#EHT QYSMAC CS Series

CS1G/H-CPULJL]-EV1
CS1G/H-CPULIH
CS1D-CPULILIH
CS1D-CPULILIS

SYSMAC CJ Series

CJ1H-CPULJLIH-R
CJ1G-CPULI]
CJ1G/H-CPULIH
CJ1G-CPULILIP
CJ1M-CPULIL]

SYSMAC One NSJ Series

Programmable Controllers

INSTRUCTIONS
REFERENCE MANUAL

OMRON

— NOTE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior
written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because
OMRON is constantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this manual. Neverthe-
less, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained in this publication.

— Trademarks

» Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation
in the United States and other countries.

* ODVA, CIP, CompoNet, DeviceNet, and EtherNet/IP are trademarks of ODVA.

Other company names and product names in this document are the trademarks or registered trademarks of their
respective companies.

— Copyrights

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

SYSMAC CS Series

CS1G/H-CPULILI-EV1
CS1G/H-CPULILH
CS1D-CPULIIH
CS1D-CPULILIS

SYSMAC CJ Series

CJ1H-CPULILH-R
CJ1G-CPULIL]
CJ1G/H-CPULILH
CJ1G-CPULILIP
CJ1IM-CPUL LI

SYSMAC One NSJ Series
Programmable Controllers

Instructions Reference Manual
Revised June 2017

iv

Notice:

OMRON products are manufactured for use according to proper procedures
by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this
manual. Always heed the information provided with them. Failure to heed pre-
cautions can result in injury to people or damage to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

Visual Aids

Note

1,2,3...

All OMRON products are capitalized in this manual. The word “Unit” is also
capitalized when it refers to an OMRON product, regardless of whether or not
it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON
products, often means “word” and is abbreviated “Wd” in documentation in
this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, how-
ever, in some Programming Device displays to mean Programmable Control-
ler.

The following headings appear in the left column of the manual to help you
locate different types of information.

Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1. Indicates lists of one sort or another, such as procedures, checklists, etc.

Unit Versions of CS/CJ-series CPU Units

Unit Versions

on Products

C]

A “unit version” has been introduced to manage CPU Units in the CS/CJ
Series according to differences in functionality accompanying Unit upgrades.
This applies to the CS1-H, CJ1-H, CJ1M, and CS1D CPU Units.

Notation of Unit Versions The unit version is given to the right of the lot number on the nameplate of the
products for which unit versions are being managed, as shown below.
CS/CJ-series CPU Unit Product nameplate
/| OMRON CS1H-CPUBTH
CPU UNIT
Lot No. —_| Unit version
Xﬁ Example for Unit version 3.0
Lot No. 040715 0000@
\\\ OMRON Corporation MADE IN JAPAN

* CS1-H, CJ1-H, and CJ1M CPU Units manufactured on or before Novem-
ber 4, 2003 do not have a unit version given on the CPU Unit (i.e., the
location for the unit version shown above is blank).

 The unit version of the CJ1-H-R CPU Units begins at version 4.0.

 The unit version of the CS1-H, CJ1-H, and CJ1M CPU Units, as well as
the CS1D CPU Units for Single-CPU Systems, begins at version 2.0.

 The unit version of the CS1D CPU Units for Duplex-CPU Systems, begins
at version 1.1.

» CPU Units for which a unit version is not given are called Pre-Ver. [1.[]
CPU Units, such as Pre-Ver. 2.0 CPU Units and Pre-Ver. 1.1 CPU Units.

Confirming Unit Versions CX-Programmer version 4.0 can be used to confirm the unit version using one

with Support Software

Vi

of the following two methods.
* Using the PLC Information

» Using the Unit Manufacturing Information (This method can be used for
Special /0 Units and CPU Bus Units as well.)

Note CX-Programmer version 3.3 or lower cannot be used to confirm unit versions.

PLC Information
« If you know the device type and CPU type, select them in the Change
PLC Dialog Box, go online, and select PLC - Edit - Information from the
menus.
« If you don't know the device type and CPU type, but are connected
directly to the CPU Unit on a serial line, select PLC - Auto Online to go
online, and then select PLC - Edit - Information from the menus.

In either case, the following PLC Information Dialog Box will be displayed.

PLC Information - NewPLC1 N

Project PLC type: CS1H-H CPUGY
—&ctual Characternstics
Tpe: C5TH-H CRUEY
UritY/er.: Unit version
Program memary: 2R7024 STeps
llzeable: 2R6406 Steps

Frotected: Mo
Memon tppe:;

File/memaony card: Mo
[rata mernony: 32768 YWiords
Extension:] Kwords
E banks: 13
Bank size: 32768 wfords
10 memony: Ak Fiwords
Timer/counters: g Kwards

Use the above display to confirm the unit version of the CPU Unit.

Unit Manufacturing Information

In the 10 Table Window, right-click and select Unit Manufacturing informa-

tion - CPU Unit.

7 1 PLC ID Table - NewPLEL | - 10| x|

File Options Help

IOIOINESETY] Unit Manufacturing information b
[0002] Rack! [nner Board Software Switches

By

[#

Inne

[+

g&gn

[0003] Rack 0Z

JCIIM-CPUZ3 |Run

A

The following Unit Manufacturing information Dialog Box will be displayed.

vii

Unit Manufacturing Information EHE
Elle Help

— Manufacturing Dretailz

Rewvizion |E
FCE Revizion I.f-\BD
Software Revision |.-’-‘«E |EI
Lot Mumber |I'J4F_IF|TI
M anufacturing 1D I=
| Unit version ‘
Corind bl o
S THA P ATIUT I'JU'.‘I
Unit Yer, aa

— Uit Test

There iz no Memary Card installed

[eStH H cruer [Pregram

Use the above display to confirm the unit version of the CPU Unit connected
online.

Using the Unit Version The following unit version labels are provided with the CPU Unit.
Labels

[ver3.0 | [ve |

['n.r-.3.{|'] ['-'l.]

M= TedLb&Ea=v bk
OEBEREOEREEET SE0
DSALTY,

SRCECT. MaomEicEY
T ToERS Ly,

These Labels can be
used to manage
differences In the
avallable functions
among the Units.
Place the appropriate
label on the front of
the Unli to show what
Unit wersion |s
actually being used.

These labels can be attached to the front of previous CPU Units to differenti-
ate between CPU Units of different unit versions.

viii

Unit Version Notation

Product nameplate

Meaning

ing table.
CPU Units on which no unit version is
given
’ — — ~
Lot No. XXXXXX XXXX)
~ -

—

OMRON Corporation MADE IN JAPAN

Units on which a version is given
(Ver. L1.L)

-

~ ~
Lot No. XXXXXX XXXX \ \Ver.D .FI’)

—

Designating individual
CPU Units (e.g., the
CS1H-CPU67H)

Pre-Ver. 2.0 CS1-H CPU Units

CS1H-CPU67H CPU Unit Ver. [1.L]

Designating groups of
CPU Units (e.g., the
CS1-H CPU Units)

Pre-Ver. 2.0 CS1-H CPU Units

CS1-H CPU Units Ver. .01

Designating an entire
series of CPU Units
(e.g., the CS-series CPU

Units)

Pre-Ver. 2.0 CS-series CPU Units

CS-series CPU Units Ver. [1.]

In this manual, the unit version of a CPU Unit is given as shown in the follow-

Unit Versions

CS Series

Units

Models

Unit version

CS1-H CPU Units

CS1[-CPULILIH

Unit version 4.2

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CS1D CPU Units

Duplex-CPU Systems
CS1D-CPULIH

Unit version 1.2

Unit version 1.1

Pre-Ver. 1.1

Single-CPU Systems
CS1D-CPULILIS

Unit version 2.0

CS1 CPU Units

Csi[-cpPulll]

No unit version.

CS1 Version-1 CPU Units

csil-cpullll-vl

No unit version.

CJ Series

Units

Models

Unit version

CJ1-H CPU Units

CJ1H-CPULILH-R

Unit version 4.0

CJ1UJ-CPULILH
CJ10J-CPULILIP

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CJ1M CPU Units

CJ1IM-CPU12/13
CJIM-CPU22/23

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CJIM-CPU11/21

Unit version 4.0

Unit version 3.0

Unit version 2.0

NSJ Series

Units

Unit version

NSJC-TQLI(B)-G5D
NSJC-TQLII(B)-M3D

Unit version 3.0

Function Support by Unit Version

e Functions Supported for Unit Version 4.0 or Later

CX-Programmer 7.0 or higher must be used to enable using the functions
added for unit version 4.0.

CS1-H CPU Units

Function CS1[]-CPULIH
Unit version 4.0 or Other unit versions
later
Online editing of function blocks OK
Note This function cannot be used for simulations on the CX-Sim-
ulator.

Input-output variables in function blocks OK
Text strings in function blocks OK
New application | Number-Text String Conversion Instructions: OK
instructions NUM4, NUM8, NUM16, STR4, STRS8, and STR16

TEXT FILE WRITE (TWRIT) OK

CS1D CPU Units
Unit version 4.0 is not supported.

CJ1-H/CJ1IM CPU Units

Function CJ1H-CPULH-R, CJ1[-CPULIH,
CJ1G-CPULILIP, CIIM-CPULI]
Unit version 4.0 or Other unit versions
later
Online editing of function blocks OK
Note This function cannot be used for simulations on the CX-Sim-
ulator.

Input-output variables in function blocks OK
Text strings in function blocks OK
New application | Number-Text String Conversion Instructions: OK
instructions NUM4, NUM8, NUM16, STR4, STR8, and STR16

TEXT FILE WRITE (TWRIT) OK

User programs that contain functions supported only by CPU Units with unit
version 4.0 or later cannot be used on CS/CJ-series CPU Units with unit ver-
sion 3.0 or earlier. An error message will be displayed if an attempt is made to
download programs containing unit version 4.0 functions to a CPU Unit with a
unit version of 3.0 or earlier, and the download will not be possible.

If an object program file (.OBJ) using these functions is transferred to a CPU
Unit with a unit version of 3.0 or earlier, a program error will occur when oper-
ation is started or when the unit version 4.0 function is executed, and CPU
Unit operation will stop.

Xi

e Functions Supported for Unit Version 3.0 or Later
CX-Programmer 5.0 or higher must be used to enable using the functions
added for unit version 3.0.

CS1-H CPU Units

Function CS1L]-CPULILH
Unit version 3.0 or Other unit versions
later

Function blocks OK
Serial Gateway (converting FINS commands to CompoWay/F OK
commands at the built-in serial port)
Comment memory (in internal flash memory) OK ---
Expanded simple backup data OK
New application | TXDU(256), RXDU(255) (support no-protocol OK
instructions communications with Serial Communications

Units with unit version 1.2 or later)

Model conversion instructions: XFERC(565), OK

DISTC(566), COLLC(567), MOVBC(568),

BCNTC(621)

Special function block instructions: GETID(286) | OK
Additional TXD(235) and RXD(236) instructions (support OK
instruction func- | no-protocol communications with Serial Commu-
tions nications Boards with unit version 1.2 or later)

CS1D CPU Units
Unit version 3.0 is not supported.

CJ1-H/CJ1IM CPU Units

Function CJ1H-CPULH-R, CJ1[-CPULIH,
CJ1G-CPULILIP, CIIM-CPULI]
Unit version 3.0 or Other unit versions
later
Function blocks OK
Serial Gateway (converting FINS commands to CompoWay/F OK
commands at the built-in serial port)
Comment memory (in internal flash memory) OK ---
Expanded simple backup data OK
New application | TXDU(256), RXDU(255) (support no-protocol OK
instructions communications with Serial Communications
Units with unit version 1.2 or later)
Model conversion instructions: XFERC(565), OK
DISTC(566), COLLC(567), MOVBC(568),
BCNTC(621)
Special function block instructions: GETID(286) |OK ---
Additional PRV(881) and PRV2(883) instructions: Added OK
instruction func- | high-frequency calculation methods for calculat-
tions ing pulse frequency. (CJ1M CPU Units only)

Xii

User programs that contain functions supported only by CPU Units with unit
version 3.0 or later cannot be used on CS/CJ-series CPU Units with unit ver-
sion 2.0 or earlier. An error message will be displayed if an attempt is made to
download programs containing unit version 3.0 functions to a CPU Unit with a
unit version of 2.0 or earlier, and the download will not be possible.

If an object program file (.OBJ) using these functions is transferred to a CPU
Unit with a unit version of 2.0 or earlier, a program error will occur when oper-
ation is started or when the unit version 3.0 function is executed, and CPU
Unit operation will stop.

Xiii

e Functions Supported for Unit Version 2.0 or Later
CX-Programmer 4.0 or higher must be used to enable using the functions
added for unit version 2.0.

CS1-H CPU Units

Function CS1-H CPU Units
(CS10-CPUCOH)
Unit version 2.0 or Other unit versions
later

Downloading and Uploading Individual Tasks OK
Improved Read Protection Using Passwords OK

Write Protection from FINS Commands Sentto | OK -
CPU Units via Networks

Online Network Connections without I/O Tables | OK
Communications through a Maximum of 8 Net- | OK ---

work Levels

Connecting Online to PLCs via NS-series PTs | OK OK from lot number 030201
Setting First Slot Words OK for up to 64 groups | OK for up to 8 groups
Automatic Transfers at Power ON without a OK

Parameter File

Automatic Detection of I/O Allocation Method for
Automatic Transfer at Power ON

Operation Start/End Times OK
New Application | MILH, MILR, MILC OK
Instructions =DT, <>DT, <DT, <=DT, >DT, | OK
>=DT
BCMP2 OK
GRY OK OK from lot number 030201
TPO OK
DSW, TKY, HKY, MTR, 7SEG | OK
EXPLT, EGATR, ESATR, OK
ECHRD, ECHWR
Reading/Writing CPU Bus OK OK from lot number 030418
Units with IORD/IOWR
PRV2

Xiv

CS1D CPU Units

Function CS1D CPU Units for CS1D CPU Units for Duplex-CPU
Single-CPU Systems Systems (CS1D-CPULICIH)
(CSs1D-CPULIIS)
Unit version 2.0 Unit version 1.1 or Pre-Ver. 1.1
later
Functions Duplex CPU Units OK OK
unique 10 CS1D [opjine Unit Replacement | OK oK OK
CPU Units P -
Duplex Power Supply Units | OK OK OK
Duplex Controller Link OK OK OK
Units
Duplex Ethernet Units -—- OK OK
Unit removal without a Pro- | --- OK (Unit version 1.2 or |---
gramming Device later)
Downloading and Uploading Individual Tasks | OK --- ---
Improved Read Protection Using Passwords | OK --- -
Write Protection from FINS Commands Sent | OK
to CPU Units via Networks
Online Network Connections without I/O OK
Tables
Communications through a Maximum of 8 OK
Network Levels
Connecting Online to PLCs via NS-series OK
PTs
Setting First Slot Words OK for up to 64 groups |--- ---
Automatic Transfers at Power ON withouta | OK
Parameter File
Automatic Detection of I/O Allocation Method | ---
for Automatic Transfer at Power ON
Operation Start/End Times OK OK
New Applica- MILH, MILR, MILC OK
tion Instructions [-pT <>pT, <DT, <=DT, OK —
>DT, >=DT
BCMP2 OK
GRY OK
TPO OK
DSW, TKY, HKY, MTR, OK
7SEG
EXPLT, EGATR, ESATR, |OK
ECHRD, ECHWR
Reading/Writing CPU Bus | OK -
Units with IORD/IOWR
PRV2 OK

XV

CJ1-H/CJ1IM CPU Units

Function

CJ1-H CPU Units

CJ1M CPU Units

CJ1H-CPULIH-R

CIL-CPULITH CIIM-CPU12113/22/23 | SITM.
CJ1G-CPULIIP
Unit version | Other unit | Unitversion | Other unit Other unit
2.0o0r versions 2.0o0r versions versions
later later
Downloading and Uploading Individual Tasks | OK OK -—- OK
Improved Read Protection Using Passwords | OK OK OK
Write Protection from FINS Commands Sent | OK OK OK
to CPU Units via Networks
Online Network Connections without I/O OK OK OK
Tables (Supported if (Supported if
I/O tables are I/O tables are
automatically automatically
generated at generated at
startup.) startup.)
Communications through a Maximum of 8 OK OK --- OK
Network Levels
Connecting Online to PLCs via NS-series OK OK fromlot |OK OK fromlot |OK
PTs number number
030201 030201
Setting First Slot Words OKforupto |OKforupto8 |OKforupto |OKforupto8 |OK forupto
64 groups groups 64 groups groups 64 groups
Automatic Transfers at Power ON withouta |OK OK OK
Parameter File
Automatic Detection of I/O Allocation Method | ---
for Automatic Transfer at Power ON
Operation Start/End Times OK OK OK
New Applica- MILH, MILR, MILC OK OK OK
tion Instructions =DT, <>DT, <DT, <=DT, OK — OK _— OK
>DT, >=DT
BCMP2 OK OK OK OK
GRY OK OK from lot |OK OK fromlot |OK
number number
030201 030201
TPO OK OK OK
DSW, TKY, HKY, MTR, OK OK OK
7SEG
EXPLT, EGATR, ESATR, |OK OK OK
ECHRD, ECHWR
Reading/Writing CPU Bus |OK --- OK -—- OK
Units with IORD/IOWR
PRV2 OK, butonly |--- OK, but only
for CPU Units for CPU Units
with built-in with built-in
/0 1/0

User programs that contain functions supported only by CPU Units with unit
version 2.0 or later cannot be used on CS/CJ-series Pre-Ver. 2.0 CPU Units.
An error message will be displayed if an attempt is made to download pro-
grams containing unit version s.0 functions to a Pre-Ver. 2.0 CPU Unit, and
the download will not be possible.

XVi

If an object program file (.OBJ) using these functions is transferred to a Pre-
Ver. 2.0 CPU Unit, a program error will occur when operation is started or
when the unit version 2.0 function is executed, and CPU Unit operation will

stop.

XVii

Unit Versions and Programming Devices

The following tables show the relationship between unit versions and CX-Pro-
grammer versions.

Unit Versions and Programming Devices

CPU Unit Functions (See note 1.) CX-Programmer Program-
Ver.3.3 |Ver.4.0] Ver.5.0] Ver.7.0 | Ming Con-
or lower Ver. 6.0 | or higher sole

CS/CJ-series unit | Functions added | Using new functions OK (See [No
Ver. 4.0 for unit version note 2 restrictions
4.0 and 3.)
Not using new functions | OK OK OK OK
CS/CJ-series unit | Functions added | Using new functions --- - OK OK
Ver. 3.0 f;g””'t version Not using new functions | OK OK OK oK
CS/CJ-series unit | Functions added | Using new functions OK OK OK
Ver. 2.0 fzogunlt Version | Not using new functions | OK OK OK OK
CS1D CPU Units | Functions added | Using new functions OK OK OK
for Single-CPU for unit version Not using new functions
Systems, unit Ver. | 2.0
2.0
CS1D CPU Units | Functions added | Using function blocks OK OK OK
for Duplex-CPU | for unit version ot using function blocks | OK OK OK OK
Systems, unit 1.1
Ver.1.

XVili

Note 1.

As shown above, there is no need to upgrade to CX-Programmer version
as long as the functions added for unit versions are not used.

CX-Programmer version 7.1 or higher is required to use the new functions
added for unit version 4.0 of the CJ1-H-R CPU Units. CX-Programmer ver-
sion 7.22 or higher is required to use unit version 4.1 of the CJ1-H-R CPU
Units. CX-Programmer version 7.0 or higher is required to use unit version
4.2 of the CJ1-H-R CPU Units. You can check the CX-Programmer version
using the About menu command to display version information.

CX-Programmer version 7.0 or higher is required to use the functional im-
provements made for unit version 4.0 of the CS/CJ-series CPU Units. With
CX-Programmer version 7.2 or higher, you can use even more expanded
functionality.

Device Type Setting

The unit version does not affect the setting made for the device type on the

CX-Programmer. Select the device type as shown in the following table
regardless of the unit version of the CPU Unit.

Series CPU Unit group CPU Unit model Device type setting on
CX-Programmer Ver. 4.0 or higher
CS Series | CS1-H CPU Units CS1G-CPULILIH CS1G-H
CS1H-CPULIH CS1H-H
CS1D CPU Units for Duplex-CPU Systems | CS1D-CPULILIH CS1D-H (or CS1H-H)
CS1D CPU Units for Single-CPU Systems | CS1D-CPULILIS CS1D-S
CJ Series CJ1-H CPU Units CJ1G-CPULILH CJ1G-H
CJ1G-CPULILIP
CJ1H-CPULILIH-R |CJ1H-H
(See note.)
CJ1H-CPULILH
CJ1M CPU Units CJiM-CPULI] CJIM

Note Select one of the following CPU types: CPU67-R, CPU66-R, CPU65-R, or

CPU64-R.

XiX

Troubleshooting Problems with Unit Versions on the CX-Programmer

Problem

Cause

Solution

Cx-Programmer v4.0

N

Unable to download programis).
Errors Found during compilation

After the above message is displayed, a compiling
error will be displayed on the Compile Tab Page in the
Output Window.

An attempt was made to down-
load a program containing
instructions supported only by
later unit versions or a CPU Unit
to a previous unit version.

Check the program or change
to a CPU Unit with a later unit
version.

PLC Setup Error E x|
Unable o transfer the settings since they include sefting tems
which are ot supported by the connecting Earget CPU uni
Check the version o th target CPL unit o the Fallowing PL Settings, and transfer the settings again,

- FINS Protection Settings for FINS write pratection via netwark

An attempt was to download a
PLC Setup containing settings
supported only by later unit ver-
sions or a CPU Unit to a previous
unit version.

Check the settings in the PLC
Setup or change to a CPU Unit
with a later unit version.

“???7?" is displayed in a program transferred from the
PLC to the CX-Programmer.

An attempt was made to upload a
program containing instructions
supported only by higher versions
of CX-Programmer to a lower ver-
sion.

New instructions cannot be
uploaded to lower versions of
CX-Programmer. Use a higher
version of CX-Programmer.

