
W00004. This is because the OUT for bit W00003 is in the step reset by
SNXT(009) W00004, i.e., W00003 is turned OFF when SNXT(009) W00004
is executed. Process B is thus reset directly and process D is reset indirectly
before executing the step for process E.

SW1

SW2

SW3

SW4 SW6

SW5 SW7

Process C

Process A

Process D

Process B

Process E

Conveyer A

Conveyer C Conveyer D

Conveyer B

Conveyer E

SW7

SW3 SW4

Process A

Process E

End

Process C

Process B Process D

SW5 and SW6 both ON

SW 1 and SW2 both ON
924

Step Instructions Section 3-22
 000100 LD 000003

 000101 OUT W00003

 000101 AND 000004

 000101 SNXT(009) W00004

 000102 STEP(008) W00002

 000200 LD 000003
 000201 SNXT(009) W00003
 000202 STEP(008) W00003

 000300 STEP(008) W00004

 000400 LD 000005

 000401 SNXT(009) 024613

 000402 STEP(008) ---

W00003

W00003

W00003

 000000 @LD 000001

 000001 SNXT(009) W00000

 000002 SNXT(009) W00002

 000003 STEP(008) W00000

 000100 LD 000002
 000101 SNXT(009) W00001
 000102 STEP(008) W00001

 Process A

 Process B

 Process C

 Process D

 Process E

Instruction OperandsProcess A
started.
Process C
started.

Address

Programming for process A

Process A
reset.
Process B
started.

Used to
turn off
process D.

Process E
started.

Programming for process C

Process C
reset.

Process D
started.

Programming for process D

Programming for process E

Process E
reset.

Programming for process B
925

Basic I/O Unit Instructions Section 3-23
3-23 Basic I/O Unit Instructions
This section describes instructions used with I/O Units.

3-23-1 I/O REFRESH: IORF(097)
Purpose Refreshes the specified I/O words.

Ladder Symbol

Variations

Applicable Program Areas

Operands St: Starting Word
CIO 0000 to CIO 0999 (I/O Bit Area) or
CIO 2000 to CIO 2959 (Special I/O Unit Bit Area)

E: End Word
CIO 0000 to CIO 0999 (I/O Bit Area) or
CIO 2000 to CIO 2959 (Special I/O Unit Bit Area)

Note St and E must be in the same memory area.

Operand Specifications

Instruction Mnemonic Function code Page

I/O REFRESH IORF 097 926

SPECIAL I/O UNIT I/O REFRESH FIORF 225 929

CPU BUS UNIT I/O REFRESH DLNK 226 932

7-SEGMENT DECODER SDEC 078 937

INTELLIGENT I/O READ IORD 222 962

INTELLIGENT I/O WRITE IOWR 223 967

DIGITAL SWITCH INPUT DSW 210 940

TEN KEY INPUT TKY 211 945

HEXADECIMAL KEY INPUT HKY 212 948

MATRIX INPUT MTR 213 953

7-SEGMENT DISPLAY OUTPUT 7SEG 214 957

IORF(097)

St

E

St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition IORF(097)

Executed Once for Upward Differentiation @IORF(097)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0000 to CIO 0999
CIO 2000 to CIO 2959

Auxiliary Area ---

Holding Bit Area ---

Special Bit Area ---

Timer Area ---
926

Basic I/O Unit Instructions Section 3-23
Description IORF(097) refreshes the I/O words between St and E, inclusively. IORF(097)
is used to refresh words allocated to Basic I/O Units or Special I/O Units
mounted on the CPU Rack or Expansion Racks. IORF(097) cannot be used to
refresh words in both areas at the same time (i.e., with the same instruction).
Basic I/O Units are allocated words between CIO 0000 and CIO 0999, and
Special I/O Units are allocated words between CIO 2000 and CIO 2959.

When refreshing is specified for words in the Special I/O Unit bit area, all 10
words allocated to the Unit will be refreshed as long as the first word of the 10
words allocated to the Unit is included in the specified range of words.

If words for which there is no Unit mounted exist between St and E, nothing
will be done for those words and only the words allocated to Units will be
refreshed.

Both C200H Special I/O Units and CS Special I/O Units can be refreshed
using the same instruction. (CS Series only)

All of the words allocated to C200H Group-2 High-density I/O Units must be
refreshed at one time. The Unit’s I/O words will be refreshed if the first word
allocated to the Unit is in the specified range of I/O words. (The Unit’s words
will not be refreshed if the starting word is after the first word allocated to the
Unit, but they will be refreshed even if the end word is before the last word
allocated to the Unit.) (CS Series only)

IORF(097) can be used in interrupt tasks, allowing high-speed response for
the specific I/O words refreshed in the interrupt task. (See Precautions.)

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM addresses
in binary

Indirect DM/EM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to IR15

–2048 to +2047, IR0 to IR15
DR0 to DR15, IR0 to IR15,
IR0 to IR15+(++)

,–(– –) IR0 to IR15

Area St E

St

E

I/O refreshing

I/O bit area or
Special I/O Unit bit area

I/O Unit or
Special I/O Unit
927

Basic I/O Unit Instructions Section 3-23
Comparison with
FIORF(225) and
DLNK(226)

The following table shows how IORF(097) differs from FIORF(225) and
DLNK(226).

Applicable Units The following Units can be refreshed with IORF(097). These Unit can be
refreshed only when they are on the CPU Rack or an Expansion Rack. They
cannot be refreshed if they are on Slave Racks.

CS-series Basic I/O Units, C200H Basic I/O Units (CS Series only), C200H
Group-2 High-density I/O Units (CS Series only), CJ-series Basic I/O Units,
and Special I/O Units (including High-density Units. All words allocated to the
Units can be refreshed.)

Note The Units that can be refreshed with IORF(097) are not necessarily the same
as the Units that can be refreshed with immediate refreshing specifications (!).

Flags

Precautions An error will occur if words in both the I/O Bit Area (CIO 0000 to CIO 0999)
and the Special I/O Unit Bit Area (CIO 2000 to CIO 2959) are specified for
the same instruction.

I/O refreshing will not be performed for Units for which an I/O table error has
occurred. (CS Series only)

The I/O refreshing initiated by IORF(097) will be stopped midway if an I/O bus
error occurs during I/O refreshing.

IORF(097) can be used in an interrupt task, which allows high-speed process-
ing of specific I/O data with an interrupt. If IORF(097) is used in an interrupt
task, always disable cyclic refreshing of the specified Special I/O Unit by turn-
ing ON the corresponding Special I/O Unit Cyclic Refreshing Disable Bit in the
PLC Setup.

When cyclic refreshing of the specified Special I/O Unit is enabled in the PLC
Setup (the corresponding Special I/O Unit Cyclic Refreshing Disable Bit is
OFF), a non-fatal Duplicate Refresh Error will occur and the Interrupt Task
Error Flag (A40213) will go ON in the following cases.

• Words allocated to the same Special I/O Unit were already refreshed by
IORF(097) or FIORF(225).

• Words allocated to the same Special I/O Unit were read or written by
IORD(222) or IOWR(223).

Instruction Operation

IORF(097) • I/O refreshing of words used by Basic I/O Units
• I/O refreshing of the CIO words and DM words used by Special

I/O Units

FIORF(225) • I/O refreshing of the CIO words and DM words used by a Spe-
cial I/O Unit

DLNK(226) • I/O refreshing of the CS1 CPU Bus Unit Area in the CIO Area
(25 words)

• I/O refreshing of the CS1 CPU Bus Unit Area in the DM Area
(100 words)

• Refreshing of data specific to the CPU Bus Unit, such as data
link data or DeviceNet Remote I/O Communications data

Name Label Operation

Error Flag ER ON if St is greater than E.
ON if St and E are in different memory areas.
With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.
OFF in all other cases.
928

Basic I/O Unit Instructions Section 3-23
When cyclic refreshing of a Special I/O Unit is disabled, execute IORF(097) or
FIORF(225) (CJ1-H-R CPU Units only) to refresh the Unit’s data within 11
seconds after program execution starts. If IORF(097) or FIORF(225) is not
executed within 11 seconds to refresh the Unit’s data, a CPU Unit Monitor
Error will occur in the Special I/O Unit and the ERH and RUN Indicators will be
lit.

Examples Refreshing Words in the I/O Bit Area
The following example shows how to refresh 16 words from CIO 0015 to
CIO 0030 when CIO 000000 turns ON.

Refreshing Words in the Special I/O Unit Bit Area
The following example shows how to refresh 30 words from CIO 2000 to
CIO 2029 when CIO 000000 turns ON.

3-23-2 SPECIAL I/O UNIT I/O REFRESH: FIORF(225)
Purpose Performs I/O refreshing immediately for the specified Special I/O Unit’s allo-

cated CIO Area and DM Area words.t with the specified unit number.

This instruction is supported by the CJ1-H-R CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Unit number
Specifies the Special I/O Unit’s unit number (0000 to 005F hex or 0 to 95 dec-
imal).

Note If the Special I/O Unit uses more than one unit number, specify the lowest unit
number.

St:

E:

St

E

I/O refreshing

I/O Unit

St:

E:

St
E

Special I/O Unit

I/O refreshing

FIORF(225)
N N: Unit number

Variations Executed Each Cycle for ON Condition FIORF(225)

Executed Once for Upward Differentiation @FIORF(225)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutin
es

Interrupt
tasks

OK OK OK OK OK
929

Basic I/O Unit Instructions Section 3-23
Operand Specifications

Description FIORF(225) performs immediate I/O refreshing of the CIO Area words and
DM Area words allocated to the Special I/O Unit with the unit number speci-
fied by N. Refer to the Special I/O Unit’s Operation Manual for details on the
data area words that are immediately refreshed.

Area N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #005F (binary) or 0 to 95 (decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Special I/O Unit
with unit number N

Refresh

CPU Unit

Allocated CIO Area words

Allocated DM Area words

Words allocated to Special I/O Unit
with unit number N
930

Basic I/O Unit Instructions Section 3-23
The following table shows how FIORF(225) differs from IORF(097) and
DLNK(226).

FIORF(225) and IORF(097) both refresh the words allocated to Special I/O
Units, but differ in the following ways.

• FIORF(225) has a faster instruction execution time.

• WIth FIORF(225), the relevant words are specified by the unit number
rather than word addresses.

Purpose A Special I/O Unit’s regular cyclic I/O refreshing can be disabled in the PLC
Setup (by turning ON the Unit’s Special I/O Unit Cyclic Refresh Disable Bit),
and I/O refreshing can be performed with the Unit only when necessary by
executing FIORF(225). This function allows a particular Special I/O Unit’s data
to be refreshed when necessary, without increasing the cyclic I/O refreshing
time at other times.

Units Refreshed by
FIORF(225)

Note This table applies to Units mounted in a CPU Rack or an Expansion Rack. It
does not apply to Units mounted in a SYSMAC Bus Slave Rack.

Flags

Precautions I/O refreshing by FIORF(225) will be stopped if an I/O Bus Error occurs while
during I/O refreshing.

Instruction Operation

IORF(097) • I/O refreshing of words used by Basic I/O Units
• I/O refreshing of the CIO words and DM words used by Special

I/O Units

FIORF(225) • I/O refreshing of the CIO words and DM words used by a Spe-
cial I/O Unit

DLNK(226) • I/O refreshing of the CS1 CPU Bus Unit Area in the CIO Area
(25 words)

• I/O refreshing of the CS1 CPU Bus Unit Area in the DM Area
(100 words)

• Refreshing of data specific to the CPU Bus Unit, such as data
link data or DeviceNet Remote I/O Communications data

Unit type (See note.) Refreshable by FIORF(255)

Basic I/O Units No

The following areas allocated to a Special I/O Unit
(The words allocated to the specified Unit are
refreshed together.)

• Allocated CIO Area words
• Allocated DM Area words

Yes

CPU Bus Units No

Name Label Operation

Error Flag ER ON if the specified unit number is not between 0000 and
005F hex (between 0 and 95 decimal).
ON if the PLC does not have a Special I/O Unit with the
unit number specified by N.

ON if the specified Special I/O Unit uses more is allocated
words for two or more unit numbers, but the unit number
specified by N is not the lowest of those unit numbers.

OFF in all other cases.

Equals Flag = ON if the I/O refreshing was completed normally.

OFF if FIORF(225) was executed while the specified Spe-
cial I/O Unit was being refreshed during cyclic refreshing.
931

Basic I/O Unit Instructions Section 3-23
FIORF(225) can be used in an interrupt task, which allows high-speed pro-
cessing of specific I/O data with an interrupt. If FIORF(225) is used in an inter-
rupt task, always disable cyclic refreshing of the specified Special I/O Unit by
turning ON the corresponding Special I/O Unit Cyclic Refreshing Disable Bit in
the PLC Setup.

When cyclic refreshing of the specified Special I/O Unit is enabled in the PLC
Setup (the corresponding Special I/O Unit Cyclic Refreshing Disable Bit is
OFF), a non-fatal Duplicate Refresh Error will occur and the Interrupt Task
Error Flag (A40213) will go ON in the following cases.

• Words allocated to the same Special I/O Unit were already refreshed by
IORF(097) or FIORF(225).

• Words allocated to the same Special I/O Unit were read or written by
IORD(222) or IOWR(223).

When cyclic refreshing of a Special I/O Unit is disabled, execute IORF(097) or
FIORF(225) (CJ1-H-R CPU Units only) to refresh the Unit’s data within 11
seconds after program execution starts. If IORF(097) or FIORF(225) is not
executed within 11 seconds to refresh the Unit’s data, a CPU Unit Monitor
Error will occur in the Special I/O Unit and the ERH and RUN Indicators will be
lit.

Operation Examples When CIO 000000 is ON, FIORF(225) immediately refreshes the CIO Area
and DM Area words allocated to the Special I/O Unit set as unit number 0.

3-23-3 CPU BUS UNIT I/O REFRESH: DLNK(226)
Purpose Performs I/O refreshing immediately for the CPU Bus Unit with the specified

unit number. The following data is refreshed.

• The words allocated to the CPU Bus Unit in the PLC’s CPU Bus Unit
Areas (25 words in the CIO Area and 100 words in the DM Area)

• Specific data refreshing for Units such as Units that support data links

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

FIORF

&0

000000

N

CPU Unit
Special I/O Unit

with unit number 0

Refresh

Allocated CIO Area words

Allocated DM Area words

Words allocated to Special I/O Unit
with unit number 0

DLNK(226)
N

N: Unit number

Variations Executed Each Cycle for ON Condition DLNK(226)

Executed Once for Upward Differentiation @DLNK(226)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
932

Basic I/O Unit Instructions Section 3-23
Applicable Program Areas

Operands N: Unit number
Specifies the CPU Bus Unit’s unit number (0000 to 000F hex or 0 to 15 deci-
mal).

Operand Specifications

Description DLNK(226) performs immediate I/O refreshing for the CPU Bus Unit with the
specified unit number. The data listed below is refreshed. Refer to the Precau-
tions below for details on the execution conditions to use for immediate
refreshing.

1. The words allocated to the CPU Bus Unit in the PLC’s CPU Bus Unit Areas
(25 words in the CIO Area and 100 words in the DM Area)

2. Data specific the CPU Bus Unit such as data link data or DeviceNet Re-
mote I/O Communications data (refreshed together with the data in the
CPU Bush Unit Areas)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #000F (binary) or 0 to 15 (decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

CPU Bus Unit Data refreshing specific to the Unit

Controller Link Unit or SYSMAC
Link Unit

Data link refreshing

DeviceNet Unit
(Does not include C200H
DeviceNet Master Units.)

Remote I/O communications refreshing
933

Basic I/O Unit Instructions Section 3-23
The following table shows how DLNK(226) differs from FIORF(225) and
IORF(097).

DLNK(226) refreshes data between the CPU Unit and specified CPU Bus
Unit. There are two special factors to consider when using DLNK(226):

1,2,3... 1. When exchanging data through a data link or DeviceNet remote I/O com-
munications, the data exchange is not performed with the other Units at the
same time that DLNK(226) is executed. The data exchange will be per-
formed when the network communications cycle reaches the Unit in ques-
tion and data is exchanged with that Unit. Consequently, the actual data
exchange may be delayed by as much as the communications cycle time
of the network.

2. DLNK(226) cannot perform I/O refreshing with a CPU Bus Unit if that Unit
is currently exchanging data. If DLNK(226) is executed too frequently, I/O
refreshing will not be performed. We recommend allowing a delay between
executions of DLNK(226) that is longer than the communications cycle
time.

Instruction Operation

IORF(097) • I/O refreshing of words used by Basic I/O Units
• I/O refreshing of the CIO words and DM words used by Special

I/O Units

FIORF(225) • I/O refreshing of the CIO words and DM words used by a Spe-
cial I/O Unit

DLNK(226) • I/O refreshing of the CS1 CPU Bus Unit Area in the CIO Area
(25 words)

• I/O refreshing of the CS1 CPU Bus Unit Area in the DM Area
(100 words)

• Refreshing of data specific to the CPU Bus Unit, such as data
link data or DeviceNet Remote I/O Communications data

CPU Unit
CPU Bus Unit with
unit number NData areas used by the CPU

Bus Unit with unit number N

Words allocated
in CIO Area

Words allocated
in DM Area

Data link area

Refresh
934

Basic I/O Unit Instructions Section 3-23
Flags

Precautions I/O refreshing will not be performed if a CPU Bus Unit Error (A40207) or CPU
Bus Unit Setup Error (A40203) has occurred in the specified CPU Bus Unit.

I/O refreshing will be stopped if an I/O Bus Error occurs while I/O refreshing is
being performed by DLNK(226).

DLNK(226) refreshes data between the CPU Unit and specified CPU Bus
Unit. Some time is required for the data exchange with the CPU Bus Unit (for
example, a data link with a Controller Link Unit).

If the specified CPU Bus Unit is exchanging data, DLNK(226) will not be exe-
cuted and the Equals Flag will be turned OFF. We recommend programming
the execution conditions shown below so that the execution of DLNK(226) will
be retried automatically.

Example When CIO 000000 is ON in the following example, DLNK(226) performs
immediate I/O refreshing (in this case, data link refreshing within the PLC) for
the CPU Bus Unit with unit number 1 (in this case, a Controller Link Unit).If I/O
refreshing cannot be performed because the Controller Link Unit is refreshing
data, the Equals Flag will be turned OFF causing W001 to be turned ON so
that the instruction execution will be retried in the next cycle. When the I/O
refreshing is completed normally, the Equals Flag will be turned ON and the
instruction will not be retried in the next cycle.

Name Label Operation

Error Flag ER ON if the specified unit number is not between 0000 and
000F hex (between 0 and 15 decimal).

ON if the PLC does not have a CPU Bus Unit with the
specified unit number.
With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.
OFF in all other cases.

Equals Flag = OFF if the I/O refreshing could not be performed because
the CPU Bus Unit was refreshing data.
OFF if there was a CPU Bus Unit Error or CPU Bus Unit
Setup Error in the specified CPU Bus Unit.

OFF if DLNK(226) was executed in an interrupt task,
there was a conflict with regular I/O refreshing, and over-
lapping refreshing occurred.
ON if the I/O refreshing was completed normally.

DLNK

N

a

b

b

a

Execution
condition

Equals Flag

Equals Flag
935

Basic I/O Unit Instructions Section 3-23
The actual timing for data link area refreshing in this example is as follows:

• When transmitting: Data is transmitted over the network the next time that
the token right is acquired. (The transmitted data is delayed up to 1 com-
munications cycle time max.)

• When receiving: The data that is input was received from the network the
last time that the token right was acquired. (The data received is delayed
up to 1 communications cycle time max.)

Examples of Data Transfer Processing:

• Transferring Data from the Previous I/O Refreshing

000000
DLNK

&1

W001W001

W000

W000

Equals Flag

Equals Flag

DLNK

&1

000000

Controller Link

Refresh

Data link area

Controller Link Unit
with unit number 1

Data link
refreshing

Cycle time Refreshing data link
data within PLC

Data transfer processing
Data link

One communications
cycle time
936

Basic I/O Unit Instructions Section 3-23
• Transferring Data with Execution of DLNK(226)

3-23-4 7-SEGMENT DECODER: SDEC(078)
Purpose Converts the hexadecimal contents of the designated digit(s) into 8-bit, 7-seg-

ment display code and places it into the upper or lower 8-bits of the specified
destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operands: Digit Designator

Cycle time Refreshing data link
data within PLC

Data transfer processing

Data link

One communications
cycle time

SDEC(078)

S

Di

D

S: Source word

Di: Digit designator

D: First destination word

Variations Executed Each Cycle for ON Condition SDEC(078)

Executed Once for Upward Differentiation @SDEC(078)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

0 1/0 m n
15 12 11 8 7 4 3 0

Di

First digit of S to convert (0 to 3)
0: Digit 0 (bits 0 to 3 of S)
1: Digit 1 (bits 4 to 7 of S)
2: Digit 2 (bits 8 to 11 of S)
3: Digit 3 (bits 12 to 15 of S)

Number of digits to convert
 0 to 3: 1 to 4 digits

First half of D to receive converted data
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Not used; set to 0.
937

Basic I/O Unit Instructions Section 3-23
Operand Specifications

Description SDEC(078) regards the data specified by S as 4-digit hexadecimal data, con-
verts the digits specified in S by Di (first digit and number of digits) to 7-seg-
ment data and outputs the results to D in the bits specified in Di.

Flags

Area S Di D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767

@En_00000 to @En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values
only

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Di
Number of digits

Rightmost 8 bits (0)

7-segment

First digit to convert

Name Label Operation

Error Flag ER ON if settings in Di are not within the specified ranges.
OFF in all other cases.
938

Basic I/O Unit Instructions Section 3-23
Precautions If more than one digit is specified for conversion in Di, digits are converted in
order toward the most-significant digit. Digit 0 is the next digit after digit 3.

Results are stored in D in order from the specified portion toward higher-
address words. If just one of the bytes in a destination word receives con-
verted data, the other byte is left unchanged.

Examples When CIO 000000 turns ON in the following example, the contents of the 3
digits beginning with digit 1 in D00100 will be converted from hexadecimal
data to 7-segment data, and the results will be output to the upper byte of
D00200 and both bytes of D00201. The specifications of the bytes to be con-
verted and the location of the output bytes are made in CIO 0100.

S: D00100

D:

Di: 0100
Di

3

Hexadecimal to 7-segment data conversion
(F 71, 1 06, and 2 5B)
939

Basic I/O Unit Instructions Section 3-23
7-segment Data The following table shows the data conversions from a hexadecimal digit (4
bits) to 7-segment code (8 bits).

3-23-5 DIGITAL SWITCH INPUT – DSW(210)
Purpose Reads the value set on a external digital switch (or thumbwheel switch) con-

nected to an I/O Unit and stores the 4-digit or 8-digit value in the specified
words.

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Original data Converted code (segments) Display
Original data

Digit Bits – g f e d c b a Hex

0 0 0 0 0 0 0 1 1 1 1 1 1 3F

1 0 0 0 1 0 0 0 0 0 1 1 0 06

2 0 0 1 0 0 1 0 1 1 0 1 1 5B

3 0 0 1 1 0 1 0 0 1 1 1 1 4F

4 0 1 0 0 0 1 1 0 0 1 1 0 66

5 0 1 0 1 0 1 1 0 1 1 0 1 6D

6 0 1 1 0 0 1 1 1 1 1 0 1 7D

7 0 1 1 1 0 0 1 0 0 1 1 1 27

8 1 0 0 0 0 1 1 1 1 1 1 1 7F

9 1 0 0 1 0 1 1 0 1 1 1 1 6F

A 1 0 1 0 0 1 1 1 0 1 1 1 77

B 1 0 1 1 0 1 1 1 1 1 0 0 7C

C 1 1 0 0 0 0 1 1 1 0 0 1 39

D 1 1 0 1 0 1 0 1 1 1 1 0 5E

E 1 1 1 0 0 1 1 1 1 0 0 1 79

F 1 1 1 1 0 1 1 1 0 0 0 1 71

1

1

1

1

1

1

1

0

g
f b

c

d

e

a
a

b

c

d

e

f

g

LSB

MSB

DSW(210)

I

O

D

C1

C2

I: Input word

O: Output word

D: First result word

C1: Number of digits

C2: System word

Variations Executed Each Cycle for ON Condition DSW(210)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
940

Basic I/O Unit Instructions Section 3-23
Applicable Program Areas

Operands I: Input Word (Data Line D0 to D3 Inputs)
Specify the input word allocated to the Input Unit and connect the digital
switch’s D0 to D3 data lines to the Input Unit as shown in the following dia-
gram.

O: Output Word (CS/RD Control Signal Outputs)

Specify the output word allocated to the Output Unit and connect the digital
switch’s control signals (CS and RD signals) to the Output Unit as shown in
the following diagram.

D: First Result Word
Specifies the leading word address where the external digital switch’s set val-
ues will be stored.

C1: Number of Digits
Specifies the number of digits that will be read from the external digital switch.
Set C1 to 0000 hex to read 4 digits or 0001 hex to read 8 digits.

C2: System Word
Specifies a work word used by the instruction. This word cannot be used in
any other application.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

0123456789101112131415
−−−−−−−−I

D0
D1
D2
D3

D3
D2
D1
D0

Rightmost 4 digitsLeftmost 4 digits

0123456789101112131415
−− −−−−−−−−O

CS0
CS1
CS2
CS3

CS signalsOne Round Flag
RD0 Read signal

D

815 1211 0347

D+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

Note: Only when C1 = 0001 hex to read 8 digits.

(See note.)

C1

815 1211 0347

Number of digits
0000 hex: 4 digits
0001 hex: 8 digits
941

Basic I/O Unit Instructions Section 3-23
Operand Specifications

Description DSW(210) outputs control signals to bits 00 to 04 of O, reads the specified
number of digits (either 4-digit or 8-digit, specified in C1) of digital switch data
line data from I, and stores the result in D and D+1. (If 4 digits are read, the
result is stored in D. If 8 digits are read, the result is stored in D and D+1.)

C2

15 0

System word
(Cannot be accessed by the user.)

Area I O D C1 C2

CIO Area CIO 0000 to CIO 6143 --- CIO 0000 to
CIO 6143

Work Area W000 to W511 --- W000 to W511

Holding Bit Area H000 to H511 --- H000 to H511

Auxiliary Bit Area A000 to
A959

A448 to A953 --- A448 to A959

Timer Area T0000 to T4095 --- T0000 to T4095

Counter Area C0000 to C4095 --- C0000 to C4095

DM Area D00000 to D32767 --- D00000 to
D32767

EM Area without
bank

E00000 to E32767 --- E00000 to
E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

--- En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

--- @ D00000 to @
D32767
@ E00000 to @
E32767
@ En_00000 to
@ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

--- ---

Constants --- 0000 or
0001 hex

Data Registers DR0 to DR15 DR0 to DR15

Index Registers ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0
to –2048 to +2047
,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(– –
)IR15

,IR0 to ,IR15
–2048 to +2047
,IR0 to –2048 to
+2047 ,IR15
DR0 to DR15, IR0
to IR15

,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(–
–)IR15
942

Basic I/O Unit Instructions Section 3-23
DSW(210) reads the 4-digit or 8-digit switch data once every 16 cycles, and
then starts over and continues reading the data. The One Round Flag (bit 05
of O) is turned ON once every 16 CPU Unit cycles.

DSW(210) reads the 4-digit or 8-digit data once in 16 cycles, and then starts
over and reads the data again in the next 16 cycles.

When executed, DSW(210) begins reading the switch data from the first of the
sixteen cycles, regardless of the point at which the last instruction was
stopped.

There is no restriction on the number of times that DSW(210) can appear in
the program (unlike the C200HX/HG/HE and CQM1H Series).

External Connections Connect the digital switch or thumbwheel switch to Input Unit contacts 0 to 7
and Output Unit contacts 0 to 4, as shown in the following diagram. The fol-
lowing example illustrates connections for an A7B Thumbwheel Switch.

The inputs and outputs can be connected to the following kinds of Basic I/O
Units and High-density I/O Units as long as they are not mounted in a SYS-
MAC BUS Remote I/O Rack.

• DC Input Units with 8 or more input points

• Transistor Output Units with 8 or more output points

1

3

5

7

9

11

13

15

COM

0

2

4

6

8

10

12

14

COM

ID212

1

3

5

7

9

11

13

15

COM

0

2

4

6

8

10

12

14

DC

OD212

1248

7 6 5 4 3 2 1 C

Input Unit

Switch no. 8

Output Unit

Note The data read signal is not connected in this example.

A7B
Thumbwheel
Switch
943

Basic I/O Unit Instructions Section 3-23
Timing Chart

Flags

Precautions Do not read or write the system word (C2) from any other instruction.
DSW(210) will not operate correctly if the system word is accessed by another
instruction. The system word is not initialized by DSW(210) in the first cycle
when program execution starts. If DSW(210) is being used from the first cycle,
clear the system word from the program.

DSW(210) will not operate correctly if I/O refreshing is not performed with the
Input Unit and Output Unit connected to the digital switch or thumbwheel
switch after DSW(210) is executed. Consequently, set the input time constant
for the Input Units used for the data line input word to a value that is shorter
than the cycle time, or do not connect the digital switch or thumbwheel switch
to the following Units.

• Basic I/O Units or High-density I/O Units mounted in a SYSMAC BUS
Remote I/O Slave Rack

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, DSW(210) is used to read an 8-digit number from a digital
switch and outputs the resulting value constantly to D00000 and D00001. The
digital switch is connected through CIO 0100 (allocated to a CS1W-ID211 16-
point DC Input Unit) and CIO 0200 (allocated to a CS1W-OD211 16-point
Transistor Output Unit).

D32000 is used as the system word.

00

01

02

03

04

05

O

100 101 102 103

D+1 D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I

Leftmost
4 digits

Rightmost
4 digits

Input data

CS signals

One Round Flag

RD (read) signal

16 cycles to complete one round of execution

Eight digits: 00 to 03, 04 to 07

Four digits: 00 to 03

When only 4 digits are read,
only word D is used.

Name Label Operation

Error Flag ER OFF

I

O

D

C1

C2

DSW(210)

0100

0200

D00000

#0001

D32000

P_On

Always ON Flag
944

Basic I/O Unit Instructions Section 3-23
3-23-6 TEN KEY INPUT – TKY(211)
Purpose Reads numeric data from a ten-key keypad connected to an Input Unit and

stores up to 8 digits of BCD data in the specified words.

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Applicable Program Areas

Operands I: Input Word (Data Line Inputs)
Specify the input word allocated to the Input Unit and connect the ten-key key-
pad’s 0 to 9 data lines to the Input Unit as shown in the following diagram.

D1: First Register Word
Specifies the leading word address where the ten-key keypad’s numeric input
(up to 8 digits) will be stored.

D2: Key Input Word
Bits 00 to 10 of D2 indicate key inputs. When one of the keys on the keypad (0
to 9) has been pressed, the corresponding bit of D2 (0 to 9) is turned ON. Bit
10 of D2 will be ON while any key is being pressed.

TKY(211)

I

D1

D2

I: Input word

D1: First register word

D2: Key input word

Variations Executed Each Cycle for ON Condition TKY(211)

Executed Once for Upward Differentiation @TKY(211)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

0123456789101112131415
−−−−−−I

0
1
2
3
4
5

9
8
7
6 Bits 00 to 09 correspond

to keys 0 to 9.

D1

815 1211 0347

D1+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8
945

Basic I/O Unit Instructions Section 3-23
D2: Key Input Word
Bits 00 to 10 of D2 indicate key inputs. When one of the keys on the keypad (0
to 9) has been pressed, the corresponding bit of D2 (0 to 9) is turned ON. Bit
10 of D2 will be ON while any key is being pressed.

Note TKY(211) does not require a system word, unlike other I/O instructions such
as HKY(212).

Operand Specifications

D1

815 1211 0347

D1+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

0123456789101112131415
−−−−−D2

0
1
2
3
4
5

9
8
7
6

ON when any
key is pressed.

ON when the corre-
sponding key is press-
ed. (Remains on until
another key is pressed.)

ON when the corre-
sponding key is press-
ed. (Remains on until
another key is pressed.)

Area I D1 D2

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6142

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15
946

Basic I/O Unit Instructions Section 3-23
Description TKY(211) reads numeric data from input word I, which is allocated to a ten-
key keypad connected to an Input Unit, and stores up to 8 digits of BCD data
in register words D1 and D1+1. In addition, each time that a key is pressed,
the corresponding bit in D2 (0 to 9) will be turned ON and remains ON until
another key is pressed. Bit 10 of D2 will be ON while any key is being pressed
and OFF when no key is being pressed.

The two-word register in D1 and D1+1 operates as an 8-digit shift register.
When a key is pressed on the ten-key keypad, the corresponding BCD digit is
shifted into the least significant digit of D1. The other digits of D1, D1+1 are
shifted left and the most significant digit of D1+1 is lost.

When executed, TKY(211) begins reading the key input data from the first
cycle, regardless of the point at which the last instruction was stopped.

When one of the keypad keys is being pressed, input from the other keys is
disabled.

There is no restriction on the number of times that TKY(211) can appear in
the program (unlike the C200HX/HG/HE and CQM1H Series).

External Connections Connect the ten-key keypad so that the switches for keys 0 through 9 are
input to contacts 0 through 9 of the Input Unit, as shown in the following dia-
gram.

The Input Unit must be a DC Input Unit or High-density Input Unit with at least
16 inputs and the Input Unit cannot be mounted in a SYSMAC BUS Remote
I/O Rack.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area I D1 D2

1

3

5

7

9

11

13

15

COM

0

2

4

6

8

10

12

14

COM

ID212

0 V

0

9

DC Input Unit

10-key
947

Basic I/O Unit Instructions Section 3-23
Timing Chart

Flags

Precautions TKY(211) will not operate correctly if I/O refreshing is not performed Input Unit
connected to the ten-key keypad after TKY(211) is executed. Consequently,
set the input time constant for the Input Units used for the data line input word
to a value that is shorter than the cycle time, or do not connect the ten-key
keypad to the following Units.

• Basic I/O Units or High-density I/O Units mounted in a SYSMAC BUS
Remote I/O Slave Rack

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, TKY(211) reads key inputs from a ten-key keypad and stores
the inputs in CIO 200 and CIO 201. The ten-key keypad is connected to
CIO 0100 (allocated to a CS1W-ID211 16-point DC Input Unit).

3-23-7 HEXADECIMAL KEY INPUT – HKY(212)
Purpose Reads numeric data from a hexadecimal keypad connected to an Input Unit

and Output Unit and stores up to 8 digits of hexadecimal data in the specified
words.

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 2

0 0 0 0 1 0 2 9

D1+1 D1

(1)

(2)

(3)

(4)

(1) (2) (3) (4)

00

01

02

09

00

01

02

09

10

to

I

to

D2

Input from 10-key

ON if a key is pressed.

"1" key input

"0" key input

"2" key input

"9" key input

Turn ON flags corre-
sponding to 10-key
inputs (The flags re-
main ON until the
next input.)

Before
execution

Name Label Operation

Error Flag ER OFF

I

D1

D2

TKY(211)

0100

0200

D00000

P_On

Always ON Flag
948

Basic I/O Unit Instructions Section 3-23
Ladder Symbol

Variations

Applicable Program Areas

Operands I: Input Word (Data Line D0 to D3 Inputs)
Specify the input word allocated to the Input Unit and connect the hexadeci-
mal keypad’s D0 to D3 data lines to the Input Unit as shown in the following
diagram.

O: Output Word (Selection Signal Outputs)

Specify the output word allocated to the Output Unit and connect the hexa-
decimal keypad’s selection signals to the Output Unit as shown in the follow-
ing diagram.

HKY(212)

I

O

D

C

I: Input word

O: Output word

D: First register word

C: System word

Variations Executed Each Cycle for ON Condition HKY(212)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

0123456789101112131415
−−−− −−−−−−−−I

0
1
2
3

Bits 00 to 03 correspond
to Input Unit inputs 0 to 3.

0123456789101112131415
−−−− −−−−−−−−O

0
1
2
3

Bits 00 to 03 correspond to
Output Unit outputs 0 to 3.
949

Basic I/O Unit Instructions Section 3-23
D: First Register Word
Specifies the leading word address where the hexadecimal keypad’s numeric
input (up to 8 digits) will be stored. (In addition, each time that a key is
pressed, the corresponding bit in D+2 (0 to F) will be turned ON and remains
ON until another key is pressed.)

C: System Word
Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

D

815 1211 0347

D+1

815 1211 0347

0123456789101112131415

D+2

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

ON when the corresponding key
is pressed. (Remains on until
another key is pressed.)

C

15 0

System word
(Cannot be accessed by the user.)

Area I O D C

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to CIO
6141

CIO 0000 to
CIO 6143

Work Area W000 to W511 W000 to W509 W000 to W511

Holding Bit Area H000 to H511 H000 to H509 H000 to H511

Auxiliary Bit Area A000 to
A957

A448 to
A959

A448 to A957 A448 to A959

Timer Area T0000 to T4095 T0000 to T4093 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4093 C0000 to C4095

DM Area D00000 to D32767 D00000 to
D32765

D00000 to
D32767

EM Area without
bank

E00000 to E32767 E00000 to
E32765

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32765
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)
950

Basic I/O Unit Instructions Section 3-23
Description HKY(212) outputs the selection signals to bits 00 to 03 of O, reads the data in
order from bits 00 to 03 of I, and stores up to 8 digits of hexadecimal data in
register words D and D+1.

HKY(212) inputs each digit in 3 to 12 cycles, and then starts over and contin-
ues inputting. In addition, each time that a key is pressed, the corresponding
bit in D+2 (0 to F) will be turned ON and remains ON until another key is
pressed.

HKY(212) determines which key is pressed by identifying which input is ON
when a given selection signal is ON, so it can take anywhere from 3 to 12
cycles for one hexadecimal digit to be read. After the key input is read,
HKY(212) starts over and reads another digit in the next 3 to 12 cycles.

When executed, HKY(212) begins reading the key input data from the first
selection signal, regardless of the point at which the last instruction was
stopped.

The two-word register in D1 and D1+1 operates as an 8-digit shift register.
When a key is pressed on the ten-key keypad, the corresponding hexadeci-
mal digit is shifted into the least significant digit of D1. The other digits of D1,
D1+1 are shifted left and the most significant digit of D1+1 is lost.

When one of the keypad keys is being pressed, input from the other keys is
disabled.

There is no restriction on the number of times that HKY(212) can appear in
the program (unlike the CQM1H Series).

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I O D C
951

Basic I/O Unit Instructions Section 3-23
External Connections Connect the hexadecimal keypad to Input Unit contacts 0 to 3 and Output Unit
contacts 0 to 3, as shown in the following diagram.

The inputs and outputs can be connected to the following kinds of Basic I/O
Units and High-density I/O Units as long as they are not mounted in a SYS-
MAC BUS Remote I/O Rack.

• DC Input Units with 8 or more input points

• Transistor Output Units with 8 or more output points

Timing Chart

1

3

5

7

9

11

13

15

COM

0

2

4

6

8

10

12

14

COM

ID212

1

3

5

7

9

11

13

15

COM

0

2

4

6

8

10

12

14

COM

OD212
C

8

4

0

D

9

5

1

E

A

6

2

F

B

3

7

Input Unit

Output Unit

00000000

D+1 D

0000

D+1

000F

D

0000

D+1

00F9

D

I

0

9

D+2
00

09

15
O

04

F

00
01
02
03

1 2 3 4 5 6 7 8 9 1011120

to

to

to

to

Once per 12 cycles

16-key

ON for a 12-cycle
period if a key is
pressed.

Turn ON flags corre-
sponding to input
keys (The flags re-
main ON until the
next input.)

Status of 16 keys

16-key selection
signals
952

Basic I/O Unit Instructions Section 3-23
Flags

Precautions Do not read or write the system word (C) from any other instruction. HKY(212)
will not operate correctly if the system word is accessed by another instruc-
tion. The system word is not initialized by HKY(212) in the first cycle when
program execution starts. If HKY(212) is being used from the first cycle, clear
the system word from the program.

HKY(212) will not operate correctly if I/O refreshing is not performed with the
Input Unit and Output Unit connected to the hexadecimal keypad after
HKY(212) is executed. Consequently, set the input time constant for the Input
Units used for the data line input word to a value that is shorter than the cycle
time, or do not connect the hexadecimal keypad to the following Units.

• Basic I/O Units or High-density I/O Units mounted in a SYSMAC BUS
Remote I/O Slave Rack

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, HKY(212) reads up to 8 digits of hexadecimal data from a
hexadecimal keypad and stores the data in D00000 and D00001. The hexa-
decimal keypad is connected through CIO 0100 (allocated to a CS1W-ID211
16-point DC Input Unit) and CIO 0200 (allocated to a CS1W-OD211 16-point
Transistor Output Unit). D32000 is used as the system word.

3-23-8 MATRIX INPUT: MTR(213)
Purpose Inputs up to 64 signals from an 8 × 8 matrix connected to an Input Unit and an

Output Unit (using 8 input points and 8 output points) and stores that 64-bit
data in the 4 destination words.

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

I

O

D

C

HKY(212)

0100

0200

D00000

D32000

P_On

Always ON Flag

MTR(213)

I

O

D

C

I: Input word

O: Output word

D: First destination word

C: System word

Variations Executed Each Cycle for ON Condition MTR(213)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
953

Basic I/O Unit Instructions Section 3-23
Operands I: Input Word
Specify the input word allocated to the Input Unit and connect the 8 input sig-
nal lines to the Input Unit as shown in the following diagram.

O: Output Word (Selection Signal Outputs)

Specify the output word allocated to the Output Unit and connect the 8 selec-
tion signals to the Output Unit as shown in the following diagram.

D: First Register Word
Specifies the leading word address of the 4 words that contain the data from
the 8 × 8 matrix.

0123456789101112131415

I

0
1
2
3
4
5
6
7

−−−−−−−−

Bits 00 to 07 correspond to
Input Unit inputs 0 to 7.

0123456789101112131415

O

0
1
2
3
4
5
6
7

−−−−−−−−

Bits 00 to 07 correspond to
Output Unit outputs 0 to 7.

0123456789101112131415

D

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

0123456789101112131415

D+1

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

Bits 00 to 15 correspond to
matrix elements 0 to 15.

Bits 00 to 15 correspond to
matrix elements 16 to 31.
954

Basic I/O Unit Instructions Section 3-23
C: System Word
Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

0123456789101112131415

D+2

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

0123456789101112131415

D+3

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

Bits 00 to 15 correspond to
matrix elements 32 to 47.

Bits 00 to 15 correspond to
matrix elements 48 to 63.

C

15 0

System word
(Cannot be accessed by the user.)

Area I O D C

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to CIO
614

CIO 0000 to
CIO 6143

Work Area W000 to W511 W000 to W508 W000 to W511

Holding Bit Area H000 to H511 H000 to H508 H000 to H511

Auxiliary Bit Area A000 to
A959

A448 to
A959

A448 to A956 A448 to A959

Timer Area T0000 to T4095 T0000 to T4092 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4092 C0000 to C4095

DM Area D00000 to D32767 D00000 to
D32764

D00000 to
D32767

EM Area without
bank

E00000 to E32767 E00000 to
E32764

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15
955

Basic I/O Unit Instructions Section 3-23
Description MTR(213) outputs the selection signals to bits 00 to 07 of O, reads the data in
order from bits 00 to 07 of I, and stores the 64 bits of data in the 4 words D
through D+3. MTR(213) reads the status of the 64-bit matrix every 24 CPU
Unit cycles. The One Round Flag (bit 08 of O) is turned ON for one cycle in
every 24 cycles after each of the selection signals has been turned ON.

When executed, MTR(213) begins reading the matrix status from the begin-
ning of the matrix, regardless of the point at which the last instruction was
stopped.

There is no restriction on the number of times that MTR(213) can appear in
the program (unlike the C200HX/HG/HE and CQM1H Series).

External Connections Connect the hexadecimal keypad to Input Unit contacts 0 to 3 and Output Unit
contacts 0 to 3, as shown in the following diagram.

The inputs and outputs can be connected to the following kinds of Basic I/O
Units and High-density I/O Units as long as they are not mounted in a SYS-
MAC BUS Remote I/O Rack.

• DC Input Units with 8 or more input points

• Transistor Output Units with 8 or more output points

Index Registers ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I O D C

A8 A7 A6 A5 A4 A3 A2 A1 A0

A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

OD212

ID211 I/O Unit

1st row

7th row

8th row
956

Basic I/O Unit Instructions Section 3-23
Timing Chart

Flags

Precautions Do not read or write the system word (C) from any other instruction.
MTR(213) will not operate correctly if the system word is accessed by another
instruction. The system word is not initialized by MTR(213) in the first cycle
when program execution starts. If MTR(213) is being used from the first cycle,
clear the system word from the program.

MTR(213) will not operate correctly if I/O refreshing is not performed with the
Input Unit and Output Unit connected to the external matrix after MTR(213) is
executed. Consequently, set the input time constant for the Input Units used
for the data line input word to a value that is shorter than the cycle time, or do
not connect the external matrix to the following Units.

• Basic I/O Units or High-density I/O Units mounted in a SYSMAC BUS
Remote I/O Slave Rack

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, MTR(213) reads the 64 bits of data from the 8 × 8 matrix and
stores the data in W000 to W003. The 8 × 8 matrix is connected through
CIO 0100 (allocated to a CS1W-ID211 16-point DC Input Unit) and CIO 0200
(allocated to a CS1W-OD211 16-point Transistor Output Unit). D32000 is
used as the system word.

3-23-9 7-SEGMENT DISPLAY OUTPUT – 7SEG(214)
Purpose Converts the source data (either 4-digit or 8-digit BCD) to 7-segment display

data, and outputs that data to the specified output word.

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

00
01
02
03
04
05
06
07
00
32
64
00
32
64
08

:

:

:

:

One round completed in 24 cycles

Selection signals

Matrix status

One Round Flag

Bits indicating status of inputs
(Bit ON when input is ON)

Name Label Operation

Error Flag ER OFF

I

O

D

C

MTR(213)

0100

0200

W000

D32000

P_On

Always ON Flag
957

Basic I/O Unit Instructions Section 3-23
Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word
Specify the first source word containing the data that will be converted to 7-
segment display data.

O: Output Word (Data and Latch Outputs)

Specify the output word allocated to the Output Unit and connect the 7-seg-
ment display to the Output Unit as shown in the following diagram.

• Converting 4 digits

• Converting 8 digits

7SEG(214)

S

O

C

D

S: Source word

O: Output word

C: Control data

D: System word

Variations Executed Each Cycle for ON Condition 7SEG(214)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

S

815 1211 0347

S+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

0123456789101112131415
−− −−−−−O

D0
D1
D2
D3

LE3
LE2
LE1
LE0

4-digit data outputLatch outputs

One Round Flag

0123456789101112131415
−−−O

D0
D1
D2
D3

LE3
LE2
LE1
LE0

D0
D1
D2
D3

Leftmost 4-digit data output

Rightmost 4-digit data output

Latch outputs

One Round Flag
958

Basic I/O Unit Instructions Section 3-23
C: Control Data
The value of C indicates the number of digits of source data and the logic for
the Input and Output Units, as shown in the following table. (The logic refers to
the transistor output’s NPN or PNP logic.)

D: System Word
Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

Source data Display’s data input logic Display’s latch input logic C

4 digits (S) Same as Output Unit Same as Output Unit 0000

Different from Output Unit 0001

Different from Output Unit Same as Output Unit 0002

Different from Output Unit 0003

8 digits
(S, S+1)

Same as Output Unit Same as Output Unit 0004

Different from Output Unit 0005

Different from Output Unit Same as Output Unit 0006

Different from Output Unit 0007

D

15 0

System word
(Cannot be accessed by the user.)

Area S O C D

CIO Area CIO 0000 to CIO 6143 --- CIO 0000 to
CIO 6143

Work Area W000 to W511 --- W000 to W511

Holding Bit Area H000 to H511 --- H000 to H511

Auxiliary Bit Area A000 to
A959

A448 to
A959

--- A448 to A959

Timer Area T0000 to T4095 --- T0000 to T4095

Counter Area C0000 to C4095 --- C0000 to C4095

DM Area D00000 to D32767 --- D00000 to D32767

EM Area without
bank

E00000 to E32767 --- E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

--- En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- --- 0000 to
0007

Data Registers --- DR0 to
DR15

--- DR0 to DR15
959

Basic I/O Unit Instructions Section 3-23
Description 7SEG(214) reads the source data, converts it to 7-segment display data, and
outputs that data (as leftmost 4 digits D0 to D3, rightmost 4 digits D0 to D3,
latch output signals LE0 to LE3) to the 7-segment display connected to the
output indicated by O. The value of C indicates the number of digits of source
data (either 4-digit or 8-digit) and the logic for the Input and Output Units.

7SEG(214) displays the 4-digit or 8-digit data in 12 cycles, and then starts
over and continues displaying the data.

The One Round Flag (bit 08 of O when converting 4 digits, bit 12 of O when
converting 8 digits) is turned ON for one cycle in every 12 cycles after
7SEG(214) has turned ON each of the latch output signals. After the 7-seg-
ment data is output in 12 cycles, 7SEG(214) starts over and converts the
present contents of the source word(s) in the next 12 cycles.

When executed, 7SEG(214) begins on latch output 0 at the beginning of the
round, regardless of the point at which the last instruction was stopped.

Even if the connected 7-segment display has fewer than 4 digits or 8 digits in
its display, 7SEG(214) will still output 4 digits or 8 digits of data.

External Connections Connect the 7-segment display to the Output Unit as shown in the following
diagram. This example shows an 8-digit display. With a 4-digit display, the
data outputs (D0 to D3) would be connected to outputs 0 to 3 and the latch
outputs (LE0 to LE3) would be connected to outputs 4 to 7. Output point 12
(for 8-digit display) or output point 8 (for 4-digit display) will be turned ON
when one round of data has been output, but it is not necessary to connect
them unless required by the application.

Index Registers ---

Indirect addressing
using Index Regis-
ters

IR0 to IR15, –2048 to
+2047, IR0 to IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0
to –2048 to +2047
,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(– –
)IR15

Area S O C D
960

Basic I/O Unit Instructions Section 3-23
The inputs and outputs can be connected to the following kinds of Basic I/O
Units and High-density I/O Units as long as they are not mounted in a SYS-
MAC BUS Remote I/O Rack.

• 4-digit display: Transistor Output Units with 8 or more output points

• 8-digit display: Transistor Output Units with 16 or more output points

Timing Chart

Flags

1

3

5

7

9

11

13

15

COM

0

2

4

6

8

10

12

14

DC

OD212

D0
D1
D2
D3

VDD
(+)
VSS
(0)

LE3 LE2 LE1 LE0

D0
D1
D2
D3

VDD
(+)
VSS
(0)

LE3 LE2 LE1 LE0

7-segment display
Leftmost 4 digits Rightmost 4 digits

Output Unit

Function Bit(s) in O Output status (Data and latch logic depends on C)

(4 digits, 1
block)

(4 digits, 2
blocks)

Latch output 2

Latch output 3

One Round Flag

Latch output 1

Latch output 0

Data output

06

07

08

05

04

00 to 03

10

11

12

09

08

00 to 03
04 to 07 100 101 102 103

1 2 3 4 5 6 7 8 9 10 11 12 1

12 cycles required to complete one round

Note 0 to 3: Data output for word S
4 to 7: Data output for word S+1

Name Label Operation

Error Flag ER OFF
961

Basic I/O Unit Instructions Section 3-23
Precautions Do not read or write the system word (D) from any other instruction.
7SEG(214) will not operate correctly if the system word is accessed by
another instruction. The system word is not initialized by 7SEG(214) in the
first cycle when program execution starts. If 7SEG(214) is being used from
the first cycle, clear the system word from the program.

7SEG(214) will not operate correctly if I/O refreshing is not performed with the
Output Unit connected to the 7-segment display after 7SEG(214) is executed.
Consequently, do not connect the external matrix to the following Units.

• Basic I/O Units or High-density I/O Units mounted in a SYSMAC BUS
Remote I/O Slave Rack

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, 7SEG(214) converts the 8 digits of BCD data in D00100 and
D00101 and outputs the data through CIO 0100 to a 7-segment display con-
nected to a CS1W-OD211 16-point Transistor Output Unit.

There are 8 digits of data being output and the 7-segment display’s logic is the
same as the Output Unit’s logic, so the control data (C) is set to 0004. D32000
is used as the system word, D.

3-23-10 INTELLIGENT I/O READ: IORD(222)
Purpose Reads the contents of memory area of a Special I/O Unit or CPU Bus Unit

(see note).

Note There are restrictions in functionality for CPU Bus Units. Refer to Restrictions
later in this section.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Depends on Special I/O Unit or CPU Bus Unit.
S: Special I/O Unit: 0000 to 005F hex

(to specify unit numbers 0 to 95)

S

O

C

D

7SEG(214)

D00100

0100

004

D32000

P_On

Always ON Flag

IORD(222)

C

S

D

C: Control data

S: Transfer source and number of words

D: Transfer destination

Variations Executed Each Cycle for ON Condition IORD(222)

Executed Once for Upward Differentiation @IORD(222)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
962

Basic I/O Unit Instructions Section 3-23
CPU Bus Unit: 8000 to 800F hex
(to specify unit numbers 0 to F hex)

S+1: Number of words to transfer
(0001 to 0080 Hex, depends on Special I/O Unit or CPU Bus Unit)

Operand Specifications

Description IORD(222) reads the number of words designated in S+1 from the memory
area of the Special I/O Unit or CPU Bus Unit whose unit number is designated
by S and outputs the data to D. Only Special I/O Units or CPU Bus Units
mounted on CPU Racks or Expansion I/O Racks can be designated. Refer to
the operation manual of the Special I/O Unit or CPU Bus Unit from which data
is being read for specific details for each Unit.

S+1 S
S+1: Leftmost 4 digits
S: Rightmost 4 digits

Area C S D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6142

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
963

Basic I/O Unit Instructions Section 3-23
Restrictions The following restrictions apply to reading from a CPU Bus Unit.

■ Restrictions on the CPU Unit

CS1-H CPU Units

Reading from a CPU Bus Unit is possible only for the following models of CPU
Unit and only for CPU Units manufactured on or after 18 April 2003 (lot num-
ber 030418 or later).

• CS1G-CPU@@H

• CS1H-CPU@@H

The manufacturing date can be confirmed using the lot number given on the
side or bottom of the CPU Unit. Lot numbers indicate the manufacturing date
as follows:

YYMMDD nnnn

YY = Rightmost two digits of the year, MM = Month as a numeric value,
DD = Day of month, nnnn = Serial number

CJ1-H, CJ1M, and CS1D CPU Units

Reading from a CPU Bus Unit is possible only for CPU Unit Ver. 2.0 or later.

Note If IORD(222) is executed for a CPU Bus Unit running under a CPU Unit that
does not support using IORD(222) for CPU Bus Units, an error will occur and
the ER Flag will turn ON.

■ Restrictions on the CX-Programmer

Unit numbers for CPU Bus Units can be specified for S with CX-Programmer
version 3.0 or higher.

S
S+1

Unit number of Special I/O Unit
or CPU Bus Unit

Desig-
nated
number
of words
read.
964

Basic I/O Unit Instructions Section 3-23
Flags

Precautions The Equals Flag will turn ON if the reading operation is completed normally.

The Equals Flag will turn OFF if the reading operation cannot be completed
normally due to the Special I/O Unit or CPU Bus Unit being busy.

Whenever any of the following occur, an error will occur and the Error Flag will
turn ON.

• The number of words to transfer (S) is outside the range of 0001 to 0080
(hex).

• The unit number (S) is outside the range of 0000 to 005F hex or 8000 to
800F hex.

• The designated Special I/O Unit is on SYSMAC BUS.

• A Special I/O Unit or CPU Bus Unit not affected by IORD(222) is desig-
nated.

• A Special I/O Unit with a Special I/O Unit setting error or a Special I/O
Unit error is designated.

• A CPU Bus Unit with a CPU Bus Unit setting error or a CPU Bus Unit
error is designated.

When IORD(222) is executed, the execution results are reflected in the condi-
tion flags. In particular, the Equals Flag turns ON when reading is completed.
Input the condition flags such as the Equals Flag with output branching from
the same input conditions as the IORD(222) instruction.

If the Special I/O Unit or CPU Bus Unit is busy, the reading operation will not
be executed. Use the Equals Flag to create a self-maintaining program, as
shown below, so that IORD(222) will be executed with each cycle until the
reading operation is executed.

Name Label Operation

Error Flag ER ON if the number of words to transfer (S) is outside the
range of 0001 to 0080 hex.

ON if the unit number (S) is outside the range of 0000 to
005F hex or 8000 to 800F hex.
ON if the designated Special I/O Unit is on SYSMAC
BUS.
ON if a Special I/O Unit or CPU Bus Unit not affected by
IORD(222) is designated.

ON if a Special I/O Unit with a Special I/O Unit setting
error or a Special I/O Unit error is designated.
ON if a CPU Bus Unit with a CPU Bus Unit setting error or
a CPU Bus Unit error is designated.
With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.

OFF in all other cases.

Equals Flag = ON if reading operation is completed normally.

OFF if reading operation is not completed normally.
965

Basic I/O Unit Instructions Section 3-23
When the input condition is met, self maintenance is performed by output A
and IORD(222) is executed with each cycle until the Equals Flag turns ON.
When the reading is completed and the Equals Flag turns ON, output B turns
ON and the self maintenance is cleared.

Be sure to place condition flags directly after IORD(222) instructions, and not
after any other instructions. If a condition flag is placed after another instruc-
tion, it will be affected by the execution results of that instruction.

IORD(222) can be used in an interrupt task, which allows high-speed pro-
cessing of specific I/O data with an interrupt. If IORD(222) is used in an inter-
rupt task, always disable cyclic refreshing of the specified Special I/O Unit by
turning ON the corresponding Special I/O Unit Cyclic Refreshing Disable Bit in
the PLC Setup.

When cyclic refreshing of the specified Special I/O Unit is enabled in the PLC
Setup (the corresponding Special I/O Unit Cyclic Refreshing Disable Bit is
OFF), a non-fatal Duplicate Refresh Error will occur and the Interrupt Task
Error Flag (A40213) will go ON in the following cases.

• Words allocated to the same Special I/O Unit were already refreshed by
IORF(097) or FIORF(225) (CJ1-H-R CPU Units only).

• Words allocated to the same Special I/O Unit were read or written by
IORD(222) or IOWR(223).

B

IORD

C

S

= B

D

A

A

966

Basic I/O Unit Instructions Section 3-23
Example In this example, IORD(222) is used to read data.

3-23-11 INTELLIGENT I/O WRITE: IOWR(223)
Purpose Outputs the contents of the CPU Unit’s I/O memory area to a Special I/O Unit

or CPU Bus Unit (see note).

Note There are restrictions in functionality for CPU Bus Units. Refer to Restrictions
later in this section.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Depends on Special I/O Unit or CPU Bus Unit.
D: Special I/O Unit: 0000 to 005F hex

(to specify unit numbers 0 to 95)
CPU Bus Unit: 8000 to 800F hex

(to specify unit numbers 0 to F hex)

S+1 S
S

CPU Unit Special I/O Unit (Unit #3)

10 words

The control code (C) varies depending on the Special I/O Unit.

Number of words
to transfer: 10

Unit number: 3

When CIO 000000 is turned ON, 10 words are read from the Special
I/O Unit with unit number 3, and are stored in D00100 to D00109.

IOWR(223)

C

S

D

C: Control data

S: Transfer source and number of words

D: Transfer destination and number of words

Variations Executed Each Cycle for ON Condition IOWR(223)

Executed Once for Upward Differentiation @IOWR(223)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
967

Basic I/O Unit Instructions Section 3-23
D+1: Number of words to transfer
(0000 to 0080 Hex, depends on Special I/O Unit or CPU Bus Unit)

Operand Specifications

Description IOWR(223) writes the designated number of words (D) from the first source
word (designated by S) onwards and outputs them to the Special I/O Unit or
CPU Bus Unit that has the unit number designated by D. Only Special I/O
Units or CPU Bus Units mounted on CPU Racks or Expansion I/O Racks can
be designated.

D+1 D
D+1: Leftmost 4 digits
D: Rightmost 4 digits

Area C S D

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO
6142

Work Area W000 to W511 W000 to W510

Holding Bit Area H000 to H511 H000 to H510

Auxiliary Bit Area A000 to A959 A000 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D00000 to D32767 D00000 to
D32766

EM Area without bank E00000 to E32767 E00000 to
E32766

EM Area with bank En_00000 to En_32767

(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15 --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
968

Basic I/O Unit Instructions Section 3-23
Restrictions The following restrictions apply to reading from a CPU Bus Unit.

■ Restrictions on the CPU Unit

CS1-H CPU Units

Writing to a CPU Bus Unit is possible only for the following models of CPU
Unit and only for CPU Units manufactured on or after 18 April 2003 (lot num-
ber 030418 or later).

• CS1G-CPU@@H

• CS1H-CPU@@H

The manufacturing date can be confirmed using the lot number given on the
side or bottom of the CPU Unit. Lot numbers indicate the manufacturing date
as follows:

YYMMDD nnnn

YY = Rightmost two digits of the year, MM = Month as a numeric value,
DD = Day of month, nnnn = Serial number

CJ1-H, CJ1M, and CS1D CPU Units

Writing to a CPU Bus Unit is possible only for CPU Unit Ver. 2.0 or later.

Note If IOWR(223) is executed for a CPU Bus Unit running under a CPU Unit that
does not support using IOWR(223) for CPU Bus Units, an error will occur and
the ER Flag will turn ON.

■ Restrictions on the CX-Programmer

Unit numbers for CPU Bus Units can be specified for S with CX-Programmer
version 3.0 or higher.

D
D+1

Desig-
nated
number of
words
written.

Unit number of Special I/O Unit or CPU Bus Unit
969

Basic I/O Unit Instructions Section 3-23
Flags

Precautions When “0001” is designated for the number of words to be transferred (D+1),
the data for S can be designated by a constant. If a constant is designated for
S when the number of words to be transferred is not “0001,” an error will occur
and the Error Flag will turn ON.

The Equals Flag will turn ON if the writing operation is completed normally.

The Equals Flag will turn OFF if the writing operation cannot be completed
normally due to the Special I/O Unit or CPU Bus Unit being busy.

Whenever any of the following occur, an error will occur and the Error Flag will
turn ON.

• There is an I/O Unit verification error, a Special I/O Unit setting error, a
Special I/O Unit setting error, or a Special I/O Unit error at the Special I/O
Unit.

• There is an I/O Unit verification error, a CPU Bus Unit setting error, a CPU
Bus Unit setting error, or a CPU Bus Unit error at the CPU Bus Unit.

• The number of words to transfer (D) is outside the range of 0001 to 0080
(hex).

• The unit number (D) is outside the range of 0000 to 005F hex or 8000 to
800F hex.

• The designated Special I/O Unit is on SYSMAC BUS.

• A Special I/O Unit or CPU Bus Unit not affected by IOWR(223) is desig-
nated.

• A Special I/O Unit with a Special I/O Unit setting error or a Special I/O
Unit error is designated.

• A CPU Bus Unit with a CPU Bus Unit setting error or a CPU Bus Unit
error is designated.

When IOWR(223) is executed, the execution results are reflected in the condi-
tion flags. In particular, the Equals Flag turns ON when reading is completed.
Input the condition flags such as the Equals Flag with output branching from
the same input conditions as the IOWR(223) instruction.

If the Special I/O Unit or CPU Bus Unit is busy, the writing operation will not be
executed. Use the Equals Flag to create a self-maintaining program, as

Name Label Operation

Error Flag ER ON if the number of words to transfer (D) is outside the
range of 0001 to 0080 hex.

ON if the unit number (D) is outside the range of 0000 to
005F hex or 8000 to 800F hex.
ON if S is designated by a constant when the number of
words to be transferred (D+1) is not 0001 hex.
ON if the designated Special I/O Unit is on SYSMAC
BUS.

ON if a Special I/O Unit or CPU Bus Unit not affected by
IOWR(223) is designated.
ON if a Special I/O Unit with a Special I/O Unit setting
error or a Special I/O Unit error is designated.
ON if a CPU Bus Unit with a CPU Bus Unit setting error or
a CPU Bus Unit error is designated.

With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.
OFF in all other cases.

Equals Flag = ON if writing operation is completed normally.
OFF if writing operation is not completed normally.
970

Basic I/O Unit Instructions Section 3-23
shown below, so that IOWR(223) will be executed with each cycle until the
writing operation is executed.

When the input condition is met, self maintenance is performed by output A
and IOWR(223) is executed with each cycle until the Equals Flag turns ON.
When the writing is completed and the Equals Flag turns ON, output B turns
ON and the self maintenance is cleared.

Be sure to place condition flags directly after IOWR(223) instructions, and not
after any other instructions. If a condition flag is placed after another instruc-
tion, it will be affected by the execution results of that instruction.

IOWR(223) can be used in an interrupt task, which allows high-speed pro-
cessing of specific I/O data with an interrupt. If IOWR(223) is used in an inter-
rupt task, always disable cyclic refreshing of the specified Special I/O Unit by
turning ON the corresponding Special I/O Unit Cyclic Refreshing Disable Bit in
the PLC Setup.

When cyclic refreshing of the specified Special I/O Unit is enabled in the PLC
Setup (the corresponding Special I/O Unit Cyclic Refreshing Disable Bit is
OFF), a non-fatal Duplicate Refresh Error will occur and the Interrupt Task
Error Flag (A40213) will go ON in the following cases.

• Words allocated to the same Special I/O Unit were already refreshed by
IORF(097) or FIORF(225) (CJ1-H-R CPU Units only).

• Words allocated to the same Special I/O Unit were read or written by
IORD(222) or IOWR(223).

B
IOWR

C

S

= B

D

A

A

971

Serial Communications Instructions Section 3-24
Example In this example, IOWR(223) is used to write data.

3-24 Serial Communications Instructions
This section describes instructions used for serial communications.

3-24-1 Serial Communications
There are two types of serial communications instruction. The TXD(236),
RXD(235), TXDU(256), and RXDU(255) instructions send and receive data in
no-protocol (custom) communications with an external device. PMCR(260)
sends and receives data using user-defined protocols with an external device.
The difference is shown in the following tables.

Note 1. The TXD(236) and RXD(235) instructions transfer data only through the
CPU Unit’s built-in serial port or a serial port on a Serial Communications
Board (Ver. 1.2 or later).

2. The TXDU(256) and RXDU(255) instructions transfer data only through a
Serial Communications Unit (Ver. 1.2 or later).

D

D+1 D

CPU Unit

When CIO 000000 is turned ON, the 10 words in D00100 to
D00109 are written to the Special I/O Unit.

Number of words
to transfer: 10

Unit number: 3

The control code (C) varies depending on the Special I/O Unit.

Special I/O Unit (Unit #3)

10 words

Instruction Mnemonic Function code Page

PROTOCOL MACRO PMCR 260 974

TRANSMIT TXD 236 983

RECEIVE RXD 235 993

TRANSMIT VIA SERIAL COMMU-
NICATIONS UNIT

TXDU 256 1005

RECEIVE VIA SERIAL COMMU-
NICATIONS UNIT

RXDU 255 1013

CHANGE SERIAL PORT SETUP STUP 237 1021
972

Serial Communications Instructions Section 3-24
Instructions Communications frames Function

TXD(236),
RXD(235),
TXDU(256),
and
RXDU(255)

Sends or receives data in one direction only.
A send delay can be set.

PMCR(260) Up to 16 steps can be defined for sending
and receiving.
Steps can be changed and retry processing
performed based on responses.

Communications monitoring times can be
set.
Symbols can be read/written for the PLC.

Repeat symbols can be used.
Other.

Instructions Mode Communications ports

TXD(236)
and
RXD(235)

No-protocol
(custom)

TXDU(256)
and
RXDU(255)

No-protocol
(custom)

PMCR(260) Protocol macro

Data Data

Data Data

Only End Code
Data Data

Any of the following can be used.
No Start or End Code Start and End Code

Only Start Code CR+LF End Code

Start and CR+LF End Code

Header Address

The following type of frames (messages) can be created
to meet the requirements of the external device.

 Data Error check Terminator

Communications steps
can be created.

I/O memory

Read/write

TXD(236)/
RXD(235)

RXD(235)

TXD(236)

TXD(236) and RXD(235)
use serial ports on the
CPU Unit or Serial
Communications Boards
(Ver. 1.2 or later).

Serial port in CPU Unit or Serial Communications Board
CPU Unit

TXDU/RXDU

RXD

TXD

Serial Port of Serial Communications Unit (Version 1.2 or later)

CPU UnitSerial Communications unit

Serial Commu-
nications Board

Serial Communications Board (CS Series
 only)

Receive

Send

Send

Receive

Serial Communications Unit

Serial Communications Unit
973

Serial Communications Instructions Section 3-24
3-24-2 PROTOCOL MACRO: PMCR(260)
Purpose Calls and executes a communications sequence registered in a Serial Com-

munications Board (CS Series only) or Serial Communications Unit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C1: Control Word 1 and C2: Control Word 2
The contents of the two control words are shown below.

Note Refer to Automatic Allocation of Communications Ports on page 1032 for
details on using automatic allocation of the communications port number (log-
ical port).

S: First Send Word and Send Area

The first word of the words required to send data is specified. S contains the
number of words to be sent +1 (i.e., including the S word) and send data
starts in S+1. Between 0000 and 00FA hex (0 and 250 decimal) words can be
sent.

If there is no operand specified in the execution sequence, such as a direct or
linked word, specify the constant #0000 for S. If a word address or register is

PMCR(260)

C1

C2

S

R

C1: Control word 1

C2: Control word 2

S: First send word

R: First receive word

Variations Executed Each Cycle for ON Condition PMCR(260)

Executed Once for Upward Differentiation @PMCR(260)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C1

15 0

C2

Unit address of communications partner
CS1 CPU Bus Unit: Unit number + 10 hex
Inner Board: E1 hex (CS Series only)

Serial port number (physical port)
1 to 2 hex (1 hex: Port 1, 2 hex: Port 2)

Communications port number (logical port)
0 to 7 hex (F hex: Automatic allocation)

Communications sequence number
0000 to 03E7 hex (000 to 999 decimal)
974

Serial Communications Instructions Section 3-24
specified, the data in the word or register must always be 0000. An error will
occur and the Error Flag will turn ON if any other constant or a word address
is given and PMCR(260) will not be executed.

R: First Receive Word and Receive Area

Received data is automatically stored in words starting with R+1 and the num-
ber of words received plus R (i.e., including R) is automatically written to R
between 0000 and 00FA hex (0 and 250 decimal).

Setting Before Executing PMCR

Set the data specified by m (beginning with D) as the initial data for the
receive buffer (backup data for receive failure). Data m can be set to 0002 to
00FA (hex) (2 to 255). If 0000 (hex) or 0001 (hex) is specified for m, the initial
value of the receive buffer will be cleared to 0.

Always set a word address for R even if there is no receive data. If a constant
is set, an error will occur, the Error Flag will turn ON, and PMCR(260) will not
be executed. If there is no receive data, R will not be used and can be used for
other purposes.

If there is no operand specified in the execution sequence, such as a direct or
linked word, specify the constant #0000 for R. If a word address or register is
specified, the data in the word or register must always be 0000.

Operand Specifications

to

Number of send words + 1

n words of data must be
prepared in advance.

R

to
The m words of data that is
received is stored here.

Number of received words +1

Area C1 C2 S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)
975

Serial Communications Instructions Section 3-24
Description PMCR(260) will execute the communications sequence specified in C2 using
the logical port specified in bits 12 to 15 of C1 and the physical port specified
in bits 8 to 11 of C1 for the unit address specified in bits 0 to 7 of C1.

If a symbol is specified as the operand for a send message, the number of
send words specified in S and beginning from S+1 will be used as the send
area. If a symbol is specified as the operand for a receive message, receive
data is placed in memory staring with R+1 and the number of words received
is automatically written to R if the transmission is successful.

If the transmission fails, the data (R+1 onward) set before PMCR(260) was
executed will be read from the receive buffer and stored in the R+1 onward
again.

Flags

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified
values only

0000 to
03E7Hex
(0 to 999)

#0000 (binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C1 C2 S R

R

to

to

CPU Unit

External
device

Serial Communications Unit

Port

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the specified logical port when PMCR(260) is executed.
ON if C1 is not within the specified ranges. (Error flag will
not turn ON if the C2 data is outside the specified ranges.
The end code will be stored in the Communications Port
Completion Code (A203 to A210) of the auxiliary area.)

ON if the number of words of S or R exceeds 249 (when
words are specified).
OFF in all other cases.
976

Serial Communications Instructions Section 3-24
Precautions The data in the send area specified with S is actually sent using the symbol
read option, R(), in a send message.

Data is actually received to the receive area specified by R using the symbol
write option, W(), in a receive message.

Refer to the CX-Protocol Operation Manual (W344) for procedures for desig-
nating symbols R() and W().

PMCR(260) can be executed for a serial communications port on a Serial
Communications Board (CS Series only) or Serial Communications Unit. Up
to 16 Serial Communications Units can be mounted to the CPU Rack and
Expansion I/O Racks. The Unit address of the communications partner must
be set in bits 0 to 7 of C1 to specify which Unit/Board is to be used and the
serial port number must be set in bits 8 to 11. Unit addresses are specified as
shown in the following table.

The corresponding Protocol Macro Execution Flag will turn ON at the start of
PMCR(260) execution. It will turn OFF after the communications sequence
has been completed and data has been written to the specified receive area.
A N.C. input for the corresponding Protocol Macro Execution Flag should be
used as part of the execution condition whenever executing PMCR(260) to be
sure that only one communications sequence is being executed at the same
time for the same physical port. An example is shown below.

SEND(090), RECV(098), and CMND(490) also use the logical ports 0 to 7 to
execution communications sequences through Serial Communications Unit
and Boards (internally using FINS commands). PMCR(260) cannot be exe-
cuted for a logical port that is already being used by SEND(090), RECV(098),
CMND(490)or PMCR(260). To prevent more than one communications
sequence from being executed for the same logical port, the corresponding
Communications Port Enable Flag (A20200 to A20207) should be used as a
N.O. input in the execution condition for PMCR(260), as shown in the above
diagram.

Unit/Board Unit address

Serial Communications Board
(CS Series only)

E1 hex

Serial Communications Unit Unit number + 10 hex

Serial Communications Units
Serial Communications Board

(CS Series only)

E1 hex (CS Series only)

Unit No. + 10 hex

Unit address

PMCR(260)

Communications Port
Enabled Flag

Protocol Macro
Execution Flag

Execution
condition
977

Serial Communications Instructions Section 3-24
The Error Flag will turn ON in the following cases.

• The corresponding Communications Port Enable Flag is OFF for the
specified logical port (0 to 7) when PMCR(260) is executed.

• C1 is not within the specified ranges.

Designation of Receive Area

Before executing PMCR(260), users must set backup data in the receive area
for receive processing failure. Once the PMCR(260) is executed, the data in
the receive buffer is automatically stored in the receive area. One example of
the backup data application is as follows: A certain value (backup data) is set
in advance so that the present value will not be read as zero when transmis-
sion failure occurs while protocol is being executed for reading the present
value of a controller.

Related Flags and Words The following flags and words can be used as required when executing
PMCR(260).

Auxiliary Area

PMCR(260)

PMCR(260)

CPU Unit

Name Address Contents

Communications Port
Enabled Flag

A20200 to
A20207

ON when network communications are
enabled (including PMCR(260).
Bits 00 to 07 correspond to logical ports
0 to 7, respectively.
A Communications Port Enabled Flag
will turn OFF when network communi-
cations are started and will turn ON
when they are completed (regardless of
whether communications end normally
or in error.
978

Serial Communications Instructions Section 3-24
Communications Responses

Communications Port Error
Flag

A21900 to
A21907

ON when an error occurs in network
communications.

Bits 00 to 07 correspond to logical ports
0 to 7, respectively.
Flag status will be maintained until the
next network communications start.
The flag will turn OFF when communi-
cations start again even if an error
occurred for the last execution.

Communications Port Com-
pletion Codes

A203 to A210 Contains the completion code stored
when network communications are per-
formed.
Words A203 to A210 correspond to log-
ical ports 0 to 7, respectively.
The completion code will be 00 while
the communications instruction is being
executed. The new response code will
be stored when execution has been
completed.

The contents of these words is cleared
when operation is started.

Code Contents

1106 (hex) No corresponding program number
Specified Send/Receive Sequence No. that has not
been registered.

Modify the Send/Receive Sequence No. or add the
number using the CX-Programmer.

2201 (hex) Not operable due to protocol execution
Since one protocol macro has already been executed,
no further execution is accepted.

Add NC condition to program for the Protocol Macro
Execution Flag.

2202 (hex) Not operable due to stoppage

Since the protocol is being switched, no further execu-
tion is accepted.
Add NC condition to program for the Serial Setting
Change Flag.

2401 (hex) No registration table

An error has occurred in the protocol macro data or
data is being transmitted.
Transmit the protocol macro data using the CX-Pro-
grammer.

Others Refer to the CS/CJ-series Communications Commands
Reference Manual (W342) for other response codes.

Name Address Contents
979

Serial Communications Instructions Section 3-24
Inner Board Area (CS Series Only)

CPU Bus Unit Area

n = 1500 + 25 x unit number

Examples When CIO 0000 is ON in the following example, communications sequence
No. 101 (0065 hex) will be executed as long as the Communications Port
Enabled Flag for port 7 (A20207) is ON and the Port 1 Protocol Macro Execu-
tion Flag (CIO 190915) is OFF.

If an operand is specified for the symbol in a send message, 2 words of data
starting from D00101 will be used as the send area (because the contents of
D00100 is #0003).

If an operand is specified for the symbol in a receive message, 2 words of
data will be stored starting from D00201 and the number of words received +1
will be written to D00200.

Name Address Contents

Port 1 Protocol Macro Exe-
cution Flag

CIO 190915 ON when PMCR(260) is executed. The
flag will remain OFF if execution fails.
The flag will turn OFF when the com-
munications sequence has been com-
pleted (either an end or abort).

Port 2 Protocol Macro Exe-
cution Flag

CIO 191915

Name Address Contents

Port 1 Protocol Macro
Execution Flag

Bit 15 of
CIO n+9

ON when PMCR(260) is executed. The flag
will remain OFF if execution fails. The flag
will turn OFF when the communications
sequence has been completed (either an
end or abort).

Port 2 Protocol Macro
Execution Flag

Bit 15 of
CIO n+19
980

Serial Communications Instructions Section 3-24
Holding the Receive Area The receive buffer is cleared to all zeros immediately before a communica-
tions sequence is executed for PMCR(260). If programming such as that
shown below is used to periodically read PV data or other values and data
cannot be read due to a reception error or other cause, the data being read
will be cleared until the next successful read.

A function is provided to maintain the data in the receive area even when a
reception error occurs. If this function is used, data will be transferred from the
first m words of the receive area to the receive buffer after the buffer is cleared
to all zeros but before the communications sequence is executed. This pre-
vents the receive area from being temporarily cleared to all zeros by writing
the most recent receive data when new receive data is not successfully
obtained.

Specify the number of words of the receive area to be maintained as the value
m. If 0 or 1 is specified, the holding function will be disabled and the receive
area will be cleared to all zeros.

0 1 0 0

0 2 0 0

R

3

2

Sent

Note

Protocol
Macro
Execution
Flag

Communica-
tions Port En-
abled Flag

Unit address of communications partner
E1 hex: Inner Board

Serial port number (physical port)
2 hex: Port 2

Communications port number (logical port)
7 hex: Logical port 7

Communications sequence number
0065 hex: 101

R(1),2: 2 bytes sent
from D00101Used as

send area

Received

W(1),2: 2 bytes received
starting from D00201Received

data

As shown above, the symbol read option, R(),
in the send message or the symbol write op-
tion, W(), actually sends/receives data.

1 word

2 words
981

Serial Communications Instructions Section 3-24
The following programming example shows the instructions used to con-
stantly or periodically execute PMCR(260) to read data through a single
receive operation.

Set

m words

Data that was set will be
transfer if new data is not
successfully received.

Receive
buffer

Protocol
Macro
Execution
Flag

Communica-
tions Port En-
abled FlagAlways ON

Flag

Error

Recv

Error

Recv

Receive Area Not Held

Receive Area Held

Communications sequence

Receive buffer Cleared

Receive area (starting at
R+1)

Cleared data
(all zeros)
stored.

Communications sequence

Receive buffer Cleared and
previous
data stored

Receive area (starting at
R+1) Set data stored if no new

data has been received
982

Serial Communications Instructions Section 3-24
3-24-3 TRANSMIT: TXD(236)
Purpose Outputs the specified number of bytes of data from the CPU Unit’s built-in RS-

232C port or one of the Serial Communications Board’s serial ports. (The
Serial Communications Board must be Ver. 1.2 or later).

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control word, C, is as shown below.

Operand Specifications

TXD(236)

S

C

N

S: First source word

C: Control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)

Variations Executed Each Cycle for ON Condition TXD(236)

Executed Once for Upward Differentiation @TXD(236)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C

Serial port specifier
0: CPU Unit's RS-232C port
1: Serial Communications
Board port 1
2: Serial Communications
Board port 2

Always 0

Byte order
0: Most significant bytes first
1: Least significant bytes first

RS and ER signal control
0: No RS and ER signal control
1: RS signal control
2: ER signal control
3: RS and ER signal control

Area S C N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
983

Serial Communications Instructions Section 3-24
Description TXD(236) reads N bytes of data from words S to S+(N÷2)–1 and outputs the
raw data in no-protocol mode from the CPU Unit’s built-in RS-232C port or
one of the Serial Communications Board’s serial ports. (The output port is
specified with bits 8 to 11 of C.)

The start and end codes specified for no-protocol mode are added to the data
before the data is output. The start and end codes are specified in the PLC
Setup (for the CPU Unit’s RS-232C port) or the allocated DM Setup Area (for
the Serial Communications Board’s ports).

Data can be sent only when the port’s Send Ready Flag is ON. The Send
Ready Flag is A39205 for the CPU Unit’s RS-232C port, A35605 for Serial
Communications Board port 1, or A35613 for Serial Communications Board
port 2.

Up to 259 bytes can be sent, including the send data (N = 256 bytes max.),
the start code, and the end code.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C N
984

Serial Communications Instructions Section 3-24
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

1

3

5

2

4

6

CR LF

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

N bytes of data is sent in the following order when
sending the most significant bytes first is specified:
1, 2, 3, 4, 5, 6

No Start or End Code

N send bytes: 256 max.

Only Start Code

Send bytes after ST:
256 max.

Send bytes before ED:
256 max.

Start and End Code

Send bytes between
ST and ED: 256 max.

Send bytes before
CR+LF: 256 max.

Send bytes between ST
and CR+LF: 256 max.

Start and CR+LF End Code

RS-232C port on CPU Unit

Data sent.
985

Serial Communications Instructions Section 3-24
Flags

Precautions TXD(236) can be used only for the CPU Unit’s RS-232C port or one of the
Serial Communications Board’s serial ports. In addition, the port must be set
to no-protocol mode.

The following send-message frame format can be set in the PLC Setup (for
the CPU Unit’s RS-232C port) or the allocated DM Setup Area (for the Serial
Communications Board’s ports).

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex.

The data will be sent with any start and/or end codes specified in the PLC
Setup or the allocated DM Setup Area. If start and end codes are specified,
the codes will be added to the send data (N). In this case, the maximum num-
ber of bytes that can be specified for N is 256 bytes.

Data can be sent only when the port’s Send Ready Flag is ON. (The Send
Ready Flag is A39205 for the CPU Unit’s RS-232C port, A35605 for Serial
Communications Board port 1, or A35613 for Serial Communications Board
port 2.)

Data is sent in the order specified in C.

Nothing will be sent if 0 is specified for N.

If RS signal control is specified in C, bit 15 of S will be used as the RS signal.

If ER signal control is specified in C, bit 15 of S will be used as the ER signal.

If RS and ER signal control is specified in C, bit 15 of S will be used as the RS
signal and bit 14 of S will be used as the ER signal.

If 1, 2, or 3 hex is specified for RS and ER signal control in C, TXD(236) will be
executed regardless of the status of the Send Ready Flag (A39205, A35605,
or A35613 depending on the port being used).

If the TXD(236) instruction is executed for a Board that does not support no-
protocol mode (a Serial Communications Board without a version number),

Name Label Operation

Error Flag ER ON if the CPU Unit’s RS-232C port is specified as the
send port, but no-protocol mode is not set in the PLC
Setup.
ON if one of the Serial Communication Board’s serial
ports is specified as the send port, but no-protocol mode
is not set in the port’s allocated DM Setup Area.
ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0100 hex.

ON if a send is attempted when the Send Ready Flag is
OFF. (The Send Ready Flag is A39205 for the CPU Unit’s
RS-232C port, A35605 for Serial Communications Board
port 1, or A35613 for Serial Communications Board port
2.)
ON (ER Flag in interrupt tasks) if a TXD(236) or
RXD(235) instruction is being executed for the Serial
Communications Board in the cyclic task, the cyclic task
is interrupted, and another TXD(236) or RXD(235)
instruction is executed for the Serial Communications
Board in the interrupt task. (See note.)
ON if a TXD(236) was executed for a serial port on a
Serial Communications Board that was being restarted.
Note The Error (ER) Flag will turn ON immediately after

another TXD(236) or RXD(235) instruction in the
interrupt task.

OFF in all other cases.
986

Serial Communications Instructions Section 3-24
the Inner Board Service Disabled Flag (A42404) and the Error Flag will turn
ON.

An error will occur and the Error Flag will turn ON in the following cases.

• The CPU Unit’s RS-232C port is specified, but no-protocol mode is not
set for the port in the PLC Setup.

• One of the Serial Communications Board’s serial ports is specified, but
no-protocol mode is not set for the port in the allocated DM Setup Area.

• One of the Serial Communications Board’s serial ports is specified, but
the Board does not support no-protocol mode (the Board does not have a
version number).