XX

TABLE OF CONTENTS

PRECAUTIONS. i XXXI
1 Intended AUdIENCE ot e XXXl
2 General PreCaltions v .ttt XXXl
3 Safety PreCautions.o XXXl
4 Operating Environment PreCautionsS.ttt e XXXV
5 Application Precautions e XXXV
6 Conformanceto EC DITeCtiVESot e e XXXVili

SECTION 1

Introduction 1
1-1 Genera Instruction CharaCteristics.ot e 2
1-2 Instruction Execution Checks.o e 13

SECTION 2

Summary of Instructions., 15
2-1 Instruction Classificationsby Function. o i 16
2-2 InStruction FUNCLIONS. oo 25
2-3 Alphabetical List of Instructionsby Mnemonic.............. ..., 114
2-4 Listof Instructionsby FunctionCode. i i 131

SECTION 3

INStructions. 147
3-1 Notation and Layout of Instruction Descriptions, 155
3-2 Instruction Upgradesand New INStructionst 158
3-3 Sequence INput INSITUCLIONSot 161
34 Sequence OULPUL INSLIUCHIONSottt e e ittt 185
35 Sequence Control INSIrUCLIONS ot e e e e 206
3-6 Timer and Counter INStrUCLIONS. oottt e e 242
3-7 Comparison INSIIUCHIONS oot 291
3-8 DataMovement INStrUCtioNS. oottt 331
39 DataShift INStructions 360
3-10 Increment/Decrement INSLIUCLIONSo ottt e e 409
3-11 Symbol Math INStrUCtioNS.o e e et 425
3-12 Conversion INSITUCLIONS.ottt et e e e e e e e e e e 483
3-13 LOQICINSITUCTIONS oot ettt e e e e e e e e 548
3-14 Special Math INSIFUCLIONS oot e 565
3-15 Floating-point Math INSIrUCtioNnSo oo e 589
3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJIM, or CS1D Only). ... 651
3-17 Table DataProcessing INStruCtions. ov it e e e 697
3-18 DataControl INSIrUCLIONS oottt et e e 757
3-19 SUDIOULINES . . oottt e e e e e 811
3-20 Interrupt Control INSIrUCLIONSot e 836

XXi

XXii

TABLE OF CONTENTS

3-21 High-speed Counter/Pulse Output INStructions.ot 864
3-22 SEP INSLIUCLIONS . .. oottt e et e e e e e e e e 908
3-23 Basicl/OUNIt INSIIUCLIONSo e e e 926
3-24 Serial CommunicationS INSIFUCLIONS oot 972
3-25 Network INSIrUCLIONS oo e 1026
3-26 FileMemory INStrUCtioNSo 1095
3-27 Display Instructions: DISPLAY MESSAGE: MSG(046)o oo i 1119
3-28 CloCK INSIrUCIONS . . . oo e e e e 1122
3-29 Debugging INStrUCLIONSottt e 1136
3-30 Failure DiagnosiSINStIUCIONS.ottt e et e e 1140
3-31 Other INSITUCLIONS oo e e e e e 1165
3-32 Block Programming INStrucCtions.ot 1186
3-33 Text String Processing INSIrUCHiONSo c oo 1220
3-34 Task Control INSEFUCLIONS. oot e e e e 1255
3-35 Model Conversion Instructions (Unit Ver. 3.0orLater) ..o, 1261
SECTION 4
I nstruction Execution Timesand Number of Steps. 1281
4-1 CS-seriesInstruction Execution Timesand Number of Steps. 1283
4-2 CJlseriesInstruction Execution Timesand Number of Steps. 1312
Appendix
A ASCl CodeTable. ... e e 1351
INdeX. ... e 1353
RevisSon History ... 1361

About this Manual:

This manual describes the ladder diagram programming instructions of the CPU Units for CS/CJ-
series Programmable Controllers (PLCs). The CS Series, CJ Series and NSJ Series are subdivided as
shown in the following figure.

CS1-H CPU Units NSJ Controllers
CS1H-CPULICH CJ2H-CPULIT-CIC] NSJ5-TQLILI(B)-G5D
CS1G-CPULIH NSJ5-SQLITI(B)-G5D

NSJ8-TVLI)(B)-G5D
NSJ10-TVLIC(B)-G5D
CJ1-H CPU Units NSJ12-TS[C(B)-G5D
CJ1H-CPULIH-R
ARy v CJ1H-CPULILH NSJ Controllers
CS1G-CPULILI(-V1) CI16-CPULILH

CJ1G -cpPULILIP

CS1 CPU Units

NSJ5-TQLICI(B)-M3D

(Loop-control CPU Units)
CS1D CPU Units g J NSJ5-SQLII(B)-M3D
NSJ8-TVLI(B)-M3D

|

l Duplex Systems l

CJIM-CPULI]
CS1D CPU Units for
Simplex Systems
||
|CS—series Basic I/O Units | |CJ-5eries Basic I/0 Units | |NSJ‘59”95 Expansion Units
|CS-series Special I/0 Units | |CJ-5eries Special I/O Units |
| CS-series CPU Bus Units | |CJ-5eries CPU Bus Units |
CS-series Power Supply Units |CJ-series Power Supply Units |
Note: A special Power Supply Unit must
be used for CS1D CPU Units. /

NSJ-series Controller Notation

For information in this manual on the Controller Section of NSJ-series Controllers, refer to the informa-
tion of the equivalent CJ-series PLC. The following models are equivalent.

NSJ-series Controllers Equivalent CJ-series CPU Unit

NSJLI-TQLILI(B)-G5D CJ1G-CPU45H CPU Unit with unit version 3.0

NSJL-TQLILI(B)-M3D CJ1G-CPU45H CPU Unit with unit version 3.0 (See note.)
Note: The following points differ between the NSJ[I-TQUII(B)-M3D and the CJ1G-CPU45H.

Item CJ-series CPU Unit Controller Section in
CJ1G-CPU45H NSJIC-OIOCC(B)-M3D
1/0O capacity 1280 points 640 points
Program capacity 60 Ksteps 20 Ksteps
No. of Expansion Racks 3 max. 1 max.
EM Area 32 Kwords x 3 banks None
EO_00000 to E2_32767
Function blocks Max. No. of definitions | 1024 128
Max. No. of instances | 2048 256
Capacity in built-in | FB program memory |1024 KB 256 KB
file memory Variable tables 128 KB 64K KB

Please read this manual and all related manuals listed in the table on the next page and be sure you
understand information provided before attempting to program or use CS/CJ-series CPU Units in a
PLC System.

XXiii

Section 1 introduces the CS/CJ-series PLCs in terms of the instruction set that they support.
Section 2 provides various lists of instructions that can be used for reference.
Section 3 individually describes the instructions in the CS/CJ-series instruction set.

Section 4 provides instruction execution times and the number of steps for each CS/CJ-series instruc-
tion.

XXV

About thisManual, Continued

Name Cat. No. Contents
SYSMAC CS/CJ/NSJ Series W340 Describes the ladder diagram programming
CS1G/H-CPULI-EV1, CS1G/H-CPULICIH, instructions supported by CS/CJ/NSJ-series
CS1D-CPULIH, CS1D-CPULICIS, CJ1H-CPULIIH-R, PLCs. (This manual)
CJ1G-CPULI], CI1G/H-CPULIH, CJ1G-CPULICIR,
CJIM-CPULI, NSJIO-CICICIC(B)-G5D,
NSJC-0J000(B)-M3D
Programmable Controllers Instructions Reference Manual
SYSMAC CS/CJ/NSJ Series W394 | This manual describes programming and other
CS1G/H-CPULI]-EV1, CS1G/H-CPULIIH, methods to use the functions of the CS/CJ/NSJ-
CS1D-CPULIH, CS1D-CPULICIS, CJ1H-CPULIIH-R, series PLCs.
CJ1G-CPULI], CI1G/H-CPULIH, CJ1G-CPULICIR,
CJIM-CPULI], NSJIOI-CICICIC1(B)-G5D,
NSJC-0JO00(B)-M3D
Programmable Controllers Programming Manual
SYSMAC CS Series W339 Provides an outlines of and describes the design,
CS1G/H-CPULILI-EV1, CS1G/H-CPULILIH installation, maintenance, and other basic opera-
Programmable Controllers Operation Manual tions for the CS-series PLCs.
SYSMAC CJ Series W393 Provides an outlines of and describes the design,
CJ1H-CPULIIH-R, CJ1G/H-CPULIIH, CJ1G-CPULILIR, installation, maintenance, and other basic opera-
CJ1G-CPULIL], CI1IM-CPULIL] tions for the CJ-series PLCs.
Programmable Controllers Operation Manual
SYSMAC CJ Series W395 Describes the functions of the built-in 1/O for
CJIM-CPU21/22/23 CJ1M CPU Units.
Built-in I/O Functions Operation Manual
SYSMAC CS Series W405 Provides an outline of and describes the design,
CS1D-CPULH CPU Units installation, maintenance, and other basic opera-
CS1D-CPULITIS CPU Units tions for a Duplex System based on CS1D CPU
CS1D-DPL1 Duplex Unit Units.
CS1D-PA207R Power Supply Unit
Duplex System Operation Manual
SYSMAC CS/CJ Series W341 Provides information on how to program and
CQM1H-PROO01-E, C200H-PRO27-E, CQM1-PROO01-E operate CS/CJ-series PLCs using a Programming
Programming Consoles Operation Manual Console.
SYSMAC CS/CJ/INSJ Series W342 Describes the C-series (Host Link) and FINS

CJ1H-CPULIH-R, CS1G/H-CPULILI-EV1],
CS1G/H-CPULIH, CS1D-CPULIH, CS1D-CPULILIS,
CJ1M-CPULIL], CJ1G-CPULI, CJ1G-CPULILIP,
CJ1G/H-CPULIH, CS1W-SCBLI-V1,
CS1w-SCcull]-v1, CIJ1IW-scull-v1, CP1H-XOOO-,
CP1H-XAOO-, CPAH-YOOOO-,
NSJC-OIOCIC)(B)-G5D, NSJC-LICICC(B)-M3D
Communications Commands Reference Manual

communications commands used with CS/CJ-
series PLCs.

XXV

CX-0One Setup Manual

Name Cat. No. Contents
NSJ Series w452 Provides the following information about the NSJ-
NSJ5-TQII(B)-G5D, NSJ5-SQUITI(B)-G5D, series NSJ Controllers:
NSJ8-TVLI(B)-G5D, NSJ10-TVLI(B)-G5D, Overview and features
NSJ12-TSCII(B)-G5D Designing the system configuration
Operation Manual Installation and wiring
I/O memory allocations
Troubleshooting and maintenance
Use this manual in combination with the following
manuals: SYSMAC CS Series Operation Manual
(W339), SYSMAC CJ Series Operation Manual
(W393), SYSMAC CS/CJ Series Programming
Manual (W394), and NS-V1/-V2 Series Setup
Manual (V083)
SYSMAC WS02-CX[[I-vL] W446 | Provides information on how to use the CX-Pro-
CX-Programmer Operation Manual grammer for all functionality except for function
blocks.
SYSMAC WS02-CX[J-vl] W447 | Describes the functionality unique to the CX-Pro-
CX-Programmer Ver. 7.0 Operation Manual grammer and CP-series CPU Units or CS/CJ-
Function Blocks series CPU Units with unit version 3.0 or later
(CS1G-CPULCIH, CS1H-CPUCITH, based on function blocks. Functionality that is the
CJI1G-CPULITIH, CI1H-CPULITH, §ame as that of the CX-Programmer is described
cJ1M-cPULIL], CP1H-XCIOOO-, in W446 (enclosed).
CP1H-XALICICIOI-O], cPan-YLICIOICI-[]
CPU Units)
SYSMAC CS/CJ Series W336 Describes the use of Serial Communications Unit
CSi1w-scBLI-v1, cS1w-scullll-vi, and Boards to perform serial communications
CcJ1wW-sculll-v1 with external devices, including the usage of stan-
Serial Communications Boards/Units Operation Manual dard system protocols for OMRON products.
SYSMAC WS02-PSTC1-E W344 Describes the use of the CX-Protocol to create
CX-Protocol Operation Manual protocol macros as communications sequences
to communicate with external devices.
CXONE-ALLIIC-V3/ALLITID-V3 W464 | Describes operating procedures for the CX-Inte-
CX-Integrator Operation Manual grator Network Configuration Tool for CS-, CJ-,
CP-, and NSJ-series Controllers.
CXONE-ALLCIC-V3/ALCID-V3 W463 Installation and overview of CX-One FA Inte-

grated Tool Package.

&WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.

XXVi

Terms and Conditions Agreement

Warranty, Limitations of Liability

I Warranties

* Exclusive Warranty

Omron’s exclusive warranty is that the Products will be free from defects in materials and work-
manship for a period of twelve months from the date of sale by Omron (or such other period
expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

* Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF
THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based
on infringement by the Products or otherwise of any intellectual property right.

* Buyer Remedy

Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form origi-
nally shipped with Buyer responsible for labor charges for removal or replacement thereof) the
non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an
amount equal to the purchase price of the non-complying Product; provided that in no event shall
Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding
the Products unless Omron’s analysis confirms that the Products were properly handled, stored,
installed and maintained and not subject to contamination, abuse, misuse or inappropriate modifi-
cation. Return of any Products by Buyer must be approved in writing by Omron before shipment.
Omron Companies shall not be liable for the suitability or unsuitability or the results from the use
of Products in combination with any electrical or electronic components, circuits, system assem-
blies or any other materials or substances or environments. Any advice, recommendations or
information given orally or in writing, are not to be construed as an amendment or addition to the
above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

I Limitation on Liability; Etc

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CON-
SEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN
ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CON-
TRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on
which liability is asserted.

xXxvii

Application Considerations

xxviii

| suitability of Use

Omron Companies shall not be responsible for conformity with any standards, codes or regulations
which apply to the combination of the Product in the Buyer’s application or use of the Product. At
Buyer’s request, Omron will provide applicable third party certification documents identifying ratings
and limitations of use which apply to the Product. This information by itself is not sufficient for a com-
plete determination of the suitability of the Product in combination with the end product, machine,
system, or other application or use. Buyer shall be solely responsible for determining appropriate-
ness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take
application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

I Programmable Products

Omron Companies shall not be responsible for the user’s programming of a programmable Product,
or any consequence thereof.

Disclaimers

I Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for
the user in determining suitability and does not constitute a warranty. It may represent the result of
Omron’s test conditions, and the user must correlate it to actual application requirements. Actual per-
formance is subject to the Omron’s Warranty and Limitations of Liability.

I Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and
other reasons. It is our practice to change part numbers when published ratings or features are
changed, or when significant construction changes are made. However, some specifications of the
Product may be changed without any notice. When in doubt, special part numbers may be assigned
to fix or establish key specifications for your application. Please consult with your Omron’s represen-
tative at any time to confirm actual specifications of purchased Product.

I Errors and Omissions

Information presented by Omron Companies has been checked and is believed to be accurate; how-
ever, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

XXix

XXX

PRECAUTIONS

This section provides general precautionsfor using the CS/CJ-series Programmable Controllers (PLCs) and rel ated devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or
operate a PL C system.

1 Intended AUdieNCe oo XXXii
2 General PreCaltionsot XXXl
3 Safety Precautions.o XXXl
4 Operating Environment Precautions., XXXV
5 Application PreCautionst XXXIV
6 Conformanceto EC Directives.t XXXVili
6-1 Applicable Directives.t XXXVili
6-2 CONCEPES . . oot XXXViii
6-3 Conformanceto EC Directives., XXXiX
6-4 Relay Output Noise ReductionMethods XXXiX

XXXi

I ntended Audience

1

2

3

XXXIi

Intended Audience

This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

» Personnel in charge of installing FA systems.
» Personnel in charge of designing FA systems.
* Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

Safety Precautions

/\ WARNING

/\ WARNING

The CPU Unit refreshes 1/0 even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to 1/O Units, Special /0 Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

* Transferring I/O memory data to the CPU Unit from a Programming
Device.

» Changing present values in memory from a Programming Device.
* Force-setting/-resetting bits from a Programming Device.

« Transferring I/O memory files from a Memory Card or EM file memory to
the CPU Unit.

* Transferring I/O memory from a host computer or from another PLC on a
network.

Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

Safety Precautions

3

/\ WARNING
/N\ WARNING

/\ WARNING

& Caution

& Caution

& Caution

& Caution

& Caution

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

» Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

» The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

» The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

* When the 24-V-DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

Confirm safety before transferring data files stored in the file memory (Mem-
ory Card or EM file memory) to the I/O area (CIO) of the CPU Unit using a
peripheral tool. Otherwise, the devices connected to the output unit may mal-
function regardless of the operation mode of the CPU Unit.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Serious accidents may
result from abnormal operation if proper measures are not provided.

Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

The CS1-H, CJ1-H, CJ1M, and CS1D CPU Units automatically back up the
user program and parameter data to flash memory when these are written to
the CPU Unit. /0 memory (including the DM, EM, and HR Areas), however, is
not written to flash memory. The DM, EM, and HR Areas can be held during
power interruptions with a battery. If there is a battery error, the contents of
these areas may not be accurate after a power interruption. If the contents of
the DM, EM, and HR Areas are used to control external outputs, prevent inap-
propriate outputs from being made whenever the Battery Error Flag (A40204)
is ON.

Confirm safety at the destination node before transferring a program to

another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.

XXXiii

Operating Environment Precautions 4

4

5

XXXV

& Caution

& Caution

& Caution

Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in
burning or malfunction.

Do not touch the Power Supply Unit when power is being supplied or immedi-
ately after the power supply is turned OFF. The Power Supply Unit will be hot
and you may be burned.

Be careful when connecting personal computers or other peripheral devices
to a PLC to which is mounted a non-insulated Unit (CS1W-CLK12/52(-V1) or
CS1W-ETNO1) connected to an external power supply. A short-circuit will be
created if the 24 V side of the external power supply is grounded and the 0 V
side of the peripheral device is grounded. When connecting a peripheral
device to this type of PLC, either ground the 0 V side of the external power
supply or do not ground the external power supply at all.

Operating Environment Precautions

& Caution

& Caution

& Caution

Do not operate the control system in the following locations:

* Locations subject to direct sunlight.

« Locations subject to temperatures or humidity outside the range specified
in the specifications.

* Locations subject to condensation as the result of severe changes in tem-
perature.

* Locations subject to corrosive or flammable gases.

* Locations subject to dust (especially iron dust) or salts.

* Locations subject to exposure to water, oil, or chemicals.
» Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in
the following locations:

* Locations subject to static electricity or other forms of noise.
« Locations subject to strong electromagnetic fields.

* Locations subject to possible exposure to radioactivity.

* Locations close to power supplies.

The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

Application Precautions

Observe the following precautions when using the PLC System.

* You must use the CX-Programmer (programming software that runs on
Windows) if you need to program more than one task. A Programming
Console can be used to program only one cyclic task plus interrupt tasks.

Application Precautions 5

A Programming Console can, however, be used to edit multitask pro-
grams originally created with the CX-Programmer.

&WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

* Always connect to a ground of 100 Q or less when installing the Units. Not
connecting to a ground of 100 Q or less may result in electric shock.

» A ground of 100 Q or less must be installed when shorting the GR and LG
terminals on the Power Supply Unit.

 Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

» Mounting or dismounting Power Supply Units, /O Units, CPU Units, In-
ner Boards, or any other Units.

» Assembling the Units.

* Setting DIP switches or rotary switches.

» Connecting cables or wiring the system.

» Connecting or disconnecting the connectors.

&Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

» The user program and parameter area data in the CS1-H, CS1D, CJ1-H,
and CJ1M CPU Units are backed up in the built-in flash memory. The
BKUP indicator will light on the front of the CPU Unit when the backup
operation is in progress. Do not turn OFF the power supply to the CPU
Unit when the BKUP indicator is lit. The data will not be backed up if
power is turned OFF.

When using a CS-series CS1 CPU Unit for the first time, install the
CS1W-BAT1 Battery provided with the Unit and clear all memory areas
from a Programming Device before starting to program. When using the
internal clock, turn ON power after installing the battery and set the clock
from a Programming Device or using the DATE(735) instruction. The clock
will not start until the time has been set.

When the CPU Unit is shipped from the factory, the PLC Setup is set so
that the CPU Unit will start in the operating mode set on the Programming
Console mode switch. When a Programming Console is not connected, a
CS-series CS1 CPU Unit will start in PROGRAM mode, but a CS1-H,
CS1D, CJ1, CJ1-H, or CJ1M CPU Unit will start in RUN mode and opera-
tion will begin immediately. Do not advertently or inadvertently allow oper-
ation to start without confirming that it is safe.

When creating an AUTOEXEC.IOM file from a Programming Device (a
Programming Console or the CX-Programmer) to automatically transfer
data at startup, set the first write address to D20000 and be sure that the
size of data written does not exceed the size of the DM Area. When the
data file is read from the Memory Card at startup, data will be written in
the CPU Unit starting at D20000 even if another address was set when
the AUTOEXEC.IOM file was created. Also, if the DM Area is exceeded
(which is possible when the CX-Programmer is used), the remaining data
will be written to the EM Area.

XXXV

Application Precautions

5

XXXV

* Always turn ON power to the PLC before turning ON power to the control
system. If the PLC power supply is turned ON after the control power sup-
ply, temporary errors may result in control system signals because the
output terminals on DC Output Units and other Units will momentarily turn
ON when power is turned ON to the PLC.

Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal
lines, momentary power interruptions, or other causes.

Interlock circuits, limit circuits, and similar safety measures in external cir-
cuits (i.e., not in the Programmable Controller) must be provided by the
customer.

Do not turn OFF the power supply to the PLC when data is being trans-
ferred. In particular, do not turn OFF the power supply when reading or
writing a Memory Card. Also, do not remove the Memory Card when the
BUSY indicator is lit. To remove a Memory Card, first press the memory
card power supply switch and then wait for the BUSY indicator to go out
before removing the Memory Card.

If the 1/O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

The contents of the DM, EM, and HR Areas in the CPU Unit are backed
up by a Battery. If the Battery voltage drops, this data may be lost. Provide
countermeasures in the program using the Battery Error Flag (A40204) to
re-initialize data or take other actions if the Battery voltage drops.

When supplying power at 200 to 240 V AC with a CS-series PLC, always
remove the metal jumper from the voltage selector terminals on the Power
Supply Unit (except for Power Supply Units with wide-range specifica-
tions). The product will be destroyed if 200 to 240 V AC is supplied while
the metal jumper is attached.

Always use the power supply voltages specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

Do not apply voltages to the Input Units in excess of the rated input volt-
age. Excess voltages may result in burning.

Do not apply voltages or connect loads to the Output Units in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.

Application Precautions

5

 Separate the line ground terminal (LG) from the functional ground termi-
nal (GR) on the Power Supply Unit before performing withstand voltage
tests or insulation resistance tests. Not doing so may result in burning.

Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

With CS-series PLCs, be sure that all the Unit and Backplane mounting
screws are tightened to the torque specified in the relevant manuals.
Incorrect tightening torque may result in malfunction.

Be sure that all terminal screws, and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction if foreign matter enters the Unit.

Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

Wire all connections correctly.

Double-check all wiring and switch settings before turning ON the power
supply. Incorrect wiring may result in burning.

Mount Units only after checking terminal blocks and connectors com-
pletely.

Be sure that the terminal blocks, Memory Units, expansion cables, and
other items with locking devices are properly locked into place. Improper
locking may result in malfunction.

Check switch settings, the contents of the DM Area, and other prepara-
tions before starting operation. Starting operation without the proper set-
tings or data may result in an unexpected operation.

Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

» Changing the operating mode of the PLC (including the setting of the

startup operating mode).

* Force-setting/force-resetting any bit in memory.

» Changing the present value of any word or any set value in memory.
Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

Do not place objects on top of the cables or other wiring lines. Doing so
may break the cables.

Do not use commercially available RS-232C personal computer cables.
Always use the special cables listed in this manual or make cables
according to manual specifications. Using commercially available cables
may damage the external devices or CPU Unit.

Never connect pin 6 (5-V power supply) on the RS-232C port on the CPU
Unit to any device other than an NT-ALOO1 or CJ1W-CIF11 Adapter. The
external device or the CPU Unit may be damaged.

XXXVii

Conformance to EC Directives

6

» When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

Before touching a Unit, be sure to first touch a grounded metallic object in
order to discharge any static build-up. Not doing so may result in malfunc-
tion or damage.