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

• A send was attempted when the Send Ready Flag was OFF. (The Send
Ready Flag is A39205 for the CPU Unit’s RS-232C port, A35605 for Serial
Communications Board port 1, or A35613 for Serial Communications
Board port 2.)

• TXD(236) or RXD(235) was being executed for the Serial Communica-
tions Board in the cyclic task, the cyclic task was interrupted, and another
TXD(236) or RXD(235) instruction was executed for the Serial Communi-
cations Board in the interrupt task.

• TXD(236) was executed for a serial port on a Serial Communications
Board that was being restarted.

Note Do not program TXD(236)/RXD(235) for a Serial Communications Board’s
port (port 1 or 2) in both the cyclic task and interrupt task. A TXD(236)/
RXD(235) instruction cannot be executed for the Serial Communications
Board in the interrupt task if a TXD(236)/RXD(235) instruction is being exe-
cuted for the Serial Communications Board in the cyclic task. An error will
occur and the ER Flag will be turned ON if a TXD(236)/RXD(235) instruction
is executed for the Serial Communications Board in the interrupt task when
another TXD(236)/RXD(235) instruction was being executed for the Serial
Communications Board in the cyclic task. (These instructions cannot be pro-
grammed in both the cyclic and interrupt tasks even if they are executed for
different ports in the Serial Communications Board.)
987

Serial Communications Instructions Section 3-24
Related Flags and Words The following PLC Setup settings and Auxiliary Area flag can be used as
required when executing TXD(236).

PLC Setup Settings for CPU Unit’s RS-232C Port

DM Setup Area Settings for Serial Communication Board’s Ports

Auxiliary Area

Send Ready Flags

Inner Board Flags for Serial Communications Board (Ports 1 and 2)

Programming
Console address

Name Settings

Word Bit

162 0 to 15 No-protocol Mode Send
Delay

0000 to 210F hex,
0 to 99,990 ms decimal (in 10-
ms units)

164 8 to 15 No-protocol Mode Start Code 00 to FF hex

0 to 7 No-protocol Mode End Code 00 to FF hex

165 12 No-protocol Mode Start Code
Specifier

0: None
1: Use start code.

8 and 9 No-protocol Mode End Code
Specifier

0: None
1: Use end code.
2: Use CR+LF.

0 to 7 No-protocol Mode Number of
bytes of Data

00: 256 bytes
01 to FF: 1 to 255 bytes

Setup Area word Bit Name Settings

Port 1 Port 2

D32002 D32012 15 No-protocol Mode Send
Delay Specifier

0: Default (0 ms)
1: Use delay in bits 1 to 14.

0 to 14 No-protocol Mode Send
Delay Time

0000 to 7530 hex
0 to 300,000 ms decimal
(in 10-ms units)

D32004 D32014 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex

D32005 D32015 12 to 15 No-protocol Mode Start
Code Specifier

0: None
1: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0: None
1: Use end code.
2: Use CR+LF.

Port Address Contents

CPU Bus Unit’s built-in RS-232C Port A39205 ON when data can be sent in
the no-protocol mode.Serial Communications Board port 1 A35605

Serial Communications Board port 2 A35613

Name Address Contents

Inner Board Service Dis-
abled Flag

A42404 ON when TXD(236) is executed for a
Serial Communications Board that
does not support no-protocol mode (a
Board without a version number).
988

Serial Communications Instructions Section 3-24
Examples

■ Example 1: Sending Data

When CIO 000001 and the RS-232C port’s Send Ready Flag (A39205) are
ON in the following example, the RS signal is set according to the status of
D00300 bit 15 and the ER signal is set according to the status of D00300 bit
14.

■ Example 2: Performing Signal Control

When CIO 000001 and the RS-232C port’s Send Ready Flag (A39205) are
ON in the following example, the RS signal is set according to the status of
D00300 bit 15 and the ER signal is set according to the status of D00300 bit
14.

S:

ST 12 34 AB CD EF ED

0

3 0C: D00400

812 3415 0711

Byte order
0: Most significant byte to least significant byte

RS and ER signal control
3: RS and ER signal controlAlways 0

Serial port specifier
0: CPU Unit's RS-232C port

00

S: D00300 1 0 0 0

15 14 13 12

ER signal set to 0

RS signal set to 1

TXD

D00300

D00400

&0

000001

S

C

N

A39205

RS-232C port's
Send Ready Flag

Sent

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Start and end codes added according to set-
ting in PC Setup (this example assumes that
both a start and end code have been set).

5 bytes

Sent in speci-
fied order.

Most signifi-
cant bytes

Least signif-
icant bytes
989

Serial Communications Instructions Section 3-24
■ Example 3: Sending Data to a Code Reader

This example shows how to send data to the V530-R150V3 2D Code Reader
as an example of communicating with an external device.

Hardware Configuration

In this example, the external device is connected to the RS-232C port built
into the CPU Unit.

First, set the reading conditions for the Code Reader.

Communications Settings

The communications settings of the Code Reader as given in the following
table. These are the default settings.

C: D00400

S: D00300

3 0

1 0 0 0

15 14 13 12

0 0

RS and ER signal control
3: RS and ER signal control.

ER signal set to 0

RS signal set to 1

TXD

D00300

D00400

&0

S

C

N

000001 A39205

RS-232C port's
Send Ready Flag

Byte order
0: Most significant byte to least significant byte

Always 0

Serial port specifier
0: CPU Unit's RS-232C port

Monitor

F150-M05L

Console
F150-KP

Console Cable

Programmable Controller

SYSMAC

 CJ1G-CPU@@H

CJ1H-CPU@@H

CJ1M-CPU@@

XW2Z-200T (2 m)
XW2Z-500T (5 m)

V530-R150V3

Camera
F150-SLC20

RS-232C Cable

Power Supply
(24 VDC)

Sync Sensor

Item Setting

Communications mode No-protocol

Baud rate 38,400 bps
990

Serial Communications Instructions Section 3-24
Set the PLC communications settings to the same values in the PLC Setup.
Only the end code needs to be set.

Programming Example

If CIO 000001 turns ON while the RS-232C Port Send Ready Flag (A39205)
is ON, three bytes of data starting from the upper byte of D00010 are sent
without conversion to the Code Reader connected to the CPU Unit’s built-in
RS-232C port. These three bytes contain “@GL”, which is the normal read
command used as a trigger input to the Code Reader from the RS-232C line.

Data bit length 8 bits

Parity None

Stop bits 1

Start code None

End code #000D (CR)

Item Setting

4 E 00

4 0 35

15 8 71112 34 0

S: D00010

@TXD

D00010

D00020

00001 A39205

S

C

&3N

RS-232C Port Send
Ready Flag

 D00011

@RXD

D00100

D00020

00002 A39206

A393

RS-232C Port Receive
Ready Flag

RS-232C Port
Reception Counter

Always #0.

Serial Port Specifier

#0: CPU Unit's built-in RS-232C port

0 0 00

15 8 71112 34 0

C: D00020

RS and ER Signal Control

#0: No RS and ER signal control.

Byte Order

#0: Most significant bytes first

Three bytes

Lower byteUpper byte

40 53 4E ED

Sent @ G L
991

Serial Communications Instructions Section 3-24
Controlling Signals

Related PLC Setup Settings

CX-Programmer Settings for the CPU Unit’s Built-in RS-232C Port

TXD

D00300

D00400

00001

S

C

&0N

0 0 03

15 8 71112 34 0

C: D00400

0

15 1314 12

S: D00300

Turns OFF ER signal.

001

Turns ON RS signal.

Always #0.

Serial Port Specifier

#0: CPU Unit's built-in RS-232C port

RS and ER Signal Control

#3: RS and ER signal control

Byte Order

#0: Most significant bytes first

When CIO 00001 turns ON, the
status of bit 15 of D00300 is
output as the RS signal and the
status of bit 14 is output as the
ER signal.
992

Serial Communications Instructions Section 3-24
PLC Setup Settings for CPU Unit’s RS-232C Port

DM Setup Area Settings for Serial Communication Board’s Ports

3-24-4 RECEIVE: RXD(235)
Purpose Reads the specified number of bytes of data from the CPU Unit’s built-in RS-

232C port or one of the Serial Communications Board’s serial ports. (The
Serial Communications Board must be Ver. 1.2 or later).

Ladder Symbol

Programming
Console address

Name Settings

Word Bit

162 0 to 15 No-protocol Mode Send
Delay

0000 to 210F hex,
0 to 99,990 ms decimal
(in 10-ms units)

164 8 to 15 No-protocol Mode Start Code 00 to FF hex

0 to 7 No-protocol Mode End Code 00 to FF hex

165 12 No-protocol Mode Start Code
Specifier

0: None
1: Use start code.

8 and 9 No-protocol Mode End Code
Specifier

0 hex: None
1 hex: Use end code.
2 hex: Use CR+LF.

0 to 7 No-protocol Mode Number of
Bytes of Data

00 hex: 256 bytes (default)
01 to FF hex: 1 to 255 bytes

Setup Area word Bit Name Settings

Port 1 Port 2

D32002 D32012 15 No-protocol Mode Send
Delay Specifier

0: Default (0 ms)
1: Use delay in bits 1 to 14.

0 to 14 No-protocol Mode Send
Delay Time

0000 to 7530 hex
0 to 300,000 ms decimal
(in 10-ms units)

D32004 D32014 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex

D32005 D32015 12 to 15 No-protocol Mode Start
Code Specifier

0 hex: None
1 hex: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0 hex: None
1 hex: Use end code.
2 hex: Use CR+LF.

0 to 7 Number of Bytes of Data 00 hex: 256 bytes (default)
01 to FF hex: 1 to 255
bytes

RXD(235)

D

C

N

D: First destination word

C: Control word

N: Number of bytes to store
 0000 to 0100 hex (0 to 256 decimal)
993

Serial Communications Instructions Section 3-24
Variations

Applicable Program Areas

Operands The contents of the control word, C, is as shown below.

Operand Specifications

Variations Executed Each Cycle for ON Condition RXD(235)

Executed Once for Upward Differentiation @RXD(235)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

C

812 3415 0711

Byte order
0 Hex: Most significant byte to least significant byte
1 Hex: Lest significant byte to most significant byte

CS and DR signal monitoring
0: No CS and DR signal monitoring
1: CS signal monitoring
2: DR signal monitoring
3: CS and DR signal monitoring.

Always 0

Serial port specifier
0: CPU Unit's RS-232C port
1: Serial Communications Board port 1
2: Serial Communications Board port 2

Area D C N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959 A000 to A447
A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- DR0 to DR15
994

Serial Communications Instructions Section 3-24
Description RXD(235) reads data that has been received in no-protocol mode at the CPU
Unit’s built-in RS-232C port or one of the Serial Communications Board’s
serial ports (the port is specified with bits 8 to 11 of C) and stores N bytes of
data in words D to D+(N÷2)–1. If N bytes of data has not been received at the
port, then only the data that has been received will be stored.

Data can be received only when the port’s Receive Ready Flag is ON. The
Receive Ready Flag is A39206 for the CPU Unit’s RS-232C port, A35606 for
Serial Communications Board port 1, or A35614 for Serial Communications
Board port 2. Execute RXD(235) only when the corresponding Receive
Ready Flag is ON.

Up to 259 bytes can be received, including the receive data (N = 256 bytes
max.), the start code, and the end code.

The following diagram shows the order in which data is received and the con-
tents of the receive frame for various settings.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area D C N
995

Serial Communications Instructions Section 3-24
1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1

3

5

2

4

6

1

3

5

2

4

6

1

2

3

4

5

6

LFCR

Bytes

Receive bytes: Specified
in the PC Setup

Receive bytes after ST:
Specified in the PC Setup

Receive bytes before
ED: 256 max.

Receive bytes between
ST and ED: 256 max.

Receive bytes before
CR+LF: 256 max.

Receive bytes between
ST and CR+LF: 256 max.

When receiving the most signifi-
cant bytes first is specified (0):

Most signifi-
cant bytes

Least signif-
icant bytes

When receiving the least signifi-
cant bytes first is specified (0):

Most signifi-
cant bytes

Least signif-
icant bytes

N bytes
stored in the
specified or-
der.Max: 256 bytes

Received

CPU Unit's RS-232C port

Start and CR+LF End Code

CR+LF End Code

 Start and End Code

Only End Code

Only Start Code

No Start or End Code
996

Serial Communications Instructions Section 3-24
Flags

Precautions RXD(235) can be used only for the CPU Unit’s RS-232C port or one of the
Serial Communications Board’s serial ports. In addition, the port must be set
to no-protocol mode.

The following receive message frame format can be set in the PLC Setup (for
the CPU Unit’s RS-232C port) or the allocated DM Setup Area (for the Serial
Communications Board’s ports).

• Start code: None or 00 to FF hex

• End code: None, CR+LF, or 00 to FF hex. If no end code is specified, the
number of bytes to received is set from 00 to FF hex (1 to 256 decimal; 00
specifies 256 bytes).

The Reception Completed Flag (note 1) will turn ON when the number of
bytes specified in the PLC Setup (for the CPU Unit’s RS-232C port) or the
allocated DM Setup Area (for the Serial Communications Board’s ports) has
been received. When the Reception Completed Flag turns ON, the number of
bytes in the Reception Counter (note 2) will have the same value as the num-
ber of receive bytes specified in the PLC Setup or the allocated DM Setup
Area. If more bytes are received than specified, the Reception Overflow Flag
(note 3) will turn ON.

If an end code is specified in the PLC Setup or the allocated DM Setup Area,
the Reception Completed Flag (note 1) will turn ON when the end code is
received or when 256 bytes of data have been received.

Reception will be stopped if 259 bytes of data are received. If more data is
input after that, the Overrun Error Flag (note 5) and Transmission Error Flag
(note 6) will turn ON.

When more data is input to the Serial Communications Board’s serial port
than is specified in N, that data will be discarded when RXD(235) is executed.
In contrast, extra data input to the CPU Unit’s RS-232C port will not be dis-
carded when RXD(235) is executed.

When RXD(235) is executed, data is stored in memory starting at D, the
Reception Completed Flag (note 1) will turn OFF (even if the Reception Over-
flow Flag (note 3) is ON).

Name Label Operation

Error Flag ER ON if the CPU Unit’s RS-232C port is specified as the
send port, but no-protocol mode is not set in the PLC
Setup.
ON if one of the Serial Communication Board’s serial
ports is specified as the send port, but no-protocol mode
is not set in the port’s allocated DM Setup Area.
ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0100 hex.

ON (ER Flag in interrupt tasks) if a TXD(236) or
RXD(235) instruction is being executed for the Serial
Communications Board in the cyclic task, the cyclic task
is interrupted, and another TXD(236) or RXD(235)
instruction is executed for the Serial Communications
Board in the interrupt task. (See note.)

ON if a RXD(235) was executed for a serial port on a
Serial Communications Board that was being restarted.
Note The Error (ER) Flag will turn ON immediately after

another TXD(236) or RXD(235) instruction in the
interrupt task.

OFF in all other cases.
997

Serial Communications Instructions Section 3-24
With the CPU Unit’s built-in RS-232C port, if the RS-232C Port Restart Bit
(note 4) is turned ON, the Reception Completed Flag (note 1) will be turned
OFF (even if the Reception Overflow Flag is ON), and the Reception Counter
(note 2) will be cleared to 0.

Data will be stored in memory in the order specified in C.

If 0 is specified for N, the Reception Completed Flag (note 1) will be turned
OFF, the Reception Counter (note 2) will be cleared to 0, and nothing will be
stored in memory.

If CS signal monitoring is specified in C, the status of the CS signal will be
stored in bit 15 of D.

If DR signal monitoring is specified in C, the status of the DR signal will be
stored in bit 15 of D.

If CS and DR signal monitoring is specified in C, the status of the CS signal
will be stored in bit 15 of D and the status of the DR signal will be stored in bit
14 of D.

Receive data will not be stored if CS or DR signal monitoring is specified.

If 1, 2, or 3 hex is specified for RS and ER signal control in C, RXD(235) will
be executed regardless of the status of the Receive Completed Flag (note 1).

If the RXD(235) instruction is executed for a Board that does not support no-
protocol mode (a Serial Communications Board without a version number),
the Inner Board Service Disabled Flag (A42404, non-fatal error) and the Error
Flag will turn ON.

Note 1. Reception Completed Flags

Built-in RS232C port A39206
Serial Communications Board port 1: A35606
Serial Communications Board port 2: A35614

2. Reception Counters

Built-in RS232C port A393
Serial Communications Board port 1: A357
Serial Communications Board port 2: A358

3. Reception Overflow Flags

Built-in RS232C port A39207
Serial Communications Board port 1: A35607
Serial Communications Board port 2: A35615

4. RS-232C Port Restart Bit

Built-in RS232C port A52600

5. Overrun Error Flags

Serial Communications Board port 1: CIO 190804
Serial Communications Board port 2: CIO 191804

6. Transmission Error Flags

Serial Communications Board port 1: CIO 190815
Serial Communications Board port 2: CIO 191815

7. Inner Board Service Disabled Flag

Serial Communications Board ports 1 and 2: A42404

An error will occur and the Error Flag will turn ON in the following cases.

• The CPU Unit’s RS-232C port is specified, but no-protocol mode is not
set for the port in the PLC Setup.

• One of the Serial Communications Board’s serial ports is specified, but
no-protocol mode is not set for the port in the allocated DM Setup Area.
998

Serial Communications Instructions Section 3-24
• One of the Serial Communications Board’s serial ports is specified, but
the Board does not support no-protocol mode (the Board does not have a
version number).

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

• TXD(236) or RXD(235) was being executed for the Serial Communica-
tions Board in the cyclic task, the cyclic task was interrupted, and another
TXD(236) or RXD(235) instruction was executed for the Serial Communi-
cations Board in the interrupt task.

• When RXD(235) is used to read data that was received at the CPU Unit’s
RS-232C port, the remaining data in the port’s reception buffer is not
cleared, so RXD(235) can be executed repeatedly to read a block of data
in parts.
In contrast, when RXD(235) is used to read data that was received at one
of the Serial Communications Board’s ports (Serial Communications
Board version 1.2 or later), the port’s reception buffer is cleared after
RXD(235) is executed. Consequently, RXD(235) can not be executed
repeatedly to read a block of data in parts.

• If an overrun error, framing error, or parity error occurs on the CPU Unit’s
built-in serial port, serial port reception will stop. The serial port must be
restarted to begin reception again.

• RXD(235) was executed for a serial port on a Serial Communications
Board that was being restarted.

Related Flags and Words The following PLC Setup settings and Auxiliary Area flag can be used as
required when executing RXD(235).

PLC Setup Settings for CPU Unit’s RS-232C Port

DM Setup Area Settings for Serial Communication Board’s Ports

Programming
Console address

Name Settings

Word Bit

162 0 to 15 No-protocol Mode Send
Delay

0000 to 210F hex,
0 to 99,990 ms decimal (in 10-
ms units)

164 8 to 15 No-protocol Mode Start Code 00 to FF hex

0 to 7 No-protocol Mode End Code 00 to FF hex

165 12 No-protocol Mode Start Code
Specifier

0: None
1: Use start code.

8 and 9 No-protocol Mode End Code
Specifier

0: None
1: Use end code.
2: Use CR+LF.

0 to 7 No-protocol Mode Number of
bytes of Data

00: 256 bytes
01 to FF: 1 to 255 bytes

Setup Area word Bit Name Settings

Port 1 Port 2

D32004 D32014 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex
999

Serial Communications Instructions Section 3-24
Auxiliary Area Flags for CPU Unit’s RS-232C Port

D32005 D32015 12 to 15 No-protocol Mode Start
Code Specifier

0: None
1: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0: None
1: Use end code.
2: Use CR+LF.

Name Address Contents

RS-232C Port Reception
Completed Flag

A39206 ON when no-protocol reception is com-
pleted.
Number of Receive Bytes Specified:
The flag will turn ON when the specified
number of bytes has been received.
End Code Specified: The flag will turn
ON when the end code is received or
when 256 bytes have been received.

RS-232C Port Reception
Overflow Flag

A39207 ON when more that the expected num-
ber of receive bytes has been received.
Number of Receive Bytes Specified:
The flag will turn ON when anything is
received after reception has been com-
pleted and execution of the next
RXD(235).
End Code Specified: The flag will turn
ON when anything is received after the
end code has been received and execu-
tion of the next RXD(235) or when the
257th byte of data is received before the
end code is received.

RS-232C Port Reception
Counter

A393 Counts in hexadecimal the number of
bytes received in no-protocol mode.

Setup Area word Bit Name Settings

Port 1 Port 2
1000

Serial Communications Instructions Section 3-24
Auxiliary Area Flags for Serial Communication Board’s Ports

Port Name Address Contents

Port 1 Reception Completed
Flag

A35606 ON when no-protocol reception is com-
pleted.
Number of Receive Bytes Specified:
The flag will turn ON when the specified
number of bytes has been received.
End Code Specified: The flag will turn
ON when the end code is received or
when 256 bytes have been received.

Reception Overflow
Flag

A35607 ON when more that the expected num-
ber of receive bytes has been received
in no-protocol mode.
Number of Receive Bytes Specified:
The flag will turn ON when more data is
received after reception was completed
but before the received data was not
read from the buffer with RXD(235).
End Code Specified: The flag will turn
ON when 257 or more bytes of data are
received without an end code.

Reception Counter A357 Counts in hexadecimal the number of
bytes received in no-protocol mode (0 to
256 decimal).

Overrun Error Flag CIO 1908
bit 04

ON when 260 or more bytes of data are
received in the buffer before RXD(235)
is executed.

Port 2 Reception Completed
Flag

A35614 ON when no-protocol reception is com-
pleted.
Number of Receive Bytes Specified:
The flag will turn ON when the specified
number of bytes has been received.
End Code Specified: The flag will turn
ON when the end code is received or
when 256 bytes have been received.

Reception Overflow
Flag

A35615 ON when more that the expected num-
ber of receive bytes has been received
in no-protocol mode.
Number of Receive Bytes Specified:
The flag will turn ON when more data is
received after reception was completed
but before the received data was not
read from the buffer with RXD(235).
End Code Specified: The flag will turn
ON when 257 or more bytes of data are
received without an end code.

Reception Counter A358 Counts in hexadecimal the number of
bytes received in no-protocol mode (0 to
256 decimal).

Overrun Error Flag CIO 1918
bit 04

ON when 260 or more bytes of data are
received in the buffer before RXD(235)
is executed.

Ports 1
and 2

Inner Board Service
Disabled Flag

A42404 ON when RXD(235) is executed for a
Serial Communications Board that does
not support no-protocol mode (a Board
without a version number).
1001

Serial Communications Instructions Section 3-24
Examples

■ Example 1: Basic Operation

When CIO 000000 is ON in the following example, data is received from the
RS-232C port and 10 bytes of data are stored starting in D00100.

■ Example 2: Sending Data to a Code Reader

This example shows how to received data from the V530-R150V3 2D Code
Reader as an example of communicating with an external device.

Hardware Configuration

In this example, the external device is connected to the RS-232C port built
into the CPU Unit.

First, set the reading conditions for the Code Reader.

D:

C: D00200
&10

00

Always 0

Stored

This example assumes that both a start and end
code have been specified in the PC Setup.

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Most signifi-
cant bytes

Least signif-
icant bytes

CS and DR signal monitoring
0: No CS and DR signal monitoring

Byte order
1: Least significant bytes first

Serial port specifier
0: CPU Unit's RS-232C port

D

C

N

RXD

D00100

D00020

&10

000000 A39206

Reception
Completed Flag

Monitor

F150-M05L

Console
F150-KP

Console Cable

Programmable Controller

SYSMAC

 CJ1G-CPU@@H

CJ1H-CPU@@H

CJ1M-CPU@@

XW2Z-200T (2 m)
XW2Z-500T (5 m)

V530-R150V3

Camera
F150-SLC20

RS-232C Cable

Power Supply
(24 VDC)

Sync Sensor
1002

Serial Communications Instructions Section 3-24
Communications Settings

The communications settings of the Code Reader as given in the following
table. These are the default settings.

Set the PLC communications settings to the same values in the PLC Setup.
Only the end code needs to be set.

Programming Example

If CIO 000002 turns ON while the RS-232C Port Send Ready Flag (A39205)
is ON, the number of bytes of reading results specified in the RS-232C Port
Reception Counter (A393) are read from the Code Reader connected to the
CPU Unit’s built-in RS-232C port and stored starting from the upper byte of
D00100.

Item Setting

Communications mode No-protocol

Baud rate 38,400 bps

Data bit length 8 bits

Parity None

Stop bits 1

Start code None

End code #000D (CR)

2 F 03

3 0 63

15 8 71112 34 0

S: D00100

TXD

D00010

D00020

00001 A39205

S

C

&3

N

 D00101

RXD

D00100

D00020

00002 A39206

A393

0 0 00

15 8 71112 34 0

C: D00020

31 2031 D00102

4F 4D 4F52 D00103

37 37 3637 D00104

=”06/08/11

Received

30 36 2F 30 38 2F 31 31

RS-232C Port Send
Ready Flag

RS-232C Port Receive
Ready Flag

RS-232C Port
Reception Counter

Always #0.

Serial Port Specifier

#0: CPU Unit's built-in RS-232C port

RS and ER Signal Control

#0: No RS and ER signal control.

Byte Order

#0: Most significant bytes first

Lower byteUpper byte
1003

Serial Communications Instructions Section 3-24
Controlling Signals

Related PLC Setup Settings

CX-Programmer Settings for the CPU Unit’s Built-in RS-232C Port

RXD

D00100

D00200

00000

D

C

&10N

0 0 03

15 8 71112 34 0

C: D00400

0

15 1314 12

D: D00100 001

Turns OFF ER signal.

Turns ON RS signal.

Always #0.

Serial Port Specifier

#0: CPU Unit's built-in RS-232C port

RS and ER Signal Control

#3: RS and ER signal control

Byte Order

#0: Most significant bytes first

When CIO 00001 turns ON, the
status of bit 15 of D00300 is
output as the RS signal and the
status of bit 14 is output as the
ER signal.
1004

Serial Communications Instructions Section 3-24
PLC Setup Settings for CPU Unit’s RS-232C Port

DM Setup Area Settings for Serial Communication Board’s Ports

3-24-5 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT: TXDU(256)
Purpose Outputs the specified number of bytes of data from one of the Serial Commu-

nications Unit’s serial ports. (The Serial Communications Unit must be Ver.
1.2 or later).

Ladder Symbol

Programming
Console address

Name Settings

Word Bit

162 0 to 15 No-protocol Mode Send
Delay

0000 to 210F hex,
0 to 99,990 ms decimal
(in 10-ms units)

164 8 to 15 No-protocol Mode Start Code 00 to FF hex

0 to 7 No-protocol Mode End Code 00 to FF hex

165 12 No-protocol Mode Start Code
Specifier

0: None
1: Use start code.

8 and 9 No-protocol Mode End Code
Specifier

0 hex: None
1 hex: Use end code.
2 hex: Use CR+LF.

0 to 7 No-protocol Mode Number of
Bytes of Data

00 hex: 256 bytes (default)
01 to FF hex: 1 to 255 bytes

Setup Area word Bit Name Settings

Port 1 Port 2

D32002 D32012 15 No-protocol Mode Send
Delay Specifier

0: Default (0 ms)
1: Use delay in bits 1 to 14.

0 to 14 No-protocol Mode Send
Delay Time

0000 to 7530 hex
0 to 300,000 ms decimal
(in 10-ms units)

D32004 D32014 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex

D32005 D32015 12 to 15 No-protocol Mode Start
Code Specifier

0 hex: None
1 hex: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0 hex: None
1 hex: Use end code.
2 hex: Use CR+LF.

0 to 7 Number of Bytes of Data 00 hex: 256 bytes (default)
01 to FF hex: 1 to 255
bytes

TXDU(256)

S

C

N

S: First source word

C: First control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)
1005

Serial Communications Instructions Section 3-24
Variations

Applicable Program Areas

Operands The contents of the control words, C and C+1, are as shown below.

Note The serial port’s unit address can be specified directly by setting the serial
port number to 0 and setting the destination unit address to the serial port’s
unit address. (Set the destination unit address to 80 hex + 4 × unit number for
port 1 or 81 hex + 4 × unit number for port 2.)

Operand Specifications

Variations Executed Each Cycle for ON Condition TXDU(256)

Executed Once for Upward Differentiation @TXDU(256)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C

15 8 011 37 412

C+1

Destination unit address (See note.)
Serial Communications Unit's unit
address (unit number + 10 hex)

Serial port number
0: Specify directly. (See note.)
1: Port 1
2: Port 2

Port number specifier
(Internal logical port)
Specify 0 to 7 or F.
(F: Automatic allocation)

Always 00

Byte order
0: Most significant bytes first
1: Least significant bytes first

RS and ER signal control
0: No RS and ER signal control
1: RS signal control
2: ER signal control
3: RS and ER signal control

Area S C D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6142

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A958 A000 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767
1006

Serial Communications Instructions Section 3-24
Description TXDU(256) reads N bytes of data from words S to S+(N÷2)–1 and outputs the
raw data in no-protocol mode from the Serial Communications Unit with the
unit address specified in bits 0 to 7 of C+1, through the port specified with bits
8 to 11 of C+1. The logical port number can be set to any value between 0
and 7 and is specified with bits 12 to 15 of C+1.

The start and end codes specified for no-protocol mode in the allocated DM
Setup Area are added to the data before the data is output. Up to 259 bytes
can be sent, including the send data (N = 256 bytes max.), the start code, and
the end code.

Data can be sent only when the Communications Port Enabled Flag for the
specified logical port (A20200 to A20207 for ports 0 to 7) is ON and the TXDU
Instruction Executing Flag (in the allocated DM Setup Area) is OFF.

Note The logical port number can be allocated automatically by setting bits 12 to 15
of C+1 to F. For details, refer to Automatic Allocation of Communications Ports
on page 1032.

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S C D
1007

Serial Communications Instructions Section 3-24
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

Flags

Precautions TXDU(256) can be used only for a Serial Communications Unit’s serial port
that has been set to no-protocol mode.

The following send-message frame formats can be set in the allocated DM
Setup Area.

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex.

The data will be sent with any combination of start and/or end codes specified
in the allocated DM Setup Area. If start and end codes are specified, the
codes will be added to the send data (N). In this case, the maximum number
of bytes that can be specified for N is 256 bytes.

Data is sent in the order specified in C.

Nothing will be sent if 0 is specified for N.

If RS signal control is specified in C, bit 15 of S will be used as the RS signal.

1

3

5

2

4

6

CR LF

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

N bytes of data is sent in the following order when
sending the most significant bytes first is specified:
1, 2, 3, 4, 5, 6

No Start or End Code

N send bytes: 256 max.

Only Start Code

Send bytes after ST:
256 max.

Send bytes before ED:
256 max.

Start and End Code

Send bytes between
ST and ED: 256 max.

Send bytes before
CR+LF: 256 max.

Send bytes between ST
and CR+LF: 256 max.

Start and CR+LF End Code

Serial port on Serial Communications Unit

Data sent.

15 8 7 0

Name Label Operation

Error Flag ER ON if all of the logical ports are being used or the Com-
munications Port Enabled Flag for the specified logical
port is OFF when the instruction is executed.
ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0100 hex.

OFF in all other cases.
1008

Serial Communications Instructions Section 3-24
If ER signal control is specified in C, bit 15 of S will be used as the ER signal.

If RS and ER signal control is specified in C, bit 15 of S will be used as the RS
signal and bit 14 of S will be used as the ER signal.

TXDU(256) uses a logical port (because it sends an internal FINS command)
to output a send sequence command to the Serial Communications Unit (ver-
sion number 1.2 or later). Since SEND(090), RECV(098), CMND(490),
PMCR(260), and RXDU(255) also use logical ports 0 to 7, TXDU(256) cannot
be executed for a logical port if that logical port is already being used by one
of those instructions or another TXDU(256) instruction.

To ensure that TXDU(256) is not executed while the logical port is busy, pro-
gram the port’s Communications Port Enabled Flag (A20200 to A20207) as a
normally open condition.

TXDU(256) can not be executed while the TXDU Instruction Executing Flag
(bit 5 of n+9 or n+19, where n = CIO 1500 + 25 × unit number) is ON. To
ensure that another TXDU(256) is not executed for the port before the first
TXDU(256) is completed, program the port’s TXDU Instruction Executing Flag
as a normally closed condition.

An error will occur and the Error Flag will turn ON in the following cases.

• The Communications Port Enabled Flag for the specified logical port is
OFF when TXDU(256) is executed.

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

Note Depending on the external device, it might be necessary to set a send delay
when sending data with TXDU(256). It a send delay is required, set or adjust
the delay time in the allocated DM Setup Area.

Related Flags and Words The following PLC Setup settings and Auxiliary Area flag can be used as
required when executing TXD(236).

DM Setup Area Settings

(m = D30000 + 100 × unit number)

CPU Unit

TXDU

TXDU

Setup Area word Bit Name Settings

Port 1 Port 2

m+2 m+12 15 No-protocol Mode Send
Delay Specifier

0: Default (0 ms)
1: Use delay in bits 1 to 14.

0 to 14 No-protocol Mode Send
Delay Time

0000 to 7530 hex
0 to 300,000 ms decimal
(in 10-ms units)
1009

Serial Communications Instructions Section 3-24
Auxiliary Area

Completion Codes

m+4 m+14 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex

m+5 m+15 12 to 15 No-protocol Mode Start
Code Specifier

0: None
1: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0: None
1: Use end code.
2: Use CR+LF.

Setup Area word Bit Name Settings

Port 1 Port 2

Name Address Description

Communications
Port Enabled
Flags

A20200
to
A20207

ON when a communications instruction (including
TXDU(256) can be executed with the corresponding
port number. Bits 00 to 07 correspond to communica-
tions ports 0 to 7.
The flag is OFF when a communications instruction is
being executed and ON when the execution is com-
pleted (normal end or error end).

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding port numbers when communications
instructions have been executed. Words A203 to
A210 correspond to communications ports 0 to 7.
The code is 00 while the instruction is being executed
and contains the relevant code when execution is
completed.
These words are cleared to 0000 when PLC opera-
tion starts.

Communications
Port Error Flags

A219 ON when an error occurred during execution of a
communications instruction. When a flag is ON,
check the completion code in A203 to A210 to trou-
bleshoot the error.
OFF when execution has been finished normally. Bits
00 to 07 correspond to communications ports 0 to 7.
The flag status is retained until the next communica-
tions instruction is executed. Even if an error has
occurred, a flag will be reset to 0 the next time that a
communications instruction is executed for that port.

Code Meaning

0205 hex Response timeout (This error can occur when the communications
mode is set to host link mode.)

0401 hex Undefined command (This error can occur when the communications
mode is set to protocol macro, NT Link, echoback test, or serial gate-
way mode.)

1001 hex The command is too long.

1002 hex The command is too short.

1003 hex The specified number of data elements does not match the actual
amount of send data.

1004 hex The command format is incorrect.

110C hex Other parameter error

2201 hex Operation could not be performed during operation. (Operation dis-
abled because Unit is busy sending.)

2202 hex Operation could not be performed when stopped. (Operation dis-
abled because Unit is switching protocols.)
1010

Serial Communications Instructions Section 3-24
Related Flags in the CPU Bus Unit Area

(n = CIO 1500 + 25 × unit number)

Example: Flag Operation The following diagram shows the operation of the Communications Port
Enabled Flag and TXDU Instruction Executing Flag.

Example: Sending Data When CIO 000000 is ON, A20203 (the Communications Port Enabled Flag) is
ON, and CIO 155905 (the TXDU Instruction Executing Flag for port 1) is OFF
in the following example, TXDU(256) outputs data through serial port 1 of the
Serial Communications Unit with unit number 2. The 5 bytes of output data
are read from the DM Area beginning at the rightmost byte of D00100 and
output through logical port 3 to a general-purpose device such as a printer.

Word Bit Name Status

Port 1 Port 2

n+9 n+19 05 TXDU Instruction
Executing Flag

0: TXDU(256) is not being executed.
1: TXDU(256) is being executed.

Instruction
execution

ON

OFF

Communications Port Enabled Flag
(A20200 to A20207 correspond to
communications ports 0 to 7.)

TXDU(256)

CPU Unit

TXDU Executing Flag
(Bit 5 of n+9 or n+19,
n = CIO 1500 + 25 x unit number)

ON

OFF

Send processing Send
processing

Serial
Communications
Unit

Send starts. Send completed.
1011

Serial Communications Instructions Section 3-24
C+0: D00200 0

 0 7 815

0

11 12

3

 0 7 815

1

11 12

0 1

 4 3

1 2

 4 3

S: D00100

 0 7 815

4 1 23

D00101 D A BC

D00102 E F 1 2 3 4 A B C D E F

3412ST AB CD EF ED

C+1: 3

 0 7 815

0

11 12

8 8

 4 3

D30204

 0 7 815

2

11 12

0 3

 4 3

0

D30205:

 0 7 815

1

11 12 4 3

1

Always 00

RS and ER signal control
0: No RS and ER signal control

Byte order
1: Least significant bytes first

Communications Port
Enabled Flag

TXDU Instruction
Executing Flag

C+1: D00201

Serial Communications Unit's unit address (Unit
address as CPU Bus Unit)
12 hex = Unit number + 10 hex

Serial port number
1: Port 1

Note:
The serial port's unit address can be specified directly by setting the serial port number to 0 and
setting the Serial Communications Unit's unit address to the serial port's unit address.
(Set the unit address to 80 hex + 4 x unit number for port 1 or 81 hex + 4 x unit number for port 2.)

Port number specifier
3: Logical port 3

Serial Communications Unit's unit address
88 hex = 80 hex + 4 x unit number

Serial port number
0: Specify port directly.

Port number specifier
3: Logical port 3

Data sent.

In this example, a start and end code have been
specified in the allocated DM Setup Area.

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Most signifi-
cant bytes

Least signif-
icant bytes

Transfer order

5 bytesExample allocated DM Setup Area settings:

Start code
(02 hex)

End code
(03 hex)

Start code and end code values

Start code and end code specifiers

End code specifier
(1: Use end code.)

Start code specifier
(1: Use start code.)

TXDU

D00100

D00200
&5

155905A20203

S

C

N

000000
1012

Serial Communications Instructions Section 3-24
3-24-6 RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255)
Purpose Reads the specified number of bytes of data from one of the Serial Communi-

cations Unit’s serial ports. (The Serial Communications Unit must be Ver. 1.2
or later).

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control words, C and C+1, are as shown below.

Note The serial port’s unit address can be specified directly by setting the serial
port number to 0 and setting the destination unit address to the serial port’s
unit address. (Set the destination unit address to 80 hex + 4 × unit number for
port 1 or 81 hex + 4 × unit number for port 2.)

RXDU(255)

D

C

N

D: First destination word

C: First control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)

Variations Executed Each Cycle for ON Condition RXDU(255)

Executed Once for Upward Differentiation @RXDU(255)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C

15 8 011 37 412

C+1

Destination unit address (See note.)
Serial Communications Unit's unit
address (unit number + 10 hex)

Serial port number
0: Specify directly. (See note.)
1: Port 1
2: Port 2

Port number specifier
(Internal logical port)
Specify 0 to 7 or F.
(F: Automatic allocation)

Always 00

Byte order
0: Most significant bytes first
1: Least significant bytes first

RS and ER signal control
0: No RS and ER signal control
1: RS signal control
2: ER signal control
3: RS and ER signal control
1013

Serial Communications Instructions Section 3-24
Operand Specifications

Description RXDU(255) reads data that has been received in no-protocol mode at the
Serial Communications Unit with the unit address specified in bits 0 to 7 of
C+1, through the port specified with bits 8 to 11 of C+1, and stores that data
starting at D. If fewer than N bytes of data have been received at the port, then
only the data that has been received will be stored. The logical port number
can be set to any value between 0 and 7 and is specified with bits 12 to 15 of
C+1.

Execute RXDU(255) to read the received data from the buffer when the
Reception Completed Flag (in the allocated DM Setup Area) is ON.

Up to 259 bytes can be received, including the receive data (N = 256 bytes
max.), the start code, and the end code.

The following diagram shows the order in which data is received and the con-
tents of the receive frame for various settings.

Note The logical port number can be allocated automatically by setting bits 12 to 15
of C+1 to F. For details, refer to Automatic Allocation of Communications Ports
on page 1032.

Area D C D

CIO Area CIO 0000 to CIO
6143

CIO 0000 to CIO
6142

CIO 0000 to CIO
6143

Work Area W000 to W511 W000 to W510 W000 to W511

Holding Bit Area H000 to H511 H000 to H510 H000 to H511

Auxiliary Bit Area A000 to A959 A000 to A958 A000 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32766

D00000 to
D32767

EM Area without bank E00000 to
E32767

E00000 to
E32766

E00000 to
E32767

EM Area with bank En_00000 to
En_32767

(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

En_00000 to
En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
1014

Serial Communications Instructions Section 3-24
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

Flags

Precautions RXDU(255) can be used only for a Serial Communications Unit’s serial port
that has been set to no-protocol mode.

ED

ST

ED

ST

CRLF

ST CR LF

D

D+1

D+2

15 7 08

D

D+1

D+2

15 7 08

1

2

3

4

5

6

1

3

5

2

4

6

1

3

5

2

4

6

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

No Start or End Code

Number of bytes
(Specified in allocated
DM Setup Area)

Only Start Code

Number of bytes up to ED:
256 max.

Start and End Code

Number of bytes between
ST and ED: 256 max.

Number of bytes up to
CR+LF: 256 max.

Number of bytes between
ST and CR+LF: 256 max.

Start and CR+LF End Code

Serial port on Serial Communications Unit

Data received.

Number of bytes
(Specified in allocated
DM Setup Area)

Bytes

N Storage order
(256 bytes max.)

Most signifi-
cant bytes

Least signif-
icant bytes

Byte order
0: Most significant bytes first

Most signifi-
cant bytes

Least signif-
icant bytes

Byte order
1: Least significant bytes first

Name Label Operation

Error Flag ER ON if all of the logical ports are being used or the Com-
munications Port Enabled Flag for the specified logical
port is OFF when the instruction is executed.

ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0100 hex.
OFF in all other cases.
1015

Serial Communications Instructions Section 3-24
The following receive-message frame formats can be set in the allocated DM
Setup Area.

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex. If no end code is specified, the
number of bytes to be received is set from 00 to FF hex (1 to 256 decimal;
00 specifies 256 bytes).

The Reception Completed Flag (note 1) will turn ON when the number of
bytes specified the allocated DM Setup Area has been received. When the
Reception Completed Flag turns ON, the number of bytes in the Reception
Counter (note 2) will have the same value as the number of receive bytes
specified in the allocated DM Setup Area. If more bytes are received than
specified, the Reception Overflow Flag (note 3) will turn ON.

If an end code is specified in the allocated DM Setup Area, the Reception
Completed Flag (note 1) will turn ON when the end code is received or when
256 bytes of data have been received. If more data is received after the
Reception Completed Flag (note 1) turns ON and before RXDU(255) is exe-
cuted again, the Reception Overflow Flag (note 3) will turn ON.

Reception will be stopped if 259 bytes of data are received. If more data is
input after that, the Overrun Error Flag (note 4) and Transmission Error Flag
(note 5) will turn ON.

When more data is input to the Serial Communications Board’s serial port
than is specified in N, that data will be discarded when the next RXDU(255)
instruction is executed.

When RXDU(255) is executed, data is stored in memory starting at D, the
Reception Completed Flag (note 1) will turn OFF (even if the Reception Over-
flow Flag (note 3) is ON), and the Reception Counter (note 2) will be cleared
to 0.

Data will be stored in memory in the order specified in C.

If 0 is specified for N, the Reception Completed Flag (note 1) and Reception
Overflow Flag (note 3) will be turned OFF, the Reception Counter (note 2) will
be cleared to 0, and nothing will be stored in memory.

If CS signal monitoring is specified in C, the status of the CS signal will be
stored in bit 15 of D.

If DR signal monitoring is specified in C, the status of the DR signal will be
stored in bit 15 of D.

If CS and DR signal monitoring is specified in C, the status of the CS signal
will be stored in bit 15 of D and the status of the DR signal will be stored in bit
14 of D.

Receive data will not be stored if CS or DR signal monitoring is specified.

If 1, 2, or 3 hex is specified for RS and DR signal control in C, RXDU(255) will
be executed regardless of the status of the Receive Completed Flag (note 1).

RXDU(255) uses a logical port (because it sends an internal FINS command)
to output a receive sequence command to a Serial Communications Unit or
CS-series Serial Communications Board. Since SEND(090), RECV(098),
CMND(490), PMCR(260), and TXDU(256) also use logical ports 0 to 7,
RXDU(255) cannot be executed for a logical port if that logical port is already
being used by one of those instructions or another RXDU(255) instruction.

To ensure that RXDU(255) is not executed while the logical port is busy, pro-
gram the port’s Communications Port Enabled Flag (A20200 to A20207) as a
normally open condition.
1016

Serial Communications Instructions Section 3-24
RXDU(255) can not be executed while the Reception Completed Flag (bit 6
of n+9 or n+19, where n = CIO 1500 + 25 × unit number) is ON. Program the
Reception Completed Flag as a normally open condition of RXDU(255).

An error will occur and the Error Flag will turn ON in the following cases.

• The Communications Port Enabled Flag for the specified logical port is
OFF when RXDU(255) is executed.

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

Note 1. Reception Completed Flags (n = CIO 1500 + 25 × unit number)

Port 1: Bit 6 of n+9
Port 2: Bit 6 of n+19

2. Reception Counters (n = CIO 1500 + 25 × unit number)

Port 1: n+10
Port 2: n+20

3. Reception Overflow Flags (n = CIO 1500 + 25 × unit number)

Port 1: Bit 7 of n+9
Port 2: Bit 7 of n+19

4. Overrun Error Flags (n = CIO 1500 + 25 × unit number)

Port 1: Bit 4 of n+8
Port 2: Bit 4 of n+18

5. Transmission Error Flags (n = CIO 1500 + 25 × unit number)

Port 1: Bit 15 of n+8
Port 2: Bit 15 of n+18

6. Further data cannot be received until the received data is read from the
buffer with RXDU(255). When the Reception Completed Flag goes ON,
read that data promptly with RXDU(255) before more data is input to the
port.

7. When RXDU(255) is used to read data that was received at one of the Se-
rial Communications Unit’s ports, the port’s reception buffer is cleared after
RXDU(255) is executed. Consequently, RXDU(255) can not be executed
repeatedly to read a block of data in parts.

CPU Unit

RXDU

RXDU
1017

Serial Communications Instructions Section 3-24
Related Flags and Words The following words are related to RXDU(255) operation.

DM Setup Area Settings

(m = D30000 + 100 × unit number)

Auxiliary Area

Completion Codes

Setup Area word Bit Name Settings

Port 1 Port 2

m+4 m+14 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex

m+5 m+15 12 to 15 No-protocol Mode Start
Code Specifier

0: None
1: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0: None
1: Use end code.
2: Use CR+LF.

Name Address Description

Communications
Port Enabled
Flags

A20200
to
A20207

ON when a communications instruction (including
RXDU(255)) can be executed with the corresponding
port number. Bits 00 to 07 correspond to communica-
tions ports 0 to 7.
The flag is OFF when a communications instruction is
being executed and ON when the execution is com-
pleted (normal end or error end).

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding port numbers when communications
instructions have been executed. Words A203 to
A210 correspond to communications ports 0 to 7.
The code is 00 while the instruction is being executed
and contains the relevant code when execution is
completed.
These words are cleared to 0000 when PLC opera-
tion starts.

Communications
Port Error Flags

A219 ON when an error occurred during execution of a
communications instruction. When a flag is ON,
check the completion code in A203 to A210 to trou-
bleshoot the error.
OFF when execution has been finished normally. Bits
00 to 07 correspond to communications ports 0 to 7.
The flag status is retained until the next communica-
tions instruction is executed. Even if an error has
occurred, a flag will be reset to 0 the next time that a
communications instruction is executed for that port.

Code Meaning

0205 hex Response timeout (This error can occur when the communications
mode is set to host link mode.)

0401 hex Undefined command (This error can occur when the communications
mode is set to protocol macro, NT Link, echoback test, or serial gate-
way mode.)

1001 hex The command is too long.

1002 hex The command is too short.

1004 hex The command format is incorrect.

110C hex Other parameter error
1018

Serial Communications Instructions Section 3-24
Related Flags in the CPU Bus Unit Area

(n = CIO 1500 + 25 × unit number)

2201 hex Operation could not be performed during operation. (Operation dis-
abled because Unit is busy sending.)

2202 hex Operation could not be performed when stopped. (Operation dis-
abled because Unit is switching protocols.)

Word Bit Function

Port 1 Port 2

n+8 n+18 04 Overrun Error Flag

1: The reception buffer contained more than 259
bytes of data before RXDU(255) was executed.

Note: Once this error flag goes ON, it can be turned
OFF only by turning the power OFF and then ON
again or restarting the Board.

n+9 n+19 06 Reception Completed Flag
0: No data received or currently receiving data
1: Reception completed

0 → 1: The Board or Unit has received the specified
number of bytes.

1 → 0: RXD(235) or RXDU(255) was executed to write
the data from the buffer to a CPU Unit data area.

n+9 n+19 07 Reception Overflow Flag
0: The Board or Unit has not received more than

the specified number of bytes.
1: The Board or Unit has received more than the

specified number of bytes.

0 → 1: The Board or Unit received more data after data
reception was completed.

1 → 0: RXD(235) or RXDU(255) was executed to write
the data from the buffer to a CPU Unit data area.

n+10 n+20 05 Reception Counter

Indicates the number of bytes received in hexadecimal,
between 0000 and 0100 hex (0 to 256 decimal).

Code Meaning
1019

Serial Communications Instructions Section 3-24
Example: Flag Operation The following diagram shows the operation of RXDU(255) and related flags.

Example: Receiving Data When CIO 000000 is ON, A20203 (the Communications Port Enabled Flag) is
ON, and CIO 155906 (the Reception Completed Flag for port 1) is OFF in the
following example, RXDU(255) reads the data received through serial port 1
of the Serial Communications Unit with unit number 2. (Logical communica-
tions port number 3 is used to receive the data from a general-purpose device
such as a bar-code reader.) The 10 bytes of received data are written to the
DM Area beginning at the rightmost byte of D00100.

End code or specified
number of bytes received.

Instruction
execution

ON

OFF

Communications Port
Enabled Flag
(A20200 to A20207 correspond to
communications ports 0 to 7.)

RXDU(255)

CPU Unit

Reception Completed Flag
(Bit 6 of n+9 or n+19,
n = CIO 1500 + 25 x unit number)

ON

OFF

Serial
Communications

Unit

Reception processing

Reception
processing

Writing data to the CPU Unit's
data area

Write
processing
1020

Serial Communications Instructions Section 3-24
3-24-7 CHANGE SERIAL PORT SETUP: STUP(237)
Purpose Changes the communications parameters of a serial port on the CPU Unit,

Serial Communications Board (CS Series only), or Serial Communications
Unit (CPU Bus Unit). STUP(237) thus enables the protocol mode to be
changed during PLC operation.

RXDU
D00100

D00200

&10

155906A20203

D

C

N

000000

C: D00200 0

 0 7 815

0

11 12

3

 0

Serial Communications Unit's unit address
 (CPU Bus Unit's unit address)
12: Unit address + 10 hex

 7 815

1

11 12

0 1

 4 3

Always 0

0: No RS and ER signal control

1 2

 4 3

3: Communications port No. 3
Communication port No. specifier (internal logic port)

1: Serial port No. 1
Serial Communications Unit's serial port specifier

D: D00100

 0 7 815

4 1 2

Most significant bytes Least significant bytes

D00101 8 5 6

D00102 A B 1 2 3 4 5 6 7 8 A B C D E F G H I J K L

10 bytes

3412ST 56 78 AB CD

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Data received

D

3

7

C

H E F

L I J

G

K

D00103

D00104

EF GH IJ KL ED

C+1: D00201

C+1 3
 0

88: 80 + (04_Unit No. 2)

 7 815
0

11 12
8 8
 4 3

3: Communications port No. 3
 Communications port No. specifier (internal logic port)

0: Directly specified serial port unit address

Note: Allocated DM Area Settings

• Start code/end code

D30204:
 0

End code (e.g., 03 hex)

 7 815
2

11 12
0 3
 4 3

 Start code (e.g., 02 hex)

0

• Start code/end code specifier

D30205:
 0 7 815

1
11 12 4 3

1

End code specifier
1: Use end code

00: Unlimited (256 bytes max.)

1: Least significant byte to most significant byte

RS and ER signal control

Serial Communications Unit's serial port unit address specifier

Number of receive data bytes

Start code specifier
1: Use start code

Communications
Port Enabled
Flag

Reception
Completed
Flag

Note: The Serial Communications Unit's serial port unit address can
also be directly specified in C+1.

Received in
specified
order:

Start and end codes added
according to setting in PC Setup
1021

Serial Communications Instructions Section 3-24
Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control word, C, are as shown below.

Operand Specifications

STUP(237)

C

S

C: Control word (port)

S: First source word

Variations Executed Each Cycle for ON Condition STUP(237)

Executed Once for Upward Differentiation @STUP(237)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK Not allowed

15 8 011 712
C

Unit address of port device
CPU Unit: 00 hex
CPU Bus Unit: Unit number + 10 hex
Inner Board: E1 hex (CS Series only)

Serial port number
1 hex: Peripheral port on CPU Unit or Port 1 on CPU Bus Unit or Inner Board
2 hex: Built-in RS-232C port on CPU Unit or Port 2 on CPU Bus Unit or Inner Board
(Settings 3 and 4 hex are reserved.)

Always set to 0.

Area C S

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO 6134

Work Area W000 to W511 W000 to W502

Holding Bit Area H000 to H511 H000 to H502

Auxiliary Bit Area A000 to A438
A448 to A959

A000 to A438
A448 to A950

Timer Area T0000 to T4095 T0000 to T4086

Counter Area C0000 to C4095 C0000 to C4086

DM Area D00000 to D32767 D00000 to D32758

EM Area without bank E00000 to E32767 E00000 to E32758

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to En_32758
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)
1022

Serial Communications Instructions Section 3-24
Description STUP(237) writes 10 words of data from S to S+9 to the communications
setup area of the Unit with the specified unit address, as shown in the follow-
ing table. When the constant #0000 is designated to S, the communications
settings of the corresponding port will be set to default.

 The following data is stored in the 10 words from S to S+9.

When STUP(237) is executed, the corresponding Port Parameters Changing
Flag (A61901, A61902, or A619 to A636) will turn ON. The flag will remain ON
until changing the parameters has been completed.

Use STUP(237) to change communications parameter for a port during oper-
ation based on specified conditions. For example, STUP(237) can be used to
change to Host Link communications for monitoring and programming from a
host computer when specified conditions are meet while execution a commu-
nications sequence for a modem connection.

Constants Specified values only #0000

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S

Unit address Unit Port No. Serial port Serial port communications
setup area

00 hex CPU Unit 1 hex Port 1 Communications parameters for
the peripheral port in the PLC
Setup

2 hex Port 2 Communications parameters for
the RS-232C port in the PLC
Setup

Unit No. + 10
hex

Serial Communications
Unit (CPU Bus Unit)

1 hex Port 1 10 words starting from D30000 +
100 x Unit No.

2 hex Port 2 10 words starting from D30000 +
100 x Unit No. + 10

E1 hex Serial Communications
Board (Inner Board) (CS
Series only)

1 hex Port 1 10 words starting from D32000

2 hex Port 2 10 words starting from D32010

Peripheral port on CPU Unit PLC Setup settings in Programming Console
addresses +144 to +153

RS-232C port built into CPU Unit PLC Setup settings in Programming Console
addresses +160 to +169

Serial Communications Unit port 1 m to m+9 (m = D30000 × unit number)

Serial Communications Unit port 2 m+10 to m+19 (m = D30000 × unit number)

Serial Communications Board port 1 D32000 to D32009

Serial Communications Board port 2 D32010 to D32019
1023

Serial Communications Instructions Section 3-24
Differences between CPU Units

If the PLC is turned OFF and then ON again after STUP(237) has been used
to change the communications parameters, the new parameters will be
retained or will revert to the previous parameters, depending on the CPU Unit.

Flags

Precautions Communications parameters consist of the protocol mode, baud rate, data
format (protocol macro transmission method and protocol macro maximum
communications data length), and other parameters. Refer to CS/CJ-series
Programmable Controllers Operation Manual (W339) or CS/CJ-series Serial
Communications Boards and Serial Communications Unit Operation Manual
(W336) for the serial port that is to be set for details.

Related Flags and Words The following flags can be used as required when executing STUP(237).
These flags are in the Auxiliary Area.

Examples When CIO 000000 turns ON in the following example, the communications
parameters for serial port 1 of the Serial Communications Board (Inner Board)
are changes to the settings contained in the 10 words from D00100 to
D00109. In this example, the setting are changed the protocol mode to the
protocol macro mode.

CPU Unit Status of communications parameters

CS1-H, CJ1-H,
CJ1M, or CS1D

If the PLC is turned OFF and then ON again, the communications
parameters revert to the settings that existed before they were
changed with STUP(237).

CS1 If the PLC is turned OFF and then ON again, the communications
parameters set with STUP(237) are retained.

Name Label Operation

Error Flag ER ON if the values in C are not within range.
ON if STUP(237) is executed for a port whose Communi-
cations Parameter Changing Flag is already ON.
ON if STUP(237) is executed in an interrupt task.
OFF in all other cases.

Name Address Contents

Peripheral Port Parameters
Changing Flag

A61901 ON when the communications param-
eters are being changed for the periph-
eral port.

RS-232C Port Parameters
Changing Flag

A61902 ON when the communications param-
eters are being changed for the RS-
232C port.

Port Parameters Changing
Flags for ports 1 to 4 on
Serial Communications
Units 1 to 15.

A620 bit 01 to
bit 04
to A635 bit 01
to bit 04

ON when the communications param-
eters are being changed for a port on a
Serial Communications Unit.

Port Parameters Changing
Flags for ports 1 to 4 on the
Serial Communications
Board (CS Series only)

A63601 to
A63604

ON when the communications param-
eters are being changed for a port on
the Serial Communications Board.
1024

Serial Communications Instructions Section 3-24
S: D00100

S+1: D00101

S+2: D00102

S+9: D00109

6

6

to to

to to

Port setting: Default, Protocol mode: 6 hex (protocol macro).

Baud rate: Default (9,600 bps)

Transferred

DM words allocated to the communications
setup of the Serial Communications Board.
1025

Network Instructions Section 3-25
3-25 Network Instructions

3-25-1 About SYSMAC NET Link/SYSMAC LINK Operations
The network instructions can be divided into two types, SEND(090)/
RECV(098) and CMND(490). These instructions are transmitted between
Units (CPU Units, CPU Bus Units, and computers) in a network to transfer
data and control operation, such as changing the operating mode.

The commands executed by the network instructions are known as “FINS
commands” and are used for communications between FA control devices.
(Refer to the CS/CJ Series Communications Commands Reference Manual
for details on FINS commands.) With FINS commands it is possible to com-
municate (by the command/response format) with any Unit in any network or
on the CPU Rack itself just by specifying the network address, node number,
and unit number of the destination Unit.

In the following example, a FINS command is sent to the CPU Unit through
node number 2 in network address 00.

1,2,3... 1. Network address:
Address of the network (local network = 00)

2. Node number
Logical address in the network

3. Unit number
Unit number of the destination Unit

a) CPU Unit: 00

b) CPU Bus Unit: Unit number +10 hexadecimal

c) Special I/O Unit (except for C200H-series Special I/O Units):
Unit number +20 hexadecimal

Instruction Message content Operation

SEND(090)/
RECV(098)

Commands to transmit/
receive data
(FINS command)

CMND(490) Arbitrary commands
(FINS command)

Data reception

CPU Unit Other device

CPU Unit,
CS1 CPU Bus Unit or
computer

Data transmission
SEND(090) or
RECV(098)

CMND(490)

Command sent

Other deviceCPU Unit

Response returned

CPU Unit,
CS1 CPU Bus Unit, or
computer

Network address 01

CPU Unit (Rack)

Node number 2

Node number 1

Network address 00
(local network)
1026

Network Instructions Section 3-25
d) Inner Board (CS Series only):
E1 hexadecimal

e) Computer: 01

Note It is also possible to directly specify a serial port (unit address) within the des-
tination device.

Serial Port Unit Addresses:

• Serial Communications Unit ports

Port 1: 80 hex + 4 × unit number

Port 2: 81 hex + 4 × unit number

• Serial Communications Board ports

Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

• CPU Unit ports

Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

Network Communications
Patterns

The following examples show three types of network communications: com-
munications from a PLC to other devices in a network, communications from a

Unit number
(hexadecimal)

Destination device

00

Unit number +10

E1

01

Node number

Node number

Node number

Node number

Inner Board CPU Unit

Serial Communications Unit

Serial port 1

Serial port 2
Serial port 1

Serial port 2

Serial port 2 (Peripheral)

Serial port 1 (RS-232C)

Unit number 0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal 80 84 88 8C 90 94 98 9C A0 A4 A8 AC B0 B4 B8 BC

Decimal 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188

Unit number 0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal 81 85 89 8D 91 95 99 9D A1 A5 A9 AD B1 B5 B9 BD

Decimal 129 133 137 141 145 149 153 157 161 165 169 173 177 181 185 189
1027

Network Instructions Section 3-25
PLC to serial ports on other devices in a network, and communications to a
host computer connected by a Host Link.

Communications to Another Device in the Network

The following example shows communications from a PLC to devices in
another PLC (the CPU Unit, CPU Bus Unit, or Inner Board). For more details,
refer to the Operation Manual for the network (Controller Link or Ethernet)
being used.

This example shows communications from a PLC to a personal computer.

Communications to a Serial Port in the Network

These examples show communications from a PLC to serial ports in devices
in the network. The first shows communications to serial ports in devices in
another PLC (the CPU Unit, CPU Bus Unit, or Inner Board) and the second
shows communications to a serial port within the CPU Rack itself.

Note Communications can span up to 8 network levels, including the local network.
(The local network is the network where the communications originate.)

In order to communicate through the network, it is necessary to register a
routing table in each PLC’s CPU Unit which indicates the route by which data

PLC to PLC
To Inner Board

To CPU Unit

To CPU
Bus Unit

PLC to computer

Through the network

Within the CPU Rack

Network 1
(local network)

Network 2 Network 3

Bridge or gatewayBridge or gateway

SEND(090),
RECV(098), or
CMND(490)
1028

Network Instructions Section 3-25
will be transferred to the desired node. Each routing table is made up of a
local network table and a relay network table.

1,2,3... 1. Local network table
This table shows the unit numbers and network addresses of the nodes
connected to the local PLC.

2. Relay network table
This table shows the node numbers and network addresses of the first re-
lay nodes to destination networks that are not connected to the local PLC.

Communications to a Host Computer (Host Link)

By issuing a SEND(090), RECV(098), or CMND(490) instruction to a serial
port set to Host Link mode, the necessary Host Link header and terminator
will be attached to the FINS command and the command will be sent to the
host computer.

Note Host Link communications can be sent through the network. In this case, the
FINS command travels through the network normally. When the command
reaches the Host Link system, the necessary Host Link header and terminator
are attached to the FINS command and the command is sent to the host com-
puter.

Serial Gateway Communications to a Component or Host Link Slave

It is possible to send FINS commands (or send/receive data) to a component
or Host Link Slave connected to the PLC through its serial port with the serial
gateway function.

• Sending to a Component

When a CMND(490) instruction is executed to a serial port that supports
the serial gateway function, the serial gateway function converts the com-
mand to a CompoWay/F, Modbus-RTU, or Modbus-ASCII command.

Host computer

Host Link

CPU Unit

Host Link header

Host computer

Host Link

Host computer

Host Link

Host computer connected to
the CPU Unit's built-in port

Host computer connected to a
Serial Communications Board

(CS Series only)

To portTo port

Host computer connected to a
Serial Port Unit

To port

Serial Communications
Unit

Serial Communications
Board

Host Link FCS
and terminator

FINS
command

FINS command

Host Link

Host computer

Host Link header

FINS
command

Host Link FCS
and terminator
1029

Network Instructions Section 3-25
• Sending to a PLC operating as a Host Link Slave

When a CMND(490), SEND(090), or RECV(098) instruction is executed to
a serial port that supports the serial gateway function, the serial gateway
function can send any FINS command or send/receive data.

Communications from a Host Computer (Host Link)

It is possible to send FINS commands from a host computer to the PLC to
which it is connected as well as other devices in the network (CPU Units, Spe-
cial I/O Units, computers, etc.). In this case, the necessary Host Link header
and terminator must be attached to the FINS command when it is sent.

Serial cable

Modbus-RTU Slave device

Modbus RTU

CMND

PLC

Serial cable

PLC
Host Link Slave

CMND

PLC

Host link FINS

Host computer

Host Link

FINS
command

Host Link header

Host Link FCS
and terminator FINS command
1030

Network Instructions Section 3-25
Communications Flags The operation of the communications flags is outlined below.

• The Communications Port Enabled Flag is reset to 0 when communica-
tions are in progress and set to 1 when communications are completed
(normally or not).

• The status of the Communications Port Error Flag is maintained until the
next time that data is transmitted or received.

• The Communications Port Error Flag will be reset to 0 the next time that
data is transmitted or received, even if there was an error in the previous
operation.

About Communications
Port Numbers

There are 8 logical communications ports provided, so 8 communications
instructions can be executed simultaneously. Only one instruction can be exe-
cuted at a time for each communications port. Exclusive control must be used
when more than 8 instructions are executed.

These 8 communications port numbers are shared by the network instructions
(SEND(090), RECV(098), and CMND(490)), the serial communications
instructions (TXDU(256) and RXDU(255)), and the PROTOCOL MACRO
instruction (PMCR(260)). Be sure not to specify the same port number on two
instructions at the same time.

0204

Busy

Communications Port
Enabled Flag

Network instruction
(SEND, RECV, or CMND)

Communications Port
Error Flag

Communications Port
Completion Code

Instruction 1
executing

Previous
completion

0000 (Normal
completion)

Instruction 2
executing

Instruction 3
executing

0000 (Normal completion)

Controller Link Unit,
Ethernet Unit, or Serial
Communications Unit

Port
CPU Unit

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8
1031

Network Instructions Section 3-25
The following diagram shows an example of exclusive control.

Automatic Allocation of
Communications Ports

■ Overview

The following instructions all use one communications port (logical port)
between ports 0 to 7.

• Network Communications Instructions: SEND(090), RECV(098), and
CMND(490)

• Serial Communications Instructions: PMCR(260), TXDU(256), and
RXDU(255)

In this section, all of the above instructions are referred to as Communications
Instructions.

Each communications port can be used by only one instruction at a time. The
following steps were previously necessary to use the communications ports.

• When programming, it was necessary to keep track of the communica-
tions ports that were being used to designate them in operands.

• In the ladder program, it was necessary to confirm the availability of com-
munications ports before using them.

KEEP A

DIFU B

KEEP C

Reset B

Reset D

Execution
condition

Communications
Port Enabled Flag

Local Node
Active Flag

Destination
Node Active
Flag

Creates op-
erand or
control data
with @MOV
or @XFER.

@SEND,
@RECEIVE,
@CMND

Communications
Port Enabled Flag

Communications
Port Error Flag

Execution
condition

Communications
Port Enabled Flag

Same as above.

Bit A remains ON while the communications
instruction is being executed.

Copies the operand and control data to the
desired data area.

Executes the communications instruction.

Writes the reset input. (Reset B is turned
ON when the communications instruction
is completed.)

For Transmission Error Flag display
(Good if data is retransmitted.)

Exclusive control to prevent simulta-
neous execution:
Exclusive control prevents another
communications instruction from being
executed until the instruction above is
completed.
1032

Network Instructions Section 3-25
Example of Previous Programming Requirements

Now, for CS1-H, CJ1-H, CJ1M, and CS1D CPU Units of lot number 020601 or
later (manufactured 1 June 2002 or later), the port number can be specified
as “F” instead of from 0 to 7 to automatically allocate the communications
port, i.e., the next open communications port is used automatically.

This saves the programmer from having to keep track of communications
ports while programming. The differences between assigning specific port
numbers and automatically allocating port numbers are given in the following
table.

Execution
condition

d (Execution completed)

a (Executing)

b
(Executing)

Exclusive control was required by the user when
the same communications port was used more than once.

It was necessary to keep track of the communications
port being used by each instruction.

Confirmation of the availability of a communications port
was required using the corresponding Communications Port Enabled Flag, here for port 0.

A20200

b (Executing)

c (Executing)

Communica-
tions port: 1

KEEP

@Communica-
tions instruction

Communica-
tions port: 0

@Communica-
tions instruction

Communica-
tions port: 0

@Communica-
tions instruction

a
(Executing)

Exclusive control was required by the user when the same communications port was used more than once.

Item Specific number
assignments

Automatic allocation

Specification of the com-
munications port number
in the control data

0 to 7 F

Exclusive control Required. Not required unless more than 8
communications ports are
required at the same time.

Flag applications LD or LD NOT used
with flag corre-
sponding to the
specified communi-
cations port.

TST(350) or TSTN(351) used with
A218 (Used Communications Port
Number).

Network communica-
tions completion codes

Completion code for
communications
port specified by
user is accessed.

Completion codes are accessed
by using the I/O memory address
stored in A216 and A217 (Network
Communications Completion
Code Storage Address) and index
register indirect addressing.

Communica-
tions port: F

When “F” is specified, the next available
communications port is used automatically.

@Communica-
tions instruction
1033

Network Instructions Section 3-25
■ Auxiliary Area Bits and Words Used when Automatically Allocating
Communications Ports

Note 1. Use the following flowchart to determine whether to use the Network Com-
munications Port Allocation Enabled Flag (A20215) and the Network Com-
munications Completion Code Storage Address (A216 and A217).

Address Bits Name Description

A202 15 Network Communications Port
Allocation Enabled Flag

ON when there is a communications port available for automatic
allocation. This flag can be used to confirm if all eight communica-
tions ports have already been allocated before executing communi-
cations instructions.

A214 00 to 07 First Cycle Flags after Network
Communications Finished

Each flag will turn ON for just one cycle after communications have
been completed. Bits 00 to 07 correspond to ports 0 to 7. Use the
Used Communications Port Number stored in A218 to determine
which flag to access.
Note: These flags are not effective until the next cycle after the

communications instruction is executed. Delay accessing
them for at least one cycle.

08 to 15 Do not use.

A215 00 to 07 First Cycle Flags after Network
Communications Error

Each flag will turn ON for just one cycle after a communications
error occurs. Bits 00 to 07 correspond to ports 0 to 7. Use the Used
Communications Port Number stored in A218 to determine which
flag to access.
Note: These flags are not effective until the next cycle after the

communications instruction is executed. Delay accessing
them for at least one cycle.

08 to 15 Do not use.

A216
and
A217

--- Network Communications
Completion Code Storage
Address

The completion code for a communications instruction is automati-
cally stored at the address with the I/O memory address given in
these words. Place this address into an index register and use indi-
rect addressing through the index register to reach the communica-
tions completion code.

A218 --- Used Communications Port
Number

When a communications instruction is executed, the number of the
communications port that was used is stored in this word. Values
0000 to 0007 hex correspond to communications ports 0 to 7.

YES

NO

NO

YES

Use A20215 and perform exclu-
sive control.

Using more than 8 com-
munications ports?

Communications comple-
tion codes required?

Use A216 and A217 with indirect
addressing via an index register to
check the code.

Use automatic communications
port allocation.
1034

Network Instructions Section 3-25
2. The Auxiliary Area bits and words used for user-specified communications
ports are listed in the following table.

Flag/Word Operation

Address Bits Name Description

A202 00 to 07 Communications Port Enabled
Flags

ON when a communications instruction can be executed with the
corresponding port number. Bits 00 to 07 correspond to communica-
tions ports 0 to 7.
The completion of communications can be confirmed by monitoring
when a flag turns ON. The flag will turn OFF when execution of a
communications instruction is started.

A203 to
A210

--- Communications Port Comple-
tion Codes

These words contain the completion codes for the corresponding
port numbers when communications instructions have been exe-
cuted. Words A203 to A210 correspond to communications ports 0
to 7.

A219 00 to 07 Communications Port Error
Flags

ON when an error occurred during execution of a communications
instruction. When a flag is ON, check the completion code in A203
to A210 to troubleshoot the error.
Turn OFF then execution has been finished normally. Bits 00 to 07
correspond to communications ports 0 to 7.

ON for one cycle

ON for one cycle

Cleared to zeros Response stored

Communications Port Enabled
Flags (A20200 to A20207)

Normal completion:
First Cycle Flags after Network
Communications Finished
(A21400 to A2407)

Communications Port Com-
pletion Codes (A203 to A210)

Error completion:
Communications Port Error
Flags (A21900 to A21907)

First Cycle Flags after
Network Communications
Error (A21500 to A21507)

Communica-
tions instruc-
tion executed.

Communica-
tions completed.
1035

Network Instructions Section 3-25
■ Applications Methods

To use automatic communications port allocation, set the communications
port number of “F” and then program as shown below.

Completing and Processing Error after Executing Communications
Instructions

Execution condition

d (Execution completed)

a (Executing)

c (Standby)

d (Execution completed)c (Standby)a (Executing)

MOV

A218

a
(Executing)

TST

A214

TSTN

A215

TST

A215

KEEP

Communications
instructions

Port: F

b
(Used port)

b
(Used port)

b
(Used port)

b
(Used port)

When a (Executing) turns ON, a communications instruction
(SEND(090), RECV(098), CMND(490), or PMCR(260)) is executed with the
communications port specified as “F.”

The communications port number that was automatically allocated is
stored in a work word b (Used port) from A218 (Used Communications
Port Number).

Confirms that the First Cycle Flags after Network Communications Finished for the
automatically allocated port number (corresponding bit for word b in A214) is ON.

Confirms that the First Cycle Flags after Network
Communications Error for the automatically allocated port
number (corresponding bit for word b in A215) is OFF.

Network communications
completion processing

Network communications
error processing

Bit c turns OFF the cycle after the
communications instruction was
executed to enable checking for
communications completion or
communications errors.

Confirms that the First Cycle Flags after Network
Communications Error for the automatically allocated port
number (corresponding bit for word b in A215) is OFF.
1036

Network Instructions Section 3-25
Accessing the Completion Code after Executing Communications
Instructions

The completion codes are generally used to troubleshoot errors when they
occur. A completion code of 0000 hex can, however, also be used to confirm
that communications have completed normally.

Note Both user-specified communications port numbers and automatically speci-
fied communications port numbers can be used in the same program. It is
possible, however, that the communications port numbers specified by the
user will be used for automatic allocation. It is thus important to check the pro-
gram carefully when adding communications instructions that use automatic
communications port allocation to an existing program, as shown in the follow-
ing example.

Port: F

MOV

A218

KEEP

MOVL

A216

TST

A214

MOVL

IR0

<>

,IR0

#0000

Execution condition

d (Execution completed)

a (Executing)

c (Standby)

Communications
instructions

a (Executing) c (Standby) d (Execution completed)

When a (Executing) turns ON, a communications instruction
(SEND(090), RECV(098), CMND(490), or PMCR(260)) is executed with
the communications port specified as “F.”

The communications port number that was automatically allocated is
stored in a work word b (Used port) from A218 (Used Communications
Port Number).

Places the I/O memory address (A216) containing the completion code
for the communications instruction executed with automatic allocation of
the communication port into work word e (Code storage location).

Confirms that the First Cycle Flags after Network Communications
Finished for the automatically allocated port number (corresponding bit for
word b in A214) is ON.

Places the I/O memory
address of the communications
response code from work word
e (Code storage location) into
index register IR0.

Network communications
error processing

Bit c turns OFF the cycle after the
communications instruction was
executed to enable checking the
communication completion code.

If the completion code indirectly address via IR0
does not equal #0000, communications error
processing is performed.

a
 (Executing)

b
 (Used port)

e (Code storage
location)

b
 (Used port)

e (Code storage
location)
1037

Network Instructions Section 3-25
Programming Example

Timing the Execution of
Network Instructions

A Network Instruction just starts the communications processing when its
execution condition is established. The actual communications processing is
executed in the background in the “serial communications port servicing” por-
tion of peripheral servicing.

The communications processing is performed as follows:

1. If the corresponding Communications Port Enabled Flag (A20200 to
A20207) is ON when the execution condition is established, the system
performs the following processes:

• Turns OFF the port’s Communications Port Enabled Flag and Commu-
nications Port Error Flag (A21900 to A21907).

• Sets the port’s Communications Port Completion Code (A203 to A210)
to 0000.

• Reads the control words (beginning at C) and starts communications
processing (sending a FINS command or receiving a response.)

2. In the peripheral servicing’s “serial communications port servicing” portion
of the cycle, the system composes a FINS command based on the oper-
ands (see note) and sends the FINS command to the Communications
Unit or other destination node.

A20201W00000

A20201W00001
Communications were previously enabled by
exclusively controlling operation using W00000 and
W00001.

Automatic
port alloca-
tion was add-
ed to the pro-
gram.

This instruction may, at times, use
communications port 1. Even if W00000
or W00001 is turned ON, A20201 will be
turned OFF by execution of this
PMCR(260) instruction, so neither of the
CMND(490) instructions will be executed.

Port: 1

Port: 1

Port: F

CMND

S

D

C

Cycle
time

Communications Port
Enabled Flag

Background communications
processing

Cycle
time

Directs the
start of
processing
only.

Execution
Condition

Stores results when
communications
processing is completed.

Composes a FINS
command based on the
command data and sends it.

Receives the response and stores
the information as response data.
The communications results are
reflected in the allocated Auxiliary
Area Flags.

The communications processing
(transmission and reception) is
performed in time-slices over several
cycles during the peripheral
servicing’s “serial communications
port servicing” portion of the cycle.
1038

Network Instructions Section 3-25
Note When SEND(090) is being executed, the contents of S and D are
read and a FINS command for data transmission is composed.
When RECV(098) is being executed, the content of S is read and a
FINS command for data reception is composed.
When CMND(490) is being executed, the content of S is read and the
corresponding FINS command is composed.

3. If the send processing cannot be completed in a the time available in “serial
communications port servicing” period, the processing will be continued in
the next cycle’s serial communications port servicing.

4. When a response is returned, the system performs the following process-
es:

• Refreshes the destination words specified in the Network instruction
with the response data.

• Turns ON the port’s Communications Port Enabled Flag.

• Refreshes the port’s Communications Port Error Flag (A21900 to
A21907) and Communications Port Completion Code (A203 to A210).

3-25-2 About Explicit Message Instructions
Methods for Using Explicit
Message Communications

There are two methods that can be used to send explicit messages from a
PLC.

• Use the CMND(490) to send a FINS command code of 2801 hex
(EXPLICIT MESSAGE SEND).

• Use the following Explicit Message Instructions. (See note.)

Note These instructions are supported only by CS/CJ-series CPU Unit
Ver. 2.0 or later.

Cycle time (First cycle)

END(001) executed.

3. Processing is
divided up over
several cycles.

Cycle time (Second cycle)

Program execution Program execution

1. SEND(090),
RECV(098), or
CMND(490)
executed.

END(001) executed.

I/O refreshing

Peripheral
servicing

Peripheral
servicing

Sends command. Receives
response.

2. Communications processing
during “serial communications
port servicing” (Composes and
sends FINS command.)

4. Communications processing
during “serial communications
port servicing” (Receives
response.)

I/O refreshing
1039

Network Instructions Section 3-25
Explicit Message
Instructions

The following instructions, which are used specially for explicit messages, are
called Explicit Message Instructions.

Features of Explicit
Message Instructions

• Explicit Message Instructions do not require giving a 2801 hex FINS com-
mand and are much simpler to program than CMND(490).

• With the EXPLICIT GET/SET ATTRIBUTE instructions, entering the ser-
vice code is not required and only information from the class ID onward
needs to be entered.

• With the EXPLICIT WORD READ/WRITE instructions, the I/O memory
address in the local and remote CPU Units can be specified directly.

Code specifications for area types and hexadecimal word addresses are
not required. (These are required for CMND(490) instructions with service
code 1E (word data read) or 1F hex (word data write).)
This enables easy reading and writing of data between CPU Units using
explicit message communications (like SEND/RECV instructions for FINS
commands).

Operation The Explicit Communications Error Flag is used to determine if communica-
tions ended normally or in error.

For error completions (i.e., when the flag is ON), the Communications Port
Error Flag for FINS commands is used to determine if the explicit message
was never sent (i.e., when the flag is ON) or if there was an error in the explicit
message that was sent (i.e., when the flag is OFF).

The Communications Port Completion Code will contain 0000 hex after a nor-
mal end, an explicit message error code after an explicit communications
error end, and a FINS message completion code after a FINS error end.

Instruction Name Outline

EXPLT(720) EXPLICIT MES-
SAGE SEND

Sends an explicit message with any service
code. Note: Functionally, this instruction is the
same as sending CMND(490) with a FINS com-
mand code of 2801 hex.

EGATR(721) EXPLICIT GET
ATTRIBUTE

Sends an explicit message with a service code
of 0E hex (GET ATTRIBUTE SINGLE).

ESATR(721) EXPLICIT SET
ATTRIBUTE

Sends an explicit message with a service code
of 10 hex (SET ATTRIBUTE SINGLE).

EGATR(721) EXPLICIT WORD
READ

Uses an explicit message to read data from a
CPU Unit.

EGATR(721) EXPLICIT WORD
WRITE

Uses an explicit message to write data to a
CPU Unit.

Condition Explicit
Communications Error

Flag (A21300 to
A21307:

Communications port
No. 0 to 7)

Communications Port
Error Flag (A21900 to

A21907:
Communications port

No. 0 to 7)

Communications Port
Completion Code (A203

to A210:
Communications port

No. 0 to 7)

1) Normal end OFF OFF 0000 hex

2) Error end a) When the explicit
message could not
be sent

ON ON FINS messages comple-
tion code

b) When the explicit
message was sent
but an explicit error
response was
returned

OFF Explicit message error
code
1040

Network Instructions Section 3-25
1) Normal End An explicit message is sent and a normal response is returned.

The corresponding Explicit Communications Error Flag (A21300 to 07: Com-
munications port No. 0 to 7) will be OFF and the Network Communications
Response Code (A203 to A210: Communications port No. 0 to 7) will contain
the explicit message normal response code of 0000 hex.

2) Error End The are two possibilities for error ends, as described in the next two subsec-
tions.

a) When the Explicit Message Could Not Be Sent

In this case, the explicit message was never sent on the network, e.g.,
because the network was not running. Here, both the Explicit Communica-
tions Error Flag (A21300 to A21307: Communications port No. 0 to 7) and the
Communications Port Error Flag (A21900 to A21907: Communications port
No. 0 to 7) will turn ON.

After completion, the Communications Port Completion Code (A203 to A210:
Communications port No. 0 to 7) will contain the FINS message error code.

OK

OKOK

OK
CPU Unit

FINS header

FINS header FINS response Explicit response Explicit response

CPU Bus
Unit

(e.g.,
DeviceNet
Unit)

Explicit message Explicit message

Explicit message sent

Processed normally
Normal explicit response
received

PLC Rack
DeviceNet network

DeviceNet
node

(e.g., slave)

1
0

1
0

1
0

0000 hex 0000 hex

Communications Port
Enabled Flag

Explicit Message
Instruction

Explicit Communications
Error Flag

Communications Port
Error Flag

Communications Port
Completion Code

Instruction
being

executed

0000 hex
(normal end)

Previous

Instruction
being

executed

Explicit response

OK
FINS error

FINS error response No explicit response

CPU Unit
FINS header

FINS header FINS response

CPU Bus
Unit

(e.g.,
DeviceNet
Unit)

Explicit message

Explicit message not sent

Network not running, etc.

PLC Rack
DeviceNet network

DeviceNet
node

(e.g., slave)

Error
1041

Network Instructions Section 3-25

b) When the Explicit Message Was Sent But an Explicit Error Response
Was Returned

In this case, the explicit message was sent but an error existed in the explicit
message command frame (code not supported, illegal size, etc.). Here, the
Explicit Communications Error Flag (A21300 to 07: Communications port No.
0 to 7) will turn ON and the Network Communications Error Flag (A21900 to
07: Communications port No. 0 to 7) will remain OFF.

After completion, the Network Communications Response Code (A203 to
A210: Communications port No. 0 to 7) will contain the explicit message error
code.

1
0

1
0

1
0

0000 hex 0000 hex

Communications Port
Enabled Flag

Explicit Message
Instruction

Explicit Communications
Error Flag

Communications Port
Error Flag

Communications Port
Completion Code

Instruction
being

executed

FINS end codePrevious

Instruction
being

executed

OK

Error

OK

Explicit error

CPU Unit
FINS header

FINS header FINS response Explicit error
response

Explicit response

CPU Bus
Unit

(e.g.,
DeviceNet
Unit)

Explicit message Explicit message

Explicit message sent

Normal error response
received

PLC Rack
DeviceNet network

DeviceNet
node

(e.g., slave)

Error

1
0

1
0

1
0

0000 hex 0000 hex

Communications Port
Enabled Flag

Explicit Message
Instruction

Explicit Communications
Error Flag

Communications Port
Error Flag

Communications Port
Completion Code

Instruction
being

executed

Explicit error codePrevious

Instruction
being

executed
1042

Network Instructions Section 3-25
Ladder Programming
Examples

Example 1: User Specification of Communications Port Number

A21300

A21300 A21900

A21900

Execution
condition

Communications Port
Enabled Flag

A20200

d (Execution completed)

a (Executing) The explicit message instruction is executed when a (executing)
turns ON. The port number 0 is specified.

a (Executing) is turned ON and held ON when the
execution condition and Communications Port
Enabled Flag (A20200) turn ON.
a (Executing) is turned OFF when d (Execution
completed) turns ON.

Explicit
message
instruction

Port: 0

a (Executing)

KEEP

a (Executing)

Processing after
completing network
communications

Processing for network
communications error:
Explicit error

The Communications Port Enabled Flag (A20200) is OFF during
network communications and turns ON when they are completed
(for either normal or error completion).
d (Execution completed) is turned ON when a (Executing) turns
ON and the Communications Port Enabled Flag (A20200) turns
ON.