» When transporting or storing circuit boards, cover them in antistatic mate-
rial to protect them from static electricity and maintain the proper storage
temperature.

Do not touch circuit boards or the components mounted to them with your
bare hands. There are sharp leads and other parts on the boards that
may cause injury if handled improperly.

Do not short the battery terminals or charge, disassemble, heat, or incin-
erate the battery. Do not subject the battery to strong shocks. Doing any
of these may result in leakage, rupture, heat generation, or ignition of the
battery. Dispose of any battery that has been dropped on the floor or oth-
erwise subjected to excessive shock. Batteries that have been subjected
to shock may leak if they are used.

UL standards require that batteries be replaced only by experienced tech-
nicians. Do not allow unqualified persons to replace batteries.

Dispose of the product and batteries according to local ordi- n
nances as they apply. Have qualified specialists properly dis- c j
pose of used batteries as industrial waste. U

FEEE it ik

With a CJ-series PLC, the sliders on the tops and bottoms of the Power
Supply Unit, CPU Unit, 1/O Units, Special I/O Units, and CPU Bus Units
must be completely locked (until they click into place). The Unit may not
operate properly if the sliders are not locked in place.

With a CJ-series PLC, always connect the End Plate to the Unit on the
right end of the PLC. The PLC will not operate properly without the End
Plate

Unexpected operation may result if inappropriate data link tables or
parameters are set. Even if appropriate data link tables and parameters
have been set, confirm that the controlled system will not be adversely
affected before starting or stopping data links.

CPU Bus Units will be restarted when routing tables are transferred from
a Programming Device to the CPU Unit. Restarting these Units is required
to read and enable the new routing tables. Confirm that the system will
not be adversely affected before allowing the CPU Bus Units to be reset.

6 Conformance to EC Directives

6-1 Applicable Directives

6-2 Concepts

* EMC Directives
* Low Voltage Directive

EMC Directives

OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the

XXXViii

Conformanceto EC Directives 6

Note

standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility): EN61131-2 (CS-series)/
EN61000-6-2 (CJ-series)
EMI (Electromagnetic Interference): EN61000-6-4
(Radiated emission: 10-m regulations)

Low Voltage Directive

Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

6-3 Conformance to EC Directives

1,2,3...

The CS/CJ-series PLCs comply with EC Directives. To ensure that the
machine or device in which the CS/CJ-series PLC is used complies with EC
Directives, the PLC must be installed as follows:

1. The CS/CJ-series PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for the communications power supply and 1/O power sup-
plies.

3. CS/CJ-series PLCs complying with EC Directives also conform to the
Common Emission Standard (EN61000-6-4). Radiated emission charac-
teristics (10-m regulations) may vary depending on the configuration of the
control panel used, other devices connected to the control panel, wiring,
and other conditions. You must therefore confirm that the overall machine
or equipment complies with EC Directives.

6-4 Relay Output Noise Reduction Methods

Countermeasures

The CS/CJ-series PLCs conforms to the Common Emission Standards
(EN61000-6-4) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

(Refer to EN61000-6-4 for more details.)

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

XXXIX

Conformance to EC Directives

Countermeasure Examples

When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Circuit Current Characteristic Required element
AC DC
CR method Yes Yes If the load is a relay or solenoid, there | The capacitance of the capacitor must
- is a time lag between the moment the |be 1to 0.5 uF per contact current of
[circuit is opened and the moment the |1 A and resistance of the resistor must
: F 0 load is reset. be 0.5to 1 Q per contact voltage of 1 V.
@ 5 If the supply voltage is 24 or 48 V, These values, however, vary with the
, g insert the surge protector in parallel load and the characteristics of the
. = with the load. If the supply voltage is | relay. Decide these values from experi-
s 100 to 200 V, insert the surge protector | MeNts, and take into consideration that
between the contacts. the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.
The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.
Diode method No Yes | The diode connected in parallel with The reversed dielectric strength value
S the load changes energy accumulated | of the diode must be at least 10 times
by the coil into a current, which then as large as the circuit voltage value.
g flows into the coil so that the current The forward current of the diode must
y ES will be converted into Joule heat by the | be the same as or larger than the load
Power 28 resistance of the inductive load. current.
supply This time lag, between the moment the | The reversed dielectric strength value
circuit is opened and the moment the | of the diode may be two to three times
load is reset, caused by this method is | larger than the supply voltage if the
longer than that caused by the CR surge protector is applied to electronic
method. circuits with low circuit voltages.
Varistor method Yes Yes | The varistor method prevents the impo- | ---
— sition of high voltage between the con-
O O tacts by using the constant voltage
ol (e characteristic of the varistor. There is
@ ‘V %U tim.e. lag between the moment the cir-
: o =k cuitis opened and the moment the load
| supply == is reset.
T If the supply voltage is 24 or 48 V,
insert the varistor in parallel with the
load. If the supply voltage is 100 to
200 V, insert the varistor between the
contacts.

When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

Xl

Countermeasure 1

ouT

+

COM

Providing a dark current of
approx. one-third of the rated
value through an incandescent
lamp

Countermeasure 2

R
ouT

COM

Providing a limiting resistor

SECTION 1
| ntroduction

This section provides information on general instruction characteristics as well as the errors that can occur during
instruction execution.

1-1 Genera Instruction Characteristics., 2
1-1-1 Program CapaCityo vt e 2
1-1-2 Differentiated Instructions i i 3
1-1-3 Instruction Variationsttt 4
1-1-4 Instruction Location and Execution Conditions. 5
1-1-5 Inputting DatainOperands.t 5
1-1-6 DataFormats. e 11
1-2 Instruction ExecutionChecks. i 13
1-2-1 ErrorsOccurring at Instruction Execution 13
1-2-2 Fata Errors (Program Errors). 13

General Instruction Characteristics Section 1-1

1-1 General Instruction Characteristics

1-1-1 Program Capacity

The program capacity tells the size of the user program area in the CPU Unit
and is expressed as the number of program steps. The number of steps
required in the user program area for each of the CS/CJ-series instructions
varies from 1 to 7 steps, depending upon the instruction and the operands

used with it.

CS Series

The following tables show the maximum number of steps that can be pro-

grammed in each CS-series CPU Unit.

* CS1-H CPU Units

Model Program capacity I/0 points
CS1H-CPU67H 250K steps 5,120
CS1H-CPUG6H 120K steps
CS1H-CPUG5H 60K steps
CS1H-CPU64H 30K steps
CS1H-CPU63H 20K steps
CS1G-CPU45H 60K steps
CS1G-CPU44H 30K steps 1,280
CS1G-CPU43H 20K steps 960
CS1G-CPU42H 10K steps

» CS1 CPU Units

Model Program capacity 1/0 points
CS1H-CPU67-E 250K steps 5,120
CS1H-CPUG66-E 120K steps
CS1H-CPUG6G5-E 60K steps
CS1H-CPU64-E 30K steps
CS1H-CPU63-E 20K steps
CS1G-CPU45-E 60K steps
CS1G-CPU44-E 30K steps 1,280
CS1G-CPU43-E 20K steps 960
CS1G-CPU42-E 10K steps

* CS1D CPU Units for Single-CPU Systems

Model Program capacity I/0 points
CS1D-CPU67H 250K steps 5,120
CS1D-CPU6G5H 60K steps

CS1D CPU Units for Duplex-CPU Systems

Model Program capacity I/0 points
CS1D-CPU42S 10K steps 960
CS1D-CPU44S 30K steps 1,280
CS1D-CPU6BSS 60K steps 5,120
CS1D-CPU6G7S 250K steps

CJ Series

The following tables show the maximum number of steps that can be pro-

grammed in each CJ-series CPU Unit.

General Instruction Characteristics Section 1-1
» CJ1-H CPU Units
Model Program capacity I/0 points
CJ1H-CPU67H-R 250K steps 2,560
CJ1H-CPUG6H-R 120K steps
CJ1H-CPUG5H-R 60K steps
CJ1H-CPU6G4H-R 30K steps
CJ1H-CPU67H 250K steps
CJ1H-CPUG6H 120K steps
CJ1H-CPUG5H 60K steps
CJ1G-CPU45H 60K steps 1,280
CJ1G-CPU44H 30K steps
CJ1G-CPU43H 20K steps 960
CJ1G-CPU42H 10K steps
* CJ1 CPU Units
Model Program capacity I/0 points
CJ1G-CPU45 60K steps 1,280
CJ1G-CPU44 30K steps
* CJ1M CPU Units
Model Program capacity 1/0 points
CJIM-CPU23 20K steps 640
CJ1M-CPU22 10K steps 320
CJ1M-CPU21 5K steps 160
CJ1M-CPU13 20K steps 640
CJ1IM-CPU12 10K steps 320
CJ1M-CPU11 5K steps 160

Note Program capacity for CS/CJ-series PLCs is measured in steps, whereas pro-
gram capacity for previous OMRON PLCs, such as the C-series and CV-
series PLCs, was measured in words. Basically speaking, 1 step is equivalent
to 1 word. The amount of memory required for each instruction, however, is
different for some of the CS/CJ-series instructions, and inaccuracies will occur
if the capacity of a user program for another PLC is converted for a CS/CJ-
series PLC based on the assumption that 1 word is 1 step. Refer to the infor-
mation at the end of SECTION 4 Instruction Execution Times and Number of
Steps for guidelines on converting program capacities from previous OMRON
PLCs.

The number of steps in a program is not the same as the number of instruc-
tions. For example, LD and OUT require 1 step each, but MOV(021) requires
3 steps. Other instructions require up to 15 steps each. The number of steps
required by an instruction is also increased by one step for each double-
length operand used in it. For example, MOVL(498) normally requires 3 steps,
but 4 steps will be required if a constant is specified for the source word oper-
and, S. Refer to SECTION 4 Instruction Execution Times and Number of
Steps for the number of steps required for each instruction.

1-1-2 Differentiated Instructions

Most instructions in CS/CJ-series PLCs are provided with both non-differenti-
ated and upwardly differentiated variations, and some are also provided with a
downwardly differentiated variation.

A non-differentiated instruction is executed every time it is scanned.

General Instruction Characteristics

Section 1-1

» An upwardly differentiated instruction is executed only once after its exe-
cution condition goes from OFF to ON.

» A downwardly differentiated instruction is executed only once after its exe-
cution condition goes from ON to OFF.

Variation

Instruction type

Operation

Format

Example

Non-
differentiated

Output instructions
(instructions requiring
an execution condi-

The instruction is exe-
cuted every cycle while
the execution condition is

_| Output instruction
executed each cycle

|—| —C mov H

tion)
Input instructions

true (ON).
The bit processing (such

Input instruction

(instructions used as | as read, comparison, or |, executed each cycle |_| = _|
execution conditions) | test) is performed every |—| I
cycle. The execution con-
dition is true while the
result is ON.
Upwardly Output instructions The instruction is exe- EEpT———
differentiated cuted just once when the |—| | once for upward _I |—| L ewmov :H
(with @ prefix) execution condition goes differentiation MOV/021) excauted once
for each OFF to ON transi-
from OFF to ON. tion in CIO 000102.
Input instructions The bit processing (such | Upwardy differentiated
(instructions used as | as read, comparison, or |, inputinstruction |_| t— _I
execution conditions) |test) is performed every I—HI— ON execution condition created
. for one cycle only for each OFF
CyC|e- The execution con- to ON transition in CIO 000103.
dition is true for one cycle
when the result goes
from OFF to ON.

Downwardly Output instructions The instruction is exe- PTE——— 0001
differentiated cuted just once when the | || | ecuted once for _I |—| o2 oseT J—I
ith 9 i i iti downward SET executed once for
(with % prefix) execution condition goes differentiation e N o on

from ON to OFF. in CIO 000102.
Input instructions The bit processing (such | pownwardly differentiated 0001

input instruction

i———

(instructions used as
execution conditions)

as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true for one cycle
when the result goes
from ON to OFF.

%

ON execution condition created
for one cycle only for each ON to
OFF transition in CIO 000103.

Note The downwardly differentiated option (%) is available only for the LD, AND,
OR, and RSET instructions. To create downwardly differentiated variations of
other instructions, control the execution of the instruction with work bits con-
trolled with DIFD(014) or DOWN(522).

1-1-3 Instruction Variations

The variation prefixes (@, %, and !) can be added to an instruction to create a
differentiated instruction or provide immediate refreshing.

Variation Prefix Operation
Differentiation | Upwardly dif- | @ Creates an upwardly differentiated instruc-
ferentiated tion.
Downwardly | % Creates a downwardly differentiated instruc-
differentiated tion.

Immediate refreshing ! The instruction’s operand data in the 1/O
Area will be refreshed when the instruction

is executed.

General Instruction Characteristics Section 1-1

! @ MOV

L=

Instruction Location and Execution Conditions

The following table shows the locations in which instructions can be pro-
grammed. The table also shows when an instruction requires an execution
condition and when it does not. Refer to SECTION 2 Summary of Instructions

Instruction mnemonic
Up-differentiation variation
Immediate-refreshing variation

1-1-4

for details on specific instructions.

Instruction type Location Execution Format Examples
condition
Input | Instructions | At the left bus or at | Not required || r== B LD, LD TST, and input com-
that start the start of an |_'._ 1 | parison instructions such as
logic instruction block LD >
conditions
Connecting |Between a starting | Required] AND, OR, AND TST, input
instructions | instruction and out- |T_| l_:_- | comparison instructions such
put instruction T as AND >, UP, DOWN, NOT
Output At the right bus Required |_=:|- == The majority of instructions
| (such as OUT and MQV)
Not required Instructions such as END,
| - | JME, FOR, and ILC
In addition to these instructions, the CS/CJ-series PLCs are equipped with
block programming instructions. Refer to the description of the block program-
ming instructions for details.
Note If an execution condition does not precede an instruction that requires one, a
program error will occur when the program is checked from a Peripheral
Device.
1-1-5 Inputting Data in Operands

Operands are parameters that are set in advance with the 1/O memory
addresses or constants to be used when the instruction is executed. There
are basically three kinds of operands: Source operands, destination oper-
ands, and numbers.

— MOV JMP
#0000 [«— S (Source) &3 ~—— N (Number)
D00000 [=— D (Destination)
Operand Usual Contents
code
Source Address containing | S Source Source data other than
the data or the data operand | control data
itself C Control | Control data with a bit
data or bits controlling
instruction execution
Destination | Address where the D
data will be stored
Number Contains a number N
such as a jump num-
ber or subroutine
number.

General Instruction Characteristics Section 1-1

Note An instruction’s operands may also be referred to by their position in the
instruction (first operand, second operand, ...). The codes used for the oper-
and vary with the specific function of the operand.

— wmov
#0000 |+ First operand
D00000 |+~ Second operand

Specifying Bit Addresses

Description Example Instruction example
To specify a bit address, specify the word 0001 02 0001
address and bit address directly. Bit 02 _ﬁ_
I I e I I

Word CIO 0001
Bit number

Word address

Note The word address + bit number format is
not used for Timer/Counter Completion
Flags or Task Flags.

Specifying Word Addresses

Description Example Instruction example
To specify a word address, specify the word 0003 MOV 0003 D00200
address directly. Word CIO 0003
EEEE D00200

\— Word address Word D00200

Specifying Indirect DM/EM Addresses in Binary Mode

Description Example Instruction example

When the @ prefix is input before a DM or EM
address, the contents of that word specifies
another word that is used as the operand. The
contents can be 0000 to 7FFF (0 to 32,767),
corresponding to the desired word address in the
DM or EM Area.

@D

Content| | 00000 to 32767

(0000 to 7FFF)

ol

When the contents of @D is between

MOV #0001
0000 and 7FFF (00000 to 32,767), the corre- @D00300 @D00300
sponding word between DO0000 and D32767 is
specified.
Decimal: 256
!

Specifies D00256.

Add the @ prefix.

General Instruction Characteristics Section 1-1

Description Example Instruction example

When the contents of @ DUOIOIC is between @D00300
8000 and FFFF (32,768 to 65,535), the corre-

sponding word between EO_00000 and EO_32767

in EM bank 0 is specified. -
Decimal: 32,769

Specifies EO_00001.

When the contents of @En[]_[ICICICIC] is between @E1 00200 MOV #0001
0000 and 7FFF (00000 to 32,767), the corre- - @E1_00200

sponding word between En(]_00000 and 010 1
En[]_32767 is specified.

Decimal: 257

Specifies E1_00257.

When the contents of @En[]_[JJOICIC] is between @E1 00200
8000 and FFFF (32,768 to 65,535), the corre- -

sponding word between E ((J+1) _00000 and E 8 00 2

(L1+1) 32767 (in the next EM bank) is specified.]
Deminal: 32770

Specifies E2_00002.

Note When binary mode is selected in the PLC Setup, the DM Area and current EM
bank addresses (bank 0 to C) are treated as consecutive memory addresses.
A word in EM bank 0 will be specified if an indirectly addressed DM word con-
tains a value greater than 32,767. For example, E0O0000 in bank 0 will be
specified when the indirect-addressing DM word contains a hexadecimal
value of 8000 (32,768).

A word in the next EM bank will be specified if an indirectly addressed EM
word contains a value greater than 32,767. For example, E3_00000 will be
specified when the indirect-addressing EM word in bank 2 contains a hexa-
decimal value of 8000 (32,768).

Specifying Indirect DM/EM Addresses in BCD Mode

Method Description Example Instruction example
Indirect DM/EM When the x prefix is input before a DM ¥D00200 MOV #0001 xD00200
addressing or EM address, the BCD contents of
(BCD mode) that word specify another word that is

used as the operand. The contents can |

be 0000 to 9999, corresponding to the

desired word address in the DM or EM Specifies D00100.
Area.

Add the x prefix.
*DLICICICC]

0000 to 9999
Content l (BCD)

ol]

General Instruction Characteristics

Section 1-1

Addressing Index Registers

the 1/0 memory address in the
register is used as the operand.

Decrement by 1: —IR[]
Decrement by 2: ,——IR[]

Note Index registers will be dec-
remented when the instruc-
tion is executed even if an
error occurs and the Error
Flag turns ON.

Method Description Example Instruction example
Directly MOVR(560) moves the PLC memory address of a |IRO MOVR 0010 IRO
addressing word or bit to an Index Register (IR0 to IR15). IR2 Stores the PLC memory address
Index Registers | (MOVRW/(561) moves the PLC memory address of of C10 0010 in IRO.
a timer or counter PV to an Index Register.) MOVR 000102 IR2
Stores the PLC memory address
of CIO 000102 in IR2.
Indirect Basic opera- The word or bit at the I/O memory |,IRO LD ,IRO
addressing with | tion (no offset) | address contained in IRLis used | |rq Loads the status of the bit at the
Index Registers as the operand. Input a comma I/O memory address contained in
before the Index Register to indi- IRO.
cate indirect addressing. MOV #0001, IR1
(The bit/word designation can be Moves #0001 to the word at the
determined by the instruction or /0 memory address contained in
operand.) IR1.
Constant offset | The offset value (-2,048 to +5,IR0 LD +5 ,IRO
+2,047) is added to the /O mem- | ;31 |g1 |Adds 5 to the I/O memory
ory address contained in IRL] and address contained in IR0 and
the resulting address is used as loads the status of the bit at that
the operand. address.
(The offset is converted to binary MOV #0001 +31 ,IR1
when the instruction is executed.) Adds 31 to the /O memory
address contained in IR1 and
moves #0001 to the word at that
address.
DR offset The signed binary content of the |DRO,IRO |LD DRO,IRO
Data Register is added to the I/O | prp |r1 |Adds the content of DRO to the
memory address contained in I/O memory address contained in
IRJ and the resulting address is IR0 and loads the status of the bit
used as the operand. at that address.
MOV #0001 DRO ,IR1
Adds the content of DRO to the
I/O memory address contained in
IR1 and moves #0001 to the word
at that address.
Auto-increment | After the I/O memory address is |,IRO + + LD ,IRO + +
read from IRL], the content of the | |Rrq + Loads the status of the bit at the
Index Register is incremented by I/0 memory address contained in
one or two. IR0 and then increments the reg-
Increment by 1: R+ ister by two.
Increment by 2: ,IRC++ MOV #0001 ,IR1 +
Note Index registers will be incre- Moves #0001 to the word at the
mented when the instruction I/O memory address contained in
is executed even if an error IR1 and then increments the reg-
occurs and the Error Flag ister by one.
turns ON.
Auto-decre- The content of IR[] is decre- ,——IRO0O |LD,--1IRO
ment mented by one or two and then —IR1 Decrements the content of IRO by

two and then loads the status of
the bit at that I/O memory
address.

MOV #0001, — IR1

Decrements the content of IR0 by
one and then moves #0001 to the
word at that I/O memory address.

Note Make sure that the contents of index registers indicate valid /0O memory
addresses.

General Instruction Characteristics Section 1-1
Specifying Constants
Method Applicable Data Code Range Example
operands format
Constant All binary data | Unsigned # #0000 to #FFFF MOV #0100 DO0000
(16-bit data) | and binary data | binary Stores #0100 hex (&256 decimal)
within a range in DO0000.
+#0009 #0001 D0O0001
Stores #000A hex (&10 decimal)
in DOO0O1.
Signed dec- |+ —32,768 to +32,767 MOV -100 DO0000
imal Stores —100 decimal (#FF9C hex)
in DO000O.
+-9 -1 D0O0001
Stores —10 decimal (#FFF6 hex)
in DO00O1.
Unsigned & &0 to &66,535 MOV &256 DO0000
decimal Stores —256 decimal (#0100 hex)
in DO000O.
+&9 &1 D00001
Stores —10 decimal (#000A hex)
in DOO0O1.
All BCD data BCD # #0000 to #9999 MOV #0100 DO0000
and BCD data Stores #0100 (BCD) in DO0000.
within a range +B #0009 #0001 D00001
Stores #0010 (BCD) in DO0001.
Constant All binary data | Unsigned # #0000 0000 to MOVL #12345678 DO0000
(32-bit data) | and binary data | binary #FFFF FFFF Stores #12345678 hex in DO0000
within a range and D000O01.
D0001 D00000
1234 5678
Signed dec- |+ -2,147,483,648 to MOVL -12345678 DO0000
imal - +2,147,483,647 Stores —12345678 decimal in
D00000 and DO00O01.
Unsigned & &0 to &4,294,967,295 | MOVL &12345678 DO0000
decimal Stores &12345678 decimal in
D00000 and DO00O01.
All BCD data BCD # #0000 0000 to MOVL #12345678 DO0000
and BCD data #9999 9999 Stores #12345678 (BCD) in
within a range D00000 and D0O0001
Specifying Text Strings
Method Description Code Examples Instruction example
Text strings | Text is stored in ASCII (1 byte/ "ABCDE" MOV$ D00100 D00200
character exclud_lng spemal npn | oge D00100 | 41 42
characters) starting with the o | vpe
lower byte of the lowest word — D00101| 43 | 44
in the range. E . NUL D00102| 45 00
If there is an odd number of 41 | a2 l
characters, 00 (NULL) is 43 24
stored in the higher byte of the 2= | 00 D00200| 41 | 42
last word in the range. D00201 | 43 44
If there is an even number of ABCD D00202 | 45 | 00
characters, 0000 (two NULLS) A" | B
are stored in the word after the "¢t "D
last in the range. NUL | NUL
I
41 42
43 | 44
00 00

General I nstruction Characteristics Section 1-1

10

The following diagram shows the characters that can be expressed in ASCII.

Leftmost bit
0/1/2/3/4/5/6/7|8/9 AB/[C|D|\EF
0 Spl0|@|P| “Ip —iF |2
1 '11[A|Qla|q o |TI1F |
2 ”12/B|R|b|r [14]2
3 #|3|CiS|c|s IBACas =
4 $4|DIT|d|t N o
|5 %|5|E|U|e|u FF |3
26 & 6IF|V|f|v FH=3
g7 " |7G|W|g|w 7 ¥ X|Z
58 (8[H|X|h|x 1|72
9) 19l1|Y]ily CIC AP
A *:|J[Z]j]z T|anL
B +; K [[k] { # Y0
C , I<ILI¥[1| A2V
D —|=|M[] [mi|} 2| XN
E . [>IN| " |n|~ 3|k |R
F /1?710|_Jo MViEdE

Note The following instructions are executed even when the input conditions are
OFF. Therefore, when indirect memory addresses are specified using auto-
incrementing or auto-decrementing (,IR+ or ,IR-) in an operand of any of
these instructions, the value in the Index Register (IR) is refreshed each cycle
regardless of the input condition (increases or decreases one every cycle).

This must be considered when writing a program.

Classification

Instructions

Sequence input
instructions

LD, LD NOT, AND, AND NOT, OR, OR NOT, LD TST(350),
LD TSTN(351), AND TST(350), AND TSTN(351), OR
TST(350), OR TSTN(351)

Sequence output

OUT, OUT NOT, DIFU(013), DIFD(014)

instructions

Sequence control JMP(004), FOR(512)

instructions

Timer and counter TIM/TIMX(550), TIMH(015)/TIMHX(551), TMHH(540)/
instructions TMHHX(552), TIMU(541)/TIMUX(556), TMUH(544)/

TMUHX(557), TTIM(087)/TTIMX(555), TIML(542)/
TIMLX(553), MTIM(533)/MTIMX(554), CNT/CNTX(546),
CNTR(012)/CNTRX(548)

Comparison instruc-
tions

Symbol comparison instructions (LD, AND, OR =, etc.(func-
tion codes: 300, 305, 310, 320, and 325))

Single-precision float-
ing-point math instruc-
tions

Single-precision floating-point data comparison (LD, AND,
OR = F, etc.(function codes: 329 to 334))

Double-precision float-
ing-point math instruc-

tions

Double-precision floating-point data comparison (LD, AND,
OR = D, etc.(function codes: 335 to 340))

General Instruction Characteristics Section 1-1

1-1-6 Data Formats

Classification Instructions
Block programming BPPS(811), BPRS(812), EXIT(806), EXIT(806) NOT,
instructions IF(802), IF(802) NOT, WAIT(805), WAIT(805) NOT,

TIMW(813)/TIMWX(816), CNTW(814)/CNTWX(818),
TMHW(815)/TMHWX(817), LEND(810), LEND(810) NOT

Text string processing | STRING COMPARISON (LD, AND, OR = $, etc. (function

instructions codes: 670 to 675))

The following ladder programming examples show how the index registers are
treated.

Example 1

Ladder Program:
LD P_Off
OUT, IR0+

Operation: When the PLC memory address 000013 is stored in IRO.

The input condition is OFF (P_Off is the Always OFF Flag), so the OUT
instruction sets 000013, which is indirectly addressed by IR0, to OFF. The
OUT instruction is executed, so IR0 is incremented. As a result, the PLC
memory address 000014, which was incremented by +1 in the IR0, is stored.
Therefore, in the following cycle the OUT instruction turns OFF 000014.

Example 2

Ladder Program:

LD P_Off

SET, IR0+
Operation: When the PLC memory address 000013 is stored in IRO.
The input condition is OFF (P_Off is the Always OFF Flag), so the SET
instruction is not executed. Therefore, IR0 is not incremented and the value
stored in IRO remains PLC memory address 000013.

The following table shows the data formats that can be used in CS/CJ-series
PLCs.

Name Format Decimal | Hexadecimal
range range
Unsigned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0to 0000 to FFFF
data N [TTTITTTITTTITT] P
data
Binary 3215 214 213 212 3211 210 29 2827 26 25 24 23 22 21 20
Decimal 3276816384 819240962048 1024 512 256! 128 64 32 1618 4 2 1 |
Hexa- 1 23 22 21 20 123 22 21 201 23 22 1 201 23 22 1 20
decimal . ' ' '
Signed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 —32,768 8000 to 7FFF
binary to
data S e %%
Binary 3215 214 213 912 1511 510 99 98 o7 926 95 24 23 22 ol 20
Decimal 5-327681638481924096?20481024 512 256, 128 64 32 16.8 4 2 1
Hexa- 23 22 21 20 123 22 21 20 23 22 o1 201 23 p2 o1 20!
decimal T Sign bit
0: Positive
1: Negative

11

General Instruction Characteristics Section 1-1

Name Format Decimal | Hexadecimal
range range

BCD : 23 22 21 20 22 21 20128 22 21 20 23 22 ot 20
R e

. 23
AN

Decimal. 0to9 . 0Ot9 0t9 = 0to9

Floating- 31 30 29 23 22 21 20 19 18 17 3 2 1 0
point deci-
mal

Sign of Exponent Bi Mantissa
mantissa inary

—

Value = (-1)Si9n x 1.[Mantissa] x 25xponent
Sign (bit 31) 1: negative or 0: positive
Mantissa The mantissa includes 23 bits from bit 00 to bit 22

and indicates this portion below the decimal point
in 1.0J00..... in binary.

Exponent The exponent includes 8 bits from bit 23 to bit 30
and indicates n plus 127 in 2n in binary.

Note This format conforms to IEEE754 standards for single-precision floating-point data
and is used only with instructions that convert or calculate floating-point data. It can
be used to set or monitor from the 1/0 memory Edit and Monitor Screen on the CX-
Programmer (not supported by the Programming Consoles). As such, users do not
need to know this format although they do need to know that the formatting takes up
two words.

Double- 63 62 61 52 51 50 49 48 47 46 3 2 1 0 --- ---
precision
floating-
point deci- N —~
mal Sign of Exponent) Mantissa
mantissa Binary

)

Value = (-1)S19" x 1.[Mantissa] x 25xponent
Sign (bit 63) 1: negative or 0: positive

Mantissa The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.C1C17.....,
in binary.

Exponent The 11 bits from bit 52 to bit 62 contain the exponent
The exponent is expressed in binary as 1023 plus n in
2",

Note This format conforms to IEEE754 standards for double-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the 1/0O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming
Consoles). As such, users do not need to know this format although they do
need to know that the formatting takes up four words.

Signed Binary Numbers Negative signed-binary numbers are expressed as the 2's complement of the
absolute hexadecimal value. For a decimal value of -12,345, the absolute
value is equivalent to 3039 hexadecimal. The 2's complement is 10000 — 3039
(both hexadecimal) or CFC7.
To convert from a negative signed binary number (CFC7) to decimal, take the
2's complement of that number (10000 — CFC7 = 3039), convert to decimal
(3039 hexadecimal = 12,345 decimal), and add a minus sign (-12,345).

12

I nstruction Execution Checks Section 1-2

1-2 Instruction Execution Checks

1-2-1 Errors Occurring at Instruction Execution

An instruction’s operands and placement are checked when an instruction is
input from a Peripheral Device or a program check is performed from a
Peripheral Device (other than a Programming Console), but these are not final
checks. The following four errors can occur when an instruction is executed.

Instruction Processing Error (ER Flag ON)

Normally, Instruction Processing Errors are non-fatal errors, but the PLC
Setup can be set to treat Instruction Processing Errors as fatal errors. If this
setting has been made, the Instruction Processing Error Flag (A29508) will be
turned ON and program execution will stop when an Instruction Processing
Error occurs.

Access Error (AER Flag ON)

Normally, Access Errors are non-fatal errors, but the PLC Setup can be set to
treat these errors as fatal errors. If this setting has been made, the lllegal
Access Error Flag (A29510) and the Indirect DM/EM BCD Error Flag
(A29509) will be turned ON and program execution will stop when an Access
Error occurs.

lllegal Instruction Error

The lllegal Instruction Error Flag (A29514) will be turned ON and program
execution will stop when this error occurs.

UM (User Program Memory) Overflow Error

The UM Overflow Error Flag (A29515) will be turned ON and program execu-
tion will stop when this error occurs.

1-2-2 Fatal Errors (Program Errors)

Program execution will be stopped when one of the following program errors
occurs. When a program error has occurred, the task number of the task that
was being executed when program execution was stopped is written to A294
and the program address is written to A298 and A299.

Use the contents of these words to locate the program error and correct it as

necessary.
Address Description

A294 The task number of the current task is written to this word when pro-
gram execution is stopped because of a program error.
Cyclic tasks have task numbers 0000 to 001F (cyclic tasks O to 31).
Interrupt tasks have task numbers 8000 to 80FF (interrupt tasks O to
255).

A298 and The current program address is written to these words when program

A299 execution is stopped because of a program error.
A299 contains the leftmost digits of the program address and A298
contains the rightmost digits of the program address.

13

I nstruction Execution Checks

Section 1-2

14

All errors for which the Error Flag or Access Error Flag turns ON is treated as
a program error The following table lists program errors. The PLC Setup can
be set to stop program execution when one of these errors occurs.

Error type

Description

Related flags

No END Instruction

There is no END(001) instruction in the program.

No END Error Flag
(A29511)

Task Error

There are three possible causes of a task error:

1) There is not an executable cyclic task.

2) There is not a program allocated to the task.

3) An interrupt was generated but the corresponding interrupt
task does not exist.

Task Error Flag (A29512)

Instruction Processing
Error*

The CPU attempted to execute an instruction, but the data
provided in the instruction’s operand was incorrect.

*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Instruction Processing Error
Flag (A29508) will be turned ON and program execution will
stop.

Error (ER) Flag,
Instruction Processing
Error Flag (A29508)

Access Error*

There are five possible causes of an access error:

1) Reading/writing to the parameter area.

2) Writing to memory that is not installed.

3) Reading/writing to an EM bank that is EM file memory.

4) Writing to a read-only area.

5) The contents of a DM/EM word was not BCD although the
PLC is set for BCD indirect addressing.

*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the lllegal Access Error Flag
(A29510) will be turned ON and program execution will stop.

Access Error (AER) Flag,
lllegal Access Error Flag
(A29510)

Indirect DM/EM BCD
Error*

The contents of a DM/EM word was not BCD although the
PLC is set for BCD indirect addressing.

*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Indirect DM/EM BCD Error
Flag (A29509) will be turned ON and program execution will
stop.

Access Error (AER) Flag,
Indirect DM/EM BCD Error
Flag (A29509)

Differentiation Overflow
Error

Differentiated instructions were repeatedly inserted and
deleted during online editing (over 31,072 times).

Differentiation Overflow
Error Flag (A29513)

UM Overflow Error

The last address in UM (user program memory) has been
exceeded.

UM Overflow Error Flag
(A29515)

lllegal Instruction Error

The program contains an instruction that cannot be executed.

lllegal Instruction Error
Flag (A29514)

SECTION 2
Summary of Instructions

This section provides a summary of instructions used with CS/CJ-series PLCs.

2-1 Instruction Classificationsby Function. 16
2-2 Instruction FUNCLIONS. oo 25
2-2-1 Sequencelnput Instructions. ... 25
2-2-2 Seguence Output Instructions., 27
2-2-3 Sequence Control Instructions, 30
2-2-4 Timer and Counter Instructions oiiinn... 34
2-2-5 Comparison INStructions.ooi it 39
2-2-6 DataMovement Instructions. i 43
2-2-7 DataShiftingtructions i 46
2-2-8 Increment/Decrement Instructions.. 50
2-2-9 Symbol Math Instructions. 51
2-2-10 Conversion INStructions oot 56
2-2-11 Logic Instructions.covui it 63
2-2-12 Specia Mathinstructions. i 65
2-2-13 Floating-point Math Instructions 66
2-2-14 Double-precision Floating-point Instructions. 71
2-2-15 Table Data Processing Instructions., 75
2-2-16 DataControl INStructions vt 79
2-2-17 Subroutine INsStructions. 83
2-2-18 Interrupt Control Instructions.coieuinn.. 84
2-2-19 High-speed Counter and Pulse Output I nstructions
(CIAM-CPU2L/22/23 0N1Y) . oo ov e 86
2-2-20 StepINStructions.o 88
2-2-21 Basicl/OUnitInstructions.cooiiiiiiin.. 88
2-2-22 Serial Communications Instructions. 92
2-2-23 Network Instructions 93
2-2-24 FileMemory InStructions.ciiii i 96
2-2-25 Display INStructions 98
2-2-26 Clock INSLIUCHIONS. . . . oo 98
2-2-27 Debugging INstructions.t 99
2-2-28 FailureDiagnosisinstructions oo, 100
2-2-29 Other INStructions.ot e 101
2-2-30 Block Programming Instructions 102
2-2-31 Text String Processing Instructions, 108
2-2-32 Task Control Instructions, 111
2-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or Later Only). 112
2-2-34 Specia Function Block Instructions. 113
2-3 Alphabetical List of Instructionsby Mnemonic....................... 114
2-4 Listof Instructionsby FunctionCode. 131

15

Instruction Classifications by Function

Section 2-1

2-1

Instruction Classifications by Function

The following table lists the CS/CJ-series instructions by function. (The
instructions appear by order of their function in Section 3 Instructions.)

*Instructions or instruction groups marked with a single asterisk are supported
by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only.

**|nstructions or instruction groups marked with two asterisks are supported
by CJ1M CPU Units only.

***|nstructions or instruction groups marked with three asterisks are not sup-

ported by CS1D CPU Units for Duplex-CPU Systems.

Note 1. CS/CJ-series CPU Unit Ver. 2.0 or later only
2. CJ1-H-R CPU Units only.
3. CJ1IM-CPU21/22/23 CPU Unit Ver. 2.0 or later only
4. CS/CJ-series CPU Unit Ver. 2.0 or later only
CJ1M CPU Unit (Pre-Ver. 2.0 or Unit Ver. 2.0 or later)
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Basic Input LD LOAD LD NOT LOAD NOT AND AND
instructions
AND NOT AND NOT OR OR OR NOT OR NOT
AND LD AND LOAD OR LD OR LOAD
Output ouT OUTPUT OUT NOT OUTPUT NOT | ---
Sequence NOT NOT uP CONDITION | DOWN CONDITION
input ON OFF
Instructions Igitest LD TST LD BIT TEST [LDTSTN LD BIT TEST |AND TST AND BIT
NOT TEST NOT
AND TSTN AND BIT ORTST OR BIT TEST |OR TSTN OR BIT TEST
TEST NOT NOT
Sequence KEEP KEEP DIFU DIFFERENTI- |DIFD DIFFERENTI-
output ATE UP ATE DOWN
instructions OUTB* S|NG|_E B|T —_— — —_— —_—
OUTPUT
Set/Reset SET SET RSET RESET SETA MULTIPLE
BIT SET
RSTA MULTIPLE SETB* SINGLE BIT |[RSTB* SINGLE BIT
BIT RESET SET RESET
Sequence END END NOP NO OPERA- |---
pontrol) TION
Instructions I eriock IL INTERLOCK |ILC INTERLOCK | MILH MULTI-INTER-
CLEAR LOCK DIF-
FERENTIATIO
N HOLD
MILR MULTI-INTER- | MILC MULTI-INTER- | ---
(See note 1.) | LOCK DIF- (See note 1.) |LOCK CLEAR
FERENTIATIO
N RELEASE
Jump IMP JUMP JME JUMP END CJP CONDI-
TIONAL
JUMP
CJPN CONDI- JMPO MULTIPLE JIMEOQ MULTIPLE
TIONAL JUMP JUMP END
JUMP
Repeat FOR FOR-NEXT BREAK BREAK LOOP | NEXT FOR-NEXT
LOOPS LOOPS

16

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Timer and BCD Timer TIM HUNDRED- TIMH TEN-MS TMHH ONE-MS
counter (with MS TIMER TIMER TIMER
Instructions ElTn‘i[Jers) TIMU TENTH-MS | TMUH HUN- TTIM ACCUMULA-
(See note 2.) | TIMER (See note 2.) DREDTH-MS TIVE TIMER
TIMER
Timer TIML LONG TIMER | MTIM MULTI-OUT- | ---
(without PUT TIMER
timer
numbers)
Counter |[CNT COUNTER CNTR REVERSIBLE |CNR RESET
(with TIMER TIMER/
counter COUNTER
numbers)
Binary* | Timer TIMX HUNDRED- TIMHX TEN-MS TMHHX ONE-MS
(with MS TIMER TIMER TIMER
tn'ﬂ‘rﬁ[)ers) TIMUX TENTH-MS [TMUHX HUN- TTIMX ACCUMULA-
(See note 2.) | TIMER (See note 2.) | DREDTH-MS TIVE TIMER
TIMER
Timer TIMLX LONG TIMER | MTIMX MULTI-OUT- | ---
(without PUT TIMER
timer
numbers)
Counter |CNTX COUNTER CNTRX REVERSIBLE [CNRX RESET
(with TIMER TIMER/
counter COUNTER
numbers)
Comparison | Symbol LD, AND, OR | Symbol com- |LD, AND, OR |Symbol com- |LD, AND, OR |Symbol
instructions |comparison + parison + parison (dou- |+ comparison
=, <>, <, <=, >, | (unsigned) =,<>, <, <=, >, | ble-word, =,<>, <, <=, >, | (signed)
>= >=+L unsigned) >=+S
LD, AND, OR | Symbol com- |LD, AND, OR |Time compari- |---
+ parison (dou- |+ son
=, <>, <, <=, >, | ble-word, =DT, <> DT, <
>=+ SL signed) DT, <= DT, >
DT, >= DT
(See note 1.)
Data CMP UNSIGNED CMPL DOUBLE CPS SIGNED
comparison COMPARE UNSIGNED BINARY
(Condition Flags) COMPARE COMPARE
CPSL DOUBLE ZCP* AREARANGE | ZCPL* DOUBLE
SIGNED COMPARE AREARANGE
BINARY COMPARE
COMPARE
Table MCMP MULTIPLE TCMP TABLE COM- |BCMP UNSIGNED
compare COMPARE PARE BLOCK COM-
PARE
BCMP2 EXPANDED - --- -
(See note 3.) | BLOCK COM-
PARE
Data Single/ MOV MOVE MOVL DOUBLE MVN MOVE NOT
movement double-word MOVE
instructions MVNL DOUBLE
MOVE NOT
Bit/digit MOVB MOVE BIT MOVD MOVE DIGIT [---
Exchange XCHG DATA XCGL DOUBLE
EXCHANGE DATA
EXCHANGE
Block/bit transfer XFRB MULTIPLE XFER BLOCK BSET BLOCK SET
BIT TRANS- TRANSFER
FER
Distribute/ collect |DIST SINGLE COLL DATA COL-
WORD DIS- LECT
TRIBUTE
Index register MOVR MOVE TO MOVRW MOVE TIMER/ | ---
REGISTER COUNTERPV
TO REGIS-
TER

17

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Data shift 1-bit shift SFT SHIFT REG- SFTR REVERSIBLE |ASLL DOUBLE
instructions ISTER SHIFT REG- SHIFT LEFT
ISTER
ASL ARITHMETIC |ASR ARITHMETIC |ASRL DOUBLE
SHIFT LEFT SHIFT RIGHT SHIFT RIGHT
0000 hex asynchro- | ASFT ASYNCHRO- |---
nous NOUS SHIFT
REGISTER
Word shift WSFT WORD SHIFT [---
1-bit rotate ROL ROTATE LEFT | ROLL DOUBLE RLNC ROTATE LEFT
ROTATE LEFT WITHOUT
CARRY
RLNL DOUBLE ROR ROTATE RORL DOUBLE
ROTATE LEFT RIGHT ROTATE
WITHOUT RIGHT
CARRY
RRNC ROTATE RRNL DOUBLE
RIGHT WITH- ROTATE
OUT CARRY RIGHT WITH-
OUT CARRY
1 digit shift SLD ONEDIGIT |SRD ONEDIGIT |-
SHIFT LEFT SHIFT RIGHT
Shift n-bit data NSFL SHIFT N-BIT | NSFR SHIFT N-BIT | ---
DATA LEFT DATA RIGHT
Shift n-bit NASL SHIFT N-BITS | NSLL DOUBLE NASR SHIFT N-BITS
LEFT SHIFT N-BITS RIGHT
LEFT
NSRL DOUBLE --- --- ---
SHIFT N-BITS
RIGHT
Increment/ BCD ++B INCREMENT | ++BL DOUBLE --B DECRE-
decrement BCD INCREMENT MENT BCD
instructions BCD
- -BL DOUBLE
DECRE-
MENT BCD
Binary ++ INCREMENT | ++L DOUBLE -— DECRE-
BINARY INCREMENT MENT
BINARY BINARY
——L DOUBLE
DECRE-
MENT
BINARY

18

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Symbol Binary add + SIGNED +L DOUBLE +C SIGNED
math BINARY ADD SIGNED BINARY ADD
instructions WITHOUT BINARY ADD WITH CARRY
CARRY WITHOUT
CARRY
+CL DOUBLE
SIGNED
BINARY ADD
WITH CARRY
BCD add +B BCD ADD +BL DOUBLEBCD |+BC BCD ADD
WITHOUT ADD WITH CARRY
CARRY WITHOUT
CARRY
+BCL DOUBLEBCD | ---
ADD WITH
CARRY
Binary subtract - SIGNED -L DOUBLE -C SIGNED
BINARY SUB- SIGNED BINARY
TRACT BINARY SUBTRACT
WITHOUT SUBTRACT WITH CARRY
CARRY WITHOUT
CARRY
-CL DOUBLE
SIGNED
BINARY WITH
CARRY
BCD subtract -B BCD -BL DOUBLEBCD |-BC BCD
SUBTRACT SUBTRACT SUBTRACT
WITHOUT WITHOUT WITH CARRY
CARRY CARRY
—-BCL DOUBLEBCD | ---
SUBTRACT
WITH CARRY
Binary multiply X SIGNED XL DOUBLE xU UNSIGNED
BINARY SIGNED BINARY
MULTIPLY BINARY MULTIPLY
MULTIPLY
*xUL DOUBLE
UNSIGNED
BINARY
MULTIPLY
BCD multiply xB BCD *XBL DOUBLEBCD | ---
MULTIPLY MULTIPLY
Binary divide / SIGNED L DOUBLE /U UNSIGNED
BINARY SIGNED BINARY
DIVIDE BINARY DIVIDE
DIVIDE
/UL DOUBLE
UNSIGNED
BINARY
DIVIDE
BCD divide B BCD DIVIDE |/BL DOUBLEBCD | ---
DIVIDE