If the Explicit Communications Error Flag
(A21300) when execution is completed, explicit
memory communications were completed
normally and normal processing after network
communications is performed.

If the Explicit Communications Error Flag
(A21300) is ON when execution is completed, an
error has occurred in explicit message
communications and the Communications Port
Error Flag (A21900) is checked. If it is OFF,
processing for an explicit communications error is
performed on the assumption that an explicit
message was sent and an explicit message
response was received.

If the Explicit Communications Error Flag
(A21300) is ON when execution is completed, an
error has occurred in explicit message
communications and the Communications Port
Error Flag (A21900) is checked. If it is ON,
processing for a FINS communications error is
performed on the assumption that an explicit
message was never sent.

Communications Port
Enabled Flag

A20200
d (Execution completed)

Processing for network
communications error:
FINS error
1043

Network Instructions Section 3-25
Example 2: Automatic Allocation of Communications Port Number

3-25-3 NETWORK SEND: SEND(090)
Purpose Sends data to a node in the network.

Ladder Symbol

Variations

Execution
condition

d (Execution completed)

a (Executing)

c (Standby)

d (Execution completed)
c (Standby)

The explicit message instruction is executed when a (executing)
turns ON. The port number F is specified.

a (Executing)

MOV

A218

b (port)

The automatically allocated port number stored in A218 (application
communications port numbers 0 to 7 is moved to a user-specified work
word b (port).

Detects when the First Cycle Flag after Network Communications Finished
for the automatically allocated communications port is ON in A214, i.e., the
bit corresponding to b (port).

Detects when the Explicit Communications Error Flag for the
automatically allocated communications port is OFF in A213,
i.e., the bit corresponding to b (port).

Detects when the Explicit Communications Error Flag for the
automatically allocated communications port is ON in A213,
i.e., the bit corresponding to b (port).

"c" turns OFF in the cycle after
communications instruction execution
is completed and communications
completion or errors are detected
from that cycle.

KEEP

a (Executing)

TST

A214

b (port)

TSTN

A213

b (port)

TST

A213

b (port)

TSTN

A219

b (port)

TST

A219

b (port)

Explicit
message
instruction

Port: F

Processing after network

communications

Network communications
error processing: Explicit
error processing

Network communications
error processing: FINS
error processing

SEND(090)

S

D

C

S: First source word (local node)

D: First destination word (remote node)

C: First control word

Variations Executed Each Cycle for ON Condition SEND(090)

Executed Once for Upward Differentiation @SEND(090)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
1044

Network Instructions Section 3-25
Applicable Program Areas

Operands C: First control word
The five control words C to C+4 specify the number of words being transmit-
ted, the destination, and other settings shown in the following table.

Note 1. The maximum number of words allowed depends on the network being
used. For a Controller Link, the allowed range is 0001 to 03DE (1 to 990
words).

2. Set the destination network address to 00 to transmit within the local net-
work. When two or more CPU Bus Units are mounted, the network address
will be the unit number of the Unit with the lowest unit number.

3. The following two methods can be used to send data to the host computer
through a serial port with the host link while initiating communications from
the PLC.

a) Set the destination unit address (bits 00 to 07 of C+2) to the unit ad-
dress of the CPU Unit or Serial Communications Unit/Board and set
the serial port number (bits 08 to 11 of C+1) to 1 for port 1 or 2 for port
2.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Word Bits 00 to 07 Bits 08 to 15

C Number of words: 0001 to maximum allowed1 (4-digit hexadecimal)

C+1 Destination network address:
00 to 7F (0 to 127)2, 4

Bits 08 to 11:Serial port number3
(physical port)
1 hex: Port 1
2 hex: Port 2
(Do not set 0, 3, or 4.)
Bits 12 to 15: Always 0.

C+2 Destination unit address: 00 to FE5 Destination node address:
00 to maximum allowed6

C+3 No. of retries: 00 to 0F (0 to 15) Bits 08 to 11:
Communications port number (inter-
nal logic port): 0 to 7, Automatic allo-
cation: F7

Bits 12 to 15: Response setting
0: Response requested.
8: No response requested.8

C+4 Response monitoring time: 0001 to FFFF (0.1 to 6553.5 seconds)
(The default setting of 0000 sets a monitoring time of 2 seconds.)

Unit address
(C+2, bits 00

to 07)

Unit Serial port number
(C+1, bits 08 to 11)

Serial port

00 hex CPU Unit 1 hex Built-in RS-
232C port

2 hex Peripheral
port

10 hex + unit
number

Serial Communications
Unit (CPU Bus Unit)

1 hex Port 1

2 hex Port 2

E1 hex Serial Communications
Board (Inner Board)
(CS Series only)

1 hex Port 1

2 hex Port 2
1045

Network Instructions Section 3-25
b) Set the destination unit address directly into bits 00 to 07 of C+2. In this
case, set the serial port number in bits 08 to 11 of C+1 to 0 for direct
specification.

Serial Communication Unit ports

Serial Communication Board ports

CPU Unit ports

4. When specifying the serial port without a routing table for the serial gate-
way function (conversion to host link FINS), set the serial port’s unit ad-
dress in the destination network address byte.

5. The unit address indicates the Unit, as shown in the following table.

6. The maximum node number depends on the network being used. For a
Controller Link, the allowed range is 00 to 20 hexadecimal (0 to 32). Set
the destination node number to FF to broadcast to all nodes; set it to 00 to
transmit within the local node.

7. Refer to Automatic Allocation of Communications Ports on page 1032 for
details on using automatic allocation of the communications port number
(logical port).

8. When the destination node number is set to FF (broadcast transmission),
there will be no response even if bits 12 to 15 are set to 0.

Port Port’s unit address Example: Unit number = 1

Port 1 80 hex + 4 × unit number 80 + 4 × 1 = 84 hex (132 decimal)

Port 2 81 hex + 4 × unit number 81 + 4 × 1 = 85 hex (133 decimal)

Port Port’s unit address

Port 1 E4 hex (228 decimal)

Port 2 E5 hex (229 decimal)

Port Port’s unit address

Peripheral FD hex (253 decimal)

RS-232C FC hex (252 decimal)

Unit Unit address setting

CPU Unit 00 hex

CPU Bus Unit 10 hex + unit number

Special I/O Unit (except
C200H-series Special I/O
Units)

20 hex + unit number

Inner Board (CS Series
only)

E1 hex

Computer 01 hex

Unit connected to net-
work (not necessary to
specify Unit)

FE hex

Direct specification of the
serial port’s unit address

Serial Communications Unit ports
Port 1: 80 hex + 4 × unit number
Port 2: 81 hex + 4 × unit number

Serial Communications Board ports
Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

CPU Unit ports
Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)
1046

Network Instructions Section 3-25
Operand Specifications

Description SEND(090) transfers the data beginning at word S to addresses beginning at
D in the designated device through the PLC’s CPU Bus or over a network.
The number of words to be transmitted is specified in C.

If the destination node number is set to FF, the data will be broadcast to all of
the nodes in the designated network. This is known as a broadcast transmis-
sion.

If a response is requested (bits 12 to 15 of C+3 set to 0) but a response has
not been received within the response monitoring time, the data will be
retransmitted up to 15 times (retries set in bits 0 to 3 of C+3). There will be no
response or retries for broadcast transmissions.

SEND(090) can be used to transmit data to a particular serial port in the des-
tination device as well as the device itself.

Area S D C

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6139

Work Area W000 to W511 W000 to W507

Holding Bit Area H000 to H511 H000 to H507

Auxiliary Bit Area A000 toA959 A000 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D00000 to D32767 D00000 to
D32763

EM Area without bank E00000 to E32767 E00000 to
E32763

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32763

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 o C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Local node Destination node

Number
of words
to trans-
mit, n
1047

Network Instructions Section 3-25
Data can be transmitted to a host computer connected to the PLC’s serial port
(when set to host link mode) as well as a PLC or computer connected through
a Controller Link or Ethernet network.

If the Communications Port Enabled Flag is ON for the communications port
specified in C+3 when SEND(090) is executed, the corresponding Communi-
cations Port Enabled Flag (ports 00 to 07: A20200 to A20207) and Communi-
cations Port Error Flag (ports 00 to 07: A21900 to A21907) will be turned OFF
and 0000 will be written to the word that contains the completion code (ports
00 to 07: A203 to A210). Data will be transmitted to the destination node once
the flags have be set.

Transmission through the
Network

SEND(090) can be used to transmit data from the PLC to the specified data
area in a PLC or computer connected by a Controller Link network or Ethernet
link.

Transmission through
Host Link

When the CPU Unit’s built-in serial port, a Serial Communications Board (CS-
series only), or Serial Communications Unit is in host link mode and con-
nected one-to-one with a host computer, SEND(090) can be executed to
transmit data from the PLC to the host computer the next time that the PLC
has the right to transmit. It is also possible to transmit to other host computers
connected to other PLCs elsewhere in the network.

If SEND(090) is sent to the serial port of the CPU Unit, a Serial Communica-
tions Board (CS Series only), or Serial Communications Unit, a command is
sent from the serial port to the host computer. The command is a FINS mes-
sage enclosed between a host link header and terminator. The FINS com-
mand is a MEMORY AREA WRITE command (command code 0102) and the
host link header code is 0F hexadecimal.

A program must be created in the host computer to process the received com-
mand (the FINS command enclosed in the host link header and terminator).

If the destination serial port is in the local PLC, set the network address to 00
(local network) in C+1, set the node address to 00 (local PLC) in C+2, and set
the unit address to 00 (CPU Unit), E1 (Inner Board (CS Series only), or unit
number + 10 hexadecimal (Serial Port Unit).

Sending Data to a Host Link Slave PLC Connected by Serial Gateway

The serial gateway function can be used to send data to a PLC connected as
a host link Slave to a Serial Communications Board or Unit. In this case, the
destination node address must be set to the host link unit number + 1.

Network

Data

Serial port

Data
Host Link

Host computer
1048

Network Instructions Section 3-25
Flags

The following table shows relevant bits and flags in the Auxiliary Area.

Precautions If the Communications Port Enabled Flag is OFF for the port number specified
in C+3, the instruction will be treated as NOP(000) and will not be executed.
The Error Flag will be turned ON in this case.

When an address in the current bank of the EM Area is specified for D, the
transmitted data will be written to the current EM bank of the destination node.

When data will be transmitted outside of the local network, the user must reg-
ister routing tables in the PLCs (CPU Units) in each network. (Routing tables
indicate the routes to other networks in which destination nodes are con-
nected.)

PLC
Host Link Slave

Set the destination node address to the
host link unit number + 1 = S+1.

SEND

PLC

Data
Serial cable

Host link unit number: S

Name Label Operation

Error Flag ER ON if the serial port number specified in C+1 is not within
the range of 00 to 04.
ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C+3.

OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction is
being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of a network instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execution
of a network instruction.
The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
an instruction is executed.
1049

Network Instructions Section 3-25
Refer to the FINS command response codes in the CS/CJ Series Communi-
cations Commands Reference Manual (W342) for details on the completion
codes for network communications.

Only one network instruction may be executed for a communications port at
one time. To ensure that SEND(090) is not executed while a port is busy, pro-
gram the port’s Communications Port Enabled Flag (A20200 to A20207) as a
normally open condition.

Communications port numbers 00 to 07 are shared by the network instruc-
tions and PMCR(260), so SEND(090) cannot be executed simultaneously
with PMCR(260) if the instructions are using the same port number.

Noise and other factors can cause the transmission or response to be cor-
rupted or lost, so we recommend setting the number of retries to a non-zero
value which will cause SEND(090) to be executed again if the response is not
received within the response monitoring time.

Example 1 When the input condition and A20200 (the Communications Port Enabled
Flag for port 0) are ON in the following example, the ten words from CIO 100
to CIO 109 are transmitted to the host computer connected to port 1 of the
Serial Communications Unit with unit address 10 (hex) at node number 3 in
network 0.

It is necessary create a program at the host computer to receive the data and
send a response.

Example 2 When CIO 000000 and A20207 (the Communications Port Enabled Flag for
port 07) are ON in the following example, the ten words from D00100 to
D00109 are transmitted to node number 3 in the local network where they are
written to the ten words from D00200 to D00209. The data will be retransmit-
ted up to 3 times if a response is not received within ten seconds.

3-25-4 NETWORK RECEIVE: RECV(098)
Purpose Requests data to be transmitted from a node in the network and receives the

data.

@SEND

0100

0000

D00200

 C D00200 0 0 0 A

 C+1 D00201 0 1 0 0

 C+2 D00202 0 0 1 0

 C+3 D00203 0 0 0 0

 C+4 D00204 0 0 0 0

A20200
Input
condition

Number of words to send: 10 words

Transmit to network 0 and port 1 of Serial Communications Board

Node number 0, unit address 10

Response requested, port number 0, no retries

Response monitoring time: 2 seconds (0000: default value)

0

0

0

0

6

Number of words to send: 10 words

Node number 3, unit address 00 (CPU Unit)

Response requested, port number 7, 3 retries
Response monitoring time: 0064 hexadecimal (10 seconds)

Transmit to the local network and the device itself
1050

Network Instructions Section 3-25
Ladder Symbol

Variations

Applicable Program Areas

Operands C: First control word
The five control words C to C+4 specify the number of words to be received,
the source of the transmission, and other settings shown in the following table.

Note 1. The maximum number of words allowed depends on the network being
used. For a Controller Link, the allowed range is 0001 to 03DE (1 to 990
words).

2. Set the source network address to 00 to specify a source within the local
network. When two or more CPU Bus Units are mounted, the network ad-
dress will be the unit number of the Unit with the lowest unit number.

3. The following two methods can be used to receive data from a host com-
puter through a serial port with the host link while initiating communications
from the PLC.

RECV(098)

S

D

C

S: First source word (remote node)

D: First destination word (local node)

C: First control word

Variations Executed Each Cycle for ON Condition RECV(098)

Executed Once for Upward Differentiation @RECV(098)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Word Bits 00 to 07 Bits 08 to 15

C Number of words: 0001 to maximum allowed1 (4-digit hexadecimal)

C+1 Source network address:
00 to 7F (0 to 127)2, 4

Bits 08 to 11:Serial port number
(physical port)
1 hex: Port 1
2 hex: Port 2
(Do not set 0, 3, or 4.)
Bits 12 to 15: Always 0.

C+2 Source unit address5 Source node address:
00 to maximum allowed6

C+3 No. of retries: 00 to 0F (0 to 15) Port number: 00 to 07
(F: Automatic allocation)7

Response is fixed to “required.”

C+4 Response monitoring time: 0001 to FFFF (0.1 to 6553.5 seconds)
(The default setting of 0000 sets a monitoring time of 2 seconds.)
1051

Network Instructions Section 3-25
a) Set the source unit address (bits 00 to 07 of C+2) to the unit address
of the CPU Unit or Serial Communications Unit/Board and set the se-
rial port number (bits 08 to 11 of C+1) to 1 for port 1 or 2 for port 2.

b) Set the source unit address directly into bits 00 to 07 of C+2. In this
case, set the serial port number in bits 08 to 11 of C+1 to 0 for direct
specification.

Serial Communication Unit ports

Serial Communication Board ports

CPU Unit ports

4. When specifying the serial port without a routing table for the serial gate-
way function (conversion to host link FINS), set the serial port’s unit ad-
dress in the source network address byte.

5. The unit address indicates the Unit, as shown in the following table.

Unit address
(C+2, bits 00

to 07)

Unit Serial port number
(C+1, bits 08 to 11)

Serial port

00 hex CPU Unit 1 hex Built-in RS-
232C port

2 hex Peripheral
port

10 hex + unit
number

Serial Communications
Unit (CPU Bus Unit)

1 hex Port 1

2 hex Port 2

E1 hex Serial Communications
Board (Inner Board)
(CS Series only)

1 hex Port 1

2 hex Port 2

Port Port’s unit address Example: Unit number = 1

Port 1 80 hex + 4 × unit number 80 + 4 × 1 = 84 hex (132 decimal)

Port 2 81 hex + 4 × unit number 81 + 4 × 1 = 85 hex (133 decimal)

Port Port’s unit address

Port 1 E4 hex (228 decimal)

Port 2 E5 hex (229 decimal)

Port Port’s unit address

Peripheral FD hex (253 decimal)

RS-232C FC hex (252 decimal)

Unit Unit address setting

CPU Unit 00 hex

CPU Bus Unit 10 hex + unit number

Special I/O Unit (except C200H-
series Special I/O Units)

20 hex + unit number

Inner Board (CS Series only) E1 hex

Computer 01 hex
1052

Network Instructions Section 3-25
6. The maximum node number depends on the network being used. For a
Controller Link, the allowed range is 00 to 20 hexadecimal (0 to 32). Set
the source node number to 00 to transmit within the local node.

7. Refer to Automatic Allocation of Communications Ports on page 1032 for
details on using automatic allocation of the communications port number
(logical port).

Operand Specifications

Unit connected to network (not
necessary to specify Unit)

FE hex

Direct specification of the serial
port’s unit address

Serial Communications Unit ports
Port 1: 80 hex + 4 × unit number
Port 2: 81 hex + 4 × unit number

Serial Communications Board ports
Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

CPU Unit ports
Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

Unit Unit address setting

Area S D C

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6139

Work Area W000 to W511 W000 to W507

Holding Bit Area H000 to H511 H000 to H507

Auxiliary Bit Area A000 to A447

A448 to A959

A448 to A959 A000 to A443

A448 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D00000 to D32767 D00000 to
D32763

EM Area without bank E00000 to E32767 E00000 to
E32763

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32763

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1053

Network Instructions Section 3-25
Description RECV(098) requests the number of words specified in C beginning at word S
to be transferred from the designated device to the local PLC. The data is
received through the PLC’s CPU Bus or over the network and written to the
PLC’s data area beginning at D.

A response is required with RECV(098) because the response contains the
data being received. If the response has not been received within the
response monitoring time set in C+4, the request for data transfer will be
retransmitted up to 15 times (retries set in bits 0 to 3 of C+3).

RECV(098) can be used to request a data transmission from a particular
serial port in the source device as well as the device itself.

Data can be received from a host computer connected to the PLC’s serial port
(when set to host link mode) as well as a PLC or computer connected through
a Controller Link or Ethernet network.

If the Communications Port Enabled Flag is ON for the communications port
specified in C+3 when SEND(090) is executed, the corresponding Communi-
cations Port Enabled Flag (ports 00 to 07: A20200 to A20207) and Communi-
cations Port Error Flag (ports 00 to 07: A21900 to A21907) will be turned OFF
and 0000 will be written to the word that contains the completion code (ports
00 to 07: A203 to A210). Data will be received from the destination node once
the flags have be set.

Transmission through the
Network

RECV(098) can be used to receive data transmitted the specified data area in
a PLC or computer connected by a Controller Link network or Ethernet link
and write that data to the specified data area in the local PLC.

Transmission through
Host Link

When the CPU Unit’s built-in serial port, a Serial Communications Board (CS
Series only), or Serial Communications Unit is in host link mode and con-
nected one-to-one with a host computer, RECV(098) can be executed to
receive data from the host computer the next time that the PLC has the right
to transmit commands. It is also possible to receive data from other host com-
puters connected to other PLCs elsewhere in the network.

Local node Source node (remote node)

Number of words
to receive

PLC PLC

Data

Network

PLC

Host computer

Host Link
Data

Serial port
1054

Network Instructions Section 3-25
If RECV(098) is executed for the serial port of the CPU Unit, a Serial Commu-
nications Board (CS Series only), or Serial Communications Unit, a command
is sent from the serial port to the host computer. The command is a FINS
message enclosed between a host link header and terminator. The FINS
command is a MEMORY AREA READ command (command code 0101) and
the host link header code is 0F hexadecimal.

A program must be created in the host computer to process the send com-
mand (the FINS command enclosed in the host link header and terminator).

If the destination serial port is in the local PLC, set the network address to 00
(local network) in C+1, set the node address to 00 (local PLC) in C+2, and set
the unit address to 00 (CPU Unit), E1 (Inner Board, CS Series only), or unit
number + 10 hexadecimal (Serial Port Unit).

Receiving Data from a Host Link Slave PLC Connected by Serial Gateway

The serial gateway function can be used to receive data from a PLC con-
nected as a host link Slave to a Serial Communications Board or Unit. In this
case, the source node address must be set to the host link unit number + 1.

Flags

The following table shows relevant bits and flags in the Auxiliary Area.

Serial cable

PLC
Host Link Slave

Set the source node address to the host
link unit number + 1 = S+1.

RECV

PLC

Data

Host link unit number: S

Name Label Operation

Error Flag ER ON if the serial port number specified in C+1 is not within
the range of 00 to 04.
ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C+3.

OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.
1055

Network Instructions Section 3-25
Precautions If the Communications Port Enabled Flag is OFF for the port number specified
in C+3, the instruction will be treated as NOP(000) and will not be executed.
The Error Flag will be turned ON in this case.

When an address in the current bank of the EM Area is specified for D, the
transmitted data will be written to the current EM bank of the destination node.

When data will be transmitted outside of the local network, the user must reg-
ister routing tables in the PLCs (CPU Units) in each network. (Routing tables
indicate the routes to other networks in which destination nodes are con-
nected.)

Refer to the FINS command response codes in the CS/CJ Series Communi-
cations Commands Reference Manual (W342) for details on the completion
codes for network communications.

Only one network instruction may be executed for a communications port at
one time. To ensure that RECV(098) is not executed while a port is busy, pro-
gram the port’s Communications Port Enabled Flag (A20200 to A20207) as a
normally open condition.

Communications port numbers 00 to 07 are shared by the network instruc-
tions and PMCR(260), so RECV(098) cannot be executed simultaneously
with PMCR(260) if the instructions are using the same port number.

Noise and other factors can cause the transmission or response to be cor-
rupted or lost, so we recommend setting the number of retries to a non-zero
value which will cause RECV(098) to be executed again if the response is not
received within the response monitoring time.

3-25-5 DELIVER COMMAND: CMND(490)
Purpose Sends an FINS command and receives the response. Refer to the CS/CJ

Series Communications Commands Reference Manual for details on FINS
commands.

Ladder Symbol

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of a network instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for
the corresponding ports (00 to 07) following exe-
cution of a network instruction.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

Name Address Operation

CMND(490)

S

D

C

S: First command word

D: First response word

C: First control word
1056

Network Instructions Section 3-25
Variations

Applicable Program Areas

Operands C: First control word
The six control words C to C+5 specify the number of bytes of command data
and response data, the destination, and other settings shown in the following
table.

Note 1. The number of bytes of command data in C is 0002 to the maximum data
length in hexadecimal. For example, the number of bytes would be 0002 to
07C6 hex (2 to 1,990 bytes) for Controller Link systems. The number of
bytes for the local CPU Unit is 07C6 hex (1,990 bytes). The number of
bytes of command data depends on the network.

2. The number of bytes of response data in C+1 is 0000 to the maximum data
length in hexadecimal. For example, the number of bytes would be 0000 to
07C6 hex (0 to 1,990 bytes) for Controller Link systems. The number of
bytes for the local CPU Unit is 07C6 hex (1,990 bytes). The number of
bytes of response data depends on the network.

3. Refer to the operation manual for the specific network for the maximum
data lengths for the command data and response data. For any FINS com-
mand passing through multiple networks, the maximum data lengths for
the command data and response data are determined by the network with
the smallest maximum data lengths.

4. Set the destination network address to 00 to transmit within the local net-
work. When two or more CPU Bus Units are mounted, the network address
will be the unit number of the Unit with the lowest unit number.

Variations Executed Each Cycle for ON Condition CMND(490)

Executed Once for Upward Differentiation @CMND(490)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Word Bits 00 to 07 Bits 08 to 15

C Bytes of command data: 0002 to maximum allowed1 (4-digit hexadecimal)

C+1 Bytes of response data: 0000 to maximum allowed1 to 3 (4-digit hexadecimal)

C+2 Destination network address:
00 to 7F (0 to 127)4, 6

Bits 08 to 11:Serial port number
(physical port)
1 hex: Port 1
2 hex: Port 2
(Do not set 0, 3, or 4.)

Bits 12 to 15: Always 0.

C+3 Destination unit address:
00 to FE5, 7, 9

Destination node number:
00 to maximum allowed8

C+4 No. of retries: 00 to 0F (0 to 15) Bits 08 to 11:
Port number (internal logic port):

0 to 7
(F: Automatic allocation)10

Bits 12 to 15: Response setting
0: Response requested.
8: No response requested.11

C+5 Response monitoring time: 0001 to FFFF (0.1 to 6553.5 seconds)
(The default setting of 0000 sets a monitoring time of 2 seconds.)
1057

Network Instructions Section 3-25
5. The following two methods can be used to send a FINS command to a host
computer through a serial port with the host link host link while initiating
communications from the PLC, or the serial gateway function (converted
to CompoWay/F, Modbus-RTU, or Modbus-ASCII).

a) Set the destination unit address (bits 00 to 07 of C+3) to the unit ad-
dress of the CPU Unit or Serial Communications Unit/Board and set
the serial port number (bits 08 to 11 of C+2) to 1 for port 1 or 2 for port
2.

b) Set the destination unit address directly into bits 00 to 07 of C+3. In this
case, set the serial port number in bits 08 to 11 of C+2 to 0 for direct
specification.

Serial Communication Unit ports

Serial Communication Board ports

CPU Unit ports

6. When specifying the serial port without a routing table for the serial gate-
way function (conversion to host link FINS), set the serial port’s unit ad-
dress in the destination network address byte.

7. The unit address indicates the Unit, as shown in the following table.

Unit address
(C+3, bits 00

to 07)

Unit Serial port number
(C+2, bits 08 to 11)

Serial port

00 hex CPU Unit 1 hex Built-in RS-
232C port

2 hex Peripheral
port

10 hex + unit
number

Serial Communications
Unit (CPU Bus Unit)

1 hex Port 1

2 hex Port 2

E1 hex Serial Communications
Board (Inner Board)
(CS Series only)

1 hex Port 1

2 hex Port 2

Port Port’s unit address Example: Unit number = 1

Port 1 80 hex + 4 × unit number 80 + 4 × 1 = 84 hex (132 decimal)

Port 2 81 hex + 4 × unit number 81 + 4 × 1 = 85 hex (133 decimal)

Port Port’s unit address

Port 1 E4 hex (228 decimal)

Port 2 E5 hex (229 decimal)

Port Port’s unit address

Peripheral FD hex (253 decimal)

RS-232C FC hex (252 decimal)

Unit Unit address setting

CPU Unit 00 hex

CPU Bus Unit 10 hex + unit number

Special I/O Unit (except C200H-
series Special I/O Units)

20 hex + unit number

Inner Board (CS Series only) E1 hex

Computer 01 hex
1058

Network Instructions Section 3-25
8. The maximum node number depends on the network being used. For a
Controller Link, the allowed range is 00 to 20 hexadecimal (0 to 32). Set
the destination node number to FF to broadcast to all nodes; set it to 00 to
transmit within the local node.

9. When specifying the serial port in the serial gateway function (conversion
to host link FINS), set the destination unit address to the host link unit num-
ber of the destination PLC + 1 (setting range: 1 to 32).

10. Refer to Automatic Allocation of Communications Ports on page 1032 for
details on using automatic allocation of the communications port number
(logical port).

11. When the destination node number is set to FF (broadcast transmission),
there will be no response even if bits 12 to 15 are set to 0.

Unit connected to network (not
necessary to specify Unit)

FE hex

Direct specification of the serial
port’s unit address

Serial Communications Unit ports
Port 1: 80 hex + 4 × unit number
Port 2: 81 hex + 4 × unit number

Serial Communications Board ports
Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

CPU Unit ports
Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

Unit Unit address setting
1059

Network Instructions Section 3-25
Description CMND(490) transfers the specified number of bytes of FINS command data
beginning at word S to the designated device through the PLC’s CPU Bus or
over a network. The response is stored in memory beginning at word D.

CMND(490) can be used to transmit command data to a particular serial port
in the destination device as well as the device itself. CMND(490) operates just
like SEND(090) if the FINS command code is 0102 (MEMORY AREA WRITE)
and just like RECV(098) if the code is 0101 (MEMORY AREA READ).

Area S C D

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6138

Work Area W000 to W511 W000 to W506

Holding Bit Area H000 to H511 H000 to H506

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to A959 A000 to A442
A448 to A954

Timer Area T0000 to T4095 T0000 to T4090

Counter Area C0000 to C4095 C0000 to C4090

DM Area D00000 to D32767 D00000 to
D32762

EM Area without bank E00000 to E32767 E00000 to
E32762

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32763

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Local node

Command

Response

Command
data
(n bytes)

Response
data
(m bytes)

Execute

Interpret

Destination node
1060

Network Instructions Section 3-25
The CPU Unit executing CMND(490) can send a FINS command to itself
(except for CS-series CS1 CPU Units prior to V1@). Use the following control
data settings to achieve this.

• Destination network address (bits 00 to 07 of C+2): 00 hex (local network)

• Serial port No. (bits 08 to 11 of C+2): 0 hex (not used)

• Destination unit address (bits 00 to 07 of C+3): 00 hex (CPU Unit)

• Destination node address (bits 08 to 15 of C+3): 00 hex (local node)

• Number of retries (bits 00 to 03 of C+4): 0 hex (this setting is invalid; set it
to 0)

• Response monitoring time: (bits 00 to 15 of C+5): 0000 to FFFF hex (but
0000 will specify 6553.5 s, and not 2 s as normal)

If the destination node number is set to FF, the command data will be broad-
cast to all of the nodes in the designated network. This is known as a broad-
cast transmission.

If a response is requested (bits 12 to 15 of C+4 set to 0) but a response has
not been received within the response monitoring time, the command data will
be retransmitted up to 15 times (retries set in bits 0 to 3 of C+3). There will be
no response and no retries for broadcast transmissions. For instructions that
require no response, set the response setting to “not required.”

An error will occur if the amount of response data exceeds the number of
bytes of response data set in C+1.

FINS command data can be transmitted to a host computer connected to a
PLC serial port (when set to host link mode) as well as a PLC (CPU Unit,
Inner Board (CS Series only), or CPU Bus Unit) or computer connected
through a Controller Link or Ethernet network.

If the Communications Port Enabled Flag is ON for the communications port
specified in C+3 when CMND(490) is executed, the corresponding Communi-
cations Port Enabled Flag (ports 00 to 07: A20200 to A20207) and Communi-
cations Port Error Flag (ports 00 to 07: A21900 to A21907) will be turned OFF
and 0000 will be written to the word that contains the completion code (ports
00 to 07: A203 to A210). The command data will be transmitted to the desti-
nation node(s) once the flags have be set.

Transmission through the
Network

CMND(490) can be used to transmit any FINS command to a personal com-
puter or a PLC (CPU Unit, Inner Board (CS Series only), or CPU Bus Unit)
connected by a Controller Link network or Ethernet link.

PLC PLC

Network

FINS command
1061

Network Instructions Section 3-25
Transmission through
Host Link

When the CPU Unit’s built-in serial port, a Serial Communications Board (CS
Series only), or Serial Communications Unit is in host link mode and con-
nected one-to-one with a host computer, CMND(490) can be executed to
transmit any FINS command from the PLC to the host computer the next time
that the PLC has the right to transmit. It is also possible to transmit to other
host computers connected to other PLCs elsewhere in the network.

CMND(490) can be executed for the either port on the CPU Unit, a Serial
Communications Board (CS Series only), or Serial Communications Unit to
send a command to the connected host computer. (Specify the serial port as
1 hex or 2 hex in bits 08 to 11 of C+2.) The command is a FINS message
enclosed between a host link header and terminator. Any FINS command
command can be sent; the host link header code is 0F hexadecimal.

A program must be created in the host computer to process the received com-
mand (the FINS command enclosed in the host link header and terminator).

If the destination serial port is in the local PLC, set the network address to 00
(local network) in C+2, set the node address to 00 (local PLC) in C+3, and set
the unit address to 00 (CPU Unit), E1 (Inner Board, CS Series only), or unit
number + 10 hexadecimal (Serial Port Unit).

Serial Gateway Communications to a Component or Host Link Slave

It is possible to send FINS commands (or send/receive data) to a component
or Host Link Slave connected to the PLC through its serial port with the serial
gateway function.

• Sending to a Component
(Conversion to CompoWay/F, Modbus-RTU, or Modbus-ASCII)

The serial gateway function can convert the following FINS commands to
CompoWay/F, Modbus-RTU, or Modbus-ASCII commands when the FINS
command is sent to a Serial Communications Board or Unit’s serial port or
one of the CPU Unit’s serial ports (peripheral or RS-232C).

Convert to CompoWay/F command: 2803 hex
Convert to Modbus-RTU command: 2804 hex (See note.)
Convert to Modbus-ASCII command: 2805 hex (See note.)

Note The Modbus-RTU and Modbus-ASCII commands cannot be sent to
the CPU Unit’s serial ports.

PLC

Host computer

Host Link

FINS command
1062

Network Instructions Section 3-25
• Sending to a PLC operating as a Host Link Slave

The serial gateway function can be used to send any FINS command to a
PLC that is connected as a host link slave and through a Serial Communi-
cations Board or Unit’s serial port. In this case, the destination node ad-
dress must be set to the host link unit number + 1.

Sending a FINS Command
to the CPU Unit Executing
CMND(490) (Except for
CS-series CS1 CPU Units
Prior to V1)

The CPU Unit executing CMND(490) can send a FINS command to itself
(excluding CS-series CS1 CPU Units without a suffix of -V@). For example,
file memory commands (command codes 22@@ hex) can be sent to format
file memory, delete files, copy files, and perform other operations. Refer to 5-2
Manipulating Files of the CS/CJ-series CPU Unit Programming Manual for
details.

The File Memory Operation Flag (A34313) will turn ON when any FINS com-
mand is sent to the local CPU Unit (even for FINS commands not related to
file memory). Always use A34313 in an NC input condition for CMND(490) to
ensure that only one FINS command is being executed for the CPU Unit at the
same time.

Serial cable

Modbus-RTU Slave device

Modbus RTU

CMND

PLC

PLC
Host Link Slave

Set the destination node address to the
host link unit number + 1 = S+1.

SEND

PLC

Data
Serial cable

Host link unit number: S

PC
FINS command

Memory Card

EM file memory
1063

Network Instructions Section 3-25
Flags

The following table shows relevant bits and flags in the Auxiliary Area.

Precautions If the Communications Port Enabled Flag is OFF for the port number specified
in C+4, the instruction will be treated as NOP(000) and will not be executed.
The Error Flag will be turned ON in this case.

When data will be transmitted outside of the local network, the user must reg-
ister routing tables in the PLCs (CPU Units) in each network. (Routing tables
indicate the routes to other networks in which destination nodes are con-
nected.)

Refer to the FINS command response codes in the CS/CJ Series Communi-
cations Commands Reference Manual (W342) for details on the completion
codes for network communications.

Communications port numbers 00 to 07 are shared by the network and serial
communications instruction instructions (SEND(090), RECV(098),
CMND(490), PMCR(260), TXDU(256), or RXDU(255)), so only one of these
instructions may be executed for a communications port at one time. To

Name Label Operation

Error Flag ER ON if the serial port number specified in C+2 is not within
the range of 00 to 04.
ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C+4.

ON if a FINS command is sent to the local CPU Unit while
the File Memory Operation Flag (A34313) is ON.
OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).

A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of a network instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

File Memory Opera-
tion Flag

A34313 ON when any FINS command is sent to the local
CPU Unit (even for FINS commands not related
to file memory) or when any of the following
instructions or operations are performed for file
memory.
FREAD(700) or FWRIT(701)

Program overwrite with control bit in memory
Simple backup operation
1064

Network Instructions Section 3-25
ensure that CMND(490) is not executed while a port is busy, program the
port’s Communications Port Enabled Flag (A20200 to A20207) as a normally
open condition.

Always use one of the Communications Port Enabled Flags (A20200 to
A20207) in an NO input condition and the File Memory Operation Flag
(A34313) in an NC input condition for CMND(490) when send a FINS com-
mand to the local CPU Unit.

Noise and other factors can cause the transmission or response to be cor-
rupted or lost, so we recommend setting the number of retries to a non-zero
value which will cause CMND(490) to be executed again if the response is not
received within the response monitoring time.

Examples The following program section shows an example of sending a FINS com-
mand to another CPU Unit.

When CIO 000000 and A20207 (the Communications Port Enabled Flag for
port 07) are ON, CMND(490) transmits FINS command 0101 (MEMORY
AREA READ) to node number 3. The response is stored in D00200 to
D00211.

The MEMORY AREA READ command reads 10 words from D00010 to
D00019. The response contains the 2-byte command code (0101), the 2-byte
completion code, and then the 10 words of data, for a total of 12 words or 24
bytes.

The data will be retransmitted up to 3 times if a response is not received
within ten seconds.

The following program section shows an example of sending a FINS com-
mand to the local CPU Unit.

When CIO 000000 and A20207 (the Communications Port Enabled Flag for
port 07) are ON and A34313 (File Memory Operation Flag) is OFF,
CMND(490) transmits FINS command 2215 (CREATE/DELETE DIREC-
TORY) to the local CPU Unit. The response is stored in D00100 to D00101.
Here, the FINS command will create a directory called CS/CJ under the
OMRON directory. The command code (2 bytes) and the end code (2 bytes)
will be returned and stored as the response.

0

0

0

0

0

1

0

0

0

6

Command code: 0101 hexadecimal (MEMORY AREA READ)

D00010 (Data area = 82 hexadecimal, address = 000A00)

Number of words to read = 0A hexadecimal (10 decimal)

Bytes of command data: 0008 (8 decimal)

Bytes of response data: 0018 (24)

Transmit to the local network and the device itself

Node number 3, unit address 00 (CPU Unit)

Response requested, port number 7, 3 retries

Response monitoring time: 0064 hexadecimal (10 seconds)
1065

Network Instructions Section 3-25
3-25-6 EXPLICIT MESSAGE SEND: EXPLT(720)
Purpose Sends an explicit message with any service code.

This instruction is supported by only CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Applicable Program Areas

@CMND

 D00006

 D00100

 D00000

A34313000000 A20207

S

D

C

15 8 7 0
2 2 1 5

8 0 0 0

0 0 0 0

4 3 5

3 1 2

2 0 2

2 0 2

2 E 2

2 0 2

0 0 0

5 C 4

4 D 5

4 F 4

S: D00006

S+1: D00007

S+2: D00008

S+3: D00009

S+4: D00010

S+5: D00011

S+6: D00012

S+7: D00013

S+8: D00014

S+9: D00015

S+10: D00016

S+11: D00017

S+12: D00018

3

0

0

0

0

0

6

F

2

E

15 8 7 0
0 0 1 A

0 0 0 4

0 0 0 0

0 0 0 0

0 7 0 0

0 0 0 0

S: D00000

S+1: D00001

S+2: D00002

S+3: D00003

S+4: D00004

S+5: D00005

Communications
Port Enabled Flag
for port 7

File Memory
Operation Flag

Command code: 2215 Hex (CREATE/DELETE DIRECTORY)

Parameter: 0000 Hex (create directory)

Disk No.: 8000 Hex (Memory Card)

Subdirectory name: CS1@@@@@. @@@ (@= space)

Directory name length: 0006 (6 characters)

Absolute directory path: \OMRON

Bytes of command data: 001A (26 decimal)

Bytes of response data: 0004 (4)

Destination network address: 00 Hex (local network)

Destination unit address: 00 Hex, Destination node number: 00 Hex (CPU Unit at local node)

Response requested, port number 7, 0 retries

Response monitoring time: 0000 Hex (2 seconds)

EXPLT(720)

S

D

C

S: First word of send message

D: First word of received message

C: First control word

Variations Executed Each Cycle for ON Condition EXPLT(720)

Executed Once for Upward Differentiation @EXPLT(720)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1066

Network Instructions Section 3-25
Operands S: First word of send message
Specifies the first word of the send message (S to S+272 max.).

S

015

S+1 0 0

8111215 07

S+2 0 0

8111215 07

S+3 0 0

8111215 07

S+4 0 0

8111215 07

S+5 0 0

8111215 0

S+6

S+272

15 0

7

...

Service Code (hex)

Class ID (hex)

Instance ID (hex)

Attribute ID (hex)

Set the number of bytes of source data from words S+1 on. For
example, set S to 000A hex if there are 5 words of data (S+1 to
S+5). Do not include the 2 bytes in word S itself. Include the
leftmost bytes of S+1 to S+5, which contain 00.
Also, include the number of bytes of Service Data starting at S+6.
(If the first or last word contains just one byte of data, do not count
the empty byte in that word.)

Destination Node Address
(00 to max. node address (hex))

If the Attribute ID is not used, set it to FFFF hex.
(The Attribute ID cannot be set to 0000 hex.)

When there is Service Data (data other than the
Attribute ID), the byte-order of this data is specified in
bits 12 to 15 of C+1. Up to 534 bytes (267 words) can
be set.

to

Service Data
1067

Network Instructions Section 3-25
D: First word of received message
Specifies the first word of the received message (D to D+269 max.).

C: First control word
Specifies the first of four control words (C to C+3).

D

015

D+1 0 0

8111215 07

D+2 0 0

8111215 07

D+3

D+269

15 0

...

Contains the response’s service data (data following the
service code). The byte-order of this data is specified in
bits 12 to 15 of C+1. Can contain up to 534 bytes (267
words) of data.

to

Contains the service code or error code (hex).
Normal response: Returns the command’s Service Code with bit 07 ON.
Error response: Returns 94 hex, regardless of the command’s Service Code.

Contains the Source node address.
(00 to 3F hex (0 to 63) for DeviceNet))

Contains the number of bytes of data from words D+1 on.
Does not include the 2 bytes in word D itself.
This value does include the leftmost bytes of D+1 and D+2, which contain 00.
This value also includes the number of bytes of Service Data starting at D+3.
(If the first or last word contains just one byte of data, the empty byte in that
word is not counted.)

Service Data

C

015

C+1

8111215 07

C+2

15 0

C+3

15 0

Set the total number of words of response data beginning at D.
The allowed setting range is 0 to 010E hex (270 words).
If the number of words of received data exceeds the value set here, a FINS error will
occur (response too long, code 11 0B) and no data at all will be stored (in the area
starting at D+3).
If the number of words of received data is less than the value set here, the remaining
words (in the area starting at D+3) will be left unchanged.

FINS unit address of relaying Communications Unit.
CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port) for the network
instruction: 0 to 7 hex (F hex: Automatic allocation)

Byte order of service data (frame data) stored in areas beginning at S+6 and D+3
0 hex: Stored from leftmost byte (Left → Right → Left → Right ...)
8 hex: Stored from rightmost byte (Right → Left → Right → Left ...)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet (same as using the 2801
FINS command)
1068

Network Instructions Section 3-25
Operand Specifications

Description Sends the explicit message command (stored in the range of words beginning
at S+2) to the node address specified in S+1, via the Communications Unit
with the FINS unit address specified in bits 00 to 07 of C+1. When the
response to the explicit message is received, it is stored in the range of words
beginning at D+2.

Number of Bytes Settings

The number of bytes of send data in S includes the 10 bytes in S+1 to S+5 as
well as the number of bytes of service data beginning at S+6. (For example, if
there is 1 byte of service data, there are 11 bytes of data all together, so S
must be set to 000B hex.)

The number of bytes of received data in D includes the 4 bytes in D+1 and
D+2 as well as the number of bytes of service data beginning at D+3. (For
example, if there is 1 byte of service data, there are 5 bytes of data all
together and D contains 0005 hex.)
The setting in bits 12 to 15 of C+1 (0 or 8 hex) determines the byte-order of
the service data stored at S+6 and D+3.

Area S D C

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6140

Work Area W000 to W511 W000 to W508

Holding Bit Area H000 to H511 H000 to H508

Auxiliary Bit Area A000 to A959 A448 to A959 A000 to A956

Timer Area T0000 to T4095 T0000 to T4092

Counter Area C0000 to C4095 C0000 to C4092

DM Area D00000 to D32767 D00000 to D32764

EM Area without bank E00000 to E32767 E00000 to E32764

EM Area with bank En_00000 to En_32767

(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
1069

Network Instructions Section 3-25
• Storing Data from the Leftmost Byte
Set bits 12 to 15 of C+1 to 0 hex.

• Storing Data from the Rightmost Byte
Set bits 12 to 15 of C+1 to 8 hex.

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-25-2 About Explicit Message Instructions.

A

15

AD+3
D+4

B

C D

08 07 00

B C D

Frame (order of data in line)

Stored from leftmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

A

15

BD+3
D+4

A

D C

08 07 00

B C D

Frame (order of data in line)

Stored from rightmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.

OFF in all other cases.
1070

Network Instructions Section 3-25
The following table shows relevant bits and flags in the Auxiliary Area.

Precautions Be sure that the order of bytes in the source data matches the order in the
explicit message’s frame (order of data in the line). For example, when the
service data is in 2-byte or 4-byte units, the order of data in the frame is left-
most to rightmost order in 2-digit pairs, as shown in the following diagram.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A21300 to
A21307

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.

The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

78 56 34 1234 12

Service Data:12345678HexService Data:1234Hex

Command format
Example: Cumulative time 12345678
hex stored in 78 → 56 → 34 → 12 order

Example: Address 1234
hex stored in 34 → 12 order
1071

Network Instructions Section 3-25
The following diagrams show how data is stored in the data areas when the
service data is in 2-byte or 4-byte units.

1. Data in 2-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 1234 hex in D+3

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 1234 hex in D+3

2. Data in 4-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 12345678 hex in D+3 and D+4

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 12345678 hex in D+3 and D+4

Note The examples above only show the storage of received data in D+3, but send
data is stored in S+6 in the same way.

Example In this example, EXPLT(720) is used to read the total ON time or number of
contact operations from a DRT2 Slave (I/O Terminal).

34

15

3 4 1D+3 2
08 07 00

12Frame

The data in the frame is in the order 34 → 12.

In this case, 1234 hex is
stored from the leftmost
byte in the order 34 → 12.

34

15

D+3
08 07 00

12

1 2 3 4

Frame

The data in the frame is in the order 34 → 12.

In this case, 1234 hex is
stored from the
rightmost byte in the
order 34 → 12.

78

15

7 8 5D+3
D+4

6
3 4 1 2

08 07 00

56 34 12Frame

The data in the frame is in the order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the leftmost byte in
the order 78 → 56 → 34 → 12.

78

15

D+3
D+4 1 2 3 4

08 07 00

56 34 12

5 6 7 8

Frame

The data in the frame is in the order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the rightmost byte in
the order 78 → 56 → 34 → 12.

000000 A20206

S

D

C

EXPLT

D00000

D00100

D00200

Communications Port
Enabled Flag (Port 6)
1072

Network Instructions Section 3-25
When CIO 000000 and A20206 (the Communications Port Enabled Flag for
port 06) are ON, EXPLT(720) reads the Total ON Time (s) or Number of Con-
tact Operations from a DRT2 Slave (I/O Terminal). In this case, the Total ON
Time or Number of Contact Operations for input 3 are read.

Service Code = 0E hex, Class ID = 09 hex, Instance ID = 03 hex, and Attribute
ID = 66 hex.

For example, a value of 2,752,039 s is returned as the response for the Total
ON Time.

0E 09 03 66

Attribute ID

Instance ID

Class ID

Service Code

Explicit message command format

Destination node address

CS1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

EXPLT(720)
instructionCPU

Unit

Unit address 12 hex (because
the unit number is 2)

Explicit
message

DRM2-OD16 Slave
with node address 45

S: D00000 0 0 0 A

S+1: D00001 0 0 2 D

S+2: D00002 0 0 0 E

S+3: D00003 0 0 0 9

S+4: D00004 0 0 0 3

S+5: D00005 0 0 6 6

D: D00100 0 0 0 8

D+1: D00101 0 0 2 D

D+2: D00102 0 0 8 E

D+3: D00103 2 7 F E

D+4: D00104 2 9 0 0

C: D00200 0 0 0 4

C+1: D00201 0 6 1 2

C+2: D00202 0 0 0 0

C+3: D00203 0 0 0 0

Number of bytes of data: S+1 to S+5 = 5 words = 10 bytes = 0A hex
Slave’s node address = 45 = 2D hex
Service Code = 0E hex
Class ID = 09 hex
Instance ID = 03 hex (Input 3)
Attribute ID = 66 hex

Contains 08 hex for 8 bytes of received data in response frame.

Returns Slave’s node address = 45 = 2D hex.

Service Code = 8E hex (normal completion)

Service Data = 0029FE27 hex (2,752,039 s decimal)

Set 5 words = 0005 hex since there are 5 words in D to D+5.
Byte order = 0 hex (from leftmost byte), communications port = 6 hex
(port 6), and the DeviceNet Unit’s unit address = 12 hex
Response monitoring time = 0000 hex (2 s)
Explicit format type = 0000 hex (DeviceNet format)
1073

Network Instructions Section 3-25
3-25-7 EXPLICIT GET ATTRIBUTE: EGATR(721)
Purpose Sends an information/status read command in an explicit message (Get

Attribute Single, Service Code: 0E hex).

This instruction is supported by only by CS/CJ-series CPU Unit Ver. 2.0 or
later.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First word of send message
Specifies the first word of the send message (S to S+3).

EGATR(721)

S

D

C

S: First word of send message

D: First word of received message

C: First control word

Variations Executed Each Cycle for ON Condition EGATR(721)

Executed Once for Upward Differentiation @EGATR(721)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

S 0 0

8111215 07

S+1 0 0

8111215 07

S+2 0 0

8111215 07

S+3 0 0

8111215 07

Class ID (hex)

Instance ID (hex)

Attribute ID (hex)

Destination Node Address
00 to max. node address (hex)
(00 to 3F hex (0 to 63) for DeviceNet)

If the Attribute ID is not used, set it
to FFFF hex. (The Attribute ID
cannot be set to 0000 hex.)
1074

Network Instructions Section 3-25
D: First word of received message
Specifies the first word of the received message (D to D+267 max.).

C: First control word
Specifies the first of four control words (C to C+3).

Operand Specifications

D

015

D+1

D+267

15 0

...

Service Data

Contains the number of bytes of received service data from
words D+1 on. Does not include the 2 bytes in word D itself.

Includes only the number of bytes of Service Data starting at
D+1. (If the first or last word contains just one byte of data, the
empty byte in that word is not counted.)

Contains the response’s service data (data
following the service code). The byte-order of
this data is specified in bits 12 to 15 of C+1.
Can contain up to 534 bytes (267 words) of
data.

to

C

015

C+1

8111215 07

C+2

15 0

C+3

15 0

Set the maximum number of words of data in the received data beginning at D.
The allowed setting range is 0 to 010C hex (268 words).
If the number of words of received data exceeds the value set here, a FINS
error will occur (response too long, code 11 0B) and no data at all will be stored
(in the area starting at D+3).
If the number of words of received data is less than the value set here, the
remaining words (in the area starting at D+3) will be left unchanged.

FINS unit address of relaying Communications Unit.
CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port) for the network
instruction: 0 to 7 hex (F hex: Automatic allocation)

Byte order of service data (frame data) stored in areas beginning at S+6 and D+3
0 hex: Stored from leftmost byte (Left → Right → Left → Right ...)
8 hex: Stored from rightmost byte (Right → Left → Right → Left ...)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet (same as using the 2801 FINS
command)

Area S D C

CIO Area CIO 0000 to
CIO 6140

CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6140

Work Area W000 to W508 W000 to W511 W000 to W508

Holding Bit Area H000 to H508 H000 to H511 H000 to H508

Auxiliary Bit Area A000 to A956 A000 to A959 A000 to A956

Timer Area T0000 to T4092 T0000 to T4095 T0000 to T4092
1075

Network Instructions Section 3-25
Description Sends the “read information/status” explicit message command (stored in
words S+1 to S+3) to the node address specified in S, via the Communica-
tions Unit with the FINS unit address specified in bits 00 to 07 of C+1.

When the response to the explicit message is received, the response’s ser-
vice data (data following the service code) is stored in the range of words
beginning at D+1.

The number of bytes of received data indicated in D is the number of bytes of
service data. (For example, if there is 1 byte of service data, D will contains
0001 hex. D will contain 0001 hex regardless of the byte order setting, i.e.,
whether the byte is stored in the rightmost or leftmost byte of D.)
The setting in bits 12 to 15 of C+1 (0 or 8 hex) determines the byte-order of
the service data stored at S+6 and D+3.

• Storing Data from the Leftmost Byte
Set bits 12 to 15 of C+1 to 0 hex.

Counter Area C0000 to C4092 C0000 to C4095 C0000 to C4092

DM Area D00000 to
D32764

D00000 to
D32767

D00000 to
D32764

EM Area without bank E00000 to
E32764

E00000 to
E32767

E00000 to
E32764

EM Area with bank En_00000 to
En_32764
(n = 0 to C)

En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767 (n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D C

A

15

AD+1
D+2

B

C D

08 07 00

B C D

Frame (order of data in line)

Stored from leftmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area
1076

Network Instructions Section 3-25
• Storing Data from the Rightmost Byte
Set bits 12 to 15 of C+1 to 8 hex.

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-25-2 About Explicit Message Instructions.

The following table shows relevant bits and flags in the Auxiliary Area.

A

15

BD+1
D+2

A

D C

08 07 00

B C D

Frame (order of data in line)

Stored from rightmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A21300 to
A21307

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.
1077

Network Instructions Section 3-25
Precautions Be sure that the order of bytes in the source data matches the order in the
explicit message’s frame (order of data in the line). For example, when the
service data is in 2-byte or 4-byte units, the order of data in the frame is left-
most to rightmost order in 2-digit pairs, as shown in the following diagram.

The following diagrams show how data is stored in the data areas when the
service data is in 2-byte or 4-byte units.

1. Data in 2-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 1234 hex in D+1

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

Name Address Operation

78 56 34 1234 12

Service Data:12345678HexService Data:1234Hex

Command format

Example: Address 1234 hex
stored in 34 → 12 order

Example: Cumulative time12345678
hex stored in 78 → 56 → 34 → 12 order

34

15

3 4 1D+1 2
08 07 00

12Frame

The data in the frame is
in the order 34 → 12.

In this case, 1234 hex is
stored from the leftmost
byte in the order 34 → 12.
1078

Network Instructions Section 3-25
• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 1234 hex in D+1

2. Data in 4-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 12345678 hex in D+1 and D+2

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 12345678 hex in D+1 and D+2

Example In this example, EGATR(721) is used to read the general status of a DRT2
Slave (I/O Terminal).

When CIO 000000 and A20206 (the Communications Port Enabled Flag for
port 06) are ON, EGATR(721) reads the general status of the DRT2 Slave (I/O
Terminal). In this case, the Total ON Time or Number of Contact Operations
for input 3 are read.

Service Code = 0E hex, Class ID = 95 hex, Instance ID = 01 hex, and Attribute
ID = 65 hex.

The general status is returned in 1 byte.

34

15

1 2 3D+1 4
08 07 00

12Frame

The data in the frame is in
the order 34 → 12.

In this case, 1234 hex is
stored from the rightmost
byte in the order 34 → 12.

78

15

7 8 5D+1
D+2

6
3 4 1 2

08 07 00

56 34 12Frame

The data in the frame is in the
order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the leftmost byte in
the order 78 → 56 → 34 → 12.

78

15

5 6 7D+1
D+2

8
1 2 3 4

08 07 00

56 34 12Frame

In this case, 12345678 hex is
stored from the rightmost byte in
the order 78 → 56 → 34 → 12.

The data in the frame is in the
order 78 → 56 → 34 → 12.

000000 A20206

S

D

C

EGATR

D00000

D00100

D00200

Communications Port
Enabled Flag (Port 6)
1079

Network Instructions Section 3-25
Attribute ID

Instance ID

Class ID
Service Code

0E 95 01 65

Explicit message command format

Destination node address

CS1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

EGATR(721)
instruction

CPU
Unit

Unit address 12 hex (because
the unit number is 2)

Slave (I/O Terminal)
with node address 10

Explicit
message

S: D00000 0 0 0 A

S+1: D00001 0 0 9 5

S+2: D00002 0 0 0 1

S+3: D00003 0 0 6 5

C: D00200 0 0 0 2

C+1: D00201 8 6 1 2

C+2: D00202 0 0 0 0

C+3: D00203 0 0 0 0

Set 2 words = 0002 hex since there are 2 words in D to D+1.
Byte order = 8 hex (from rightmost byte), communications port = 6
hex (port 6), and the DeviceNet Unit’s unit address = 12 hex
Response monitoring time = 0000 hex (2 s)
Explicit format type = 0000 hex (DeviceNet format)

Slave’s node address = 10 = 0A hex
Class ID = 95 hex
Instance ID = 01 hex
Attribute ID = 65 hex

D: D00100 0 0 0 1

D+1: D00101 0 0 4 8

7 6 5 4 3 2 1 0

D00101 0 1 0 0 1 0 0 0

Basic Unit's I/O Power Status Flag

Expansion Unit's I/O Power Status Flag

Low Network Power Voltage Flag

Unit Maintenance Flag

Sensor Disconnected Flag
Sensor Power Shorted Flag

Operation Time Over Flag

Connected Device Maintenance Flag

D contains 0 hex for the 1 byte of data returned to the rightmost byte
of D+1.
The Slave’s general status is returned to bits 00 to 07.
(The data is stored in bits 00 to 07 because the byte order setting in
C+1 bits 12 to 15 was set to 8 hex (from rightmost byte).

General
status
1080

Network Instructions Section 3-25
3-25-8 EXPLICIT SET ATTRIBUTE: ESATR(722)
Purpose Sends an information write command in an explicit message (Set Attribute

Single, Service Code: 10 hex).

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Applicable Program Areas

ESATR(722)

S

C

S: First word of send message

C: First control word

Variations Executed Each Cycle for ON Condition ESATR(722)

Executed Once for Upward Differentiation @ESATR(722)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1081

Network Instructions Section 3-25
Operands S: First word of send message
Specifies the first word of the send message (S to S+271 max.).

C: First control word
Specifies the first of three control words (C to C+2).

S

015

S+1 0 0

8111215 07

S+2 0 0

8111215 07

S+3 0 0

8111215 07

S+4 0 0

8111215 0

S+5

S+271

15 0

7
...

Service Data

Class ID (hex)

Instance ID (hex)

Attribute ID (hex)

Set the number of bytes of source data from words S+1 on.
For example, set S to 0008 hex if there are 4 words of data
(S+1 to S+4). Do not include the 2 bytes in word S itself.
Include the leftmost bytes of S+1 to S+4, which contain 00.
Also, include the number of bytes of Service Data starting at
S+5. (If the first or last word contains just one byte of data, do
not count the empty byte in that word.)

to

Destination Node Address 00
to max. node address (hex)
(00 to 3F hex (0 to 63) for
DeviceNet)

If the Attribute ID is not used, set it
to FFFF hex. (The Attribute ID
cannot be set to 0000 hex.)

When there is Service Data (data other
than the Attribute ID), the byte-order of this
data is specified in bits 12 to 15 of C+1. Up
to 534 bytes (267 words) can be set.

C

8111215 07

C+1

15 0

C+2

15 0

Response monitoring time

Explicit message format

FINS unit address of relaying Communications Unit.
CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port) for the
network instruction: 0 to 7 hex (F hex: Automatic allocation)

Byte order of service data (frame data) stored in areas beginning at S+5
0 hex: Stored from leftmost byte (Left → Right → Left → Right ...)
8 hex: Stored from rightmost byte (Right → Left → Right → Left ...)

0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

0000 hex: DeviceNet (same as using the 2801
FINS command)
1082

Network Instructions Section 3-25
Operand Specifications

Description Sends the explicit message command with service code 10 hex (stored in the
range of words beginning at S+2) to the node address specified in S+1, via
the Communications Unit with the FINS unit address specified in bits 00 to 07
of C. When the response to the explicit message is received, it is stored in the
range of words beginning at D+2.

The setting in bits 12 to 15 of C (0 or 8 hex) determines the byte-order of the
service data stored at S+5.

• Storing Data from the Leftmost Byte
Set bits 12 to 15 of C to 0 hex.

Area S C

CIO Area CIO 0000 to CIO 6143 CIO 0000 to CIO 6141

Work Area W000 to W511 W000 to W509

Holding Bit Area H000 to H511 H000 to H509

Auxiliary Bit Area A000 to A959 A000 to A957

Timer Area T0000 to T4095 T0000 to T4093

Counter Area C0000 to C4095 C0000 to C4093

DM Area D00000 to D32767 D00000 to D32765

EM Area without bank E00000 to E32767 E00000 to E32765

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to En_32765
(n = 0 to C)

Indirect DM/EM addresses in
binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767 (n = 0 to C)

Indirect DM/EM addresses in
BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767 (n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

A

15

AS+5
S+6

B

C D

08 07 00

B C D

Frame (order of data in line)

Stored from leftmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area
1083

Network Instructions Section 3-25
• Storing Data from the Rightmost Byte
Set bits 12 to 15 of C to 8 hex.

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-25-2 About Explicit Message Instructions.

The following table shows relevant bits and flags in the Auxiliary Area.

A

15

BS+5
S+6

A

D C

08 07 00

B C D

Frame (order of data in line)

Stored from rightmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).

A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A21300 to
A21307

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.

The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.

The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.
1084

Network Instructions Section 3-25
Precautions Be sure that the order of bytes in the source data matches the order in the
explicit message’s frame (order of data in the line). For example, when the
service data is in 2-byte or 4-byte units, the order of data in the frame is left-
most to rightmost order in 2-digit pairs, as shown in the following diagram.

The following diagrams show how data is stored in the data areas when the
service data is in 2-byte or 4-byte units.

1. Data in 2-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 1234 hex in S+5

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

Name Address Operation

78 56 34 1234 12

Service Data:12345678HexService Data:1234Hex

Command format

Example: Cumulative time12345678
hex stored in 78 → 56 → 34 → 12 order

Example: Address 1234 hex
stored in 34 → 12 order

34

15

3 4 1S+5 2
08 07 00

12Frame

The data in the frame is
in the order 34 → 12.

In this case, 1234 hex is
stored from the leftmost
byte in the order 34 → 12.
1085

Network Instructions Section 3-25
• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 1234 hex in S+5

2. Data in 4-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 12345678 hex in S+5 and S+6

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 12345678 hex in S+5 and S+6

Example In this example, ESATR(722) is used to overwrite the Number of Contact
Operations set value in a DRT2 Slave (I/O Terminal).

When CIO 000000 and A20206 (the Communications Port Enabled Flag for
port 06) are ON, EXPLT(720) writes the Number of Contact Operations set
value for input 2 in a DRT2 Slave (I/O Terminal).

(Service Code = 10 hex,) Class ID = 08 hex, Instance ID = 02 hex, and
Attribute ID = 68 hex.

34

15

1 2 3S+5 4
08 07 00

12Frame

The data in the frame is
in the order 34 → 12.

In this case, 1234 hex is
stored from the rightmost
byte in the order 34 → 12.

78

15

7 8 5S+5
S+6

6
3 4 1 2

08 07 00

56 34 12Frame

The data in the frame is in the
order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the leftmost byte in
the order 78 → 56 → 34 → 12.

78

15

5 6 7S+5
S+6

8
1 2 3 4

08 07 00

56 34 12Frame

The data in the frame is in the
order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the rightmost byte in
the order 78 → 56 → 34 → 12.

000000 A20206

S

C

ESATR

D00000

D00100

Communications Port
Enabled Flag (Port 6)
1086

Network Instructions Section 3-25
In this case, the Number of Contact Operations is being set to 500 (1F4 hex),
so the service data is set to 000001F4.

3-25-9 EXPLICIT WORD READ: ECHRD(723)
Purpose Reads data to the local CPU Unit from another CPU Unit in the network. (The

remote CPU Unit must support explicit messages.)

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

10 08 02 68 F4 01 00 00

Attribute ID

Service Data:01F4Hex

Instance ID

Class ID

Service Code

Explicit message command format

Destination node address

CS1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

ESATR(722)
instruction

CPU
Unit

Unit address 12 hex (because
the unit number is 2)

Slave (I/O Terminal)
with node address 10

Explicit
message

S: D00000 0 0 0 C

S:+1 D00001 0 0 0 A

S+2: D00002 0 0 0 8

S+3: D00003 0 0 0 2

S+4: D00004 0 0 6 8

S+5: D00005 0 1 F 4

S+6: D00006 0 0 0 0

C: D00201 8 6 1 2

C+1: D00202 0 0 0 0

C+2: D00203 0 0 0 0

Number of bytes of data: S+1 to S+6 = 6 words = 12 bytes = 0C hex
Slave’s node address = 10 = 0A hex
Class ID = 08 hex
Instance ID = 02 hex
Attribute ID = 68 hex
Service Data = F401 hex

Byte order = 8 hex (from rightmost byte), communications port = 6
hex (port 6), and the DeviceNet Unit’s unit address = 12 hex
Response monitoring time = 0000 hex (2 s)
Explicit format type = 0000 hex (DeviceNet format)

ECHRD(723)

S

D

C

S: First source word in remote CPU Unit

D: First destination word in local CPU Unit

C: First control word

Variations Executed Each Cycle for ON Condition ECHRD(723)

Executed Once for Upward Differentiation @ECHRD(723)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
1087

Network Instructions Section 3-25
Applicable Program Areas

Operands S: First Source Word in Remote CPU Unit
Specifies the leading word address containing the data to be read from the
remote CPU Unit.

D: First Destination Word in Local CPU Unit
Specifies the leading word address where the read data will be stored in the
local CPU Unit.

C: First Control Word
Specifies the first of five control words (C to C+4).

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C+2 0

8111215 07

C 0 0

8111215 07

C+1 0 0

8111215 07

C+3

15 0

C+4

15 0

FINS unit address of relaying Communications Unit.
• CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
• Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port
(logical port) for the network instruction:
0 to 7 hex (F hex: Automatic allocation)

Source node address (remote CPU Unit)
(00 to maximum node address (hex))
Example: DeviceNet: 00 to 3F hex (0 to 63)

Read data size (words):
01 to 64 hex (1 to 100 words)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet
(same as using the 2801 FINS command)

Area S D C

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6139

Work Area W000 to W511 W000 to W507

Holding Bit Area H000 to H511 H000 to H507

Auxiliary Bit Area A000 to A959 A448 to A959 A000 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D00000 to D32767 D00000 to D32763

EM Area without bank E00000 to E32767 E00000 to E32763

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32763
(n = 0 to C)
1088

Network Instructions Section 3-25
Description Reads the specified number of words from the first read word (specified in S)
in the remote CPU Unit with the node address specified in C, and stores the
data in the local CPU Unit memory words beginning at D.

Note ECHRD(723) sends an explicit message with the Service Code 1C hex (Byte
Data Read).

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the network instructions, refer to 3-25-
2 About Explicit Message Instructions.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D C

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.
1089

Network Instructions Section 3-25
The following table shows relevant bits and flags in the Auxiliary Area.

Example In this example, ECHRD(723) is used to read the I/O memory of the CJ-series
CPU Unit on the DeviceNet network, and store the data in the I/O memory of
the local CPU Unit.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A21300 to
A21307

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.

The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

000000

S

D

C

ECHRD

D00000

D00100

D00200

Communications
Port Enabled Flag (Port 6)

A20206
1090

Network Instructions Section 3-25
When CIO 000000 and A20206 (the Communications Port Enabled Flag for
port 06) are ON, ECHRD(723) reads D00000 to D00002 from the I/O memory
of the CJ-series CPU Unit with node address 07 on the DeviceNet Network
and stores the data in D00100 to D00102 of the local CPU Unit.

3-25-10 EXPLICIT WORD WRITE: ECHWR(724)
Purpose Writes data from the local CPU Unit to another CPU Unit in the network. (The

remote CPU Unit must support explicit messages.)

This instruction is supported only by CS/CJ-series CPU Unit Ver. 2.0 or later.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word in Local CPU Unit
Specifies the leading word address in the local CPU Unit containing the write
data.

CJ1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

Node address 07

CS1W-DRM21 DeviceNet Unit

CPU UnitECHRD(723)
instruction

DeviceNet

CPU
Unit

Unit address 12 hex (because
the unit number is 2)

Explicit
message

15 0

D: D00100

D+1: D00100

D+2:

15 0

S: D00000

S+1: D00001

S+2: D00002

15 8 7 0

D00200 0 0 0 7

C+1: D00201 0 0 0 3

C+2: D00202 0 6 1 2

C+3: D00203 0 0 0 0

C+4: D00204 0 0 0 0

C: Node address of remote CPU Unit to be read = 07 hex (node 07)

Read data size (number of words) = 3 hex

Communications port = 6 hex (port 6),

and the DeviceNet Unit’s unit address = 12 hex

Response monitoring time = 0000 hex (2 s)

Explicit format type = 0000 hex (DeviceNet format)

ECHWR(724)

S

D

C

S: First source word in local CPU Unit

D: First destination word in remote CPU Unit

C: First control word

Variations Executed Each Cycle for ON Condition ECHWR(724)

Executed Once for Upward Differentiation @ECHWR(724)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1091

Network Instructions Section 3-25
D: First Destination Word in Remote CPU Unit
Specifies the leading word address of the write destination in the remote CPU
Unit.

C: First Control Word
Specifies the first of five control words (C to C+4).

Operand Specifications

C+2 0

8111215 07

C 0 0

8111215 07

C+1 0 0

8111215 07

C+3

15 0

C+4

15 0

FINS unit address of relaying Communications Unit.
• CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
• Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port)
for the network instruction: 0 to 7 hex
(F hex: Automatic allocation)

Source node address (remote CPU Unit)
(00 to maximum node address (hex))
Example: DeviceNet: 00 to 3F hex (0 to 63)

Write data size (words):
01 to 64 hex (1 to 100 words)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format0000 hex:
DeviceNet (same as using the 2801 FINS command)

Area S D C

CIO Area CIO 0000 to CIO 6143 CIO 0000 to
CIO 6139

Work Area W000 to W511 W000 to W507

Holding Bit Area H000 to H511 H000 to H507

Auxiliary Bit Area A000 to A959 A448 to A959 A000 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D00000 to D32767 D00000 to D32763

EM Area without bank E00000 to E32767 E00000 to E32763

EM Area with bank En_00000 to En_32767
(n = 0 to C)

En_00000 to
En_32763

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)
1092

Network Instructions Section 3-25
Description Writes the specified number of words beginning at S from the local CPU Unit
to the write destination beginning at D in the remote CPU Unit with the node
address specified in C.

Note ECHWR(724) sends an explicit message with the Service Code 1E hex (Byte
Data Write).

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-25-2 About Explicit Message Instructions.

The following table shows relevant bits and flags in the Auxiliary Area.

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D C

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A20200 to
A20207

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A21300 to
A21307

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.

The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.

The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.
1093

Network Instructions Section 3-25
Example In this example, ECHWR(724) is used to write data from the I/O memory of
the local CPU Unit to the I/O memory of a CJ-series CPU Unit on the
DeviceNet network.

When CIO 000000 and A20206 (the Communications Port Enabled Flag for
port 06) are ON, ECHWR(724) reads D00000 to D00002 from the I/O mem-
ory of the local CPU Unit and stores the data in D00100 to D00102 of the CJ-
series CPU Unit with node address 07 on the DeviceNet Network

Communications
Port Error Flag

A21900 to
A21907

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

Name Address Operation

000000

S

D

C

ECHWR

D00000

D00100

D00200

Communications
Port Enabled Flag (Port 6)

A20206
1094

File Memory Instructions Section 3-26
3-26 File Memory Instructions
This section describes instructions used with file memory (EM Area or Mem-
ory Cards).

Note File memory can also be manipulated by executing CMND(490) to send a
FINS command to the local CPU Unit. Refer to the CS/CJ-series PLC Opera-
tion Manual for details.

3-26-1 Precautions when Using Memory Cards
Confirm the following items before using a Memory Card.

Format
Memory Cards are formatted before shipping. There is no need to format
them after purchase. To format them once they have been used, always do so
in the CPU Unit using the CX-Programmer or a Programming Console.

If a Memory Card is formatted directly in a notebook computer or other com-
puter, the CPU Unit may not recognize the Memory Card. If this occurs, you
will not be able to use the Memory Card even if it is reformatted in the CPU
Unit.

Number of Files in Root Directory
There is a limit to the number of files that can be placed in the root directory of
a Memory Card (just as there is a limit for a hard disk). Although the limit
depends on the type and format of the Memory Card, it will be between 128
and 512 files. When using applications that write log files or other files at a
specific interval, write the files to a subdirectory rather than to the root direc-
tory.

DeviceNet

CJ1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

Node address 07

CS1W-DRM21 DeviceNet Unit

CPU Unit
ECHWR(724)
instructionCPU

Unit

Explicit
message

Unit address 12 hex (because
the unit number is 2)

D: D00100

D+1: D00101

D+2: D00102

S: D00000

S+1: D00001

S+2: D00002

15 8 7 0

C: D00200 0 0 0 7

C+1: D00201 0 0 0 3

C+2: D00202 0 6 1 2

C+3: D00203 0 0 0 0

C+4: D00204 0 0 0 0

Node address of remote CPU Unit to be written to = 07 hex (node 07)

Write data size (number of words) = 3 hex

Communications port = 6 hex (port 6),

and the DeviceNet Unit’s unit address = 12 hex

Response monitoring time = 0000 hex (2 s)

Explicit format type = 0000 hex (DeviceNet format)

Instruction Mnemonic Function code Page

READ DATA FILE FREAD 700 1099

WRITE DATA FILE FWRIT 701 1106

WRITE TEXT FILE TWRIT 704 1113
1095

File Memory Instructions Section 3-26
Subdirectories can be created on a computer or by using the CMND(490)
instruction. Refer to 3-25-5 DELIVER COMMAND: CMND(490) for a specific
example using CMND(490).

Number of Writes
Generally speaking, there is no limit to the number of write operations that can
be performed for a flash memory. For the Memory Cards, however, a limit of
100,000 write operations has been set for warranty purposes. For example, if
the Memory Card is written to every 10 minutes, over 100,000 write opera-
tions will be performed within 2 years.

Minimum File Size
If many small files, such as ones containing only a few words of DM Area
data, are stored on the Memory Card, it will not be possible to use the com-
plete capacity of the Memory Card. For example, if a Memory Card with an
allocation unit size of 4,096 bytes is used, at least 4,096 bytes of memory will
be used for each file regardless of how small the file is. If you save 10 words
of DM Area data to the Memory Card, 4,096 bytes of memory will be used
even though the actual file size is only 68 bytes. Using files of such a small
size greatly reduces the utility rate of the Memory Card. If the allocation unit
size is reduced to increase the utility rate, however, the access speed will be
reduced.

The allocation unit size of the Memory Card can be checked from a DOS
prompt using CHKDSK. The specific procedure is omitted here. Refer to gen-
eral computer references for more information on allocation unit sizes.

Memory Card Access Precautions
When the PLC is accessing the Memory Card, the BUSY indicator will light on
the CPU Unit. Observe the following precautions.

1,2,3... 1. Never turn OFF the power supply to the CPU Unit when the BUSY indica-
tor is lit. The Memory Card may become unusable if this is done.

2. Never remove the Memory Card from the CPU Unit when the BUSY indi-
cator is lit. Press the Memory Card power OFF button and wait for the
BUSY indicator to go out before removing the Memory Card. The Memory
Card may become unusable if this is not done.

3. Insert the Memory Card with the label facing to the right. Do not attempt to
insert it in any other orientation. The Memory Card or CPU Unit may be
damaged.

4. A few seconds will be required for the CPU Unit to recognize the Memory
Card after it is inserted. When accessing a Memory Card immediately after
turning ON the power supply or inserting the Memory Card, program an
NC condition for the Memory Card Recognized Flag (A34315) as an input
condition, as shown below.

Note The structure of data files is as shown below.

FREAD

C

S1

S2

D

A34315 A34313
Execution
condition

Memory Card
Recognized

Flag

File Memory
Operation

Flag
1096

File Memory Instructions Section 3-26
File Memory Instructions

FWRIT(701)

FWRIT(701) creates a data file containing the specified data from I/O mem-
ory. The file format can be either binary or CSV. FWRIT(701) can also be
used to add to an existing file or overwrite an existing file from a specified
position.

FREAD(700)

FREAD(700) reads the contents of a data file and stores it in the specified
area of I/O memory. The file format can be either binary or CSV. FREAD(700)
can also be used to read data from a specified position in a file.

TWRIT(704)

TWRIT(704) creates a text file containing ASCII data stored in I/O memory.
TWRIT(704) can also be used to add to an existing file or overwrite an existing
file.

CMND(490)

CMND(490) can be used to format files, delete files, copy files, and change
file names by sending FINS commands for Memory Card operations. For
details, refer to Section 5 File Memory Functions in the SYSMAC CS/CJ
Series Programmable Controllers Programming Manual (W394).

For binary format (.IOM), the data will be as follows when 1234 hex, 5678 hex,
9ABC hex, and DEF0 hex are stored in the file ABC.IOM (although the user
does not normally need to be concerned with this structure):

For word CSV format (.CSV), the data will be as follows when 1234 hex, 5678
hex, 9ABC hex, and DEF0 hex are stored in the file ABC.CSV (the basic
structure would be the same for text data (.TXT):

1234
5678
9ABC
DEF0

XX
XX

XX
12
34
56
78
9A
BC
DE
F0

to
I/O memory

Contents of ABC.IOM

8 bytes

48 bytes (reserved
for system use)

1234
5678
9ABC
DEF0

31 1
32 2
33 3
34 4
2C ,
35 5
36 6
37 7
38 8
2C ,

1234,5678,9ABC,DEF0

to

I/O memory Converted to ASCII

Contents of ABC.CSV

4 bytes

Delimiter

4 bytes

Delimiter
File Displayed as Text Data
1097

File Memory Instructions Section 3-26
For long-word CSV format (.CSV), the data will be as follows when 1234 hex,
5678 hex, 9ABC hex, and DEF0 hex are stored in the file ABC.CSV (the basic
structure would be the same for text data (.TXT):

Related Auxiliary Area
Words and Bits Memory Card Detection

Instruction-related Words and Bits

1234
5678
9ABC
DEF0

to

35 5
36 6
37 7
38 8
31 1
32 2
33 3
34 4
2C ,

56781234,DEF09ABC

I/O memory
Converted to ASCII
(higher-addressed
word first in field)

Contents of ABC.CSV

8 bytes

Delimiter
File Displayed as Text Data

Name Address Operation

Memory Card Type A34300 to
A34302

Contains a binary number indicating the type
of Memory Card, if any, that is installed.
(0: None, 4: Flash ROM)

Memory Card Format
Error Flag

A34307 ON when the Memory Card is not formatted or
a formatting error has occurred.

Memory Card Detected
Flag (version 1 (-V1) or
higher only)

A34315 ON when a Memory Card has been detected.
OFF when a Memory Card is not detected.

Name Address Operation

File Write Error Flag A34308 ON when an error occurred when writing to the
file.
ON when the file being written is write-pro-
tected.

File Write Impossible
Flag

A34309 ON when the data could not be written
because there was insufficient free memory.

File Read Error Flag A34310 ON when a file could not be read because its
data was corrupted or if it contains the wrong
data type.

File Missing Flag A34311 ON when data could not be read because the
specified file does not exist.

File Memory Operation
Flag

A34313 ON for any of the following:
The CPU Unit has sent a FINS command to
itself using CMND(490).
FREAD(700) or FWRIT(701) are being exe-
cuted.

The program is being overwritten using a con-
trol bit in memory.
A simple backup operation is being performed.
1098

File Memory Instructions Section 3-26
EM File Memory-related Words and Bits

3-26-2 READ DATA FILE: FREAD(700)
Purpose Reads the specified data or amount of data from the specified data file in file

memory to the specified data area in the CPU Unit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word
As shown in the following diagram, the first digit indicates whether the source

Accessing File Flag A34314 ON when file data is actually being accessed.
Use this flag as an execution condition to pre-
vent a file memory instruction from being exe-
cuted while another is in progress.

Number of Data to
Transfer

A346 to
A347

The contents of these words indicate the sta-
tus of data file transfers.
When an FREAD(700) or FWRIT(701) instruc-
tion is executed, the number of words or fields
to be transferred is written to these words. The
value is decremented by 1 as each word or
field is transferred.
A346 contains the rightmost 16 bits and A347
contains the leftmost 16 bits of the 32-bit
binary value.

Name Address Operation

EM File Memory For-
mat Error Flag

A34306 ON when there is a format error in the starting
bank of EM file memory.

EM File Format Starting
Bank

A344 Contains the starting bank number of the EM
Area that has been formatted for use as EM
file memory. Contains FFFF when none of the
EM Area has been formatted.
To convert the EM Area for use as file memory,
the PLC Setup’s EM File Memory setting must
be set to 1 and the EM File Memory Starting
Bank (0 to C) must be set. All EM banks from
the starting bank to the last bank will then be
formatted for use as file memory.

Name Address Operation

FREAD(700)

C

S1

S2

D

C: Control word

S1: Number of words and
First source word

S2: Filename

D: First destination word

Variations Executed Each Cycle for ON Condition FREAD(700)

Executed Once for Upward Differentiation @FREAD(700)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1099

File Memory Instructions Section 3-26
file is in the Memory Card or EM file memory, the second digit of the control
word indicates whether the actual data or the number of words of data is to be
read, the third digits indicates the presence of carriage returns, and the fourth
digit indicates the data type.

Note 1. Each field will contain 1 word of I/O memory for the word data types and 2
words of I/O memory for the double-word data types.

2. When reading data with carriage returns, bits 00 to 11 of C must be set to
between 8 and D hex.

3. With double-words, the first word of data is stored in the higher memory
address, e.g., 12345678 would be stored with 1234 in D00001 and 5678
in D00000.

S1 and S1+1: Number of Read Items
The 8-digit hexadecimal value in S1 and S1+1 specifies how many words or
fields to read from file memory. If the specified number of words or fields
exceeds the number of words in the data file, the data in the file will be trans-
ferred normally and no error will occur.

15 8 011 37 412C

File memory specifier
0: Memory Card
1: EM file memory

Function specifier
0: Read data.
1: Read number of words.

Carriage returns
0: No returns
8: Return every 10 fields*
9: Return every 1 field*
A: Return every 2 fields*
B: Return every 4 fields*
C: Return every 5 fields*
D: Return every 16 fields*

Data type (-EV1 only)
0: Binary (extension: .IOM, words/field: NA)
1: Non-delimited words (extension: .TXT, words/field: 1)*
2: Non-delimited double-words (extension: .TXT., words/field: 2)*
3: Comma-delimited words (extension: .CSV, words/field: 1)*
4: Comma-delimited double-words (extension: .CSV, words/field: 2)*
5: Tab-delimited words (extension: .TXT, words/field: 1)*
6: Tab-delimited double-words (extension: .,TXT words/field: 2)*

*: Cannot be set for CS-series CS1 CPU Units prior to V1@.

Data type Bits 12 to 15 of C Contents of S1 and S1+1

Binary 0 hex (binary) Number of words to read from file
memory.
00000000 to 3FFFFFFF hex

S1S1+1
S1+1 contains the leftmost 4 digits and
S1 contains the rightmost 4 digits.
1100

File Memory Instructions Section 3-26
S1+2 and S1+3: First Source Word
The 8-digit hexadecimal value in S1+2 and S1+3 specifies the starting read
word from the beginning of the file.

Note 1. S1+2 and S1+3 are used only for text and CVS data with no carriage re-
turns (i.e., bits 08 to 11 of C set to 0 hex) or for binary data. Always set
S1+2 and S1+3 to 00000000 hex when reading data with carriage returns
(i.e., bits 08 to 11 of C set to between 8 and D hex).

2. S1 to S1+3 must be in the same data area.

3. S1 to S1+3 are used only when reading data.

4. If the specified starting word exceeds the number of words in the data file,
the File Read Error Flag (A34310) will be turned ON and the file data will
not be read.

S2: Filename
S2 is the starting address of the words containing the absolute path and file-
name in ASCII. Use ASCII a to z, A to Z, and 0 to 9.

The full path name to the directory containing the data file can be up to 65
characters long, including the starting slash (ASCII 5C). The filename can be
up to 8 characters long, but null characters (ASCII 00) are not allowed in the
filename because the null character is used to mark the end of the character
string. Do not include the filename extension; the .IOM extension will be
added automatically.

Word 1 hex (non-delimited),
3 hex (comma-delimited), or
5 hex (tab-delimited)

Number of fields to read from file
memory, i.e., the number of words to
read from file memory.
00000000 to 1FFFFFFF hex

Double-word 2 hex (non-delimited),
4 hex (comma-delimited), or
6 hex (tab-delimited)

Number of fields to read from file
memory, i.e., half the number of words
to read from file memory.

00000000 to 0FFFFFFF hex

Data type Bits 12 to 15 of C Contents of S1+2 and S1+3

Binary 0 hex (binary) The word at which to begin reading
from the beginning of file memory.
00000000 to 3FFFFFFF hex

Word 1 hex (non-delimited),
3 hex (comma-delimited), or
5 hex (tab-delimited)

The field at which to begin reading
from the beginning of file memory, i.e.,
the number of words from the begin-
ning.

00000000 to 1FFFFFFF hex

Double-word 2 hex (non-delimited),
4 hex (comma-delimited), or
6 hex (tab-delimited)

The field at which to begin reading
from the beginning of file memory, i.e.,
half the number of words from the
beginning.

00000000 to 0FFFFFFF hex

Data type Bits 12 to 15 of C Contents of S1 and S1+1

S1+2S1+3
S1+3 contains the leftmost 4 digits and
S1+2 contains the rightmost 4 digits.

F1 F2
S2+1

S2

F4F3

S2+38 F73 F74

Store the character string beginning
with the leftmost byte in S2.
The entire pathname and filename can
be up to 74 characters (bytes) long,
including the initial slash character and
ending null character.
1101

File Memory Instructions Section 3-26
Note 1. Be sure that the character string containing the path name and file name
does not exceed the end of the data area.