19

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Conversion |BCD-binary con- BIN BCD TO BINL DOUBLEBCD |BCD BINARY TO
instructions |versions BINARY TO DOUBLE BCD
BINARY
BCDL DOUBLE NEG 2'S COMPLE- | NEGL DOUBLE 2'S
BINARY TO MENT COMPLE-
DOUBLE BCD MENT
SIGN 16-BIT TO
32-BIT
SIGNED
BINARY
Decoder/ encoder |MLPX DATA DMPX DATA
DECODER ENCODER
ASCIll-hexadecimal | ASC ASCIl CON- HEX ASCII TO HEX | ---
conversions VERT
Line-column con- LINE COLUMN TO |COLM LINE TO
versions LINE COLUMN
Signed binary-BCD | BINS SIGNED BCD |BISL DOUBLE BCDS SIGNED
conversions TO BINARY SIGNED BCD BINARY TO
TO BINARY BCD
BDSL DOUBLE GRY GRAY CODE | ---
SIGNED (See note 1.) | CONVER-
BINARY TO SION
BCD
Number-ASCIl con- | STR4 FOUR-DIGIT |STR8 EIGHT-DIGIT |STR16 SIXTEEN-
versions NUMBER TO NUMBER TO DIGIT NUM-
ASCII ASCII BER TO ASCII
NUM4 ASCII TO NUMS8 ASCII TO NUM16 ASCII TO SIX-
FOUR-DIGIT EIGHT-DIGIT TEEN-DIGIT
NUMBER NUMBER NUMBER
Logic Logical AND/OR ANDW LOGICAL ANDL DOUBLE ORW LOGICAL OR
instructions AND LOGICAL
AND
ORWL DOUBLE XORW EXCLUSIVE XORL DOUBLE
LOGICAL OR OR EXCLUSIVE
OR
XNRW EXCLUSIVE XNRL DOUBLE --- -
NOR EXCLUSIVE
NOR
Complement COM COMPLE- COML DOUBLE
MENT COMPLE-
MENT
Special ROTB BINARY ROOT BCD SQUARE | APR ARITHMETIC
math ROOT ROOT PROCESS
nstructions FDIV FLOATING |BCNT BIT
POINT COUNTER
DIVIDE

20

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Floating- Floating point/ FIX FLOATING TO | FIXL FLOATING TO | FLT 16-BIT TO
point math binary convert 16-BIT 32-BIT FLOATING
instructions FLTL 32-BIT TO
FLOATING
Floating- point +F FLOATING- -F FLOATING- IF FLOATING-
basic math POINT ADD POINT POINT
SUBTRACT DIVIDE
XF FLOATING-
POINT
MULTIPLY
High-speed trigo- [SINQ HIGH-SPEED [CONQ HIGH-SPEED | TANQ HIGH-SPEED
nometric functions SINE COSINE TANGENT
(See note 2.)
Floating- point RAD DEGREESTO | DEG RADIANS TO |[SIN SINE
trigonometric func- RADIANS DEGREES
tions cos COSINE TAN TANGENT ASIN ARC SINE
ACOS ARC COSINE | ATAN ARC TAN-
GENT
Floating- point SQRT SQUARE EXP EXPONENT |LOG LOGARITHM
math ROOT
PWR EXPONEN-
TIAL POWER
Symbol compari- LD, AND, OR | Symbol com- |FSTR* FLOATING- FVAL* ASCII TO
son and conver- + parison (sin- POINT TO FLOATING-
sion* =, <>, <, <=, >, | gle-precision ASCII POINT
>=+F floating point)
Single-precision MOVF MOVE FLOAT- | --- -—- ---
floating point move ING-POINT
(See note 2.) (SINGLE)
Double-pre- |Floating point/ FIXD DOUBLE FIXLD DOUBLE DBL 16-BIT TO
cision float- |binary convert FLOATING TO FLOATING TO DOUBLE
ing- point 16-BIT 32-BIT FLOATING
instruc-
: DBLL 32-BIT TO
tions* DOUBLE
FLOATING
Floating- point +D DOUBLE -D DOUBLE /D DOUBLE
basic math FLOATING- FLOATING- FLOATING-
POINT ADD POINT POINT
SUBTRACT DIVIDE
*D DOUBLE
FLOATING-
POINT
MULTIPLY
Floating- point RADD DOUBLE DEGD DOUBLE SIND DOUBLE
trigonometric func- DEGREESTO RADIANS TO SINE
tions RADIANS DEGREES
COSD DOUBLE TAND DOUBLE ASIND DOUBLE ARC
COSINE TANGENT SINE
ACOSD DOUBLE ARC | ATAND DOUBLEARC | ---
COSINE TANGENT
Floating- point SQRTD DOUBLE EXPD DOUBLE LOGD DOUBLE
math SQUARE EXPONENT LOGARITHM
ROOT
PWRD DOUBLE
EXPONEN-
TIAL POWER
Symbol compari- LD, AND, OR |Symbol com- |--- - -
son + parison (dou-
=, <>, <, <=, >, | ble-precision
>=+D floating point)

21

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Table data Stack SSET SET STACK PUSH PUSH ONTO |LIFO LAST IN
processing |processing STACK FIRST OUT
instructions
FIFO FIRST IN SNUM* STACK SIZE SREAD* STACK DATA
FIRST OUT READ READ
SWRIT* STACK DATA | SINS* STACK DATA | SDEL* STACK DATA
OVERWRITE INSERT DELETE
1-record/ DIM DIMENSION |SETR SETRECORD | GETR GET
multiple-word pro- RECORD LOCATION RECORD
cessing TABLE NUMBER
Record-to- word SRCH DATA MAX FIND MIN FIND
processing SEARCH MAXIMUM MINIMUM
SUM SUM FCS FRAME
CHECKSUM
Byte SWAP SWAP BYTES | ---
processing
Data control |--- PID PID CON- PIDAT* PID CON- LMT LIMIT
instructions TROL TROL WITH CONTROL
AUTOTUNING
BAND DEAD BAND |ZONE DEAD ZONE |TPO TIME-PRO-
CONTROL CONTROL (See note 1.) | PORTIONAL
OUTPUT
SCL SCALING SCL2 SCALING 2 SCL3 SCALING 3
AVG AVERAGE
Subroutines | --- SBS SUBROU- MCRO MACRO SBN SUBROU-
instructions TINE CALL TINE ENTRY
RET SUBROU- GSBS* GLOBAL GSBN* GLOBAL
TINE SUBROU- SUBROU-
RETURN TINE CALL TINE ENTRY
GRET* GLOBAL
SUBROU-
TINE
RETURN
Interrupt MSKS*** SET MSKR*** READ INTER- | CLI*** CLEAR
control INTERRUPT RUPT MASK INTERRUPT
instructions MASK
DI DISABLE El ENABLE
INTERRUPTS INTERRUPTS
High-speed |--- INI MODE CON- | PRV HIGH-SPEED | PRV2 COUNTER
counter/ TROL COUNTERPV [(See note 2.) | FREQUENCY
pulse out- READ CONVERT
put instruc- CTBL COMPARI- SPED SPEED OUT- |PULS SET PULSES
tions** SON TABLE PUT
LOAD
PLS2 PULSE OUT- |ACC ACCELERA- |ORG ORIGIN
PUT TION Control SEARCH
Step PWM PULSE WITH |STEP STEP DEFINE | SNXT STEP START
instructions VARIABLE
DUTY FAC-
TOR
Basic 1/0 IORF /0 REFRESH | FIORF SPECIAL I/O | DLNK* CPU BUS
Unit instruc- (See note 2.) | UNIT I/O UNIT I/O
tions REFRESH REFRESH
SDEC 7-SEGMENT |DSW DIGITAL TKY TEN KEY
DECODER (See note 1.) | SWITCH (See note 1.) |INPUT
INPUT
HKY HEXADECI- MTR MATRIX 7SEG 7-SEGMENT
(See note 1.) | MAL KEY (See note 1.) | INPUT (See note 1.) | DISPLAY
INPUT OUTPUT
IORD INTELLI- IOWR INTELLI- DLNK* CPU BUS
GENT I/O GENT I/O UNIT I/O
READ WRITE REFRESH

22

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Serial com- | --- PMCR PROTOCOL TXD TRANSMIT RXD RECEIVE
munica- MACRO
tions
; ; STUP CHANGE
instructions SERIAL PORT
SETUP
Network --- SEND NETWORK RECV NETWORK CMND DELIVER
instructions SEND RECEIVE COMMAND
EXPLT SEND GEN- EGATR EXPLICIT ESATR EXPLICIT
(Seenote 1.) | ERAL (See note 1.) | GET (See note 1.) | SET
EXPICIT ATTRIBUTE ATTRIBUTE
ECHRD EXPLICIT ECHWR EXPLICIT
(Seenote 1.) |WORD READ |[(See note1.) |WORD
WRITE
Display MSG DISPLAY
instructions MESSAGE
File mem- FREAD READ DATA FWRIT WRITE DATA | TWRIT WRITE TEXT
ory instruc- FILE FILE FILE
tions
Clock CADD CALENDAR CSuUB CALENDAR SEC HOURS TO
instructions ADD SUBTRACT SECONDS
HMS SECONDSTO | DATE CLOCK
HOURS ADJUST-
MENT
Debugging |- TRSM TRACE
instructions MEMORY
SAMPLING
Failure FAL FAILURE FALS SEVERE FPD FAILURE
diagnosis ALARM FAILURE POINT
instructions ALARM DETECTION
Other STC SET CARRY CLC CLEAR EMBC SELECT EM
instructions CARRY BANK
WDT EXTEND CCs* SAVE CONDI- | CCL* LOAD CONDI-
MAXIMUM TION FLAGS TION FLAGS
CYCLE TIME
FRMCV* CONVERT TOCV* CONVERT IOSP*** DISABLE
ADDRESS ADDRESS TO PERIPH-
FROM CV Ccv ERAL SER-
VICING
IORS*** ENABLE
PERIPH-
ERAL SER-
VICING

23

I nstruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Block Define block pro- BPRG BLOCK PRO- | BEND BLOCK PRO- |---
program- gram area GRAM BEGIN GRAM END
ming
instructions Block BPPS BLOCK BPRS BLOCK
program start/stop PROGRAM PROGRAM
PAUSE RESTART
EXIT EXIT Conditional EXIT NOT Conditional input_condition | Conditional
bit_address END bit_address END NOT EXIT END
IF branch IF CONDI- IF NOT CONDI- ELSE CONDI-
processing bit_address TIONAL bit_address TIONAL TIONAL
BLOCK BLOCK BLOCK
BRANCHING BRANCHING BRANCHING
(NQT) (ELSE)
IEND CONDI-
TIONAL
BLOCK
BRANCHING
END
WAIT WAIT ONE CYCLE [|WAIT NOT ONE CYCLE |input_conditon | ONE CYCLE
bit_address AND WAIT bit_address AND WAIT WAIT AND WAIT
NOT
Timer/ |BCD TIMW HUNDRED- CNTW COUNTER TMHW TEN-MS
counter MS TIMER WAIT TIMER WAIT
WAIT
Binary* TIMWX HUNDRED- CNTWX COUNTER TMHWX TEN-MS
MS TIMER WAIT TIMER WAIT
WAIT
Repeat LOOP LOOP BLOCK [LEND LOOP BLOCK |LEND NOT LOOP BLOCK
bit_address END bit_address END NOT
input_ LOOP BLOCK [---
condition END
LEND
Text string MOV$ MOV STRING | +$ CONCATE- LEFT$ GET STRING
processing NATE LEFT
instructions STRING
RIGHTS$ GET STRING | MID$ GET STRING | FIND$ FIND IN
RIGHT MIDDLE STRING
LENS$ STRING RPLC$ REPLACE IN |DEL$ DELETE
LENGTH STRING STRING
XCHG$ EXCHANGE CLR$ CLEAR INS$ INSERT INTO
STRING STRING STRING
LD, AND, OR |STRING
+ COMPARI-
=$,<>$,<$, |[SON
<=$, >$, >=$
Task control |--- TKON TASK ON TKOF TASK OFF

instructions

24

I nstruction Functions

Section 2-2

2-2

Instruction Functions

2-2-1 Sequence Input Instructions
"1 Not supported by CS1D CPU Units for Duplex-CPU Systems.
*2: Supported by CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only.
3. Supported by CS1-H, CJ1-H, and CJ1M CPU Units only.
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
LOAD Bus bar Indicates a logical start and creates an ON/OFF execution condition Start of logic | 161
LD based on the ON/OFF status of the specified operand bit. Not required
@LD
%LD I—
LD
!@LD:l Starting
1%LD* point of
Iblock
LOAD NOT Bus bar Indicates a logical start and creates an ON/OFF execution condition Start of logic | 163
LD NOT based on the reverse of the ON/OFF status of the specified operand Not required
@LD NOT2 bit.
%LD NOT"?
ILD NOT™?
!@LD NOT "™ Starting
1%LD NOT"3 point of
block
AND Takes a logical AND of the status of the specified operand bit and the | Continues on | 165
AND —I I— current execution condition. rung
@AND Required
%AND
IAND™?
I@AND™?
1%AND "
AND NOT Reverses the status of the specified operand bit and takes a logical Continues on | 167
AND NOT *F AND with the current execution condition. rung
@AND NOT 2 Required
%AND NOT 2
IAND NOT'?
I@AND NOT"®
1%AND NOT™3
OR Bus bar Takes a logical OR of the ON/OFF status of the specified operand bit | Continues on | 169
OR and the current execution condition. rung
@OR Required
%0R
IOR™
I@OR™ _I I_'
1%O0OR"L
OR NOT Bus bar Reverses the status of the specified bit and takes a logical OR with the | Continues on |171
OR NOT current execution condition rung
@OR NOT 2 Required
%OR NOT"2
IOR NOT'?
I@OR NOT™® I ,F I
1%0R NOT"®

25

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
AND LOAD Logic block-Logic block | Takes a logical AND between logic blocks. Continues on | 172
AND LD rung
LD Required
Logic block A
to
LD
Logic block B
to
AND LD - Serial connection between logic block A and
logic block B.
OR LOAD : ! } Continues on | 174
OR LD Logic block Takes a logical OR between logic blocks. rung
. LD Required
Logic block Logic block A
to
LD)
Logic block B
to
ORLD - Parallel connection between logic block A
and logic block B.
NOT Reverses the execution condition. Continues on | 180
NOT rung
520 Required
CONDITION ON UP(521) turns ON the execution condition for one cycle when the exe- | Continues on |181
UpP UP(521) cution condition goes from OFF to ON. rung
521 Required
CONDITION OFF DOWN(522) turns ON the execution condition for one cycle when the | Continues on |181
DOWN execution condition goes from ON to OFF, rung
522 Required
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the pro- | Continues on |182
LD TST|] TST(350) [| gram like LD, AND, and OR; the execution condition is ON when the | rung
350 S specified bit in the specified word is ON and OFF when the bit is OFF. | Not required
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the | Continues on |182
LD TSTN || TSTN(351) [| program like LD NOT, AND NOT, and OR NOT; the execution condition | rung
351 S {ié)bFitFi\;v%anFthe specified bit in the specified word is ON and ON when | Not required
N
S: Source word
N: Bit number
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the pro- | Continues on |182
AND TST |~ | ANDTST(50) [| gram like LD, AND, and OR; the execution condition is ON when the rung
350 S specified bit in the specified word is ON and OFF when the bit is OFF. | Required
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the | Continues on |182
AND TSTN |~ | ANDTSTNGSY) [| program like LD NOT, AND NOT, and OR NOT; the execution condition | rung
351 S is OFF when the specified bit in the specified word is ON and ON when | Required
the bit is OFF.
N
S: Source word
N: Bit number

26

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the pro- | Continues on |182
ORTST|™ | TST(350) [|gram like LD, AND, and OR; the execution condition is ON when the rung
350 S specified bit in the specified word is ON and OFF when the bit is OFF. | Required
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the | Continues on |182
OR TSTN |] TSTN(851) [| program like LD NOT, AND NOT, and OR NOT; the execution condition | rung
351 S is OFF when the specified bit in the specified word is ON and ON when | Required
the bit is OFF.
N
S: Source word
N: Bit number
2-2-2 Sequence Output Instructions
"1 Not supported by CS1D CPU Units for Duplex-CPU Systems.
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
OUTPUT Outputs the result (execution condition) of the logical processing to the | Output 185
ouT specified bit. Required
1ouT?
OUTPUT NOT Reverses the result (execution condition) of the logical processing, and | Output 187
OUT NOT outputs it to the specified bit. Required
IOUT NOT™?
KEEP ; Output 188
- Operates as a latching relay.
KEEP | S ©e) T|KEEP©1D p g y Required
IKEEP'L : et I keer —
R (Reset) — A c _ A B c
011 g gt
_| Reset
B C
S execution
condition
R execution
condition
Status of B
DIFFERENTIATE DIFU(013) turns the designated bit ON for one cycle when the Output 193
up DIFU(013) | | execution condition goes from OFF to ON (rising edge). Required
DIF*Li B
IDIFU) -
B: Bit Execution condition
013
Status of B
One cycle

27

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
Bgvﬁ/ENRENTlATE — biFp1a) DIFD(014) turns the designated bit ON for one cycle when the Output 193
DIFD execution condition goes from ON to OFF (falling edge). Required
B
IDIFD™! E oot it
B: Bit xecution condition
014
Status of B
One cycle
SET SET turns the operand bit ON when the execution condition is ON. Output 195
SET SET Required
@SET B Execution condition
%SET of SET
ISET™L | B: Bit
I@SET™!
1%SET*L Status of B
RESET —— RSET RSET turns the operand bit OFF when the execution condition is ON Outpgt 195
RSET Required
@RSET B Execution condition ON
%RSET of RSET OFF
IRSET'1 | B: Bit
I@RSET™ ON
1%RSET"1 Status of B OFF
MULTIPLE BIT PP ; f Output 198
SET — SETA(530) SETA(530) turns ON the specified n‘ﬂn&er of consecutive bits. Required
SETA D
@SETA []
530 N1 B 2 N2 bits are set to 1
D (ON).
N2 D+1
D: Beginning D+2
word
N1: Beginning bit
N2: Number of
bits
MULTIPLE BIT i ; : Output 198
RESET —| RrsTA(B31) RSTA(531) turns OFF the specified nun:\lb1er of consecutive bits. Required
RSTA D e
@RSTA 15 |: 0
531 N1 N2 bits are reset to
N2 0 (OFF).
D: Beginning
word
N1: Beginning bit
N2: Number of
bits
SINGLE BIT SET SETB(532) turns ON the specified bit in the specified word when the exe- | Output 201
(CS1-H, CJ1-H, |~ | SETB(532) | | cution condition is ON. Required
CJ1M, or CS1D D Unlike the SET instruction, SETB(532) can be used to set a bitin a DM or
only) EM word.
SETB N
@SETB
ISETB™L | D: Word address
I@SETB™ | N: Bit number

28

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
SINGLE BIT RSTB(533) turns OFF the specified bit in the specified word when the Output 201
RESET (CS1-H, — | RSTB(533) | | execution condition is ON. Required
CJ1-H, CJ1M, or D Unlike the RSET instruction, RSTB(533) can be used to reset a bit in a
CS1D only) DM or EM word.
RSTB N
@RSTB
*1
!RSTB*l D: Word address
!@RSTB ~ | N: Bit number
SINGLE BIT OUTB(534) outputs the result (execution condition) of the logical pro- Output 204
OUTPUT (CS1-H, |~ | OUTB(534) | | cessing to the specified bit. Required
CJ1-H, CJ1M, or D Unlike the OUT instruction, OUTB(534) can be used to control a bit in a
CS1D only) DM or EM word.
OUTB N
@OuUTB
IOUTB™ | b: Word address
N: Bit number

29

Instruction Functions Section 2-2
2-2-3 Sequence Control Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
END : Output 206
- END(001) Indicates the end of a program. Not required

001

END(001) completes the execution of a program for that cycle. No
instructions written after END(001) will be executed. Execution
proceeds to the program with the next task number. When the

program being executed has the highest task number in the program,

END(001) marks the end of the overall main program.

-

Task 1 Program A

END

L ———To the next task number

Task2 Program B)
END

.1

| —— To the next task number

Taskn Program Z

——O

END

End of the main program

1/0 refreshing

NO OPERATION This instruction has no function. (No processing is performed for Output 207
NOP NOP(000).) Not required
000
INTERLOCK Interlocks all outputs between IL(002) and ILC(003) when the Output 210
IL 1L(002) execution condition for IL(002) is OFF. IL(002) and ILC(003) are Required
002 normally used in pairs.

] Execution Execution
Execution condition ON condition OFF
condition l
A e

Normal Outputs

Interlocked section L
execution interlocked.

of the program

o

30

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
INTERLOCK All outputs between IL(002) and ILC(003) are interlocked when the Output 210
CLEAR ILC(003) | | execution condition for IL(002) is OFF. IL(002) and ILC(003) are nor- | Not required
ILC mally used in pairs.
003
MULTI-INTER- When the execution condition for MILH(517) is OFF, the outputs for all | Output 214
LOCK DIFFER- | —[MILH (517)| |instructions between that MILH(517) instruction and the next Required
ENTIATION MILC(519) instruction are interlocked. MILH(517) and MILC(519) are
HOLD N used as a pair.
MILH D MILH(517)/MILC(519) interlocks can be nested (e.g., MILH(517)—
517 MILH(517)—MILC(519)—MILC(519)).
CS/CJ-series cpu | N: Interlock number | |f there is a differentiated instruction (DIFU, DIFD, or instruction with a
Unit Ver. 2.0 or later | Dt Interlock Status Bit | @ or% prefix) between MILH(517) and the corresponding MILC(519),
only that instruction will be executed after the interlock is cleared if the dif-
ferentiation condition of the instruction was established while it was
interlocked.
MULTI-INTER- When the execution condition for MILR(518) is OFF, the outputs for all | Output 214
LOCK DIFFER- | — |MILR (518)| |instructions between that MILR(518) instruction and the next Required
ENTIATION MILC(519) instruction are interlocked.MILR(518) and MILC(519) are
RELEASE N used as a pair.
MILR D MILR(518)/MILC(519) interlocks can be nested (e.g., MILR(518)—
518 MILR(518)—MILC(519)—MILC(519)).
CS/CJ-series cpu | N:Interlock number | If there is a differentiated instruction (DIFU, DIFD, or instruction with a
Unit Ver. 2.0 or later | D: Interlock Status Bit| @ or % prefix) between MILR(518) and the corresponding MILC(519),
only that instruction will not be executed after the interlock is cleared even if
the differentiation condition of the instruction was established.
MULTI-INTER- Clears an interlock started by an MILH(517) or MILR(518) with the Output 214
LOCK CLEAR —|MILC (519)| |same interlock number. Not required
MILC N All outputs between MILH(517)/MILR(518) and the corresponding
519 MILC(519) with the same interlock number are interlocked when the
CS/CJ-series cpu | N: Interlock number execution condition for MILH(517)/MILR(518) is OFF.
Unit Ver. 2.0 or later
only
JUMP When the execution condition for JMP(004) is OFF, program Output 228
JMP JMP(004) execution jumps directly to the first JME(005) in the program with Required
004 N the same jump number. JMP(004) and JME(005) are used in pairs.
N: Jump number Execution condition
ON OFF Instructions
—| I— JMP S et Ll jumped
N \ Instructions in this section
| are not executed and out-
i > put status is maintained.
Instructions i The instruction execution
executed ' time for these instructions
,,‘ is eliminated.
JME [=-------- s = <
N l
CONDITIONAL The operation of CJP(510) is the basically the opposite of JMP(004). | Output 232
JUMP CJP(510)| | When the execution condition for CJP(510) is ON, program execution | Required
CcJp N jumps directly to the first JME(005) in the program with the same jump
510 number. CJP(510) and JME(005) are used in pairs.
N: Jump number
Execution Execution
condition OFF condition ON
—| I— (o |- e [i 3 _ Instructions
" \‘ / jumped
i >Instructions in this section
- 1 are not executed and out-
Lnxsetgiﬁggns 1 put status is maintained.
i The instruction execution
! time for these instructions
! is eliminated.
JME [=-------- ---- e
N |

31

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
JUMP END Indicates the end of a jump initiated by JMP(004) or CJP(510). Output 228
JME JME(005) Not required
005 N
N: Jump number
CONDITIONAL The operation of CJPN(511) is almost identical to JMP(004). Output 232
JUMP CJPN(511) [|wWhen the execution condition for CJP(004) is OFF, program execution | Not required
CJPN N jumps directly to the first JME(0O5) in the program with the same jump
511 number. CJPN(511) and JME(005) are used in pairs.
N: Jump number Execution Execution
condition ON condition OFF
—— cupN |----5----- g----- N Instructions
N \“ / jumped
‘.‘ Instructions in this section
' are not executed and out-
Instructions] put status is maintained.
executed ! The instruction execution
! time for these instructions
/ is eliminated.
JME [=-------- ---- e
y |
MULTIPLE JUMP When the execution condition for JMPO(515) is OFF, all instructions Output 236
IMPO JMPO(515) | | from JMPO(515) to the next JMEO(516) in the program are processed Required
515 as NOP(000). Use JMP0O(515) and JMEOQ(516) in pairs. There is no
limit on the number of pairs that can be used in the program.
Execution Execution
condition a ON condition a OFF
| __ -- Instructions
i jumped
Instructions
executed
"" Jumped instructions
are processed as
Execution Execution NOP(000). Instruction
condition b ON condition b OFF execution times are
the same as
I v PO NOP(000)
b Y\
Instructions ‘:
executed }
e o
Instructions
jumped
MULTIPLE JUMP When the execution condition for IMP0O(515) is OFF, all instructions Output 236
END JMEO(516)| |from JMPO(515) to the next JMEO(516) in the program are processed | Not required
JIMEO as NOP(000). Use JMP0(515) and JMEO(516) in pairs. There is no
516 limit on the number of pairs that can be used in the program.