2. If the specified file or directory does not exist, the File Missing Flag
(A34311) will be turned ON and the file data will not be read.

Write the path name and filename in ASCII beginning with the leftmost byte of
S2, as shown in the following example for \ABC\XYZ.IOM. (The .IOM exten-
sion is added automatically.)

D: First Destination Word
When data is being read, D specifies the starting address where the data read
from file memory will be stored.

When the number of words of data is being read, the number of words is writ-
ten to D and D+1 in 8-digit hexadecimal (00000000 to 7FFFFFF). D contains
the rightmost 4 digits and D+1 contains the leftmost 4 digits.

Description Reading Data (Third Digit of C = 0)
FREAD(700) reads the number of words or fields specified in S1 and S1+1
from the file specified in S2 (with filename extension .IOM, .TXT, or .CSV)
beginning at the address specified in S1+2 and S1+3. The data is then written
to RAM beginning at the word specified in D.

Note Data is stored in order by absolute internal memory addresses, so the output
data will overwrite data in the next data area if it exceeds the capacity of the
data area specified in D. See Precautions for more details.

When FREAD(700) is executed, the number of words (or fields) specified in
S1 and S1+1 is written to A346 and A347 (Number of Data to Transfer) and
this value is decremented by 1 as each word or field is transferred. The con-
tent of these words can be checked to verify that the expected number of
words or fields were transferred.

Reading Number of Words of Data (Third Digit of C=1)
FREAD(700) finds the number of words in the file specified in S2 (with file-
name extension .IOM) and writes that 8-digit hexadecimal value to D and
D+1.

5C 41
42 43
5C 58

 "\" "A"
 "B" "C"
 "\" "X"

S2
S2+1
S2+2

S2
S2+1
S2+2

59 5A
00

 "Y" "Z"
NUL

S2+3
S2+4 S2+4

S2+3

D

CPU Unit
Starting read address
specified in S1+2 and S1+3

File specified
in S2

Number of words specified
in S1 and S1+1

Memory Card or EM file memory
(Specified by the 1st digit of C.)
1102

File Memory Instructions Section 3-26
Operand Specifications

CPU Unit
File specified
in S2

Number of
words

Number of words
written to D and D+1.

Memory Card or EM file memory
(Specified by the 1st digit of C.)

Area C S1 S2 D

CIO Area CIO 0000 to
CIO6143

CIO 0000 to
CIO 6140

CIO 0000 to CIO 6143

Work Area W000 to
W511

W000 to
W508

W000 to W511

Holding Bit Area H000 to H511 H000 to 508 H000 to W511

Auxiliary Bit Area A000 to A959 A000 to A444
A448 to A956

A000 to A447
A448 to A959

A448 to A959

Timer Area T0000 to
T4095

T0000 to
T4092

T0000 to T4095

Counter Area C0000 to
C4095

C0000 to
C4092

C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32764

D00000 to D32767

EM Area without
bank

E00000 to
E32767

E00000 to
E32764

E00000 to E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

– @D00000 to @D32767

@E00000 to @E32767
@En_00000 to @En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

– *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified val-
ues only

–

Data Registers –

Index Registers –

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
1103

File Memory Instructions Section 3-26
Flags

The following table shows relevant flags in the Auxiliary Area.

Name Label Operation

Error Flag ER ON if the file memory specified in C does not exist.

ON if the settings in C are not within the specified range.
ON if the filename specified in S2 does not satisfy the
required conditions.

ON if the File Memory Operation Flag was ON.
ON if a constant was not specified for C (only for CS-
series CS1 CPU Units prior to V1@).

ON if data specified for S1 is out of range (all CPU Units
except for CS-series CS1 CPU Units prior to V1@).
ON if an illegal area is specified for D.

With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.
OFF in all other cases.

Name Address Operation

Memory Card Type A34300 to
A34302

Contains a binary number indicating the type
of Memory Card, if any, that is installed.
(0: None, 4: Flash ROM)

Memory Card Format
Error Flag

A34307 ON when the Memory Card is not formatted or
a formatting error has occurred.

File Read Error Flag A34310 ON when a file could not be read because its
data was corrupted or if it contains the wrong
data type.

File Missing Flag A34311 ON when data could not be read because the
specified file does not exist.

File Memory Operation
Flag

A34313 ON for any of the following:
The CPU Unit has sent a FINS command to
itself using CMND(490).
FREAD(700) or FWRIT(701) are being exe-
cuted.

The program is being overwritten using a con-
trol bit in memory.
A simple backup operation is being performed.

Accessing File Flag A34314 ON when file data is actually being accessed.
Use this flag as an execution condition to pre-
vent a file memory instruction from being exe-
cuted while another is in progress.

Memory Card Detected
Flag

A34315 ON when a Memory Card has been detected.

EM File Format Starting
Bank

A344 Contains the starting bank number of the EM
Area that has been formatted for use as EM
file memory. Contains FFFF when none of the
EM Area has been formatted.
To convert the EM Area for use as file memory,
the PLC Setup’s EM File Memory setting must
be set to 1 and the EM File Memory Starting
Bank (0 to C) must be set. All EM banks from
the starting bank to the last bank will then be
formatted for use as file memory.
1104

File Memory Instructions Section 3-26
Precautions During normal instruction processing, FREAD(700) is used only to start read-
ing file memory. The instruction execution times given toward the end of this
manual are thus the times required to start reading, not to complete it. Actual
reading (transfer) is performed by the file access processing in peripheral ser-
vicing. Therefore, once FREAD(700) has been executed, reading is continu-
ously executed even if the execution condition is OFF in following cycles.
When transfer has been completed, the File Memory Operation Flag
(A34313) will turn OFF. This flag can be used for exclusive control of file mem-
ory instructions.

The time required to complete data transfer for FREAD(700) will depend on
the amount of data being transferred, the service time allocated to file access
processing, and other conditions. As a guideline, the transfer times for a cycle
time of 10 ms for a file in the root directory with the default service time set-
tings will be 0.92 s for 1,024 words and 4.64 s for 9,999 words.

The File Memory Operation Flag (A34313) will be turned ON when
FREAD(700) is executed. An error will occur and the instruction will not be
executed if A34313 is already ON.

The File Read Error Flag (A34310) will be turned ON and the instruction will
not be executed if the specified file contains the wrong data type or the file
data is corrupted. For text or CSV files, the character code must be hexadeci-
mal data and delimiters must be every 4 digits for word data and every 8 digits
for double-word data. Data will be read up to the point where an illegal charac-
ter is detected.

A few seconds is required for the CPU Unit to detect a Memory Card after it
has been inserted. If a Memory Card is going to be accessed soon after
power is turned ON or after a Memory Card is inserted, use the Memory Card
Detected Flag (A34315) in a NO input condition as shown below to be sure
that the Memory Card has been detected.

Examples When CIO 000000 turns ON in the following example, FREAD(700) reads 10
words of data from file \ABC\XYZ.IOM starting with the beginning of the file +
5 words and outputs these 10 words to D00400 through D00409.

EM File Memory For-
mat Error Flag

A34306 ON when there is a format error in the starting
bank of EM file memory.

Number of Data to
Transfer

A346 to
A347

The contents of these words indicate the sta-
tus of data file transfers.

When an FREAD(700) or FWRIT(701) instruc-
tion is executed, the number of words or fields
to be transferred is written to these words. The
value is decremented by 1 as each word or
field is transferred.
A346 contains the rightmost 16 bits and A347
contains the leftmost 16 bits of the 32-bit
binary value.

Name Address Operation

FREAD

C

S1

S2

D

A34313A34315
Execution
condition

Memory Card
Detected Flag

File Memory
Operation Flag
1105

File Memory Instructions Section 3-26
3-26-3 WRITE DATA FILE: FWRIT(701)
Purpose Overwrites or appends data in the specified data file in file memory with the

specified data from the data area in the CPU Unit. If the specified file does not
exist, a new file is created with that filename. Data can be written as binary,
text, or CSV format data.

Ladder Symbol

Variations

Applicable Program Areas

File \ABC\XYZ.IOM
CPU Unit

Wd 0

Ignored

Wd 5

Wd 14

File memory: Memory Card
Function: Read data

Number of words to read: 10 words

Starting word: Beginning of file+5 words

Directory name: \ABC

Filename: XYZ

+5 words
+10 words

FWRIT(701)

C

D1

D2

S

C: Control word

D1: First destination word

D2: Filename

S: First source word

Variations Executed Each Cycle for ON Condition FWRIT(701)

Executed Once for Upward Differentiation @FWRIT(701)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1106

File Memory Instructions Section 3-26
Operands C: Control Word
As shown in the following diagram, the third digit of the control word indicates
whether to append or overwrite data in the data file and the fourth digit indi-
cates whether the destination file is in the Memory Card or EM file memory.

Note 1. Each field will contain 1 word of I/O memory for the word data types and 2
words of I/O memory for the double-word data types.

2. With double-words, the first word of data is read from the higher memory
address, e.g., 12345678 would be written with 1234 from D00001 and
5678 from D00000.

3. If delimiting is specified, the specified of delimiter is added after every word
for word data types and after every two words for double-word data types.
(The code for a comma is added for comma-delimiting and the code for a
tab is added for tab-delimiting.)

4. If non-delimited words or double-words are specified, the data for all fields
is written continuously without any delimiters.

5. If carriage returns are specified, a carriage return will be added after each
set of the specified number of words. If no carriage returns is specified, the
data will be written continuously without carriage returns.

C

15 8 011 37 412

File memory specifier
0: Memory Card
1: EM file memory

Function specifier
0: Append
1: Overwrite

Carriage returns
0: No returns
8: Return every 10 fields*
9: Return every 1 field*
A: Return every 2 fields*
B: Return every 4 fields*
C: Return every 5 fields*
D: Return every 16 fields*

Data type
0: Binary (extension: .IOM, words/field: NA)
1: Non-delimited words (extension: .TXT, words/field: 1)*
2: Non-delimited double-words (extension: .TXT., words/field: 2)*
3: Comma-delimited words (extension: .CSV, words/field: 1)*
4: Comma-delimited double-words (extension: .CSV, words/field: 2)*
5: Tab-delimited words (extension: .TXT, words/field: 1)*
6: Tab-delimited double-words (extension: .,TXT words/field: 2)*

*: Cannot be set for CS-series CS1 CPU Units prior to V1@.
1107

File Memory Instructions Section 3-26
D1 and D1+1: Number of Write Items
The 8-digit hexadecimal value in D1 and D1+1 specifies how many words or
fields to write to file memory.

D1+2 and D1+3: First Destination Word
The 8-digit hexadecimal value in D1+2 and D1+3 specifies the starting write
word from the beginning of the file.

Note 1. D1+2 and D1+3 are used only when overwriting data, and only 1) For text
and CVS data with no carriage returns (i.e., bits 08 to 11 of C set to 0 hex)
or 2) for binary data. Always set D1+2 and D1+3 to 00000000 hex when
writing data with carriage returns (i.e., bits 08 to 11 of C set to between 8
and D hex).

2. D1 to D1+3 must be in the same data area.

3. If the specified starting word exceeds the number of words in the data file,
the File Write Error Flag (A34308) will be turned ON and the data will not
be written.

D2: Filename
D2 is the starting address of the words containing the absolute path and file-
name in ASCII. Use ASCII a to z, A to Z, and 0 to 9.

The full path name to the directory containing the data file can be up to 65
characters long, including the starting slash (ASCII 5C). The filename can be
up to 8 characters long, but null characters (ASCII 00) are not allowed in the
filename because the null character is used to mark the end of the character

Data type Bits 12 to 15 of C Contents of D1 and D1+1

Binary 0 hex (binary) Number of words to write from file
memory.
00000000 to 3FFFFFFF hex

Word 1 hex (non-delimited),
3 hex (comma-delimited), or
5 hex (tab-delimited)

Number of fields to write from file
memory, i.e., the number of words to
write from file memory.

00000000 to 1FFFFFFF hex

Double-word 2 hex (non-delimited),
4 hex (comma-delimited), or
6 hex (tab-delimited)

Number of fields to write from file
memory, i.e., half the number of words
to write from file memory.
00000000 to 0FFFFFFF hex

Data type Bits 12 to 15 of C Contents of D1+2 and D1+3

Binary 0 hex (binary) The word at which to begin writing
from the beginning of file memory.
00000000 to 3FFFFFFF hex

Word 1 hex (non-delimited),
3 hex (comma-delimited), or
5 hex (tab-delimited)

The field at which to begin writing from
the beginning of file memory, i.e., the
number of words from the beginning.

00000000 to 1FFFFFFF hex

Double-word 2 hex (non-delimited),
4 hex (comma-delimited), or
6 hex (tab-delimited)

The field at which to begin writing from
the beginning of file memory, i.e., half
the number of words from the begin-
ning.

00000000 to 0FFFFFFF hex

D1D1+1
D1+1 contains the leftmost 4 digits and
D1 contains the rightmost 4 digits.

D1+2D1+3
D1+3 contains the leftmost 4 digits and
D1+2 contains the rightmost 4 digits.
1108

File Memory Instructions Section 3-26
string. Do not include the filename extension; the .IOM, .TXT, or .CSV exten-
sion is added automatically.

Note 1. Be sure that the character string containing the pathname and filename
does not exceed the end of the data area.

2. If the specified directory does not exist, the File Missing Flag (A34311) will
be turned ON and the file data will not be written.

Write the pathname and filename in ASCII beginning with the leftmost byte of
D2, as shown in the following example for \ABC\XYZ.IOM. (The extension is
added automatically.)

For information on creating directories from the ladder program, refer to Sec-
tion 5 File Memory Functions in the SYSMAC CS/CJ Series Programmable
Controllers Programming Manual (W394).

S: First Source Word
S specifies the starting address containing the data that will be written to the
file memory. Data is read by absolute PLC memory addresses, so
FWRIT(701) will continue reading source data from the next data area if the
number of words being read exceeds the end of the data area specified in S.

Description During normal instruction processing, FWRIT(701) is used only to start writing
of the file memory. The instruction execution times given toward the end of
this manual are thus the times required to start writing, not to complete it.
Actual writing (transfer) is performed by the file access processing in periph-
eral servicing. Therefore, once FWRIT(701) has been executed, writing is
continuously executed even if the execution condition is OFF in following
cycles. When transfer has been completed, the File Memory Operation Flag
(A34313) will turn OFF. This flag can be used for exclusive control of file mem-
ory instructions.

The time required to complete data transfer for FWRIT(701) will depend on
the amount of data being transferred, the service time allocated to file access
processing, and other conditions. As a guideline, the transfer times for a cycle
time of 10 ms for a file in the root directory with the default service time set-
tings will be 1.97 s (new file) or 1.33 s (existing file) for 1,024 words and 6.64 s
(new file) or 6.12 s (existing file) for 9,999 words.

The source data is read from absolute internal memory addresses in RAM, so
the entire block of data will be read even if the data spans two or more data
areas. For example, if the first destination address is in the Work Area but the
amount of data exceeds the capacity of this area, FWRIT(701) will continue
reading data at the beginning of the next area (in this case, the Timer Area).
Refer to Appendix D in the CS/CJ-series Programmable Controllers Operation
Manual (W339) for a memory map showing the location of data areas in RAM.

When FWRIT(701) is executed, the number of words or fields specified in D1
and D1+1 is written to A346 and A347 (Number of Data to Transfer) and this
value is decremented by 1 as each word or field is transferred. The content of

F1 F2
D2+1

D2

F3 F4

D2+38 F73 F74

Store the character string beginning
with the leftmost byte in D2.
The entire pathname and filename can
be up to 74 characters (bytes) long,
including the initial slash character and
ending null character.

5C 41
42 43
5C 58

D2
D2+1
D2+2

 →

 →

D2
D2+1
D2+2

59 5A
00

'Z'
NUL

D2+3
D2+4

D2+3
D2+4

'A'

'X'
'C''B'

'Y'

'\ '

'\ '
1109

File Memory Instructions Section 3-26
these words can be checked to verify that the expected number of words or
fields were transferred.

Overwriting Data in an Existing File (Third Digit of C=1)
FWRIT(701) uses data area data starting at the word specified in S to over-
write file memory data in the specified data type. It overwrites the number of
words or fields specified in D1 and D1+1 in the file specified in D2 (with file-
name extension .IOM, .TXT, or .CVS) starting at the address specified in
D1+2 and D1+3.

Appending Data to an Existing File (Third Digit of C=0)
FWRIT(701) appends data area data starting at the word specified in S to a
data file in file memory in the specified data type. It appends the number of
words or field specified in D1 and D1+1 to the file specified in D2 (with file-
name extension .IOM, .TXT, or .CVS).

Creating a New File with Source Data
If the file specified in D2 does not exist, FWRIT(701) creates a new file with
that name and filename extension (.IOM, .TXT, or .CVS) and writes the speci-
fied source data in the specified data type starting at the beginning of the file.
In this case, it does not matter if appending to overwriting data is specified.

Operand Specifications

File specified in D2CPU Unit
Starting
address
specified
in S

Starting word
specified in
D1+2 and
D1+3

Number of
words specified
in D1 and D1+1

Overwrite

Memory Card or EM file memory
(Specified by the 1st digit of C.)

CPU Unit

Append

Starting
address
specified
in S

End of
file

Number of words
specified in D1
and D1+1

File specified in D2

Existing
data

Memory Card or EM file memory
(Specified by the 1st digit of C.)

CPU Unit New file created

Memory Card or EM file memory
(Specified by the 1st digit of C.)

Number of words
specified in D1
and D1+1

Starting
address
specified
in S

File speci-
fied in D2

Beginning
of file

Area C D1 D2 S

CIO Area CIO 0000 to
CIO 6143

CIO 0000 to
CIO 6140

CIO 0000 to CIO 6143

Work Area W000 to
W511

W000 to
W508

W000 to W511

Holding Bit Area H000 to H511 H000 to 508 H000 to H511
1110

File Memory Instructions Section 3-26
Flags

Auxiliary Bit Area A000 to A959 A000 to A444
A448 to A956

A000 to A447
A448 to A959

Timer Area T0000 to
T4095

T0000 to
T4092

T0000 to T4095

Counter Area C0000 to
C4095

C0000 to
C4092

C0000 to C4095

DM Area D00000 to
D32767

D00000 to
D32764

D00000 to D32767

EM Area without
bank

E00000 to
E32767

E00000 to
E32764

E00000 to E32767

EM Area with bank En_00000 to
En_32767
(n = 0 to C)

En_00000 to
En_32764
(n = 0 to C)

En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

– @D00000 to @D32767

@E00000 to @E32767
@En_00000 to @En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

– *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified val-
ues only

–

Data Registers –

Index Registers –

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area C D1 D2 S

Name Label Operation

Error Flag ER ON if the file memory type specified in C does not exist.
ON if the settings in C are not within the specified range.

ON if the filename specified in D2 does not satisfy the
required conditions.
ON if the File Memory Operation Flag was ON.

ON if a constant was not specified for C (only for CS-
series CS1 CPU Units prior to V1).
ON if data specified for D1 is out of range (all CPU Units
except for CS-series CS1 CPU Units prior to V1).
ON if an illegal area is specified for S.
With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.
OFF in all other cases.
1111

File Memory Instructions Section 3-26
The following table shows relevant flags in the Auxiliary Area.

Precautions The File Memory Operation Flag (A34313) is turned ON when FWRIT(701) is
executed. An error will occur and the instruction will not be executed if A34313
is already ON.

The File Write Impossible Flag (A34309) will be turned ON and the instruction
will not be executed if data could not be written because the file was write-pro-
tected or there was not enough free memory.

Name Address Operation

Memory Card Type A34300 to
A34302

Contains a binary number indicating the type
of Memory Card, if any, that is installed.
(0: None, 4: Flash ROM)

Memory Card Format
Error Flag

A34307 ON when the Memory Card is not formatted or
a formatting error has occurred.

File Write Error Flag A34308 ON when an error occurred when writing to the
file.

File Write Impossible
Flag

A34309 ON when the data could not be written
because the file was write-protected or there
was insufficient free memory.

No File Flag A34311 ON when the specified directory does not exist
when writing a file.

File Memory Operation
Flag

A34313 ON for any of the following:

The CPU Unit has sent a FINS command to
itself using CMND(490).
FREAD(700) or FWRIT(701) are being exe-
cuted.
The program is being overwritten using a con-
trol bit in memory.

A simple backup operation is being performed.

Accessing File Flag A34314 ON when file data is actually being accessed.
Use this flag as an execution condition to pre-
vent a file memory instruction from being exe-
cuted while another is in progress.

Memory Card Detected
Flag

A34315 ON when a Memory Card has been detected.

EM File Format Starting
Bank

A344 Contains the starting bank number of the EM
Area that has been formatted for use as EM
file memory. Contains FFFF when none of the
EM Area has been formatted.
To convert the EM Area for use as file memory,
the PLC Setup’s EM File Memory setting must
be set to 1 and the EM File Memory Starting
Bank (0 to C) must be set. All EM banks from
the starting bank to the last bank will then be
formatted for use as file memory.

EM File Memory For-
mat Error Flag

A34306 ON when there is a format error in the starting
bank of EM file memory.

Number of Data to
Transfer

A346 to
A347

The contents of these words indicate the sta-
tus of data file transfers.

When an FWRIT(701) instruction is executed,
the number of words or fields to be transferred
is written to these words. The value is decre-
mented by 1 as each word is transferred.
A346 contains the rightmost 16 bits and A347
contains the leftmost 16 bits of the 32-bit
binary value.
1112

File Memory Instructions Section 3-26
The File Write Error Flag (A34308) will be turned ON and the instruction will
not be executed if the specified file is not the correct data type or the file data
has been corrupted.

A few seconds is required for the CPU Unit to detect a Memory Card after it
has been inserted. If a Memory Card is going to be accessed soon after
power is turned ON or after a Memory Card is inserted, use the Memory Card
Detected Flag (A34315) in a NO input condition as shown below to be sure
that the Memory Card has been detected.

The source data words starting at S are accessed and read during the periph-
eral servicing after FWRIT(701) is executed. If the source data is changed
before the file memory write processing is completed, the changed data may
be written to the file.

3-26-4 WRITE TEXT FILE: TWRIT(704)
Purpose Reads ASCII data from I/O memory and stores that data in the Memory Card

as a text file (writing a new file or appending a file). The data is stored in the
TXT format.

This instruction is supported by CS/CJ-series CPU Units with unit version 4.0
or later only.

Ladder Symbol

Variations

Applicable Program Areas

Operand C: Control word

#0000: Append file.
#0001: Create new file or overwrite.

S1: Number of write bytes

Specifies the number of bytes to write in the range 0 to 255 decimal or 0000 to
00FF hexadecimal.

FWRIT

C

D1

D2

S

A34313A34315
Execution
condition

Memory Card
Detected Flag

File Memory
Operation Flag

C

S1

S2

S3

TWRIT

S4

C: Control word

S1: Number of bytes to write

S2: Directory and file name

S3: Write data

S4: Delimiter

Variations Executed Each Cycle for ON Condition TWRIT(704)

Executed Once for Upward Differentiation @TWRIT(704)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Function block
definitions

Block program
areas

Step program
areas

Subroutines Interrupt
tasks

OK OK OK OK OK
1113

File Memory Instructions Section 3-26
S2: First directory/filename word

Specifies the first word of the words containing the file’s directory path and
filename. Input the path and filename in ASCII text.

• Directory name:
The directory name can be 1 to 65 characters long. If the name is less
than 65 characters, do not pad with spaces. Specify the absolute path
from the root directory’s \ (#5C) character.

• Filename:
Filename identifier: The identifier can be 1 to 8 characters long. If the
name is less than 8 characters, do not pad with spaces. Add a NUL char-
acter (#00) at the end of the filename. (The NUL character is not included
as one of the 8 characters.)
Filename extension: None

• Separate the directory name and filename with a \ (#5C) delimiter.

Note The words containing the directory path and filename (starting at S2)
must be in the same data area.

S3: First write data word

Specifies the first word (I/O memory data area address) containing the data to
be written.

Note It is not necessary for all of the source words (starting at S3) to be in the same
data area. The data will be read in PLC memory address order and written as
a file.

S4: Delimiter character

Specifies the delimiter characters (up to 2 bytes) for the write data in ASCII. If
a delimiter is not required, specify #0000.

Up to 2 bytes can be specified. When 1 byte is being specified, set the right-
most byte to #00.

Typical delimiters (all hexadecimal):

#2C00: Comma (1 byte)
#0A00: Line feed (1 byte)
#0D0A: Carriage return/Line feed (2 bytes)
#0C00: New page (1 byte)
#0900: Tab (1 byte)

Operand Specifications

S2
S2+1

S2+38

S1+2
F1
F3
:

F73

F2
F4
:

F74

Store the character string beginning with the leftmost
byte in S2, in the order leftmost byte → rightmost byte
and lower word address → higher word address. The di-
rectory name and filename can be up to 74 bytes long,
including the NULL (00 Hex) at the end of the filename.

Area C S1 S2 S3 S4

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
1114

File Memory Instructions Section 3-26
Description TWRIT(704) writes the number of bytes of data specified in S1, starting from
the word specified in S3, to a text file (filename.TXT) in the Memory Card with
the filename specified in S2.

A delimiter can be specified in S4 and attached to the end of the text file. The
created text file can be referenced later with a text editor.

Creating a New File

Set C = 0001 and specify a new filename to create a new file.

Appending an Existing File

Set C = 0000 to append data to an existing file.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to
#0001

--- #0000 to
#FFFF

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to 1–2048 to +2047 ,IR5
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S1 S2 S3 S4

#3132

#3334

1234,

S4 #2C00
Specified text file

Write data

S3
S3+1

Characters: 12
Characters: 34

Delimiter
Comma

S3 #3536

S4 #2C00
56,

Specified text file

No fileWrite data

Characters: 56 Create new
file (C: &1)

Delimiter

Comma
1115

File Memory Instructions Section 3-26
Overwriting an Existing File

Set C = 0001 and specify an existing filename to overwrite an existing file.

Reference

During normal instruction execution processing, TWRIT(704) is used only to
start the writing of the file memory. The instruction execution times given
toward the end of this manual are thus the times required to start writing, not
to complete it.

Actual writing (transfer) is performed by the file access processing in periph-
eral servicing. Therefore, once TWRIT(704) has been executed, writing is
continuously executed even if the execution condition is OFF in following
cycles.

The time required to complete data transfer for TWRIT(704) will depend on
the amount of data being transferred, the service time allocated to file access
processing, and other conditions. As a guideline, if the cycle time is 10 ms and
the file is in the root directory, it will take about 440 ms (new file) or 260 ms
(existing file) to write 100 bytes, and about 450 ms (new file) or 270 ms s
(existing file) to write 255 bytes. These guideline values will vary widely
depending on the type of Memory Card being used and the number of files in
the Memory Card.

When transfer has been completed, the File Memory Operation Flag
(A34313) will turn OFF. This flag can be used for exclusive control of file mem-
ory instructions.

The source data is read from absolute PLC memory addresses in RAM, so
the entire block of data will be read even if the data spans two or more data
areas. For example, if the first source address is in the Work Area but the
amount of data exceeds the capacity of this area, TWRIT(704) will continue
reading data at the beginning of the next area (in this case, the Timer Area).
Refer to Appendix D in the CS/CJ-series Programmable Controllers Operation
Manual (W339) for a memory map showing the location of data areas in RAM.

When TWRIT(704) is executed, the “number of write bytes” specified in S1 is
written to A346 and A347 (Number of Data Items to Transfer) and this value is
decremented by 1 as each byte is transferred. The content of these words can
be checked to verify that the expected number of bytes were transferred.

S3 #3536

1234,

S4 #2C00
 1234,56,

Specified text file

Write data

Characters: 56 Append file
(C: &0)

Delimiter
Comma

S3 #3536

1234,

S4 #2C00

56,

Specified text file
Write data

Characters: 56
Overwrite
(C: &1)Delimiter

Comma
1116

File Memory Instructions Section 3-26
Data Format Store the data in the I/O memory area in order from leftmost byte → rightmost
byte and lower word address → higher word address, starting from the left-
most byte of S3.

Directory Name and
Filename (S2)

• Specify the directory name as the absolute path from the root directory (\).
The root directory’s \ (#5C) delimiter must be entered. The directory name
can be up to 65 characters long. If there are fewer than 65 characters, it is
not necessary to add spaces after the directory name. Use \ (#5C) delim-
iters to separate directory levels. The allowed characters are “a to z”, “A to
Z”, and “0 to 9”, in ASCII.

• Set the filename as 1 to 8 ASCII characters, using only the “a to z”, “A to
Z”, and “0 to 9” characters. If there are fewer than 8 characters, it is not
necessary to add spaces after the filename. Always insert an NULL (#00)
character after the filename.

• The filename extension is fixed to “.TXT”, so it is not specified.

• Store the directory name and filename in ASCII and in order from leftmost
byte → rightmost byte and lower word address → higher word address,
starting from the leftmost byte of S2.

• If the specified directory does not exist, the No File Flag (A34311) will be
turned ON and the file will not be overwritten.

Example: Writing to Directory \ABC and Filename XYZ

Flags

The following table shows relevant flags in the Auxiliary Area.

S3 #3132

#3334 S3+1

#3536

#3738

S3+2

S3+3

When Writing the String 12345678

Characters: 12

Characters: 34

Characters: 56

Characters: 78

41
43
5B
5A

5C
42
5C
59
00

Saved in ASCII.
S2

S2+1
S2+2
S2+3
S2+4

'\ '
'B'
'\ '
'Y'

NUL

'A'
'C'
'Y'
'Z'

S2
S2+1
S2+2
S2+3
S2+4

Name Label Operation

Error Flag ER ON if there is no Memory Card.

ON if C is not within the specified range of 0000 or 0001.
ON if the filename specified at S2 does not meet the
required conditions.

ON if the File Memory Operation Flag is ON.
ON if the data area specified for S3 is an invalid area.
With the CS1D CPU Units: ON if the active and standby
CPU Units could not be synchronized.
OFF in all other cases.

Name Label Operation

Memory Card Format
Error Flag

A34307 ON when the Memory Card is not formatted
or a formatting error has occurred.

File Write Error Flag A34308 ON when an error occurred when writing to
the file.

File Write Impossible
Flag

A34309 ON when the data could not be written
because the file was write-protected or
there was insufficient free memory.
1117

File Memory Instructions Section 3-26
Note When another file memory related operation (file memory format, file copy, file
delete, etc.) is executed from the ladder program, send the file memory
related FINS command to the local CPU Unit with a CMND(490) instruction.
For details, refer to Section 5 File Memory Functions in the SYSMAC CS/CJ
Series Programmable Controllers Programming Manual (W394).

Precautions The File Memory Operation Flag (A34313) is turned ON when TWRIT(704) is
executed. An error will occur and the instruction will not be executed if A34313
is already ON.

The File Write Impossible Flag (A34309) will be turned ON and the instruction
will not be executed if data could not be written because the file was write-pro-
tected or there was not enough free memory.

A few seconds is required for the CPU Unit to detect a Memory Card after it
has been inserted. If a Memory Card is going to be accessed soon after
power is turned ON or after a Memory Card is inserted, use the Memory Card
Detected Flag (A34315) in a NO input condition as shown in the example
below to be sure that the Memory Card has been detected.

Example This example records the daily production total (number of units produced) in
D00100 and D00101 in 8-digit hexadecimal. Every day at 23:00, the program
converts the daily production total to BCD format and appends the file
LOG.TXT in the Memory Card’s root directory.

No File Flag A34311 ON when the specified directory does not
exist when writing a file.

File Memory Operation
Flag

A34313 ON for any of the following, otherwise OFF:
• The CPU Unit has sent a command to

itself using CMND(490).
• FREAD(700), FWRIT(701), or

TWRIT(704) is being executed.
• The program is being overwritten using a

control bit in memory.
• A simple backup operation is being per-

formed.

Accessing File Flag A34314 ON when file data is actually being
accessed.

Memory Card Detected
Flag

A34315 ON when a Memory Card has been
detected.

OFF when a Memory Card could not be
detected.

Number of Data Items to
Transfer

A346 and
A347

The contents of these words indicate the
status of data file transfers.
When an file write instruction is executed,
the number of bytes to be transferred is writ-
ten to these words. The value is decre-
mented by 1 as each byte is transferred.
A346 contains the rightmost 16 bits and
A347 contains the leftmost 16 bits of the 32-
bit binary value.

Name Label Operation
1118

Display Instructions: DISPLAY MESSAGE: MSG(046) Section 3-27
3-27 Display Instructions: DISPLAY MESSAGE: MSG(046)
Purpose Reads the specified sixteen words of extended ASCII and displays the mes-

sage on a Peripheral Device such as a Programming Console.

Ladder Symbol

Variations

D304

D305

D306

D307

060329 00200000
060330 00010000
060331 00012345

W1.0

UP KEEP
W1.0

W1.1

STR4
A353
D300

Always ON Flag

Stores the ASCII data as a text file.

Output file: LOG.TXT

A34315 A34313

=
W0

#0023

ANDW
A352

#00FF
W0

STR4
A352
D302

Current date converted
to ASCII

MOV
#2020
D303

BCDL
D100
W100

STR8
W100
D304

MOV
#5C4C
D200

MOV
#4F47
D201

MOV
#0000
D202

TWRIT
#1

&16
D200
D300

#0D0A

D100, D101

W100, W101

Puts 2 spaces between
the date and data.

Converts the
day’s production
total to BCD.

Converts the day’s
BCD production
total to ASCII.

Directory: Root
Filename: LOG

Daily production total

&12345 dec

#000012345 BCD

#3030 hex

#3031 hex

#3233 hex

#3435 hex

MSG(046)

N

M

N: Message number

M: First message word

Variations Executed Each Cycle for ON Condition MSG(046)

Executed Once for Upward Differentiation @MSG(046)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
1119

Display Instructions: DISPLAY MESSAGE: MSG(046) Section 3-27
Applicable Program Areas

Operands N: Message number
The message number must be 0000 to 0007 hexadecimal (or 0 to 7 decimal).

M: First message word
When displaying a message, M specifies the address of the first of the words
containing the ASCII message. When clearing a message, M can be any
hexadecimal constant (0000 through FFFF).

Operand Specifications

Description When the execution condition is ON, MSG(046) registers the 16 words of
ASCII data (up to 32 characters including the null character) from M to M+15
for the message number specified by N. Once a message has been regis-
tered, a Programming Console can be connected and the message will be
displayed after any error messages that have been generated.

After a message has been registered, the message display can be changed
by overwriting the message in the message storage area.

To clear a message that has been registered, execute MSG(046) with S set to
the message number of the message you want to clear and N set to a con-
stant (0000 to FFFF).

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N M

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #0007 (binary) or
&0 to &7

#0000 to #FFFF (binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1120

Display Instructions: DISPLAY MESSAGE: MSG(046) Section 3-27
A message registered during program execution will be retained even if pro-
gram execution is stopped, but all messages will be cleared when the pro-
gram is executed again.

Note Refer to Appendix A in the CS/CJ-series Programming Consoles Operation
Manual (W341) for a table showing extended ASCII.

Flags

Precautions Registered messages are updated each time MSG(046) is executed.

All message characters after the null character (00) are converted to spaces
in the Programming Console display.

The character stored in the leftmost byte is displayed before the character in
the rightmost byte.

An error will occur and the Error Flag will turn ON if N is not between 0 and 7.

Examples The following diagram shows how 16 words of hexadecimal data are con-
verted to a message displayed on the Programming Console.

When CIO 000000 turns ON in the following example, the 16 words of data in
D00100 through D00115 are read as the 32 characters of ASCII data for mes-
sage number 7 and displayed at the Peripheral device.

Name Label Operation

Error Flag ER ON if the content of S is not 0000 to 0007 hexadecimal.
OFF in all other cases.

N+1

N

N+2

N+15

A B C D E F

MSG

4

4

4

B 16 characters × 2 lines

Programming Console display

16 words
(32 characters)

M: 4D 41

54 45

52 49

41 4C

20 53
48 4F

52 54

MSG
MATERIAL SHORT

D00107

D00115

N

M

Spaces

16 characters × 2 lines max.
Reads ASCII
data up to 00.

Leave out spaces.
(Values ignored)
1121

Clock Instructions Section 3-28
ASCII

3-28 Clock Instructions
This section describes instructions used with the system clock.

3-28-1 CALENDAR ADD: CADD(730)
Purpose Adds time to the calendar data in the specified words.

Ladder Symbol

Variations

Applicable Program Areas

SP

Four leftmost bits

F
ou

r
rig

ht
m

os
t b

its

Instruction Mnemonic Function code Page

CALENDAR ADD CADD 730 1122

CALENDAR SUBTRACT CSUB 731 1126

HOURS TO SECONDS SEC 065 1129

SECONDS TO HOURS HMS 066 1131

CLOCK ADJUSTMENT DATE 735 1134

CADD(730)

C

T

R

C: First calendar word

T: First time word

R: First result word

Variations Executed Each Cycle for ON Condition CADD(730)

Executed Once for Upward Differentiation @CADD(730)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1122

Clock Instructions Section 3-28
Operands C through C+2: Calendar Data
Set the calendar data in C through C+2 as shown in the following diagram.
C through C+2 must be in the same data area.

T and T+1: Time Data
Set the time data in T and T+1 as shown in the following diagram. T and T+1
must be in the same data area.

15 8 07

C

15 8 07
C+1

15 8 07

C+2

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Day: 01 to 31 (BCD)

15 8 07

T

15 0

T+1

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)
1123

Clock Instructions Section 3-28
R through R+2: Result Data
R through R+2 contain the result of the addition. R through R+2 must be in the
same data area.

Operand Specifications

15 8 07

R

15 8 07

R+1

15 8 07

R+2

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Area C T R

CIO Area CIO 0000 to
CIO 6141

CIO 0000 to
CIO 6142

CIO 0000 to
CIO 6141

Work Area W000 to W509 W000 to W510 W000 to W509

Holding Bit Area H000 to H509 H000 to H510 H000 to H509

Auxiliary Bit Area A000 to A957 A000 to A958 A448 to A957

Timer Area T0000 to T4093 T0000 to T4094 T0000 to T4093

Counter Area C0000 to C4093 C0000 to C4094 C0000 to C4093

DM Area D00000 to
D32765

D00000 to
D32766

D00000 to
D32765

EM Area without bank E00000 to
E32765

E00000 to
E32766

E00000 to
E32765

EM Area with bank En_00000 to
En_32765
(n = 0 to C)

En_00000 to
En_32766
(n = 0 to C)

En_00000 to
3En_2765
(n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- Specified values
only

Data Registers ---
1124

Clock Instructions Section 3-28
Description CADD(730) adds the calendar data (words C through C+2) to the time data
(words T and T+1) and outputs the resulting calendar data to R through R+2.

Flags

Examples When CIO 000000 turns ON in the following example, the calendar data in
D00100 through D00102 (year, month, day, hour, minutes, seconds) is added
to the time data in D00200 and D00201 (hours, minutes, seconds) and the
result is output to D00300 through D00302.

Index Registers –

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR005+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C T R

C+1
C

C+2

T+1
T

R+1
R

R+2

Minutes Seconds
Day Hour
Year Month

Minutes Seconds

Minutes Seconds

Day Hour
Year Month

Hours

Name Label Operation

Error Flag ER ON if the calendar data in C through C+2 is not within the
specified ranges.
ON if the time data in T and T+1 is not within the specified
ranges.

OFF in all other cases.

18:30:20

18:40:35

C:

T:

R:

99 12

06 00

04 18
00 01

C

T

R 10 December, 1999

10 minutes, 15 seconds
600 hours

4 January, 2000
1125

Clock Instructions Section 3-28
3-28-2 CALENDAR SUBTRACT: CSUB(731)
Purpose Subtracts time from the calendar data in the specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operands C through C+2: Calendar Data
Set the calendar data in C through C+2 as shown in the following diagram.
C through C+2 must be in the same data area.

CSUB(731)

C

T

R

C: First calendar word

T: First time word

R: First result word

Variations Executed Each Cycle for ON Condition CSUB(731)

Executed Once for Upward Differentiation @CSUB(731)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

15 8 07
C+1

15 8 07

C+2

Minutes: 00 to 59 (BCD)

Seconds: 00 to 59 (BCD)

Day: 01 to 31 (BCD)

Hour: 00 to 23 (BCD)

Year: 00 to 99 (BCD)

Month: 01 to 12 (BCD)
1126

Clock Instructions Section 3-28
T and T+1: Time Data
Set the time data in T and T+1 as shown in the following diagram. T and T+1
must be in the same data area.

R through R+2: Result Data
R through R+2 contain the result of the addition. R through R+2 must be in the
same data area.

Operand Specifications

15 8 07

T

15 0

T+1

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)

15 8 07

R

15 8 07

R+1

15 8 07

R+2

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Area C T R

CIO Area CIO 0000 to
CIO 6141

CIO 0000 to
CIO 6142

CIO 0000 to
CIO 6141

Work Area W000 to W509 W000 to W510 W000 to W509

Holding Bit Area H000 to H509 H000 to H510 H000 to H509

Auxiliary Bit Area A000 to A957 A000 to A958 A448 to A957

Timer Area T0000 to T4093 T0000 to T4094 T0000 to T4093

Counter Area C0000 to C4093 C0000 to C4094 C0000 to C4093

DM Area D00000 to
D32765

D00000 to
D32766

D00000 to
D32765
1127

Clock Instructions Section 3-28
Description CSUB(731) subtracts the time data (words T and T+1) from the calendar data
(words C through C+2) to and outputs the resulting calendar data to R
through R+2.

Flags

Examples When CIO 000000 turns ON in the following example, the time data in
D00200 and D00201 (hours, minutes, seconds) is subtracted from the calen-
dar data in D00100 through D00102 (year, month, day, hour, minutes, sec-
onds) and the result is output to D00300 through D00302.

EM Area without bank E00000 to
E32765

E00000 to
E32766

E00000 to
E32765

EM Area with bank En_00000 to
En_32765

(n = 0 to C)

En_00000 to
En_32766

(n = 0 to C)

En_00000 to
3En_2765

(n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767

@En_00000 to @En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- Specified values
only

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR005+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C T R

C+1
C

C+2

T+1
T

R+1
R

R+2

Hours

Minutes Seconds

Minutes Seconds

Day Hour
Year Month

Minutes Seconds
Day Hour
Year Month

Name Label Operation

Error Flag ER ON if the calendar data in C through C+2 is not within the
specified ranges.

ON if the time data in T and T+1 is not within the specified
ranges.
OFF in all other cases.
1128

Clock Instructions Section 3-28
3-28-3 HOURS TO SECONDS: SEC(065)
Purpose Converts time data in hours/minutes/seconds format to an equivalent time in

seconds only.

Ladder Symbol

Variations

Applicable Program Areas

Operands S and S+1: Source Data
Set the hours/minutes/seconds source data in S and S+1, as shown in the fol-
lowing diagram. S and S+1 must be in the same data area.

C:

T:

R:

18:30:20

16:20:05

C

T
R

10 July, 1998

50 hours, 10 minutes, 15 seconds

8 July, 1998

SEC(065)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition SEC(065)

Executed Once for Upward Differentiation @SEC(065)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

S

15

S+1
0

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)
1129

Clock Instructions Section 3-28
D and D+1: Result Data
D and D+1 contain the result data in seconds-only format. D and D+1 must be
in the same data area.

Operand Specifications

15 0

D

15 0

D+1

Rightmost 4 digits
Seconds: 0000 to 9999 (BCD)

Leftmost 4 digits
Seconds: 0000 to 3599 (BCD)

Area S D

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values only ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
1130

Clock Instructions Section 3-28
Description SEC(065) converts the 8-digit BCD hours/minutes/seconds data in S and S+1
to 8-digit BCD seconds-only data and outputs the result to D and D+1.

Flags

Precautions The maximum value for the source data is 9,999 hours, 59 minutes, and 59
seconds (35,999,999 seconds).

Examples When CIO 000000 turns ON in the following example, the hours/minutes/sec-
onds data in D00200 and D00201 (34 hours, 17 minutes, and 36 seconds) is
converted to seconds-only data and the result is output to D00100 and
D00101.

3-28-4 SECONDS TO HOURS: HMS(066)
Purpose Converts seconds data to an equivalent time in hours/minutes/seconds for-

mat.

Ladder Symbol

Variations

Hours

Seconds

Minutes Seconds

Name Label Operation

Error Flag ER ON if the minutes data in S (bits 08 to 15) is not BCD and in
the range 00 to 59.

ON if the seconds data in S (bits 00 to 07) is not BCD and in
the range 00 to 59.
OFF in all other cases.

Equals Flag = ON if the content of D is 0000 after the operation.
OFF in all other cases.

seconds

17 minutes, 36 seconds
34 hours

Hours/minutes/seconds

123,456 seconds

→

HMS(066)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition HMS(066)

Executed Once for Upward Differentiation @HMS(066)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
1131

Clock Instructions Section 3-28
Applicable Program Areas

Operands S and S+1: Source Data
Set the seconds source data in S and S+1, as shown in the following diagram.
S and S+1 must be in the same data area.

D and D+1: Result Data
D and D+1 contain the result data in hours/minutes/seconds format. D and
D+1 must be in the same data area.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 6142

Work Area W000 to W510

Holding Bit Area H000 to H510

Auxiliary Bit Area A000 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D00000 to D32766

EM Area without bank E00000 to E32766

EM Area with bank En_00000 to En_32766
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

15 0

S

15 0

S+1

Rightmost 4 digits
Seconds: 0000 to 9999 (BCD)

Leftmost 4 digits
Seconds: 0000 to 3599 (BCD)

15 8 07

D

15 0

D+1

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)
1132

Clock Instructions Section 3-28
Description HMS(066) converts the 8-digit BCD seconds-only data in S and S+1 to 8-digit
BCD hours/minutes/seconds data and outputs the result to D and D+1.

Flags

Precautions The maximum value for the source data is 35,999,999 seconds (9,999 hours,
59 minutes, and 59 seconds).

Examples When CIO 000000 turns ON in the following example, the seconds data in
D00100 and D00101 (123,456 seconds) is converted to hours/minutes/sec-
onds data and the result is output to D00200 and D00201.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants 00000000 to 35999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

Seconds

Hours
Minutes Seconds

Name Label Operation

Error Flag ER ON if the seconds data in S and S+1 is not BCD and in the
range 0 to 35,999,999.

OFF in all other cases.

Equals Flag = ON if the content of D is 0000 after the operation.
OFF in all other cases.

S:

D:

123,456 seconds

 Hours/minutes/secondsSeconds

17 minutes, 36 seconds
34 hours

→

1133

Clock Instructions Section 3-28
3-28-5 CLOCK ADJUSTMENT: DATE(735)
Purpose Changes the internal clock setting to the setting in the specified source words.

Note The internal clock setting can also be changed from a Peripheral Device or
the CLOCK WRITE FINS command (0702).

Ladder Symbol

Variations

Applicable Program Areas

Operands S through S+3: New Clock Setting
Set the new clock setting in S through S+3 as shown in the following diagram.
S through S+3 must be in the same data area.

S

DATE(735)

S: First source word

Variations Executed Each Cycle for ON Condition DATE(735)

Executed Once for Upward Differentiation @DATE(735)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

S

15 8 07

S+1

15 8 07

S+2

15 8 07

S+3

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Always set to 00.

Day of the week: 00 = Sunday
01 = Monday
02 = Tuesday
03 = Wednesday
04 = Thursday
05 = Friday
06 = Saturday
1134

Clock Instructions Section 3-28
The following table shows the structure of the Calendar/Clock Area.

Operand Specifications

Description DATE(735) changes the internal clock setting according to the clock data in
the four source words. The new internal clock setting is immediately reflected
in the Calendar/Clock Area (A351 to A354).

Addresses Contents

A35100 to A35107 Second (00 to 59, BCD)

A35108 to A35115 Minute (00 to 59, BCD)

A35200 to A35207 Hour (00 to 23, BCD)

A35208 to A35215 Day of month (01 to 31, BCD)

A35300 to A35307 Month (01 to 12, BCD)

A35308 to A35315 Year (00 to 99, BCD)

A35400 to A35407 Day of week (00 to 06 = Sunday to Saturday, hexadecimal)

A35408 to A35415 Always set to 00.

Area S

CIO Area CIO 0000 to CIO 6140

Work Area W000 to W508

Holding Bit Area H000 to H508

Auxiliary Bit Area A000 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D00000 to D32764

EM Area without bank E00000 to E32764

EM Area with bank En_00000 to En_32764

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

00

CPU Unit

Internal clock

New setting

Day of week

Minutes Seconds

Day Hour
Year Month
1135

Debugging Instructions Section 3-29
Flags

Precautions An error will not be generated even if the internal clock is set to a non-existent
date (such as November 31).

Examples When CIO 000000 turns ON in the following example, the internal clock is set
to 20:15:30 on Thursday, October 9, 1998.

3-29 Debugging Instructions

3-29-1 Trace Memory Sampling: TRSM(045)
Purpose When TRSM(045) is executed, the status of a preselected bit or word is sam-

pled and stored in Trace Memory. TRSM(045) can be used anywhere in the
program, any number of times.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if the new clock setting in S through S+3 is not within
the specified range.
OFF in all other cases.

S:

Second

Hour

Minute

Day of
the month

Year Month

Always
set to
00.

Day of the week

TRSM(045)

Variations Executed Each Cycle TRSM(045)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1136

Debugging Instructions Section 3-29
Description Before TRSM(045) is executed, the bit or word to be traced must be specified
with a Peripheral Device. Each time that TRSM(045) is executed, the current
value of the specified bit or word is sampled and recorded in order in Trace
Memory. The trace ends when the Trace Memory is full. The contents of Trace
Memory can be monitored from a Peripheral Device when necessary.

This instruction only indicates when the specified data will be sampled. All
other settings and data trace operations are set with a Peripheral Device. The
other two ways to control data sampling are sampling at the end of each cycle
and sampling at a specified interval (independent of the cycle time).

TRSM(045) does not require an execution condition and is always executed
as if it had an ON execution condition. Connect TRSM(045) directly to the left
bus bar.

Use TRSM(045) to sample the value of the specified bit or word at the point in
the program when the instruction’s execution condition is ON. If the instruc-
tion’s execution condition is ON every cycle, the specified bit or word’s value
will be stored in Trace Memory every cycle.

It is possible to incorporate two or more TRSM(045) instructions in a program.
In this case, the value of the same specified bit or word will be stored in Trace
Memory each time that one of the TRSM(045) instructions is executed.

Note Refer to the Peripheral Device’s Operation Manual for details on data tracing.

Tracing ends when
Trace Memory is full.

Trace Memory

Data sampling

Specified bit or word

PC data area
TRSM(045) executed.

Use a Peripheral Device to specify
which address will be traced.

Data from
address m is
stored in
Trace
Memory.

Data from
address m is
stored in
Trace
Memory.

Data stored every cycle.

Trace Memory
1137

Debugging Instructions Section 3-29
The data-tracing operations performed with the Peripheral Device are summa-
rized in the following list.

1,2,3... 1. Set the following parameters with the Peripheral Device.

a) Set the address of the bit or word to be traced.

b) Set the trigger condition. One of the three following conditions can con-
trol when data stored into Trace Memory is valid.
i) The Trace Start Bit goes from OFF to ON.
ii) A specified bit goes from OFF to ON.
iii) The value of a specified word matches the set value.

c) Set the sampling interval to “TRSM” for sampling at the execution of
TRSM(045) in the program.

d) Set the delay.

2. When the Sampling Start Bit is turned from OFF to ON with the Peripheral
Device, the specified data will begin being sampled each time that
TRSM(045) is executed and the sampled data will be stored in Trace Mem-
ory. The Trace Busy Flag (A50813) will be turned ON at the same time.

3. When the trigger condition (Trace Start Bit ON, specified bit ON, or value
of specified word matching set value) is met, the sampled data will be valid
beginning with the next sample plus or minus the number of samples set
with the delay setting. The Trace Trigger Monitor Flag (A50811) will be
turned ON at the same time.

4. The trace will end when TRSM(045) has been executed enough times to
fill the Trace Memory. When the trace ends, the Trace Completed Flag
(A50812) will be turned ON and the Trace Busy Flag (A50813) will be
turned OFF.

5. Read the contents of Trace Memory with the Peripheral Device.

The following table shows relevant bits and flags in the Auxiliary Area. Only
A50814 and A50815 are meant to be controlled by the user, and A00815 must
not be turned ON from the program, i.e., it must be turned ON only from a
Peripheral Device.

Name Address Operation

Trace Trigger Monitor
Flag

A50811 This flag is turned ON when the trigger condition
has been established with the Trace Start Bit. It is
turned OFF when sampling is started for the next
trace (by the Sampling Start Bit).

Trace Completed
Flag

A50812 This flag is turned ON when trace samples have
filled the Trace Memory. It is turned OFF the next
time that the Sampling Start Bit goes from OFF to
ON.

Trace Busy Flag A50813 This flag is turned ON when the Sampling Start
Bit goes from OFF to ON. It is turned OFF when
the trace is completed.
1138

Debugging Instructions Section 3-29
Precautions TRSM(045) is processed as NOP(000) when data tracing is not being per-
formed or when the sampling interval set in the parameters with a Peripheral
Device is not set to sample on TRSM(045) instruction execution.

Do not turn the Sampling Start Bit (A50815) ON or OFF from the program.
This bit must be turned ON and OFF from a Peripheral Device.

Example The following example shows the overall data trace operation.

Note Trace Memory has a ring structure. Data is stored to the end of the Trace
Memory area and then wraps to the beginning of the area, ending just before
the first valid data sample.

Trace Start Bit A50814 The trace trigger conditions are established when
this bit is turned from OFF to ON. Samples will be
recorded after the specified delay (positive delay)
or the specified number of existing samples will
be valid (negative delay).

Sampling Start Bit A50815 When this bit is turned from OFF to ON from a
Peripheral Device, data samples will start being
stored in Trace Memory with one of the following
three methods used to determine sampling:
1) Periodic sampling (10 to 2,550 ms intervals)
2) Sampling at TRSM(045) execution
3) Sampling at the end of each cycle
This bit must be turned ON and OFF from a
Peripheral Device.

Name Address Operation

Sampling

Operated from Peripheral Device
(Sampling Start Bit: A50815)

Trace Start Bit: A50814

Trace Busy Flag: A50813

Trace Completed Flag: A50812

Trace Trigger Monitor Flag: A50811

Example: word data

Trace Memory

See note.

Valid from here on

Delay
setting

Valid
samples Trace ends when

Trace Memory is full.

: Execution of TRSM(045)
1139

Failure Diagnosis Instructions Section 3-30
3-30 Failure Diagnosis Instructions
This section describes instructions used to define and handle errors.

3-30-1 FAILURE ALARM: FAL(006)
Purpose Generates or clears user-defined non-fatal errors. Non-fatal errors do not stop

PLC operation.
With CS1-H, CJ1-H, and CJ1M CPU Units, FAL(006) can also be used to
generate non-fatal system errors.

Ladder Symbol • Generating or Clearing User-defined Non-fatal Errors

• Generating Non-fatal System Errors (CS1-H, CJ1-H, CJ1M, or CS1D
Only)

Variations

Applicable Program Areas

Operands The function of the operands when FAL(006) is used to generate/clear user
defined errors is slightly different from the function when FAL(006) is used to
generate system errors (CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only).

Instruction Mnemonic Function code Page

FAILURE ALARM FAL 006 1140

SEVERE FAILURE ALARM FALS 007 1148

FAILURE POINT DETECTION FPD 269 1156

N

S

FAL(006)

N: FAL number

S: First message word or
constant (0000 to FFFF)

N

S

FAL(006)

N: FAL number (value in A529)

S: First word containing the
error code and error details

Variations Executed Each Cycle for ON Condition FAL(006)

Executed Once for Upward Differentiation @FAL(006)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1140

Failure Diagnosis Instructions Section 3-30
Generating or Clearing User-defined Non-fatal Errors

The following table shows the function of the operands.

Note The value of operand N must be different from the content of A529
(the system-generated FAL/FALS number).

Note *Other settings would be constants #0200 through #FFFE or a word address.

Generating Non-fatal System Errors (CS1-H, CJ1-H, CJ1M, or CS1D Only)

The following table shows the function of the operands.

Note The value of operand N must be the same as the content of A529
(the system-generated FAL/FALS number).

Operand Specifications

N S Function

0 #0001 to #01FF Clears the non-fatal error with the correspond-
ing FAL number.

#FFFF Clears all non-fatal errors.

Other* Clears the most serious non-fatal error.

1 to 511
(These FAL num-
bers are shared
with FALS num-
bers.)

#0000 to #FFFF Generates a non-fatal error with the corre-
sponding FAL number (no message).

Word address Generates a non-fatal error with the corre-
sponding FAL number.
The 16-character ASCII message contained in
S through S+7 will be displayed on the Pro-
gramming Device.

Operand Function

N 1 to 511 (These FAL numbers are shared with FALS numbers.)

S Error code that will be generated. (See Description below.)

S+1 Error details code that will be generated. (See Description below.)

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants 0 to 511 #0000 to #FFFF
(binary)

Data Registers ---
1141

Failure Diagnosis Instructions Section 3-30
Description The operation of FAL(006) depends on the value of N. Set N to 0000 to clear
an error and set N to 0001 to 01FF to generate an error. A system error will be
generated if the value of N equals the content of A529 (CS1-H, CJ1-H, CJ1M,
and CS1D CPU Units only).

Generating Non-fatal User-defined Errors

When FAL(006) is executed with N set to an FAL number (&1 to &511) that is
not equal to the content of A529 (the system-generated FAL/FALS number), a
non-fatal error will be generated with that FAL number and the following pro-
cessing will be performed:

1,2,3... 1. The FAL Error Flag (A40215) will be turned ON. (PLC operation will con-
tinue.)

2. The Executed FAL Number Flag will be turned ON for the corresponding
FAL number. Flags A36001 to A39115 correspond to FAL numbers 0001
to 01FF (1 to 511).

3. The error code will be written to A400. Error codes 4101 to 42FF corre-
spond to FAL numbers 0001 to 01FF (1 to 511).

Note If a fatal error or a more serious non-fatal error occurs at the same
time as the FAL(006) instruction, the more serious error’s error code
will be written to A400.

4. The error code and the time that the error occurred will be written to the
Error Log Area (A100 through A199).

Note The error record will not be written to the Error Log Area if the Don’t
register FAL to error log Option in the PLC Setup is selected. (This
option is supported only by the CS1-H, CCJ1-H, CJ1M, and CS1D
CPU Units.)

5. The ERR Indicator on the CPU Unit will flash.

6. If a word address has been specified in S, the message beginning at S will
be registered (displayed on the Programming Device).

The following table shows the error codes and FAL Error Flags for FAL(006).

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N S

FAL number FAL error codes Executed FAL Number Flags

1 to 511 decimal 4101 to 42FF A36001 to A39115

FAL Error Flag ON
Corresponding Executed FAL Number Flag ON
Error code written to A400

Error code and time written to Error Log Area

ERR Indicator flashes

Message displayed on
Programming Console

Execution of
FAL(006)
generates a
non-fatal er-
ror with FAL
number N.
1142

Failure Diagnosis Instructions Section 3-30
Displaying Messages with Non-fatal User-defined Errors

If S is a word address and an ASCII message has been stored at S, that mes-
sage will be displayed at the Peripheral Device when FAL(006) is executed. (If
a message is not required, set S to a constant.)

The message beginning at S will be registered when FAL(006) is executed.
Once the message is registered, it will be displayed when a Programming
Console is connected.

An ASCII message up to 16 characters long can be stored in S through S+7.
The leftmost (most significant) byte in each word is displayed first.

The end code for the message is the null character (00 hexadecimal). All 16
characters in words S to S+7 will be displayed if the null character is omitted.

If the contents of the words containing the message are changed after
FAL(006) is executed, the message will change accordingly.

Generating Non-fatal System Errors (CS1-H, CJ1-H, CJ1M, or CS1D Only)

When FAL(006) is executed with N set to an FAL number (&1 to &511) that is
equal to the content of A529 (the system-generated FAL/FALS number), a
non-fatal error will be generated with the error code and error details code
specified in S and S+1. The following processing will be performed at the
same time:

1,2,3... 1. The specified error code will be written to A400.

2. The error code and the time that the error occurred will be written to the
Error Log Area (A100 through A199).

3. The appropriate Auxiliary Area Flags are set based on the error code and
error details.

4. The ERR Indicator on the CPU Unit will flash and PLC operation will con-
tinue.

5. The non-fatal error message for the specified system error will be dis-
played on the Programming Console.

Note 1. FAL(006) can be used to generate non-fatal errors from the system when
debugging the program. For example, a system error can be generated in-
tentionally to check whether or not error messages are being displayed
properly at an interface such as a Programmable Terminal (PT).

2. The value of A529 (the system-generated FAL/FALS number) is a dummy
FAL number (FAL, FALS, and FPD numbers are shared.) used when a
non-fatal error is generated intentionally by the system. This number is a
dummy FAL number, so it does not change the status of the Executed FAL
Number Flags (A36001 to A39115) or the error code.
When it is necessary to generate two or more system errors (fatal and/or
non-fatal errors), different errors can be generated by executing the FAL/

FAL

N

S

NA529CH

S
S+1

Execution of FAL(006)
generates a non-fatal
system error with the
error code/details
specified in S and
S+1.

Error code
Error details

Error code written to A400

Error code and time written to Error Log Area

The corresponding Auxiliary Area Flags are set
based on the error code and error details.

ERR Indicator flashes.

Message displayed on
Programming Console.

Matching
values
1143

Failure Diagnosis Instructions Section 3-30
FALS/FPD instructions more than once with the same values in A529 and
N, but different values in S and S+1.

3. If a more serious error (including a system-generated fatal error or
FALS(007) error) occurs at the same time as the FAL(006) instruction, the
more serious error’s error code will be written to A400.

4. To clear a system error generated by FAL(006), turn the PLC OFF and then
ON again. The PLC can be kept ON, but the same processing will be re-
quired to clear the error as if the specified error had actually occurred.

The following table shows how to specify error codes and error details in S
and S+1.

Disabling Error Log Entries of User-defined Errors (CS1-H, CJ1-H, CJ1M,
or CS1D Only)

Normally when FAL(006) generates a user-defined error, the error code and
the time that the error occurred are written to the Error Log Area (A100
through A199). It is possible to set the PLC Setup so that user-defined errors
generated by FAL(006) are not recorded in the Error Log.

Even though the error will not be recorded in the Error Log, the FAL Error Flag
(40215) will be turned ON, the corresponding flag in the Executed FAL Num-
ber Flags (A36001 to A39115) will be turned ON, and the error code will be
written to A400.

Disable Error Log entries for user-defined FAL(006) errors when you want to
record only the system-generated errors. For example, this function is useful
during debugging if the FAL(006) instructions are used in several applications
and the Error Log is becoming full of user-defined FAL(006) errors.

Error name S S+1

Interrupt Task Error 008B hex • Bit 15 OFF: Interrupt task error
Bits 00 to 14: Task number of interrupt task
where error occurred.

• Bit 15 ON: Interrupt task execution conflicted
with Special I/O Unit refreshing
Bits 00 to 14: Unit number of Special I/O Unit
with refreshing conflict

Basic I/O Error 009A hex Rack location of Unit where error occurred
• Bits 08 to 15: Rack number (binary) of Rack

where the affected Unit is mounted
• Bits 00 to 07: Slot number (binary) of slot

where the affected Unit is mounted

PLC Setup Error 009B hex PLC Setup Error Location

I/O Table Verification
Error

00E7 hex --- (not fixed)

Non-fatal Inner
Board Error

02F0 hex Inner Board Error Information
• Bits 00 to 03: Invalid
• Bits 04 to 15: Error defined by the Inner Board

CS1 CPU Bus Unit
Error

0200 hex CS1 CPU Bus Unit’s unit number:
0000 to 000F hex

Special I/O Unit
Error

0300 hex Special I/O Unit’s unit number:0000 to 005F hex
or 00FF hex (unit number undetermined)

SYSMAC BUS Error 00A0 hex SYSMAC BUS Master Unit’s unit number:
0000 or 0001 hex

Battery Error 00F7 hex --- (not fixed)

CS1 CPU Bus Unit
Setup Error

0400 hex CS1 CPU Bus Unit’s unit number:
0000 to 000F hex

Special I/O Unit
Setup Error

0500 hex Special I/O Unit’s unit number:0000 to 005F hex
1144

Failure Diagnosis Instructions Section 3-30
The following screen capture shows the PLC Setup setting from the CX-Pro-
grammer.

The following table shows the PLC Setup setting from the Programming Con-
sole.

Even if PLC Setup word 129 bit 15 is set to 1 (Do not record FAL Errors in
Error Log.), the following errors will be recorded:

• Fatal errors generated by FALS(007)

• Non-fatal errors from the system

• Fatal errors from the system

• Non-fatal errors from the system generated intentionally with FAL(006) or
FPD(269)

• Fatal errors from the system generated intentionally with FALS(007)

Clearing Non-fatal Errors without a Programming Device

1. Clearing User-defined Non-fatal Errors
When FAL(006) is executed with N set to 0, non-fatal errors can be cleared.
The value of S will determine the processing, as shown in the following ta-
ble.

2. Clearing Non-fatal System Errors (CS1-H, CJ1-H, CJ1M, and CS1D CPU
Units Only)
There are two ways to clear non-fatal system errors generated with
FAL(006).

• Turn the PLC OFF and then ON again.

Item Setting

Programming Console
setting address

Word 129

Bit 15

Name FAL Error Log Registration

Settings 0: Record FAL Errors in Error Log.
1: Do not record FAL Errors in Error Log.

Default setting 0: Record FAL Errors in Error Log.

Times that PLC Setup set-
ting is read

Every cycle (when an FAL Error occurs)

S Process

&1 to &511 (0001 to 01FF hex) The FAL error of the specified number will be
cleared.

FFFF hex All non-fatal errors (including system errors) will
be cleared.

0200 to FFFE hex or word
specification

The most serious non-fatal error (even if it is a
non-fatal system error) that has occurred.
When more than one FAL error has occurred,
the FAL error with the smallest FAL number will
be cleared.
1145

Failure Diagnosis Instructions Section 3-30
• When keeping the PLC ON, the system error must be cleared as if the
specified error had actually occurred.

Flags

The following tables show relevant words and flags in the Auxiliary Area.

• Auxiliary Area Words/Flags for User-defined Errors Only

• Auxiliary Area Words/Flags for System Errors Only (CS1-H, CJ1-H,
CJ1M, and CS1D CPU Units Only)

• Auxiliary Area Words/Flags for both User-defined and System Errors

Precautions N must between 0000 and 01FF. An error will occur and the Error Flag will be
turned ON if N is outside of the specified range.

Examples Generating a Non-fatal Error
When CIO 000000 is ON in the following example, FAL(006) will generate a
non-fatal error with FAL number 31 and execute the following processes.

1,2,3... 1. The FAL Error Flag (A40215) will be turned ON.

2. The corresponding Executed FAL Number Flag (A36114) will be turned
ON.

3. The corresponding error code (411F) will be written to A400.

Note If two or more errors occur at the same time, the error code of the
most serious error (with the highest error code) will be stored in
A400.

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 511 deci-
mal.
ON if a non-fatal system error is being generated (CS1-H/
CJ1-H/CJ1M/CS1D Only), but the specified error code or
error details code is incorrect.
OFF in all other cases.

Name Address Operation

FAL Error Flag A40215 ON when an error is generated with
FAL(006).

Executed FAL Num-
ber Flags

A36001 to
A39115

When an error is generated with FAL(006),
the corresponding flag will be turned ON.
Flags A36001 to A39115 correspond to FAL
numbers 0001 to 01FF.

Name Address Operation

System-generated
FAL/FALS number

A529 A dummy FAL/FALS number is used when a
system error is generated with FAL(006). Set
the same dummy FAL/FALS number in this
word (0001 to 01FF hex, 1 to 511 decimal).

Name Address Operation

Error Log Area A100 to
A199

The Error Log Area contains the error codes
and time/date of occurrence for the most
recent 20 errors, including errors generated
by FAL(006).

Error code A400 When an error occurs its error code is stored
in A400. The error codes for FAL numbers
0001 to 01FF are 4101 to 42FF, respectively.

If two or more errors occur simultaneously,
the error code of the most serious error will
be stored in A400.
1146

Failure Diagnosis Instructions Section 3-30
4. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

5. The ERR Indicator on the CPU Unit will flash.

6. The ASCII message in D00100 to D00107 will be displayed at the Periph-
eral Device. (If a message is not required, specify a constant for S.)

Clearing a Particular Non-fatal Error
When CIO 000001 is ON in the following example, FAL(006) will clear the
non-fatal error with FAL number 31, turn OFF the corresponding Executed
FAL Number Flag (A36114), and turn OFF the FAL Error Flag (A40215).

Clearing All Non-fatal Errors
When CIO 000002 is ON in the following example, FAL(006) will clear all of
the non-fatal errors, turn OFF the Executed FAL Number Flags (A36001 to
A39115), and turn OFF the FAL Error Flag (A40215).

Clearing the Most Serious Non-fatal Error
When CIO 000003 is ON in the following example, FAL(006) will clear the
most serious non-fatal error that has occurred and reset the error code in
A400. If the cleared error was originally generated by FAL(006), the corre-
sponding Executed FAL Number Flag and the FAL Error Flag (A40215) will be
turned OFF.

Generating a Non-fatal System Error (CS1-H, CJ1-H, CJ1M, or CS1D
Only)
When CIO 000000 is ON in the following example, FAL(006) will generate a
CPU Bus Unit Setup Error for unit number 1. In this case, dummy FAL number
10 is used and the corresponding value (000A hex) is stored in A529.

M:

MESSAGE
LOW VOLTAGE

4C 4F

57 20

56 4F

4C 54

41 47

45 00

31

M

M #001F

000001

 0 Set N to 0 to clear errors.

Set M to the desired FAL
number (031(001F)).

M

000002

 0 Set N to 0 to clear errors.

Set M to FFFF to clear all non-fatal errors
(both FAL(006) and system errors).

M #0000

000003

 0 Set N to 0 to clear errors.
Set M to 0000, another constant between
0200 and FFFE, or a word address to
clear the most serious non-fatal error.
(In this case, M is set to 0000.)
1147

Failure Diagnosis Instructions Section 3-30
1,2,3... 1. The specified error code (0400) will be written to A400 if it is the most se-
rious error.

2. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

3. The CPU Bus Unit Setup Error Flag (A40203) and CPU Bus Unit Setup Er-
ror Flag for unit number 1 (A42701) will be turned ON.

4. The CPU Unit’s ERR Indicator will flash.

5. A message (CPU BU ST ERR 01) will be displayed at the Programming
Console indicating that an error has occurred with CPU Bus Unit 1.

3-30-2 SEVERE FAILURE ALARM: FALS(007)
Purpose Generates user-defined fatal errors. Fatal errors stop PLC operation.

With CS1-H, CJ1-H, CJ1M, and CS1D CPU Units, FALS(007) can also be
used to generate fatal system errors.

Ladder Symbol • Generating User-defined Fatal Errors

• Generating Fatal System Errors (CS1-H, CJ1-H, CJ1M, or CS1D Only)

Variations

MOV

#000A

A529

000AA529CH

S: D00200
D00201

0400
0001

000000

FAL

10

D00200

N

S

Error code: 0400 (CPU Bus Unit Setup Error)

Matching
values

Error unit number: 1

FALS(007)

N

S

N: FALS number

S: First message word or
constant (0000 to FFFF)

FALS(007)

N

S

N: FALS number (value in A529)

S: First word containing the error
code and error details

Variations Executed Each Cycle for ON Condition FALS(007)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
1148

Failure Diagnosis Instructions Section 3-30
Applicable Program Areas

Operands Generating User-defined Fatal Errors

The following table shows the function of the operands.

Note The value of operand N must be different from the content of A529
(the system-generated FAL/FALS number).

Generating Fatal Errors from the System (CS1-H, CJ1-H, CJ1M, or CS1D
Only)

The following table shows the function of the operands.

Note The value of operand N must be the same as the content of A529
(the system-generated FAL/FALS number).

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Function

N 1 to 511 (These FALS numbers are shared with FAL numbers.)

S Specifies the first of eight words containing an ASCII message to be
displayed on the Programming Device.
Specify a constant (0000 to FFFF) if a message is not required.

Operand Function

N 1 to 511 (These FALS numbers are shared with FAL numbers.)

S Error code that will be generated. (See Description below.)

S+1 Error details code that will be generated. (See Description below.)

Area N S

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified val-
ues only

#0000 to #FFFF
(binary)

Data Registers ---
1149

Failure Diagnosis Instructions Section 3-30
Description FALS(007) generates a fatal error. In CS1-H, CJ1-H, CJ1M, and CS1D CPU
Units, FALS(007) can also be used to generate fatal system errors as well as
fatal user-defined errors. (A system error will be generated if the value of N
equals the content of A529.)

Generating Fatal User-defined Errors

When FALS(007) is executed with N set to an FALS number (1 to 511) that is
not equal to the content of A529 (the system-generated FAL/FALS number), a
fatal error will be generated with that FALS number and the following process-
ing will be performed:

1,2,3... 1. The FALS Error Flag (A40106) will be turned ON. (PLC operation will stop.)

2. The error code will be written to A400. Error codes C101 to C2FF corre-
spond to FALS numbers 0001 to 01FF (1 to 511).

Note If an error more serious than the FALS(007) instruction (one with a
higher error code) has occurred, A400 will contain the more serious
error’s error code.

3. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

4. The ERR Indicator on the CPU Unit will be lit.

5. If a word address has been specified in S, the ASCII message beginning
at S will be registered (displayed on the Peripheral Device).

The following table shows the error codes for FALS(007).

Note The input method for the FALS number, N, is different for the CX-Programmer
and a Programming Console. Input #1 to #511 on the CX-Programmer and
input 001 to 511 on a Programming Console.

Displaying Messages with Fatal User-defined Errors

If S is a word address, the ASCII message beginning at S will be displayed at
the Programming Device when FALS(007) is executed. (If a message is not
required, set S to a constant.)

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047
,IR15

DR0 to DR15, IR0 to IR15
,IR+(++)0 to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N S

FALS number FALS error codes

1 to 511 C101 TO C2FF

FALS Error Flag ON
Error code written to A400

Error code and time/date written to Error Log Area

ERR Indicator lit

Message displayed on
Programming Console

Execution of
FALS(007)
generates a
fatal error
with FALS
number N.
1150

Failure Diagnosis Instructions Section 3-30
The message beginning at S will be registered when FALS(007) is executed.
Once the message is registered, it will be displayed when a Programming
Console is connected.

An ASCII message up to 16 characters long can be stored in S through S+7.
The leftmost (most significant) byte in each word is displayed first.

The end code for the message is the null character (00 hexadecimal). All 16
characters in words S to S+7 will be displayed if the null character is omitted.

If the contents of the words containing the message are changed after
FALS(007) is executed, the message will change accordingly.

Generating Non-fatal System Errors (CS1-H, CJ1-H, CJ1M, or CS1D Only)

When FALS(007) is executed with N set to an FAL number (1 to 511) that is
equal to the content of A529 (the system-generated FAL/FALS number), a
fatal error will be generated with the error code and error details code speci-
fied in S and S+1. The following processing will be performed at the same
time:

1,2,3... 1. The specified error code will be written to A400.

2. The error code and the time that the error occurred will be written to the
Error Log Area (A100 through A199).

3. The appropriate Auxiliary Area Flags are set based on the error code and
error details.

4. The ERR Indicator on the CPU Unit will light and PLC operation will be
stopped.

5. The fatal error message for the specified system error will be displayed on
the Programming Console.

Note 1. The value of A529 (the system-generated FAL/FALS number) is a dummy
FAL number (FAL, FALS, and FPD numbers are shared.) used when a
non-fatal error is generated intentionally by the system. This number is a
dummy FAL number, so it is not reflected in the error code.
When it is necessary to generate two or more system errors, different er-
rors can be generated by executing the FAL/FALS/FPD instructions more
than once with the same values in A529 and N, but different values in S
and S+1.

2. If a more serious error (including a system-generated fatal error or another
FALS(007) error) occurs at the same time as the FALS(007) instruction,
the more serious error’s error code will be written to A400.

3. To clear a system error generated by FALS(007), turn the PLC OFF and
then ON again. The PLC can be kept ON, but the same processing will be
required to clear the error as if the specified error had actually occurred.
Refer to information on troubleshooting in the CS Series or CJ Series Op-
eration Manual for details.

FALS

N

S

NA529CH

S
S+1

Execution of FALS(007)
generates a fatal system
error with the error
code/details specified in
S and S+1.

Error code
Error details

Error code written to A400

Error code and time written to Error Log Area

The corresponding Auxiliary Area Flags are set
based on the error code and error details.

ERR Indicator flashes.

Message displayed on
Programming Console.

Matching
values
1151

Failure Diagnosis Instructions Section 3-30
4. The following table shows how the IOM Hold Bit affects the status of I/O
memory and the status of outputs on Output Units after a fatal system error
has been generated with FALS(007).

Note Unlike user-defined fatal errors, system errors generated by FALS(007) will
clear I/O memory if the IOM Hold Bit is OFF. The following areas will be
cleared: CIO Area, Work Area, Timer Flags and PVs, Index Registers, and
Data registers.

The following table shows how to specify error codes and error details in S
and S+1.

IOM Hold Bit
(A50012)

Status of I/O memory Status of outputs on Output
Units

ON Retained OFF

OFF Cleared OFF

Error name S S+1

Error code Error details

Memory Error 80F1 hex • Bits 00 to 09: Memory Error Location
Bit 00: User program
Bit 04: PLC Setup
Bit 05: Registered I/O table
Bit 07: Routing table
Bit 08: CPU Bus Unit Setup
Bit 09: Memory Card transfer error

• Bits 10 to 15: Invalid

I/O Bus Error 80C0 hex • Bits 00 to 07: Slot number where the I/O Bus error
occurred

Slot 0 to 9: 00 to 09 hex
Slot unknown: 0F hex

• Bits 08 to 15: Rack number where the I/O Bus
error occurred
Slot 0 to 7: 00 to 07 hex
Rack unknown: 0F hex

Unit Number
Duplication
Error

80E9 hex CPU Bus Unit’s duplicated unit number
0000 to 000F hex

Special I/O Unit’s duplicated unit number
8000 to 805F hex

Rack Number
Duplication
Error

80EA hex Duplicated Rack number (overlapping word alloca-
tions)

0000 to 0006 hex

Fatal Inner
Board Error

82F0 hex Error Cause
Bits 00 to 03: Error defined by Inner Board
Bits 04 to 15: Invalid
1152

Failure Diagnosis Instructions Section 3-30
Clearing FALS(007) Fatal System Errors (CS1-H, CJ1-H, CJ1M, and CS1D
CPU Units Only)

There are two ways to clear fatal system errors generated with FALS(007).

1. Turn the PLC OFF and then ON again.

2. When keeping the PLC ON, the system error must be cleared as if the
specified error had actually occurred.

Clearing FALS(007) User-defined Fatal Errors

To clear errors generated by FALS(007), first eliminate the cause of the error
and then either clear the error from a Programming Device or turn the PLC
OFF and then ON again.

Too Many I/O
Points Error

80E1 hex Bits 13 to 15: Error Cause
Bits 00 to 12: Details
• Total number of I/O points is too high.

Bits 13 to 15: 000
Bits 00 to 12: Number of I/O points (binary)

• Number of interrupt inputs is too high.

Bits 13 to 15: 001
Bits 00 to 12: Number of interrupt inputs (binary)
Bits 00 to 12: All zeroes

• A Slave Unit’s unit number is duplicated or a C500
Slave Unit has more than 320 I/O points.
Bits 13 to 15: 010
Bits 00 to 12: Slave Unit’s unit number (binary)

• The unit number of an I/O Interface (excluding
Slave Racks) is duplicated.

Bits 13 to 15: 011
Bits 00 to 12: Unit number (binary)

• A Master Unit’s unit number is duplicated or out-
side of the allowed setting range.
Bits 13 to 15: 100
Bits 00 to 12: Master Unit’s unit number (binary)

• The number of Expansion Racks is too high.
Bits 13 to 15: 101
Bits 00 to 12: Number of Expansion Racks
(binary)

• C200H Special I/O Unit or Remote I/O was not
recognized.

Bits 13 to 15: 110

I/O Table Setting
Error

80E0 hex --- (Not fixed.)

Program Error 80F0 hex • Bits 08 to 15: Error Cause
Bit 15: UM overflow error
Bit 14: Illegal instruction error
Bit 13: Differentiation overflow error
Bit 12: Task error
Bit 11: No END error
Bit 10: Illegal access error
Bit 09: Indirect DM/EM BCD error
Bit 08: Instruction error

• Bits 00 to 07: Invalid

Cycle Time
Overrun Error

809F hex --- (Not fixed.)

Error name S S+1

Error code Error details
1153

Failure Diagnosis Instructions Section 3-30
Flags

The following tables show relevant words and flags in the Auxiliary Area.

• Auxiliary Area Words/Flags for User-defined Errors Only

• Auxiliary Area Words/Flags for System Errors Only (CS1-H, CJ1-H,
CJ1M, and CS1D CPU Units Only)

• Auxiliary Area Words/Flags for both User-defined and System Errors

Precautions The end code for the message is the null character (00 hexadecimal). All 16
characters in words S to S+7 will be displayed if the null character is omitted.

N must between 0001 and 01FF. An error will occur and the Error Flag will be
turned ON if N is outside of the specified range.

Examples Generating a User-defined Error
When CIO 000000 is ON in the following example, FALS(007) will generate a
fatal error with FAL number 31 and execute the following processes.

1,2,3... 1. The FALS Error Flag (A40106) will be turned ON.

2. The corresponding error code (C11F) will be written to A400.

Note A400 will contain the error code of the most serious of all of the errors
that have occurred, including non-fatal and fatal system errors, as
well as errors generated by FAL(006) and FAL(007).

3. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

4. The ERR Indicator on the CPU Unit will be lit.

5. The ASCII message in D00100 to D00107 will be displayed at the Periph-
eral Device. (If a message is not required, specify a constant for S.)

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0001 to 01FF
(1 to 511 decimal).
ON if a fatal system error is being generated (CS1-H/CJ1-
H/CJ1M/CS1D Only), but the specified error code or error
details code is incorrect.
OFF in all other cases.

Name Address Operation

FALS Error Flag A40106 ON when an error is generated with
FALS(007).

Name Address Operation

System-generated
FAL/FALS number

A529 A dummy FAL/FALS number is used when a
system error is generated with FALS(007). Set
the same dummy FAL/FALS number in this
word (0001 to 01FF hex, 1 to 511 decimal).

Name Address Operation

Error Log Area A100 to
A199

The Error Log Area contains the error codes
and time/date of occurrence for the most
recent 20 errors, including errors generated by
FALS(007).

Error code A400 When an error occurs its error code is stored
in A400. The error codes for FALS numbers
0001 to 01FF (1 to 511 decimal) are C101 to
C2FF, respectively.

If two or more errors occur simultaneously, the
error code of the most serious error will be
stored in A400.
1154

Failure Diagnosis Instructions Section 3-30
Generating a Non-fatal System Error (CS1-H, CJ1-H, CJ1M, and CS1D
CPU Units Only)
When CIO 000000 is ON in the following example, FALS(007) will generate a
Too Many I/O Points Error (too many Expansion Racks connected, 9 Racks in
this case). In this case, dummy FAL number 10 is used and the corresponding
value (000A hex) is stored in A529.

1,2,3... 1. The specified error code (80E1) will be written to A400 if it is the most se-
rious error.

2. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

3. The Too Many I/O Points Flag (A40111) will be turned ON.

4. The CPU Unit’s ERR Indicator will light and PLC operation will stop.

5. A message (TOO MANY I/O PNT) will be displayed at the Programming
Console indicating that a Too Many I/O Points Error has occurred.

M:

MESSAGE
LOW VOLTAGE

4C 4F

57 20

56 4F

4C 54

41 47

45 00

 31

M

000AA529CH

S:D00200

D00201

80E1
A009

FALS

 10

D00200

000000

N

S

MOV

#000A

A529

Error code: 80E1 (Too Many I/O Points Error)

Matching
values

Number of Expansion Racks: 9
1155

Failure Diagnosis Instructions Section 3-30
3-30-3 FAILURE POINT DETECTION: FPD(269)
Purpose Diagnoses a failure in an instruction block by monitoring the time between

execution of FPD(269) and execution of a diagnostic output and finding which
input is preventing an output from being turned ON.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word
C must be a constant between 0000 and 01FF or between 8000 and 81FF.
The following diagram shows the function of the digits in the control word.

T: Monitoring Time
T must be between 0 and 9,999 decimal (between 0000 and 270F hex). A
value of 0 disables time monitoring; values in the range of 1 to 270F set the
monitoring time from 0.1 to 999.9 seconds.

R: First Register Word
The functions of the register words are described on page 1159.

Operand Specifications

FPD(269)

C

T

R

C: Control word

T: Monitoring time

R: First register word

Variations Executed Each Cycle for ON Condition FPD(269)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

15 01112

C

FAL number: 000 to 1FF

Diagnostic output mode
0: Bit address output only (hexadecimal)
8: Bit address and message output (ASCII)

Area C T R

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A447
A448 to A959

A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767
1156

Failure Diagnosis Instructions Section 3-30
Description FPD(269) performs time monitoring and logic diagnosis. The time monitoring
function generates a non-fatal error with the specified FAL number if the diag-
nostic output is not turned ON within the specified monitoring time. The logic
diagnosis function indicates which input is preventing the output from being
turned ON.

Note *The logic diagnosis block begins with the first LD (not LD TR) or LD NOT
instruction after FPD(269) and ends with the first OUT (not OUT TR) or other
right-hand instruction.

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants Specified values
only

#0000 to #270F

(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15
DR0 to DR15, IR0 to IR15

Area C T R

T

R

Diagnostic output B

Logic diagnosis function

Time monitoring function:
Starts timing when execution condition A goes ON.
Generates a non-fatal error if output B isn't turned
ON within the monitoring time.