32

Section 2-2

|

I nstruction Functions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FOR-NEXT The instructions between FOR(512) and NEXT(513) are repeated a Output 238
LOOPS FOR(512) specified number of times. FOR(512) and NEXT(513) are used in Not required
FOR pairs.
N
512
N: Number of FOR Repeated N times
loops
N P
Repeated program section Ay
NEXT)
BREAK LOOP Programmed in a FOR-NEXT loop to cancel the execution of the loop | Output 241
BREAK for a given execution condition. The remaining instructions in the loop | Required
514 are processed as NOP(000) instructions.
Condition a ON
N repetltlons
FOR
N 1
," Repetitions
Y forced to end.
- e
a t‘ /’l ‘n
P ! Processed as
Y ' NOP(000).
FOR-NEXT The instructions between FOR(512) and NEXT(513) are repeated a Output 238
LOOPS NEXT(513)| | specified number of imes. FOR(512) and NEXT(513) are used in Not required
NEXT pairs.
513

33

I nstruction Functions Section 2-2

2-2-4 Timer and Counter Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
_';'IlR’A'\I'E%RED'MS — T TIM/TIMX(550) operates a decrementing timer with units of 0.1-s. Output 245
TIM The setting range for the set value (SV) is 0 to 999.9 s for BCD Required
(BCD) N and 0 to 6,553.5 s for binary (decimal or hexadecimal).
TIMX S Timer input SEF
(Binary) | N: Timer number
(CS1-H, CJ1-H, | S: Set value)
CJ1M, or CS1D Timer PV
only)
TIMX(550) Completion ©ON
N F|ag OFF
S
: : ON
N: Timer number Timerinpu OFF—‘ :
S: Set value sv " o . -
Timer PV o J\'I T~
Completion ©N
Flag OFF
TEN-MS TIMER TIMH(015)/TIMHX(551) operates a decrementing timer with units of Output 249
TIMH TIMH(O15)| | 10-ms. The setting range for the set value (SV) is 0 to 99.99 s for BCD | Required
015 N and 0 to 655.35 s for binary (decimal or hexadecimal).
(BCD) S
Timer input
TIMHX
551 N: Timer number
(Binary) S: Set value Timer PV
(CS1-H, CJ1-H,
CJIIM, or COSHIID —— TIMHX(551)
y) . ON
N Completion gpp
Flag
S
N: Timer number Timer input
S: Set value
Timer PV
Completion
Flag
ONE-MS TIMER TMHH(540)/TMHHX(552) operates a decrementing timer with units of | Output 253
TMHH TMHH(540)| | 1-ms. The setting range for the set value (SV) is 0 t0 9.999 s for BCD | Required
540 N and 0 to 65.535 s for binary (decimal or hexadecimal).
(BCD)
S Timer input
TMHHX N: Timer number
(ngz) S: Set value Timer PV
(CS1-H, CJ1-H,
CJIM, orCS1D | _| TMHHX(552
only) (552) Completion
N Flag
S
Timer input
N: Timer number
S: Set value)
Timer PV
Completion
Flag

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TENTH-MS TIMU(541)/TIMUX(556) operates an decrementing timer with units of | Output 256
TIMER (CJ1-H-R TIMUEEAD) | 10.1-s. The setting range for the set value (SV) is 00 0.999 s for BCD | Required
only) N and 0 to 6,553.5 s for binary (decimal or hexadecimal).
TIMU S . . ON
541 Timer input OFEF
(BCD) | N: Timer number ! ! !
S: Set value SV, ! !
Timer PV 0 M
TIMUX | I l
556 ———TIMUX(556) | j j
(BCD) N Completion ON '
s Flag OFF ____ . | L
N: Timer number
S: Set value
Timer Input Turns OFF before Completion Flag Turns ON
Timer input 8EF | | |
SV, : E :
Timer PV 0 _>l\l I
Completion ON
Flag OFF
Note: The timer’s present value cannot be accessed for a TENTH-MS
TIMER instruction.
HUNDREDTH-MS TMUH(554)/TMUHX(557) operates an decrementing timer with units of | Output 259
TIMER (CJ1-H-R TMUHBSY| | 0.01-s. The setting range for the set value (SV) is 0t0 0.0999 s for BCD | Required
only) N and 0 to 0.65535 s for binary (decimal or hexadecimal).
TMUH S ON
554 Timer input
BCD N: Timer number P OFF .
()| s: Set value SV, ; :
Timer PV 0 M
TMUHX —————TMUHX(557 1 1 1
557 N Completion ON : I I
(BCD) s Flag OFF E
N: Timer number
S: Set value

Timer Input Turns OFF before Completion Flag Turns ON

Timer input 8:2 | | |

VN
Timer PV 0 _T\f T~
Completion ON
Flag OFF

Note: The timer’s present value cannot be accessed for a HUN-
DREDTH-MS TIMER instruction.

35

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
?ﬁﬂCEURMULATNE -Tim?r—TTIM(087) TTIM(087)/TTIMX(555) operates an incrementing timer with units of | Output 262
npu N 0.1-s. The setting range for the set value (SV) is 0 to 999.9 s for Required
TTIM BCD and 0 to 6,553.5 s for binary (decimal or hexadecimal).
087 — s
(BCD) Reset Timer input
input
TTIMX _
 555|N: Timer number Timer PV ,
(Binary) | S: Set value !
(CS1-H, CJ1-H, I r—Timing resumes.
CJ1M, or CS1D | _. i
only) | Timer —4TTIMx(555) i —PV maintained.
Yy input ; —
N :
[S Completion SEF E
Reset Flag y
input i
ON i
Reset i t I
N: Timer number esetinput - orF !
S: Set value
LONG TIMER — TmLsa2) TIML(542)/TIMLX(553) operates a decrementing timer with units of Output 266
TIML 0.1-s that can time up to approx. 115 days for BCD and 49,710 days | Required
542 D1 for binary (decimal or hexadecimal).
(BCD) Timer Inout ON
D2 imer inpu OFF
TIMLX s
(® 553) Timer PV
nary) | D1: Completion
(CS1-H, CIL-H, | Flag
CJ1M, or CS1D | p2: PV word 0 . . .
only) | s: SV word . !
Completion Flag onN !
(Bit 00 of D1) OFF !
—] TIMLX(553)
D1
D2
S
D1: Completion
Flag
D2: PV word
S: SV word

36

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
_II_IIILI\J/ILE'I;—OUTPUT — urmea3) MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with 8 Output 269
independent SVs and Completion Flags. The setting range for the Required
M;L'\g D1 set value (SV) is 0 t0 999.9 s for BCD and 0 to 6,553.5 s for binary
decimal or hexadecimal).
(BCD) D2 () Timer PV
D2
MTIMX S | |
(BingrSy‘; D1: Completion Timer SVs 0
(CS1-H, CJ1-H, | Flags s S
CJ1M, or CS1D |D2: PV word o1 .
only) | S: 1st SV word -
S+2 to 2
— MTIMX(554) to —
S+7 7
D1
D2 Timer input ON
OFF
S :
D1: Completion tSoV ! e
Flags SV 2 el
D2: PV word) '
S st SV word Timer PV (D2) SV 1 --o----mn-=
SVO --1--—
Completion
Flags (D1)
COUNTER Count_f—~ CNT/CNTX(546) operates a decrementing counter. The setting range | Qutput 275
CNT |input for the set value (SV) is 0 to 9,999 for BCD and 0 to 65,535 for binary | Required
(BCD) N (decimal or hexadecimal). 5y
S .
Count input
CNTX| geset —J p OFF
546 |input ON
(Binary) | - Reset input
(CS1-H, CJ1-H, | N: Counter
CJ1M, or CS1D | humber
0n|y) S: Set value Counter PV
Count
input ICNTX(546)
N
3 Completion
Flag
Reset —
input
N: Counter
number
S: Set value

37

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
REVERSIBLE Incre- __| : Output 278
COUNTER ment —JCNTR(012) CNTR(012)/CNTRX(548) (I)peratesareversmle counter. Required
CNTR | input J- N i
012 | Decre- . i
(BCD) _mentJ' S Increment input -
input oo
Reset .
CNTRX |! . O
54g | inPut Decrement input i — i L
(Binary) | .. CoL Lol
(CS1-H, CJ1-H, | N: Counter P Fo
CJ1M, or CS1D g‘ﬂ’gef\'/alue P :
only) | > Counter PV -
0—
Incre-
ment —| CNTRX(548)
input
N Counter PV
Decre- S
ment
input J-
Reset
input)
Completion Flag
N: Counter
number
S: Set value
Counter PV
Completion Flag OFF
RESET TIMER/ CNR(545)/CNRX(547) resets the timers or counters within the speci- | Output 282
COUNTER CNR(545) | | fied range of timer or counter numbers. Sets the set value (SV) to the Required
CNR N1 maximum of 9999.
@CNR
545 N2
(BCD) -
N1: 1st number in
range
CNRX
@CNRX | N2: Last number
547 | in range
(Binary)
(CS1-H, CJ1-H,
CJIM, or CS1D |~ | CNRX(547)
only) N1
N2
N1: 1st number
in range
No: Last number
in range

38

I nstruction Functions

Section 2-2

2-2-5 Comparison Instructions

"1 Not supported by CS1D CPU Units for Duplex-CPU Systems.

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
Symbol Compari- | _| s 8 oonoms | | Symbol comparison instructions (unsigned) compare two values LD: Not 291
son (Unsigned) ymbol & options I | (sonstants and/or the contents of specified words) in 16-bit binary required
LD, AND, OR + =, S data and create an ON execution condition when the comparison AND, OR:
<> <, <=, > > 1 condition is true. There are three types of symbol comparison Required
300 (5) S, instructions, LD (LOAD), AND, and OR.
<>
393?& (<g S,: Comparison LD ON execution condition when
315 (<=) | data 1 P /— comparison result is true.
320 (>) | s,: Comparison L [< | £ T -
325(>7) | data 2 : !
S1 : i
s2 : |
ON execution condition
AND when comparison result
is true.
o N e I S B
; | s | |
| E 2| | |
OR
T S -
— <
S1 \ . .
ON execution condition when
s2 comparison result is true.
Symbol Compari- | S;: Comparison Symbol comparison instructions (double-word, unsigned) compare two |LD: Not 291
son (Double- data 1 values (constants and/or the contents of specified double-word data) in | required
word, unsigned) S,: Comparison unsigned 32-bit binary data and create an ON execution condition when | AND, OR:
LD, AND, OR + =, dz. 5 the comparison condition is true. There are three types of symbol com- | Required
<> <, <=, > >= 1| 022 parison instructions, LD (LOAD), AND, and OR.
L
301 (=)
306 (<>)
311 (<)
316 (<=)
321 (>)
326 (>=)
Symbol Compari- | S;: Comparison Symbol comparison instructions (signed) compare two values (con- LD: Not 291
son (Signed) data 1 stants and/or the contents of specified words) in signed 16-bit binary (4- | required
LD, AND, OR + =, | s,: Comparison digit hexadecimal) and create an ON execution condition when the com- | AND, OR:
<>, <, <=, >, >= dz- parison condition is true. There are three types of symbol comparison | Required
Lg|data2 instructions, LD (LOAD), AND, and OR.
302 (=)
307 (<>)
312 (<)
317 (<)
322 (>)
327 (>=9)

39

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
Symbol Compari- | S;: Comparison Symbol comparison instructions (double-word, signed) compare two LD: Not 291
son (Double- data 1 values (constants and/or the contents of specified double-word data) in | required
word, signed) S,: Comparison signed 32-bit binary (8-digit hexadecimal) and create an ON execution | AND, OR:
LD, AND, OR + =, d2. 5 condition when the comparison condition is true. There are three types | Required
<> <, <=, >, >= ata of symbol comparison instructions, LD (LOAD), AND, and OR.
+SL
303 (=)
308 (<>)
313 (<)
318 (<=)
323 (>)
328 (>=)
Time Compari- LD (LOADY: Time comparison instructions compare two BCD time values and create | LD: Not 297
son) an ON execution condition when the comparison condition is true. required
LD, AND, OR + = Symbol |— There are three types of time comparison instructions, LD (LOAD), AND, OR:
DT, <> DT, < DT, AND, and OR. Time values (year, month, day, hour, minute, and second) | Required
<= DT, > DT, >= C can be masked/unmasked in the comparison so it is easy to create cal-
DT a1 endar timer functions.
341 (= DT)
342 (<> DT) S2
343 (< DT)
344 (<= DT)
345 (> DT) | AND:
346 (>=DT)
(CSICJ-series —_Symbol |—
CPU Unit Ver. 2.0 c
or later only)
S1
S2
OR:
— Symbol J
C
S1
S2
C: Control word
S1: 1st word of
present time
S2: 1st word of
comparison
time
UNSIGNED COM- CMP(020) | | Compares two unsigned binary values (constants and/or the contents Output 303
PARE of specified words) and outputs the result to the Arithmetic Flags in Required
CMP S, the Auxiliary Area.
*1
ICMP . .
S, Unsigned binary
020 comparison
S1: Comparison
data 1 L
S2: Comparison Arithmetic Flags
data 2 (>, >=, =, <=, <, <>)
DOUBLE ovpLosor] | Gompares two double unsigned binary values (constants and/or the Output 306
UNSIGNED (060) | | contents of specified words) and outputs the result to the Arithmetic Required
COMPARE S Flags in the Auxiliary Area.
1
CMPL . .
060 S Unsigned binary
2 comparison
S1: Comparison St+1 | | 1 | | S2+1 | | S2 |
data 1) L
523 Comparison Arithmetic Flags
ata 2 (>, >=, =, <=, <, <>)

40

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
SIGNED BINARY Compares two signed binary values (constants and/or the contents of | Output 309
COMPARE CPS(114) [| specified words) and outputs the result to the Arithmetic Flags in the Required
CPS Auxiliary Area.
IcPS™ >1
; S Signed binary
114 2 comparison
. S1 S2
S1: Comparison | st | | s |
data 1 L
S2: Comparison Arithmetic Flags
data 2 (>, >=, =, <=, <, <>)
DOUBLE —crsiats Compares two double signed binary values (constants and/or the Output 312
SIGNED BINARY (175 | | contents of specified words) and outputs the result to the Arithmetic | Required
COMPARE S Flags in the Auxiliary Area.
CPSL ! _ _
115 S, Signed binary
_ comparison
S1: Comparison | ste1 | [s se+1 || sz]
data 1
S2: Comparison L
data 2 Arithmetic Flags
(>, >=, = <=, <, <>)
MULTIPLE COM- Compares 16 consecutive words with another 16 consecutive words Output 315
PARE MCMP(019)| | and turns ON the corresponding bit in the result word where the Required
MCMP S contents of the words are not equal.
@mcmpP . Comparison
019 S, P R
R S1 — S2 — 0 0: Words
S1+1 8241 —] ?:r?/veg,‘égl'
S1: 1st word of 1| aren't
set 1 1l equal.
S2: 1st word of : | 5=
set 2 S1+14 $2+14 14
R: Result word —
$1+15 ~——— 82415 — 15
IIQEII_EE COM- — TCMP(085) Compares the source data to the contents of 16 words and turns OUtpl_Jt 317
TCMP ON the corresponding bit in the result word when the contents are Required
@TCMP S equal. :
Comparison R
085 T — . 1:Data are
e o A o P o P
T+1 PR 1 0: Data aren't
S: Source data equal.
T: 1st word of
table |- |
R: Result word T+14 — | |14
T+15 — 15
UNSIGNED BOMP(068 Compares the source data to 16 ranges (defined by 16 lower limits Output 320
BLOCK COM- (068) | | and 16 upper limits) and turns ON the corresponding bit in the result Required
PARE S word when the source data is within the range.
BCMP
@BC(I)\/(;IZ T Ranges 1: In range
R o 0: Not in range
Lower limit Upper limit R
S: Source data - T to T+1 — 0
T: 1st word of [4o . 71
table 1 + ‘ to T+3 ‘ 1
R: Result word Source data ‘ ‘ ‘
.
s |1
X L
1~ T+28 to T+29 — || 14
'+ T430 to T+31 — 15

41

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
EXPANDED Compares the source data to up to 256 ranges (defined by upper and | Output 322
EAL\SI(E:K COM- BCMP2(502) | |ower limits) and turns ON the corresponding bit in the result word when | Required
S the source data is within a range.
BCMP2
@BCMP2 T 1: In range
502 T -N n=255 max. 0: Not in range
(CS1-H, CJ1-H, or R D it
CS1D CPU Unit S: Source data e T+lIRangeOA Range 0B[T+2 0
\o/ﬁlry./)z.o or later -tl)—l:o%:IS(t word of Source datai> T+3[Range 1A|Range 18[T+4 | |1
CJ1M CPU Unit . S :
(Pre-Ver. 2.0 or R: Result word ‘
Unit Ver. 2.0 or i j D+15 max.
later) *» T+2N+1|Range N A|Range N Bf T+2N+2 -
Note: A can be less than
or equal to B or
greater the B.
AREA RANGE Compares the 16-bit unsigned binary value in CD (word contents or Output 326
COMPARE — | ZCP(088) constant) to the range defined by LL and UL and outputs the results to | Required
ZCP cD the Arithmetic Flags in the Auxiliary Area.
@ZCP
088 LL
(CS1-H, CJ1-H, UL
CJ1M, or CS1D
only)
CD: Compare
data (1 word)
LL: Lower limit of
range
UL: Upper limit of
range
DOUBLE AREA Compares the 32-bit unsigned binary value in CD and CD+1 (word con- | Output 329
RANGE COM- — | ZCPL(116) tents or constant) to the range defined by LL and UL and outputs the Required
PARE results to the Arithmetic Flags in the Auxiliary Area.
CD
ZCPL
@ZCPL LL
116 UL
(CS1-H, CJI1-H,
gri]{/')vl’ orCsib CD: Compare
data (2 words)
LL: Lower limit of
range
UL: Upper limit of
range

42

I nstruction Functions Section 2-2
2-2-6 Data Movement Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
MOVE o Output 331
Mov | —1 Mov(o21) Transfers a word of data to the specified word. Required
@Mov S Source word
IMOV e e e e =
I@MOV D | |
021 |]
s: Ssource | 44440—_————])—-"——————
D: Destination I Bit status not
changed.
Destination word
DOUBLE MOVE Transfers two words of data to the specified words. Output 334
@MS¥t MOVL(498) < <~) Required
498 S LT ErLetd
D e o —— — ——— I ________
. Bit status not
?V'O:(?t source :' changed.
D: 1st destination 5]
word
[INERNRRRRRRRRRRRRRRRRRARRARNE
MOVE NOT MVN©22) Transfers the complement of a word of data to the specified word. Output . 333
MVN R i
@WWN S [Soucewod] S
022 | 1
D I
|]
s: Source | 0 T ———
D: Destination Bit status
inverted.
v
Destination word
Bg?BLE MOVE | _| MVNL(499) Transfers the complement of two words of data to the specified words. (R):;?JLij:ed 336
S S+1
MVNL -
@MVNL S WL T T LT
499 D N
Bit status
S: 1st source I inverted.
word
D: 1st destination D D+1
word (LT e
MOVE BIT I ; Output 337
J— Transfers the specified bit.
@M8¥E MOVB(082) pectt ! c| = [n | Required
082 S 1 7
C
D S| |
S: Source word or
data
C: Control word D| |
D: Destination
word

43

I nstruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition

MOVE DIGIT Output 339
— | MOVD(083) i
aMovD 5 121 g7 43 g |Reoured
S cLo ¢ 1 [n i m |
083 : -
c }
D
S: Source word or
data
C: Control word

D: Destination
word

Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

MULTIPLE BIT - . .
TRANSFER — XFRB(062) Transfers the specified number of@onsecutwe blitSS.7

XFRB c
@XFRB

062 S
D

C: Control word
S: 1st source
word

D: 1st destination
word D|

Output 342
43 0 Required

BLOCK -)
TRANSFER —— XFER(070) Transfers the specified number of consecutive words.

XFER N S D
@XFER

070 S N words—
to to
D

S+(N-1) D+(N-1)

Output 344
Required

N: Number of
words

S: 1st source
word

D: 1st destination
word

BLOCK SET
BSET

@BSET S Source word Destination words
071
St S

E

Output 347

— BSET(071) Copies the same word to a range of consecutive words. Required

—T St

—

S: Source word
St: Starting word
E: End word

DATA

o Output 349
EXCHANGE — XCHG(073) Exchanges the contents of the two specified words.

Required

@ﬁg:g E1 E1 E2
073 E2 [11— ([]]

E1l: 1st exchange
word

E2: Second
exchange word

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE DATA ; : ; Output 350
—_ Exchanges the contents of a pair of consecutive words with another
XCGL(562 ;
EXCHANGE (562) pair of consecutive words. Required
XCGL =
@xc;g; e E1 E1+1 E2 E2+1
_
HEEEEEE [T
E1: 1st exchange
word
E2: Second
exchange word
SINGLE WORD Transfers the source word to a destination word calculated by adding | Output 352
DISTRIBUTE DIST(080) | | an offset value to the base address. Required
DIST -
@DIST S o of]
080 Bs 3
of N !
S: Source word
Bs: Destination
base address
Of: Offset Bs+n
DATA COLLECT Transfers the source word (calculated by adding an offset value to the | Output 354
COLL COLL(081) | | pase address) to the destination word. Required
@COLL Bs
081 ---Of
o Bs o]
D n-
Bs: Source base Bs+n
address o
Of: Offset
D: Destination
word
MOVE TO REGIS- MOVR(60)] | Sets the interal 1/O memory address of the specified word, bit, or Output 356
TER timer/counter Completion Flag in the specified Index Register. (Use Required
MOVR S MOVRW(561) to set the internal I/O memory address of a
@MOVR timer/counter PV in an Index Register.)
560 D
1/0 memory address of S
s: Source s [i
(desired word or PT——
bit)
D: Destination
(Index Register)
Index Register
D
MOVE TIMER/ Sets the internal I/O memory address of the specified timer or Output 358
COUNTER PVTO MOVRW(561)| | counter's PV in the specified Index Register. (Use MOVR(560) to set | Required
REGISTER S the internal I/0 memory address of a word, bit, or timer/counter
MOVRW Completion Flag in an Index Register.)
@MOVRW D
561 I/O memory address of S
S: Source
number) T
D: Destination Timer/counter PV only
(Index Register)
Index Register
D

45

I nstruction Functions

Section 2-2

2-2-7 Data Shift Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SHIFT REGISTER | Data e ; ; Output 361
; _ perates a shift register. .
SFT | !nPut 7 SFT010) || ™ E = a— st \ Required
010 3R 1 St LT O TP LA AT T
Reset—] E / UUUUU‘UUUUUUUUUUUUUUUUUUUUU‘JUUUUUUUUUU‘UU‘JUU‘UU‘UUU\\
nput Lost Status of data
St: Starting word input for each shift
E: End word input
EE?{:ETRRSIé%ITISETER — SFTR(084) Creates a shift register that shifts data to either the right or the left. Outpgt 362
SFTR 5141312 Required
@SFTR ¢ c
084 St —~ ~
CY 15 oData input
E 0 |
~ ~ Shift
C: Control word direc-
St: Starting word | Data H |0| %(tion
E: End word input
QSBIECSHHRH?T_ — ASFT(017) Shifts all non-zero word data within the specified word range either Outpgt 365
REGISTER towards St or toward E, replacing 0000Hex word data. Required
ASET C 15 1413 12
@ASFT St Cl | | [mmmmmeeees
017 E L
St Shift direction
C: Control word 0 0 0 ©) .
St: Starting word :) Shift Shift enabled
E: End word o o o o Clear
) shift
E
St
Zero data
0
Non-zero data
E|O0O 0 O
WORD SHIFT ; ; ; Output 368
— Shifts data between St and E in word units.
WSFT WSFT(016) Required
@WSFT E t 15 0
016 S e N o BN B g Sl==s]
St Lost [T [T [oeee s B
E
S: Source word
St: Starting word
E: End word
ARITHMETIC Shifts the contents of Wd one bit to the left. Output 370
SHIFT LEFT asL ASL(025) P 0 Required
W
@ASL d LT
025 | wa: L0
Wd: Word ﬁ/||/ | |/ u

46

| nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE SHIFT Shifts the contents of Wd and Wd +1 one bit to the left. Output 371
LEFT — ASLL(570) Required
ASLL Wd Wd+1 wd
e ANENNNNARENNNNANRNNNNARRRRNNNAEN
570 .
Wd: Word i
CY, 15/4 1%)/5/ 1ﬁ;"0
L[] [T L [1]
ARITHMETIC . ! " Output 373
SHIET RIGHT —1 ASR(026) Shifts the contents of Wd one bit to the right. Required
ASR 15 0
wd
@ASR INENERRENEREEAEN
026 | wd: Word 0 \ \ \\
3 oy
DOUBLE SHIFT ; : . Output 374
RIGHT — ASRL(571) Shifts the contents of Wd and Wd +1 one bit to the right. Reqpuired
ASRL Wwd Wd+1 wd
@ASRL 15 10 15 10
571 | wd: Word LTI) LT
e 0N\ 15{4 oN\CY
L1 [L] [1]
ROTATE LEFT Output 376
RoL |~ ROL(027) Shifts all Wd bits one bit to the left including the Carry Flag (CY). Required
@ROL Wd CYy 1514 10
027 ~—
wd: Word o [] | |J|
DOUBLE Output 378
ROTATE LEFT — ROLL(572) (S(;l{f;s all Wd and Wd + 1 bits one bit to the left including the Carry Flag R:qF:iJred
ROLL ’
Wd Wd+1 wd
@R??‘; CY 1514 10 1514 10
Wd: Word [FW| [T] [T | |J|
ROTATE LEFT Output 383
WITHOUT — RLNC(574) | | Shifts all Wd bits one bit to the left not including the Carry Flag (CY). ReqFLired
CARRY
RLNC Wd CY 1514 Wd 10
@RUNC | yyg: word R — TT]
574 L J
DOUBLE Shifts all Wd and Wd +1 bits one bit to the left not including the Carry | Output 385
ROTATE LEFT | RLNL(576) | | Flag (CY). Required
WITHOUT wd
CARRY AL CY 1514 Wd+1 01514 Wd 10
ORENE | Wd: Word N] N 1]
576
ROTATERIGHT | | Shifts all Wd bits one bit to the right including the Carry Flag (CY). Output 380
ROR ROR(028) Wd Required
@ROR wd 1514 Wd+1 0 1514 0 ¢y
028 LL] [] L] []
Wd: Word L
DOUBLE ; f f iRt i ; Output 381
ROTATE RIGHT |— RORL(573) Elhalgs(gil()Wd and Wd +1 bits one bit to the right including the Carry Required
RORL ’
@RORL Wd 1514 Wd+1 0 1514 Wd 0 CY
573 | wd: Word (L] [[[]
(

a7

I nstruction Functions

Section 2-2

word for shift

C: Beginning bit
N: Shift data
length

CY

N-1 bit

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ROTATE RIGHT Shifts all Wd bits one bit to the right not including the Carry Flag (CY). | Output 387
WITHOUT | RRNC(575) [| The contents of the rightmost bit of Wd shifts to the leftmost bit and to | Required
CARRY Wd the Carry Flag (CY).
RRNC
@RRNC 15 14 10 cY
e Wd: Word oy iy
wa |L| | | |J | O
DOUBLE Shifts all Wd and Wd +1 bits one bit to the right not including the Carry | Output 388
SV?;QBE‘}?IGHT RRNL(577) | | Flag (CY). The contents of the rightmost bit of Wd +1 is shifted to the | Required
CARRY wd leftmost bit of Wd, and to the Carry Flag (CY).
@gskj‘t Wwd: Word 1514 Wa+1 0 15 Wd ,V,%(
577 |t||| [T [||J
ONE DIGIT SHIFT Shifts data by one digit (4 bits) to the left. Output 390
LEFT SLD(O74) ! y E 9! (!) s Required
SLD
@SLD St
074 E Lost
St: Starting word
E: End word
ONE DIGIT SHIFT . - . . Output 392
RIGHT — SRD(075) Shifts data by oneEd|g|t (4 bits) to the rlght.S X Required
SRD St [OHex F~ ~ vy
@SRD | I A J mmmimnm [| Lost
075 E
St: Starting word
E: End word
SEIT'ZTL'\EFBTIT — NSFL(578) | | Shifts the specified number of bits to the left. g:;%::e d 393
NSFL D
@NSFL
578 C
N
D|
D: Beginning
word for shift
C: Beginning bit cY,
N: Shift data D
length D |
N-1 bit
SHIFT N-BIT ; P ; ; Output 395
DATA RIGHT —{ nsFR(579) Shifts the specified number of bits to the right. Required
NSFR = o n]
@NSFR
579 C
n
N |
D: Beginning Shifts one bit to the right

48

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SHIFT N-BITS Shifts the specified 16 bits of word data to the left by the specified Output 397
LEFT T | NASL(580) number of bits. Required
NASL D
@NASL 15 1211 8 7 43 0
580 c c| P B : |
-
D: Shift word £ nobi
C: Control word Shift n-bits
a
{ Contents of
| | | shifted in "a"
or "0"
N bits
DOUBLE SHIFT NSLL(582) | | Shifts the specified 32 bits of word data to the left by the specified Output 400
N-BITS LEFT number of bits. Required
NSLL
@NSLL D C?s 12.110 87 43 (l)
582 C : ——
D: Shift word Dot p Shift n-bits
C: Control word
Contents of
— "a"or "0"
10 shifted in
N bits
SHIFT N-BITS - Shifts the specified 16 bits of word data to the right by the specified Output 403
RIGHT NASR(S81) | | number of bits. Required
NASR D
@NASR
581 C
Contents of "a" or
D: Shift word "0" shifted in
C: Control word
DOUBLE SHIFT ; s ; : s Output 405
S Shifts the specified 32 bits of word data to the right by the specified .
- NSRL(583 .
N-BITS RIGHT () number of bits. 15 1211 87 43 0 Requ”ed
NSRL D cl T 0 | 7 |
@NSRL [——]
583 c Shift n-bits
D
D: Shift word
C: Control word Contents of
"ator"0" AN
shifted in |
N bits

49

Instruction Functions Section 2-2
2-2-8 Increment/Decrement Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
g\:(NZEFEQQ(/IENT — ++(590) Increments the 4-digit hexadecimal content of the specified word by 1. g::q?:ij:ed 409
+ wd a
@++
590 | wd: Word
DOUBLE INCRE- _diqi ; i Output 411
MENT BINARY — +L(591) I1n'crements the 8-digit hexadecimal content of the specified words by Required
@il Wd Wael [wd | o+ Wd1 | wd
591 | wd: Word
DECREMENT o2 | | Decrements the 4-digit hexadecimal content of the specified word by Output 413
BINARY --(592) | |4 Required
o—- wd 4 —— wa]
592 | wd: Word
DOUBLE DEC- | | Decrements the 8-digit hexadecimal content of the specified words by | Output 415
FBeﬁ\ll\gERl\\l(T ——L(593) 1 Required
--L wd Wd+1 Wd -1 — Wd+1 Wd
@--L .
593 Wd: 1st word
INCREMENT Aini i Output 417
BCD —— ++B(594) Increments the 4-digit BCD content of the specified word by 1. Required
s wa .
594 | wd: Word
DOUBLE INCRE- _Aini s Output 419
MENT BCD —— ++BL(595) Increments the 8-digit BCD content of the specified words by 1. Required
++BL Wd
@++BL Wd+1 Wd +1 — Wd+1 Wd
595 | wd: 1st word
DECREMENT i . Output 421
BCD — —_B(5%) Decrements the 4-digit BCD content of the specified word by 1. Required
--B
@--B wd -1
596 | wd: Word
DOUBLE DEC- .- . Output 423
REMENT BCD — —-BL(597)| | Decrements the 8-digit BCD content of the specified words by 1. Required
—--BL wd
@--BL Wd+1 Wd -1 —— Wd+1 Wd
597 | wd: 1st word

50

I nstruction Functions

Section 2-2

2-2-9 Symbol Math Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SIGNED BINARY it (il : Output 426
ADD WITHOUT |—1 +(400) Adds 4-digit (single-word) hexadecimal data and/or constants. Required
CARRY s Au (Signed binary)
@+
200 ’;d R (Signed binary)
CY will turn ON))
Au: Augend word whenthereisa | CY ||_R | (Signed binary)
Ad: Addend word carr
R: Result word Y
DOUBLE _dini . ; Output 428
SIGNED BINARY |— +L(401) Adds 8-digit (double-word) hexadecimal data and/or constants. Required
ADD WITHOUT . .
CARRY Au | Au+1 | | Au | (Signed binary)
+L . .
@+L As + | Ad+1 | | Ad | (Signed binary)
401 CY will turn
ON when i i
Au: 1st augend therévis a Loy [Rt | R | (Signedbinary)
word carry.
Ad: 1st addend
word
R: 1st result word
SIGNED BINARY Adds 4-digit (single-word) hexadecimal data and/or constants with the | Output 430
éng\g/(WH +C(402) | carry Flag (CY). Required
+C Au (Signed binary)
@+C Ad . .
402 = (Signed binary)
Au: Augend word +
Ad: Addend word CY will turn ON
R: Result word when there is a | cY | | R | (Signed binary)
carry.
DOUBLE Adds 8-digit (double-word) hexadecimal data and/or constants with the | OQutput 432
ilé}gl\l?vl?_rla INARY +CL(403) | | carry Flag (CY). Required
CARRY Au [Avt | | Au | (Signed binary)
+CL Ad
@+CL [Ad+1 | | Ad | (Signed binary)
403 R
Au: 1st augend *
ngd1 ddend CY will turn ON
: 1st adden when there is a Signed binar
word carry. l ey l l ikd l l R l (Sig inary)
R: 1st result word
BCD ADD WITH- P Output 434
OUT CARRY — +B(404) Adds 4-digit (single-word) BCD data and/or constants. Required
ol [w [
wos| [ad . e
R

Au: Augend word
Ad: Addend word
R: Result word

CY will turn ON
when there is a | CY | | R
carry.

| BCD)

51

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE BCD _diqi i Output 435
ADD WITHOUT | ——1+BL(405) Adds 8-digit (double-word) BCD data and/or constants. Required
CARRY AU [Aavsr || au | (BCD)
+BL
@+BL Ad [A1 | [a0] BCD)
405 +
R
CY will turn ON
Au: 1st augend when there is a Lev |l ret |[_Rr | (BOD)
word carry.
Ad: 1st addend
word
R: 1st result
word
BCDADDWITH | | BC(4 Adds 4-digit (single-word) BCD data and/or constants with the Carry | Qutput 437
CARRY +BC(406) Flag (CY). Required
il [a o
ws| [d oD
R
+
Au: Augend word CY will turn ON
Ad: Addend word when there is a
R: Result word carry. ey || _Rr_|BCD
DOUBLE BCD Adds 8-digit (double-word) BCD data and/or constants with the Carry | Output 439
égg%’:’(‘TH +BCL(A07)| | Flag (CY). Required
+BCL Au [Aavvt || au | (BCD)
@+BCL
07 AF:‘ [(asi | [_Aad_] (BCD)
+ CcY
Au: 1st augend
Xgrd1 ddend CY will t
: 1st adden will turn
word ON when therel ov | [mret | [R | (BCD)
R: 1st result word | is a carry.
g[?BNT%DA(B;INARY — —(410) Subtracts 4-digit (single-word) hexadecimal data and/or constants. SZ;F:JT:e d 440
WITHOUT - ; i i
CARRY Mi (Signed binary)
a- Su - (Signed binary)
410 R
Mi: Minuend word gl\q(evr\wnltlhtgrrg i(s)’;l | cY ” R | (Signed binary)
Su: Subtrahend borrow
word '
R: Result word
gl(()ELIJ\IBI‘ELDEBINARY — -L(411) Subtracts 8-digit (double-word) hexadecimal data and/or constants. SZ;?JL::ed 442
SUBTRACT R . .
WITHOUT Mi [mi+1][wmi | (Signedbinary)
CARRY Su
-L - | Su+1 | | Su | (Signed binary)
@-L R
411 CY will turn
Mi: Minuend word | ON when [cy || rRez || R | (Signedbinary)
Su: Subtrahend there is a
word borrow.
R: Result word

52

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SIGNED BINARY | ___ | _C(412) Subtracts 4-digit (single-word) hexadecimal data and/or constants | QutPut 446
SUBTRACT with the Carry Flag (CY). - . . Required
WITH CARRY e Mi (Signed binary)
@-C Su (Signed binary)
412
R
-
Mi: Minuend word
. CY will turn ON
\?vg.rdSubtrahend when there is a | CY | | R | (Signed binary)
R: Result word borrow.
gl%UNBI‘E%DEBlNARY —]cLa1s) Subtracts 8-digit (double-word) hexadecimal data and/or constants Output 448
_ h Requi
WITH CARRY - with the Carry Flag (CY). equired
—-CL i i Signed binar
a_or - [M1 || wm | (sig y)
413 R [sur1 | [su | (Signedbinary)
Mi: Minuend word - CcY
Su: Subtrahend CY will turn
WPrd ON when
R: Result word there is a | cY | | R+1 | | R | (Signed binary)
borrow.
BCD SUBTRACT _dinit (e _ Output 451
WITHOUT -B(414) Subtracts 4-digit (single-word) BCD data and/or constants. Required
CARRY . Wi (BCD)
@-B Su - Su |(BCD)
B -
CY will turn ON
Mi: Minuend word whenthereisa | CY ||__R | (BCD)
Su: Subtrahend carry.
word
R: Result word
DOUBLE BCD i i Output 452
SUBTRACT — -BL(415) Subtracts 8-digit (double-word) BCD data and/or constants. Required
WITHOUT .
CARRY Mi [mi«1 || wm | BCD
—-BL Su
@-BL - | Su+1 | | Su | (BCD)
415 R
Mi: 1st minuend CY will turn ON BCD
word when there is a l cY l l R+1 l l R l ()
Su: 1st borrow.
subtrahend word
R: 1st result word
BCD SUBTRACT Subtracts 4-digit (single-word) BCD data and/or constants with the Output 456
WITH CARRY — |=BC(416)| | Carry Flag (CY). Required
—BC .
oiS| [m] oo
= (80)
Mi: Minuend word B
Su: Subtrahend oY wil ON
word will turn
R: Result word when there is a Loy |[R | (BCD)
borrow.

53

I nstruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE BCD Subtracts 8-digit (double-word) BCD data and/or constants with the | Output 457
SUBTRACT —BCL(417) Carry Flag (CY). Required
WITH CARRY -
_BCL Mi [mi+1 | [_m_ | BCD
417 - [sus1 || su | BCD)
Mi: 1st minuend B
word
Su: 1st CY will turn ON
subtrahend word when there is a | ey | | R+1 | | R | (BCD)
R: 1st result word borrow.
hsﬂlgl'__‘rl?PDleNARY — *(420) Multiplies 4-digit signed hexadecimal data and/or constants. gsm:e d 459
@x
420 Mr X (Signed binary)
R
Md: Multiplicand i i
word p R +1 | R | (Signed binary)
Mr: Multiplier
word
R: Result word
DOUBLE - Multipli _diqit si h imal dat tants. Output 461
SIGNED BINARY |— *L(421) ultiplies 8-digit signed hexadecimal data and/or constants Required
MULTIPLY . .
XL Md Md + 1 Md (Signed binary)
@xL Mr
421 R X Mr+1 Mr (Signed binary)
Md: 1st
multiplicand word R+3 R+2 R+1 R Signed binar
Mr: 1st multiplier (Sig Y)
word
R: 1st result word
ER,SA'S\'}‘ED — *U(422) Multiplies 4-digit unsigned hexadecimal data and/or constants. (R):;Tij:ed 463
MULTIPLY))
*U Md (Unsigned binary)
@xU Mr
422 R x (Unsigned binary)
Md: Multiplicand))
word | R +1 | R | (Unsigned binary)
Mr: Multiplier
word
R: Result word
B(l\)lgI%INEED — *UL(423) Multiplies 8-digit unsigned hexadecimal data and/or constants. g(l:(tqrz:ij:ed 465
BINARY M
MULTIPLY d Md + 1 Md (Unsigned binary)
*UL Mr
@%UL .)
423 R X Mr + 1 Mr (Unsigned binary)
Md: 1st
multiplicand word
Mr: 1st multiplier R+3 R+2 R+1 R (Unsigned binary)
word
R: 1st result word

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BCD MULTIPLY . it (e Output 467
— 1 « Multiplies 4-digit (single-word) BCD data and/or constants. p
*B B(424) P git (sing) Required
@:B Md (BCD)
424
M . 8co)
R
Md: Multiplicand
Word R +1 | R | &co)
Mr: Multiplier
word
R: Result word
DOUBLE BCD inli _diqi . Output 469
MULTIPLY —{*BL(425) Multiplies 8-digit (double-word) BCD data and/or constants. Required
*BL
@+BL Md Md + 1 Md (BCD)
425 Mr
R x Mr+1 Mr (BCD)
Md: 1st
multiplicand word
Mr: 1st multiplier R+3 R+2 R+1 R (BCD)
word
R: 1st result word
SIGNED BINARY /(430 Divides 4-digit (single-word) signed hexadecimal data and/or Output 471
DIVIDE () constants. Required
430 Dr
Dd: Dividend word . .
Dr: Divisor word R +1 | R | (Signed binary)
R: Result word Remainder Quotient
DOUBLE Divides 8-digit (double-word) signed hexadecimal data and/or Output 473
SIGNED BINARY /L(431) constants. Required
DIVIDE . .
L Dd Dd+ 1 Dd (Signed binary)
@iL Dr
431 R = Dr+1 Dr (Signed binary)
Dd:dlst dividend
wor . .
Dr: 1st divisor R+3 R+2 R+1 R (Signed binary)
word]]
R: 1st result word Remainder Quotient
UNSIGNED i _diqit (si - ; ; Output 475
BINARY DIVIDE | — /U(432) Divides 4-digit (single-word) unsigned hexadecimal data and/or Required
constants. q
/U Dd
@V (Unsigned binary)
432 Dr
R + (Unsigned binary)
Dd: Dividend
word . .
Dr: Divisor word R +1 | R | (Unsigned binary)
R: Result word
Remainder Quotient

55

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
B(l\)lgI%IT\IEED —10L(433) Divides 8-digit (double-word) unsigned hexadecimal data and/or gutpgt J 477
BINARY DIVIDE constants. _ , equire
JUL Dd Dd + 1 Dd (Unsigned binary)
@/UL Dr
433 . : :
R + Dr+1 Dr (Unsigned binary)
Dd: 1st dividend
word . .
Dr: 1st divisor R+3 R+2 R+1 R (Unsigned binary)
d
‘gf’&st result word Remainder Quotient
BCD DIVIDE Output 479
/B /B(434) Divides 4-digit (single-word) BCD data and/or constants. Required
@/B Dd
Dr
R (BCD)
Dd: Dividend
word
Dr: Divisor word R+1 | R | (BCD)
R: Result word Remainder Quotient
BI(\)/LIJS;E BCD /BL(435) Divides 8-digit (double-word) BCD data and/or constants. (R):(tqpulifed pt
e Dd Dd + 1 pd | (BCD)
435 Dr
R + Dr+1 Dr (BCD)
Dd: 1st dividend
word
Dr: 1st divisor R+3 R+2 R+1 R (BCD)
word . .
R: 1st result word Remainder Quotient
2-2-10 Conversion Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BCD TO BINARY . Output 483
BIN |— BIN(023) Converts BCD data to binary data. Required
@BIN S s (BCD) —R (BIN)
023
R
S: Source word
R: Result word
DOUBLEBCDTO i - : . Output 485
DOUBLE — BINL(058) Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data. Required
BINARY S
BINL s (BCD) __ R (BIN)
@BINL R S+ (BCD) R+1 (BIN)
058
S: 1st source
word
R: 1st result word