Execution
condition A

Error-processing
block (optional)

Logic diagnosis block*

Next instruction block

Logic diagnosis
execution condition C

Determines which input in C prevents
output B from going ON.
1157

Failure Diagnosis Instructions Section 3-30
Time Monitoring Function

FPD(269) starts timing when it is executed (when execution condition A goes
ON); it will generate a non-fatal error and turn ON the Carry Flag if the diag-
nostic output is not turned ON within the specified monitoring time.

Note The diagnostic output must go ON within the monitoring time. The teaching
function can be used set the monitoring time automatically.

The following processing will be performed when the Carry Flag is turned ON.
(This processing will not be performed if the FAL number is set to 000 in C.)

1,2,3... 1. The FAL Error Flag (A40215) will be turned ON. (PLC operation contin-
ues.)

2. The Executed FAL Number Flag for the specified FAL number will be
turned ON. (Flags A36001 to A39115 correspond to FAL numbers 001 to
1FF.)

3. The corresponding error code will be written to A400. Error codes 4101 to
42FF correspond to FAL numbers 001 to 1FF.
(If a more serious error has occurred (one with a higher error code) at the
same time, the error code of the more serious error will be stored in A400.)

4. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

5. The ERR Indicator on the CPU Unit will flash.

6. If the output mode has been set for bit address and message output (left-
most digit of C set to 8), the ASCII message stored in R+2 through R+10
will be displayed as a non-fatal error message.

Logic Diagnosis Function

Every cycle that the execution condition for FPD(269) is ON, FPD(269) deter-
mines which input bit is causing the diagnostic output to be OFF and writes
the bit’s address to the register area beginning at R.

If input bits CIO 000000 through CIO 000003 are all ON in the following exam-
ple, FPD(269) would determine that the normally closed CIO 000002 condi-
tion is causing output CIO 000100 to remain OFF. FPD(269) would turn ON
the Bit Address Found Flag (bit 15 of R) and write the bit address to register
words R+2 to R+4.

Non-fatal error generated.

Monitoring
time (T)

Execution condition
for FPD(269)

Diagnostic output B

Carry Flag

Logic diagnosis block

Logic diagnosis
execution condition
1158

Failure Diagnosis Instructions Section 3-30
The logic diagnosis function is executed every cycle as long as the execution
condition for FPD(269) is ON. The operation of the logic diagnosis function is
independent of the time monitoring function.

When two or more input bits are preventing the diagnostic output from being
turned ON, the address of the first input bit in the execution condition (on the
highest instruction line and nearest the left bus bar) will be output to R+2
through R+4.

Input bits in LD, LD NOT, AND, AND NOT, OR, and OR NOT instructions
(including differentiated and immediate-refreshing variations) will be checked
by the logic diagnosis function. Input bits in other instructions and operands
addressed indirectly through Index Registers will not be checked.

The logic diagnosis block begins with the first LD (not LD TR) or LD NOT
instruction after FPD(269) and ends with the first OUT (not OUT TR) or other
right-hand instruction.

There are two diagnostic output modes, set with the leftmost digit of C.

1,2,3... 1. Bit address output mode (Leftmost digit of C = 0)

Bit 15 of R (the Bit Address Found Flag) is turned ON when an input bit
address has been found and bit 14 of R indicates whether the input is nor-
mally ON or normally OFF.
The 8-digit hexadecimal PLC memory address of the input bit is output to
R+3 and R+2.

2. Bit address and message output mode (Leftmost digit of C = 8)

Bit 15 of R (the Bit Address Found Flag) is turned ON when an input bit
address has been found and bit 14 of R indicates whether the input is nor-
mally ON or normally OFF.
The input bit’s address is output to R+2 through R+4 as 6 ASCII charac-
ters.

Register Word Functions The register words contain the results of the diagnostic function and can also
contain an ASCII error message which is displayed when an error is gener-
ated by the time monitoring function. The function of the register words
depends upon the diagnostic output mode which is set with the leftmost digit
of C.
1159

Failure Diagnosis Instructions Section 3-30
Bit Address Output (C=0@@@)

When the leftmost digit of C is set to 0, the 8-digit hexadecimal PLC memory
address of the input bit is output to R+2 and R+3. R contains two flags which
indicate whether an input bit has been found and whether it is used in a nor-
mally open or normally closed input condition.

Bit Address and Message Output (C=8@@@)

When the leftmost digit of C is set to 8, the ASCII address of the input bit is
output to R+2 to R+4. R contains two flags which indicate whether an input bit
has been found and whether it is used in a normally open or normally closed
input condition.

Register words R+2 to R+4 indicate the address of the input which prevented
the diagnostic output from being turned ON. The bit address is output to these
words in ASCII. The following table shows the ASCII representations for each
area.

Area ASCII text Notes

Auxiliary Area A00000 to A95915 ---

Holding Area H00000 to H51115 ---

Work Area W00000 to W51115 ---

CIO Area 000000 to 665515 ---

Task Flags TK0000 to TK0031 ---

Timer Area _T0000 to _T4095 The “_” represents an ASCII
space.
(Character code 20.)

Counter Area _C0000 to _C4095

15 014
R

13

15

R+2 R+3

R+1
0

Not possible to use.
Input type
0: Normally open
1: Normally closed

Bit Address Found Flag
0: Not found yet
1: Bit address found

Not possible to use.

15 014

R

13

15 0

R+1

Not possible to use.
Input type
0: Normally open
1: Normally closed

Bit Address Found Flag
0: Not found yet
1: Bit address found

Not possible to use.
1160

Failure Diagnosis Instructions Section 3-30
Register words R+2 through R+5 would have the following values for W51115:

The user can store an ASCII message in register words R+6 to R+10. This
message will be displayed on the Programming Device if a non-fatal error is
generated by the time monitoring function. Mark the end of the message with
the null character (00 hexadecimal).

Disabling Error Log
Entries of Non-fatal
FPD(269) Errors
(CS1-H, CJ1-H, CJ1M, or
CS1D Only)

Normally when the FPD(269) Time Monitoring Function generates a non-fatal
error, the error code and the time that the error occurred are written to the
Error Log Area (A100 through A199). In CS1-H, CJ1-H, CJ1M, and CS1D
CPU Units, it is possible to set the PLC Setup so that the non-fatal errors gen-
erated by FAL(006) are not recorded in the Error Log.

Even though the error will not be recorded in the Error Log, the FAL Error Flag
(40215) will be turned ON, the corresponding flag in the Executed FAL Num-
ber Flags (A36001 to A39115) will be turned ON, and the error code will be
written to A400.

Disable Error Log entries for FPD(269) time-monitoring errors when you want
to record only the system-generated errors. For example, this function is use-
ful during debugging if the FPD(269) and FAL(006) instructions are used in
several applications and the Error Log is becoming full of these errors.

The following screen capture shows the PLC Setup setting from the CX-Pro-
grammer.

Word Bits 8 to 15 Bits 0 to 7

R+2 W 5

R+3 1 1

R+4 1 5

R+5 2D (hexadecimal) Input type (hexadecimal)
30: Normally open
31: Normally closed

15

R+2

R+3

R+4

W 5

1 1

1 5
Bit address written in ASCII

15 8 07

R+6
R+7
R+8
R+9

R+10
1161

Failure Diagnosis Instructions Section 3-30
The following table shows the PLC Setup setting from the Programming Con-
sole.

Even if PLC Setup word 129 bit 15 is set to 1 (Do not record FAL Errors in
Error Log.), the following errors will be recorded:

• Fatal errors generated by FALS(007)

• Non-fatal errors from the system

• Fatal errors from the system

• Non-fatal errors from the system generated intentionally with FAL(006) or
FPD(269)

• Fatal errors from the system generated intentionally with FALS(007)

Setting Monitoring Time
with the Teaching
Function

If a word address is specified for T, the monitoring time can be set automati-
cally with the teaching function. Use the following procedure when a word
address has been set for T.

1,2,3... 1. Turn ON the FPD Teaching Bit (A59800).

2. FPD(269) will measure the time from the point when the execution condi-
tion for FPD(269) goes ON until the diagnostic output is turned ON.

3. If the measured time exceeds the monitoring time setting, a setting 1.5
times the measured time will be stored in T.

Flags

The following table shows relevant words and flags in the Auxiliary Area.

Item Setting

Programming Console
setting address

Word 129

Bit 15

Name FAL Error Log Registration

Settings 0: Record FAL Errors in Error Log.
1: Do not record FAL Errors in Error Log.

Default setting 0: Record FAL Errors in Error Log.

Times that PLC Setup set-
ting is read

Every cycle (when an FAL Error occurs)

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 01FF
or 8000 to 81FF.

ON if T is not within the specified range of 0000 to 270F.
OFF in all other cases.

Carry Flag CY ON if the diagnostic output is still OFF after the monitoring
time has elapsed.
OFF in all other cases.

Name Address Operation

FAL Error Flag A40215 ON when a non-fatal (FAL) error is registered in time
monitoring.

Executed FAL
Number Flags

A36001 to
A39115

When a non-fatal (FAL) error is registered in time mon-
itoring, the corresponding flag will be turned ON. Flags
A36001 to A39115 correspond to FAL numbers 0001
to 01FF.

Error Log Area A100 to
A199

The Error Log Area contains the error codes and time/
date of occurrence for the most recent 20 errors,
including errors generated by FPD(269).
1162

Failure Diagnosis Instructions Section 3-30
Precautions When the time monitoring function is being used, the execution condition for
FPD(269) must remain ON for the entire monitoring time set in T.

The execution condition for FPD(269) must be made up of a combination of
normally open and normally closed inputs.

The error-processing block is optional. When an error-processing block is
included, be sure to use outputs or other right-hand instructions. LD and LD
NOT cannot be used at this point.

FPD(269) can be used more than once in the program, but each instruction
must have a unique register (R) setting.

The monitoring time is refreshed only when FPD(269) is executed. If the cycle
time is longer than 100 ms, the monitoring time will not be refreshed normally
and FPD(269) will not operate correctly because the monitoring time is
updated in units of 100 ms.

Examples The following program example is used to demonstrate the operation of the
time monitoring function and logic diagnosis function. In this example, the
diagnostic output (CIO 020000) does not go ON because CIO 010000 and
CIO 010003 remain OFF in the logic diagnosis execution condition.

Time Monitoring Function
If the diagnostic output (CIO 020000) does not go ON within 10 seconds after
CIO 030000 and CIO 030001 are both ON, a non-fatal error will be generated
and the following processing will be performed.

1,2,3... 1. The Carry Flag is turned ON.

Error code A400 When an error occurs its error code is stored in A400.
The error codes for FAL numbers 0001 to 01FF are
4101 to 42FF, respectively.
If two or more errors occur simultaneously, the error
code of the most serious error will be stored in A400.

FPD Teaching
Bit

A59800 Turn this bit ON when you want the monitoring time to
be set automatically (teaching function) when
FPD(269) is executed.

Name Address Operation

T

R

&100

Diagnostic output

Execution
condition

Logic diagnosis block

Logic diagnosis execution condition

The diagnostic output (CIO 020000)
remains OFF because these input
conditions are OFF.

Error-processing
block (optional)
1163

Failure Diagnosis Instructions Section 3-30
2. When the rightmost 3 digits of C specify an FAL number of 00A hex (10),
the corresponding Executed FAL Number Flag (A36010) will be turned
ON, the corresponding error code (410A) is written in A400, and the FAL
Error Flag (A40215) is turned ON.

Logic Diagnosis Function (C=000A)
Since the leftmost digit of C is 0 (bit address output mode) the PLC memory
address of CIO 010000 is output to D00303 and D00302. (CIO 010000 is on a
higher instruction line than CIO 010003.)

Logic Diagnosis Function (C=800A)
Since the leftmost digit of C is 8 (bit address and message output mode) the
address of CIO 010000 (010000) is output to D00302 through D00304 in
ASCII.

Setting the Monitoring Time with the Teaching Function
The monitoring time can be set automatically with the teaching function when
a word address has been specified for T.

R:
Not used.

Not used.

Bit Address Found Flag
1: Bit address found

FAL number = 10
Diagnostic output mode = 0 (bit address output)

Input type
0: Normally open

Contains internal I/O memory address.

R+1: D00301

R: D00300

R+2: D00302
R+3: D00303

R+4: D00304
R+5: D00305

R+6: D00306
R+7: D00307

R+8: D00308

R+9: D00309

30

30

30

2D

54

25

25

00

31

30

30

30

25

F4

00

00

R+10: D00310 00 00

FAL number = 10
Diagnostic output mode = 8 (bit address and message output)

Bit Address Found Flag
1: Bit address found Input type

0: Normally open

Contains bit address in ASCII.
(010000 is converted to ASCII.)

User-set FAL error message output to a
Peripheral Device by the time monitoring
function. The Peripheral Display will show
the following: 010000-0 ERROR.

Not used.
1164

Other Instructions Section 3-31
To start the teaching function, turn ON A59800 (the FPD Teaching Bit). While
A59800 is ON, FPD(269) measures how long it takes for the diagnostic output
(CIO 020000) to go ON after the execution condition (CIO 030000) goes ON.
If the measured time exceeds the monitoring time in T, the measured time is
multiplied by 1.5 and that value is stored in T as the new monitoring time.

ts: Initial setting in T
ta: Measured time
t’s: New setting in T after teaching
(When ta > ts, t’s = ta × 1.5)

3-31 Other Instructions
This section describes instructions for manipulating the Carry Flag, selecting
the EM bank, and extending the maximum cycle time.

T

R

The teaching function
can set the monitoring
time in T automatically.

Execution
condition

Diagnostic output

A59800

CIO 030000

CIO 020000

t's(ta × 1.5)

No error generated

Measured time: ta

Teaching

FPD Teaching Bit

Execution condition

Diagnostic output

Instruction Mnemonic Function code Page

SET CARRY STC 040 1166

CLEAR CARRY CLC 041 1166

SELECT EM BANK EMBC 281 1167

EXTEND MAXIMUM CYCLE TIME WDT 094 1169

SAVE CONDITION FLAGS CCS 282 1171

LOAD CONDITION FLAGS CCL 283 1173

CONVERT ADDRESS FROM CV FRMCV 284 1174

CONVERT ADDRESS TO CV TOCV 285 1179
1165

Other Instructions Section 3-31
3-31-1 SET CARRY: STC(040)
Sets the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Description When the execution condition is ON, STC(040) turns ON the Carry Flag (CY).
Although STC(040) turns the Carry Flag ON, the flag will be turned ON/OFF
by the execution of subsequent instructions which affect the Carry Flag.

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions ROL(027), ROLL(572), ROR(028), and RORL(573) make use of the Carry
Flag in their rotation shift operations. When using any of these instructions,
use STC(040) and CLC(041) to set and clear the Carry Flag.

3-31-2 CLEAR CARRY: CLC(041)
Purpose Turns OFF the Carry Flag (CY).

Ladder Symbol

Variations

DISABLE PERIPHERAL SERVICING IOSP 287 1183

ENABLE PERIPHERAL SERVICING IORS 288 1185

Instruction Mnemonic Function code Page

STC(040)

Variations Executed Each Cycle for ON Condition STC(040)

Executed Once for Upward Differentiation @STC(040)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Carry Flag CY ON

Negative Flag N Unchanged (See note.)

CLC(041)

Variations Executed Each Cycle for ON Condition CLC(041)

Executed Once for Upward Differentiation @CLC(041)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
1166

Other Instructions Section 3-31
Applicable Program Areas

Description When the execution condition is ON, CLC(040) turns OFF the Carry Flag
(CY). Although CLC(040) turns the Carry Flag OFF, the flag will be turned ON/
OFF by the execution of subsequent instructions which affect the Carry Flag.

Flags

Note In CS1-H, CJ1-H, CJ1M, and CS1D (for Single-CPU System) CPU Units,
these Flags are left unchanged.
In CS1 and CJ1 CPU Units, these Flags are turned OFF.

Precautions +C(402), +CL(403), +BC(406), and +BCL(407) make use of the Carry Flag in
their addition operations. Use CLC(041) just before any of these instructions
to prevent any influence from other preceding instructions.

–C(412), –CL(413), –BC(416), and –BCL(417) make use of the Carry Flag in
their subtraction operations. Use CLC(041) just before any of these instruc-
tions to prevent any influence from other preceding instructions.

ROL(027), ROLL(572), ROR(028), and RORL(573) make use of the Carry
Flag in their rotation shift operations. When using any of these instructions,
use STC(040) and CLC(041) to set and clear the Carry Flag.

Note The +(400), +L(401), +B(404), +BL(405), –(410), –L(411), –B(414), and
–BL(415) instructions do no include the Carry Flag in their addition and sub-
traction operations. In general, use these instructions when performing addi-
tion or subtraction.

3-31-3 SELECT EM BANK: EMBC(281)
Purpose Changes the current EM bank.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: EM Bank Number
Specifies the new EM bank number in hexadecimal (0000 to 000C).

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Name Label Operation

Error Flag ER Unchanged (See note.)

Equals Flag = Unchanged (See note.)

Carry Flag CY OFF

Negative Flag N Unchanged (See note.)

EMBC(281)

N N: EM bank number

Variations Executed Each Cycle for ON Condition EMBC(281)

Executed Once for Upward Differentiation @EMBC(281)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1167

Other Instructions Section 3-31
Operand Specifications

Description EMBC(281) changes the current EM (Extended Data Memory) bank to the
one indicated by the EM bank number (N). At the same time, the new EM
bank number is output to A301.

There are up to 13 banks (0 to C) available in the EM Area and there are
32,768 words (E00000 to E32767) in each bank. EM addresses can be identi-
fied in the two following ways. EMBC(281) must be used to change the current
EM bank if the first method is used.

1,2,3... 1. EM addresses can be specified without the bank number, i.e. E00000 to
E32767, to indicate addresses in the current EM bank.

2. EM addresses can be specified with the bank number, i.e. En_00000 to
En_32767 (n = 0 to C), to indicate addresses in a particular EM bank.

Flags

The following table shows relevant flags in the Auxiliary Area.

Area N

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767

Constants #0000 to #000C (binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Name Label Operation

Error Flag ER ON if N is not within the range 0000 to 000C.
ON if N specifies a non-existent EM bank number.
(This error will occur if the specified EM bank has been
registered as file memory in the PLC Setup.)
OFF in all other cases.

Name Address Operation

Current EM Bank A301 Contains the current EM bank number in hexa-
decimal (0000 to 000C).
1168

Other Instructions Section 3-31
Precautions The current EM bank number changed in a cyclic task is retained when oper-
ation is switched between tasks. For example, if EMBC(281) is used in task 1
to change the current EM bank from bank B to bank C, bank C will remain the
current EM bank for all cyclic tasks even when operation is switched to task 2.

The current EM bank number changed in an interrupt task is valid only during
execution of the interrupt in which it was changed. The previous EM bank
number will be returned to once execution of the interrupt task has been com-
pleted.

An error will occur if the specified EM bank has been registered as file mem-
ory in the PLC Setup.

Examples When CIO 000000 turns ON in the following example, the current EM bank
number is changed to bank C and the new bank number (000C hex) is output
to A301.

3-31-4 EXTEND MAXIMUM CYCLE TIME: WDT(094)
Purpose Extends the maximum cycle time, but only for the cycle in which the instruc-

tion is executed. WDT(094) can be used to prevent errors for long cycle times
when a longer cycle time is temporarily required for special processing.

Ladder Symbol

Variations

Applicable Program Areas

Operands T: Timer Setting
Specifies the watchdog timer setting between 0000 and 0F9F hexadecimal or
between &0000 and &3999 decimal.

Operand Specifications

WDT(094)

T T: Timer setting

Variations Executed Each Cycle for ON Condition WDT(094)

Executed Once for Upward Differentiation @WDT(094)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area T

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---
1169

Other Instructions Section 3-31
Description WDT(094) extends the maximum cycle time for the cycle in which this instruc-
tion is executed. The watchdog timer setting in the PLC Setup is extended by
an interval of T × 10 ms (0 to 39,990 ms).

The following screen capture shows the PLC Setup setting from the CX-Pro-
grammer.

The following table shows the watchdog timer settings in the PLC Setup. The
default value for the maximum cycle time is 1,000 ms, although it can be set
anywhere from 1 to 40,000 ms in 10-ms units.

Flags

The following table shows relevant flags and words in the Auxiliary Area.

Precautions WDT(094) can be used more than once in a cycle. When WDT(094) is exe-
cuted more than once the cycle time extensions are added together, although

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0000 to 0F9F (binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

Area T

Name Function Settings

Watch cycle
time

A Cycle Time Too Long error (fatal
error) will be registered if the cycle time
exceeds the maximum setting.

0: Default setting (1,000 ms)

1: User time setting

Sets the maximum cycle time.
(This setting is valid only when the first
setting has been set to 1.)

0001 to 0FA0
(1 to 40,000 ms, 10-ms units)

Name Label Operation

Error Flag ER ON if the watchdog timer setting exceeds 40 seconds.

OFF in all other cases.

Name Address Operation

Cycle Time Too Long
Flag

A40108 ON when the present cycle time exceeds the
maximum cycle time (watch cycle time) set in the
PLC Setup. This is a fatal error which causes pro-
gram execution to stop.

Maximum Cycle
Time

A262 and
A263

These words contain the maximum cycle time in
32-bit binary. This value is updated every cycle.

Present Cycle Time A264 and
A265

These words contain the present cycle time in 32-
bit binary. This value is updated every cycle.
1170

Other Instructions Section 3-31
the total must not exceed 40,000 ms. If WDT(094) cannot be executed again if
the cycle has already been extended to 40,000 ms.

Examples The default maximum cycle time (1,000 ms) is used in this example.

1,2,3... 1. When CIO 000000 turns ON, the first WDT(094) instruction extends the
maximum cycle time by 300 ms (30 × 10 ms). Thus, the maximum cycle
time is 1,300 ms at this point.

2. When CIO 000001 turns ON, the second WDT(094) instruction attempts
to extend the maximum cycle time by another 39,000 ms. Since the new
maximum cycle time (40,300 ms) exceeds the upper limit of 40,000 ms, the
extra 300 ms is ignored. As a result, the second WDT(094) instruction ac-
tually extends the maximum cycle time by 38,700 ms.

3. When CIO 000002 turns ON, the third WDT(094) instruction attempts to
extend the maximum cycle time by another 1,000 ms. Since the maximum
cycle time has already reached the upper limit of 40,000 ms, the third
WDT(094) instruction is not executed.

3-31-5 SAVE CONDITION FLAGS: CCS(282)
Saves the current status of the Condition Flags in a separate area within the
CPU Unit. The current status of the Flags is preserved so that it can be read
(restored) with CCL(283) at a different location in the program, in a different
task, or even in a later cycle.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

Applicable Program Areas

Description When the execution condition is ON, CCS(282) stores the current status of
the Condition Flags (except for the ALWAYS ON and ALWAYS OFF Flags) in

1

2

3

CCS(282)

Variations Executed Each Cycle for ON Condition CCS(282)

Executed Once for Upward Differentiation @CCS(282)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1171

Other Instructions Section 3-31
a separate area in the CPU Unit. The Status of the following Condition Flags
will be preserved: ER, CY, >, =, <, N, OF, UF, >=, <>, and <=.

The preserved status of the Condition Flags can be read (restored) later only
with CCL(283), the LOAD CONDITION FLAGS instruction. The status can be
read in any of the following cases:

• Within a task

• Between different cyclic tasks

• Between cycles

Note 1. The status of the Condition Flags cannot be saved/loaded between a cyclic
task and interrupt task.

2. When CCS(282) is executed, it overwrites the previous Condition Flag in-
formation that was saved.

All of the Condition Flags are cleared when operation switches from one task
to another. Use the CCS(282) and CCL(283) instructions to save and load the
Condition Flag status between tasks or cycles.

For example, the CCS(282) and CCL(283) instructions make it possible to use
the CY Flag status (time monitoring diagnosis error) from the execution of

A

CCS

CCL

CCS

CCL

A

B

CCS

CCL

Between cycles

Between cyclic tasksWithin a task

CCL(283) is executed to read the status
in the next cycle after CCS(282) was
executed to save the status.
1172

Other Instructions Section 3-31
FPD(269) at a later point in the program, not immediately after execution of
the instruction.

Flags There are no flags affected by these instructions.

Examples In the following example, CCS(282) preserves the results of a Comparison so
that this result can be used as an execution condition later in the program.

3-31-6 LOAD CONDITION FLAGS: CCL(283)
Restores the status of the Condition Flags that were saved in a separate area
within the CPU Unit by CCS(282). It is also possible to use CCL(283) inde-
pendently to clear the Condition Flags.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

CCS

FPD

CCL

Task

The results of the comparison are stored in the Condition Flags.
(In this case, the results of the COMPARE Instruction can be used
in instruction B even if those results are affected by execution of
instruction A.)

Preserves the status of the Condition Flags in a separate location
in the CPU Unit.

Restores the status of the Condition Flags.

The Equals Flag will reflect the result of the COMPARE instruction,
not the result of instruction A.

Instruction A

Instruction B

CMP
D00000
D00300

CCS

MOV
D00000
D00200

CCL

=

000000
When CIO 000000 is ON in the following
example, CMP(020) will compare the
contents of D00000 and D00300 and those
results will be preserved by CCS(282).

The preserved Condition Flags are restored
by CCL(283).

This MOV(021) instruction is executed if the
result of the CMP(020) instruction caused the
Equals flag to be turned ON.

CCL(283)
1173

Other Instructions Section 3-31
Variations

Applicable Program Areas

Description When the execution condition is ON, CCL(283) restores (reads) the status of
the Condition Flags (except for the ALWAYS ON and ALWAYS OFF Flags).
The Status of the following Condition Flags will be restored (read): ER, CY, >,
=, <, N, OF, UF, >=, <>, and <=.

Condition Flags are shared by all instructions, so the status of these Flags
may change many times during the PLC cycle as each instruction is executed.
Previously, it was necessary to place conditions using the Condition Flags
immediately after the controlling instruction so that the status of the Condition
Flags would not be affected by intervening instructions. The CCS(282) and
CCL(283) instructions allow the controlling instruction to be separated from
the execution conditions that rely on the result.

For example, CCS(282) can store the status of the Equals Flag after execu-
tion of a Comparison Instruction and the result can be restored later. The
result does not have to be used immediately after execution of the instruction.

Refer to 3-31-5 SAVE CONDITION FLAGS: CCS(282) for more examples
showing how to use CCS(282) and CCL(283).

Flags There are no flags affected by these instructions.

3-31-7 CONVERT ADDRESS FROM CV: FRMCV(284)
Purpose Converts a CV-series PLC memory address to its corresponding CS/CJ-

series PLC memory address. FRMCV(284) can be useful when converting
CV-series programs that use PLC memory addresses so that they are com-
patible with CS/CJ-series PLCs.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Variations Executed Each Cycle for ON Condition CCL(283)

Executed Once for Upward Differentiation @CCL(283)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

CCL
CCL(283) is used alone to clear the
Condition Flags after execution of
instruction A so that those results do not
affect instruction B and later instructions.

Task

Instruction A

Instruction B
1174

Other Instructions Section 3-31
Ladder Symbol

Variations

Applicable Program Areas

Description When the execution condition is ON, FRMCV(284) executes the following
operations.

1. The CV-series PLC memory address specified in S is converted to its
equivalent CV-series data area address.

2. FRMCV(284) determines the CS/CJ-series PLC memory address that cor-
responds to the same CV-series data area address.

3. The CS/CJ-series PLC memory address is output to D. (An index register
(IR0 to IR15) must be specified for D.)

The following example shows FRMCV(284) used to convert the CV-series
PLC memory address for D00001.

FRMCV(284)

S

D

S: Word containing the CV-
series PLC memory address
D: Destination Index Register

Variations Executed Each Cycle for ON Condition FRMCV(284)

Executed Once for Upward Differentiation @FRMCV(284)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

FRMCV

D00000

IR1

#2001D00000

2001 Hex D00001

D00001 10001 Hex

IR1 10001 Hex

1. The CV-series PLC memory address is
converted to its equivalent CV-series data
area address.

CV-series PLC
memory address

CV-series data
area address

CS/CJ-series data
area address

CS/CJ-series
PLC memory

2. The corresponding CV-series data area
address is converted to its CS/CJ-series
PLC memory address.

Storage
3. The CS/CJ-series PLC memory
address is stored in D.
1175

Other Instructions Section 3-31
Note If there is no CS/CJ-series equivalent to the specified CV-series PLC memory
address, an error will occur, the Error Flag will be turned ON, and the address
will not be converted.

When an Index Register is used as an operand with a “,IR” prefix, the instruc-
tion will operate on the word indicated by the PLC memory address in the
Index Register, not the Index Register itself. Once the desired PLC memory
address has been stored in an Index Register, the Index Register itself can be
used as an operand for an instruction.

The FRMCV(284) instruction can be used to convert a CV-series program
with the following two kinds of programming for use in a CS/CJ-series PLC.
See the Examples later in this section for an example.

1. When using indirect binary mode DM addressing (*DM)
(when indirectly specifying a data area address with a PLC memory ad-
dress in DM)

2. When using CV-series PLC memory addresses directly as values
(when storing PLC memory addresses in Index Registers with direct ad-
dressing using an instruction such as MOV(021))

Operand Specifications

0000Hex
0001Hex

2000Hex
2001Hex

FFFDHex

0000CH
0001CH

D00000
D00001

E32765

0C000Hex
0C001Hex

10000Hex
10001Hex

FFFFFHex

0000CH
0001CH

D00000
D00001

EC_32767

S

IR1 10001HexD:

Specify the CV-series PLC
memory address in S. (In this
case, 2001 hex is the PLC
memory address of D00001.)

Data area address PLC memory address

Convert

Corresponding
data area
address

CV-series

The corresponding CS/CJ-series PLC
memory address is stored in D. (In this
case, data area address D00001 is
converted to PLC memory address
10001 hex and stored.)

Convert

CS/CJ-series

Area S D

CIO Area CIO 0000 to CIO 6143 ---

Work Area W000 to W511 ---

Holding Bit Area H000 to H511 ---

Auxiliary Bit Area A448 to A959 ---

Timer Area T0000 to T4095 ---

Counter Area C0000 to C4095 ---

DM Area D00000 to D32767 ---

EM Area without bank E00000 to E32767 ---

EM Area with bank En_00000 to En_32767

(n = 0 to C)

1176

Other Instructions Section 3-31
Flags

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants Any constant except 09FF hex, 0A00
to 0AFF hex, or 0D00 to 0E3F hex

Data Registers DR0 to DR15 ---

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15
DR0 to DR15, IR0 to IR15

Area S D

Name Label Operation

Error Flag ER ON if S specifies one of the following PLC memory
addresses that do not exist in the CS/CJ-series:

Temporary Relay (TR) Area (09FF hex)
CPU Bus Link (G) Area (0A00 to 0AFF hex)
SFC Areas (0D00 to 0E3F hex)

OFF in all other cases.
1177

Other Instructions Section 3-31
Examples Example 1: Converting a CV-series Program with *DM Indirect Binary
Mode DM Addressing

In this FRMCV(284) example, a DM word is specified in S, the PLC memory
address there is stored in an Index Register, and the Index Register is used
for indirectly addressed.

0200 Hex

#1234

#1234

000000

MOV

#1234S

D

0200 Hex

000000

FRMCV

D00000

IR0

S

D

MOV

#1234

,IR0

S

D

0200 Hex

OC0200 Hex

#1234

#1234

000OC0200 Hex

0200 Hex

OC0200 Hex

PLC Setup
Indirect DM data:
When indirect DM addresses are in binary, the content of
the DM word is treated as a PLC memory address and
specifies the corresponding address in I/O memory.

• CV-series program
(Program using indirect DM
binary mode addressing)

• CS/CJ-series program

Equivalent program

In this case, the value in D00000 is 0200 hex. The
corresponding data area address is CIO 0512, so
#1234 is transferred to CIO 0512.

Word address:
D00000

Word address:
CIO 0512

MOV(021)

CS/CJ-series PLC
memory address

CS/CJ-series PLC
memory address

In this case, the value in D00000 is 0200 hex. The
corresponding CV-series data area address is CIO 0512.
The CS/CJ-series PLC memory address for CIO 0512 is
0000C200 hex, so this value is stored in IR0. The
destination operand in MOV(021) indirectly addresses the
content of IR0, so #1234 is transferred to CIO 0512.

MOV
(021)

FRMCV
(284)

CS/CJ-series word
address: D00000

CV-series PLC
memory address:CV-series word

address: CIO0512

CS/CJ-series word
address: CIO 0512

Equivalent

CS/CJ-series word
address: IR0

CS/CJ-series word
address: CIO 0512

CS/CJ-series PLC
memory address:

CS/CJ-series PLC
memory address:

MOV(021)
1178

Other Instructions Section 3-31
Example 2: Converting a CV-series Program with PLC Memory
Addresses Stored directly in Index Registers

In this FRMCV(284) example, the CV-series PLC memory address is speci-
fied directly in S.

3-31-8 CONVERT ADDRESS TO CV: TOCV(285)
Purpose Converts a CS/CJ-series PLC memory address to its corresponding CV-

series PLC memory address. TOCV(285) can be useful when converting CS/
CJ-series programs that use PLC memory addresses so that they are com-
patible with CV-series PLCs.

This instruction is supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units
only.

Ladder Symbol

Variations

0200Hex

000000

CIO 0512

CIO 0512

MOV

#0200

IR0

S

D

000000

FRMCV

#0200

IR0

S

D

0200Hex

#0200IR0

#000C200IR

• CV-series program
(Program using PLC memory
addresses stored directly in IR)

• CS/CJ-series program

Equivalent program

In this case, the PLC memory address
0200 hex is stored in Index Register IR0.

In this case, the CV-series PLC memory address 0200
hex corresponds to CIO 0512. The CS/CJ-series PLC
memory address for CIO 0512 is 0000C200 hex, so this
value is stored in IR0.

CV-series PLC
memory address: 0200
hex

CV-series word
address

CS/CJ-series
word address CS/CJ-series PLC

memory address:
00C200 hex

TOCV(285)

S

D

S: Index Register containing the
CS/CJ-series PLC memory
address
D: Destination word

Variations Executed Each Cycle for ON Condition TOCV(285)

Executed Once for Upward Differentiation @TOCV(285)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
1179

Other Instructions Section 3-31
Applicable Program Areas

Description When the execution condition is ON, TOCV(285) executes the following oper-
ations.

1. The CS/CJ-series PLC memory address specified in S is converted to its
equivalent CS/CJ-series data area address. (An index register (IR0 to
IR15) must be specified for S.)

2. TOCV(284) determines the CV-series PLC memory address that corre-
sponds to the same CS/CJ-series data area address.

3. The CV-series PLC memory address is output to D.

The following example shows TOCV(285) used to convert the CS/CJ-series
PLC memory address for D00001.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TOCV

IR1

D00100

10001 HexIR1

2001 Hex

D00001

D00001

10001 Hex

D00100 2001 Hex

1. The CS/CJ-series PLC memory
address is converted to its equivalent CS/
CJ-series data area address.

CS/CJ-series PLC
memory address

CS/CJ-series data
area address

CV-series data
area address

CV-series PLC
memory address

2. The corresponding CV-series data area
address is converted to its CV-series PLC
memory address.

Storage
3. The CV-series PLC memory
address is stored in D.
1180

Other Instructions Section 3-31
Note 1. If there is no CV-series equivalent to the specified CS/CJ-series PLC mem-
ory address, an error will occur, the Error Flag will be turned ON, and the
address will not be converted.

2. The CV-series PLC memory address data stored by TOCV(285) can be
transferred to a CV-series PLC using CX-Programmer.

3. The same data area address that was used in the CS/CJ-series program
can be specified in the CV-series program by using indirect Index Register
addressing (“,IR” prefix) or indirect binary mode DM addressing (*DM).

Operand Specifications

0000Hex
0001Hex

2000Hex
2001Hex

FFFDHex

0C000Hex
0C001Hex

10000Hex
10001Hex

FFFFFHex

0000CH
0001CH

D00000
D00001

E32765

S

D00100 2001Hex

0000CH
0001CH

D00000
D00001

EC_32767

D:

Specify the CS/CJ-series
PLC memory address in S.
(In this case, 10001 hex is
the PLC memory address of
D00001.)

Data area address PLC memory address

Convert

Corresponding
data area
address

CS/CJ-series

The corresponding CV-series
PLC memory address is
stored in D. (In this case,
data area address D00001 is
converted to PLC memory
address 2001 hex and
stored.)

Convert

CV-series

Area S D

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants See note 1. ---

Data Registers --- DR0 to DR15
1181

Other Instructions Section 3-31
Note 1. An error will occur and the Error Flag will be turned ON if S specifies one
of the following PLC memory addresses that do not exist in the CV-series:

2. An error will occur and the Error Flag will be turned ON if an area other
than the Index Register Area is specified for S.

Flags

Example Converting a CS/CJ-series Program with Indirect Index Register
Addressing

1. In this TOCV(285) example, an Index Register is specified in S. The CS/
CJ-series PLC memory address in that Index Register is converted to its
CV-series equivalent.

2. The CV-series PLC memory address is transferred to the specified data
area address.

3. Use the CV-series PLC memory address in the CV-series program.

Index Registers IR0 to IR15 ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15

DR0 to DR15, IR0 to IR15

Area S D

Area or addresses PLC memory addresses

Task Flag Area 0000 B800 to 0000 B801 hex

A512 to A959 0000 BA40 to 0000 BBFF hex

CIO 2556 to CIO 6143 0000 C9FC to 0000 D7FF hex

T1024 to T4095 0000 BE40 to 0000 BEFF hex and
0000 E400 to 0000 EFFF hex

C1024 to C4095 0000 BF40 to 0000 BFFF hex and
0000 F400 to 0000 FFFF hex

HR Area 0000 D800 to 0000 D9FF hex

WR Area 0000 DE00 to 0000 DFFF hex

D24576 to D32767 0001 6000 to 0001 7FFF hex

EM bank specification 0001 8000 to 000F 7FFF hex

E32766 to D32767 000F FFFE to 000F FFFF hex

Name Label Operation

Error Flag ER ON if S specifies a PLC memory address that does not
exist in the CV-series PLCs.
ON if S is not a constant or Index Register.

OFF in all other cases.
1182

Other Instructions Section 3-31
3-31-9 DISABLE PERIPHERAL SERVICING: IOSP(287) (CS1-H/CJ1-H/
CJ1M Only)

Purpose Disables peripheral servicing during program execution in Parallel Processing
Mode or Peripheral Servicing Priority Mode.

For details on the Parallel Processing Mode and Peripheral Servicing Priority
Mode, refer to Section 6 Advanced Functions in the CS/CJ PLC Programming
Manual.

Note This instruction is supported by CS1-H, CJ1-H, and CJ1M CPU Units only. It
cannot be used with CS1, CJ1, or CS1D CPU Units.

Ladder Symbol

Variations

Applicable Program Areas

Description Use IOSP(287) in a cyclic task in Parallel Processing Mode (with Synchro-
nous or Asynchronous Memory Access) to disable the following kinds of
peripheral servicing. Peripheral servicing will be enabled again when
IORS(288), the ENABLE PERIPHERAL SERVICING instruction, is executed.

• Event servicing with Special I/O Units

• Event servicing with CPU Bus Units

000001

TOCV

IR0

D00200

S

D

MOV

#1234

,IR0

S

D

MOV

#1234

*D00200

S

D

#1234

#1234

10001Hex

#1234

000000 000000

D0001

IR0 10001Hex

D0001 2001Hex

2001Hex

10001Hex

D00200 D0001

D00200 2001Hex

2001Hex#1234

• CS/CJ-series program
(Program using indirect Index
Register addressing)

• CS/CJ-series program

In this case, IR0 contains 10001 hex. The
data area address corresponding to PLC
memory address 10001 hex is D00001, so
#1234 is transferred to D00001.

CV-series PLC
memory address:

CS/CJ-
series data
area

CS/CJ-
series data
area
address:

Transfer contents of
D00200 to CV-series.

• CV-series program

In this case, IR0 contains 10001 hex.
Since the data area address
corresponding to CS/CJ-series PLC
memory address 10001 hex is D00001,
TOCV(285) stores the CV-series PLC
memory address for D00001 (2001 hex)
in destination word D00200.

PLC memory
address: 10001 hex

CS/CJ-series
data area
address

CS/CJ-series
data area
address

CS/CJ-series PLC
memory address:

Same

CV-series data
area address

CS/CJ-series
data area
address

Transfer contents
of D00200 to CV-
series.

In the CV-series PLC, the destination of the
MOV(021) instruction is indirectly addressed
(in binary mode) through D00200, so #1234 is
transferred to D00001.

PLC Setup
Indirect DM data:
When indirect DM addresses are in binary, the
content of the DM word is treated as a PLC
memory address and specifies the
corresponding address in I/O memory.

CV-series data
area address

CV-series data
area address

CV-series PLC
memory address

MOV(021)

*DM specification

IOSP(287)

Variations Executed Each Cycle for ON Condition IOSP(287)

Executed Once for Upward Differentiation @IOSP(287)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed
1183

Other Instructions Section 3-31
• Peripheral Port servicing

• RS-232C Port servicing

• Event servicing with Inner Boards (CS-series only)

• Event servicing (including background instruction processing) that uses a
communications port number, i.e., an internal logical port.

When peripheral servicing has been disabled with IOSP(287), it will remain
disabled until IORS(288) is executed, END(001) is executed, or PLC opera-
tion is stopped.

Flags

Precautions IOSP(287) cannot be executed in an interrupt task. An error will occur and the
Error Flag will be turned ON if IOSP(287) is executed in an interrupt task.

IOSP(287) cannot disable peripheral servicing in more than one task. If it is
necessary to disable peripheral servicing in more than one task, program
IOSP(287) separately in each task.

IOSP

IORS

Disables execution of
peripheral servicing.

Execution condition

Execution of peripheral
servicing is disabled
between IOSP(287) and
IORS(288).

Enables execution of
peripheral servicing.

Name Label Operation

Error Flag ER ON if IOSP(287) is executed in an interrupt task.

OFF in all other cases.
1184

Other Instructions Section 3-31
Example The following example shows IOSP(287) and IORS(288) used to disable
peripheral servicing in a program section.

3-31-10 ENABLE PERIPHERAL SERVICING: IORS(288) (CS1-H/CJ1-H/
CJ1M Only)

Purpose Enables the peripheral servicing during program execution in Parallel Pro-
cessing Mode that was disabled by IOSP(287), the DISABLE PERIPHERAL
SERVICING instruction.

This instruction is supported by CS1-H, CJ1-H, and CJ1M CPU Units only.

Ladder Symbol

Variations

Applicable Program Areas

Description Use IORS(288) in a cyclic task to release the prohibition on peripheral servic-
ing by IOSP(287), the DISABLE PERIPHERAL SERVICING instruction.

It is not necessary to program IORS(288) with an execution condition.

IORS(288) cannot be executed in an interrupt task. An error will occur and the
Error Flag will be turned ON if IORS(288) is executed in an interrupt task.

Flags

IOSP

IORS

W00000 When the PLC is in
Parallel Processing
Mode, peripheral
servicing is executed in
parallel.

When W00000 is ON,
execution of peripheral
servicing is disabled
between IOSP(287) and
IORS(288).

Enables execution of
peripheral servicing.
When the PLC is in
Parallel Processing
Mode, peripheral
servicing is executed in
parallel.

IORS(288)

Variations Executed Each Cycle for ON Condition IORS(288)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Name Label Operation

Error Flag ER ON if IORS(288) is executed in an interrupt task.
OFF in all other cases.
1185

Block Programming Instructions Section 3-32
3-32 Block Programming Instructions
This section describes block programs and the block programming instruc-
tions.

3-32-1 Introduction

Block Programs
Up to 128 block programs within the overall user program (all tasks) with the
CS/CJ-series. The execution of each block program is controlled by a single
execution condition. All instructions between BPRG(096) and BEND<801) are
executed unconditionally when the execution condition for BPRG(096) is
turned ON. The execution of all the block programming instructions except for
BPRG(096) is not affected by the execution condition. This allow program-
ming that is to be executed under a single execution condition to be grouped
together in one block program.

Each block is started by one execution condition in the ladder diagram and all
instructions within the block are written in mnemonic form. The block program
is thus a combination of ladder and mnemonic instructions.

Block programs enable programming operations that can be difficult to pro-
gram with ladder diagrams, such as conditional branches and step progres-
sions.

Instruction Mnemonic Function code Page

BLOCK PROGRAM BEGIN BPRG 096 1191

BLOCK PROGRAM END BEND 801 1191

BLOCK PROGRAM PAUSE BPPS 811 1193

BLOCK PROGRAM RESTART BPRS 812 1193

CONDITIONAL BLOCK EXIT
(NOT)

EXIT (NOT) 806 1199

IF (NOT) IF (NOT) 802 1196

ELSE ELSE 803 1196

IF END IEND 804 1196

ONE CYCLE AND WAIT (NOT) WAIT (NOT) 805 1202

HUNDRED-MS TIMER WAIT TIMW (BCD) 813 1206

TIMWX (binary) 816

COUNTER WAIT CNTW (BCD) 814 1209

CNTWX (binary) 818

TEN-MS TIMER WAIT TMHW (BCD) 817 1212

TMHWX
(binary)

815

LOOP LOOP 809 1215

LOOP END (NOT) LEND (NOT) 810 1215
1186

Block Programming Instructions Section 3-32
The following example shows two block programs.

Tasks and Block Programs
Block programs can be located within tasks. While tasks are used to divide
large programming units, block programs can be used within tasks to further
divide programming into smaller units controlled with a single ladder diagram
execution condition.

Just like tasks, block programs that are that are not executed (i.e., which have
an OFF execution condition) do not require execution time and can thus be
used to reduce the cycle time (somewhat the same as jumps). Also like tasks,
other blocks can be paused or restarted from within a block program.

There are, however, differences between tasks and block programs. One dif-
ference is that input conditions are not used with block programs unless inten-
tionally programmed with IF(802), WAIT(805), EXIT(806), IEND(810) or other
instructions. Also, there are some instructions that cannot be used within
block programs, such as those that detect upward and downward differentia-
tion.

Block programs can be used either within cyclic tasks or interrupt tasks. Each
block program number from 0 to 127 can be used only once and cannot be
use again, even in a different task.

1

2

Block program area No. 1

When CIO 000000 is ON, the contents
of block program 1 will be executed.
The MOV(021) and SET instructions
will be executed unconditionally and
the block program will end.

Block program area No. 2

When CIO 000001 is ON, the contents
of block program 2 will be executed. If
CIO 000003 and CIO 000004 are both
ON, the binary addition will be performed
(CIO 0002 + #000A→D00001).
If one or both of these bits is OFF,
#0001 will be moved to D00001. CIO
000015 will then be set unconditionally
and the block program will end.
1187

Block Programming Instructions Section 3-32
Using Block Programming Instructions
Basically speaking, IF(802), ELSE(803), and IEND(810) are used for execu-
tion conditions (along with bits) inside block programs.

If “A” or “B” is to be executed then IF A ELSE B IEND are used as shown
below.

 If “A” or nothing is to be executed, IF A IEND are used as shown below.

If execution is to wait until an execution condition or bit is ON (e.g., for step
progressions), then WAIT(805) is used.

If execution is to wait until for a specified period of time (e.g., for timed step
progressions), then TIMW(813), TIMX(816), TMHW(815), or TMHWX(817) is
used.

If execution is to wait until for a specified count has been reached (e.g., for
step progressions with counters), then CNTW(814)/CNTWX(818) is used.

If execution is to be repeated within part of a block program until a condition is
met, then LOOP(809) and LEND(810) are used.

If execution of the block program is to be ended in the middle based on an
execution condition, the EXIT(806) is used.

If another block program that is being executed is to be paused or restarted
from within a block program, then BPPS(811) and BPRS(812) are used.

Program

Block program 001

Block program n

Task 1

Task 2

Task n

 "B" executed
(after ELSE).

 "A" executed (be-
tween IF and ELSE).

Execution
condition ON?

Execution
condition

Execution
condition Execution

condition ON?

 "A" executed (be-
tween IF and IEND).
1188

Block Programming Instructions Section 3-32
Instructions Taking Execution Conditions within Block Programs
The following instruction can take execution conditions within a block pro-
gram.

Instructions with Application Restrictions within Block Programs
The instructions listed in the following table can be used only to create execu-
tion conditions for IF(802), WAIT(805), EXIT(806), LEND(810), CJP(510, or
CJPN(511) and cannot be used by themselves. The execution of these
instructions may be unpredictable if used by themselves or in combination
with any other instructions.

Instructions Not Applicable in Block Programs
The instructions listed in the following table cannot be used within block pro-
grams.

Instruction type Instruction
name

Mnemonic

Block programming instructions IF (NOT) IF(802) (NOT)

ONE CYCLE
AND WAIT (NOT)

 WAIT(805)
(NOT)

EXIT EXIT(806) NOT

LOOP END LEND(810) NOT

Ladder diagram instructions CONDITIONAL
JUMP

CJP(510)

CONDITIONAL
JUMP NOT

CJPN(511)

Mnemonic Name

LD/LD NOT LOAD/LOAD NOT

AND/AND NOT AND/AND NOT

OR/OR NOT OR/OR NOT

UP/DOWN CONDITION ON/CONDITION OFF

>, <,=, >=, <=, <> (S) (L) Symbol Comparison Instruction (not
right-hand instructions)

LD TST/TST NOT LOAD Bit Test Instructions

AND TST/TST NOT AND Bit Test Instructions

OR TST/TST NOT OR Bit Test Instructions

>$, <$,=$, >=$, <=$, <>$ Text String Comparison Instruction

Good Example Bad Example

Used as
execution
condition
for IF.

Cannot be
used as
execution
condition
for
MOV(021).

Instruction
group

Mnemonic Name Alternative

Sequence
Output
Instructions

OUT OUTPUT Use SET and RSET.

OUT NOT OUTPUT NOT

DIFU(013) DIFFERENTIATE UP None

DIFD(014) DIFFERENTIATE DOWN None

KEEP(011) KEEP None
1189

Block Programming Instructions Section 3-32
Sequence
Control
Instructions

FOR(512)
and
NEXT(513)

FOR-NEXT LOOPS Use LOOP(809) and
LEND(810) (NOT).

BREAK(514) BREAK LOOP

IL(002) and
ILC(003)

INTERLOCK and INTER-
LOCK CLEAR

Divide the block program
into smaller blocks.

JMP(004)0
and
JME(005) 0

Multiple JUMP and Multi-
ple JUMP END

Use JMP(004 and
JME(005) (but the jump will
be made unconditionally).

END(001) END Use BEND(801).

Timer and
Counter
Instructions

TIM and
TIMX(550)

HUNDRED-MS TIMER Use TIMW(813),
TIMWX(816), TMHW(815),
TMHWX(817),
CNTW(814), and
CNTWX(818). Other
instructions in the block
program will not be exe-
cuted until the timer times
out or the counter counts
out.

TIMH(015)
and
TIMHX(551)

TEN-MS TIMER

TMHH(540)
and TIM-
HHX(552)

ONE-MS TIMER

TIMU(541)
and
TIMUX(556)

TENTH-MS TIMER
(CJ1-H-R CPU Units only)

TIMUH(544)
and
TIMUHX
(557)

HUNDREDTH-MS TIMER
(CJ1-H-R CPU Units only)

TTIM(087)
and
TTIMX(555)

ACCUMULATIVE TIMER

TIML(542)
and
TIMLX(553)

LONG TIMER

MTIM(543)
and
MTIMX(554)

MULTI-OUTPUT TIMER

CNT and
CNTX(546)

COUNTER

CNTR(012)
and CNTRX
(548)

REVERSIBLE COUNTER

Subroutine
Instructions

SBN(092)
and
RET(093)

SUBROUTINE ENTRY
and SUBROUTINE
RETURN

None

Shift Instruc-
tions

SFT(010) SHIFT REGISTER Use other Shift Instruc-
tions.

Step Instruc-
tions

STEP(008)
and SNXT
(009)

STEP and STEP NEXT Use WAIT(805).

Data Con-
trol Instruc-
tions

PID(190) PID CONTROL None

Diagnostic
Instructions

FPD(269) FAILURE POINT DETEC-
TION

None

Upward and
Downward
Differenti-
ated Instruc-
tions

Mnemonics
with @

Upward Differentiated
Instructions

None

Mnemonics
with %

Downward Differentiated
Instructions

None

Instruction
group

Mnemonic Name Alternative
1190

Block Programming Instructions Section 3-32
3-32-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
Purpose Define a block programming area. For every BPRG(096) there must be a cor-

responding BEND(801).

Ladder Symbols BLOCK PROGRAM BEGIN

BLOCK PROGRAM END

BEND(801)

Variations BPRG(096)

BEND(801)

Applicable Program Areas

Note BPRG(096) is allowed only once at the beginning of each block program.

Operands N: Block Program Number
The block program number must be between 0 and 127 decimal.

Operand Specifications
(BPRG(096))

BPRG(096)

N N: Block program number

Variations Executed Each Cycle for ON Condition BPRG(096)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

(See note.) OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0 to 127 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

1191

Block Programming Instructions Section 3-32
Description BPRG(096) executes the block program with the block number designated in
N, i.e., the one immediately after it and ending with BEND(801). All instruc-
tions between BPRG(096) and BEND(801) are executed with ON execution
conditions (i.e., unconditionally).

When the execution condition for BPRG(096) is OFF, the block program will
not be executed and no execution time will be required for the instruction in
the block program.

Execution of the block program can be stopped using BPPS(811) from within
another block program even if the execution condition for BPRG(096) is ON.

Flags BPRG(096)

BEND(801)

Precautions Each block program number can be used only once within the entire user pro-
gram.

Block programs cannot be nested.

If the block program is in an interlocked program section and the execution
condition for IL(002) is OFF, the block program will not be executed.

Block program
Executed when the execu-
tion condition is ON.

Name Label Operation

Error Flag ER ON if BPRG(096) is already being executed.
ON if N is not between 0 and 127.

ON if the same block program number is used more than
once.
OFF in all other cases.

Name Label Operation

Error Flag ER ON if a block program is not being executed.
OFF in all other cases.

Nesting NOT possible.
1192

Block Programming Instructions Section 3-32
BPRG(096) and the corresponding BEND(801) must be in the same task.

An error will occur and the Error Flag will turn ON if BPRG(096) is in the mid-
dle of a block program, BEND(801) is not in a block program, N is not between
#0000 and #007F (binary), there is no block program, or if the same block pro-
gram number is used more than once.

Examples When CIO 000000 turns ON in the following example, block program 0 will be
executed. When CIO 000000 is OFF, the block program will not be executed.

The two program sections shown below both execute MOV(021), ++B(594),
and SET for the same execution condition (i.e., when CIO 000000 turns ON).

3-32-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812)
Purpose Pause and restart the specified block program from another block program.

Ladder Symbol

Variations

0

Block program 0

0

BPPS(811) N

BPRS(812) N

N: Block program number

Variations Always Executed in Block Program
1193

Block Programming Instructions Section 3-32
Applicable Program Areas

Note BPRG(096) and BPRS(812) must be used in block programming regions even
within subroutines and interrupt tasks.

Operands N: Block Program Number
The block program number must be between 0 and 127 decimal.

Operand Specifications

Description BPPS(811) is used inside one block program to pause the execution of
another block program specified by N, the block program number. The block
program that is paused with BPPS(811) even if the BPRG(096) for the block
program has an ON execution condition. The block program will not be
restarted until BPRS(812) is executed for it.

BPRS(812) restarts the block program specified by N, the block program num-
ber. Once restarted, the block program will be executed as long as the
BPRG(096) for the block program has an ON execution condition.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 0 to 127 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

to

BPRS(812) executed
for block program n.

Block program n. This block
program will now be executed
as long as bit "a" is ON.

BPPS(811) executed
for block program n.

Block program n. Once
paused this block program
will not be executed even
if bit "a" is ON.

to

to

to

to

to
1194

Block Programming Instructions Section 3-32
Flags

Precautions An error will occur and the Error Flag will turn ON if BPPS(811) or BPRS(812)
is not in a block program or if N is not between #0000 and #007F (binary).

BPPS(811) can be used to pause the block program that contains it. When
the block program is then restarted using BPRS(812) from another block pro-
gram, the paused block program will restart from the next instruction after
BPPS(811).

If a paused block program contains TIMW(813), TIMWX(816), TMHW(815), or
TMHWX(817), the PV of the time will continue to elapse even while the block
program is paused.

Examples The following diagram shows a basic example of pausing a block program.

Note If the block program that is being paused appears after BPPS(811), it will not
be executed. If the block program appears before BPPS(811), it will be
paused starting the next cycle.

If CIO 000000 is ON, the following program pauses execution of either block
program 1 or block program 2 depending on the status of CIO 000001. The
block program that was paused is then restarted after 10 seconds.

Name Label Operation

Error Flag ER ON if BPPS(811) or BPRS(812) is not in a block program.
ON if N is not between 0 and 127.

OFF in all other cases.

0

1

Block program 0

Block program 1 will be paused if CIO 000000
and CIO 000001 are both ON.

Block program 1 If the BPPS(811) in block program 0 has
been executed, block program 1 will not be
executed even if CIO 000002 is ON.

0100

 000000 LD 000000
 000001 BPRG(096) 00
 000002 IF(802) 000001
 000003 BPPS(811) 01
 000004 ELSE(803)
 000005 BPPS(811) 02
 000006 IEND(804)
 000007 TIMW(803) 0000

 000008 BPRS(812) 1
 000009 BPRS(812) 2
 000010 BEND(801)

0

Pauses block program 1

Pauses block program 2

Restarts block program 1
Restarts block program 2

Address Instruction Operands
1195

Block Programming Instructions Section 3-32
3-32-4 Branching: IF(802), ELSE(803), and IEND(804)
Purpose Branches the block program either based on an execution condition or on the

status of an operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Note IF(802), ELSE(803), and IEND(804) must be used in block programming
regions even within subroutines and interrupt tasks.

Operand Specifications

IF(802) B

IF(802)

B

ELSE(803)

IEND(804)

IF(802) NOT

B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A44715

A44800 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK0000 to TK0031

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1196

Block Programming Instructions Section 3-32
Description Operation without an Operand for IF(802)

If an operand bit is not specified, an execution must be created before IF(802)
starting with LD. If the execution condition is ON, the instructions between
IF(802) and ELSE(803) will be executed and if the execution condition is OFF,
the instructions between ELSE(803) and IEND(804) will be executed.

If the ELSE(803) instruction is omitted and the execution condition is ON, the
instructions between IF(802) and IEND(804) will be executed and if the execu-
tion condition is OFF, only the instructions after IEND(804) will be executed.

Operation with an Operand for IF(802) or IF NOT(802)

An operand bit, B, can be specified for IF(802) or IF NOT(802). If the operand
bit is ON, the instructions between IF(802) and ELSE(803) will be executed. If
the operand bit is OFF, the instructions between ELSE(803) and IEND(804)
will be executed. For IF NOT(802), the instructions between IF(802) and
ELSE(803) will be executed and if the operand bit is ON, the instructions be
ELSE(803) and IEND(804) will be executed is the operand bit is OFF.

If the ELSE(803) instruction is omitted and the operand bit is ON, the instruc-
tions between IF(802) and IEND(804) will be executed and if the operand bit
is OFF, only the instructions after IEND(804) will be executed. The same will
happen for the opposite status of the operand bit if IF NOT(802) is used.

 "B" executed
(after ELSE).

Execution
condition ON?

 "A" executed (be-
tween IF and ELSE).

Execution
condition

Execution
condition ON?

 "A" executed (be-
tween IF and IEND).

Execution
condition

Operand bit
ON?

 "B" executed
(after ELSE).

 "A" executed (be-
tween IF and ELSE).
1197

Block Programming Instructions Section 3-32
Flags

Precautions Instructions in block programs are generally executed unconditionally. Branch-
ing, however, can be used to create conditional execution based on execution
conditions or operand bits.

Use IF A ELSE B IEND to branch between A and B.

Use IF A IEND to branch between A and doing nothing.

Branches can be nested to up to 253 levels.

A error will occur and the Error Flag will turn ON if the branch instructions are
not in a block program or if more than 254 branches are nested.

Nesting Branches Up to 253 branches can be nested within the top level branch.

Examples The following example shows two different block programs controlled by
CIO 000000 and CIO 000002.

The first block executes one of two additions depending on the status of
CIO 000001. This block is executed when CIO 000000 is ON. If CIO 000001
is ON, 0001 is added to the contents of CIO 0001. If CIO 000001 is OFF, 0002
is added to the contents of CIO 0001. In either case, the result is placed in
D00000.

The second block is executed when CIO 000002 is ON and shows nesting
two levels. If CIO 000003 and CIO 000004 are both ON, the contents of
CIO 1200 and CIO 0002 are added and the result is placed in D00010 and
then 0001 is moved into D00011 based on the status of CY. If either
CIO 000003 or CIO 000004 is OFF, then the entire addition operation is
skipped and CIO 000301 is turned ON.

Operand bit
ON?

 "A" executed (be-
tween IF and IEND).

Name Label Operation

Error Flag ER ON if the branch instructions are not in a block program.
ON if more than 254 branches are nested.
OFF in all other cases.
1198

Block Programming Instructions Section 3-32
3-32-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)
Purpose Exists the block program (i.e., does not execute any other instruction in the

block program through BEND(801) depending on the status of the operand bit
or on the execution condition. EXIT(806) without an operand bit exits the pro-
gram if the execution condition is ON. EXIT(806) with an operand bit exits the
program if the bit is ON. EXIT NOT(806) must have an operand bit and exits
the program if the bit is OFF.

Ladder Symbol

Address Instruction Operands

000000 LD 000000

000001 BPRG(096) 00

000002 IF(802) 000001

000003 +B(404)

0001

#0001

D00000

000004 ELSE(803)

000005 +B(404)

0001

#0002

D00000

000006 IEND(804)

000007 BEND(801)

000008 LD 000002

000009 BPRG(096) 1

000010 LD 000003

000011 AND 000004

000012 IF(802)

000013 +B(404)

1200

0002

D00010

000014 IF(802) A50004

000015 MOV(030)

#0001

D00011

000016 IEND(804)

000017 ELSE(803)

000018 SET(016) 000301

000019 IEND(804)

000020 BEND(801)

+B(404)

ELSE(803)
+B(404)

IEND(804)
BEND(801)

IF(802)
+B(404)

MOV(030)

IEND(804)
ELSE(803)

IF(802) 000001

 0001
 #0001
 D00000

 0001
 #0002
 D00000

LD 000003
AND 000004

 1200
 0002
 D00010

CYIF(802)

 #0001
 D00011

SET(016) 000301
IEND(804)
BEND(801)

000000

000002

0

1

EXIT(806)

EXIT(806) B

EXIT NOT(806) B

B: Bit operand
1199

Block Programming Instructions Section 3-32
Variations

Applicable Program Areas

Note EXIT(806) and EXIT NOT(806) must be used in block programming regions
even within subroutines and interrupt tasks.

Operand Specifications

Description Operation without an Operand

EXIT(806) can be executed without an operand. If it is, then an execution con-
dition must be created for it starting with LD. If the execution condition is OFF,
the rest of the block program will be executed normally. If the execution condi-
tion is ON, the rest of the instructions in the block program through
BEND(801) will not be executed.

Variations Always Executed in Block Program EXIT(806)

EXIT(806) B
EXIT NOT(806) B

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A44715
A44800 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK0000 to TK0031

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1200

Block Programming Instructions Section 3-32
Operation with an Operand

If the operand bit, B, is OFF for EXIT(806) the rest of the block program will be
executed normally. If the operand bit is ON for EXIT(806), the rest of the
instructions in the block program through BEND(801) will not be executed. For
EXIT NOT(806), the rest of the block program will be executed for if the oper-
and bit is ON and skipped if the operand bit is OFF.

Flags

Precautions An error will occur and the Error Flag will turn ON if EXIT(806) or EXIT
NOT(806) is not in a block program.

Examples When CIO 000000 is OFF, the block program is executed. If CIO 000001 is
ON, A is executed and then B is skipped and program control jumps to
BEND(801). Section B of the program will continue to be skipped until
CIO 000001 turns OFF again.

Although EXIT (NOT)(806) is similar to IF-IEND programming, execution time
is normally shorter for EXIT (NOT)(806) because the instructions from EXIT
(NOT)(806) to the end of the block program are not executed at all.

Execution
condition
OFF

Execution
condition
ON

 "A" executed. "A" executed.

 "B" executed.

Block ended.

Execution condition

Operand bit
OFF
(ON for EXIT
NOT)

Operand bit
ON
(OFF for EXIT
NOT)

 "A" executed. "A" executed.

 "B" executed.

Block ended.

Name Label Operation

Error Flag ER ON if EXIT(806) or EXIT NOT(806) is not in a block pro-
gram.
OFF in all other cases.
1201

Block Programming Instructions Section 3-32
3-32-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT
Purpose Stops execution of the rest of the block program until an execution condition

turns ON or an operand bit turns ON or OFF.

Ladder Symbol

Variations

Applicable Program Areas

Note WAIT(805)/WAIT(805) NOT must be used in block programming regions even
within subroutines and interrupt tasks.

Operand Specifications

CIO 000001 ON

CIO 000004 ON

CIO 000001 OFF

CIO 000004 OFF

0

2

Block ended

Block ended

CIO 000003 and CIO 000003 or

WAIT(805)

WAIT(805)

WAIT(805) NOT B

B B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A44715
A44800 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK0000 to TK0031

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min
1202

Block Programming Instructions Section 3-32
Description Operation without an Operand

If an operand bit is not specified, an execution must be created before
WAIT(805)/WAIT(805 NOT starting with LD. If the execution condition is ON
for WAIT(805), the rest of the instruction in the block program will be skipped.
In the next cycle, none of the block program will be executed except for the
execution condition for WAIT(805). When the execution condition goes ON,
the instruction from WAIT(805) to the end of the program will be executed.

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area B

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
ON

 "B" executed.

 "C" executed. "C"
executed.

 "C"
executed.

Wait

Execution
condition

 "A"
executed.
1203

Block Programming Instructions Section 3-32
Operation with an Operand

An operand bit, B, can be specified for WAIT(805) or WAIT NOT(805). If the
operand bit is OFF (ON for WAIT NOT(805)), the rest of the instructions in the
block program will be skipped. In the next cycle, none of the block program will
be executed except for the execution condition for WAIT(805) or WAIT(805)
NOT. When the execution condition goes ON (OFF for WAIT(805) NOT), the
instruction from WAIT(805) or WAIT(805) NOT to the end of the program will
be executed.

Flags

Precautions WAIT(805) and WAIT(805) NOT can be used for step progressions inside
block programs.

An error will occur and the Error Flag will turn ON if WAIT(805) or WAIT(805)
NOT is not in a block program.

Note The program addresses of WAIT instructions with operands specified and the
program addresses of the first instruction creating the execution conditions for
WAIT instructions without operands are recorded in memory to enable execu-
tion to be continued based on the execution condition/bit operand. If online
editing performed from a Peripheral Device, however, the WAIT status will be
cleared and the block program will again be executed from the beginning.

Examples When CIO 000000 is ON in the following example, block program 00 will be
executed. Execution would proceed as follows:

1,2,3... 1. If CIO 000001 is OFF, none of the block program will be executed until
CIO 000001 turns ON. When CIO 000001 turns ON, “A” will be executed.

2. If CIO 000002 is OFF after “A” is executed, the rest of the block program
will not be executed until CIO 000002 turns ON. When CIO 000002 turns
ON, “B” will be executed

3. If CIO 000003 is OFF after “B” is executed, the rest of the block program
will not be executed until CIO 000003 turns ON. When CIO 000003 turns
ON, “C” will be executed and the execution process will be repeated.

Operand bit
OFF

Operand bit
OFF

Operand bit
ON

 "A"
executed.

 "B" executed.

 "C" executed. "C"
executed.

 "C"
executed.

Wait

Name Label Operation

Error Flag ER ON if WAIT(805) or WAIT(805) NOT is not in a block pro-
gram.
OFF in all other cases.
1204

Block Programming Instructions Section 3-32
The following table shown the relationship between the operand bits and block
program execution.

As shown in this example, WAIT(805) and WAIT(805) NOT can be used to
progressively execute steps within a block program.

Note No block programming instructions will be executed while the input condition
for WAIT(805) is OFF. The other block programming instructions will be exe-
cuted again after the input condition for WAIT(805) turns ON. If, however,
online editing is executed for a task containing a block program, the wait sta-
tus created by WAIT(805) will be cleared and the block program will be exe-
cuted again from the beginning.

CIO 000
001
OFF0

CIO 00000
1 ON and
CIO 00000
2 OFF

CIO 000001,
CIO 00002,
and
CIO 000003
ON

CIO 00000
1 ON,
CIO 00000
2 ON and
CIO 00000
3 OFF

Operand bits Program execution

CIO 000001 CIO 000002 CIO 000003 First cycle CIO 000000
is ON

Next cycle Following cycles

OFF Any status Any status Nothing executed. Nothing executed; wait-
ing for CIO 000001.

When CIO 000001
turns ON “A” is exe-
cuted and the status of
CIO 000002 is checked.

ON OFF Any status “A” executed. Waiting for CIO 000002. When CIO 000002
turns ON “B” is exe-
cuted and the status of
CIO 000003 is checked.

ON ON OFF “A” and “B” executed. Waiting for CIO 000003. When CIO 000003
turns ON “C” is exe-
cuted

ON ON ON “A,” “B,” and “C” exe-
cuted.

“A,” “B,” and “C” exe-
cuted.
1205

Block Programming Instructions Section 3-32
3-32-7 HUNDRED-MS TIMER WAIT: TIMW(813) and TIMWX(816)
Purpose Delays execution of the rest of the block program until the specified time has

elapsed. Execution will be continued from the next instruction after
TIMW(813)/TIMWX(816) when the timer times out.

Ladder Symbol PV Refresh Method: BCD

PV Refresh Method: Binary

Variations

Applicable Program Areas

Note TIMW(813)/TIMWX(816) must be used in block programming regions even
within subroutines.

Operands N: Timer Number
BCD: 0 to 4095 (decimal)
Binary: 0 to 4095 (decimal)

S: Set Value
BCD: #0000 to #9999 (BCD)
Binary: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Operand Specifications

TIMW(813) N
SV

N: Timer number
SV: Set value

TIMWX(816) N
SV

N: Timer number
SV: Set value

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed.

Area N SV

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A447

A448 to A959

Timer Area 0000 to 4095 T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)
1206

Block Programming Instructions Section 3-32
Description TIMW(813)/TIMWX(816) creates an ON-delay countdown timer (100-ms timer
set in SV) between execution of the block program instruction preceding it and
the instructions following. TIMW(813) can time from 0 to 999.9 s with a timer
accuracy of 0 to 0.01 s. TIMWX(816) can time from 0 to 6,553.5 s with a timer
accuracy of 0 to 0.01 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time.

The first part of the block program is executed the first time the block program
is entered. When TIMW(813)/TIMWX(816) is reached, the Completion Flag is
reset to OFF, the timer is preset to the SV, and execution of the rest of the
block program will wait until SV has expired.

While the timer is timing down, only TIMW(813)/TIMWX(816) will be executed
to update the timer. When the timer times out, the Completion Flag will turn
ON and the rest of the block program will be executed. Once the entire block
program has been executed, the process will be repeated.

TIMW(813)/TIMWX(816) can be thought of as a WAIT instruction with a timer
for the execution condition and it can thus be used for timed step progres-
sions.

Flags

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area N SV

Time elapsed.

 "A"
executed
and SV
preset.

 "B" executed.

 "C" executed.

Name Label Operation

Error Flag ER ON if TIMW(813)/TIMWX(816) is not in a block program.
ON if an indirect IR designation is used for N in BCD
mode and the address is not for a timer present value.
ON if in BCD mode and SV is not BCD.
OFF in all other cases.
1207

Block Programming Instructions Section 3-32
Precautions The rest of the block program following timer will be executed if the Comple-
tion Flag for the timer is force set.

If the Completion Flag for the timer is force reset, only TIMW(813)/
TIMWX(816)) will be executed in the block program until the force reset status
is cleared.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

The timer numbers are also used by the other timer instructions. Operation
will not be predictable if the same timer number is used for more than one
timer instruction. Use each timer number only once. The only way that the
same timer number can be used dependably is if only one of the timers is ever
operating at the same time. An error will occur in the program check if the
same timer number is used in more than one timer instruction.

An error will occur and the Error Flag will turn ON if an indirect IR designation
is used for N in BCD mode and the address is not for a timer present value or
if SV is not BCD.

The timer will not operate correctly if the cycle time is 100 ms or longer.

Note No block programming instructions will be executed after the input condition
for TIMW(813) turns ON until TIMW(813) times out. The other block program-
ming instructions will be executed again after the set time for TIMW(813) has
expired. If, however, online editing is executed for a task containing a block
program, the wait status created by TIMW(813) will be cleared and the block
program will be executed again from the beginning.

Examples In the following example, “B” will be executed 20 seconds after “A” whenever
CIO 000000 is ON.

Address Instruction Operand

000200 LD 000000

000201 BPRG 0

.

.
A .

.

000210 TIMW 0001

#0200

.

.
B .

.

000220 BEND ---

0

Timer times out.
1208

Block Programming Instructions Section 3-32
Program execution will flow from 2 to 3 to 4 and back to 2 during the 20 s
before “B” is executed, as shown in the following diagram.

3-32-8 COUNTER WAIT: CNTW(814) and CNTWX(818)
Purpose Delays execution of the rest of the block program until the specified count has

been achieved. Execution will be continued from the next instruction after
CNTW(814)/CNTWX(818) when the counter counts out.

Ladder Symbol PV Refresh Method: BCD

PV Refresh Method: Binary

Variations

Applicable Program Areas

Note CNTW(814)/CNTWX(818) must be used in block programming regions even
within subroutines and interrupt tasks.

Operands N: Counter Number
BCD: 0 to 4095 (decimal)
Binary: 0 to 4095 (decimal)

S: Set Value
BCD: #0000 to #9999 (BCD)
Binary: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

1

2

3

4

CNTW(814) N
SV
I

N: Counter number
SV: Set value
I: Count input

CNTWX(818) N
SV
I

N: Counter number
SV: Set value
I: Count input

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1209

Block Programming Instructions Section 3-32
Operand Specifications

Description CNTW(814)/CNTWX(818) creates a decrementing counter that delays execu-
tion of the instructions following it in the block program until the counter has
counted out. The set value for CNTW(814) is specified in BCD between 0000
and 9999. The set value for CNTWX(818) is specified in binary between 0000
and FFFF hex.

Area N SV I

CIO Area --- CIO 0000 to CIO 6143 CIO 000000 to
CIO 614315

Work Area --- W000 to W511 W00000 to
W51115

Holding Bit Area --- H000 to H511 H00000 to
H51115

Auxiliary Bit Area --- A000 to A447
A448 to A959

A00000 to
A44715

A44800 to
A95915

Timer Area --- T0000 to T4095 T0000 to T4095

Counter Area C0000 to
C4095

C0000 to C4095 C0000 to C4095

Task Flags --- TK0000 to
TK0031

Condition Flags --- ER, CY, >, =, <, N,
OF, UF, >=, <>,
<=, ON,OFF, AER

Clock Pulses --- 0.02 s, 0.1 s, 0.2
s, 1 s, 1 min

DM Area --- D00000 to D32767 ---

EM Area without bank --- E00000 to E32767 ---

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @
En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1210

Block Programming Instructions Section 3-32
The first part of the block program is executed the first time the block program
is entered. When CNTW(814)/CNTWX(818) is reached, the Completion Flag
is reset to 0, the counter is preset to SV, and execution of the rest of the block
program will wait until the counter has counted out. The counter counts pulses
(upward differentiation) on I, the counter input.

While the counter is counting down, only CNTW(814)/CNTWX(818) will be
executed to update the counter. When the counter counts out, the Completion
Flag will turn ON and the rest of the block program will be executed. Once the
entire block program has been executed, the process will be repeated.

CNTW(814)/CNTWX(818) can be thought of as a WAIT instruction with a
counter for the execution condition and it can thus be used for timed step pro-
gressions.

Flags

Precautions The rest of the block program following CNTW(814)/CNTWX(818) will be exe-
cuted if the Completion Flag for the counter is force set.

If the Completion Flag for the counter is force reset, the only CNTW(814)/
CNTWX(818) will be executed in the block program until the force reset status
is cleared.

The counter numbers are also used by the other counter instructions. Opera-
tion will not be predictable if the same counter number is used for more than
one counter instruction. Use each counter number only once. The only way
that the same counter number can be used dependably is if only one of the
counters is ever operating at the same time. An error will occur in the program
check if the same counter number is used in more than one counter instruc-
tion.

An error will occur and the Error Flag will turn ON if an indirect IR designation
is used for N in BCD mode and the address is not for a counter present value
or if SV is not BCD when BCD mode is set.

Count reached.

SV preset.

"A"
executed.

"B" executed.

"C"
executed.

"C"
executed.

"C"
executed.

Name Label Operation

Error Flag ER ON if CNTW(814)/CNTWX(818) is not in a block program.
ON if an indirect IR designation is used for N in BCD
mode and the address is not for a counter present value.
ON if SV is not BCD when BCD mode is set.
OFF in all other cases.
1211

Block Programming Instructions Section 3-32
Examples When CIO 000000 is ON in the following example, “A” will be executed and
then execution of the rest of the block program “B” will wait until 7,000 counts
of CIO 000100.

Program execution will flow from 2 to 3 to 4 and back to 2 during the 7,000
counts before “B” is executed, as shown in the following diagram.

3-32-9 TEN-MS TIMER WAIT: TMHW(815) and TMHWX(817)
Purpose Delays execution of the rest of the block program until the specified time has

elapsed. Execution will be continued from the next instruction after
TMHW(815)/TMHWX(817) when the timer times out.

Ladder Symbol PV Refresh Method: BCD

PV Refresh Method: Binary

Address Instruction Operand

000200 LD 000000

000201 BPRG 0

.

.
A .

.

000210 CNTW 0005

#7000

000100

.

.
B .

.

000220 BEND ---

0

Counter counts out.

Updated

CIO 000100
counted.

Updated

1 4

2

3

TMHW(815) N
SV

N: Timer number
SV: Set value

TMHWX(817) N
SV

N: Timer number
SV: Set value
1212

Block Programming Instructions Section 3-32
Variations

Applicable Program Areas

Note TMHW(815)/TMHWX(817) must be used in block programming regions even
within subroutines.

Operands N: Timer Number
BCD: 0 to 4095 (decimal)
Binary: 0 to 4095 (decimal)

S: Set Value
BCD: #0000 to #9999 (BCD)
Binary: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Operand Specifications

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed.

Area N SV

CIO Area --- CIO 0000 to CIO 6143

Work Area --- W000 to W511

Holding Bit Area --- H000 to H511

Auxiliary Bit Area --- A000 to A447
A448 to A959

Timer Area 0000 to 4095 T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D00000 to D32767

EM Area without bank --- E00000 to E32767

EM Area with bank --- En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

--- @ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to
@ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

--- *D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1213

Block Programming Instructions Section 3-32
Description TMHW(815)/TMHWX(817) creates an ON-delay countdown timer (10-ms
timer set in SV) between execution of the block program instruction preceding
it and the instructions following. TMHW(815) can time from 0 to 99.99 s with a
timer accuracy of 0 to 0.01 s. TMHWX(817) can time from 0 to 655.35 s with a
timer accuracy of 0 to 0.01 s.

Note The timer accuracy for CS1D CPU Units is 10 ms + the cycle time.

The first part of the block program is executed the first time the block program
is entered. When TMHW(815)/TMHWX(817) is reached, the Completion Flag
is reset to OFF, the timer is preset to the SV, and execution of the rest of the
block program will wait until SV has expired.

While the timer is timing down, only TMHW(815)/TMHWX(817) will be exe-
cuted to update the timer. When the timer times out, the Completion Flag will
turn ON and the rest of the block program will be executed. Once the entire
block program has been executed, the process will be repeated.

TMHW(815)/TMHWX(817) can be thought of as a WAIT instruction with a
timer for the execution condition and it can thus be used for timed step pro-
gressions.

Flags

Precautions The rest of the block program following TMHW(815)/TMHWX(817) will be exe-
cuted if the Completion Flag for the timer is force set.

If the Completion Flag for the timer is force reset, the only TMHW(815)/
TMHWX(817) will be executed in the block program until the force reset status
is cleared.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

The timer numbers are also used by the other timer instructions. Operation
will not be predictable if the same timer number is used for more than one
timer instruction. Use each timer number only once. The only way that the
same timer number can be used dependably is if only one of the timers is ever

Time elapsed.
SV preset.

 "C" executed.

 "B" executed.

 "A"
executed.

Name Label Operation

Error Flag ER ON if TMHW(815)/TMHWX(817) is not in a block pro-
gram.
ON if an indirect IR designation is used for N in BCD
mode and the address is not for a timer present value.
ON if in BCD mode and SV is not BCD.
OFF in all other cases.
1214

Block Programming Instructions Section 3-32
operating at the same time. An error will occur in the program check if the
same timer number is used in more than one timer instruction.

An error will occur and the Error Flag will turn ON if an indirect IR designation
is used for N in BCD mode and the address is not for a timer present value or
if SV is not BCD.

The timer will not operate correctly if the cycle time is 100 ms or longer.

Examples In the following example, “B” will be executed 20 seconds after “A” whenever
CIO 000000 is ON.

3-32-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT
Purpose Create a loop that is repeatedly executed until an execution condition turns

ON or OFF or until an execution condition turns ON.

Ladder Symbol

Variations

Applicable Program Areas

Note LOOP(809), LEND(810), and LEND(810) NOT must be used in block pro-
gramming regions even within subroutines and interrupt tasks.

Address Instruction Operand

000221 LD 000001

000222 BPRG 1

.

.
A .

.

000250 TMHW 0002

#0020

.

.
B .

.

000281 BEND ---

1

LOOP(809)

LEND(810)

LEND(810)

LEND(810) NOT B

B B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1215

Block Programming Instructions Section 3-32
Operand Specifications

Description LOOP(809) designates the beginning of the loop program. LEND(810) or
LEND(810) NOT specifies the end of the loop. When LEND(810) or
LEND(810) NOT is reached, program execution will loop back to the next pre-
vious LOOP(809) until the operand bit for LEND(810) or LEND(810) NOT
turns ON or OFF (respectively) or until the execution condition for LEND(810)
turns ON.

Area B

CIO Area CIO 000000 to CIO 614315

Work Area W00000 to W51115

Holding Bit Area H00000 to H51115

Auxiliary Bit Area A00000 to A44715
A44800 to A95915

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK0000 to TK0031

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON,OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1216

Block Programming Instructions Section 3-32
Using an Execution Condition for LEND(810)

LEND(810) can be programmed either with or without an operand bit. If an
operand bit is not specified, an execution must be created before LEND(810)
starting with LD. If the execution condition is OFF, execution of the loop is
repeated starting with the next instruction after LOOP(809). If the execution
condition is ON, the loop is ended and execution continues to the next instruc-
tion after LEND(810).

Using a Bit Operand for LEND(810) or LEND(810) NOT

Both LEND(810) and LEND(810) NOT can be programmed with an operand
bit. If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT), exe-
cution of the loop is repeated starting with the next instruction after
LOOP(809). If the operand bit is ON for LEND(810) (or OFF for LEND(810)
NOT), the loop is ended and execution continues to the next instruction after
LEND(810) or LEND(810) NOT.

Note 1. Execution inside a loop does not refresh I/O data. If I/O data must be re-
freshed during the loop, use IORF(184).

2. The maximum cycle time can be exceeded if loops are repeated too long.
Design the program so that the maximum cycle time is not exceeded.

Execution
condition
ON

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
OFF

Loop repeated

Execution condition

LEND R (LEND NOT B)

Operand
bit ON

Operand
bit OFF

Operand
bit OFF

Operand
bit OFF

Loop repeated

Note The status of the operand bit would
be reversed for LEND(810) NOT.
1217

Block Programming Instructions Section 3-32
Flags

Precautions Loops cannot be nested within loops.

Incorrect:
LOOP(809)
LOOP(809)
LEND(810)
LEND(810)

Do not reverse the order of LOOP and LEND.

Incorrect:
LEND(810)

:
:

LOOP(809)

Conditional block branching can be used within a loop, but the entire branch
operation must be within the loop.

Correct: Incorrect:

LOOP(809) LOOP(809)
IF(802) IF(802)
IF(802) IF(802)
IEND(804) IEND(804)
IEND(804) LEND(810)
LEND(810) IEND(804)

NOP processing will be performed if LOOP(809) is not executed.

An error will occur and the Error Flag will turn ON if a Loop Control Instruction
is not in a block program.

Examples When CIO 000000 is ON in the following example, the block program is exe-
cuted. After “A” is executed, “B” and the IORF(184) after it will be executed
repeatedly until CIO 000001 is ON, at which time C will be executed and the
block program will end.

Name Label Operation

Error Flag ER ON if a Loop Control Instruction is not in a block program.

OFF in all other cases.
1218

Block Programming Instructions Section 3-32
Address Instruction Operand

000220 LD 000000

000201 BPRG 0

.

.
A .

.

000210 LOOP ---

.

.
B .

.

000220 IORF .
.

0000

0000

000221 LEND 000001

.

.
C .

.

000220 BEND ---

0

Execution
condition
ON

Execution
condition
OFF

Execution
condition
OFF

Repeating
1219

Text String Processing Instructions Section 3-33
3-33 Text String Processing Instructions
This section describes instructions used to manipulate text strings.

3-33-1 Text String Processing Overview
Data from the beginning until a NUL code (00 hex) is handled as text string
data expressed in ASCII (except for 1-byte, special characters). It is stored
from leftmost to rightmost bytes, and from rightmost to leftmost words.

When there is an odd number of characters, 00 hex (NUL code) is stored in
the available space in the rightmost byte of the final word.

When there is an even number of characters, 0000 hex (two NUL codes) is
stored in the leftmost and rightmost bytes of the word following the final word.

As shown in the following diagram, a text string can be specified by simply
designating the first word of that string. The text string data up until the next
NUL code (00 hex) will then be handled as a single block of ASCII data.

Text string processing instructions can be used to execute at a PLC the vari-
ous kinds of text string processing (product data, and so on) that used to be
executed at the host computer.

Instruction Mnemonic Function code Page

MOV STRING MOV$ 664 1221

CONCATENATE STRING +$ 656 1223

GET STRING LEFT LEFT$ 652 1226

GET STRING RIGHT RGHT$ 653 1228

GET STRING MIDDLE MID$ 654 1230

FIND IN STRING FIND$ 660 1233

STRING LENGTH LEN$ 650 1235

REPLACE IN STRING RPLC$ 661 1237

DELETE STRING DEL$ 658 1240

EXCHANGE STRING XCHG$ 665 1242

CLEAR STRING CLR$ 666 1245

INSERT INTO STRING INS$ 657 1246

String Comparison Instructions =$, <>$, <$, <=$,
>$, >=$

670 to 675 1250

WRITE TEXT FILE TWRIT 704 1255

=

Example: Text string ABCDE

42

42

=

Example: Text string ABCD

Example: MOV$ D00000 D00100
1220

Text String Processing Instructions Section 3-33
For example, production plan data such as product names can be transferred
from the host computer to the PLC. Various operations such as inserting and
rearranging text strings can be then be performed at the PLC, thereby reduc-
ing the data processing load at the host computer.

ASCII Characters The ASCII characters that can be handled by text string processing instruc-
tions are shown in the following table.

3-33-2 MOV STRING: MOV$(664)
Purpose Transfers a text string.

Ladder Symbol

PLC
Text string
processing

Text string

Host computerHost computerText string
processing

S
P

Four leftmost bits

F
ou

r
rig

ht
m

os
t b

its

S

D

MOV$(664)

S: First source word

D: First destination word
1221

Text String Processing Instructions Section 3-33
Variations

Applicable Program Areas

Operands S: First Source Word

D: First Destination Word

Note 1. The data from S to S +the maximum 2,047 words and from D to D + the
maximum 2,047 words must be in the same area.

2. The data from S to S + the maximum 2,047 words and from D to D + the
maximum 2,047 words can overlap.

Operand Specifications

Variations Executed Each Cycle for ON Condition MOV$(664)

Executed Once for Upward Differentiation @MOV$(664)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

to

Text string data: 4,095 characters max. + NUL

S + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447

A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---
1222

Text String Processing Instructions Section 3-33
Description MOV$(664) transfers the text string data designated by S, just as it is, as text
string data (including the final NUL), to D. The maximum number of characters
that can be designated by S is 4,095 (0FFF hex).

Note MOV$(664) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions If more than 4,095 characters are designated by S, an error will be generated
and the Error Flag will turn ON.

If 0000 (hex) is transferred to D, the Equals Flag will turn ON.

Example In this example, MOV$(664) is used to transfer the text string ABCDEF.

3-33-3 CONCATENATE STRING: +$(656)
Purpose Links one text string to another text string.

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if 0000 (hex) is transferred to D.

OFF in all other cases.

S: D:
0

+$(656)

S1

S2

D

S1: Text string 1

S2: Text string 2

D: First destination word
1223

Text String Processing Instructions Section 3-33
Variations

Applicable Program Areas

Operands S1: Text String 1

S2: Text String 2

D: First Destination Word

Note 1. The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words must
be in the same area.

2. The data from S2 to S2 + the maximum 2,047 words and from D to D + the
maximum 2,047 words cannot overlap.

Operand Specifications

Variations Executed Each Cycle for ON Condition +$(656)

Executed Once for Upward Differentiation @+$(656)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to 32767
(n = 0 to C)
1224

Text String Processing Instructions Section 3-33
Description +$(664) connects the text string data designated by S1 to the text string data
designated by S2, and outputs the result to D as text string data (including the
final NUL).

The maximum number of characters that can be designated by S1 and S2 is
4,095 (0FFF hex). If there is no NUL until 4,096 characters, an error will be
generated and the Error Flag will turn ON. Moreover, the result of the linkage
can be no more than 4,095 characters (0FFF hex). If the linkage results in
more characters than that, only the first 4,095 characters (with NUL added as
the 4,096th) will be output to D.

If there is a NUL for both S1 and S2, the two NUL characters (0000 hex) will
be output to D.

Flags

Precautions If more than 4,095 characters are designated by S1 and S2, an error will be
generated and the Error Flag will turn ON.

If 0000 (hex) is transferred to D, the Equals Flag will turn ON.

Do not overlap the beginning word designated by D with the character data
area for S2. If they overlap, the instruction cannot be executed properly.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0V to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2 D

+
→ → → →

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
and S2.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if 0000 (hex) is transferred to D.

OFF in all other cases.
1225

Text String Processing Instructions Section 3-33
Example In this example, +$(656) is used to connect the text strings ABCD and EFG
and output the result to D.

3-33-4 GET STRING LEFT: LEFT$(652)
Purpose Fetches a designated number of characters from the left (beginning) of a text

string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)

Note 1. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words must be in the same area.

2. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words can overlap.

LEFT$(652)

S1

S2

D

S1: Text string first word

S2: Number of characters

D: First destination word

Variations Executed Each Cycle for ON Condition LEFT$(652)

Executed Once for Upward Differentiation @LEFT$(652)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words
1226

Text String Processing Instructions Section 3-33
Operand Specifications

Description LEFT$(652) reads the number of characters designated by S2, from the left
(the beginning) of the first word of the text string designated by S1 until the
NUL code (00 hex), and outputs the result to D (with NUL added at the end).

If the number of characters fetched exceeds the number of characters desig-
nated by S1, the entire S1 text string will be output.

If 0 (0000 hex) is designated as the number of characters to be read, the two
NUL characters (0000 hex) will be output to D.

Note LEFT$(652) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Area S1 S2 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447

A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to #0FFF
(binary) or &0 to
&4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
1227

Text String Processing Instructions Section 3-33
Flags

Precautions The maximum number of characters to be read that can be designated by S2
is 4,095 (0FFF hex). If more than that are designated, an error will be gener-
ated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, LEFT$(652) is used to read four characters.

3-33-5 GET STRING RIGHT: RGHT$(653)
Purpose Reads a designated number of characters from the right (end) of a text string.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.

S1:
43 44

D

S2: D00200

D: D00300

Text string ABCDE Text string ABCD

Four characters
(bytes) read.

RGHT$(653)

S1

S2

D

S1: Text string first word

S2: Number of characters

D: First destination word

Variations Executed Each Cycle for ON Condition RGHT$(653)

Executed Once for Upward Differentiation @RGHT$(653)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1228

Text String Processing Instructions Section 3-33
Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)

Note 1. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words must be in the same area.

2. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words can overlap.

Operand Specifications

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to #0FFF
(binary) or &0 to
&4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1229

Text String Processing Instructions Section 3-33
Description RGHT$(653) reads the number of characters designated by S2, from the left
(the beginning) of the first word of the text string designated by S1 until the
NUL code (00 hex), and outputs the result to D (with NUL added at the end).

If the number of characters to be read exceeds the number of characters des-
ignated by S1, the entire S1 text string will be output.

If 0 (0000 hex) is designated as the number of characters to be read, the two
NUL characters (0000 hex) will be output to D.

Note RGHT$(653) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions The maximum number of characters to be read that can be designated by S2
is 4,095 (0FFF hex). If more than that are designated, an error will be gener-
ated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, RGHT$(653) is used to read four characters.

3-33-6 GET STRING MIDDLE: MID$(654)
Purpose Reads a designated number of characters from any position in the middle of a

text string.

Ladder Symbol

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.

S1: D:

S2: D00200
Text string CDEF

Four characters
(bytes) read.

Text string ABCDEF

MID$(654)

S1

S2

S3

D

S1: Text string first word

S2: Number of characters

S3: Beginning position

D: First destination word
1230

Text String Processing Instructions Section 3-33
Variations

Applicable Program Areas

Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)
S3: Beginning Position (0001 to 0FFF hex or &1 to &4095)

Note 1. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words must be in the same area.

2. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words can overlap.

Operand Specifications

Variations Executed Each Cycle for ON Condition MID$(654)

Executed Once for Upward Differentiation @MID$(654)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 S3 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to 32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)
1231

Text String Processing Instructions Section 3-33
Description Within the text string identified by the first word designated by S1 until the
NUL code (00 hex), MID$(654) reads the number of characters designated by
S2, from the beginning word designated by S3, and outputs the result to D as
text string data (with NUL added at the end).

If the number of characters to be read extends beyond the end of the text
string designated by S1, the string will be output up to the end.

Note MID$(654) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions The range for the beginning position designated by S3 is the 1st to the
4,095th character (0001 to 0FFF hex). If the setting is outside of this range, an
error will be generated and the Error Flag will turn ON.

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to
#0FFF
(binary) or
&0 to &4095

#0001 to
#0FFF
(binary) or
&1 to &4095

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2 S3 D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.
ON if the S3 data is within the range of 1 to 4,095 (0001
to 0FFF hex).

ON if S3 is greater than S1.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.
1232

Text String Processing Instructions Section 3-33
The maximum number of characters to be read that can be designated by S2
is 4,095 (0FFF hex). If more than that are designated, an error will be gener-
ated and the Error Flag will turn ON.

If 0 (0000 hex) is designated as the number of characters to be read, the two
NUL characters (0000 hex) will be output to D.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, MID$(654) is used to read three characters.

3-33-7 FIND IN STRING: FIND$(660)
Purpose Finds a designated text string from within a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Source Text String

S2: Found Text String

S1:

S3:
D: D00300

S2: D00200

S3: D00400

Text string ABCDEFGHIJ

Three characters read.

From 5th character
(leftmost byte in D00102).

Text string EFG

FIND$(660)

S1

S2

D

S1: Source text string first word

S2: Found text string first word

D: First destination word

Variations Executed Each Cycle for ON Condition FIND$(660)

Executed Once for Upward Differentiation @FIND$(660)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words
1233

Text String Processing Instructions Section 3-33
Note The data from S1 to S1 + the maximum 2,047 words and from S2 to S2 + the
maximum 2,047 words must be in the same area.

Operand Specifications

Description FIND$(660) finds the text string designated by S2 from within the text string
designated by S1, and outputs the result (a given number of characters from
the beginning of S1) in binary data to D. If there is no matching text string,
0000 hex is output to D.

Note FIND$(660) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Area S1 S2 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

→ → →
Found data
1234

Text String Processing Instructions Section 3-33
Flags

Precautions The maximum number of characters to be read that can be designated by S1
or S2 is 4,095 (0FFF hex). If more than that are designated, an error will be
generated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, FIND$(660) is used to find one character from within a text
string.

3-33-8 STRING LENGTH: LEN$(650)
Purpose Calculates the length of a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Text String

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
or S2.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.

OFF in all other cases.

S1: D00100

S2: D00200

D: D00300

Text string CText string: ABCDEF

LEN$(650)

S

D

S: Text string first word

D: First destination word

Variations Executed Each Cycle for ON Condition LEN$(650)

Executed Once for Upward Differentiation @LEN$(650)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

to

Text string data: 4,095 characters max. + NUL

S + maximum 2,047 words
1235

Text String Processing Instructions Section 3-33
Note The data from S to S + the maximum 2,047 words must be in the same area.

Operand Specifications

Description LENS$(650) calculates the number of characters from the first word of the text
string, designated by S, until the NUL code (00 hex), including the NUL code
itself, and outputs the result to D as binary data. If there is a NUL at the begin-
ning of the text string, the result that is calculated will be 0000 hex.

Note LENS$(650) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Area S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

1
3
5

2
4

→

1236

Text String Processing Instructions Section 3-33
Flags

Precautions The maximum number of characters is 4,095 (0FFF hex). If there are more
than that (i.e., if there is no NUL before the 4,096th character), an error will be
generated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, LENS$(650) is used to calculate the number of characters
and output the result.

3-33-9 REPLACE IN STRING: RPLC$(661)
Purpose Replaces a text string with a designated text string from a designated position.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if the calculated result comes to more than 4,095
characters.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if the calculated result is 0.

OFF in all other cases.

S: 41
43
45

42
44
00

D: D00200

Text string: ABCDE

RPLC$(661)

S1

S2

S3

S4

D

S1: Text string first word

S2: Replacement text string first word

S3: Number of characters

S4: Beginning position

D: First destination word

Variations Executed Each Cycle for ON Condition RPLC$(661)

Executed Once for Upward Differentiation @RPLC$(661)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1237

Text String Processing Instructions Section 3-33
Operands S1: Text String

S2: Replacement Text String

S3: Number of Characters (0000 to 0FFF hex or &0 to &4095)
S4: Beginning Position (0001 to 0FFF hex or &0 to &4095)

Note 1. The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words must
be in the same area.

2. The data from D to D + the maximum 2,047 words and from either S1 to
S1 + the maximum 2,047 words or from S2 to S2 + the maximum 2,047
words can overlap.

Operand Specifications

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

Area S1 S2 S3 S4 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447

A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)
1238

Text String Processing Instructions Section 3-33
Description RPLC$(661) replaces part of the text string designated by S1, from the begin-
ning position designated by S4, with the text string designated by S2, and out-
puts the result to D as text string data (with NUL added at the end). The
number of characters to be replaced is designated by S3.

The maximum number of characters in the result is 4,095 (0FFF hex). If the
number is greater than that, only 4,095 characters will be output (with NUL
added as the 4,096th).

From 0 to 4,095 characters (0000 to 0FFF hex) can be replaced. If the number
is 0, then the text string designated by S1 will be output to D just as it is, with
no change. If the S2 text string is NUL, then the operation will be the same as
deleting the designated range of text in S1.

If the S1 text string from beginning to end is replaced by NUL, then two NUL
characters (0000 hex) will be output to D.

Note RPLC$(661) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions The maximum number of characters for S1 or S2 is 4,095 (0FFF hex). If there
are more than that (i.e., if there is no NUL before the 4,096th character), an
error will be generated and the Error Flag will turn ON.

Constants --- #0000 to
#0FFF
(binary) or
&0 to
&4095

#0001 to
#0FFF
(binary) or
&1 to
&4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2 S3 S4 D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
or S2.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S3.

ON if the S4 data is within the range of 1 to 4,095 (0001
to 0FFF hex).
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.
1239

Text String Processing Instructions Section 3-33
The range for the beginning position designated by S4 is the 1st to the
4,095th character (0001 to 0FFF hex). If the setting is outside of this range, an
error will be generated and the Error Flag will turn ON.

If the beginning position designated by S4 is beyond the text string designated
by S1, an error will be generated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Set the first destination word D so that it does not overlap with the areas set
with the replacement text string first word S2. RPLC$(654) will not work cor-
rectly if these areas overlap.

Example In this example, RPLC$(654) is used to read three characters.

3-33-10 DELETE STRING: DEL$(658)
Purpose Deletes a designated text string from the middle of a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String

S1: D:
S3: D00300

D2: D00200

D4: D00500

Text string ABCDHI

From 5th byte.

Three characters replaced

Text string ABCDEFGHI

Text string M

DEL$(658)

S1

S2

S3

D

S1: Text string first word

S2: Number of characters

S3: Beginning position

D: First destination word

Variations Executed Each Cycle for ON Condition DEL$(658)

Executed Once for Upward Differentiation @DEL$(658)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words
1240

Text String Processing Instructions Section 3-33
S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)
S3: Beginning Position (0001 to 0FFF hex or &1 to &4095)

Note 1. The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words must
be in the same area.

2. The data from S1 to S1 + the maximum 2,047 words and from D to D + the
maximum 2,047 words can overlap.

Operand Specifications

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 S3 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to
#0FFF
(binary) or
&0 to &4095

#0001 to
#0FFF
(binary) or
&1 to &4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1241

Text String Processing Instructions Section 3-33
Description Within the text string designated by S1, DEL$(658) deletes the number of
characters designated by S2, from the beginning word designated by S3, and
outputs the result to D as text string data (with NUL added at the end).

Note DEL$(658) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions The maximum number of characters for S1 is 4,095 (0FFF hex). If there are
more than that (i.e., if there is no NUL before the 4,096th character), an error
will be generated and the Error Flag will turn ON.

The range for the beginning position designated by S3 is the 1st to the
4,095th character (0001 to 0FFF hex). If the setting is outside of this range, an
error will be generated and the Error Flag will turn ON.

If the number of words specified for S1 exceeds the length of the text string,
the Error Flag will turn ON.

If the number of characters to be deleted extends beyond the end of the S1
text string, all of the characters up to the end will be deleted. If all of the char-
acters from the beginning of S1 to the end are designated to be deleted, then
000 hex will be output to D.

Example In this example, DEL$(658) is used to read three characters.

3-33-11 EXCHANGE STRING: XCHG$(665)
Purpose Replaces a designated text string with another designated text string.

Ladder Symbol

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.

ON if the S3 data is within the range of 1 to 4,095 (0001 to
0FFF hex).
ON if S3 is greater than S1.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON when 0000 hex is output to D.

OFF in all other cases.

S1: D:

00
S3: D00500

Text string ABCDMHI

From 5th character.

Three bytes discarded.

Text string ABCDEFGHI
S2: D00200
1242

Text String Processing Instructions Section 3-33
Variations

Applicable Program Areas

Operands Ex1: First Exchange Word 1

Ex2: First Exchange Word 2

Note 1. The data from Ex1 to Ex1 + the maximum 2,047 words and from Ex2 to
Ex2 + the maximum 2,047 words must be in the same area.

2. The data from Ex1 to Ex1 + the maximum 2,047 words and from Ex2 to
Ex2 + the maximum 2,047 words cannot overlap.

Operand Specifications

XCHG$(665)

Ex1

Ex2

Ex1: First exchange word 1

Ex2: First exchange word 2

Variations Executed Each Cycle for ON Condition XCHG$(665)

Executed Once for Upward Differentiation @XCHG$(665)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

Ex1

to

Text string data: 4,095 characters max. + NUL

Ex1 + maximum 2,047 words

15 0

to

Ex2 Text string data: 4,095 characters max. + NUL

Ex2 + maximum 2,047 words

Area Ex1 Ex2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)
1243

Text String Processing Instructions Section 3-33
Description XCHG$(665) exchanges the text string designated by Ex1 with the text string
designated by Ex2. If either Ex1 or Ex2 is NUL, then two NUL characters
(0000 hex) will be output to the other one of them.

Note XCHG$(665) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Precautions The maximum number of characters that can be designated by Ex1 or Ex2 is
4,095 (0FFF hex). If more than that are designated, an error will be generated
and the Error Flag will turn ON.

If the text string data designated by Ex1 and Ex2 overlaps, an error will be
generated and the Error Flag will turn ON.

Example In this example, XCHG$(665) is used to exchange two text strings.

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Ex1 Ex2

Ex1

Ex2

Ex1

Ex2

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by Ex1
or Ex2.

ON the Ex1 and Ex2 data overlap.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.
1244

Text String Processing Instructions Section 3-33
3-33-12 CLEAR STRING: CLR$(666)
Purpose Clears an entire text string with NUL (00 hex).

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Text String First Word

Note The data from S to S + the maximum 2,047 words must be in the same area.

Operand Specifications

Ex1: D00100

Ex2: D00200

Ex1: D00100

Ex2: D00200

Ex1

Ex2

Text strings: FG and ABCDE

Previous data
remains.

Text strings ABCDE and FG

CLR$(666)

S S: Text string first word

Variations Executed Each Cycle for ON Condition CLR$(666)

Executed Once for Upward Differentiation @CLR$(666)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

to

Text string data: 4,095 characters max. + NUL

S + maximum 2,047 words

Area S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)
1245

Text String Processing Instructions Section 3-33
Description CLR$(666) clears with NUL (00 hex) the entire text string from the first word
designated by S until the NUL code (00 hex). The maximum number of char-
acters that can be cleared is 4,096. If there is no NUL before the 4,096 char-
acter, only 4,096 characters will be cleared.

Note CLR$(666) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Flags

Example In this example, CLR$(666) is used to clear text string ABCDE.

3-33-13 INSERT INTO STRING: INS$(657)
Purpose Deletes a designated text string from the middle of a text string.

Ladder Symbol

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S

NUL

S SA B
DC

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

S: S:S

Text string ABCDE
1246

Text String Processing Instructions Section 3-33
Variations

Applicable Program Areas

Operands S1: Base Text String

S2: Inserted Text String

S3: Beginning Position (0000 to 0FFF hex or &0 to &4095)

Note 1. The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words must
be in the same area.

2. The data from S2 to S2 + the maximum 2,047 words and from D to D + the
maximum 2,047 words cannot overlap. The data from S1 to S1 + the max-
imum 2,047 words and from D to D + the maximum 2,047 words can over-
lap. The data from S1 to S1 + the maximum 2,047 words and from S2 to
S2 + the maximum 2,047 words can also overlap.

INS$(657)

S1

S2

S3

D

S1: Base text string first word

S2: Inserted text string first word

S3: Beginning position

D: First destination word

Variations Executed Each Cycle for ON Condition INS$(657)

Executed Once for Upward Differentiation @INS$(657)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words
1247

Text String Processing Instructions Section 3-33
Operand Specifications

Description Within the text string designated by S1, INS$(657) inserts the text string des-
ignated by S2, after the beginning word designated by S3, and outputs the
result to D as text string data (with NUL added at the end).

The maximum number of characters that can be inserted is 4,095 (0FFF hex).
If there are more than that, only 4,095 characters will be output to D (with NUL
added as the 4,096th character).

If either S1 or S2 is NUL, then the text string designated by the other one of
them will be output to D just as it is. If S1 and S2 are both NUL, then two NUL
characters (0000 hex) will be output to D.

Note INS$(657) can be processed in the background. Refer to the SYSMAC CS/
CJ/NSJ Series PLC Programming Manual (W394) for details.

Area S1 S2 S3 D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447

A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants --- #0000 to
#0FFF
(binary) or
&0 to &4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

→

→

Inserted characters

→

1248

Text String Processing Instructions Section 3-33
Flags

Precautions The maximum number of characters for S1 and S2 is 4,095 (0FFF hex). If
there are more than that (i.e., if there is no NUL before the 4,096th character),
an error will be generated and the Error Flag will turn ON.

The range for the beginning position designated by S3 is 0 to 4,095. If the set-
ting is outside of this range, an error will be generated and the Error Flag will
turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Do not overlap the destination words designated by D with the text string data
designated by S2. If these overlap, the operation will not be executed properly.

Example In this example, INS$(657) is used to insert two characters.

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1 or
S2.

ON if S3 exceeds 4,095 (0FFF hex).
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.

S1: D:

S2: D00200

S3: D00400

Text string ABCDEFJKGHI
Text string JK

Text string ABCDEFGHI
1249

Text String Processing Instructions Section 3-33
3-33-14 String Comparison Instructions (670 to 675)
Purpose Sting comparison instructions (=$, <>$, <$, <=$, >$, >=$) compare two text

strings from the beginning, in terms of value of the ASCII codes. If the result of
the comparison is true, an ON execution condition is created for a LOAD,
AND, or OR.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String 1

S1

S2

S1

S2

S1

S2

Symbol

Symbol

Symbol

LD (Load)

AND (Series Connection)

OR (Parallel Connection)

S1: Text string 1

S2: Text string 2

S1: Text string 1

S2: Text string 2

S1: Text string 1

S2: Text string 2

Variations Creates ON Each Cycle Com-
parison is True

String comparison instructions

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words
1250

Text String Processing Instructions Section 3-33
S2: Text String 2

Note 1. The data from S1 to S1 + the maximum 2,047 words and from S2 to S2 +
the maximum 2,047 words be in the same area.

2. The data from S1 to S1 + the maximum 2,047 words and from S2 to S2 +
the maximum 2,047 words cannot overlap.

Operand Specifications

Description String comparison instructions compare the text strings designated by S1 and
S2. If the result of the comparison is true, an ON execution condition is cre-
ated in the ladder diagram. The maximum number of characters for either S1
or S2 is 4,095 (0FFF hex).

String comparison instructions are expressed using the 18 different mnemon-
ics listed below. (LD, AND, and OR do not appear in the ladder diagram.)

LD=$, AND=$, OR=$
LD<>$, AND<>$, OR<>$
LD<$, AND<$, OR<$

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

Area S1 S2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A447
A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1251

Text String Processing Instructions Section 3-33
LD<=$, AND<=$, OR<=$
LD>$, AND>$, OR>$
LD>=$, AND>=$, OR>=$

The following table provides details on these instructions.

Comparison Methods

The comparison methods are as follows:

The first character (byte) of each text string is compared with its counterpart
from the other string as ASCII code. If the two ASCII codes are not equal,
then that greater/lesser relationship becomes the greater/lesser relationship
for the two text strings. If the two ASCII codes are equal, the next characters
are compared. If these two ASCII codes are not equal, then, that greater/
lesser relationship becomes the greater/lesser relationship for the two text
strings.

In this manner, the two text strings are compared in order, character by char-
acter. If all of the characters, including the NUL, are equal, then the two text
strings will have an equal relationship.

If the two text strings are of differing lengths, then the NUL (00 hex) will be
added to the shorter of the two strings to fill in the difference, and the compar-
ison will be made on that basis.

Comparison Examples

AD (414400 hex) and BC (424300 hex):
AD < BC, because at the beginning of the text strings 41 (hex) is less than 42
(hex).

Mnemonic (including
function code)

Name Function

LD=$(670) LOAD STRING EQUALS True when S1 text string
equals S2 text string.AND=$(670) AND STRING EQUALS

OR=$(670) OR STRING EQUALS

LD<>$(671) LOAD STRING NOT EQUAL True when S1 text string
does not equal S2 text string.AND<>$(671) AND STRING NOT EQUAL

OR<>$(671) OR STRING NOT EQUAL

LD<$(672) LOAD STRING LESS THAN True when S1 text string is
less than S2 text string.AND<$(672) AND STRING LESS THAN

OR<$(672) OR STRING LESS THAN

LD<=$(673) LOAD STRING LESS THAN
OR EQUALS

True when S1 text string is
less than or equal to S2 text
string.AND<=$(673) AND STRING LESS THAN

OR EQUALS

OR<=$(673) OR STRING LESS THAN
OR EQUALS

LD>$(674) LOAD STRING GREATER
THAN

True when S1 text string is
greater than S2 text string.

AND>$(674) AND STRING GREATER
THAN

OR>$(674) OR STRING GREATER
THAN

LD>=$(675) LOAD STRING GREATER
THAN OR EQUALS

True when S1 text string is
greater than or equal to S2
text string.AND>=$(675) AND STRING GREATER

THAN OR EQUALS

OR>=$(675) OR STRING GREATER
THAN OR EQUALS
1252

Text String Processing Instructions Section 3-33
ADC (41444300 hex) and B (4200 hex):
ADC < B, because at the beginning of the text strings 41 (hex) is less than 42
(hex).

ABC (41424300 hex) and ABD (41424400 hex):
ABC < ABD, because at the beginning of the text strings the 41s and 42s
match, so the result is determined by 43 being less than 44.

ABC (41424300 hex) and AB (414200 hex):
ABC > AB, because at the beginning of the text strings the 41s and 42s
match, so the result is determined by 43 being greater than 00.

AB (414200 hex) and AB (414200 hex):
AB = AB, because the 41s, the 42s, and the 00s all match.

Continue programming one instruction after another, treating LD, AND, and
OR in the same way. LD and OR instructions can be connected directly to the
bus bar, but AND instructions cannot.

Flags

Note String comparison instructions are used to rearrange the order of text strings
in order of ASCII. For example, the ASCII order from lower to higher is the
order of the alphabet from A to Z, so text strings can be arranged in alphabet-
ical order.

Precautions Please a right-hand instruction after these instructions. The String Compari-
son Instructions cannot appear on the right side of the ladder diagram.

These instructions cannot be used on the last rung of a logic block.

The maximum number of characters that can be compared is 4,095 (0FFF
hex). If that number is exceeded (i.e., if there is no NUL before the 4,096th
character), an error will occur and the Error Flag will turn ON. When this hap-
pens, an OFF execution condition will be output to the next instruction.

Example In this example, string comparison instructions are used to compare data.

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
or S2.
OFF in all other cases.

Greater Than
Flag

> ON if the comparison results in S1 greater than S2.
OFF in all other cases.

Greater Than or
Equals Flag

>= ON if the comparison results in S1 greater than or equal
to S2.
OFF in all other cases.

Equals Flag = ON if the comparison results in S1 equal to S2.
OFF in all other cases.

Not Equal Flag <> ON if the comparison results in S1 not equal to S2.
OFF in all other cases.

Less Than Flag < ON if the comparison results in S1 less than S2.
OFF in all other cases.

Less Than or
Equals Flag

<= ON if the comparison results in S1 less than or equal to
S2.
OFF in all other cases.
1253

Text String Processing Instructions Section 3-33
In this example, three text strings are rearranged in alphabetical order. The
original order is as follows:

D00100: Milk
D00200: Juice
D00300: Beer

When rearranged alphabetically, the order changes as follows: beer, juice,
milk.

>

<>

000000
000001

000002

000003

000004

> = <>

Address Mnemonic Operand

Text string ABC

Text string ABCText string ABC

Text string ABCD

>$

>$

Milk

Beer

Beer

Milk

Beer

Milk

Alphabetical order

Two text strings beginning with D00100 and D00200 are compared
in ASCII order from lower to higher. If the text string beginning with
D00100 is higher in ASCII order than the one beginning with
D00200, then the position of the two text strings will be reversed.

Two text strings beginning with D00200 and D00300 are compared
in ASCII order from lower to higher. If the text string beginning with
D00200 is higher in ASCII order than the one beginning with
D00300, then the position of the two text strings will be reversed.

Juice

The juice and beer
text strings are
compared and
their positions are
reversed because
J > B.

JuiceThe milk and beer
text strings are
compared and
their positions are
reversed because
M > B.

JuiceThe milk and juice
text strings are
compared and their
positions are
reversed because
M > J.

D00100: Milk

D00200: Juice

D00300: Beer

In this way, three text strings can be rearranged in alphabetical order.

Text string
1254

Task Control Instructions Section 3-34
3-34 Task Control Instructions
This section describes instructions used to control tasks.

3-34-1 TASK ON: TKON(820)
Purpose Makes the specified task executable. Also, causes an interrupt task to operate

as an extra cyclic task. (Extra cyclic tasks are supported by CS1-H, CJ1-H,
and CJ1M CPU Units only.)

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Task number
The allowed range for N depends on the kind of task being specified.

• Cyclic tasks:
N must be a constant between 0 and 31 decimal. (Values 0 to 31 specify
cyclic tasks 0 to 31.)

• Extra cyclic tasks (CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only):
N must be a constant between 8000 and 8255 decimal. (Values 8000 to
8255 specify extra cyclic tasks 0 to 255.)

Operand Specifications

Instruction Mnemonic Function code Page

TASK ON TKON 820 1255

TASK OFF TKOF 821 1258

N

TKON(820)

N: Task number

Variations Executed Each Cycle for ON Condition TKON(820)

Executed Once for Upward Differentiation @TKON(820)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

1255

Task Control Instructions Section 3-34
Description TKON(820) puts the specified cyclic task or extra cyclic task in executable sta-
tus. When N is 0 to 31 (specifying a cyclic task), the corresponding Task Flag
(TK00 to TK31) will be turned ON at the same time.

This instruction can be executed only in a regular cyclic task or an extra cyclic
task. An error will occur if an attempt is made to execute it in an interrupt task.

The cyclic task or extra cyclic task specified in TKON(820) will be also be exe-
cutable in later cycles as long as it is not put in standby status by TKOF(821).

Any task can be made executable from any cyclic task, although the specified
task will not be executed until the next cycle if its task number is lower than
the task number of the local task. The task will be executed in the same cycle
if its task number is higher than the local task’s task number.

TKON(820) will be treated as NOP(000) if the specified task is already execut-
able or the local task is specified.

A task in executable status can be put in standby status with TKOF(821), the
CX-Programmer, or a FINS command.

The terms executable and executing are not interchangeable. Executable
tasks are executed in order of their task numbers during cyclic program exe-
cution. An executable task will not be executed if it is put in standby status
before program execution reaches its task number.

Note 1. The CX-Programmer’s General Properties Tab for each task has a setting
(the Operation start box) that specifies whether the cyclic task will be exe-
cutable at startup. When the Operation start box has been checked, the
corresponding cyclic task will be put in executable status automatically
when the PLC begins operation. All other cyclic tasks will be in non-exe-
cutable status.

Constants 00 to 31 or 8000 to 8255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

Area N

The specified task's task number
is lower than the local task's task
number (m>n).

Task n

Task m

Becomes
executable
in the next
cycle.

The specified task's task number
is higher than the local task's task
number (m<n).

Task m

Becomes
executable
in that cycle.

Task n
1256

Task Control Instructions Section 3-34
(If the memory all clear operation is executed from the Programming Con-
sole, however, cyclic task 0 will automatically be made executable.)

2. If a task is in non-executable status, TKON(820) can executed to put that
task into executable status. Likewise, a cyclic task in executable status can
be put into non-executable status with the TKOF(821) instruction.

3. Cyclic tasks or extra cyclic tasks that were made executable will be put in
executable status in that cycle in task-number order. Consequently, a task
will not be executed if it is put into standby status before the cycle’s pro-
cessing reaches that task as each task is executed in task-number order.

Flags

Examples Specifying a Later Task
When CIO 000000 is ON in the following example, task number 3 is made
executable in task number 1. Task number 3 will be executed in the same
cycle when program execution reaches task number 3.

Name Label Operation

Error Flag ER ON if N is not a constant between 00 and 31 or between
8000 and 8255 (CS1-H, CJ1-H, and CJ1M CPU Units
only).
ON if the task specified with N does not exist.
ON if TKON(820) is executed in an interrupt task.

OFF in all other cases.

Name Addresses Operation

Task Flags TK00 to TK31 These flags are turned ON when the corresponding
cyclic task is executable and they are OFF when the
corresponding cyclic task is not executable or in
standby status.

TK00 to TK31 correspond to cyclic task numbers 00
to 31.

03

Task number 3 is executed
in the same cycle.

Task 1

Task 3
1257

Task Control Instructions Section 3-34
Specifying an Earlier Task
When CIO 000000 is ON in the following example, task number 1 is made
executable in task number 3. Task number 1 will be executed in the next cycle
when program execution reaches task number 1.

3-34-2 TASK OFF: TKOF(821)
Purpose Puts the specified cyclic task or extra cyclic task into standby status, i.e., dis-

ables execution of the task. (Extra cyclic tasks are supported by CS1-H, CJ1-
H, and CJ1M CPU Units only.)

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Task number
The allowed range for N depends on the kind of task being specified.

• Cyclic tasks:
N must be a constant between 0 and 31 decimal. (Values 0 to 31 specify
cyclic tasks 0 to 31.)

• Extra cyclic tasks (CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only):
N must be a constant between 8000 and 8255 decimal. (Values 8000 to
8255 specify extra cyclic tasks 0 to 255.)

Task number 1 is executed
in the next cycle.

1

Task 3

Task 1

N

TKOF(821)

N: Task number

Variations Executed Each Cycle for ON Condition TKOF(821)

Executed Once for Upward Differentiation @TKOF(821)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed
1258

Task Control Instructions Section 3-34
Operand Specifications

Description TKOF(821) puts the specified cyclic task or extra cyclic into standby status
and turns OFF the corresponding Task Flag (TK00 to TK31).

The task specified in TKOF(821) will be also be in standby status in later
cycles as long as it is not put into executable status by TKON(820), a Periph-
eral Device running CX-Programmer, or a FINS command.

A task can be put into standby status from any other regular task, although the
specified task will not be put into standby status until the next cycle if its task
number is lower than the task number of the local task (it would have been
executed already). The task will be in standby status in the same cycle if its
task number is higher than the local task’s task number.

If the local task is specified in TKOF(821), the task will be put into standby sta-
tus immediately and none of the subsequent instructions in the task will be
executed.

Note 1. The CX-Programmer’s General Properties Tab for each task has a setting
(the Operation start box) that specifies whether the cyclic task will be exe-
cutable at startup. When the Operation start box has been checked, the
corresponding cyclic task will be put in executable status automatically
when the PLC begins operation. All other cyclic tasks will be in non-exe-
cutable status.
(If the memory all clear operation is executed from the Programming Con-
sole, however, cyclic task 0 will automatically be made executable.)

2. If a task is in non-executable status, TKON(820) can executed to put that
task into executable status. Likewise, a cyclic task in executable status can
be put into non-executable status with the TKOF(821) instruction.

3. Cyclic tasks or extra cyclic tasks that are in executable status can be put
into standby status by the TKOF(821) instruction.

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

EM Area without bank ---

EM Area with bank ---

Indirect DM/EM
addresses in binary

Indirect DM/EM
addresses in BCD

Constants 00 to 31 or 8000 to 8255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

1259

Task Control Instructions Section 3-34
A regular task that has been set to be executed at startup will be put in execut-
able status automatically when the PLC begins operation. All other regular
tasks will be in non-executable status.

A task in executable status can be put in standby status with TKOF(821), a
Peripheral Device running CX-Programmer, or a FINS command.

The terms executable and executing are not interchangeable. Executable
tasks are executed in order of their task numbers during cyclic program exe-
cution. An executable task will not be executed if it is put in standby status
before program execution reaches its task number.

Unlike TKON(820), this instruction can be placed in interrupt tasks as well as
in cyclic tasks.

Flags

The specified task's task number
is higher than the local task's task
number (m<n).

The specified task's task number
is lower than the local task's task
number (m>n).

Task m

Task n

In standby
status that
cycle.

Task n

Task m

In standby
status the
next cycle.

Name Label Operation

Error Flag ER ON if N is not a constant between 00 and 31 or between
8000 and 8255 (CS1-H, CJ1-H, and CJ1M CPU Units
only).
ON if the task specified with N does not exist.

ON if TKOF(821) is executed in an interrupt task.
OFF in all other cases.

Name Addresses Operation

Task Flags TK00 to TK31 These flags are turned ON when the corresponding
cyclic task is executable and they are OFF when the
corresponding cyclic task is not executable or in
standby status.
TK00 to TK31 correspond to cyclic task numbers 00
to 31.
1260

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Examples Specifying a Later Task
When CIO 000000 is ON in the following example, task number 3 is put into
standby status in task number 1. Task number 3 will be not be executed in the
that cycle when program execution reaches task number 3.

Specifying an Earlier Task
When CIO 000000 is ON in the following example, task number 1 is put into
standby status in task number 3. Task number 1 will be not be executed in the
next cycle when program execution reaches task number 1.

3-35 Model Conversion Instructions (Unit Ver. 3.0 or Later)
This section describes instructions used when changing PLC models.

03

Task number 3 is in standby
status in the same cycle,
i.e., it is not executed in the
current or following cycles.

Task 1

Task 3

01

Task number 1 is in standby
status in the next cycle, i.e.,
it is executed in the current
cycle but not in following
cycles.

Task 1

Task 3

Instruction Mnemonic Function code Page

BLOCK TRANSFER XFERC 565 1263

SINGLE WORD DISTRIBUTE DISTC 566 1266
1261

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
The model conversion instructions provide the same functionality as other
instructions but use BCD data for the operands, like C-series instructions.
(The CJ/CS-series use binary data for the operands.) There are five model
conversion instructions, as shown in the above table, all of which have a C
added to the end of the mnemonic of the equivalent function for binary oper-
and data.

The model conversion instructions enable converting C-series programs to
CS/CJ-series programs without changing the operand data for these instruc-
tions.

When converting C-series programs to CS/CJ-series programs on CX-Pro-
grammer version 5.0 or higher (see note), these instructions will be automati-
cally used when converting (e.g., XFER will be converted to XFERC),
eliminating the need to correct operand data manually.

When converting C-series programs to CS/CJ-series programs on CX-Pro-
grammer version 4.0 or lower (see note), any operand for which a constant is
specified will be converted from BCD to binary, but any operand data for
which a word address is specified will have to be corrected manually.

Note Conversion is achieved by specifying the CS/CJ Series as the “device type” in
the Change PLC Dialog Box.

Differences from C-series
Instructions

“C Series” includes the C200H, C1000H, C2000H, C200HS, C2000HX/HG/
HE(-Z), CQM1, CQM1H, CPM1/CPM1A, CPM2C, and SRM1.

DATA COLLECT COLLC 567 1269

MOVE BIT MOVBC 568 1273

BIT COUNTER BCNTC 621 1275

Instruction Mnemonic Function code Page

Name Model conversion
instruction

(Unit Ver. 3.0 or
later)

Corresponding
C-series

instruction

Differences from
C-series instructions

When converting device
type to CS/CJ with

CX-Programmer Ver. 4.0 or
lower

When converting device
type to CS/CJ with

CX-Programmer Ver. 5.0
or higher

Mnemonic
(function code)

Mnemonic
(function code)

C200H,
C1000H, or

C2000H

C200HS,
C2000HX/HG/
HE(-Z), CQM1,

CQM1H,
CPM1/CPM1A,

CPM2C, or
SRM1

BLOCK
TRANSFER

XFERC(565) XFER(70) Same Same Converted to XFER. If a word
address is specified for the
first operand (number of words
to transfer), it will need to be
corrected manually to binary
data in the program.

XFER is converted to
XFERC. Operands do not
require correction.

SINGLE WORD
DISTRIBUTE

DISTC(566) DIST(80) Along with data
distribution oper-
ation, provides
stack push oper-
ation not previ-
ously supported.

Same
(distribution
operation and
stack push
operation)

Converted to DIST. If a word
address is specified for the
third operand (offset data), it
will need to be corrected man-
ually to binary data in the pro-
gram.

DIST is converted to
DICTC. Operands do not
require correction.

DATA COLLECT COLLC(567) COLL(81) Along with data
collection opera-
tion, provides
stack read oper-
ation not previ-
ously supported.

Same
(data collection
operation and
stack read
operation)

Converted to COLL. If a word
address is specified for the
second operand (offset data),
it will need to be corrected
manually to binary data in the
program.

COLL is converted to
COLLC. Operands do not
require correction.

MOVE BIT MOVBC(568) MOVB(82) Same Same Converted to MOVB. If a word
address is specified for the
second operand (control data),
it will need to be corrected
manually to binary data in the
program.

MOVB is converted to
MOVBC. Operands do
not require correction.

BIT COUNTER BCNTC(621) BCNT(67) Same Same Converted to BCNT. If a word
address is specified for the
first operand (number of words
to count), it will need to be cor-
rected manually to binary data
in the program.

BCNT is converted to
BCNTC. Operands do not
require correction.
1262

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Note The operation of the Conditions Flags differs in the following ways. Refer to
the description of the Conditions Flags for each instruction for details.

• The operation of the Conditions Flags differs for all instructions when the
contents of a DM Area words used for indirect addressing is not BCD
(*BCD) or the DM Area addressing range is exceeded.

• For DISTC(566), the operation of the Conditions Flags differs in compari-
son with that for the C200H, C1000H, and C2000H for the stack push
operation.

• For COLLC(567), the operation of the Conditions Flags differs in compari-
son with that for the C200H, C1000H, and C2000H for the stack read
operation.

Differences from Previous CS/CJ-series Instructions

Note The operation of the Conditions Flags differs in the following ways. Refer to
the description of the Conditions Flags for each instruction for details.

• The Error Flag will turn ON if the data for the above operands is not BCD.

• For DISTC(566), the operation of the Conditions Flags was added for the
stack push operation.

• For COLLC(567), the operation of the Conditions Flags was added for the
stack read operation.

3-35-1 BLOCK TRANSFER: XFERC(565)
Purpose Transfers the specified number of consecutive words.

Ladder Symbol

Name Model conversion
instruction

(Unit Ver. 3.0 or later)

Corresponding
C-series

instruction

Differences from previous CS/CJ-series instructions

Mnemonic
(function code)

Mnemonic
(function code)

BLOCK
TRANSFER

XFERC(565) XFER(70) The data type for the first operand (number of words to transfer) is
BCD (0000 to 9999) instead of binary (0000 to FFFF hex).

SINGLE
WORD
DISTRIBUTE

DISTC(566) DIST(80) A stack push operation is supported in addition to the data distribution
operation.
The data type for the third operand (offset data) is BCD (data distribu-
tion: 0000 to 7999, stack push: 0000 to 9999) instead of binary (0000
to FFFF hex).

DATA
COLLECT

COLLC(567) COLL(81) A stack read operation is supported in addition to the data distribution
operation.
The data type for the second operand (offset data) is BCD (data distri-
bution: 0000 to 7999, stack read for FIFO: 9000 to 9999, stack read
for LIFO: 8000 to 8999) instead of binary (0000 to FFFF hex).

MOVE BIT MOVBC(568) MOVB(82) The data type for the source and destination bit specifications in the
second operand (control data) is BCD (00 to 15) instead of binary (00
to 0F hex).

BIT
COUNTER

BCNTC(621) BCNT(67) The data type for the first operand (number of words to count) is BCD
(0000 to 9999) instead of binary (0000 to FFFF hex).
The data type stored for the third operand (count results) is BCD
(0000 to 9999) instead of binary (0000 to FFFF hex).

XFERC(565)

N

S

D

N: Number of words

S: First source word

D: First destination word
1263

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Variations

Applicable Program Areas

Operands N: Number of Words

Specifies the number of words to be transferred. The possible range for N is
0000 to 9999 BCD.

S: First Source Word

Specifies the first source word.

D: First Destination Word

Specifies the first destination word.

Operand Specifications

Variations Executed Each Cycle for ON Condition XFERC(565)

Executed Once for Upward Differentiation @XFERC(565)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

S+(N−1)

to to

15 0

D

D+(N−1)

to to

Area N S D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767

(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767

(n = 0 to C)

Constants #0000 to #9999
(BCD)

--- ---

Data Registers DR0 to DR15 ---
1264

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Description XFERC(565) copies N words beginning with S (S to S+(N–1)) to the N words
beginning with D (D to D+(N–1)).

It is possible for the source words and destination words to overlap, so
XFERC(565) can perform word-shift operations.

Flags

Note In C-series PLCs, the BLOCK TRANSFER (XFER) instruction will cause the
Error Flag to go ON if the content of an indirectly addressed DM word (*DM) is
not BCD, or the DM area boundary is exceeded. XFERC(565) will not cause
the Error Flag to go ON in these cases.

Precautions Be sure that the source words (S to S+N–1) and destination words (D to
D+N–1) do not exceed the end of the data area.

Some time will be required to complete XFERC(565) when a large number of
words is being transferred. In this case, the XFERC(565) transfer might not be
completed if a power interruption occurs during execution of the instruction.

The content of N must be BCD. If N is not BCD, an error will occur and the
Error Flag will be turned ON.

Example When CIO 000000 is ON in the following example, the 10 words D00100
through D00109 are copied to D00200 through D00209.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area N S D

D+S+(N−1)
(N−1)

to to
N words

&10

XFERC

#0010

Name Label Operation

Error Flag ER ON if the data in N (the number of words) is not BCD.

#0010

XFERC

10
words
1265

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
3-35-2 SINGLE WORD DISTRIBUTE: DISTC(566)
Purpose Transfers the source word to a destination word calculated by adding an offset

value to the base address.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Destination Base Address

Specifies the destination base address. The offset is added to this address to
calculate the destination word.

Of: Offset

• Data Distribution Operation (0000 to 7999 BCD)

This value is added to the base address to calculate the destination word.
The offset can be any value from 0000 to 7999 in BCD, but Bs and Bs+Of
must be in the same data area.

• Stack Push Operation (9000 to 9999 BCD)

When the leftmost digit of Of is 9, the rightmost 3 digits of Of specify the
number of words in the stack. The offset can be any value from 9000 to
9999 BCD.

Operand Specifications

DISTC(566)

S S: Source word

Bs: Destination base address

Of: Offset

Bs

Of

Variations Executed Each Cycle for ON Condition DISTC(566)

Executed Once for Upward Differentiation @DISTC(566)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to
to

Bs

Bs+Of

Area S Bs Of

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959 A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
1266

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Description Data Distribution Operation

DISTC(566) copies S to the destination word calculated by adding Of to Bs.
The same DISTC(566) instruction can be used to distribute the source word
to various words in the data area by changing the value of Of.

Stack Push Operation

When the leftmost digit (bits 12 to 15) of Of is 9 BCD, DISTC(566) operates a
stack from Bs to Bs+Of-9000. The destination base address (Bs) contains the
stack pointer and the rest of the words in the stack contain the stack data.

DISTC(566) copies S to the destination word calculated by adding the stack
pointer (content of Bs) + 1 to address Bs. The same DISTC(566) instruction
can be used to distribute the source word to various words in the data area by
changing the value of Of.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

--- #0000 to #7999
for distribution

#9000 to #9999
for stack operation

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15

Area S Bs Of

S

Bs+n

OfBs

S

OfBs

Bs+1

Stack area

Stack
pointer

Stack
data area

m words Size of
stack area

9 m

Bs+ +1

Bs+(m-1)

S is copied to:
Bs + stack pointer + 1.
1267

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Each time that the content of S is copied to a word in the stack data area, the
stack pointer in Bs is automatically incremented by +1.

Note Use COLLC(567) to read stack data from the stack area.

Flags

Note In C-series PLCs, the SINGLE WORD DISTRIBUTE (DIST) instruction will
cause the Error Flag to go ON if the content of an indirectly addressed DM
word (*DM) is not BCD, or the DM area boundary is exceeded. DISTC(566)
will not cause the Error Flag to go ON in these cases.

Precautions Once DISTC(566) has been executed with Stack Push Operation to allocate a
stack area, always specify the same length stack area in subsequent
DISTC(566) instructions. Operation will be unreliable if a different stack area
size is specified in later DISTC(566) instructions.

Be sure that the offset or stack size specified by Of does not exceed the end
of the data area when added to Bs.

Examples Data Distribution Operation

The leftmost byte of D00300 is 0, so DISTC(566) performs the Data Distribu-
tion Operation.

When CIO 000000 is ON in the following example, the contents of D00100 will
be copied to D00210 (D00200 + 10) if the content of D00300 is 0010 BCD.
The content of D00100 can be copied to other words by changing the offset in
D00300.

Stack Push Operation

The leftmost byte of Of is 9, so DISTC(566) performs the Stack Push Opera-
tion.

When CIO 000000 is ON in the following example, DISTC(566) allocates a 10
word stack area (since the rightmost 3 digits of Of are #010) between D00200
and D00209. At the same time, the contents of D00100 will be copied to the
word calculated by adding D00200 + stack pointer +1. Finally, the stack
pointer is incremented by +1.

Name Label Operation

Error Flag ER ON if Stack Push Operation is specified, but the stack
pointer data in Bs is not BCD.

ON if Stack Push Operation is specified and the stack
pointer indicates a word that exceeds the stack data area.

Equals Flag = ON if the source data is 0000.
OFF in all other cases.

S: D00100

D00210

S

0 0 1 0

DISTC
Copied by DISTC(566).

Offset +10 words

4-digit BCD

Of:
Bs:

Bs

Of
1268

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
3-35-3 DATA COLLECT: COLLC(567)
Purpose Transfers the source word (calculated by adding an offset value to the base

address) to the destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Source Base Address

Specifies the source base address. The offset is added to this address to cal-
culate the source word.

Of: Offset

The value of Of determines the operation of COLLC(567).

• Data Collect Operation (Of = 0000 to 7999 BCD)

The Of value is added to the base address to calculate the source word.
The offset can be any value from 0000 to 7999 BCD, but Bs and Bs+Of
must be in the same data area.

• LIFO Stack Read Operation (Of = 8000 to 8999 BCD)
If the leftmost digit of Of is 8, COLLC(567) will operate as a LIFO stack
instruction. The stack begins at Bs with a length specified in the rightmost
3 digits of Of.

S: D00100

Bs: D00200

D00201

D00209

Stack area

Stack
pointer

Stack
data area

S

DISTC

Bs

Of

D00100

D00260

#9010

0 0 0 F

Stack area Stack area

Allocated stack
Stack
Push

After 1st execution After 2nd execution

Of 9 010

0 0 0 1

0 0 0 F

0 0 0 F

0 0 0 F

0 0 0 2

COLL(081)

D

Bs: Source base address

Of: Offset

D: Destination word

Bs

Of

Variations Executed Each Cycle for ON Condition COLLC(567)

Executed Once for Upward Differentiation @COLLC(567)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to
to

Bs

Bs+Of
1269

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
• FIFO Stack Read Operation (Of = 9000 to 9999 BCD)
If the leftmost digit of Of is 9, COLLC(567) will operate as a FIFO stack
instruction. The stack begins at Bs with a length specified in the rightmost
3 digits of Of.

Operand Specifications

Description Depending on the value of Of, COLLC(567) will operate as a data collection
instruction, FIFO stack instruction, or LIFO stack instruction.

Data Collection Operation (Of = 0000 to 7999 BCD)

COLLC(567) copies the source word (calculated by adding Of to Bs) to the
destination word. The same COLLC(567) instruction can be used to collect
data from various source words in the data area by changing the value of Of.

Area Bs Of D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767

@ E00000 to @ E32767
@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767

*En_00000 to *En_32767
(n = 0 to C)

Constants --- #0000 to #7999 for
Data Collection
#8000 to #8999 for
LIFO Stack Read

#9000 to #9999 for
FIFO Stack Read

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Bs

Bs+n

Of
1270

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
LIFO Stack Read Operation (Of = 8000 to 8999 BCD)

If the leftmost digit of Of is 8, COLLC(567) will operate as a LIFO stack
instruction (LIFO stands for Last-In-First-Out). In this case, the rightmost 3
digits of Of specify the size of the stack.

COLLC(567) copies the data most recently recorded in the stack to D. The
source word is Bs + the stack pointer (content of Bs). After the data is copied,
the stack pointer is decremented by 1.

Note Use DISTC(566) to write stack data to the stack area.

FIFO Stack Read Operation (Of = 9000 to 9999 BCD)

If the leftmost digit of Of is 9, COLLC(567) will operate as a FIFO stack
instruction (FIFO stands for First-In-First-Out). In this case, the rightmost 3
digits of Of specify the size of the stack.

COLLC(567) copies the data from the oldest word recorded in the stack to D.
The source word is Bs + 1. After the data is copied, the stack pointer is decre-
mented by 1.

Note Use DISTC(566) to write stack data to the stack area.

Flags

Note In C-series PLCs, the DATA COLLECT (COLL) instruction will cause the Error
Flag to go ON if the content of an indirectly addressed DM word (*DM) is not
BCD, or the DM area boundary is exceeded. COLLC(567) will not cause the
Error Flag to go ON in these cases.

Bs

Bs+1

Stack area

Stack
pointer

Stack
data area

m words Size of
stack area

8 m

D

Data is copied from
Bs + stack pointer.

D

OfBs

Bs+1

Stack area

Stack
pointer

Stack
data area

m words Size of
stack area

9 m

S1+

Data is copied from
Bs + 1.

Name Label Operation

Error Flag ER ON if the offset data in Of is not BCD.

ON if LIFO or FIFO Stack Operation is specified, but the
stack pointer data in Bs is not BCD.
ON if LIFO or FIFO Stack Operation is specified and the
stack pointer indicates a word that exceeds the stack data
area.
OFF in all other cases.

Equals Flag = ON if the source data is 0000.
OFF in all other cases.
1271

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Precautions Once DISTC(566) has been executed with Stack Push Operation to allocate a
stack area, always specify that same length stack area in the COLLC(567)
instructions. Operation will be unreliable if a different stack area size is speci-
fied in the COLLC(567) instructions.

Be sure that the offset or stack size specified by Of does not exceed the end
of the data area when added to Bs.

The offset data in Of must be BCD.

Examples Data Collection Operation

The leftmost byte of D00200 is 0, so COLLC(567) performs the Data Collec-
tion Operation.

When CIO 000000 is ON in the following example, the contents of D00110
(D00100 + 10) will be copied to D00300 if the content of D00200 is 10 (0010
BCD). The contents of other words can be copied to D00300 by changing the
offset in D00200.

FIFO Stack Operation

The leftmost byte of Of is 9, so COLLC(567) performs the FIFO Stack Opera-
tion.

When CIO 000000 is ON in the following example, COLLC(567) allocates a
10 word stack area (since the rightmost 3 digits of Of are #010) between
D00100 and D00109. At the same time, the contents of D00101 (Bs +1) are
copied to D00300. Finally, the stack pointer is decremented by 1.

LIFO Stack Operation

The leftmost byte of Of is 8, so COLLC(567) performs the LIFO Stack Opera-
tion.

When CIO 000000 is ON in the following example, COLLC(567) allocates a
10 word stack area (since the rightmost 3 digits of Of are #010) between
D00100 and D00109. At the same time, the contents of the source word
(D00100 + stack pointer) are copied to D00300. Finally, the stack pointer is
decremented by 1.

D00110

 D00100
0

D

0 1 0D00200

D00101
4-digit BCD

Offset +10 words

Copied by COLLC(567).

Bs:
Bs

Of

COLLC

D00100

D00101

D00109

Stack area

Stack
pointer

Stack
data area

Bs

COLLC

Of

D

D00100

D00300

#9010

Stack area Stack area

Allocated stack After 1st execution After 2nd execution

Of 9 010

0 0 0 1

5 6 7 8

0 0 0 0

FIFO
Read

5 6 7 8

1 2 3 4

0 0 0 2

D00102

D00300 1 2 3 4 5 6 7 8
1272

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
3-35-4 MOVE BIT: MOVBC(568)
Purpose Transfers the specified bit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

The rightmost two digits of C indicate which bit of S is the source bit and the
leftmost two digits of C indicate which bit of D is the destination bit.

Operand Specifications

D00100

D00101

D00109

Stack area

Stack
pointer

Stack
data area

Bs

COLLC

Of

D

D00100

D00300

#8010

Stack area Stack area

Allocated stack After 1st execution After 2nd execution

Of 8 010

0 0 0 1

1 2 3 4

0 0 0 0

LIFO
Read

5 6 7 8

1 2 3 4

0 0 0 2

D00102

D00300 5 6 7 8 1 2 3 4

S

C

D

MOVBC(568)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVBC(568)

Executed Once for Upward Differentiation @MOVBC(568)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

Source bit: 00 to 15
(Two-digit BCD)

Destination bit: 00 to 15
(Two-digit BCD)

m n

Area S C D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767
1273

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Description MOVBC(568) copies the specified bit (n) from S to the specified bit (m) in D.
The other bits in the destination word are left unchanged.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Note In C-series PLCs, the MOVE BIT (MOVB) instruction will cause the Error Flag
to go ON if the content of an indirectly addressed DM word (*DM) is not BCD,
or the DM area boundary is exceeded. MOVBC(568) will not cause the Error
Flag to go ON in these cases.

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S C D

Name Label Operation

Error Flag ER ON if the rightmost and leftmost two digits of C are not
BCD or outside of the specified range of 00 to 15.
OFF in all other cases.
1274

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Examples When CIO 000000 is ON in the following example, the 5th bit of the source
word (CIO 0200) is copied to the 12th bit of the destination word (CIO 0300) in
accordance with the control word’s value of 1205.

3-35-5 BIT COUNTER: BCNTC(621)
Purpose Counts the total number of ON bits in the specified word(s).

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of words

The number of words must be 0001 to 9999 (BCD).

S: First source word

S and S+(N–1) must be in the same data area.

Operand Specifications

1 2 0 5

BCNTC(621)

N

S

R

N: Number of words

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition BCNTC(621)

Executed Once for Upward Differentiation @BCNTC(621)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S R

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095
1275

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Description BCNTC(621) counts the total number of bits that are ON in all words between
S and S+(N–1) and places the BCD result in R.

Flags

Note In C-series PLCs, the BIT COUNTER (BITC) instruction will cause the Error
Flag to go ON if the content of an indirectly addressed DM word (*DM) is not
BCD, or the DM area boundary is exceeded. BCNTC(621) will not cause the
Error Flag to go ON in these cases.

Precautions An error will occur if N is not BCD between 0001 and 9999, or the result
exceeds 9,999.

Example When CIO 000000 is ON in the following example, BCNTC(621) counts the
total number of ON bits in the 10 words from CIO 0100 through CIO 0109 and
writes the result to D00100.

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767

@ En_00000 to @ En_32767
(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants #0001 to #9999
(BCD)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N S R

S+(N–1)

R

to

N words

BCD result

Counts the number
of ON bits.

Name Label Operation

Error Flag ER ON if N is not within the range 0001 to 9999 BCD.
ON if result exceeds 9999 BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.
1276

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
3-35-6 GET VARIABLE ID: GETID(286)
Purpose Outputs the FINS command variable type (data area) code and word address

for the specified variable or address. This instruction is generally used to get
the assigned address of a variable in a function block.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source data
Specifies the variable or address for which the variable type and word address
will be retrieved.

D1: Variable code
Contains the FINS variable type code (data area code) of the source data.

D2: Word address
Contains the word address of the source data in 4-digit hexadecimal.

Operand Specifications

R:D00100

000000

#0010

D100

D00100

N
S
R

BCNTC

to to

Counts the number
of ON bits (35).

0035 BCD3 5

GETID(286)

S

D1

D2

S: Source data

D1: Variable code

D2: Word address

Variations Executed Each Cycle for ON Condition GETID(286)

Executed Once for Upward Differentiation @GETID(286)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D1 D2

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without bank E00000 to E32767

EM Area with bank En_00000 to En_32767
(n = 0 to C)
1277

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Description GETID(286) retrieves the data area address of the specified source variable
or address, outputs the data area code to D1 in 4-digit hexadecimal, and out-
puts the word address number to D2 in 4-digit hexadecimal.

The following table shows the variable type (data area) codes and corre-
sponding address ranges for the PLC’s data areas.

Variables in function blocks are automatically allocated addresses by CX-Pro-
grammer Ver. 5.0 and later systems, unless the AT specification is used. For
example, if it is necessary to indirectly specify the extended parameter set-
tings of a Special Unit such as a Motion Control Unit and a variable is used at
the beginning of the extended parameter settings area, that variable’s address
must be set. In this case, GETID(286) can be used to retrieve the variable’s
data area address.

Flags

Indirect DM/EM
addresses in binary

@ D00000 to @ D32767
@ E00000 to @ E32767
@ En_00000 to @ En_32767

(n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767

*E00000 to *E32767
*En_00000 to *En_32767
(n = 0 to C)

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D1 D2

Data area Data
size

Data area code
(Output to D1.)

Address
(Output to D2.)

CIO Area CIO Word 00B0 hex 0000 to 17FF hex
(0000 to 6143)

Work Area W 00B1 hex 0000 to 01FF hex
(000 to 511)

Holding Bit Area H 00B2 hex 0000 to 01FF hex
(000 to 511)

DM Area 0082 hex 0000 to 7FFF hex
(00000 to 32767)

EM Area
(Specific bank)

En_
(n = 0 to C)

00A0 to 00AC hex 0000 to 7FFF hex
(00000 to 32767)

Name Label Operation

Error Flag ER ON if S is not within the allowed range.
1278

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
Example

#0082
&100

D00100

#0082
&200

m
m+1

GETID
A
m

m+1

Normal Operation

Using Function Blocks

DM Area allocated to
Motion Control Unit

Extended parameter
settings area

Indirect
specifica-
tion

The starting address of the extended parameter set-
tings area is specified by the FINS command variable
type (data area) code and word address. In this exam-
ple, #0082 specifies the DM Area and &100 specifies a
100-word offset from the beginning of the area.

DM Area allocated to
Motion Control Unit

Extended parameter
settings area

Variable A D00200 Data

Variable A's data area
address is retrieved by
GETID(286).
1279

Model Conversion Instructions (Unit Ver. 3.0 or Later) Section 3-35
1280

SECTION 4
Instruction Execution Times and Number of Steps

This section provides instruction execution times and the number of steps for each CS/CJ-series instruction.

4-1 CS-series Instruction Execution Times and Number of Steps 1283

4-1-1 Sequence Input Instructions . 1284

4-1-2 Sequence Output Instructions . 1285

4-1-3 Sequence Control Instructions . 1286

4-1-4 Timer and Counter Instructions . 1287

4-1-5 Comparison Instructions. 1288

4-1-6 Data Movement Instructions. 1290

4-1-7 Data Shift Instructions . 1291

4-1-8 Increment/Decrement Instructions . 1292

4-1-9 Symbol Math Instructions. 1293

4-1-10 Conversion Instructions . 1295

4-1-11 Logic Instructions . 1297

4-1-12 Special Math Instructions . 1298

4-1-13 Floating-point Math Instructions . 1298

4-1-14 Double-precision Floating-point Instructions. 1299

4-1-15 Table Data Processing Instructions. 1301

4-1-16 Data Control Instructions . 1302

4-1-17 Subroutine Instructions. 1303

4-1-18 Interrupt Control Instructions . 1303

4-1-19 Step Instructions . 1303

4-1-20 Basic I/O Unit Instructions . 1304

4-1-21 Serial Communications Instructions. 1305

4-1-22 Network Instructions . 1305

4-1-23 File Memory Instructions . 1306

4-1-24 Display Instructions . 1306

4-1-25 Clock Instructions. 1307

4-1-26 Debugging Instructions. 1307

4-1-27 Failure Diagnosis Instructions . 1307

4-1-28 Other Instructions . 1308

4-1-29 Block Programming Instructions . 1308

4-1-30 Text String Processing Instructions . 1310

4-1-31 Task Control Instructions . 1311

4-1-32 Model Conversion Instructions (CPU Unit Ver. 3.0 or later only) . . 1311

4-1-33 Special Function Block Instructions (CPU Unit Ver. 3.0 or Later Only) 1312

4-2 CJ-series Instruction Execution Times and Number of Steps. 1312

4-2-1 Sequence Input Instructions . 1313

4-2-2 Sequence Output Instructions . 1314

4-2-3 Sequence Control Instructions . 1315

4-2-4 Timer and Counter Instructions . 1316
1281

4-2-5 Comparison Instructions . 1318

4-2-6 Data Movement Instructions . 1320

4-2-7 Data Shift Instructions. 1321

4-2-8 Increment/Decrement Instructions . 1323

4-2-9 Symbol Math Instructions . 1323

4-2-10 Conversion Instructions. 1325

4-2-11 Logic Instructions . 1328

4-2-12 Special Math Instructions . 1328

4-2-13 Floating-point Math Instructions. 1329

4-2-14 Double-precision Floating-point Instructions 1331

4-2-15 Table Data Processing Instructions . 1332

4-2-16 Data Control Instructions . 1334

4-2-17 Subroutine Instructions . 1335

4-2-18 Interrupt Control Instructions . 1335

4-2-19 High-speed Counter and Pulse Output Instructions 1336

4-2-20 Step Instructions . 1338

4-2-21 Basic I/O Unit Instructions . 1338

4-2-22 Serial Communications Instructions . 1339

4-2-23 Network Instructions . 1340

4-2-24 File Memory Instructions . 1341

4-2-25 Display Instructions. 1341

4-2-26 Clock Instructions . 1341

4-2-27 Debugging Instructions . 1342

4-2-28 Failure Diagnosis Instructions. 1342

4-2-29 Other Instructions . 1343

4-2-30 Block Programming Instructions . 1343

4-2-31 Text String Processing Instructions . 1345

4-2-32 Task Control Instructions . 1346

4-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or later only) . . 1346

4-2-34 Special Function Block Instructions (CPU Unit Ver. 3.0 or Later Only) 1347

4-2-35 Number of Function Block Program Steps
(CPU Units with Unit Version 3.0 or Later) 1347

4-2-36 Guidelines on Converting Program Capacities from
Previous OMRON PLCs . 1348

4-2-37 Function Block Instance Execution Time
(CPU Units with Unit Version 3.0 or Later) 1349
1282

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1 CS-series Instruction Execution Times and Number of
Steps

The following table lists the execution times for all instructions that are avail-
able for CS-series PLCs.

The total execution time of instructions within one whole user program is the
process time for program execution when calculating the cycle time (See
note.).

Note User programs are allocated tasks that can be executed within cyclic tasks
and interrupt tasks that satisfy interrupt conditions.

Execution times for most instructions differ depending on the CPU Unit used
(CS1H-CPU6@H, CS1H-CPU6@, CS1G-CPU4@H, CS1G-CPU4@) and the
conditions when the instruction is executed. The top line for each instruction in
the following table shows the minimum time required to process the instruc-
tion and the necessary execution conditions, and the bottom line shows the
maximum time and execution conditions required to process the instruction.

The execution time can also vary when the execution condition is OFF.

The following table also lists the length of each instruction in the Length
(steps) column. The number of steps required in the user program area for
each of the CS-series instructions varies from 1 to 7 steps, depending upon
the instruction and the operands used with it. The number of steps in a pro-
gram is not the same as the number of instructions.

Note 1. Program capacity for CS-series PLCs is measured in steps, whereas pro-
gram capacity for previous OMRON PLCs, such as the C-series and CV-
series PLCs, was measured in words. Basically speaking, 1 step is equiv-
alent to 1 word. The amount of memory required for each instruction, how-
ever, is different for some of the CS-series instructions, and inaccuracies
will occur if the capacity of a user program for another PLC is converted for
a CS-series PLC based on the assumption that 1 word is 1 step. Refer to
the information at the end of 4-1 CS-series Instruction Execution Times
and Number of Steps for guidelines on converting program capacities from
previous OMRON PLCs.

Most instructions are supported in differentiated form (indicated with ↑, ↓,
@, and %). Specifying differentiation will increase the execution times by
the following amounts.

2. Use the following times as guidelines when instructions are not executed.

Symbol CS1-H CPU Units CS1 CPU Units
CPU6@H CPU4@H CPU6@ CPU4@

↑ or ↓ +0.24 +0.32 +0.41 +0.45

@ or % +0.24 +0.32 +0.29 +0.33

CS1-H CPU Units CS1 CPU Units
CPU6@H CPU4@H CPU6@ CPU4@

Approx. 0.1 Approx. 0.2 Approx. 0.1 to 0.3 Approx. 0.2 to 0.4
1283

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-1 Sequence Input Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

ON execution time (µs) Conditions

CPU6@H CPU4@H CPU6@ CPU4@
LOAD LD --- 1 0.02 0.04 0.04 0.08 ---

!LD --- 2 +21.14 +21.16 +21.16 +21.16 Increase for CS
Series

+45.1 +45.1 +45.1 +45.1 Increase for
C200H

LOAD NOT LD NOT --- 1 0.02 0.04 0.04 008 ---

!LD NOT --- 2 +21.14 +21.16 +21.16 +21.16 Increase for CS
Series

+45.1 +45.1 +45.1 +45.1 Increase for
C200H

AND AND --- 1 0.02 0.04 0.04 0.08 ---

!AND --- 2 +21.14 +21.16 +21.16 +21.16 Increase for CS
Series

+45.1 +45.1 +45.1 +45.1 Increase for
C200H

AND NOT AND NOT --- 1 0.02 0.04 0.04 0.08 ---

!AND NOT --- 2 +21.14 +21.16 +21.16 +21.16 Increase for CS
Series

+45.1 +45.1 +45.1 +45.1 Increase for
C200H

OR OR --- 1 0.02 0.04 0.04 0.08 ---

!OR --- 2 +21.14 +21.16 +21.16 +21.16 Increase for CS
Series

+45.1 +45.1 +45.1 +45.1 Increase for
C200H

OR NOT OR NOT --- 1 0.02 0.04 0.04 0.08 ---

!OR NOT --- 2 +21.14 +21.16 +21.16 +21.16 Increase for CS
Series

+45.1 +45.1 +45.1 +45.1 Increase for
C200H

AND LOAD AND LD --- 1 0.02 0.04 0.04 0.08 ---

OR LOAD OR LD --- 1 0.02 0.04 0.04 0.08 ---

NOT NOT 520 1 0.02 0.04 0.04 0.08 ---

CONDITION
ON

UP 521 3 0.3 0.42 0.46 0.54 ---

CONDITION
OFF

DOWN 522 4 0.3 0.42 0.46 0.54 ---

LOAD BIT
TEST

LD TST 350 4 0.14 0.24 0.25 0.37 ---

LOAD BIT
TEST NOT

LD TSTN 351 4 0.14 0.24 0.25 0.37 ---

AND BIT
TEST NOT

AND TSTN 351 4 0.14 0.24 0.25 0.37 ---

OR BIT TEST OR TST 350 4 0.14 0.24 0.25 0.37 ---

OR BIT TEST
NOT

OR TSTN 351 4 0.14 0.24 0.25 0.37 ---
1284

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-2 Sequence Output Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

OUTPUT OUT --- 1 0.02 0.04 0.17 0.21 ---

!OUT --- 2 +21.37 +21.37 +21.37 +21.37 Increase for CS
Series

+49.3 +49.3 +49.3 +49.3 Increase for
C200H

OUTPUT NOT OUT NOT --- 1 0.02 0.04 0.17 0.21 ---

!OUT NOT --- 2 +21.37 +21.37 +21.37 +21.37 Increase for CS
Series

+49.3 +49.3 +49.3 +49.3 Increase for
C200H

KEEP KEEP 011 1 0.06 0.08 0.25 0.29 ---

DIFFERENTI-
ATE UP

DIFU 013 2 0.24 0.40 0.46 0.54 ---

DIFFERENTI-
ATE DOWN

DIFD 014 2 0.24 0.40 0.46 0.54 ---

SET SET --- 1 0.02 0.06 0.17 0.21 ---

!SET --- 2 +21.37 +21.37 +21.37 +21.37 Increase for CS
Series

+49.3 +49.3 +49.3 +49.3 Increase for
C200H

RESET RSET --- 1 0.02 0.06 0.17 0.21 Word specified

!RSET --- 2 +21.37 +21.37 +21.37 +21.37 Increase for CS
Series

+49.3 +49.3 +49.3 +49.3 Increase for
C200H

MULTIPLE
BIT SET

SETA 530 4 5.8 6.1 7.8 7.8 With 1-bit set

25.7 27.2 38.8 38.8 With 1,000-bit
set

MULTIPLE
BIT RESET

RSTA 531 4 5.7 6.1 7.8 7.8 With 1-bit reset

25.8 27.1 38.8 38.8 With 1,000-bit
reset

SINGLE BIT
SET

SETB 532 2 0.24 0.34 --- --- ---

!SETB 3 +21.44 +21.54 --- --- ---

SINGLE BIT
RESET

RSTB 534 2 0.24 0.34 --- --- ---

!RSTB 3 +21.44 +21.54 --- --- ---

SINGLE BIT
OUTPUT

OUTB 534 2 0.22 0.32 --- --- ---

!OUTB 3 +21.42 +21.52 --- --- ---
1285

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-3 Sequence Control Instructions

Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

END END 001 1 5.5 6.0 4.0 4.0 ---

NO OPERA-
TION

NOP 000 1 0.02 0.04 0.08 0.12 ---

INTERLOCK IL 002 1 0.06 0.06 0.12 0.12 ---

INTERLOCK
CLEAR

ILC 003 1 0.06 0.06 0.12 0.12 ---

MULTI-
INTERLOCK
DIFFEREN-
TIATION
HOLD
(See note 2.)

MILH 517 3 6.1 6.5 --- --- During interlock

7.5 7.9 --- --- Not during inter-
lock and inter-
lock not set

8.9 9.7 --- --- Not during inter-
lock and inter-
lock set

MULTI-
INTERLOCK
DIFFEREN-
TIATION
RELEASE
(See note 2.)

MILR 518 3 6.1 6.5 --- --- During interlock

7.5 7.9 --- --- Not during inter-
lock and inter-
lock not set

8.9 9.7 --- --- Not during inter-
lock and inter-
lock set

MULTI-
INTERLOCK
CLEAR
(See note 2.)

MILC 519 2 5.0 5.6 --- --- Interlock not
cleared

5.7 6.2 --- --- Interlock cleared

JUMP JMP 004 2 0.38 0.48 8.1 8.1 ---

JUMP END JME 005 2 --- --- --- --- ---

CONDI-
TIONAL
JUMP

CJP 510 2 0.38 0.48 7.4 7.4 When JMP con-
dition is satisfied

CONDI-
TIONAL
JUMP NOT

CJPN 511 2 0.38 0.48 8.5 8.5 When JMP con-
dition is satisfied

MULTIPLE
JUMP

JMP0 515 1 0.06 0.06 0.12 0.12 ---

MULTIPLE
JUMP END

JME0 516 1 0.06 0.06 0.12 0.12 ---

FOR LOOP FOR 512 2 0.52 0.54 0.12 0.21 Designating a
constant

BREAK
LOOP

BREAK 514 1 0.06 0.06 0.12 0.12 ---

NEXT LOOP NEXT 513 1 0.18 0.16 0.17 0.17 When loop is
continued

0.22 0.40 0.12 0.12 When loop is
ended
1286

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-4 Timer and Counter Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

HUNDRED-
MS TIMER

TIM --- 3 0.56 0.88 0.37 0.42 ---

TIMX 550 3 0.56 0.88 --- --- ---

TEN-MS
TIMER

TIMH 015 3 0.88 1.14 0.37 0.42 ---

TIMHX 551 3 0.88 1.14 --- --- ---

ONE-MS
TIMER

TMHH 540 3 0.86 1.12 0.37 0.42 ---

TMHHX 552 3 0.86 1.12 --- --- ---

ACCUMULA-
TIVE TIMER

TTIM 087 3 16.1 17.0 21.4 21.4 ---

10.9 11.4 14.8 14.8 When resetting

8.5 8.7 10.7 10.7 When interlock-
ing

TTIMX 555 3 16.1 17.0 --- --- ---

10.9 11.4 --- --- When resetting

8.5 8.7 --- --- When interlock-
ing

LONG TIMER TIML 542 4 7.6 10.0 12.8 12.8 ---

6.2 6.5 7.8 7.8 When interlock-
ing

TIMLX 553 4 7.6 10.0 --- --- ---

6.2 6.5 --- --- When interlock-
ing

MULTI-OUT-
PUT TIMER

MTIM 543 4 20.9 23.3 26.0 26.0 ---

5.6 5.8 7.8 7.8 When resetting

MTIMX 554 4 20.9 23.3 --- --- ---

5.6 5.8 --- --- When resetting

 COUNTER CNT --- 3 0.56 0.88 0.37 0.42 ---

CNTX 546 3 0.56 0.88 --- --- ---

REVERSIBLE
COUNTER

CNTR 012 3 16.9 19.0 20.9 20.9 ---

CNTRX 548 3 16.9 19.0 --- --- ---

RESET
TIMER/
COUNTER

CNR 545 3 9.9 10.6 13.9 13.9 When resetting
1 word

4.16 ms 4.16 ms 5.42 ms 5.42 ms When resetting
1,000 words

CNRX 547 3 9.9 10.6 --- --- When resetting
1 word

4.16 ms 4.16 ms --- --- When resetting
1,000 words
1287

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-5 Comparison Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

Input Compari-
son Instruc-
tions
(unsigned)

LD, AND,
OR +=

300 4 0.10 0.16 0.21 0.37 ---

LD, AND,
OR + <>

305

LD, AND,
OR + <

310

LD, AND,
OR +<=

315

LD, AND,
OR +>

320

LD, AND,
OR +>=

325

Input Compari-
son Instruc-
tions (double,
unsigned)

LD, AND,
OR +=+L

301 4 0.10 0.16 0.29 0.54 ---

LD, AND,
OR +<>+L

306

LD, AND,
OR +<+L

311

LD, AND,
OR +<=+L

316

LD, AND,
OR +>+L

321

LD, AND,
OR +>=+L

326

Input Compari-
son Instruc-
tions (signed)

LD, AND,
OR +=+S

302 4 0.10 0.16 6.50 6.50 ---

LD, AND,
OR +<>+S

307

LD, AND,
OR +<+S

312

LD, AND,
OR +<=

317

LD, AND,
OR +>+S

322

LD, AND,
OR +>=+S

327

Input Compari-
son Instruc-
tions (double,
signed)

LD, AND,
OR +=+SL

303 4 0.10 0.16 6.50 6.50 ---

LD, AND,
OR +<>+SL

308

LD, AND,
OR +<+SL

313

LD, AND,
OR +<=+SL

318

LD, AND,
OR +>+SL

323

LD, AND,
OR +>=+SL

328
1288

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

Time Compari-
son Instruc-
tions
(See note 2.)

LD, AND,
OR +DT

341 4 25.1 36.4 --- --- ON and OFF
execution
times are the
same as given
at the left.

LD, AND,
OR +<>DT

342 4 25.2 36.4 --- ---

LD, AND,
OR +<DT

343 4 25.2 36.4 --- ---

LD, AND,
OR +<=DT

344 4 25.2 36.4 --- ---

LD, AND,
OR +>DT

345 4 25.1 36.4 --- ---

LD, AND,
OR +>=DT

346 4 25.2 36.4 --- ---

COMPARE CMP 020 3 0.04 0.04 0.17 0.29 ---

!CMP 020 7 +42.1 +42.1 +42.4 +42.4 Increase for
CS Series

+90.4 +90.4 +90.5 +90.5 Increase for
C200H

DOUBLE
COMPARE

CMPL 060 3 0.08 0.08 0.25 0.46 ---

SIGNED
BINARY COM-
PARE

CPS 114 3 0.08 0.08 6.50 6.50 ---

!CPS 114 7 +35.9 +35.9 +42.4 +42.4 Increase for
CS Series

+84.1 +84.1 +90.5 +90.5 Increase for
C200H

DOUBLE
SIGNED
BINARY COM-
PARE

CPSL 115 3 0.08 0.08 6.50 6.50 ---

TABLE COM-
PARE

TCMP 085 4 14.0 15.2 21.9 21.9 ---

MULTIPLE
COMPARE

MCMP 019 4 20.5 22.8 31.2 31.2 ---

UNSIGNED
BLOCK COM-
PARE

BCMP 068 4 21.5 23.7 32.6 32.6 ---

AREA RANGE
COMPARE

ZCP 088 3 5.3 5.4 --- --- ---

DOUBLE
AREA RANGE
COMPARE

ZCPL 116 3 5.5 6.7 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1289

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-6 Data Movement Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

MOVE MOV 021 3 0.18 0.20 0.25 0.29 ---

!MOV 021 7 +21.38 +21.40 +42.36 +42.36 Increase for CS
Series

+90.52 +90.52 +90.52 +90.52 Increase for
C200H

DOUBLE
MOVE

MOVL 498 3 0.32 0.34 0.42 0.50 ---

MOVE NOT MVN 022 3 0.18 0.20 0.25 0.29 ---

DOUBLE
MOVE NOT

MVNL 499 3 0.32 0.34 0.42 0.50 ---

MOVE BIT MOVB 082 4 0.24 0.34 7.5 7.5 ---

MOVE DIGIT MOVD 083 4 0.24 0.34 7.3 7.3 ---

MULTIPLE
BIT TRANS-
FER

XFRB 062 4 10.1 10.8 13.6 13.6 Transferring 1
bit

186.4 189.8 269.2 269.2 Transferring 255
bits

BLOCK
TRANSFER

XFER 070 4 0.36 0.44 11.2 11.2 Transferring 1
word

300.1 380.1 633.5 633.5 Transferring
1,000 words

BLOCK SET BSET 071 4 0.26 0.28 8.5 8.5 Setting 1 word

200.1 220.1 278.3 278.3 Setting 1,000
words

DATA
EXCHANGE

XCHG 073 3 0.40 0.56 0.5 0.7 ---

DOUBLE
DATA
EXCHANGE

XCGL 562 3 0.76 1.04 0.9 1.3 ---

SINGLE
WORD DIS-
TRIBUTE

DIST 080 4 5.1 5.4 7.0 7.0 ---

DATA COL-
LECT

COLL 081 4 5.1 5.3 7.1 7.1 ---

MOVE TO
REGISTER

MOVR 560 3 0.08 0.08 0.42 0.50 ---

MOVE TIMER/
COUNTER PV
TO REGIS-
TER

MOVRW 561 3 0.42 0.50 0.42 0.50 ---
1290

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-7 Data Shift Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

SHIFT
REGISTER

SFT 010 3 7.4 10.4 10.4 10.4 Shifting 1 word

433.2 488.0 763.1 763.1 Shifting 1,000
words

REVERSIBLE
SHIFT
REGISTER

SFTR 084 4 6.9 7.2 9.6 9.6 Shifting 1 word

615.3 680.2 859.6 859.6 Shifting 1,000
words

ASYNCHRO-
NOUS SHIFT
REGISTER

ASFT 017 4 6.2 6.4 7.7 7.7 Shifting 1 word

1.22 ms 1.22 ms 2.01 ms 2.01 ms Shifting 1,000
words

WORD SHIFT WSFT 016 4 4.5 4.7 7.8 7.8 Shifting 1 word

171.5 171.7 781.7 781.7 Shifting 1,000
words

ARITHMETIC
SHIFT LEFT

ASL 025 2 0.22 0.32 0.29 0.37 ---

DOUBLE
SHIFT LEFT

ASLL 570 2 0.40 0.56 0.50 0.67 ---

ARITHMETIC
SHIFT RIGHT

ASR 026 2 0.22 0.32 0.29 0.37 ---

DOUBLE
SHIFT RIGHT

ASRL 571 2 0.40 0.56 0.50 0.67 ---

ROTATE LEFT ROL 027 2 0.22 0.32 0.29 0.37 ---

DOUBLE
ROTATE LEFT

ROLL 572 2 0.40 0.56 0.50 0.67 ---

ROTATE LEFT
WITHOUT
CARRY

RLNC 574 2 0.22 0.32 0.29 0.37 ---

DOUBLE
ROTATE LEFT
WITHOUT
CARRY

RLNL 576 2 0.40 0.56 0.50 0.67 ---

ROTATE
RIGHT

ROR 028 2 0.22 0.32 0.29 0.37 ---

DOUBLE
ROTATE
RIGHT

RORL 573 2 0.40 0.56 0.50 0.67 ---

ROTATE
RIGHT WITH-
OUT CARRY

RRNC 575 2 0.22 0.32 0.29 0.37 ---

DOUBLE
ROTATE
RIGHT WITH-
OUT CARRY

RRNL 577 2 0.40 0.56 0.50 0.67 ---

ONE DIGIT
SHIFT LEFT

SLD 074 3 5.9 6.1 8.2 8.2 Shifting 1 word

561.1 626.3 760.7 760.7 Shifting 1,000
words

ONE DIGIT
SHIFT RIGHT

SRD 075 3 6.9 7.1 8.7 8.7 Shifting 1 word

760.5 895.5 1.07 ms 1.07 ms Shifting 1,000
words

SHIFT N-BIT
DATA LEFT

NSFL 578 4 7.5 8.3 10.5 10.5 Shifting 1 bit

40.3 45.4 55.5 55.5 Shifting 1,000
bits
1291

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-8 Increment/Decrement Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

SHIFT N-BIT
DATA RIGHT

NSFR 579 4 7.5 8.3 10.5 10.5 Shifting 1 bit

50.5 55.3 69.3 69.3 Shifting 1,000
bits

SHIFT N-BITS
LEFT

NASL 580 3 0.22 0.32 0.29 0.37 ---

DOUBLE
SHIFT N-BITS
LEFT

NSLL 582 3 0.40 0.56 0.50 0.67 ---

SHIFT N-BITS
RIGHT

NASR 581 3 0.22 0.32 0.29 0.37 ---

DOUBLE
SHIFT N-BITS
RIGHT

NSRL 583 3 0.40 0.56 0.50 0.67 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

INCREMENT
BINARY

++ 590 2 0.22 0.32 0.29 0.37 ---

DOUBLE
INCREMENT
BINARY

++L 591 2 0.40 0.56 0.50 0.67 ---

DECREMENT
BINARY

– – 592 2 0.22 0.32 0.29 0.37 ---

DOUBLE DEC-
REMENT
BINARY

– –L 593 2 0.40 0.56 0.50 0.67 ---

INCREMENT
BCD

++B 594 2 6.4 4.5 7.4 7.4 ---

DOUBLE
INCREMENT
BCD

++BL 595 2 5.6 4.9 6.1 6.1 ---

DECREMENT
BCD

– –B 596 2 6.3 4.6 7.2 7.2 ---

DOUBLE DEC-
REMENT BCD

– –BL 597 2 5.3 4.7 7.1 7.1 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1292

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-9 Symbol Math Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

SIGNED
BINARY
ADD WITH-
OUT
CARRY

+ 400 4 0.18 0.20 0.25 0.37 ---

DOUBLE
SIGNED
BINARY
ADD WITH-
OUT
CARRY

+L 401 4 0.32 0.34 0.42 0.54 ---

SIGNED
BINARY
ADD WITH
CARRY

+C 402 4 0.18 0.20 0.25 0.37 ---

DOUBLE
SIGNED
BINARY
ADD WITH
CARRY

+CL 403 4 0.32 0.34 0.42 0.54 ---

BCD ADD
WITHOUT
CARRY

+B 404 4 8.2 8.4 14.0 14.0 ---

DOUBLE
BCD ADD
WITHOUT
CARRY

+BL 405 4 13.3 14.5 19.0 19.0 ---

BCD ADD
WITH
CARRY

+BC 406 4 8.9 9.1 14.5 14.5 ---

DOUBLE
BCD ADD
WITH
CARRY

+BCL 407 4 13.8 15.0 19.6 19.6 ---

SIGNED
BINARY
SUBTRACT
WITHOUT
CARRY

– 410 4 0.18 0.20 0.25 0.37 ---

DOUBLE
SIGNED
BINARY
SUBTRACT
WITHOUT
CARRY

–L 411 4 0.32 0.34 0.42 0.54 ---

SIGNED
BINARY
SUBTRACT
WITH
CARRY

–C 412 4 0.18 0.20 0.25 0.37 ---

DOUBLE
SIGNED
BINARY
SUBTRACT
WITH
CARRY

–CL 413 4 0.32 0.34 0.42 0.54 ---
1293

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

BCD SUB-
TRACT
WITHOUT
CARRY

–B 414 4 8.0 8.2 13.1 13.1 ---

DOUBLE
BCD SUB-
TRACT
WITHOUT
CARRY

–BL 415 4 12.8 14.0 18.2 18.2 ---

BCD SUB-
TRACT
WITH
CARRY

–BC 416 4 8.5 8.6 13.8 13.8 ---

DOUBLE
BCD SUB-
TRACT
WITH
CARRY

–BCL 417 4 13.4 14.7 18.8 18.8 ---

SIGNED
BINARY
MULTIPLY

* 420 4 0.38 0.40 0.50 0.58 ---

DOUBLE
SIGNED
BINARY
MULTIPLY

*L 421 4 7.23 8.45 11.19 11.19 ---

UNSIGNED
BINARY
MULTIPLY

*U 422 4 0.38 0.40 0.50 0.58 ---

DOUBLE
UNSIGNED
BINARY
MULTIPLY

*UL 423 4 7.1 8.3 10.63 10.63 ---

BCD MULTI-
PLY

*B 424 4 9.0 9.2 12.8 12.8 ---

DOUBLE
BCD MULTI-
PLY

*BL 425 4 23.0 24.2 35.2 35.2 ---

SIGNED
BINARY
DIVIDE

/ 430 4 0.40 0.42 0.75 0.83 ---

DOUBLE
SIGNED
BINARY
DIVIDE

/L 431 4 7.2 8.4 9.8 9.8 ---

UNSIGNED
BINARY
DIVIDE

/U 432 4 0.40 0.42 0.75 0.83 ---

DOUBLE
UNSIGNED
BINARY
DIVIDE

/UL 433 4 6.9 8.1 9.1 9.1 ---

BCD DIVIDE /B 434 4 8.6 8.8 15.9 15.9 ---

DOUBLE
BCD DIVIDE

/BL 435 4 17.7 18.9 26.2 26.2 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1294

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-10 Conversion Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

BCD TO
BINARY

BIN 023 3 0.22 0.24 0.25 0.29 ---

DOUBLE
BCD TO
DOUBLE
BINARY

BINL 058 3 6.5 6.8 9.1 9.1 ---

BINARY TO
BCD

BCD 024 3 0.24 0.26 8.3 8.3 ---

DOUBLE
BINARY TO
DOUBLE
BCD

BCDL 059 3 6.7 7.0 9.2 9.2 ---

2’S COM-
PLEMENT

NEG 160 3 0.18 0.20 0.25 0.29 ---

DOUBLE
2’S COM-
PLEMENT

NEGL 161 3 0.32 0.34 0.42 0.5 ---

16-BIT TO
32-BIT
SIGNED
BINARY

SIGN 600 3 0.32 0.34 0.42 0.50 ---

DATA
DECODER

MLPX 076 4 0.32 0.42 8.8 8.8 Decoding 1 digit
(4 to 16)

0.98 1.20 12.8 12.8 Decoding 4 dig-
its (4 to 16)

3.30 4.00 20.3 20.3 Decoding 1 digit
(8 to 256)

6.50 7.90 33.4 33.4 Decoding 2 dig-
its (8 to 256)

DATA
ENCODER

DMPX 077 4 7.5 7.9 10.4 10.4 Encoding 1 digit
(16 to 4)

49.6 50.2 59.1 59.1 Encoding 4 dig-
its (16 to 4)

18.2 18.6 23.6 23.6 Encoding 1 digit
(256 to 8)

55.1 57.4 92.5 92.5 Encoding 2 dig-
its (256 to 8)

ASCII CON-
VERT

ASC 086 4 6.8 7.1 9.7 9.7 Converting 1
digit into ASCII

11.2 11.7 15.1 15.1 Converting 4
digits into ASCII

ASCII TO
HEX

HEX 162 4 7.1 7.4 10.1 10.1 Converting 1
digit

COLUMN
TO LINE

LINE 063 4 19.0 23.1 29.1 29.1 ---

LINE TO
COLUMN

COLM 064 4 23.2 27.5 37.3 37.3 ---
1295

CS-series Instruction Execution Times and Number of Steps Section 4-1
SIGNED
BCD TO
BINARY

BINS 470 4 8.0 8.3 12.1 12.1 Data format set-
ting No. 0

8.0 8.3 12.1 12.1 Data format set-
ting No. 1

8.3 8.6 12.7 12.7 Data format set-
ting No. 2

8.5 8.8 13.0 13.0 Data format set-
ting No. 3

DOUBLE
SIGNED
BCD TO
BINARY

BISL 472 4 9.2 9.6 13.6 13.6 Data format set-
ting No. 0

9.2 9.6 13.7 13.7 Data format set-
ting No. 1

9.5 9.9 14.2 14.2 Data format set-
ting No. 2

9.6 10.0 14.4 14.4 Data format set-
ting No. 3

SIGNED
BINARY TO
BCD

BCDS 471 4 6.6 6.9 10.6 10.6 Data format set-
ting No. 0

6.7 7.0 10.8 10.8 Data format set-
ting No. 1

6.8 7.1 10.9 10.9 Data format set-
ting No. 2

7.2 7.5 11.5 11.5 Data format set-
ting No. 3

DOUBLE
SIGNED
BINARY TO
BCD

BDSL 473 4 8.1 8.4 11.6 11.6 Data format set-
ting No. 0

8.2 8.6 11.8 11.8 Data format set-
ting No. 1

8.3 8.7 12.0 12.0 Data format set-
ting No. 2

8.8 9.2 12.5 12.5 Data format set-
ting No. 3

GRAY
CODE CON-
VERSION
(See note 2.)

GRY 474 4 46.9 72.1 --- --- 8-bit binary

49.6 75.2 --- --- 8-bit BCD

57.7 87.7 --- --- 8-bit angle

61.8 96.7 --- --- 15-bit binary

64.5 99.6 --- --- 15-bit BCD

72.8 112.4 --- --- 15-bit angle

52.3 87.2 --- --- 360° binary

55.1 90.4 --- --- 360° BCD

64.8 98.5 --- --- 360° angle

FOUR-
DIGIT NUM-
BER TO
ASCII

STR4 601 3 13.79 20.24 --- ---

EIGHT-
DIGIT NUM-
BER TO
ASCII

STR8 602 3 18.82 27.44 --- ---

SIXTEEN-
DIGIT NUM-
BER TO
ASCII

STR16 603 3 30.54 44.41 --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1296

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

4-1-11 Logic Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

ASCII TO
FOUR-
DIGIT NUM-
BER

NUM4 604 3 18.46 27.27 --- ---

ASCII TO
EIGHT-
DIGIT NUM-
BER

NUM8 605 3 18.46 27.27 --- ---

ASCII TO
SIXTEEN-
DIGIT NUM-
BER

NUM16 606 3 52.31 78.25 --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

LOGICAL
AND

ANDW 034 4 0.18 0.20 0.25 0.37 ---

DOUBLE
LOGICAL
AND

ANDL 610 4 0.32 0.34 0.42 0.54 ---

LOGICAL OR ORW 035 4 0.22 0.32 0.25 0.37 ---

DOUBLE
LOGICAL OR

ORWL 611 4 0.32 0.34 0.42 0.54 ---

EXCLUSIVE
OR

XORW 036 4 0.22 0.32 0.25 0.37 ---

DOUBLE
EXCLUSIVE
OR

XORL 612 4 0.32 0.34 0.42 0.54 ---

EXCLUSIVE
NOR

XNRW 037 4 0.22 0.32 0.25 0.37 ---

DOUBLE
EXCLUSIVE
NOR

XNRL 613 4 0.32 0.34 0.42 0.54 ---

COMPLE-
MENT

COM 029 2 0.22 0.32 0.29 0.37 ---

DOUBLE
COMPLE-
MENT

COML 614 2 0.40 0.56 0.50 0.67 ---
1297

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-12 Special Math Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-13 Floating-point Math Instructions

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

BINARY
ROOT

ROTB 620 3 49.6 50.0 530.7 530.7 ---

BCD SQUARE
ROOT

ROOT 072 3 13.7 13.9 514.5 514.5 ---

ARITHMETIC
PROCESS

APR 069 4 6.7 6.9 32.3 32.3 Designating SIN
and COS

17.2 18.4 78.3 78.3 Designating
line-segment
approximation

FLOATING
POINT
DIVIDE

FDIV 079 4 116.6 176.6 176.6 176.6 ---

BIT
COUNTER

BCNT 067 4 0.3 0.38 22.1 22.1 Counting 1 word

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

FLOATING TO
16-BIT

FIX 450 3 10.6 10.8 14.5 14.5 ---

FLOATING TO
32-BIT

FIXL 451 3 10.8 11.0 14.6 14.6 ---

16-BIT TO
FLOATING

FLT 452 3 8.3 8.5 11.1 11.1 ---

32-BIT TO
FLOATING

FLTL 453 3 8.3 8.5 10.8 10.8 ---

FLOATING-
POINT ADD

+F 454 4 8.0 9.2 10.2 10.2 ---

FLOATING-
POINT SUB-
TRACT

–F 455 4 8.0 9.2 10.3 10.3 ---

FLOATING-
POINT
DIVIDE

/F 457 4 8.7 9.9 12.0 12.0 ---

FLOATING-
POINT MULTI-
PLY

*F 456 4 8.0 9.2 10.5 10.5 ---

DEGREES TO
RADIANS

RAD 458 3 10.1 10.2 14.9 14.9 ---

RADIANS TO
DEGREES

DEG 459 3 9.9 10.1 14.8 14.8 ---

SINE SIN 460 3 42.0 42.2 61.1 61.1 ---

COSINE COS 461 3 31.5 31.8 44.1 44.1 ---

TANGENT TAN 462 3 16.3 16.6 22.6 22.6 ---

ARC SINE ASIN 463 3 17.6 17.9 24.1 24.1 ---

ARC COSINE ACOS 464 3 20.4 20.7 28.0 28.0 ---

ARC TAN-
GENT

ATAN 465 3 16.1 16.4 16.4 16.4 ---
1298

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-14 Double-precision Floating-point Instructions

SQUARE
ROOT

SQRT 466 3 19.0 19.3 28.1 28.1 ---

EXPONENT EXP 467 3 65.9 66.2 96.7 96.7 ---

LOGARITHM LOG 468 3 12.8 13.1 17.4 17.4 ---

EXPONEN-
TIAL POWER

PWR 840 4 125.4 126.0 181.7 181.7 ---

Floating Sym-
bol Compari-
son

LD, AND,
OR +=F

329 3 6.6 8.3 --- --- ---

LD, AND,
OR +<>F

330

LD, AND,
OR +<F

331

LD, AND,
OR +<=F

332

LD, AND,
OR +>F

333

LD, AND,
OR +>=F

334

FLOATING-
POINT TO
ASCII

FSTR 448 4 48.5 48.9 --- --- ---

ASCII TO
FLOATING-
POINT

FVAL 449 3 21.1 21.3 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

DOUBLE
SYMBOL
COMPARI-
SON

LD, AND,
OR +=D

335 3 8.5 10.3 --- --- ---

LD, AND,
OR +<>D

336

LD, AND,
OR +<D

337

LD, AND,
OR +<=D

338

LD, AND,
OR +>D

339

LD, AND,
OR +>=D

340

DOUBLE
FLOATING TO
16-BIT
BINARY

FIXD 841 3 11.7 12.1 --- --- ---

DOUBLE
FLOATING TO
32-BIT
BINARY

FIXLD 842 3 11.6 12.1 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1299

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

16-BIT
BINARY TO
DOUBLE
FLOATING

DBL 843 3 9.9 10.0 --- --- ---

32-BIT
BINARY TO
DOUBLE
FLOATING

DBLL 844 3 9.8 10.0 --- --- ---

DOUBLE
FLOATING-
POINT ADD

+D 845 4 11.2 11.9 --- --- ---

DOUBLE
FLOATING-
POINT SUB-
TRACT

−D 846 4 11.2 11.9 --- --- ---

DOUBLE
FLOATING-
POINT MULTI-
PLY

*D 847 4 12.0 12.7 --- --- ---

DOUBLE
FLOATING-
POINT
DIVIDE

/D 848 4 23.5 24.2 --- --- ---

DOUBLE
DEGREES TO
RADIANS

RADD 849 3 27.4 27.8 --- --- ---

DOUBLE
RADIANS TO
DEGREES

DEGD 850 3 11.2 11.9 --- --- ---

DOUBLE
SINE

SIND 851 3 45.4 45.8 --- --- ---

DOUBLE
COSINE

COSD 852 3 43.0 43.4 --- --- ---

DOUBLE
TANGENT

TAND 853 3 20.1 20.5 --- --- ---

DOUBLE ARC
SINE

ASIND 854 3 21.5 21.9 --- --- ---

DOUBLE ARC
COSINE

ACOSD 855 3 24.7 25.1 --- --- ---

DOUBLE ARC
TANGENT

ATAND 856 3 19.3 19.7 --- --- ---

DOUBLE
SQUARE
ROOT

SQRTD 857 3 47.4 47.9 --- --- ---

DOUBLE
EXPONENT

EXPD 858 3 121.0 121.4 --- --- ---

DOUBLE
LOGARITHM

LOGD 859 3 16.0 16.4 --- --- ---

DOUBLE
EXPONEN-
TIAL POWER

PWRD 860 4 223.9 224.2 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1300

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-15 Table Data Processing Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

SET STACK SSET 630 3 8.0 8.3 8.5 8.5 Designating 5
words in stack
area

231.6 251.8 276.8 276.8 Designating
1,000 words in
stack area

PUSH ONTO
STACK

PUSH 632 3 6.5 8.6 9.1 9.1 ---

FIRST IN
FIRST OUT

FIFO 633 3 6.9 8.9 10.6 10.6 Designating 5
words in stack
area

352.6 434.3 1.13 ms 1.13 ms Designating
1,000 words in
stack area

LAST IN
FIRST OUT

LIFO 634 3 7.0 9.0 9.9 9.9 ---

DIMENSION
RECORD
TABLE

DIM 631 5 15.2 21.6 142.1 142.1 ---

SET RECORD
LOCATION

SETR 635 4 5.4 5.9 7.0 7.0 ---

GET
RECORD
NUMBER

GETR 636 4 7.8 8.4 11.0 11.0 ---

DATA
SEARCH

SRCH 181 4 15.5 19.5 19.5 19.5 Searching for 1
word

2.42 ms 3.34 ms 3.34 ms 3.34 ms Searching for
1,000 words

SWAP BYTES SWAP 637 3 12.2 13.6 13.6 13.6 Swapping 1
word

1.94 ms 2.82 ms 2.82 ms 2.82 ms Swapping 1,000
words

FIND MAXI-
MUM

MAX 182 4 19.2 24.9 24.9 24.9 Searching for 1
word

2.39 ms 3.36 ms 3.36 ms 3.36 ms Searching for
1,000 words

FIND MINI-
MUM

MIN 183 4 19.2 25.3 25.3 25.3 Searching for 1
word

2.39 ms 3.33 ms 3.33 ms 3.33 ms Searching for
1,000 words

SUM SUM 184 4 28.2 38.5 38.5 38.3 Adding 1 word

1.42 ms 1.95 ms 1.95 ms 1.95 ms Adding 1,000
words

FRAME
CHECKSUM

FCS 180 4 20.0 28.3 28.3 28.3 For 1-word table
length

1.65 ms 2.48 ms 2.48 ms 2.48 ms For 1,000-word
table length

STACK SIZE
READ

SNUM 638 3 6.0 6.3 --- --- ---

STACK DATA
READ

SREAD 639 4 8.0 8.4 --- --- ---

STACK DATA
OVERWRITE

SWRIT 640 4 7.2 7.6 --- --- ---
1301

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-16 Data Control Instructions

STACK DATA
INSERT

SINS 641 4 7.8 9.9 --- --- ---

354.0 434.8 --- --- For 1,000-word
table

STACK DATA
DELETE

SDEL 642 4 8.6 10.6 --- --- ---

354.0 436.0 --- --- For 1,000-word
table

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

PID CON-
TROL

PID 190 4 436.2 678.2 678.2 678.2 Initial execution

332.3 474.9 474.9 474.9 Sampling

97.3 141.3 141.3 141.3 Not sampling

LIMIT CON-
TROL

LMT 680 4 16.1 22.1 22.1 22.1 ---

DEAD
BAND CON-
TROL

BAND 681 4 17.0 22.5 22.5 22.5 ---

DEAD
ZONE CON-
TROL

ZONE 682 4 15.4 20.5 20.5 20.5 ---

TIME-PRO-
POR-
TIONAL
OUTPUT
(See note 2.)

TPO 685 4 10.4 14.8 --- --- OFF execution
time

54.5 82.0 --- --- ON execution
time with duty
designation or
displayed out-
put limit

61.0 91.9 --- --- ON execution
time with manip-
ulated variable
designation and
output limit
enabled

SCALING SCL 194 4 37.1 53.0 56.8 56.8 ---

SCALING 2 SCL2 486 4 28.5 40.2 50.7 50.7 ---

SCALING 3 SCL3 487 4 33.4 47.0 57.7 57.7 ---

AVERAGE AVG 195 4 36.3 52.6 53.1 53.1 Average of an
operation

291.0 419.9 419.9 419.9 Average of 64
operations

PID CON-
TROL WITH
AUTOTUN-
ING

PIDAT 191 4 446.3 712.5 --- --- Initial execution

339.4 533.9 --- --- Sampling

100.7 147.1 --- --- Not sampling

189.2 281.6 --- --- Initial execution
of autotuning

535.2 709.8 --- --- Autotuning
when sampling

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1302

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

4-1-17 Subroutine Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-18 Interrupt Control Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-19 Step Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

SUBROUTINE CALL SBS 091 2 1.26 1.96 17.0 17.0 ---

SUBROUTINE
ENTRY

SBN 092 2 --- --- --- --- ---

SUBROUTINE
RETURN

RET 093 1 0.86 1.60 20.60 20.60 ---

MACRO MCRO 099 4 23.3 23.3 23.3 23.3 ---

GLOBAL SUBROU-
TINE CALL

GSBN 751 2 --- --- --- --- ---

GLOBAL SUBROU-
TINE ENTRY

GRET 752 1 1.26 1.96 --- --- ---

GLOBAL SUBROU-
TINE RETURN

GSBS 750 2 0.86 1.60 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

SET INTERRUPT
MASK

MSKS 690 3 25.6 38.4 39.5 39.5 ---

READ INTER-
RUPT MASK

MSKR 692 3 11.9 11.9 11.9 11.9 ---

CLEAR INTER-
RUPT

CLI 691 3 27.4 41.3 41.3 41.3 ---

DISABLE INTER-
RUPTS

DI 693 1 15.0 16.8 16.8 16.8 ---

ENABLE INTER-
RUPTS

EI 694 1 19.5 21.8 21.8 21.8 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

STEP
DEFINE

STEP 008 2 17.4 20.7 27.1 27.1 Step control bit
ON

11.8 13.7 24.4 24.4 Step control bit
OFF

STEP
START

SNXT 009 2 6.6 7.3 10.0 10.0 ---
1303

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-20 Basic I/O Unit Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

I/O REFRESH IORF 097 3 58.5 63.2 81.7 81.7 1-word refresh (IN)
for C200H Basic
I/O Units

62.6 67.0 86.7 86.7 1-word refresh
(OUT) for C200H
Basic I/O Units

15.5 16.4 23.5 23.5 1-word refresh (IN)
for CS-series Basic
I/O Units

17.20 18.40 25.6 25.6 1-word refresh
(OUT) for CS-
series Basic I/O
Units

303.3 343.9 357.1 357.1 10-word refresh
(IN) for C200H
Basic I/O Units

348.2 376.6 407.5 407.5 10-word refresh
(OUT) for C200H
Basic I/O Units

319.9 320.7 377.5 377.6 60-word refresh
(IN) for CS-series
Basic I/O Units

358.00 354.40 460.1 460.1 60-word refresh
(OUT) for CS-
series Basic I/O
Units

CPU BUS I/O
REFRESH

DLNK 226 4 287.8 315.5 --- --- Allocated 1 word

7-SEGMENT
DECODER

SDEC 078 4 6.5 6.9 14.1 14.1 ---

DIGITAL
SWITCH
INPUT
(See note 2.)

DSW 210 6 50.7 73.5 --- --- 4 digits, data input
value: 0

51.5 73.4 --- --- 4 digits, data input
value: F

51.3 73.5 --- --- 8 digits, data input
value: 0

50.7 73.4 --- --- 8 digits, data input
value: F

TEN KEY
INPUT
(See note 2.)

TKY 211 4 9.7 13.2 --- --- Data input value: 0

10.7 14.8 --- --- Data input value: F

HEXADECI-
MAL KEY
INPUT
(See note 2.)

HKY 212 5 50.3 70.9 --- --- Data input value: 0

50.1 71.2 --- --- Data input value: F

MATRIX
INPUT
(See note 2.)

MTR 213 5 47.8 68.1 --- --- Data input value: 0

48.0 68.0 --- --- Data input value: F

7-SEGMENT
DISPLAY
OUTPUT
(See note 2.)

7SEG 214 5 58.1 83.3 --- --- 4 digits

63.3 90.3 --- --- 8 digits
1304

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

4-1-21 Serial Communications Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-22 Network Instructions

INTELLI-
GENT I/O
READ

IORD 222 4 Read/write times depend on the Special I/O
Unit for which the instruction is being exe-
cuted.

INTELLI-
GENT I/O
WRITE

IOWR 223 4 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

PROTOCOL
MACRO

PMCR 260 5 100.1 142.1 276.8 276.8 Sending 0
words, receiv-
ing 0 words

134.2 189.6 305.9 305.9 Sending 1 word,
receiving 1 word

TRANSMIT TXD 236 4 68.5 98.8 98.8 98.8 Sending 1 byte

734.3 1.10 ms 1.10 ms 1.10 ms Sending 256
bytes

RECEIVE RXD 235 4 89.6 131.1 131.1 131.1 Storing 1 byte

724.2 1.11 ms 1.11 ms 1.11 ms Storing 256
bytes

TRANSMIT
VIA SERIAL
COMMUNI-
CATIONS
UNIT

TXDU 256 4 131.5 202.4 --- --- Sending 1 byte

RECEIVE VIA
SERIAL COM-
MUNICA-
TIONS UNIT

RXDU 255 4 131 200.8 --- --- Storing 1 byte

CHANGE
SERIAL
PORT SETUP

STUP 237 3 341.2 400.0 440.4 440.4 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

NETWORK
SEND

SEND 090 4 84.4 123.9 123.9 123.9 ---

NETWORK
RECEIVE

RECV 098 4 85.4 124.7 124.7 124.7 ---

DELIVER
COMMAND

CMND 490 4 106.8 136.8 136.8 136.8 ---
1305

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

4-1-23 File Memory Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-24 Display Instructions

EXPLICIT
MESSAGE
SEND
(See note 2.)

EXPLT 720 4 127.6 190.0 --- --- ---

EXPLICIT
GET
ATTRIBUTE
(See note 2.)

EGATR 721 4 123.9 185.0 --- --- ---

EXPLICIT
SET
ATTRIBUTE
(See note 2.)

ESATR 722 3 110.0 164.4 --- --- ---

EXPLICIT
WORD
READ
(See note 2.)

ECHRD 723 4 106.8 158.9 --- --- ---

EXPLICIT
WORD
WRITE
(See note 2.)

ECHWR 724 4 106.0 158.3 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

READ DATA
FILE

FREAD 700 5 391.4 632.4 684.1 684.1 2-character
directory + file
name in binary

836.1 1.33 ms 1.35 ms 1.35 ms 73-character
directory + file
name in binary

WRITE
DATA FILE

FWRIT 701 5 387.8 627.0 684.7 684.7 2-character
directory + file
name in binary

833.3 1.32 ms 1.36 ms 1.36 ms 73-character
directory + file
name in binary

WRITE
TEXT FILE

TWRIT 704 5 390.1 619.1 --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

DISPLAY
MESSAGE

MSG 046 3 10.1 14.2 14.3 14.3 Displaying mes-
sage

8.4 11.3 11.3 11.3 Deleting dis-
played message
1306

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-25 Clock Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-26 Debugging Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-27 Failure Diagnosis Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

CALENDAR
ADD

CADD 730 4 38.3 201.9 209.5 209.5 ---

CALENDAR
SUBTRACT

CSUB 731 4 38.6 170.4 184.1 184.1 ---

HOURS TO
SECONDS

SEC 065 3 21.4 29.3 35.8 35.8 ---

SECONDS TO
HOURS

HMS 066 3 22.2 30.9 42.1 42.1 ---

CLOCK
ADJUSTMENT

DATE 735 2 60.5 87.4 95.9 95.9 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

Trace Mem-
ory Sam-
pling

TRSM 045 1 80.4 120.0 120.0 120.0 Sampling 1 bit
and 0 words

848.1 1.06 ms 1.06 ms 1.06 ms Sampling 31 bits
and 6 words

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

FAILURE
ALARM

FAL 006 3 15.4 16.7 16.7 16.7 Recording
errors

179.8 244.8 244.8 244.8 Deleting errors
(in order of pri-
ority)

432.4 657.1 657.1 657.1 Deleting errors
(all errors)

161.5 219.4 219.4 219.4 Deleting errors
(individually)

SEVERE
FAILURE
ALARM

FALS 007 3 --- --- --- --- ---

FAILURE
POINT
DETECTION

FPD 269 4 140.9 202.3 202.3 202.3 When executed

163.4 217.6 217.6 217.6 First time

185.2 268.9 268.9 268.9 When executed

207.5 283.6 283.6 283.6 First time
1307

CS-series Instruction Execution Times and Number of Steps Section 4-1
4-1-28 Other Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-29 Block Programming Instructions

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

SET CARRY STC 040 1 0.06 0.06 0.12 0.12 ---

CLEAR
CARRY

CLC 041 1 0.06 0.06 0.12 0.12 ---

SELECT EM
BANK

EMBC 281 2 14.0 15.1 15.1 15.1 ---

EXTEND
MAXIMUM
CYCLE
TIME

WDT 094 2 15.0 19.7 19.7 19.7 ---

SAVE CON-
DITION
FLAGS

CCS 282 1 8.6 12.5 --- --- ---

LOAD CON-
DITION
FLAGS

CCL 283 1 9.8 13.9 --- --- ---

CONVERT
ADDRESS
FROM CV

FRMCV 284 3 13.6 19.9 --- --- ---

CONVERT
ADDRESS
TO CV

TOCV 285 3 11.9 17.2 --- --- ---

DISABLE
PERIPH-
ERAL SER-
VICING

IOSP 287 --- 13.9 19.8 --- --- ---

ENABLE
PERIPH-
ERAL SER-
VICING

IORS 288 --- 63.6 92.3 --- --- ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

BLOCK
PROGRAM
BEGIN

BPRG 096 2 12.1 13.0 13.0 13.0 ---

BLOCK
PROGRAM
END

BEND 801 1 9.6 12.3 13.1 13.1 ---

BLOCK
PROGRAM
PAUSE

BPPS 811 2 10.6 12.3 14.9 14.9 ---

BLOCK
PROGRAM
RESTART

BPRS 812 2 5.1 5.6 8.3 8.3 ---

CONDI-
TIONAL
BLOCK
EXIT

(Execution
condition)
EXIT

806 1 10.0 11.3 12.9 12.9 EXIT condition
satisfied

4.0 4.9 7.3 7.3 EXIT condition
not satisfied
1308

CS-series Instruction Execution Times and Number of Steps Section 4-1
CONDI-
TIONAL
BLOCK
EXIT

EXIT (bit
address)

806 2 6.8 13.5 16.3 16.3 EXIT condition
satisfied

4.7 7.2 10.7 10.7 EXIT condition
not satisfied

CONDI-
TIONAL
BLOCK
EXIT (NOT)

EXIT NOT
(bit address)

806 2 12.4 14.0 16.8 16.8 EXIT condition
satisfied

7.1 7.6 11.2 11.2 EXIT condition
not satisfied

Branching IF (execution
condition)

802 1 4.6 4.8 7.2 7.2 IF true

6.7 7.3 10.9 10.9 IF false

Branching IF (relay
number)

802 2 6.8 7.2 10.4 10.4 IF true

9.0 9.6 14.2 14.2 IF false

Branching
(NOT)

IF NOT
(relay num-
ber)

802 2 7.1 7.6 10.9 10.9 IF true

9.2 10.1 14.7 14.7 IF false

Branching ELSE 803 1 6.2 6.7 9.9 9.9 IF true

6.8 7.7 11.2 11.2 IF false

Branching IEND 804 1 6.9 7.7 11.0 11.0 IF true

4.4 4.6 7.0 7.0 IF false

ONE
CYCLE AND
WAIT

WAIT (exe-
cution condi-
tion)

805 1 12.6 13.7 16.7 16.7 WAIT condition
satisfied

3.9 4.1 6.3 6.3 WAIT condition
not satisfied

ONE
CYCLE AND
WAIT

WAIT (relay
number)

805 2 12.0 13.4 16.5 16.5 WAIT condition
satisfied

6.1 6.5 9.6 9.6 WAIT condition
not satisfied

ONE
CYCLE AND
WAIT (NOT)

WAIT NOT
(relay num-
ber)

805 2 12.2 13.8 17.0 17.0 WAIT condition
satisfied

6.4 6.9 10.1 10.1 WAIT condition
not satisfied

COUNTER
WAIT

CNTW 814 4 17.9 22.6 27.4 27.4 Default setting

19.1 23.9 28.7 28.7 Normal execu-
tion

CNTWX 818 4 17.9 22.6 --- --- Default setting

19.1 23.9 --- --- Normal execu-
tion

TEN-MS
TIMER
WAIT

TMHW 815 3 25.8 27.9 34.1 34.1 Default setting

20.6 22.7 28.9 28.9 Normal execu-
tion

TMHWX 817 3 25.8 27.9 --- --- Default setting

20.6 22.7 --- --- Normal execu-
tion

9.3 10.8 --- --- LEND condition
not satisfied

Loop Control LOOP 809 1 7.9 9.1 12.3 12.3 ---

Loop Control LEND (exe-
cution condi-
tion)

810 1 7.7 8.4 10.9 10.9 LEND condition
satisfied

6.8 8.0 9.8 9.8 LEND condition
not satisfied

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1309

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-30 Text String Processing Instructions

Loop Control LEND (relay
number)

810 2 9.9 10.7 14.4 14.4 LEND condition
satisfied

8.9 10.3 13.0 13.0 LEND condition
not satisfied

Loop Control LEND NOT
(relay num-
ber)

810 2 10.2 11.2 14.8 14.8 LEND condition
satisfied

9.3 10.8 13.5 13.5 LEND condition
not satisfied

HUNDRED-
MS TIMER
WAIT

TIMW 813 3 22.3 25.2 33.1 33.1 Default setting

24.9 27.8 35.7 35.7 Normal execu-
tion

TIMWX 816 3 22.3 25.2 --- --- Default setting

24.9 27.8 --- --- Normal execu-
tion

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

MOV STRING MOV$ 664 3 45.6 66.0 84.3 84.3 Transferring 1
character

CONCATE-
NATE
STRING

+$ 656 4 86.5 126.0 167.8 167.8 1 character + 1
character

GET STRING
LEFT

LEFT$ 652 4 53.0 77.4 94.3 94.3 Retrieving 1
character from 2
characters

GET STRING
RIGHT

RGHT$ 653 4 52.2 76.3 94.2 94.2 Retrieving 1
character from 2
characters

GET STRING
MIDDLE

MID$ 654 5 56.5 84.6 230.2 230.2 Retrieving 1
character from 3
characters

FIND IN
STRING

FIND$ 660 4 51.4 77.5 94.1 94.1 Searching for 1
character from 2
characters

STRING
LENGTH

LEN$ 650 3 19.8 28.9 33.4 33.4 Detecting 1
character

REPLACE IN
STRING

RPLC$ 661 6 175.1 258.7 479.5 479.5 Replacing the
first of 2 charac-
ters with 1 char-
acter

DELETE
STRING

DEL$ 658 5 63.4 94.2 244.6 244.6 Deleting the
leading charac-
ter of 2 charac-
ters

EXCHANGE
STRING

XCHG$ 665 3 60.6 87.2 99.0 99.0 Exchanging 1
character with 1
character

CLEAR
STRING

CLR$ 666 2 23.8 36.0 37.8 37.8 Clearing 1 char-
acter

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1310

CS-series Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-1-31 Task Control Instructions

4-1-32 Model Conversion Instructions (CPU Unit Ver. 3.0 or later only)

INSERT INTO
STRING

INS$ 657 5 136.5 200.6 428.9 428.9 Inserting 1 char-
acter after the
first of 2 charac-
ters

String Com-
parison
Instructions

LD, AND,
OR +=$

670 4 48.5 69.8 86.2 86.2 Comparing 1
character with 1
characterLD, AND,

OR +<>$
671

LD, AND,
OR +<$

672

LD, AND,
OR +>$

674

LD, AND,
OR +>=$

675

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

TASK ON TKON 820 2 19.5 26.3 26.3 26.3 ---

TASK OFF TKOF 821 2 13.3 19.0 26.3 26.3 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

BLOCK
TRANSFER

XFERC 565 4 6.4 6.5 --- --- Transferring 1
word

481.6 791.6 --- --- Transferring
1,000 words

SINGLE
WORD DIS-
TRIBUTE

DISTC 566 4 3.4 3.5 --- --- Data distribute

5.9 7.3 --- --- Stack operation

DATA COL-
LECT

COLLC 567 4 3.5 3.85 --- --- Data distribute

8 9.1 --- --- Stack operation

8.3 9.6 --- --- Stack operation
1 word FIFO
Read

2,052.3 2,097.5 --- --- Stack operation
1,000 word
FIFO Read

MOVE BIT MOVBC 568 4 4.5 4.88 --- --- ---

BIT
COUNTER

BCNTC 621 4 4.9 5 --- --- Counting 1 word

1,252.4 1284.4 --- --- Counting 1,000
words

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@
1311

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-1-33 Special Function Block Instructions (CPU Unit Ver. 3.0 or Later
Only)

Guidelines on Converting
Program Capacities from
Previous OMRON PLCs

Guidelines are provided in the following table for converting the program
capacity (unit: words) of previous OMRON PLCs (SYSMAC C200HX/HG/HE,
CVM1, or CV-series PLCs) to the program capacity (unit: steps) of the CS-
series PLCs.

Add the following value (n) to the program capacity (unit: words) of the previ-
ous PLCs for instruction to obtain the program capacity (unit: steps) of the
CS-series PLCs.

For example, if OUT is used with an address of CIO 000000 to CIO 25515, the
program capacity of a C200HX/HG/HE PLC would be 2 words per instruction
and that of the CS-series PLC would be 1 (2 – 1) step per instruction.

For example, if !MOV is used (MOVE instruction with immediate refreshing),
the program capacity of a CV-series PLC would be 4 words per instruction
and that of the CS-series PLC would be 7 (4 + 3) steps.

4-2 CJ-series Instruction Execution Times and Number of
Steps

The following table lists the execution times for all instructions that are avail-
able for CJ PLCs.

The total execution time of instructions within one whole user program is the
process time for program execution when calculating the cycle time (See
note.).

Note User programs are allocated tasks that can be executed within cyclic tasks
and interrupt tasks that satisfy interrupt conditions.

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution time (µs) Conditions

CPU-6@H CPU-4@H CPU-6@ CPU-4@

GET VARI-
ABLE ID

GETID 286 4 14 22.2 --- --- ---

CS-series steps = “a” (words) of previous PLC + n

Instructions Variations Value of n when
converting from

C200HX/HG/HE to
CS Series

Value of n when
converting from
CV-series PLC or

CVM1 to CS
Series

Basic
instructions

None OUT, SET, RSET,
or KEEP(011): –1

Other instructions:
0

0

Upward Differentiation None +1

Immediate Refreshing None 0

Upward Differentiation and
Immediate Refreshing

None +2

Special
instructions

None 0 –1

Upward Differentiation +1 0

Immediate Refreshing None +3

Upward Differentiation and
Immediate Refreshing

None +4
1312

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Execution times for most instructions differ depending on the CPU Unit used
(CJ1H-CPU6@H-R, CJ1H-CPU6@H, CJ1H-CPU4@H, CJ1M-CPU@@
andCJ1G-CPU4@) and the conditions when the instruction is executed. The
top line for each instruction in the following table shows the minimum time
required to process the instruction and the necessary execution conditions,
and the bottom line shows the maximum time and execution conditions
required to process the instruction.

The execution time can also vary when the execution condition is OFF.

The following table also lists the length of each instruction in the Length
(steps) column. The number of steps required in the user program area for
each of the CJ-series instructions varies from 1 to 7 steps, depending upon
the instruction and the operands used with it. The number of steps in a pro-
gram is not the same as the number of instructions.

Note 1. Program capacity for CJ-series PLCs is measured in steps, whereas pro-
gram capacity for previous OMRON PLCs, such as the C-series and CV-
series PLCs, was measured in words. Basically speaking, 1 step is equiv-
alent to 1 word. The amount of memory required for each instruction, how-
ever, is different for some of the CJ-series instructions, and inaccuracies
will occur if the capacity of a user program for another PLC is converted for
a CJ-series PLC based on the assumption that 1 word is 1 step. Refer to
the information at the end of 4-1 CS-series Instruction Execution Times
and Number of Steps for guidelines on converting program capacities from
previous OMRON PLCs.

2. Most instructions are supported in differentiated form (indicated with ↑, ↓,
@, and %). Specifying differentiation will increase the execution times by
the following amounts.

3. Use the following times as guidelines when instructions are not executed.

4-2-1 Sequence Input Instructions

Symbol CJ1-H CJ1M CJ1
CPU6@H-R CPU6@H CPU4@H CPU@@ CPU4@

↑ or ↓ +0.24 µs +0.24 µs +0.32 µs +0.5 µs +0.45 µs

@ or % +0.24 µs +0.24 µs +0.32 µs +0.5 µs +0.33 µs

CJ1-H CJ1M CJ1
CPU6@H-R CPU6@H CPU4@H CPU@@ CPU4@

Approx.
0.1 µs

Approx.
0.1 µs

Approx.
0.2 µs

Approx. 0.2
to 0.5 µs

Approx. 0.2
to 0.4 µs

Instruction Mne-
monic

Code Length
(steps)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21

LOAD LD --- 1 0.016 0.02 0.04 0.08 0.10 0.10 ---

!LD --- 2 +21.14 +21.14 +21.16 +21.16 +24.10 +28.07 Increase for immedi-
ate refresh

LOAD NOT LD NOT --- 1 0.016 0.02 0.04 008 0.10 0.10 ---

!LD NOT --- 2 +21.14 +21.14 +21.16 +21.16 +24.10 +28.07 Increase for immedi-
ate refresh

AND AND --- 1 0.016 0.02 0.04 0.08 0.10 0.10 ---

!AND --- 2 +21.14 +21.14 +21.16 +21.16 +24.10 +28.07 Increase for immedi-
ate refresh
1313

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table

4-2-2 Sequence Output Instructions

AND NOT AND
NOT

--- 1 0.016 0.02 0.04 0.08 0.10 0.10 ---

!AND
NOT

--- 2 +21.14 +21.14 +21.16 +21.16 +24.10 +28.07 Increase for immedi-
ate refresh

OR OR --- 1 0.016 0.02 0.04 0.08 0.10 0.10 ---

!OR --- 2 +21.14 +21.14 +21.16 +21.16 +24.10 +28.07 Increase for immedi-
ate refresh

OR NOT OR NOT --- 1 0.016 0.02 0.04 0.08 0.10 0.10 ---

!OR
NOT

--- 2 +21.14 +21.14 +21.16 +21.16 +24.10 +28.07 Increase for immedi-
ate refresh

AND LOAD AND LD --- 1 0.016 0.02 0.04 0.08 0.05 0.05 ---

OR LOAD OR LD --- 1 0.016 0.02 0.04 0.08 0.05 0.05 ---

NOT NOT 520 1 0.016 0.02 0.04 0.08 0.05 0.05 ---

CONDI-
TION ON

UP 521 3 0.24 0.3 0.42 0.54 0.50 0.50 ---

CONDI-
TION OFF

DOWN 522 4 0.24 0.3 0.42 0.54 0.50 0.50 ---

LOAD BIT
TEST

LD TST 350 4 0.11 0.14 0.24 0.37 0.35 0.35 ---

LOAD BIT
TEST NOT

LD
TSTN

351 4 0.11 0.14 0.24 0.37 0.35 0.35 ---

AND BIT
TEST NOT

AND
TSTN

351 4 0.11 0.14 0.24 0.37 0.35 0.35 ---

OR BIT
TEST

OR TST 350 4 0.11 0.14 0.24 0.37 0.35 0.35 ---

OR BIT
TEST NOT

OR
TSTN

351 4 0.11 0.14 0.24 0.37 0.35 0.35 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21

OUTPUT OUT --- 1 0.016 0.02 0.04 0.21 0.35 0.35 ---

!OUT --- 2 +21.37 +21.37 +21.37 +21.37 +23.07 +28.60 Increase for immedi-
ate refresh

OUTPUT
NOT

OUT
NOT

--- 1 0.016 0.02 0.04 0.21 0.35 0.35 ---

!OUT
NOT

--- 2 +21.37 +21.37 +21.37 +21.37 +23.07 +28.60 Increase for immedi-
ate refresh

KEEP KEEP 11 1 0.048 0.06 0.08 0.29 0.40 0.40 ---

DIFFEREN-
TIATE UP

DIFU 13 2 0.21 0.24 0.40 0.54 0.50 0.50 ---

Instruction Mne-
monic

Code Length
(steps)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21
1314

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-3 Sequence Control Instructions

DIFFEREN-
TIATE
DOWN

DIFD 14 2 0.21 0.24 0.40 0.54 0.50 0.50 ---

SET SET --- 1 0.016 0.02 0.06 0.21 0.30 0.30 ---

!SET --- 2 +21.37 +21.37 +21.37 +21.37 +23.17 +28.60 Increase for immedi-
ate refresh

RESET RSET --- 1 0.016 0.02 0.06 0.21 0.30 0.30 Word specified

!RSET --- 2 +21.37 +21.37 +21.37 +21.37 +23.17 +28.60 Increase for immedi-
ate refresh

MULTIPLE
BIT SET

SETA 530 4 5.8 5.8 6.1 7.8 11.8 11.8 With 1-bit set

25.7 25.7 27.2 38.8 64.1 64.1 With 1,000-bit set

MULTIPLE
BIT RESET

RSTA 531 4 5.7 5.7 6.1 7.8 11.8 11.8 With 1-bit reset

25.8 25.8 27.1 38.8 64.0 64.0 With 1,000-bit reset

SINGLE BIT
SET

SETB 532 2 0.19 0.24 0.34 --- 0.5 0.5 ---

!SETB 3 +21.44 +21.44 +21.54 --- +23.31 +23.31 ---

SINGLE BIT
RESET

RSTB 533 2 0.19 0.24 0.34 --- 0.5 0.5 ---

!RSTB 3 +21.44 +21.44 +21.54 --- +23.31 +23.31 ---

SINGLE BIT
OUTPUT

OUTB 534 2 0.19 0.22 0.32 --- 0.45 0.45 ---

!OUTB 3 +21.42 +21.42 +21.52 --- +23.22 +23.22 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note 1.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

END END 001 1 5.5 5.5 6.0 4.0 7.9 7.9 ---

NO OPER-
ATION

NOP 000 1 0.016 0.02 0.04 0.12 0.05 0.05 ---

INTER-
LOCK

IL 002 1 0.048 0.06 0.06 0.12 0.15 0.15 ---

INTER-
LOCK
CLEAR

ILC 003 1 0.048 0.06 0.06 0.12 0.15 0.15 ---

MULTI-
INTER-
LOCK DIF-
FERENTIAT
ION HOLD
(See note
2.)

MILH 517 3 6.1 6.1 6.5 --- 10.3 11.7 During interlock

7.5 7.5 7.9 --- 13.3 14.6 Not during interlock
and interlock not set

8.9 8.9 9.7 --- 16.6 18.3 Not during interlock
and interlock set

MULTI-
INTER-
LOCK DIF-
FERENTIAT
ION
RELEASE
(See note
2.)

MILR 518 3 6.1 6.1 6.5 --- 10.3 11.7 During interlock

7.5 7.5 7.9 --- 13.3 14.6 Not during interlock
and interlock not set

8.9 8.9 9.7 --- 16.6 18.3 Not during interlock
and interlock set

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21
1315

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

4-2-4 Timer and Counter Instructions

MULTI-
INTER-
LOCK
CLEAR
(See note
2.)

MILC 519 2 5.0 5.0 5.6 --- 8.3 12.5 Interlock not cleared

5.7 5.7 6.2 --- 9.6 14.2 Interlock cleared

JUMP JMP 004 2 0.31 0.38 0.48 8.1 0.95 0.95 ---

JUMP END JME 005 2 --- --- --- --- --- --- ---

CONDI-
TIONAL
JUMP

CJP 510 2 0.31 0.38 0.48 7.4 0.95 0.95 When JMP condition
is satisfied

CONDI-
TIONAL
JUMP NOT

CJPN 511 2 0.31 0.38 0.48 8.5 0.95 0.95 When JMP condition
is satisfied

MULTIPLE
JUMP

JMP0 515 1 0.048 0.06 0.06 0.12 0.15 0.15 ---

MULTIPLE
JUMP END

JME0 516 1 0.048 0.06 0.06 0.12 0.15 0.15 ---

FOR LOOP FOR 512 2 0.18 0.21 0.21 0.21 1.00 1.00 Designating a
constant

BREAK
LOOP

BREAK 514 1 0.048 0.12 0.12 0.12 0.15 0.15 ---

NEXT
LOOP

NEXT 513 1 0.14 0.18 0.18 0.18 0.45 0.45 When loop is contin-
ued

0.18 0.22 0.22 0.22 0.55 0.55 When loop is ended

Instruction Mne-
monic

Code Length
(steps)

(See
note 1.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

Instruction Mne-
monic

Code Length
(steps)

(See
note 1.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

HUNDRED-
MS TIMER

TIM --- 3 0.45 0.56 0.88 0.42 1.30 1.30 ---

TIMX 550 0.45

TEN-MS
TIMER

TIMH 015 3 0.70 0.88 1.14 0.42 1.80 1.80 ---

TIMHX 551 0.46 0.56 0.88 0.42 1.30 1.30

ONE-MS
TIMER

TMHH 540 3 0.69 0.86 1.12 0.42 1.75 1.75 ---

TMHHX 552 0.46 0.56 0.88 0.42 1.30 1.30

TENTH-MS
TIMER
(See note 2.)

TIMU 541 3 0.45 --- --- --- --- --- ---

TIMUX 556 0.45

HUNDREDTH-
MS TIMER
(See note 2.)

TMUH 544 3 0.45 --- --- --- --- --- ---

TMUHX 557 0.45
1316

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. CJ1-H-R CPU Units only.

ACCUMULA-
TIVE TIMER

TTIM 087 3 16.1 16.1 17.0 21.4 27.4 30.9 ---

10.9 10.9 11.4 14.8 19.0 21.2 When resetting

8.5 8.5 8.7 10.7 15.0 16.6 When interlocking

TTIMX 555 16.1 16.1 17.0 --- 27.4 --- ---

10.9 10.9 11.4 --- 19.0 --- When resetting

8.5 8.5 8.7 --- 15.0 --- When interlocking

LONG TIMER TIML 542 4 7.6 7.6 10.0 12.8 16.3 17.2 ---

6.2 6.2 6.5 7.8 13.8 15.3 When interlocking

TIMLX 553 7.6 7.6 10.0 --- 16.3 --- ---

6.2 6.2 6.5 --- 13.8 --- When interlocking

MULTI-OUT-
PUT TIMER

MTIM 543 4 20.9 20.9 23.3 26.0 38.55 43.3 ---

5.6 5.6 5.8 7.8 12.9 13.73 When resetting

MTIMX 554 20.9 20.9 23.3 --- 38.55 --- ---

5.6 5.6 5.8 --- 12.9 --- When resetting

COUNTER CNT --- 3 0.51 0.56 0.88 0.42 1.30 1.30 ---

CNTX 546 0.51 ---

REVERSIBLE
COUNTER

CNTR 012 3 16.9 16.9 19.0 20.9 31.8 27.2 ---

CNTRX 548 ---

RESET
TIMER/
COUNTER

CNR 545 3 9.9 9.9 10.6 13.9 14.7 17.93 When resetting 1
word

4.16
ms

4.16
ms

4.16
ms

5.42
ms

6.21
ms

6.30
ms

When resetting
1,000 words

CNRX 547 3 9.9 9.9 10.6 13.9 14.7 17.93 When resetting 1
word

4.16
ms

4.16
ms

4.16
ms

5.42
ms

6.21
ms

6.30
ms

When resetting
1,000 words

Instruction Mne-
monic

Code Length
(steps)

(See
note 1.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1317

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-5 Comparison Instructions
Instruction Mne-

monic
Code Length

(steps)
(See

note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

Input Com-
parison
Instructions
(unsigned)

LD, AND,
OR +=

300 4 0.08 0.10 0.16 0.37 0.35 0.35 ---

LD, AND,
OR + <>

305

LD, AND,
OR + <

310

LD, AND,
OR +<=

315

LD, AND,
OR +>

320

LD, AND,
OR +>=

325

Input Com-
parison
Instructions
(double,
unsigned)

LD, AND,
OR +=+L

301 4 0.08 0.10 0.16 0.54 0.35 0.35 ---

LD, AND,
OR +<>+L

306 ---

LD, AND,
OR +<+L

311 ---

LD, AND,
OR +<=+L

316 ---

LD, AND,
OR +>+L

321 ---

LD, AND,
OR +>=+L

326 ---

Input Com-
parison
Instructions
(signed)

LD, AND,
OR +=+S

302 4 0.08 0.10 0.16 6.50 0.35 0.35 ---

LD, AND,
OR
+<>+S

307

LD, AND,
OR +<+S

312

LD, AND,
OR +<=

317

LD, AND,
OR +>+S

322

LD, AND,
OR
+>=+S

327
1318

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Input Com-
parison
Instructions
(double,
signed)

LD, AND,
OR
+=+SL

303 4 0.08 0.10 0.16 6.50 0.35 0.35 ---

LD, AND,
OR
+<>+SL

308

LD, AND,
OR
+<+SL

313

LD, AND,
OR
+<=+SL

318

LD, AND,
OR
+>+SL

323

LD, AND,
OR
+>=+SL

328

Time Com-
parison
Instructions
(See note 2.)

LD, AND,
OR +DT

341 4 25.1 25.1 36.4 --- 18.8 39.6 ---

LD, AND,
OR
+<>DT

342 4 25.2 25.2 36.4 --- 45.6 40.6 ---

LD, AND,
OR +<DT

343 4 25.2 25.2 36.4 --- 45.6 40.7 ---

LD, AND,
OR
+<=DT

344 4 25.2 25.2 36.4 --- 18.8 39.6 ---

LD, AND,
OR +>DT

345 4 25.1 25.1 36.4 --- 45.6 41.1 ---

LD, AND,
OR
+>=DT

346 4 25.2 25.2 36.4 --- 18.8 39.6 ---

COMPARE CMP 20 3 0.032 0.04 0.04 0.29 0.10 0.10 ---

!CMP 20 7 42.1 42.1 42.1 42.4 +45.2 45.2 Increase for
immediate
refresh

DOUBLE
COMPARE

CMPL 60 3 0.064 0.08 0.08 0.46 0.50 0.50 ---

SIGNED
BINARY
COMPARE

CPS 114 3 0.064 0.08 0.08 6.50 0.30 0.30 ---

!CPS 114 7 35.9 35.9 35.9 42.4 +45.2 45.2 Increase for
immediate
refresh

DOUBLE
SIGNED
BINARY
COMPARE

CPSL 115 3 0.064 0.08 0.08 6.50 0.50 0.50 ---

TABLE COM-
PARE

TCMP 85 4 14.0 14.0 15.2 21.9 29.77 32.13 ---

MULTIPLE
COMPARE

MCMP 19 4 20.5 20.5 22.8 31.2 45.80 48.67 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1319

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

4-2-6 Data Movement Instructions

UNSIGNED
BLOCK
COMPARE

BCMP 68 4 21.5 21.5 23.7 32.6 47.93 51.67 ---

EXPANDED
BLOCK
COMPARE

BCMP2 502 4 8.4 --- --- --- 13.20 19.33 Number of data
words: 1

313.0 --- --- --- 650.0 754.67 Number of data
words: 255

AREA
RANGE
COMPARE

ZCP 88 3 5.3 5.3 5.4 --- 11.53 12.43 ---

DOUBLE
AREA
RANGE
COMPARE

ZCPL 116 3 5.5 5.5 6.7 --- 11.28 11.90 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21

MOVE MOV 21 3 0.14 0.18 0.20 0.29 0.30 0.30 ---

!MOV 21 7 21.38 21.38 21.40 42.36 +35.1 43.0 Increase for
immediate refresh

DOUBLE
MOVE

MOVL 498 3 0.26 0.32 0.34 0.50 0.60 0.60 ---

MOVE NOT MVN 22 3 0.14 0.18 0.20 0.29 0.35 0.35 ---

DOUBLE
MOVE NOT

MVNL 499 3 0.26 0.32 0.34 0.50 0.60 0.60 ---

MOVE BIT MOVB 82 4 0.19 0.24 0.34 7.5 0.50 0.50 ---

MOVE
DIGIT

MOVD 83 4 0.19 0.24 0.34 7.3 0.50 0.50 ---

MULTIPLE
BIT TRANS-
FER

XFRB 62 4 10.1 10.1 10.8 13.6 20.9 22.1 Transferring 1 bit

186.4 186.4 189.8 269.2 253.3 329.7 Transferring 255
bits

BLOCK
TRANSFER

XFER 70 4 0.29 0.36 0.44 11.2 0.8 0.8 Transferring 1
word

240.1 300.1 380.1 633.5 650.2 650.2 Transferring 1,000
words

BLOCK SET BSET 71 4 0.21 0.26 0.28 8.5 0.55 0.55 Setting 1 word

142.2 200.1 220.1 278.3 400.2 400.2 Setting 1,000
words

DATA
EXCHANGE

XCHG 73 3 0.32 0.40 0.56 0.7 0.80 0.80 ---
1320

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-7 Data Shift Instructions

DOUBLE
DATA
EXCHANGE

XCGL 562 3 0.61 0.76 1.04 1.3 1.5 1.5 ---

SINGLE
WORD DIS-
TRIBUTE

DIST 80 4 5.1 5.1 5.4 7.0 6.6 12.47 ---

DATA COL-
LECT

COLL 81 4 5.1 5.1 5.3 7.1 6.5 12.77 ---

MOVE TO
REGISTER

MOVR 560 3 0.064 0.08 0.08 0.50 0.60 0.60 ---

MOVE
TIMER/
COUNTER
PV TO REG-
ISTER

MOVR
W

561 3 0.064 0.42 0.50 0.50 0.60 0.60 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21

SHIFT
REGISTER

SFT 10 3 7.4 7.4 10.4 10.4 11.9 15.3 Shifting 1 word

187.3 433.2 488.0 763.1 1.39 ms 1.43 ms Shifting 1,000
words

REVERS-
IBLE SHIFT
REGISTER

SFTR 84 4 6.9 6.9 7.2 9.6 11.4 15.5 Shifting 1 word

399.3 615.3 680.2 859.6 1.43 ms 1.55 ms Shifting 1,000
words

ASYN-
CHRO-
NOUS
SHIFT REG-
ISTER

ASFT 17 4 6.2 6.2 6.4 7.7 13.4 14.2 Shifting 1 word

1.22 ms 1.22 ms 1.22 ms 2.01 ms 2.75 ms 2.99 ms Shifting 1,000
words

WORD
SHIFT

WSFT 16 4 4.5 4.5 4.7 7.8 9.6 12.3 Shifting 1 word

171.5 171.5 171.7 781.7 928.0 933.3 Shifting 1,000
words

ARITH-
METIC
SHIFT LEFT

ASL 25 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
SHIFT LEFT

ASLL 570 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

ARITH-
METIC
SHIFT
RIGHT

ASR 26 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
SHIFT
RIGHT

ASRL 571 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21
1321

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

ROTATE
LEFT

ROL 27 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
ROTATE
LEFT

ROLL 572 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

ROTATE
LEFT WITH-
OUT
CARRY

RLNC 574 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
ROTATE
LEFT WITH-
OUT
CARRY

RLNL 576 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

ROTATE
RIGHT

ROR 28 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
ROTATE
RIGHT

RORL 573 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

ROTATE
RIGHT
WITHOUT
CARRY

RRNC 575 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
ROTATE
RIGHT
WITHOUT
CARRY

RRNL 577 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

ONE DIGIT
SHIFT LEFT

SLD 74 3 5.9 5.9 6.1 8.2 7.6 12.95 Shifting 1 word

561.1 561.1 626.3 760.7 1.15 ms 1.27 ms Shifting 1,000
words

ONE DIGIT
SHIFT
RIGHT

SRD 75 3 6.9 6.9 7.1 8.7 8.6 15.00 Shifting 1 word

760.5 760.5 895.5 1.07 ms 1.72 ms 1.82 ms Shifting 1,000
words

SHIFT N-BIT
DATA LEFT

NSFL 578 4 7.5 7.5 8.3 10.5 14.8 16.0 Shifting 1 bit

34.5 40.3 45.4 55.5 86.7 91.3 Shifting 1,000 bits

SHIFT N-BIT
DATA RIGHT

NSFR 579 4 7.5 7.5 8.3 10.5 14.7 15.9 Shifting 1 bit

48.2 50.5 55.3 69.3 114.1 119.6 Shifting 1,000 bits

SHIFT N-
BITS LEFT

NASL 580 3 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
SHIFT N-
BITS LEFT

NSLL 582 3 0.32 0.40 0.56 0.67 0.80 0.80 ---

SHIFT N-
BITS RIGHT

NASR 581 3 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
SHIFT N-
BITS RIGHT

NSRL 583 3 0.32 0.40 0.56 0.67 0.80 0.80 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21
1322

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-8 Increment/Decrement Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-9 Symbol Math Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

INCREMENT
BINARY

++ 590 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
INCREMENT
BINARY

++L 591 2 0.18 0.40 0.56 0.67 0.80 0.80 ---

DECREMENT
BINARY

– – 592 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
DECREMENT
BINARY

– –L 593 2 0.18 0.40 0.56 0.67 0.80 0.80 ---

INCREMENT
BCD

++B 594 2 5.7 6.4 4.5 7.4 12.3 14.7 ---

DOUBLE
INCREMENT
BCD

++BL 595 2 5.6 5.6 4.9 6.1 9.24 10.8 ---

DECREMENT
BCD

– –B 596 2 5.7 6.3 4.6 7.2 11.9 14.9 ---

DOUBLE
DECREMENT
BCD

– –BL 597 2 5.3 5.3 4.7 7.1 9.0 10.7 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

SIGNED
BINARY ADD
WITHOUT
CARRY

+ 400 4 0.18 0.18 0.20 0.37 0.30 0.30 ---

DOUBLE
SIGNED
BINARY ADD
WITHOUT
CARRY

+L 401 4 0.18 0.32 0.34 0.54 0.60 0.60 ---

SIGNED
BINARY ADD
WITH CARRY

+C 402 4 0.18 0.18 0.20 0.37 0.40 0.40 ---

DOUBLE
SIGNED
BINARY ADD
WITH CARRY

+CL 403 4 0.18 0.32 0.34 0.54 0.60 0.60 ---

BCD ADD
WITHOUT
CARRY

+B 404 4 7.6 8.2 8.4 14.0 18.9 21.5 ---
1323

CJ-series Instruction Execution Times and Number of Steps Section 4-2
DOUBLE BCD
ADD WITH-
OUT CARRY

+BL 405 4 9.2 13.3 14.5 19.0 24.4 27.7 ---

BCD ADD
WITH CARRY

+BC 406 4 8.0 8.9 9.1 14.5 19.7 22.6 ---

DOUBLE BCD
ADD WITH
CARRY

+BCL 407 4 9.6 13.8 15.0 19.6 25.2 28.8 ---

SIGNED
BINARY SUB-
TRACT WITH-
OUT CARRY

– 410 4 0.18 0.18 0.20 0.37 0.3 0.3 ---

DOUBLE
SIGNED
BINARY SUB-
TRACT WITH-
OUT CARRY

–L 411 4 0.18 0.32 0.34 0.54 0.60 0.60 ---

SIGNED
BINARY SUB-
TRACT WITH
CARRY

–C 412 4 0.18 0.18 0.20 0.37 0.3 0.3 ---

DOUBLE
SIGNED
BINARY SUB-
TRACT WITH
CARRY

–CL 413 4 0.18 0.32 0.34 0.54 0.60 0.60 ---

BCD SUB-
TRACT WITH-
OUT CARRY

–B 414 4 7.4 8.0 8.2 13.1 18.1 20.5 ---

DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BL 415 4 8.9 12.8 14.0 18.2 23.2 26.7 ---

BCD SUB-
TRACT WITH
CARRY

–BC 416 4 7.9 8.5 8.6 13.8 19.1 21.6 ---

DOUBLE BCD
SUBTRACT
WITH CARRY

–BCL 417 4 9.4 13.4 14.7 18.8 24.3 27.7 ---

SIGNED
BINARY MUL-
TIPLY

* 420 4 0.26 0.38 0.40 0.58 0.65 0.65 ---

DOUBLE
SIGNED
BINARY MUL-
TIPLY

*L 421 4 5.93 7.23 8.45 11.19 13.17 15.0 ---

UNSIGNED
BINARY MUL-
TIPLY

*U 422 4 0.26 0.38 0.40 0.58 0.75 0.75 ---

DOUBLE
UNSIGNED
BINARY MUL-
TIPLY

*UL 423 4 5.9 7.1 8.3 10.63 13.30 15.2 ---

BCD MULTI-
PLY

*B 424 4 8.3 9.0 9.2 12.8 17.5 19.7 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1324

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-10 Conversion Instructions

DOUBLE BCD
MULTIPLY

*BL 425 4 12.8 23.0 24.2 35.2 36.3 45.7 ---

SIGNED
BINARY
DIVIDE

/ 430 4 0.29 0.40 0.42 0.83 0.70 0.70 ---

DOUBLE
SIGNED
BINARY
DIVIDE

/L 431 4 7.2 7.2 8.4 9.8 13.7 15.5 ---

UNSIGNED
BINARY
DIVIDE

/U 432 4 0.29 0.40 0.42 0.83 0.8 0.8 ---

DOUBLE
UNSIGNED
BINARY
DIVIDE

/UL 433 4 6.9 6.9 8.1 9.1 12.8 14.7 ---

BCD DIVIDE /B 434 4 8.6 8.6 8.8 15.9 19.3 22.8 ---

DOUBLE BCD
DIVIDE

/BL 435 4 13.1 17.7 18.9 26.2 27.1 34.7 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

BCD TO
BINARY

BIN 023 3 0.18 0.22 0.24 0.29 0.40 0.40 ---

DOUBLE
BCD TO
DOUBLE
BINARY

BINL 058 3 6.1 6.5 6.8 9.1 12.3 13.7 ---

BINARY TO
BCD

BCD 024 3 0.19 0.24 0.26 8.3 7.62 9.78 ---

DOUBLE
BINARY TO
DOUBLE
BCD

BCDL 059 3 6.7 6.7 7.0 9.2 10.6 12.8 ---

2’S COM-
PLEMENT

NEG 160 3 0.14 0.18 0.20 0.29 0.35 0.35 ---

DOUBLE
2’S COM-
PLEMENT

NEGL 161 3 0.26 0.32 0.34 0.5 0.60 0.60 ---

16-BIT TO
32-BIT
SIGNED
BINARY

SIGN 600 3 0.26 0.32 0.34 0.50 0.60 0.60 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1325

CJ-series Instruction Execution Times and Number of Steps Section 4-2
DATA
DECODER

MLPX 076 4 0.32 0.32 0.42 8.8 0.85 0.85 Decoding 1 digit (4
to 16)

0.98 0.98 1.20 12.8 1.60 1.60 Decoding 4 digits
(4 to 16)

3.30 3.30 4.00 20.3 4.70 4.70 Decoding 1 digit (8
to 256)

6.50 6.50 7.90 33.4 8.70 8.70 Decoding 2 digits
(8 to 256)

DATA
ENCODER

DMPX 077 4 7.5 7.5 7.9 10.4 9.4 13.9 Encoding 1 digit
(16 to 4)

49.6 49.6 50.2 59.1 57.3 71.73 Encoding 4 digits
(16 to 4)

18.2 18.2 18.6 23.6 56.8 82.7 Encoding 1 digit
(256 to 8)

55.1 55.1 57.4 92.5 100.0 150.7 Encoding 2 digits
(256 to 8)

ASCII CON-
VERT

ASC 086 4 6.8 6.8 7.1 9.7 8.3 14.6 Converting 1 digit
into ASCII

9.0 11.2 11.7 15.1 19.1 21.8 Converting 4 digits
into ASCII

ASCII TO
HEX

HEX 162 4 7.1 7.1 7.4 10.1 12.1 15.6 Converting 1 digit

COLUMN
TO LINE

LINE 063 4 16.6 19.0 23.1 29.1 37.0 40.3 ---

LINE TO
COLUMN

COLM 064 4 18.4 23.2 27.5 37.3 45.7 48.2 ---

SIGNED
BCD TO
BINARY

BINS 470 4 6.8 8.0 8.3 12.1 16.2 17.0 Data format
setting No. 0

6.8 8.0 8.3 12.1 16.2 17.1 Data format
setting No. 1

7.1 8.3 8.6 12.7 16.5 17.7 Data format
setting No. 2

7.4 8.5 8.8 13.0 16.5 17.6 Data format
setting No. 3

DOUBLE
SIGNED
BCD TO
BINARY

BISL 472 4 6.9 9.2 9.6 13.6 18.4 19.6 Data format
setting No. 0

7.0 9.2 9.6 13.7 18.5 19.8 Data format
setting No. 1

7.3 9.5 9.9 14.2 18.6 20.1 Data format
setting No. 2

7.6 9.6 10.0 14.4 18.7 20.1 Data format
setting No. 3

SIGNED
BINARY TO
BCD

BCDS 471 4 6.6 6.6 6.9 10.6 13.5 16.4 Data format
setting No. 0

6.7 6.7 7.0 10.8 13.8 16.7 Data format
setting No. 1

6.8 6.8 7.1 10.9 13.9 16.8 Data format
setting No. 2

7.1 7.2 7.5 11.5 14.0 17.1 Data format
setting No. 3

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1326

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

DOUBLE
SIGNED
BINARY TO
BCD

BDSL 473 4 7.6 8.1 8.4 11.6 11.4 12.5 Data format
setting No. 0

6.7 8.2 8.6 11.8 11.7 12.73 Data format
setting No. 1

6.7 8.3 8.7 12.0 11.8 12.8 Data format
setting No. 2

6.9 8.8 9.2 12.5 11.9 13.0 Data format
setting No. 3

GRAY
CODE
CONVER-
SION
(See note
2.)

GRY 474 4 46.9 46.9 72.1 --- 80.0 71.2 8-bit binary

49.6 49.6 75.2 --- 83.0 75.6 8-bit BCD

57.7 57.7 87.7 --- 95.9 86.4 8-bit angle

61.8 61.8 96.7 --- 104.5 91.6 15-bit binary

64.5 64.5 99.6 --- 107.5 96.1 15-bit BCD

72.8 72.8 112.4 --- 120.4 107.3 15-bit angle

52.3 52.3 87.2 --- 88.7 82.4 360° binary

55.1 55.1 90.4 --- 91.7 86.8 360° BCD

64.8 64.8 98.5 --- 107.3 98.1 360° angle

FOUR-
DIGIT NUM-
BER TO
ASCII

STR4 601 3 13.79 13.79 20.24 --- 22.16 19.88 ---

EIGHT-
DIGIT NUM-
BER TO
ASCII

STR8 602 3 18.82 18.82 27.44 --- 29.55 26.70 ---

SIXTEEN-
DIGIT NUM-
BER TO
ASCII

STR16 603 3 30.54 30.54 44.41 --- 48.16 44.10 ---

ASCII TO
FOUR-
DIGIT NUM-
BER

NUM4 604 3 18.46 18.46 27.27 --- 29.13 26.88 ---

ASCII TO
EIGHT-
DIGIT NUM-
BER

NUM8 605 3 27.27 27.27 40.29 --- 42.69 39.71 ---

ASCII TO
SIXTEEN-
DIGIT NUM-
BER

NUM16 606 3 52.31 52.31 78.25 --- 82.21 74.23 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1327

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-11 Logic Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-12 Special Math Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

LOGICAL
AND

ANDW 034 4 0.14 0.18 0.20 0.37 0.30 0.30 ---

DOUBLE
LOGICAL
AND

ANDL 610 4 0.26 0.32 0.34 0.54 0.60 0.60 ---

LOGICAL OR ORW 035 4 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
LOGICAL OR

ORWL 611 4 0.26 0.32 0.34 0.54 0.60 0.60 ---

EXCLUSIVE
OR

XORW 036 4 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
EXCLUSIVE
OR

XORL 612 4 0.26 0.32 0.34 0.54 0.60 0.60 ---

EXCLUSIVE
NOR

XNRW 037 4 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
EXCLUSIVE
NOR

XNRL 613 4 0.26 0.32 0.34 0.54 0.60 0.60 ---

COMPLE-
MENT

COM 029 2 0.18 0.22 0.32 0.37 0.45 0.45 ---

DOUBLE
COMPLE-
MENT

COML 614 2 0.32 0.40 0.56 0.67 0.80 0.80 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

BINARY
ROOT

ROTB 620 3 49.6 49.6 50.0 530.7 56.5 82.7 ---

BCD SQUARE
ROOT

ROOT 072 3 13.7 13.7 13.9 514.5 59.3 88.4 ---

ARITHMETIC
PROCESS

APR 069 4 6.7 6.7 6.9 32.3 14.0 15.0 Designating SIN
and COS

17.2 17.2 18.4 78.3 32.2 37.9 Designating line-
segment approxi-
mation

FLOATING
POINT DIVIDE

FDIV 079 4 116.6 116.6 176.6 176.6 246.0 154.7 ---

BIT
COUNTER

BCNT 067 4 0.24 0.3 0.38 22.1 0.65 0.65 Counting 1 word
1328

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-13 Floating-point Math Instructions
Instruction Mne-

monic
Code Length

(steps)
(See

note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

FLOATING TO
16-BIT

FIX 450 3 0.13 10.6 10.8 14.5 16.2 19.5 ---

FLOATING TO
32-BIT

FIXL 451 3 0.13 10.8 11.0 14.6 16.6 21.7 ---

16-BIT TO
FLOATING

FLT 452 3 0.13 8.3 8.5 11.1 12.2 14.6 ---

32-BIT TO
FLOATING

FLTL 453 3 0.13 8.3 8.5 10.8 14.0 15.8 ---

FLOATING-
POINT ADD

+F 454 4 0.24 8.0 9.2 10.2 13.3 15.7 ---

FLOATING-
POINT SUB-
TRACT

–F 455 4 0.24 8.0 9.2 10.3 13.3 15.8 ---

FLOATING-
POINT DIVIDE

/F 457 4 0.4 8.7 9.9 12.0 14.0 17.6 ---

FLOATING-
POINT MULTI-
PLY

*F 456 4 0.24 8.0 9.2 10.5 13.2 15.8 ---

DEGREES TO
RADIANS

RAD 458 3 8.1 10.1 10.2 14.9 15.9 20.6 ---

RADIANS TO
DEGREES

DEG 459 3 8.0 9.9 10.1 14.8 15.7 20.4 ---

SINE SIN 460 3 42.0 42.0 42.2 61.1 47.9 70.9 ---

HIGH-SPEED
SINE
(See note 2.)

SINQ 475 8 0.59 --- --- --- --- --- ---

COSINE COS 461 3 31.5 31.5 31.8 44.1 41.8 51.0 ---

HIGH-SPEED
COSINE
(See note 2.)

COSQ 476 8 0.59 --- --- --- --- --- ---

TANGENT TAN 462 3 16.3 16.3 16.6 22.6 20.8 27.6 ---

HIGH-SPEED
TANGENT
(See note 2.)

TANQ 477 15 1.18 --- --- --- --- --- ---

ARC SINE ASIN 463 3 17.6 17.6 17.9 24.1 80.3 122.9 ---

ARC COSINE ACOS 464 3 20.4 20.4 20.7 28.0 25.3 33.5 ---

ARC TAN-
GENT

ATAN 465 3 16.1 16.1 16.4 16.4 45.9 68.9 ---

SQUARE
ROOT

SQRT 466 3 0.42 19.0 19.3 28.1 26.2 33.2 ---

EXPONENT EXP 467 3 65.9 65.9 66.2 96.7 68.8 108.2 ---

LOGARITHM LOG 468 3 12.8 12.8 13.1 17.4 69.4 103.7 ---

EXPONEN-
TIAL POWER

PWR 840 4 125.4 125.4 126.0 181.7 134.0 201.0 ---
1329

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. CJ1-H-R CPU Units only.

Floating Sym-
bol Compari-
son

LD,
AND,
OR
+=F

329 3 0.13 6.6 8.3 --- 12.6 15.37 ---

LD,
AND,
OR
+<>F

330

LD,
AND,
OR
+<F

331

LD,
AND,
OR
+<=F

332

LD,
AND,
OR
+>F

333

LD,
AND,
OR
+>=F

334

FLOATING-
POINT TO
ASCII

FSTR 448 4 48.5 48.5 48.9 --- 58.4 85.7 ---

ASCII TO
FLOATING-
POINT

FVAL 449 3 21.1 21.1 21.3 --- 31.1 43.773 ---

MOVE FLOAT-
ING-POINT
(SINGLE)
(See note 2.)

MOVF 469 3 0.18 --- --- --- --- --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1330

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-14 Double-precision Floating-point Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

DOUBLE
SYMBOL
COMPARI-
SON

LD, AND,
OR +=D

335 3 8.5 8.5 10.3 --- 16.2 19.9 ---

LD, AND,
OR +<>D

336

LD, AND,
OR +<D

337

LD, AND,
OR +<=D

338

LD, AND,
OR +>D

339

LD, AND,
OR +>=D

340

DOUBLE
FLOATING TO
16-BIT
BINARY

FIXD 841 3 11.0 11.7 12.1 --- 16.1 21.6 ---

DOUBLE
FLOATING TO
32-BIT
BINARY

FIXLD 842 3 10.2 11.6 12.1 --- 16.4 21.7 ---

16-BIT
BINARY TO
DOUBLE
FLOATING

DBL 843 3 9.9 9.9 10.0 --- 14.3 16.5 ---

32-BIT
BINARY TO
DOUBLE
FLOATING

DBLL 844 3 9.8 9.8 10.0 --- 16.0 17.7 ---

DOUBLE
FLOATING-
POINT ADD

+D 845 4 11.2 11.2 11.9 --- 18.3 23.6 ---

DOUBLE
FLOATING-
POINT SUB-
TRACT

−D 846 4 11.2 11.2 11.9 --- 18.3 23.6 ---

DOUBLE
FLOATING-
POINT MULTI-
PLY

*D 847 4 12.0 12.0 12.7 --- 19.0 25.0 ---

DOUBLE
FLOATING-
POINT DIVIDE

/D 848 4 23.5 23.5 24.2 --- 30.5 44.3 ---

DOUBLE
DEGREES TO
RADIANS

RADD 849 3 11.5 27.4 27.8 --- 32.7 49.1 ---

DOUBLE
RADIANS TO
DEGREES

DEGD 850 3 11.2 11.2 11.9 --- 33.5 48.4 ---

DOUBLE SINE SIND 851 3 45.4 45.4 45.8 --- 67.9 76.7 ---

DOUBLE
COSINE

COSD 852 3 43.0 43.0 43.4 --- 70.9 72.3 ---
1331

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-15 Table Data Processing Instructions

DOUBLE TAN-
GENT

TAND 853 3 19.8 20.1 20.5 --- 97.9 157.0 ---

DOUBLE ARC
SINE

ASIND 854 3 21.5 21.5 21.9 --- 32.3 37.3 ---

DOUBLE ARC
COSINE

ACOSD 855 3 24.7 24.7 25.1 --- 29.9 42.5 ---

DOUBLE ARC
TANGENT

ATAND 856 3 19.3 19.3 19.7 --- 24.0 34.4 ---

DOUBLE
SQUARE
ROOT

SQRTD 857 3 47.4 47.4 47.9 --- 52.9 81.9 ---

DOUBLE
EXPONENT

EXPD 858 3 121.0 121.0 121.4 --- 126.3 201.3 ---

DOUBLE
LOGARITHM

LOGD 859 3 16.0 16.0 16.4 --- 21.6 29.3 ---

DOUBLE
EXPONEN-
TIAL POWER

PWRD 860 4 223.9 223.9 224.2 --- 232.3 373.4 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

SET STACK SSET 630 3 8.0 8.0 8.3 8.5 14.2 20.3 Designating 5
words in stack
area

231.6 231.6 251.8 276.8 426.5 435.3 Designating
1,000 words in
stack area

PUSH ONTO
STACK

PUSH 632 3 6.5 6.5 8.6 9.1 15.7 16.4 ---

FIRST IN
FIRST OUT

FIFO 633 3 6.9 6.9 8.9 10.6 15.8 16.8 Designating 5
words in stack
area

352.6 352.6 434.3 1.13
ms

728.0 732.0 Designating
1,000 words in
stack area

LAST IN
FIRST OUT

LIFO 634 3 7.0 7.0 9.0 9.9 16.6 17.2 ---

DIMENSION
RECORD
TABLE

DIM 631 5 15.2 15.2 21.6 142.1 27.8 27.1 ---

SET RECORD
LOCATION

SETR 635 4 5.4 5.4 5.9 7.0 12.8 13.2 ---

GET RECORD
NUMBER

GETR 636 4 7.8 7.8 8.4 11.0 16.1 18.3 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21
1332

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

DATA
SEARCH

SRCH 181 4 15.5 15.5 19.5 19.5 29.1 26.4 Searching for 1
word

2.42
ms

2.42
ms

3.34
ms

3.34
ms

4.41
ms

3.60
ms

Searching for
1,000 words

SWAP BYTES SWAP 637 3 12.2 12.2 13.6 13.6 21.0 18.4 Swapping 1 word

1.94
ms

1.94
ms

2.82
ms

2.82
ms

3.65
ms

3.15
ms

Swapping 1,000
words

FIND MAXI-
MUM

MAX 182 4 19.2 19.2 24.9 24.9 35.3 32.0 Searching for 1
word

2.39
ms

2.39
ms

3.36
ms

3.36
ms

4.39
ms

3.57
ms

Searching for
1,000 words

FIND MINI-
MUM

MIN 183 4 19.2 19.2 25.3 25.3 35.4 31.9 Searching for 1
word

2.39
ms

2.39
ms

3.33
ms

3.33
ms

4.39
ms

3.58
ms

Searching for
1,000 words

SUM SUM 184 4 28.2 28.2 38.5 38.3 49.5 44.1 Adding 1 word

14.2
ms

1.42
ms

1.95
ms

1.95
ms

2.33
ms

2.11
ms

Adding 1,000
words

FRAME
CHECKSUM

FCS 180 4 20.0 20.0 28.3 28.3 34.8 31.5 For 1-word table
length

1.65
ms

1.65
ms

2.48
ms

2.48
ms

3.11
ms

2.77
ms

For 1,000-word
table length

STACK SIZE
READ

SNUM 638 3 6.0 6.0 6.3 --- 12.1 13.7 ---

STACK DATA
READ

SREA
D

639 4 8.0 8.0 8.4 --- 18.1 20.6 ---

STACK DATA
OVERWRITE

SWRIT 640 4 7.2 7.2 7.6 --- 16.9 18.8 ---

STACK DATA
INSERT

SINS 641 4 7.8 7.8 9.9 --- 18.2 20.5 ---

354.0 354.0 434.8 --- 730.7 732.0 For 1,000-word
table

STACK DATA
DELETE

SDEL 642 4 8.6 8.6 10.6 --- 19.3 22.0 ---

354.0 354.0 436.0 --- 732.0 744.0 For 1,000-word
table

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1333

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-16 Data Control Instructions

Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

PID CON-
TROL

PID 190 4 436.2 436.2 678.2 678.2 612.0 552.6 Initial execution

332.3 332.3 474.9 474.9 609.3 548.0 Sampling

97.3 97.3 141.3 141.3 175.3 162.0 Not sampling

LIMIT CON-
TROL

LMT 680 4 16.1 16.1 22.1 22.1 27.1 26.1 ---

DEAD BAND
CONTROL

BAND 681 4 17.0 17.0 22.5 22.5 27.4 26.6 ---

DEAD ZONE
CONTROL

ZONE 682 4 15.4 15.4 20.5 20.5 28.0 26.4 ---

TIME-PRO-
PORTIONAL
OUTPUT
(See note 2.)

TPO 685 4 10.6 10.6 14.8 --- 20.2 19.8 OFF execution
time

54.5 54.5 82.0 --- 92.7 85.1 ON execution
time with duty
designation or
displayed output
limit

61.0 61.0 91.9 --- 102.5 95.3 ON execution
time with manip-
ulated variable
designation and
output limit
enabled

SCALING SCL 194 4 13.9 13.9 14.3 56.8 25.0 32.8 ---

SCALING 2 SCL2 486 4 12.2 12.2 12.6 50.7 22.3 29.1 ---

SCALING 3 SCL3 487 4 13.7 13.7 14.2 57.7 25.6 30.0 ---

AVERAGE AVG 195 4 36.3 36.3 52.6 53.1 62.9 59.1 Average of an
operation

291.0 291.0 419.9 419.9 545.3 492.7 Average of 64
operations

PID CON-
TROL WITH
AUTOTUNING

PIDAT 191 4 446.3 446.3 712.5 --- 765.3 700.0 Initial execution

339.4 339.4 533.9 --- 620.7 558.0 Sampling

100.7 100.7 147.1 --- 180.0 166.1 Not sampling

189.2 189.2 281.6 --- 233.7 225.1 Initial execution
of autotuning

535.2 535.2 709.8 --- 575.3 558.2 Autotuning when
sampling
1334

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-17 Subroutine Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-18 Interrupt Control Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Condi-
tionsCPU6

@H-R
CPU6

@H
CPU4

@H
CPU4

@
CJ1M

exclud-
ing

CPU11/
21

CJ1M
CPU11

/21

SUBROUTINE CALL SBS 91 2 0.90 1.26 1.96 17.0 2.04 2.04 ---

SUBROUTINE ENTRY SBN 92 2 --- --- --- --- --- --- ---

SUBROUTINE
RETURN

RET 93 1 0.43 0.86 1.60 20.60 1.80 1.80 ---

MACRO MCRO 99 4 23.3 23.3 23.3 23.3 47.9 50.3 ---

GLOBAL SUBROU-
TINE CALL

GSBN 751 2 --- --- --- --- --- --- ---

GLOBAL SUBROU-
TINE ENTRY

GRET 752 1 0.90 1.26 1.96 --- 2.04 2.04 ---

GLOBAL SUBROU-
TINE RETURN

GSBS 750 2 0.43 0.86 1.60 --- 1.80 1.80 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Condi-
tionsCPU6

@H-R
CPU6

@H
CPU4

@H
CPU4

@
CJ1M

exclud-
ing

CPU11/
21

CJ1M
CPU11

/21

SET INTERRUPT
MASK

MSKS 690 3 25.6 25.6 38.4 39.5 44.7 42.9 ---

READ INTERRUPT
MASK

MSKR 692 3 11.9 11.9 11.9 11.9 16.9 15.9 ---

CLEAR INTERRUPT CLI 691 3 27.4 27.4 41.3 41.3 42.7 44.5 ---

DISABLE INTER-
RUPTS

DI 693 1 15.0 15.0 16.8 16.8 30.3 28.5 ---

ENABLE INTER-
RUPTS

EI 694 1 19.5 19.5 21.8 21.8 37.7 34.4 ---
1335

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-19 High-speed Counter and Pulse Output Instructions
Instruction Mne-

monic
Code Length

(steps)
(See

note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

MODE CON-
TROL

INI 880 4 --- --- --- --- 77.00 80.4 Starting high-
speed counter
comparison

--- --- --- --- 43.00 43.0 Stopping high-
speed counter
comparison

--- --- --- --- 43.40 48.8 Changing pulse
output PV

--- --- --- --- 51.80 50.8 Changing high-
speed counter
PV

--- --- --- --- 31.83 28.5 Changing PV of
counter in inter-
rupt input mode

--- --- --- --- 45.33 49.8 Stopping pulse
output

--- --- --- --- 36.73 30.5 Stopping
PWM(891) out-
put

HIGH-SPEED
COUNTER PV
READ

PRV 881 4 --- --- --- --- 42.40 43.9 Reading pulse
output PV

--- --- --- --- 53.40 65.9 Reading high-
speed counter
PV

--- --- --- --- 33.60 30.5 Reading PV of
counter in inter-
rupt input mode

--- --- --- --- 38.80 40.0 Reading pulse
output status

--- --- --- --- 39.30 66.9 Reading high-
speed counter
status

--- --- --- --- 38.30 34.5 Reading
PWM(891) sta-
tus

--- --- --- --- 117.73 145.7 Reading high-
speed counter
range compari-
son results

--- --- --- --- 48.20 48.5 Reading fre-
quency of high-
speed counter 0
1336

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note Supported only by CPU Units Ver. 2.0 or later.

COMPARISON
TABLE LOAD

CTBL 882 4 --- --- --- --- 238.0 235.0 Registering tar-
get value table
and starting
comparison for 1
target value

--- --- --- --- 14.42
ms

9.97
ms

Registering tar-
get value table
and starting
comparison for
48 target values

--- --- --- --- 289.0 276.0 Registering
range table and
starting compari-
son

--- --- --- --- 198.0 183.0 Only registering
target value table
for 1 target value

--- --- --- --- 14.40
ms

9.61
ms

Only registering
target value table
for 48 target val-
ues

--- --- --- --- 259.0 239.0 Only registering
range table

COUNTER
FREQUENCY
CONVERT

PRV2 883 4 --- --- --- --- 23.03 22.39 ---

SPEED OUT-
PUT

SPED 885 4 --- --- --- --- 56.00 89.3 Continuous
mode

--- --- --- --- 62.47 94.9 Independent
mode

SET PULSES PULS 886 4 --- --- --- --- 26.20 32.9 ---
PULSE OUT-
PUT

PLS2 887 5 --- --- --- --- 100.80 107.5 ---

ACCELERA-
TION CON-
TROL

ACC 888 4 --- --- --- --- 90.80 114.8 Continuous
mode

--- --- --- --- 80.00 122.1 Independent
mode

ORIGIN
SEARCH

ORG 889 3 --- --- --- --- 106.13 116.0 Origin search

--- --- --- --- 52.00 102.1 Origin return
PULSE WITH
VARIABLE
DUTY FACTOR

PWM 891 4 --- --- --- --- 25.80 33.0 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1337

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-20 Step Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-21 Basic I/O Unit Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

STEP DEFINE STEP 008 2 17.4 17.4 20.7 27.1 35.9 37.1 Step control bit
ON

11.8 11.8 13.7 24.4 13.8 18.3 Step control bit
OFF

STEP START SNXT 009 2 6.6 6.6 7.3 10.0 12.1 14.0 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

I/O REFRESH IORF 097 3 15.5 15.5 16.4 23.5 26.7 30.4 1-word refresh
(IN) for Basic I/O
Units

17.20 17.20 18.40 25.6 29.7 35.0 1-word refresh
(OUT) for Basic
I/O Units

319.9 319.9 320.7 377.6 291.0 100.0 60-word refresh
(IN) for Basic I/O
Units

358.00 358.00 354.40 460.1 325.0 134.7 60-word refresh
(OUT) for Basic
I/O Units

SPECIAL I/O
UNIT I/O
REFRESH
(See note 4.)

FIORF 225 2 ---
(See
note 3.)

--- --- --- --- --- ---

CPU BUS I/O
REFRESH

DLNK 226 4 287.8 287.8 315.5 --- 321.3 458.7 Allocated 1 word

7-SEGMENT
DECODER

SDEC 078 4 6.5 6.5 6.9 14.1 8.1 15.7 ---

DIGITAL SWITCH
INPUT
(See note 2.)

DSW 210 6 50.7 50.7 73.5 --- 77.7 77.6 4 digits, data input
value: 0

51.5 51.5 73.4 --- 77.9 77.6 4 digits, data input
value: F

51.3 51.3 73.5 --- 83.2 80.0 8 digits, data input
value: 0

50.7 50.7 73.4 --- 77.9 77.7 8 digits, data input
value: F

TEN KEY INPUT
(See note 2.)

TKY 211 4 9.7 9.7 13.2 --- 18.7 18.6 Data input value: 0

10.7 10.7 14.8 --- 20.2 19.1 Data input value:
F

HEXADECIMAL
KEY INPUT
(See note 2.)

HKY 212 5 50.3 50.3 70.9 --- 77.3 78.1 Data input value: 0

50.1 50.1 71.2 --- 76.8 77.3 Data input value:
F

1338

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

3. Execution times for the FIORF, IORD, and IORW instructions depends on
the Special I/O Unit from which data is being read.

4. CJ1-H-R CPU Units only.

4-2-22 Serial Communications Instructions

MATRIX INPUT
(See note 2.)

MTR 213 5 47.8 47.8 68.1 --- 76.4 77.7 Data input value: 0

48.0 48.0 68.0 --- 77.7 76.9 Data input value:
F

7-SEGMENT
DISPLAY OUT-
PUT
(See note 2.)

7SEG 214 5 58.1 58.1 83.3 --- 89.6 89.9 4 digits

63.3 63.3 90.3 --- 98.3 99.2 8 digits

INTELLIGENT I/O
READ

IORD 222 4 ---
(See
note 3.)

(See
note 3.)

(See
note 3.)

(See
note 3.)

225.3 217.7 First execution

232.0 241.7 When busy

223.0 215.3 At end

INTELLIGENT I/O
WRITE

IOWR 223 4 ---
(See
note 3.)

(See
note 3.)

(See
note 3.)

(See
note 3.)

245.3 219.7 First execution

231.0 225.7 When busy

244.0 218.7 At end

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

PROTOCOL
MACRO

PMCR 260 5 100.1 100.1 142.1 276.8 158.4 206.0 Sending 0 words,
receiving 0 words

134.2 134.2 189.6 305.9 210.0 256.7 Sending 1 word,
receiving 1 word

TRANSMIT TXD 236 4 68.5 68.5 98.8 98.8 109.3 102.9 Sending 1 byte

734.3 734.3 1.10
ms

1.10
ms

1.23
ms

1.16
ms

Sending 256 bytes

RECEIVE RXD 235 4 89.6 89.6 131.1 131.1 144.0 132.1 Storing 1 byte

724.2 724.2 1.11
ms

1.11
ms

1.31
ms

1.22
ms

Storing 256 bytes

TRANSMIT
VIA SERIAL
COMMUNI-
CATIONS
UNIT

TXDU 256 4 131.5 131.5 202.4 --- 213.4 208.6 Sending 1 byte
1339

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-23 Network Instructions

Note 1. When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

2. Supported only by CPU Units Ver. 2.0 or later.

RECEIVE
VIA SERIAL
COMMUNI-
CATIONS
UNIT

RXDU 255 4 131 131 200.8 --- 211.8 206.8 Storing 1 byte

CHANGE
SERIAL
PORT
SETUP

STUP 237 3 341.2 341.2 400.0 440.4 504.7 524.7 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

NETWORK
SEND

SEND 090 4 84.4 84.4 123.9 123.9 141.6 195.0 ---

NETWORK
RECEIVE

RECV 098 4 85.4 85.4 124.7 124.7 142.3 196.7 ---

DELIVER COM-
MAND

CMND 490 4 106.8 106.8 136.8 136.8 167.7 226.7 ---

EXPLICIT MES-
SAGE SEND
(See note 2.)

EXPLT 720 4 127.6 127.6 190.0 --- 217.0 238.0 ---

EXPLICIT GET
ATTRIBUTE
(See note 2.)

EGATR 721 4 123.9 123.9 185.0 --- 210.0 232.7 ---

EXPLICIT SET
ATTRIBUTE
(See note 2.)

ESATR 722 3 110.0 110.0 164.4 --- 188.3 210.3 ---

EXPLICIT
WORD READ
(See note 2.)

ECHRD 723 4 106.8 106.8 158.9 --- 176.3 220.3 ---

EXPLICIT
WORD WRITE
(See note 2.)

ECHWR 724 4 106.0 106.0 158.3 --- 175.7 205.3 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21
1340

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-24 File Memory Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-25 Display Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-26 Clock Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11/

21

READ
DATA FILE

FREAD 700 5 391.4 391.4 632.4 684.1 657.3 641.3 2-character direc-
tory + file name in
binary

836.1 836.1 1.33 ms 1.35 ms 1.45 ms 1.16 ms 73-character
directory + file
name in binary

WRITE
DATA FILE

FWRIT 701 5 387.8 387.8 627.0 684.7 650.7 637.3 2-character direc-
tory + file name in
binary

833.3 833.3 1.32 ms 1.36 ms 1.44 ms 1.16 ms 73-character
directory + file
name in binary

WRITE
TEXT FILE

TWRIT 704 5 390.1 390.1 619.1 --- 555.3 489.0

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

DISPLAY MES-
SAGE

MSG 046 3 10.1 10.1 14.2 14.3 16.8 17.3 Displaying message

8.4 8.4 11.3 11.3 14.7 14.7 Deleting displayed
message

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

CALENDAR ADD CADD 730 4 34.0 38.3 201.9 209.5 217.0 194.0 ---

CALENDAR SUB-
TRACT

CSUB 731 4 29.6 38.6 170.4 184.1 184.7 167.0 ---

HOURS TO SEC-
ONDS

SEC 065 3 7.8 21.4 29.3 35.8 36.1 35.4 ---

SECONDS TO
HOURS

HMS 066 3 7.7 22.2 30.9 42.1 45.1 45.7 ---

CLOCK ADJUST-
MENT

DATE 735 2 216.0 216.0 251.5 120.0 118.7 128.3 ---
1341

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-27 Debugging Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-28 Failure Diagnosis Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruc-
tion

Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

TRACE
MEMORY
SAM-
PLING

TRSM 045 1 80.4 80.4 120.0 120.0 207.0 218.3 Sampling 1 bit and 0
words

848.1 848.1 1.06
ms

1.06
ms

1.16
ms

1.10
ms

Sampling 31 bits and 6
words

Instruc-
tion

Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

FAILURE
ALARM

FAL 006 3 15.4 15.4 16.7 16.7 26.1 24.47 Recording errors

179.8 179.8 244.8 244.8 294.0 264.0 Deleting errors (in
order of priority)

432.4 432.4 657.1 657.1 853.3 807.3 Deleting errors (all
errors)

161.5 161.5 219.4 219.4 265.7 233.0 Deleting errors (individ-
ually)

SEVERE
FAILURE
ALARM

FALS 007 3 --- --- --- --- --- --- ---

FAILURE
POINT
DETEC-
TION

FPD 269 4 140.9 140.9 202.3 202.3 220.7 250.0 When executed

163.4 163.4 217.6 217.6 250.3 264.3 First time

185.2 185.2 268.9 268.9 220.7 321.7 When executed

207.5 207.5 283.6 283.6 320.7 336.0 First time
1342

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-29 Other Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-30 Block Programming Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Condi-
tionsCPU6@

H-R
CPU6@

H
CPU4@

H
CPU4@ CJ1M

exclud-
ing

CPU11
/21

CJ1M
CPU11

/21

SET CARRY STC 040 1 0.048 0.06 0.06 0.12 0.15 0.15 ---

CLEAR CARRY CLC 041 1 0.048 0.06 0.06 0.12 0.15 0.15 ---

SELECT EM BANK EMBC 281 2 14.0 14.0 15.1 15.1 --- --- ---

EXTEND MAXIMUM
CYCLE TIME

WDT 094 2 15.0 15.0 19.7 19.7 23.6 22.0 ---

SAVE CONDITION
FLAGS

CCS 282 1 8.6 8.6 12.5 --- 14.2 12.9 ---

LOAD CONDITION
FLAGS

CCL 283 1 9.8 9.8 13.9 --- 16.3 15.7 ---

CONVERT
ADDRESS FROM CV

FRMCV 284 3 13.6 13.6 19.9 --- 23.1 31.8 ---

CONVERT
ADDRESS TO CV

TOCV 285 3 11.9 11.9 17.2 --- 22.5 31.4 ---

DISABLE PERIPH-
ERAL SERVICING

IOSP 287 --- 13.9 13.9 19.8 --- 21.5 21.5 ---

ENABLE PERIPH-
ERAL SERVICING

IORS 288 --- 63.6 63.6 92.3 --- 22.2 22.2 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

BLOCK PRO-
GRAM BEGIN

BPRG 096 2 12.1 12.1 13.0 13.0 27.5 30.4 ---

BLOCK PRO-
GRAM END

BEND 801 1 9.6 9.6 12.3 13.1 23.2 27.1 ---

BLOCK PRO-
GRAM PAUSE

BPPS 811 2 10.6 10.6 12.3 14.9 16.0 21.7 ---

BLOCK PRO-
GRAM
RESTART

BPRS 812 2 5.1 5.1 5.6 8.3 9.0 10.2 ---

CONDITIONAL
BLOCK EXIT

(Execu-
tion condi-
tion) EXIT

806 1 10.0 10.0 11.3 12.9 23.8 26.0 EXIT condi-
tion satisfied

4.0 4.0 4.9 7.3 7.2 8.4 EXIT condi-
tion not satis-
fied

CONDITIONAL
BLOCK EXIT

EXIT (bit
address)

806 2 6.8 6.8 13.5 16.3 28.4 30.6 EXIT condi-
tion satisfied

4.7 4.7 7.2 10.7 11.4 13.1 EXIT condi-
tion not satis-
fied
1343

CJ-series Instruction Execution Times and Number of Steps Section 4-2
CONDITIONAL
BLOCK EXIT
(NOT)

EXIT NOT
(bit
address)

806 2 12.4 12.4 14.0 16.8 28.4 31.2 EXIT condi-
tion satisfied

7.1 7.1 7.6 11.2 11.8 13.5 EXIT condi-
tion not satis-
fied

Branching IF (execu-
tion condi-
tion)

802 1 4.6 4.6 4.8 7.2 6.8 8.5 IF true

6.7 6.7 7.3 10.9 12.2 13.9 IF false

Branching IF (relay
number)

802 2 6.8 6.8 7.2 10.4 11.0 12.7 IF true

9.0 9.0 9.6 14.2 16.5 18.5 IF false

Branching
(NOT)

IF NOT
(relay
number)

802 2 7.1 7.1 7.6 10.9 11.5 13.1 IF true

9.2 9.2 10.1 14.7 16.8 18.9 IF false

Branching ELSE 803 1 6.2 6.2 6.7 9.9 11.4 12.6 IF true

6.8 6.8 7.7 11.2 13.4 15.0 IF false

Branching IEND 804 1 6.9 6.9 7.7 11.0 13.5 15.4 IF true

4.4 4.4 4.6 7.0 6.93 8.1 IF false

ONE CYCLE
AND WAIT

WAIT
(execu-
tion condi-
tion)

805 1 12.6 12.6 13.7 16.7 28.6 34.0 WAIT condi-
tion satisfied

3.9 3.9 4.1 6.3 5.6 6.9 WAIT condi-
tion not satis-
fied

ONE CYCLE
AND WAIT

WAIT
(relay
number)

805 2 12.0 12.0 13.4 16.5 27.2 30.0 WAIT condi-
tion satisfied

6.1 6.1 6.5 9.6 10.0 11.4 WAIT condi-
tion not satis-
fied

ONE CYCLE
AND WAIT
(NOT)

WAIT
NOT
(relay
number)

805 2 12.2 12.2 13.8 17.0 27.8 30.6 WAIT condi-
tion satisfied

6.4 6.4 6.9 10.1 10.5 11.8 WAIT condi-
tion not satis-
fied

COUNTER
WAIT

CNTW 814 4 17.9 17.9 22.6 27.4 41.0 43.5 First execution

19.1 19.1 23.9 28.7 42.9 45.7 Normal execu-
tion

CNTWX 818 4 17.9 17.9 22.6 --- 41.0 43.5 First execution

19.1 19.1 23.9 --- 42.9 45.7 Normal execu-
tion

TEN-MS TIMER
WAIT

TMHW 815 3 25.8 25.8 27.9 34.1 47.9 53.7 First execution

20.6 20.6 22.7 28.9 40.9 46.2 Normal execu-
tion

TMHWX 817 3 25.8 25.8 27.9 --- 47.9 53.7 First execution

20.6 20.6 22.7 --- 40.9 46.2 Normal execu-
tion

Loop Control LOOP 809 1 7.9 7.9 9.1 12.3 15.6 17.6 ---

Loop Control LEND
(execu-
tion condi-
tion)

810 1 7.7 7.7 8.4 10.9 13.5 15.5 LEND condi-
tion satisfied

6.8 6.8 8.0 9.8 17.5 19.8 LEND condi-
tion not satis-
fied

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1344

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-31 Text String Processing Instructions

Loop Control LEND
(relay
number)

810 2 9.9 9.9 10.7 14.4 17.5 19.9 LEND condi-
tion satisfied

8.9 8.9 10.3 13.0 21.6 24.5 LEND condi-
tion not satis-
fied

Loop Control LEND
NOT
(relay
number)

810 2 10.2 10.2 11.2 14.8 21.9 24.9 LEND condi-
tion satisfied

9.3 9.3 10.8 13.5 17.8 20.4 LEND condi-
tion not satis-
fied

HUNDRED-MS
TIMER WAIT

TIMW 813 3 22.3 22.3 25.2 33.1 47.4 52.0 Default setting

24.9 24.9 27.8 35.7 46.2 53.4 Normal execu-
tion

TIMWX 816 3 22.3 22.3 25.2 33.1 47.4 52.0 Default setting

24.9 24.9 27.8 35.7 46.2 53.4 Normal execu-
tion

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

MOV
STRING

MOV$ 664 3 45.6 45.6 66.0 84.3 79.3 72.7 Transferring 1 char-
acter

CONCATE-
NATE
STRING

+$ 656 4 86.5 86.5 126.0 167.8 152.0 137.0 1 character + 1
character

GET
STRING
LEFT

LEFT$ 652 4 53.0 53.0 77.4 94.3 93.6 84.8 Retrieving 1 charac-
ter from 2 charac-
ters

GET
STRING
RIGHT

RGHT$ 653 4 52.2 52.2 76.3 94.2 92.1 83.3 Retrieving 1 charac-
ter from 2 charac-
ters

GET
STRING
MIDDLE

MID$ 654 5 56.5 56.5 84.6 230.2 93.7 84.0 Retrieving 1 charac-
ter from 3 charac-
ters

FIND IN
STRING

FIND$ 660 4 51.4 51.4 77.5 94.1 89.1 96.7 Searching for 1
character from 2
characters

STRING
LENGTH

LEN$ 650 3 19.8 19.8 28.9 33.4 33.8 30.1 Detecting 1 charac-
ter

REPLACE
IN STRING

RPLC$ 661 6 175.1 175.1 258.7 479.5 300.7 267.7 Replacing the first of
2 characters with 1
character

DELETE
STRING

DEL$ 658 5 63.4 63.4 94.2 244.6 11.3 99.3 Deleting the leading
character of 2 char-
acters

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21
1345

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

4-2-32 Task Control Instructions

4-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or later only)

EXCHANG
E STRING

XCHG$ 665 3 60.6 60.6 87.2 99.0 105.2 95.3 Exchanging 1 char-
acter with 1 charac-
ter

CLEAR
STRING

CLR$ 666 2 23.8 23.8 36.0 37.8 42.0 36.8 Clearing 1 character

INSERT
INTO
STRING

INS$ 657 5 136.5 136.5 200.6 428.9 204.0 208.0 Inserting 1 charac-
ter after the first of 2
characters

String Com-
parison
Instructions

LD,
AND,
OR +=$

670 4 48.5 48.5 69.8 86.2 79.9 68.5 Comparing 1 char-
acter with 1 charac-
ter

LD,
AND,
OR
+<>$

671

LD,
AND,
OR +<$

672

LD,
AND,
OR +>$

674

LD,
AND,
OR
+>=$

675

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

TASK ON TKON 820 2 19.5 19.5 26.3 26.3 33.1 32.5 ---

TASK OFF TKOF 821 2 13.3 13.3 19.0 26.3 19.7 20.2 ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

BLOCK
TRANSFER

XFER
C

565 4 6.4 6.4 6.5 --- 33.1 31.1 Transferring 1
word

481.6 481.6 791.6 --- 3,056.1 2,821.1 Transferring
1,000 words

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21
1346

CJ-series Instruction Execution Times and Number of Steps Section 4-2
4-2-34 Special Function Block Instructions (CPU Unit Ver. 3.0 or Later
Only)

4-2-35 Number of Function Block Program Steps (CPU Units with Unit
Version 3.0 or Later)

Use the following equation to calculate the number of program steps when
function block definitions have been created and the instances copied into the
user program using CS/CJ-series CPU Units with unit version 3.0 or later.

Note The number of instruction steps in the function block definition (p) will not be
diminished in subsequence instances when the same function block definition
is copied to multiple locations (i.e., for multiple instances). Therefore, in the
above equation, the number of instances is not multiplied by the number of
instruction steps in the function block definition (p).

SINGLE
WORD DIS-
TRIBUTE

DISTC 566 4 3.4 3.4 3.5 --- 19 18.1 Data distribute

5.9 5.9 7.3 --- 39.5 38.5 Stack operation

DATA COL-
LECT

COLL
C

567 4 3.5 3.5 3.85 --- 24.9 29.7 Data distribute

8 8 9.1 --- 22.1 25.3 Stack operation

8.3 8.3 9.6 --- 25.5 31 Stack operation
1 word FIFO
Read

2,052.3 2,052.3 2,097.5 --- 8,310.1 7,821.1 Stack operation
1,000 word FIFO
Read

MOVE BIT MOVB
C

568 4 4.5 4.5 4.88 --- 28.1 22.1 ---

BIT
COUNTER

BCNT
C

621 4 4.9 4.9 5 --- 30.6 28.8 Counting 1 word

1,252.4 1,252.4 1284.4 --- 5,814.1 5,223.8 Counting 1,000
words

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6
@H-R

CPU6
@H

CPU4
@H

CPU4
@

CJ1M
exclud-

ing
CPU11/

21

CJ1M
CPU11

/21

GET VARI-
ABLE ID

GETID 286 4 14 14 22.2 --- 23.4 21.3

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution time (µs) Conditions

CPU6@
H-R

CPU6@
H

CPU4@
H

CPU4@ CJ1M
exclud-

ing
CPU11

/21

CJ1M
CPU11

/21

Number of steps
= Number of instances × (Call part size m + I/O parameter transfer part size n × Num-
ber of parameters) + Number of instruction steps in the function block definition p
(See note.)
1347

CJ-series Instruction Execution Times and Number of Steps Section 4-2
Example:
Input variables with a 1-word data type (INT): 5
Output variables with a 1-word data type (INT): 5
Function block definition section: 100 steps
Number of steps for 1 instance = 57 + (5 + 5) × 6 steps + 100 steps + 27 steps
= 244 steps

4-2-36 Guidelines on Converting Program Capacities from Previous
OMRON PLCs

Guidelines are provided in the following table for converting the program
capacity (unit: words) of previous OMRON PLCs (SYSMAC C200HX/HG/HE,
CVM1, or CV-series PLCs) to the program capacity (unit: steps) of the CJ-
series PLCs.

Add the following value (n) to the program capacity (unit: words) of the previ-
ous PLCs for each instruction to obtain the program capacity (unit: steps) of
the CJ-series PLCs.

For example, if OUT is used with an address of CIO 000000 to CIO 25515, the
program capacity of the previous PLC would be 2 words per instruction and
that of the CJ-series PLC would be 1 (2 – 1) step per instruction.

Contents CS/CJ-series CPU Units
with unit version 3.0 or later

m Call part 57 steps

n I/O parameter
transfer part

The data type is
shown in parenthe-
ses.

1-bit I/O variable (BOOL) 6 steps

1-word I/O variable (INT,
UINT, WORD)

6 steps

2-word I/O variable (DINT,
UDINT, DWORD, REAL)

6 steps

4-word I/O variable (LINT,
ULINT, LWORD, LREAL)

12 steps

p Number of instruc-
tion steps in func-
tion block definition

The total number of instruction steps (same as standard
user program) + 27 steps.

CJ-series steps = “a” (words) of previous PLC + n

Instructions Variations Value of n when
converting from

C200HX/HG/HE to
CJ Series

Value of n when
converting from
CV-series PLC or

CVM1 to CJ Series

Basic
instructions

None OUT, SET, RSET,
or KEEP(011): –1
Other instructions:
0

0

Upward Differentiation None +1

Immediate Refreshing None 0

Upward Differentiation and
Immediate Refreshing

None +2

Special
instructions

None 0 –1

Upward Differentiation +1 0

Immediate Refreshing None +3

Upward Differentiation and
Immediate Refreshing

None +4
1348

CJ-series Instruction Execution Times and Number of Steps Section 4-2
For example, if !MOV is used (MOVE instruction with immediate refreshing),
the program capacity of a CV-series PLC would be 4 words per instruction
and that of the CJ-series PLC would be 7 (4 + 3) steps.

4-2-37 Function Block Instance Execution Time (CPU Units with Unit
Version 3.0 or Later)

Use the following equation to calculate the effect of instance execution on the
cycle time when function block definitions have been created and the
instances copied into the user program using CS/CJ-series CPU Units with
unit version 3.0 or later.

The following table shows the length of time for A, B, and C.

Example: CJ1H-CPU67H-R
Input variables with a 1-word data type (INT): 3
Output variables with a 1-word data type (INT): 2
Total instruction processing time in function block definition section: 10 µs
Execution time for 1 instance = 3.3 µs + (3 + 2) × 0.19 µs + 10 µs = 14.25 µs

Note The execution time is increased according to the number of multiple instances
when the same function block definition has been copied to multiple locations.

Effect of Instance Execution on Cycle Time
= Startup time (A)
 + I/O parameter transfer processing time (B)
 + Execution time of instructions in function block definition (C)

Operation CPU Unit model

CJ1H-
CPU6@H-R

CS1H-CPU6@H
CJ1H-CPU6@H

CS1G-CPU4@H
CJ1G-CPU4@H

CJ1M-CPU@@

A Startup time Startup time not includ-
ing I/O parameter trans-
fer

3.3 µs 6.8 µs 8.8 µs 15.0 µs

B I/O parameter
transfer process-
ing time
The data type is
indicated in
parentheses.

1-bit I/O variable
(BOOL)

0.24 µs 0.4 µs 0.7 µs 1.0 µs

1-word I/O variable
(INT, UINT, WORD)

0.19 µs 0.3 µs 0.6 µs 0.8 µs

2-word I/O variable
(DINT, UDINT,
DWORD, REAL)

0.19 µs 0.5 µs 0.8 µs 1.1 µs

4-word I/O variable
(LINT, ULINT, LWORD,
LREAL)

0.38 µs 1.0 µs 1.6 µs 2.2 µs

C Function block
definition instruc-
tion execution
time

Total instruction processing time (same as standard user program)
1349

CJ-series Instruction Execution Times and Number of Steps Section 4-2
1350

Appendix A
ASCII Code Table

ASCII

SP

Four leftmost bits

F
ou

r
rig

ht
m

os
t b

its
1351

ASCII Code Table Appendix A
1352

Index

A
addressing

counter numbers, 288
operands, 6
See also index registers
timer numbers, 288

applications
precautions, xxxiv

ASCII
converting ASCII to hexadecimal, 508
converting from floating-point data, 640
converting hexadecimal to ASCII, 504
converting to floating-point data, 645, 649
table of characters, 10
text string processing, 1220

B
Basic I/O Units

Basic I/O Unit instructions, 88, 926–972

BCD data, 12

bits
setting and resetting, 201

block programs
block programming instructions, 102, 1186–1219
branching, 1196, 1202, 1206, 1209, 1212, 1215
description, 1186–1190
instruction execution times, 1308, 1343
pausing and restarting, 1193

C
checksum

calculating, 738

checksum instructions, 697

CJ Series
definition, xxiii

CJ1 CPU Units, 3
CJ1-H CPU Units, 3
CJ1M CPU Units, 3
clock

adding to clock time, 1122
clock instructions, 98, 1122–1183
subtracting from clock time, 1126

clock instructions
execution times, 1307, 1341

communications
description of serial communications, 972
instruction execution times, 1305, 1339
network instruction execution times, 1305, 1340
receiving from RS-232C port, 993
serial communications instructions, 92, 972–1025
transmitting from RS-232C port, 983

comparing tables, 878

comparison, 878

comparison instructions
execution times, 1289, 1318, 1320

Condition Flags
loading status, 1173
saving status, 1171

control bits
Sampling Start Bit, 1138
Trace Start Bit, 1138

conversion instructions
execution times, 1297

converting
See also data, converting

converting memory addresses, 1174, 1179

counters, 242–290
example applications, 284
execution times, 1287, 1316
resetting with CNR(545), 282
reversible counter, 278

CPU Bus Units
refreshing, 932

CS Series
definition, xxiii

CS1 CPU Units, 2
CS1-H CPU Units, 2
CV-series PLCs

converting memory addresses, 1174, 1179

cycle time
extending the maximum cycle time, 1169
instruction execution times, 1281

D
data

converting

radians and degrees, 609–610, 671, 673

searching, 722

data control instructions
execution times, 1302, 1334

data files
reading, 1099
writing, 1106

data format
floating-point data, 651

data formats, 11

data movement instructions
execution times, 1290, 1321

data shift instructions
execution times, 1291, 1321

data tracing
See also tracing

debugging
1353

Index
debugging instructions, 99, 1136–1139
failure diagnosis instructions, 100, 1140–1165

debugging instructions
execution times, 1307, 1342

decrement instructions
execution times, 1292, 1323

degrees
converting degrees to radians, 609, 671

display instructions
execution times, 1307, 1341

DM Area
using DM Area bits in execution conditions, 182

Double-precision Floating-point Input Comparison
Instructions, 694

Double-precision Floating-point Instructions, 651

duty factor
pulse with variable duty factor, 906

E
EC Directives, xxxviii

EM Area
using EM Area bits in execution conditions, 182

error log
preventing storage of user-defined errors, 1144

errors
access errors, 13
codes

programming, 1140, 1148

communications error flags, 1010, 1018, 1035
fatal

clearing, 1148

generating, 1148

illegal instruction errors, 13
instruction processing errors, 13
messages

programming, 1119

non-fatal

clearing, 1140

generating, 1140

program errors, 13
programming messages, 1119
UM overflow, 13
user-programmed errors, 1140, 1148

execution condition
outputting, 204

execution times, 1281, 1283–1349

exponents, 631, 688

extra cyclic tasks, 1255, 1258

F–G
failure diagnosis instructions

execution times, 1307, 1342

fatal operating errors
generating and clearing, 1148

file memory
file memory instructions, 96, 1095–1098
instruction execution times, 1306, 1341

file memory instructions
execution times, 1306, 1341

FINS commands, 1056
sending commands to local CPU Unit, 1063

flags
AER Flag, 13
CY

clearing, 1166

ER Flag, 13
Illegal Instruction Error Flag, 13
Trace Busy Flag, 1138
Trace Completed Flag, 1138
Trace Trigger Monitor Flag, 1138
UM Overflow Error Flag, 13

floating-point data, 590, 652
comparing, 636
comparison, 636
conversion, 651
converting to ASCII, 640, 645, 649
division, 583
double-precision floating-point instructions, 71
exponents, 631, 688
floating-point math instructions, 66, 589–636, 651–694
format, 651
logarithms, 633, 690
math functions, 651
square roots, 629, 686
trigonometry functions, 651

floating-point decimal, 12

floating-point math instructions
execution times, 1298, 1329

frame checksum
calculating, 738

function codes
instructions listed by function codes, 131

Group-2 High-density I/O Units
refreshing with IORF(097), 927

H
high-speed counter and pulse output instructions, 864

high-speed counting
reading the PV, 868, 874

I
I/O memory address

See also internal I/O memory address
1354

Index
increment instructions
execution times, 1292, 1323

index registers
addressing, 8
setting a timer/counter PV address in an index register,
358
setting a word/bit address in an index register, 356

input instructions
execution times, 1284, 1313

installation
precautions, xxxiv

instruction execution times, 1283–1349

instruction set
7SEG(214), 957
DSW(210), 940
HKY(212), 948
TKY(211), 945

instruction sets
-(410), 440
--(592), 413
*(420), 459
*B(424), 467
*BL(425), 469
*D(847), 667
*F(456), 605, 667
*L(421), 461
*U(422), 463
*UL(423), 465
+$(656), 1223
+(400), 426
++(590), 409
++B(594), 417
++BL(595), 419
++L(591), 411
+B(404), 434
+BC(406), 437
+BCL(407), 439
+BL(405), 435
+C(402), 430
+CL(403), 432
+D(845), 663
+F(454), 601, 663
+L(401), 428
/(430), 471
/B(434), 479
/BL(435), 481
/D(848), 669
/F(457), 607
/L(431), 473
/U(432), 475
/UL(433), 477
ACC(888), 896
ACOS(464), 625, 682
ACOSD(855), 682
AND, 165

AND LD, 172
AND NOT, 167
ANDL(610), 550
ANDW(034), 548
APR(069), 571
ASC(086), 504
ASIN(463), 623, 680
ASIND(854), 680
ATAN(465), 627, 684
ATAND(856), 684
AVG(195), 807
-B(414), 451
--B(596), 421
BAND(681), 781
-BC(416), 456
BCD(024), 487
BCDL(059), 489
BCDS(471), 523
-BCL(417), 457
BCMP(068), 320
BCNT(067), 587
BDSL(473), 525
BIN(023), 483
BINL(058), 485
BINS(470), 517
BISL(472), 520
-BL(415), 452
--BL(597), 423
BPPS(811), 1193
BPRS(812), 1193
BREAK(514), 241
BSET(071), 347
-C(412), 446
CADD(730), 1122
CCL(283), 1173
CCS(282), 1171
CJP(510), 232
CJPN(511), 232
-CL(413), 448
CLC(041), 1166
CLI(691), 851
CLR$(666), 1245
CMND(490), 1026
CMP(020), 303
CMPL(060), 306
CNR(545), 282
CNT, 275
CNTR(012), 278
CNTRX(548), 278
CNTW(814), 1209
CNTWX(818), 1209
CNTX(546), 275
COLL(081), 354, 1269
COLM(064), 514
COM(029), 562
COML(614), 564
1355

Index
COS(461), 615, 617, 676
COSD(852), 676
CPS(114), 309
CPSL(115), 312
CSUB(731), 1126
CTBL(882), 878
–D(846), 665
DBL(843), 660
DBLL(844), 661
DEG(459), 610, 673
DEGD(850), 673
DEL$(658), 1240
DI(693), 855
DIFD(014), 193–195

using in interlocks, 212

using in jumps, 231, 235, 237

DIFU(013), 193–195

using in interlocks, 212

using in jumps, 231, 235, 237

DIM(631), 715
DIST(080), 352
DLNK(226), 932
DMPX(077), 500
Double-precision Floating-point Input Comparison
Instructions (335 to 340), 694
DOWN(522), 181
EI(694), 858
ELSE(803), 1196
END(001), 206
EXIT(806), 1199
EXP(467), 631, 688
EXPD(858), 688
-F(455), 603, 665
FAL(006), 1140
FALS(007), 1148
FCS(180), 738
FDIV(079), 583
FIFO(633), 709
FIND$(660), 1233
FIX(450), 594, 657
FIXD(841), 657
FIXL(451), 596, 640, 658
FIXLD(842), 658
FLT(452), 597, 660
FLTL(453), 599, 661
FOR(512), 238
FREAD(700), 1099
FRMCV(284), 1174
FSTR(448), 640
FVAL(449), 645, 649
FWRIT(701), 1106
GETR(636), 720
GRET(752), 835
GSBN(751), 832
GSBS(750), 824
HEX(162), 508

HMS(066), 1131
IEND(804), 1196
IF(802), 1196, 1202
IL(002), 210–228
ILC(003), 210–228
INI(880), 864
INS$(657), 1246
IORD(222), 962
IORF(097), 926
IORS(288), 1185
IOSP(287), 1183
IOWR(223), 967
JME(005), 228
JME0(516), 236
JMP(004), 228
JMP0(515), 236
KEEP(011), 188
-L(411), 442
--L(593), 415
LD, 161
LD NOT, 163
LEFT$(652), 1226
LEN$(650), 1235
LEND(810), 1215
LIFO(634), 712
LINE(063), 512
LMT(680), 779
LOG(468), 633, 690
LOGD(859), 690
LOOP(809), 1215
MAX(182), 727
MCMP(019), 315, 329
MCRO(099), 817
MID$(654), 1230
MIN(183), 731
MLPX(076), 496
MOV$(664), 1221
MOV(021), 331
MOVB(082), 337
MOVD(083), 339
MOVL(498), 334
MOVR(560), 356
MOVRW(561), 358
MSG(046), 1119
MSKR(692), 846
MSKS(690), 839
MTIM(543), 269
MTIMX(554), 269
MVN(022), 333
MVNL(499), 336
NEG(160), 491
NEGL(161), 493
NEXT(513), 238
NOP(000), 207
NOT(520), 180
NUM16(606), 545
1356

Index
NUM4(604), 541
NUM8(605), 544
OR, 169
OR LD, 174
OR NOT, 171
ORG(889), 903
ORW(035), 551
ORWL(611), 553
OUT, 185
OUT NOT, 187
OUTB(534), 204
PID(190), 757, 769, 1174, 1179, 1183, 1185
PIDAT(191), 769
PLS2(887), 890
PMCR(260), 974
PRV(881), 868, 874
PULS(886), 887
PUSH(632), 706
PWM(891), 906
PWRD(860), 692
RAD(458), 609, 671
RADD(849), 671
RECV(098), 1026
RET(093), 824, 835
RGHT$(653), 1228
ROOT(072), 567
ROTB(620), 565
RPLC$(661), 1237
RSET, 195
RSTA(531), 198–201, 204
RSTB(533), 201
RXD(235), 993
SBN(092), 821, 832
SBS(091), 811, 824, 932
SCL(194), 795
SCL2(486), 800
SCL3(487), 804
SDEC(078), 937
SDEL(642), 753
SEC(065), 1129
SEND(090), 1026, 1044
SET, 195
SETA(530), 198–201, 204
SETB(532), 201
SETR(635), 718
SIGN(600), 494
SIN(460), 612, 614, 674
SIND(851), 674
Single-precision Floating-point Input Comparison
Instructions (329 to 334), 636
SINS(641), 750
SNUM(638), 742
SNXT(009), 909
SPED(885), 882
SQRT(466), 629, 686
SQRTD(857), 686

SRCH(181), 722
SREAD(639), 744
SSET(630), 703
STEP(008), 909
STR16(603), 539
STR4(601), 534
STR8(602), 537
STUP(237), 1021
SUM(184), 735
SWAP(637), 725, 742, 744, 747, 750, 753
SWRIT(640), 747
TAN(462), 619, 621
TAND(853), 678
TCMP(085), 317
testing bit status, 182
TIM, 245
TIMH(015), 249
TIMHWX(817), 1212
TIMHX(551), 249
TIML(542), 266
TIMLX(553), 266
TIMW(813), 1206
TIMWX(816), 1206
TIMX(550), 245
TKOF(821), 1258
TKON(820), 1255
TMHH(540), 253
TMHHX(552), 253
TMHW(815), 1212
TOCV(285), 1179
TRSM(045), 1136
TST(350), 182
TSTN(351), 182
TTIM(087), 262
TTIMX(555), 262
TWRIT(704), 1113
TXD(236), 983
UP(521), 181
WDT(094), 1169
XCGL(562), 350
XCHG$(665), 1242
XCHG(073), 349
XFER(070), 344
XFRB(062), 342
XNRL(613), 560
XNRW(037), 559
XORL(612), 557
XORW(036), 555
ZCP(088), 326
ZCPL(116), 329
ZONE(682), 784

instructions, 147–290
Basic I/O Unit instructions, 88, 926–972
block programming instructions, 102, 1186–1219
classified by function, 16
clock instructions, 98, 1122–1183
1357

Index
comparison instructions, 39, 291–326
controlling execution conditions

UP(521) and DOWN(522), 181

controlling high-speed counters and pulse outputs, 864
conversion instructions, 56, 483–528
counter instructions, 34, 242–290
data control instructions, 79, 757–810
data movement instructions, 43, 331
data shift instructions, 46, 360–408
debugging instructions, 99, 1136–1139
decrement instructions, 50, 409–424
differentiated instructions, 3
display instructions, 98, 1119–1351
execution times, 1283, 1312
failure diagnosis instructions, 100, 1140–1165
file memory instructions, 96, 1095–1098
floating-point math instructions, 66, 589–636, 651–694
high-speed counter instructions, 864
increment instructions, 50, 409–424
input comparison instructions, 291–297, 636, 694
instruction execution times, 1281
instruction variations, 4
interrupt control instructions, 84, 836–864
listed alphabetically, 114
listed by function code, 131
logic instructions, 63, 548–565
network instructions, 93, 1026–1066
number of steps, 1281
pulse output instructions, 864
sequence control instructions, 30, 206–242
sequence input instructions, 25, 161–185
sequence output instructions, 27, 185–200
serial communications instructions, 92, 972–1025
special math instructions, 65, 565–1277
step instructions, 88, 908–925
steps per instruction, 1283, 1312
string comparison instructions, 1250–1254
subroutine instructions, 83, 811–835
symbol math instructions, 51, 425–482
table data processing instructions, 71, 75, 697–741,
1299, 1331
task control instructions, 111–113, 1255–1261
text string processing instructions, 108, 1220–1254
timer instructions, 34, 242–290

interlocks, 210–228

internal I/O memory address
setting a timer/counter PV address in an index register,
358
setting a word/bit address in an index register, 356

interrupt control instructions
execution times, 1303, 1335

interrupts
clearing, 851
disabling all, 855
enabling all, 858
masking, 839

reading mask status, 846
scheduled

reading interval, 846

summary of interrupt control, 859

J
jumps, 228, 236

CJP(510) and CJPN(511), 232

L
ladder diagrams

controlling bit status

using DIFU(013) and DIFD(014), 193–195

using KEEP(011), 188–192

using SET and RSET, 195–198

using SETA(530) and RSTA(531), 198–201, 204

latching relays
using KEEP(011), 188

logarithm, 633, 690

logic instructions
execution times, 1297, 1328

loops
BREAK(514), 241
FOR(512) and NEXT(513), 238

M
mathematics

adding a range of words, 735
averaging, 807
exponents, 631, 688
finding the maximum in a range, 727
finding the minimum in a range, 731
floating-point addition, 601, 663
floating-point division, 583, 607
floating-point math instructions, 66, 589–636, 651–694
floating-point multiplication, 605, 667
floating-point subtraction, 603, 665
linear extrapolation, 573
logarithm, 633, 690
See also trigonometric functions
special math instructions, 65, 565–1277
square root, 565, 567, 629, 686
symbol math instructions, 51, 425–482
trigonometric functions, 571

maximum cycle time
extending, 1169

Memory Cards
Precautions, 1095

messages
programming, 1119
1358

Index
N
network instructions

execution times, 1305, 1340

networks
network instructions, 93, 1026–1066

non-fatal operating errors
generating and clearing, 1140

O
operands, 5

inputting data, 5
operating environment

precautions, xxxiv

output instructions
execution times, 1285, 1314

P
PC memory address

See also internal I/O memory address

peripheral servicing
disabling, 1183
enabling, 1185

PID control, 757, 769, 1174, 1179, 1183, 1185

power OFF interrupt processing
disabling, 855

power OFF interrupts, 856, 858

precautions
applications, xxxiv
general, xxxii
operating environment, xxxiv
safety, xxxii

program capacity, 2
programming

converting programs, 1312, 1348
creating step programs, 908
instruction execution times, 1283, 1312
pausing/restarting block programs, 1193
preparing data in data areas, 347
program capacity, 2
program errors, 13
programming messages, 1119
use of TR Bits, 178

protocol macro, 974

pulse outputs, 864
controlling, 864, 896

R
radians

converting radians to degrees, 610, 673

range comparison, 326, 329, 881

refreshing
differentiated refreshing instructions, 177
immediate refreshing instructions, 177
with IORF(097), 926

resetting bits, 201

RS-232C port
receiving from RS-232C port, 993
transmitting from RS-232C port, 983

S
safety precautions

See also precautions

searching instructions, 697

self-maintaining bits
using KEEP(011), 190

sequence control instructions
execution times, 1286, 1315

serial communications
description, 972

serial communications instructions
execution times, 1305, 1339

setting bits, 201

seven-segment displays
converting data, 937

signed binary data, 11
removing sign, 494

simulating system errors, 1140–1141, 1148

Single-precision Floating-point Input Comparison
Instructions, 636

Special I/O Units
reading Unit memory, 962
writing Unit memory, 967

special math instructions
execution times, 1298, 1328

speed outputs, 882

square root
BCD data, 567
floating-point data, 629, 686
signed binary data

See also mathematics

stack instructions, 697
execution times, 1301, 1332

stack processing
execution times, 1301, 1332

stacks
stack instructions, 697

step instructions
execution times, 1303, 1336, 1338

step programs
creating, 908

subroutine instructions
execution times, 1303, 1335
1359

Index
subroutines
execution times, 1303, 1335

symbol math instructions
execution times, 1293, 1323

SYSMAC LINK System
communications, 1026–1032

SYSMAC NET Link System
communications, 1026–1032

T
task control instructions

execution times, 1311, 1346

tasks
block programs within tasks, 1187
instruction execution times, 1311, 1346
task control instructions, 111–113, 1255–1261

text strings
instruction execution times, 1311, 1346
text string processing instructions, 108, 1220–1254

time
converting time notation, 1129, 1131

timers, 242–290
block program delay timer, 1212
example applications, 284
execution times, 1287, 1316
resetting with CNR(545), 282

tracing
flags and control bits, 1138

trigonometric functions
arc cosine, 625, 682
arc sine, 623, 680
arc tangent, 627, 684
converting degrees to radians, 609, 671
converting radians to degrees, 610, 673
cosine, 615, 617, 676
sine, 612, 614, 674
tangent, 619, 621, 678

U–W
unsigned binary data, 11

watchdog timer
extending, 1169
1360

1361

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content
01 February 1999 Original production
02 October 1999 Revisions and additions for version–1 CPU Units. See page 118 for a list.
03 May 2000 Revisions and changes as follows:

Page xiii: Precaution added.
Page 8: Note removed.
Pages 162, 166, 177, 180, 183, 189, 196, 198, 262, 531, 560, and 705: Index registers
removed from operand specifications.
Page 170: Sentence starting “An error will occur if a JMP0(515)” removed.
Pages 178, 181, and 184: Precaution on timer numbers added and precaution on use in
program jumps changed.
Page 181: Precaution on refreshing Completion Flag added.
Pages 179, 182, 184: Precaution on refreshing changed.
Page 554: Parenthetic information removed from precaution.
Pages 576, 577, 579, 581, and 583: Description changed to include CS1W–INT01.
Page 578: Note added on using CLI with MSKS.
Pages 578 and 583: Interrupt priority precaution changed.
Pages 639, 647, 651, and 655: Serial port designation changed.
Page 642: Manual reference added.
Page 675: Information on file structure added.
Page 709: Precaution added on long cycle times.

04 November 2000 Revisions and changes as follows:
Pages 169 and 170: Precaution related to the cycle time deleted.
Pages 176, 180, 183, 186, 196, 199, 743, 746, and 749: Timer number, counter number,
and set value indications corrected.
Pages 189 and 192: PV and SV range indications corrected.
Pages 209 and 210: Ladder program modified and caution deleted.
Page 342: Description about the CLEAR CARRY instruction deleted from precautions.
Page 395: ON condition of Error Flag rewritten.
Page 531: PID constant update timing designation added to the diagram.
Pages 533 and 534: Description on PID added to the end of description and example.
Page 536: Bit 01 of C+5 added to the table.
Pages 567, 572, 730, 732, 788, and 791: Note under the flags table deleted.
Page 580: Note 1 at the top of the page changed.
Page 613: CIO addresses changed.
Page 704: FAL numbers in operands table changed.

05 May 2001 Name of manual changed, “CS1 Series” changed to “CS Series” or “CS/CJ Series,” CJ-
series PCs added, and “CS Series only” added to specified restricted functions.
Other changes and additions for the above were made to the following pages: xv, 2, 661,
667, 678,
Page 116: Section 3-2 removed.
Pages 589, 590, 594, and 595: Information added for S and D.
Page 598: Headings changed.

06 October 2001 New products added to the manual, including the new High-speed CPU Units (CS1-H and
CJ1-H CPU Units) and the new instructions they support. (Extensive changes too numer-
ous to list.)

06A February 2002 Page 666: Bit specifications in Control data column for Bits 04 to 07 of C+6 and Bits 00 to
03 of C+6 reversed.

Cat. No. W340-E1-17

Revision code

Revision History
07 July 2002 Manual revised to add CJ1M CPU Units and the new instructions that they support
(including support for binary refreshing for timer/counter PV). (Extensive changes too
numerous to list.)
New timer and counter instructions added: TIMX, TIMHX, TMHHX, TTIMX, TIMLX,
MTIMX, CNTX, CNTRX, and CNRX.
BCMP2 added.
“PC” changed globally to “PLC” when the meaning is Programmable Controller.
Page x: Manual added and product versions updated.
Pages 379 and 389: Example programming changed.
Page 489: Less than symbol changed to less than or equals symbol.
Page 490: Graphic changed.
Page 628: Operand changed in example and note added to example.
Pages 648 and 651: First entry for error flag changed.
Page 666: Bit numbers corrected in table.
Page 701: Graphic for R+1 changed.
Pages 728 to 748: Instructions reworked.
Pages 787, 814, 816 to 832: Information added on automatic port allocation.
Pages 820 and 825: Precautions added.
Page 833: Precautions on using Memory Cards added.
Page 873: Bottom half of page modified.

08 September 2002 Manual revised to add CS1D CPU Units.
The following changes were also made.
Page xiii: Caution added.
Pages xiv to xviii: Application Precautions replaced with same section from Program-
ming Manual.
Page 4: Description of the operation of immediate refreshing changed.
Page 9: Data types added.
Pages 222 and 225: “Do not use” added to graphic.
Page 683: Ramp response graphic corrected.

09 June 2003 Pages 10 and 11: Note with examples added on instructions executable when input con-
ditions are OFF.
Page 24: Table updated and note added for instructions not supported by CS1D CPU
Units and CS1 CPU Units with -V1 suffix.
Pages 26 to 28: Table updated and note added for instructions not supported by CS1D
CPU Units.
Pages 36 and 37: Table updated and note added for instructions not supported by CS1D
CPU Units.
Pages 144, 148, and 152: Tables updated and notes added for new CPU Unit models.
Page 233: Note added with information on adding counters using online editing.
Page 293: Information on condition of first destination word removed.
Page 679: Information added to graphic.
Pages 681 and 691: Terms added to table to clarify meaning of parameter settings.
Page 692: Bit numbers corrected (swapped) for output range and integral and derivative
unit.
Page 710: Information on outputting negative values in scaling results changed.
Page 781: Error Flag conditions added to table.
Page 791: Information added to note on executing PLS2(887).
Page 794: Corrections made to table.
Page 797: Information added to note on executing PLS2(887).
Page 824: Ladder programming corrected for process B.
Page 831: “I/O Unit’s” corrected to “Special I/O Unit’s.”
Pages 844 and 845: Information on first send and read words/addresses changed.
Page 894: Reference manual changed.
Page 899: Information on data file structure from page 912 of previous manual moved to
this page.
Page : Information on data file structure from pages 912 to 913 of previous manual moved
to this page.
Page 1110: ASCII code table from page 916 added.

Revision code Date Revised content
1362

Revision History
10 December 2003 Information added on functions supported by new unit versions of CPU Units (too numer-
ous to list).
Pages xi to xx: PLP information updated.

11 July 2004 Manual revised for CPU Unit Ver. 3.0 and the new instructions that are supported. (Exten-
sive changes too numerous to list.)
New instructions: TXDU, RXDU, XFERC, DISTC, COLLC, MOVBC, BCNTC, and GETID
Revised instructions: TXD, RXD, PRV, PRV2, network instructions
CPU Unit added: CJ1H-CPU67H
The following corrections and changes were also made.
Page 99: Function codes corrected for CNTWX and TWHWX.
Pages 183 and 229: Precautions added.
Page 271: Mnemonics corrected in table.
Page 428: Heading corrected.
Page 676: Precaution replaced.
Page 677: Record numbers corrected.
Page 857: Port specifier table replaced.

12 January 2006 Page v: Information on general precautions notation added.
Page xxiii: Information on liability and warranty added.

13 September 2006 New instructions: STR4, STR8, STR16, NUM4, NUM8, NUM16, and TWRIT.
14 April 2007 Information was added on the CJ1H-CPU@@H-R CPU Units.
15 January 2008 Added information on unit version 4.1 of the CJ1H-CPU@@H-R CPU Units (CJ1-H-R).

Page 244: Changes made in five cells in top table and note added under top table.
Pages 245 and 253: Information added to note on timer accuracy and information added
to note on timer numbers.
Page 254: Information added to note on timer numbers.
Page 255: Third paragraph of Precautions and last paragraph on page changed.
Page 256: Information added on timer numbers.
Page 342: Description of Control Word corrected, including callouts.
Page 575: “Signed” corrected to “unsigned” in note in top figure.
Page 578: Third precaution corrected.
Page 579: Figure added.
Page 764: Sentence removed from description of output range.
Page 997: Sentence starting “If more data is received” deleted and last part of last sen-
tence on page deleted.
Page 999: One bulleted item in note deleted and one added.
Pages 1208 and 1215: Precaution added.

16 August 2008 Page x: Added unit version 4.2.
Pages xviii: Changed note 2.
Page xxii: Added the CJ2 CPU Units.
Pages xxx and xxxi: Changed name of W446, W447, W464, and W463, and removed
version number from description of W447.
Pages 246 and 254: Changed note.
Page 257: Changed information before first table.
Pages 761, 774, and 815: Added precaution.
Pages 875 and 878: Added a precautions section.
Pages 945, 949, 954, and 958: Added information to precaution on I/O refreshing.
Pages 986 and 998: Added paragraph to description of operation of Error Flag.
Pages 987 and 1000: Added paragraph to list of reasons for Error Flag turning ON.
Page 1017: Added information to paragraph starting "If an end code is specified."
Page 1279: Removed rows for Auxiliary Bit Area and current bank of EM Area from the
second table.

17 June 2017 Added information and made minor corrections.

Revision code Date Revised content
1363

Revision History
1364

Authorized Distributor:

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. W340-E1-17 0617

 © OMRON Corporation 1999-2017 All Rights Reserved.

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200
Hoffman Estates, IL 60169 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.com
Kyoto, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

	SYSMAC CS/CJ/NSJ Series Programmable Controllers INSTRUCTIONS REFERENCE MANUAL
	Notice:
	Unit Versions of CS/CJ-series CPU Units
	About this Manual:
	Read and Understand this Manual
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions
	6 Conformance to EC Directives
	6-1 Applicable Directives
	6-2 Concepts
	6-3 Conformance to EC Directives
	6-4 Relay Output Noise Reduction Methods

	SECTION 1 Introduction
	1-1 General Instruction Characteristics
	1-1-1 Program Capacity
	1-1-2 Differentiated Instructions
	1-1-3 Instruction Variations
	1-1-4 Instruction Location and Execution Conditions
	1-1-5 Inputting Data in Operands
	1-1-6 Data Formats

	1-2 Instruction Execution Checks
	1-2-1 Errors Occurring at Instruction Execution
	1-2-2 Fatal Errors (Program Errors)

	SECTION 2 Summary of Instructions
	2-1 Instruction Classifications by Function
	2-2 Instruction Functions
	2-2-1 Sequence Input Instructions
	2-2-2 Sequence Output Instructions
	2-2-3 Sequence Control Instructions
	2-2-4 Timer and Counter Instructions
	2-2-5 Comparison Instructions
	2-2-6 Data Movement Instructions
	2-2-7 Data Shift Instructions
	2-2-8 Increment/Decrement Instructions
	2-2-9 Symbol Math Instructions
	2-2-10 Conversion Instructions
	2-2-11 Logic Instructions
	2-2-12 Special Math Instructions
	2-2-13 Floating-point Math Instructions
	2-2-14 Double-precision Floating-point Instructions
	2-2-15 Table Data Processing Instructions
	2-2-16 Data Control Instructions
	2-2-17 Subroutine Instructions
	2-2-18 Interrupt Control Instructions
	2-2-19 High-speed Counter and Pulse Output Instructions (CJ1M-CPU21/22/23 Only)
	2-2-20 Step Instructions
	2-2-21 Basic I/O Unit Instructions
	2-2-22 Serial Communications Instructions
	2-2-23 Network Instructions
	2-2-24 File Memory Instructions
	2-2-25 Display Instructions
	2-2-26 Clock Instructions
	2-2-27 Debugging Instructions
	2-2-28 Failure Diagnosis Instructions
	2-2-29 Other Instructions
	2-2-30 Block Programming Instructions
	2-2-31 Text String Processing Instructions
	2-2-32 Task Control Instructions
	2-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or Later Only)
	2-2-34 Special Function Block Instructions

	2-3 Alphabetical List of Instructions by Mnemonic
	2-4 List of Instructions by Function Code

	SECTION 3 Instructions
	3-1 Notation and Layout of Instruction Descriptions
	3-2 Instruction Upgrades and New Instructions
	3-2-1 Upgrades for CS1-H/CJ1-H CPU Units

	3-3 Sequence Input Instructions
	3-3-1 LOAD: LD
	3-3-2 LOAD NOT: LD NOT
	3-3-3 AND: AND
	3-3-4 AND NOT: AND NOT
	3-3-5 OR: OR
	3-3-6 OR NOT: OR NOT
	3-3-7 AND LOAD: AND LD
	3-3-8 OR LOAD: OR LD
	3-3-9 Differentiated and Immediate Refreshing Instructions
	3-3-10 Operation Timing for I/O Instructions
	3-3-11 TR Bits
	3-3-12 NOT: NOT(520)
	3-3-13 CONDITION ON/OFF: UP(521) and DOWN(522)
	3-3-14 BIT TEST: TST(350) and TSTN(351)

	3-4 Sequence Output Instructions
	3-4-1 OUTPUT: OUT
	3-4-2 OUTPUT NOT: OUT NOT
	3-4-3 KEEP: KEEP(011)
	3-4-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)
	3-4-5 SET and RESET: SET and RSET
	3-4-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)
	3-4-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)
	3-4-8 SINGLE BIT OUTPUT: OUTB(534)

	3-5 Sequence Control Instructions
	3-5-1 END: END(001)
	3-5-2 NO OPERATION: NOP(000)
	3-5-3 Overview of Interlock Instructions
	3-5-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)
	3-5-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTERLOCK CLEAR: MILH(517), MILR(518), and MILC(519)
	3-5-6 JUMP and JUMP END: JMP(004) and JME(005)
	3-5-7 CONDITIONAL JUMP: CJP(510)/CJPN(511)
	3-5-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JME0(516)
	3-5-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513)
	3-5-10 BREAK LOOP: BREAK(514)

	3-6 Timer and Counter Instructions
	3-6-1 HUNDRED-MS TIMER: TIM/TIMX(550)
	3-6-2 TEN-MS TIMER: TIMH(015)/TIMHX(551)
	3-6-3 ONE-MS TIMER: TMHH(540)/TMHHX(552)
	3-6-4 TENTH-MS TIMER: TIMU(541)/TIMUX(556)
	3-6-5 HUNDREDTH-MS TIMER: TMUH(544)/TMUHX(557)
	3-6-6 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)
	3-6-7 LONG TIMER: TIML(542)/TIMLX(553)
	3-6-8 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
	3-6-9 COUNTER: CNT/CNTX(546)
	3-6-10 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
	3-6-11 RESET TIMER/COUNTER: CNR(545)/CNRX(547)
	3-6-12 Example Timer and Counter Applications
	3-6-13 Indirect Addressing of Timer/Counter Numbers

	3-7 Comparison Instructions
	3-7-1 Input Comparison Instructions (300 to 328)
	3-7-2 Time Comparison Instructions (341 to 346)
	3-7-3 COMPARE: CMP(020)
	3-7-4 DOUBLE COMPARE: CMPL(060)
	3-7-5 SIGNED BINARY COMPARE: CPS(114)
	3-7-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
	3-7-7 MULTIPLE COMPARE: MCMP(019)
	3-7-8 TABLE COMPARE: TCMP(085)
	3-7-9 BLOCK COMPARE: BCMP(068)
	3-7-10 EXPANDED BLOCK COMPARE: BCMP2(502)
	3-7-11 AREA RANGE COMPARE: ZCP(088)
	3-7-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)

	3-8 Data Movement Instructions
	3-8-1 MOVE: MOV(021)
	3-8-2 MOVE NOT: MVN(022)
	3-8-3 DOUBLE MOVE: MOVL(498)
	3-8-4 DOUBLE MOVE NOT: MVNL(499)
	3-8-5 MOVE BIT: MOVB(082)
	3-8-6 MOVE DIGIT: MOVD(083)
	3-8-7 MULTIPLE BIT TRANSFER: XFRB(062)
	3-8-8 BLOCK TRANSFER: XFER(070)
	3-8-9 BLOCK SET: BSET(071)
	3-8-10 DATA EXCHANGE: XCHG(073)
	3-8-11 DOUBLE DATA EXCHANGE: XCGL(562)
	3-8-12 SINGLE WORD DISTRIBUTE: DIST(080)
	3-8-13 DATA COLLECT: COLL(081)
	3-8-14 MOVE TO REGISTER: MOVR(560)
	3-8-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561)

	3-9 Data Shift Instructions
	3-9-1 SHIFT REGISTER: SFT(010)
	3-9-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
	3-9-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)
	3-9-4 WORD SHIFT: WSFT(016)
	3-9-5 ARITHMETIC SHIFT LEFT: ASL(025)
	3-9-6 DOUBLE SHIFT LEFT: ASLL(570)
	3-9-7 ARITHMETIC SHIFT RIGHT: ASR(026)
	3-9-8 DOUBLE SHIFT RIGHT: ASRL(571)
	3-9-9 ROTATE LEFT: ROL(027)
	3-9-10 DOUBLE ROTATE LEFT: ROLL(572)
	3-9-11 ROTATE RIGHT: ROR(028)
	3-9-12 DOUBLE ROTATE RIGHT: RORL(573)
	3-9-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
	3-9-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)
	3-9-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)
	3-9-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
	3-9-17 ONE DIGIT SHIFT LEFT: SLD(074)
	3-9-18 ONE DIGIT SHIFT RIGHT: SRD(075)
	3-9-19 SHIFT N-BIT DATA LEFT: NSFL(578)
	3-9-20 SHIFT N-BIT DATA RIGHT: NSFR(579)
	3-9-21 SHIFT N-BITS LEFT: NASL(580)
	3-9-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582)
	3-9-23 SHIFT N-BITS RIGHT: NASR(581)
	3-9-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583)

	3-10 Increment/Decrement Instructions
	3-10-1 INCREMENT BINARY: ++(590)
	3-10-2 DOUBLE INCREMENT BINARY: ++L(591)
	3-10-3 DECREMENT BINARY: – –(592)
	3-10-4 DOUBLE DECREMENT BINARY: – –L(593)
	3-10-5 INCREMENT BCD: ++B(594)
	3-10-6 DOUBLE INCREMENT BCD: ++BL(595)
	3-10-7 DECREMENT BCD: – –B(596)
	3-10-8 DOUBLE DECREMENT BCD: – –BL(597)

	3-11 Symbol Math Instructions
	3-11-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
	3-11-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
	3-11-3 SIGNED BINARY ADD WITH CARRY: +C(402)
	3-11-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)
	3-11-5 BCD ADD WITHOUT CARRY: +B(404)
	3-11-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)
	3-11-7 BCD ADD WITH CARRY: +BC(406)
	3-11-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)
	3-11-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410)
	3-11-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
	3-11-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412)
	3-11-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413)
	3-11-13 BCD SUBTRACT WITHOUT CARRY: –B(414)
	3-11-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415)
	3-11-15 BCD SUBTRACT WITH CARRY: –BC(416)
	3-11-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417)
	3-11-17 SIGNED BINARY MULTIPLY: *(420)
	3-11-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)
	3-11-19 UNSIGNED BINARY MULTIPLY: *U(422)
	3-11-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)
	3-11-21 BCD MULTIPLY: *B(424)
	3-11-22 DOUBLE BCD MULTIPLY: *BL(425)
	3-11-23 SIGNED BINARY DIVIDE: /(430)
	3-11-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)
	3-11-25 UNSIGNED BINARY DIVIDE: /U(432)
	3-11-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
	3-11-27 BCD DIVIDE: /B(434)
	3-11-28 DOUBLE BCD DIVIDE: /BL(435)

	3-12 Conversion Instructions
	3-12-1 BCD TO BINARY: BIN(023)
	3-12-2 DOUBLE BCD TO DOUBLE BINARY: BINL(058)
	3-12-3 BINARY TO BCD: BCD(024)
	3-12-4 DOUBLE BINARY TO DOUBLE BCD: BCDL(059)
	3-12-5 2’S COMPLEMENT: NEG(160)
	3-12-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
	3-12-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)
	3-12-8 DATA DECODER: MLPX(076)
	3-12-9 DATA ENCODER: DMPX(077)
	3-12-10 ASCII CONVERT: ASC(086)
	3-12-11 ASCII TO HEX: HEX(162)
	3-12-12 COLUMN TO LINE: LINE(063)
	3-12-13 LINE TO COLUMN: COLM(064)
	3-12-14 SIGNED BCD TO BINARY: BINS(470)
	3-12-15 DOUBLE SIGNED BCD TO BINARY: BISL(472)
	3-12-16 SIGNED BINARY TO BCD: BCDS(471)
	3-12-17 DOUBLE SIGNED BINARY TO BCD: BDSL(473)
	3-12-18 GRAY CODE CONVERT: GRY(474)
	3-12-19 FOUR-DIGIT NUMBER TO ASCII: STR4(601)
	3-12-20 EIGHT-DIGIT NUMBER TO ASCII: STR8(602)
	3-12-21 SIXTEEN-DIGIT NUMBER TO ASCII: STR16(603)
	3-12-22 ASCII TO FOUR-DIGIT NUMBER: NUM4(604)
	3-12-23 ASCII TO EIGHT-DIGIT NUMBER: NUM8(605)
	3-12-24 ASCII TO SIXTEEN-DIGIT NUMBER: NUM16(606)

	3-13 Logic Instructions
	3-13-1 LOGICAL AND: ANDW(034)
	3-13-2 DOUBLE LOGICAL AND: ANDL(610)
	3-13-3 LOGICAL OR: ORW(035)
	3-13-4 DOUBLE LOGICAL OR: ORWL(611)
	3-13-5 EXCLUSIVE OR: XORW(036)
	3-13-6 DOUBLE EXCLUSIVE OR: XORL(612)
	3-13-7 EXCLUSIVE NOR: XNRW(037)
	3-13-8 DOUBLE EXCLUSIVE NOR: XNRL(613)
	3-13-9 COMPLEMENT: COM(029)
	3-13-10 DOUBLE COMPLEMENT: COML(614)

	3-14 Special Math Instructions
	3-14-1 BINARY ROOT: ROTB(620)
	3-14-2 BCD SQUARE ROOT: ROOT(072)
	3-14-3 ARITHMETIC PROCESS: APR(069)
	3-14-4 FLOATING POINT DIVIDE: FDIV(079)
	3-14-5 BIT COUNTER: BCNT(067)

	3-15 Floating-point Math Instructions
	3-15-1 FLOATING TO 16-BIT: FIX(450)
	3-15-2 FLOATING TO 32-BIT: FIXL(451)
	3-15-3 16-BIT TO FLOATING: FLT(452)
	3-15-4 32-BIT TO FLOATING: FLTL(453)
	3-15-5 FLOATING-POINT ADD: +F(454)
	3-15-6 FLOATING-POINT SUBTRACT: –F(455)
	3-15-7 FLOATING-POINT MULTIPLY: *F(456)
	3-15-8 FLOATING-POINT DIVIDE: /F(457)
	3-15-9 DEGREES TO RADIANS: RAD(458)
	3-15-10 RADIANS TO DEGREES: DEG(459)
	3-15-11 SINE: SIN(460)
	3-15-12 HIGH-SPEED SINE: SINQ(475)
	3-15-13 COSINE: COS(461)
	3-15-14 HIGH-SPEED COSINE: COSQ(476)
	3-15-15 TANGENT: TAN(462)
	3-15-16 HIGH-SPEED TANGENT: TANQ(477)
	3-15-17 ARC SINE: ASIN(463)
	3-15-18 ARC COSINE: ACOS(464)
	3-15-19 ARC TANGENT: ATAN(465)
	3-15-20 SQUARE ROOT: SQRT(466)
	3-15-21 EXPONENT: EXP(467)
	3-15-22 LOGARITHM: LOG(468)
	3-15-23 EXPONENTIAL POWER: PWR(840)
	3-15-24 Single-precision Floating-point Comparison Instructions
	3-15-25 FLOATING-POINT TO ASCII: FSTR(448)
	3-15-26 ASCII TO FLOATING-POINT: FVAL(449)
	3-15-27 MOVE FLOATING-POINT (SINGLE): MOVF(469)

	3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only)
	3-16-1 DOUBLE FLOATING TO 16-BIT: FIXD(841)
	3-16-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842)
	3-16-3 16-BIT TO DOUBLE FLOATING: DBL(843)
	3-16-4 32-BIT TO DOUBLE FLOATING: DBLL(844)
	3-16-5 DOUBLE FLOATING-POINT ADD: +D(845)
	3-16-6 DOUBLE FLOATING-POINT SUBTRACT: –D(846)
	3-16-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847)
	3-16-8 DOUBLE FLOATING-POINT DIVIDE: /D(848)
	3-16-9 DOUBLE DEGREES TO RADIANS: RADD(849)
	3-16-10 DOUBLE RADIANS TO DEGREES: DEGD(850)
	3-16-11 DOUBLE SINE: SIND(851)
	3-16-12 DOUBLE COSINE: COSD(852)
	3-16-13 DOUBLE TANGENT: TAND(853)
	3-16-14 DOUBLE ARC SINE: ASIND(854)
	3-16-15 DOUBLE ARC COSINE: ACOSD(855)
	3-16-16 DOUBLE ARC TANGENT: ATAND(856)
	3-16-17 DOUBLE SQUARE ROOT: SQRTD(857)
	3-16-18 DOUBLE EXPONENT: EXPD(858)
	3-16-19 DOUBLE LOGARITHM: LOGD(859)
	3-16-20 DOUBLE EXPONENTIAL POWER: PWRD(860)
	3-16-21 Double-precision Floating-point Input Instructions

	3-17 Table Data Processing Instructions
	3-17-1 SET STACK: SSET(630)
	3-17-2 PUSH ONTO STACK: PUSH(632)
	3-17-3 FIRST IN FIRST OUT: FIFO(633)
	3-17-4 LAST IN FIRST OUT: LIFO(634)
	3-17-5 DIMENSION RECORD TABLE: DIM(631)
	3-17-6 SET RECORD LOCATION: SETR(635)
	3-17-7 GET RECORD NUMBER: GETR(636)
	3-17-8 DATA SEARCH: SRCH(181)
	3-17-9 SWAP BYTES: SWAP(637)
	3-17-10 FIND MAXIMUM: MAX(182)
	3-17-11 FIND MINIMUM: MIN(183)
	3-17-12 SUM: SUM(184)
	3-17-13 FRAME CHECKSUM: FCS(180)
	3-17-14 STACK SIZE READ: SNUM(638)
	3-17-15 STACK DATA READ: SREAD(639)
	3-17-16 STACK DATA OVERWRITE: SWRIT(640)
	3-17-17 STACK DATA INSERT: SINS(641)
	3-17-18 STACK DATA DELETE: SDEL(642)

	3-18 Data Control Instructions
	3-18-1 PID CONTROL: PID(190)
	3-18-2 PID CONTROL WITH AUTOTUNING: PIDAT(191)
	3-18-3 LIMIT CONTROL: LMT(680)
	3-18-4 DEAD BAND CONTROL: BAND(681)
	3-18-5 DEAD ZONE CONTROL: ZONE(682)
	3-18-6 TIME-PROPORTIONAL OUTPUT: TPO(685)
	3-18-7 SCALING: SCL(194)
	3-18-8 SCALING 2: SCL2(486)
	3-18-9 SCALING 3: SCL3(487)
	3-18-10 AVERAGE: AVG(195)

	3-19 Subroutines
	3-19-1 SUBROUTINE CALL: SBS(091)
	3-19-2 MACRO: MCRO(099)
	3-19-3 SUBROUTINE ENTRY: SBN(092)
	3-19-4 SUBROUTINE RETURN: RET(093)
	3-19-5 GLOBAL SUBROUTINE CALL: GSBS(750)
	3-19-6 GLOBAL SUBROUTINE ENTRY: GSBN(751)
	3-19-7 GLOBAL SUBROUTINE RETURN: GRET(752)

	3-20 Interrupt Control Instructions
	3-20-1 SET INTERRUPT MASK: MSKS(690)
	3-20-2 READ INTERRUPT MASK: MSKR(692)
	3-20-3 CLEAR INTERRUPT: CLI(691)
	3-20-4 DISABLE INTERRUPTS: DI(693)
	3-20-5 ENABLE INTERRUPTS: EI(694)
	3-20-6 Summary of Interrupt Control

	3-21 High-speed Counter/Pulse Output Instructions
	3-21-1 MODE CONTROL: INI(880) (CJ1M-CPU21/22/23 Only)
	3-21-2 HIGH-SPEED COUNTER PV READ: PRV(881) (CJ1M-CPU21/22/23 Only)
	3-21-3 COUNTER FREQUENCY CONVERT: PRV2(883)
	3-21-4 REGISTER COMPARISON TABLE: CTBL(882) (CJ1M-CPU21/22/23 Only)
	3-21-5 SPEED OUTPUT: SPED(885) (CJ1M-CPU21/22/23 Only)
	3-21-6 SET PULSES: PULS(886) (CJ1M-CPU21/22/23 Only)
	3-21-7 PULSE OUTPUT: PLS2(887) (CJ1M-CPU21/22/23 Only)
	3-21-8 ACCELERATION CONTROL: ACC(888) (CJ1M-CPU21/22/23 Only)
	3-21-9 ORIGIN SEARCH: ORG(889) (CJ1M-CPU21/22/23 Only)
	3-21-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891) (CJ1M-CPU21/22/23 Only)

	3-22 Step Instructions
	3-22-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)

	3-23 Basic I/O Unit Instructions
	3-23-1 I/O REFRESH: IORF(097)
	3-23-2 SPECIAL I/O UNIT I/O REFRESH: FIORF(225)
	3-23-3 CPU BUS UNIT I/O REFRESH: DLNK(226)
	3-23-4 7-SEGMENT DECODER: SDEC(078)
	3-23-5 DIGITAL SWITCH INPUT – DSW(210)
	3-23-6 TEN KEY INPUT – TKY(211)
	3-23-7 HEXADECIMAL KEY INPUT – HKY(212)
	3-23-8 MATRIX INPUT: MTR(213)
	3-23-9 7-SEGMENT DISPLAY OUTPUT – 7SEG(214)
	3-23-10 INTELLIGENT I/O READ: IORD(222)
	3-23-11 INTELLIGENT I/O WRITE: IOWR(223)

	3-24 Serial Communications Instructions
	3-24-1 Serial Communications
	3-24-2 PROTOCOL MACRO: PMCR(260)
	3-24-3 TRANSMIT: TXD(236)
	3-24-4 RECEIVE: RXD(235)
	3-24-5 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT: TXDU(256)
	3-24-6 RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255)
	3-24-7 CHANGE SERIAL PORT SETUP: STUP(237)

	3-25 Network Instructions
	3-25-1 About SYSMAC NET Link/SYSMAC LINK Operations
	3-25-2 About Explicit Message Instructions
	3-25-3 NETWORK SEND: SEND(090)
	3-25-4 NETWORK RECEIVE: RECV(098)
	3-25-5 DELIVER COMMAND: CMND(490)
	3-25-6 EXPLICIT MESSAGE SEND: EXPLT(720)
	3-25-7 EXPLICIT GET ATTRIBUTE: EGATR(721)
	3-25-8 EXPLICIT SET ATTRIBUTE: ESATR(722)
	3-25-9 EXPLICIT WORD READ: ECHRD(723)
	3-25-10 EXPLICIT WORD WRITE: ECHWR(724)

	3-26 File Memory Instructions
	3-26-1 Precautions when Using Memory Cards
	3-26-2 READ DATA FILE: FREAD(700)
	3-26-3 WRITE DATA FILE: FWRIT(701)
	3-26-4 WRITE TEXT FILE: TWRIT(704)

	3-27 Display Instructions: DISPLAY MESSAGE: MSG(046)
	3-28 Clock Instructions
	3-28-1 CALENDAR ADD: CADD(730)
	3-28-2 CALENDAR SUBTRACT: CSUB(731)
	3-28-3 HOURS TO SECONDS: SEC(065)
	3-28-4 SECONDS TO HOURS: HMS(066)
	3-28-5 CLOCK ADJUSTMENT: DATE(735)

	3-29 Debugging Instructions
	3-29-1 Trace Memory Sampling: TRSM(045)

	3-30 Failure Diagnosis Instructions
	3-30-1 FAILURE ALARM: FAL(006)
	3-30-2 SEVERE FAILURE ALARM: FALS(007)
	3-30-3 FAILURE POINT DETECTION: FPD(269)

	3-31 Other Instructions
	3-31-1 SET CARRY: STC(040)
	3-31-2 CLEAR CARRY: CLC(041)
	3-31-3 SELECT EM BANK: EMBC(281)
	3-31-4 EXTEND MAXIMUM CYCLE TIME: WDT(094)
	3-31-5 SAVE CONDITION FLAGS: CCS(282)
	3-31-6 LOAD CONDITION FLAGS: CCL(283)
	3-31-7 CONVERT ADDRESS FROM CV: FRMCV(284)
	3-31-8 CONVERT ADDRESS TO CV: TOCV(285)
	3-31-9 DISABLE PERIPHERAL SERVICING: IOSP(287) (CS1-H/CJ1-H/CJ1M Only)
	3-31-10 ENABLE PERIPHERAL SERVICING: IORS(288) (CS1-H/CJ1-H/CJ1M Only)

	3-32 Block Programming Instructions
	3-32-1 Introduction
	3-32-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
	3-32-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812)
	3-32-4 Branching: IF(802), ELSE(803), and IEND(804)
	3-32-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)
	3-32-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT
	3-32-7 HUNDRED-MS TIMER WAIT: TIMW(813) and TIMWX(816)
	3-32-8 COUNTER WAIT: CNTW(814) and CNTWX(818)
	3-32-9 TEN-MS TIMER WAIT: TMHW(815) and TMHWX(817)
	3-32-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT

	3-33 Text String Processing Instructions
	3-33-1 Text String Processing Overview
	3-33-2 MOV STRING: MOV$(664)
	3-33-3 CONCATENATE STRING: +$(656)
	3-33-4 GET STRING LEFT: LEFT$(652)
	3-33-5 GET STRING RIGHT: RGHT$(653)
	3-33-6 GET STRING MIDDLE: MID$(654)
	3-33-7 FIND IN STRING: FIND$(660)
	3-33-8 STRING LENGTH: LEN$(650)
	3-33-9 REPLACE IN STRING: RPLC$(661)
	3-33-10 DELETE STRING: DEL$(658)
	3-33-11 EXCHANGE STRING: XCHG$(665)
	3-33-12 CLEAR STRING: CLR$(666)
	3-33-13 INSERT INTO STRING: INS$(657)
	3-33-14 String Comparison Instructions (670 to 675)

	3-34 Task Control Instructions
	3-34-1 TASK ON: TKON(820)
	3-34-2 TASK OFF: TKOF(821)

	3-35 Model Conversion Instructions (Unit Ver. 3.0 or Later)
	3-35-1 BLOCK TRANSFER: XFERC(565)
	3-35-2 SINGLE WORD DISTRIBUTE: DISTC(566)
	3-35-3 DATA COLLECT: COLLC(567)
	3-35-4 MOVE BIT: MOVBC(568)
	3-35-5 BIT COUNTER: BCNTC(621)
	3-35-6 GET VARIABLE ID: GETID(286)

	SECTION 4 Instruction Execution Times and Number of Steps
	4-1 CS-series Instruction Execution Times and Number of Steps
	4-1-1 Sequence Input Instructions
	4-1-2 Sequence Output Instructions
	4-1-3 Sequence Control Instructions
	4-1-4 Timer and Counter Instructions
	4-1-5 Comparison Instructions
	4-1-6 Data Movement Instructions
	4-1-7 Data Shift Instructions
	4-1-8 Increment/Decrement Instructions
	4-1-9 Symbol Math Instructions
	4-1-10 Conversion Instructions
	4-1-11 Logic Instructions
	4-1-12 Special Math Instructions
	4-1-13 Floating-point Math Instructions
	4-1-14 Double-precision Floating-point Instructions
	4-1-15 Table Data Processing Instructions
	4-1-16 Data Control Instructions
	4-1-17 Subroutine Instructions
	4-1-18 Interrupt Control Instructions
	4-1-19 Step Instructions
	4-1-20 Basic I/O Unit Instructions
	4-1-21 Serial Communications Instructions
	4-1-22 Network Instructions
	4-1-23 File Memory Instructions
	4-1-24 Display Instructions
	4-1-25 Clock Instructions
	4-1-26 Debugging Instructions
	4-1-27 Failure Diagnosis Instructions
	4-1-28 Other Instructions
	4-1-29 Block Programming Instructions
	4-1-30 Text String Processing Instructions
	4-1-31 Task Control Instructions
	4-1-32 Model Conversion Instructions (CPU Unit Ver. 3.0 or later only)
	4-1-33 Special Function Block Instructions (CPU Unit Ver. 3.0 or Later Only)

	4-2 CJ-series Instruction Execution Times and Number of Steps
	4-2-1 Sequence Input Instructions
	4-2-2 Sequence Output Instructions
	4-2-3 Sequence Control Instructions
	4-2-4 Timer and Counter Instructions
	4-2-5 Comparison Instructions
	4-2-6 Data Movement Instructions
	4-2-7 Data Shift Instructions
	4-2-8 Increment/Decrement Instructions
	4-2-9 Symbol Math Instructions
	4-2-10 Conversion Instructions
	4-2-11 Logic Instructions
	4-2-12 Special Math Instructions
	4-2-13 Floating-point Math Instructions
	4-2-14 Double-precision Floating-point Instructions
	4-2-15 Table Data Processing Instructions
	4-2-16 Data Control Instructions
	4-2-17 Subroutine Instructions
	4-2-18 Interrupt Control Instructions
	4-2-19 High-speed Counter and Pulse Output Instructions
	4-2-20 Step Instructions
	4-2-21 Basic I/O Unit Instructions
	4-2-22 Serial Communications Instructions
	4-2-23 Network Instructions
	4-2-24 File Memory Instructions
	4-2-25 Display Instructions
	4-2-26 Clock Instructions
	4-2-27 Debugging Instructions
	4-2-28 Failure Diagnosis Instructions
	4-2-29 Other Instructions
	4-2-30 Block Programming Instructions
	4-2-31 Text String Processing Instructions
	4-2-32 Task Control Instructions
	4-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or later only)
	4-2-34 Special Function Block Instructions (CPU Unit Ver. 3.0 or Later Only)
	4-2-35 Number of Function Block Program Steps (CPU Units with Unit Version 3.0 or Later)
	4-2-36 Guidelines on Converting Program Capacities from Previous OMRON PLCs
	4-2-37 Function Block Instance Execution Time (CPU Units with Unit Version 3.0 or Later)

	Appendix A ASCII Code Table
	Index
	Revision History