56

| nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BINARY TO BCD : Output 487
— t f tat f BCD data.
BCD BCD(024) Converts a word of binary data to a word of BCD data Required
@BCD s s (BIN) —R (BCD)
024
R
S: Source word
R: Result word
DOUBLE - . L L Output 489
BINARY TO DOU- |— 1 BCDL(059) | | Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data. Required
BLE BCD S
BCDL s (BIN) __ R (BCD)
@BCDL R S+1 (BIN) R+1 (BCD)
059
S: 1st source
word
R: 1st result word
ﬁ%\?.rOMPLE- —1 NEG(160) Calculates the 2's complement of a word of hexadecimal data. gsgﬂij:ed 491
NEG S 2's complement
@NEG (Complement + 1)
S: Source word
R: Result word
DOUBLE 2'S , : Output 493
COMPLEMENT —NEGL(161) Calculates the 2's complement of two words of hexadecimal data. Required
NEGL S 2's complement
@NEGL (Complement + 1)
161 R &S] (R¥1,R)
S: 1st source
word
R: 1st result word
16-BITTO32-BIT | | Expands a 16-bit signed binary value to its 32-bit equivalent. Output 494
SIGNED BINARY SIGN(600) 9 Required
SIGN
@SIGN S l\‘AS‘B
600 R S
S: Source word MSB = 1: MSB = 0:
R: 1st result word FFFF Hex i 0000 Hex
D+1 D
D = Contents of S

57

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DATA DECODER | | MLPX(076) Reads the numerical value in the specified digit (or byte) in the source O“tpl_’t 496
MLPX word, turns ON the corresponding bit in the result word (or 16-word Required
@MLPX S range), and turns OFF all other bits in the result word (or 16-word
076 range).
c 4-t0-16 bit conversion
R c[o | [1+ 1 n |

S: Source word
C: Control word
R: 1st result word

£=1 (Convert 2 digits.)

|
/—%
n
3| p | | : | n=2 (Start with second digit.)
4-t0-16 bit decoding
(Bit m of R is turned ON.)
15 P m
R — i
Re1[=

8-t0-256 bit conversion C| 1 | I 1 n |

£=1 (Convert 2 bytes.) |

| ;

n=1 (Start with first byte.)
S| m p |
S
8-t0-256 bit decoding
(Bit m of R to R+15 is turned ON.)
15 0
31 m 16
R+1 —
. 1239 224
R+14(255 240
R+15
R+16. | :
R+17: :
“““““““““““““““““““ | Two 16-word ranges are
used when £ specifies 2
: bytes.
R+30:

R+31:

58

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DATA ENCODER Finds the location of the first or last ON bit within the source word (or | Output 500
DMPX DMPX(077) 16-word range), and writes that value to the specified digit (or byte) in | Required
@DMPX s the result word.
077 R 16-to-4 bit conversion c[o 0 | 1 p
Finds leftmost bit
C (Highest bit address)
| |
S: 1st source - b e 0 £=1 (Convert
word s B 2 words.)
R: Result word = }
C: Control word S+ 4
16-to-4 bit decoding 1
(Location of leftmost Leftmost bit ~ Rightmost bit
bit (m) is written to R.)
| n=2 (Start with digit 2.)
n
Rl p m
256-t0-8 bit conversion
cl o o [1 1 n
£=0 (Convert one 16-word range.)
15 0
(31 16
S+1 f
. Leftmost bit
Plde 0w % 224
seldfoss—=fi]_ 240
s+15
Finds leftmost bit
(Highest bit address)
256-to-8 bit decoding (The location of
the leftmost bit in the 16-word range
(m) is written to R.)
II n=1 (Start with byte 1.)
R m
ASCIICONVERT | | Converts 4-bit hexadecimal digits in the source word into their 8-bit Output 504
ASC ASC(086) | | ascl equivalents. Required
@ASC S Di[o W | n i m |
086) -
Di First d|g|F to convert |
D i
i m
S: Source word sl 1 [2 [3
Di: Digit b &
designator HEX
D: 1st destination y.u.mber °1f
word igits (n+
ASCII
Left (1) | i Right (0)
D 33
31 32

59

I nstruction Functions

Section 2-2

S: Source word
D: 1st destination
word

N: Bit number

s [0 0/afa]1]

v
Bit Bi Bit
15 ‘ 00
D ojlofofo|1]1|{1]|o|o|o|1|0|O]|0OfO]|1
D+1 |[1]|1|o|1|o|of1|ofo|1|1|1|0]|0OfO]|1
D+2 |o]ofof1f1]|of1]1]o]ola1|olO]1f2]|1
1|o|ofofofo|1]|1|o|0]0]O|O|1]|1]|1

D+3

D+15|o|1]1]1]o]o]o]1]1]o]o]0]1]0]1]0]

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ASCII TO HEX Converts up to 4 bytes of ASCII data in the source word to their Output 508
HEX HEX(162) | | hexadecimal equivalents and writes these digits in the specified Required
@HEX s destination word.
162 C: 0021
Di pDi[© o1 | n i m
D First byte to convert
S: 1st source ;
word Left (1) Right (0)
Di: Digit s 33 32
designator S+1 34
D: Destination
word -
ASCII Number of digits (n+1)
L First digit to write
HEX ny 1 i
r m N
D| 4 3 2
ElONLEUMN TO — LiNE(0s3) Converts a column of bits from a 16-word range (the same bit number | Output 512
LINE in 16 consecutive words) to the 16 bits of the destination word. Required
@LINE > Bit N Bit
063 N 15 l 00
D S 0[0]|0|1[1[1]1]0]O0[O|1]|0]|0]|O|O1
S: 1st source S+1 1|1{o|1]o|of1]|0]O|1|1|1]|0|0O|O]1
word
N: Bit number S+2 |o]ojo|1[1]of1[1]|ojo 1[ojOf1]1][1
D: Destination S+3 110]/0|0(0[0|1]1]0[0|0|0O|O|1[1[1
word .
S+15 [o]1][1]o]oofo[1]1]o]0]o[1]0]1]0]
Bit Bit
Y 15 00
D o] - - - [o[a[a]y]
LINE TO —[CoLmosay| | Converts the 16 bits of the source word to a column of bits in a Output 514
COLUMN 16-word range of destination words (the same bit number in 16 Required
COLM S consecutive words).
@COLM
064 D Bit Bit
N 15 00

60

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SIGNED BCD TO ; i ; Output 517
BINARY — BINS(470) S;Jtr;verts one word of signed BCD data to one word of signed binary Required
BINS C '
470 S Signed BCD format
D specified in C
C: Control word S|_Signed BCD | — DJ Signed binary
S: Source word
D: Destination
word
DOUBLE : ; : Output 520
SIGNED BCD TO BISL(472) Converts double signed BCD data to double signed binary data Required
BISL .
@BISL S Signed BCD format
472 specified in C
D
C: Control ” 8| Signed BCD D| Signed binary
: Control wor - - -
S: 1st source S+1| Signed BCD D+1| Signed binary
word
D: 1st destination
word
SIGNED BINARY Converts one word of signed binary data to one word of signed BCD | Output 523
TOBCD BCDS(A71) | | data. 9 Y X Required
@BCDS .
471 [Signed BCD format
specified in C
D
S| Signed binary | —— D| Signed BCD
C: Control word
S: Source word
D: Destination
word
DOUBLE : " N Output 525
SIGNED BINARY |— BDSL(473) Converts double signed binary data to double signed BCD data. Required
TO BCD c
BDSL o]
@sDs S Signed BCD format
D specified in C
C: Control word 8| Signed binary | =~ D| Signed BCD
S: 1st source S+1| Signed binary D+1| Signed BCD
word
D: 1st destination
word
GRAY CODE Converts the Gray code data in the specified word to binary, BCD, or | Output 529
CONVERSION GRY (474) | | angle (°) data at the specified resolution. Required
GRY C
474 S
(Cs/CJ-series
Unit Ver. 2.0 or D
later only, includ-
ing CS1-H, CJ1-H, | c: Control word
Srr]w?tschrém I%f’u S: Source word
number 030201 D: ldst destination
and later) wor

61

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FOUR-DIGIT Converts a 4-digit hexadecimal number (#0000 to #FFFF) to ASCII Output 534
NUMBER TO STR4 data (4 characters). Required
ASCII
STR4 S
@STR4 D
601 -
. S: Numeric
(CS/CJ-series .
CPU Units with | D ASCIItext
unit version 4.0 or
later only)
EIGHT-DIGIT Converts an 8-digit hexadecimal number (#0000 0000 to #FFFF FFFF) | Output 537
NUMBER TO- STR8 to ASCII data (8 characters). Required
ASCII
STRS S
@STR8 D
602 -
. S: Numeric
(CSs/CJ-series .
CPU Units with | D= ASCIItext
unit version 4.0 or
later only)
SIXTEEN-DIGIT Converts a 16-digit hexadecimal number (#0000 0000 0000 0000 to Output 539
NUMBER TO STR16 | |#FFFF FFFF FFFF FFFF) to ASCII data (16 characters). Required
ASCII
STR16 S
@STR16 D
603 -
. S: Numeric
(CS/CJ-series .
CPU Units with | D ASCIItext
unit version 4.0 or
later only)
ASCIl TO FOUR- Converts 4 characters of ASCII data to a 4-digit hexadecimal number. | Output 541
DIGITNUMBER | — | NuUM4 Required
NUM4 s
@NUM4
604 D
(CS/CJ-series .
CPU Unitswith | o oCl! text
unit version 4.0 or ’
later only)
ASCII TO EIGHT- Converts 8 characters of ASCII data to an 8-digit hexadecimal number. | Output 544
DIGITNUMBER |~ | NUMS8 Required
NUM8 S
@NUM8
605 D
(CS/CJ-series .
CPU Unitswith | o Aot 1€
unit version 4.0 or ’
later only)
ASCII TO SIX- Converts 16 characters of ASCII data to a 16-digit hexadecimal num- | Output 545
TEEN-DIGIT NUM16 || ber. Required
NUMBER S
NUM16
@NUM16 D
. 606 S: ASCII text
(CSs/CJ-series D: Numeric

CPU Units with
unit version 4.0 or
later only)

62

I nstruction Functions Section 2-2
2-2-11 Logic Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
LOGICALAND | | Takes the logical AND of corresponding bits in single words of word Output 548
ANDW ANDWO3H| | data and/or constants. Required
@ANDW Il
034 | lh.L>R
2
R l4 lo R
1 1 1
l: Input 1
I2: Input 2 1 0 0
R: Result word 0 1 0
0 0 0
DOUBLE — ANDL(610r | | Takes the logical AND of corresponding bits in double words of word Output 550
LOGICAL AND (610) | | data and/or constants. Required
ANDL |1
@ANDL (. 1441). (I2.l+1)= (R, R+1)
610 |2
R |1,|1+1 |2,|2+1 R, R+1
1 1 1
ly: Input 1
Iy: Input 2 1 0 0
R: Result word 0 1 0
0 0 0
LOGICAL O%RW — ORW(035) | | Takes the logical OR of corresponding bits in single words of word gutpgt d s
data and/or constants. equire
@ORW I
035 I +l2—>R
o
R 14 I R
1 1 1
I1: Input 1
I2: Input 2 1 0 1
R: Result word 0 1 1
0 0 0
DOUBLE : : et Output 553
[— Takes the logical OR of corresponding bits in double words of word
LOGICAL OR ORWL(E11) data and/or (?onstants P ? Required
ORWL |1 ’
@ORWL (I1.14#1) + (I I;+1) (R, R+1)
611 I
R |1,|1+1 |2, |2+1 R, R+1
1 1 1
ly: Input 1
Ip: Input 2 1 0 1
R: Result word 0 1 1
0 0 0
EXCLUSIVE OR Output 555
XORW | | XORW(036) Takes the logical exclusive OR of corresponding bits in single words ReqFLired
@XORW of word data and/or constants.
4
036 | 1., +T., > R
2
R l4 I R
l;: Input 1 1 1 0
l2: Input 2 1 0 1
R: Result word
0 1 1
0 0 0

63

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
gl(\)/LIéBCI)_FleE O XORL(612) | | Takes the logical exclusive OR of corresponding bits in double words (Fz:;leliJ:ed 557
XORL of word data and/or constants.
l4
@XOGFi; | (I3 14+1). (G TFT) + (G #T). (I 1p+1) — (R,R+1)
2
R |1,|1+1 |2,|2+1 R, R+1
l1: Input 1 1 ! 0
I2: Input 2 1 0 1
R: Result word 0 1 1
0 0 0
EXCLUSIVENOR | | XNRW(037)] | Takes the logical exclusive NOR of corresponding single words of Output 559
XNRW word data and/or constants. Required
@XNRW I
037 A I. L+, L, >R
R I4 I R
l1: Input 1 1 1 1
I2: Input 2 1 0 0
R: Result word 0 1 0
0 0 1
DOUBLE EXCLU-| ___ | XNRL(513)] | Takes the logical exclusive NOR of corresponding bits in double Output 560
SIVE NOR (673) | | words of word data and/or constants. Required
XNRL |
1
@xr\g; b (I3l +1). (I, I +1) + (7 #7). (GT+7) - (R,R+1)
R |1,|1+1 |2,|2+1 R, R+1
ly: Input 1 ! ! !
1: Inpu
l5: Input 2 1 0 0
R: 1st result word 0 1 0
0 0 1
COMPLEMENT . o Output 562
com |1 com(oz9) Tirns OFF all ON bits and turns ON all OFF bits in Wd. Required
@ng'\g Wd Wd—Wd: 1 > 0and 0 — 1
Wd: Word
DOUBLE COM- . e Output 564
PLEMENT —— comL(614) Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1. Reqﬁijired
COML
@COML Wd (Wd+1. Wd) — (Wd+1. Wd)
614 wd: word

| nstruction Functions Section 2-2
2-2-12 Special Math Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BINARY ROOT ROTB(20r| | Computes the square root of the 32-bit binary content of the specified Output 565
ROTB (620) | | words and outputs the integer portion of the result to the specified Required
@ROTB S result word.
620
: J
—>
S: 1st source | S+1 S | \I|
word Binary data (32 bits) Binary data (16 bits)
R: Result word
BCD SQUARE Computes the square root of an 8-digit BCD number and outputs the | Output 567
ROOT ROOT(072) integer portion of the result to the specified result word. Required
ROOT S
@ROOT
072 R [s s |—~[_ =
f’v:o:dSt source BCD data (8 digits) BCD data (4 digits)
R: Result word
ARITHMETIC Calculates the sine, cosine, or a linear extrapolation of the source data. | Output 571
PROCESS APR(069) | | The linear extrapolation function allows any relationship between X and | Required
APR C Y to be approximated with line segments.
@APR
069 S
R
C: Control word
S: Source data
R: Result word
FLOATING - Divides one 7-digit floating-point number by another. The floating- Output 583
POINT DIVIDE (979) | | point numbers are expressed in scientific notation (7-digit mantissa Required
FDIV Dd and 1-digit exponent).
@FDIV Quotient
079 Dr uotien
= [Rt | R]
Dd: 1st dividend [D or | > | bd+t | DbDd |
word
Dr: 1st divisor
word
R: 1st result word
BIT COUNTER [I Output 587
JE— Counts the total number of ON bits in the specified word(s).
BCNT BCNT(067) P (©) Required
BCNT s
@ N N words
067
S Counts the number
to of ON bits.
i S+(N-1)
+(N -1 ;
Binary result
N: Number of v
words
S: 1st source R[]
word
R: Result word

65

Instruction Functions Section 2-2
2-2-13 Floating-point Math Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FLOATING TO Converts a 32-bit floating-point value to 16-bit signed binary data and | Output 594
16-BIT FIX(450) | |places the result in the specified result word. Required
FIX
S
@FIX | S+1 | S | Floating-point data
450 R (32 bits)
S: 1st source
word |I| Signed binary data
R: Result word (16 bits)
FLOATING TO —FixL(a51) Converts a 32-bit floating-point value to 32-bit signed binary data and | Output 596
32-BIT places the result in the specified result words. Required
FIXL S
@F‘|1>5<|£ R | S+1 S | Floating-point data
! (32 bits)
S: 1st source
word | R+ R | Signed binary data
R: 1st result word (32 bits)
16-BIT TO FlT(a52) | | Converts a 16-bit signed binary value to 32-bit floating-point data and Output 597
FLOATING (452) places the result in the specified result words. Required
FLT S
wl R Signed inary gt
(16 bits)
S: Source word
R: 1stresult word | | R+1 | R | Floating-point data
(32 bits)
32-BIT TO Converts a 32-bit signed binary value to 32-bit floating-point data and | Output 599
FLOATING FLTL(453)| | places the result in the specified result words. Required
FLTL S
@Fglé R | S+1 S | Signed binary data
| (32 bits)
S: 1st source
word | R+1 R | Floating-point data
R: 1st result word (32 bits)
FLOATING- _hi N i ; Output 601
POINT ADD — +F(454) Adds_ t_vvo 32-bit floating-point numbers and places the result in the Required
+F v specified result words.
@+F Augend (floating-
Au+l A 9 9
454 Ad | - l - | point data, 32 bits)
R .
Addend (floating-
Ad+1 . ;
Au: 1st augend + | d | Ad | point data, 32 bits)
word
AD: 1st addend .
word | R+1 | R | Result (floating-
R: 1st result word point data, 32 bits)
FLOATING- Subtracts one 32-bit floating-point number from another and places | ©utput 603
POINT SUB- F(455) | | the result in the specified result words. Required
TRACT Mi
—F . .
@F Su | Mi+1 | Mi | Minuend (floating-
455 point data, 32 bits)
R
; - _l Su+1 | Su | Subtrahend (floating-
Mi: 1st Minuend point data, 32 bits)
word
Su: 1st .)
Subtrahend word | R+1 | R | Result (floating-point
R: 1st result word data, 32 bits)

66

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FLOATING- Multiplies two 32-bit floating-point numbers and places the result in Output 605
POINT MULTIPLY *F(456) | | the specified result words. Required
xF
@+F Md | M1 | Md | Multiplicand (floating-
456 Mr point data, 32 bits)
R ><| Mr+1 | Mr | Multiplier (floating-
point data, 32 bits)
Md: 1st
Multiplicand word
Mr: 1st Multiplier | R+1 | R | Resutt (floating-point
word data, 32 bits)
R: 1st result word
FLOATING- / Divides one 32-bit floating-point number by another and places the Output 607
POINT DIVIDE F(457) || resultin the specified result words. Required
IF Dd
e [par1 | Dd | Dividend (floating-
457 Dr point data, 32 bits)
R =+ | Dr+1 | Dr | Divisor (floating-
Dd: 1st Dividend point data, 32 bits)
word B
Dr: 15t Divisor [R+ | R | Result (floating-
R: 1st result word point data, 32 bits)
DEGREES TO RAD(58) | | Converts a 32-bit floating-point number from degrees to radians and | Output 609
RADIANS RAD (458) places the result in the specified result words. Required
S
@R‘gg R | S+1 S | Source (degrees, 32-bit
floating-point data)
A
S: 1st source
word R+1 R | Result (radians, 32-bit
R: 1st result word floating-point data)
RADIANS TO —{bEG59) Converts a 32-bit floating-point number from radians to degrees and | Output 610
DEGREES places the result in the specified result words. Required
DEG S
DEG . .
@ 459 R | S+1 S | Source (radians, 32-bit
floating-point data)
S: 1st source v
word]
R: 1st result word || R+1 R | Result (degrees, 32-bit
floating-point data)
SINE — SIN60) Calculates the sine of a 32-bit floating-point number (in radians) and | Output 612
SIN places the result in the specified result words. Required
@SIN S
460 R SIN (| S+1 S |) Source (32-bit
floating-point
S: 1st source v data)
word .
R: 1st result word | R+1 R | Result (32-bit
floating-point
data)
HIGH-SPEED Calculates the sine of a 32-bit floating-point number (in radians) and Output 614
SINE (CJ1-H-R SINQ(475) places the result in the specified result words. Required
only) .
e S SIN (l St S |) Source (32-bit
R floating-point
@SINQ] data)
475 S: 1st source .
word | R+1 R | Result (32-bit

R: 1st result word

floating-point
data)

67

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
COSINE Cos(a61)| | Calculates the cosine of a 32-bit floating-point number (in radians) Output 615
COS (461) and places the result in the specified result words. Required
@Cos S
261 cos([s+ s Source (32-bit
R | floating-point
S: 1st source | | data)
word i
: R+1 R Result (32-bit
R: 1st result word floating-point
data)
HIGH-SPEED Calculates the cosine of a 32-bit floating-point number (in radians) and | Output 617
COSINE (CJ1-H- COSQ(476) places the result in the specified result words. Required
R only) S
COSQ R COS(| S+1 S Source (32-hit
@COsQ floating-point
476 s: 1st source } data)
word .
R: 1st result word | R+1 R | ReSl_JIt (32'.b't
floating-point
data)
TANGENT —{TANw@s2) Calculates the tangent of a 32-bit floating-point number (in radians) Output 619
TAN and places the result in the specified result words. Required
@TAN S
462 TAN (l Si1 S |) Source (32-bit
R floating-point
S: 1st source Y data)
word .
R: 1st result word | R+1 R | Result (32-bit
floating-point
data)
HIGH-SPEED Calculates the tangent of a 32-bit floating-point number (in radians) Output 621
TANGENT (CJ1- TANQ(477)[| and places the result in the specified result words. Required
H-R onl ;
Y) NG S TAN (l) S |) Source (32-bit
floating-point
@TANQ R | data)
477 | s: 1st source .
word | R+1 R | Result (32-bit
R: 1st result word floating-point
data)
ARC SINE — ASIN(463) Calculates the arc sine of a 32-bit floating-point number and places OUtpL_'t 623
ASIN the result in the specified result words. (The arc sine function is the Required
@ASIN S inverse of the sine function; it returns the angle that produces a given
463 R sine value between -1 and 1.)
) Source (32-bit
—1 . .
\?v'o:dSt souree SIN (| S+l S |) floating-point
R: 1st result word Y data)
| R+1 R | Result (32-bit
floating-point
data)
ARC COSINE ——] Acos(4s4) | | Calculates the arc cosine of a 32-bit floating-point number and places Output 625
ACOS the result in the specified result words. (The arc cosine function is the | Required
@ACOS S inverse of the cosine function; it returns the angle that produces a
464 R given cosine value between -1 and 1.)
S: 1st source _ Source (32-bit
word Cos 1(| S+l S |) floating-point
R: 1st result word v data)
Result (32-hit
| R+l R | floating-point
data)

68

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ARCTANGENT | | ATAN(465) Calculates the arc tangent of a 32-bit floating-point number and O“tpl_’t 627
ATAN places the result in the specified result words. (The arc tangent Required
@ATAN S function is the inverse of the tangent function; it returns the angle that
465 = produces a given tangent value.)
Source (32-bit
S: 1dst source TANL (| S+1 S |) floating-point
wor
R: 1st result word v data)
| R+1 R | Result (32-bit
floating-point
data)
SQUAREROOT | | SQRT(466) | | Calculates the square root of a 32-bit floating-point number and Output 629
SQRT places the result in the specified result words. Required
@SQRT S
466 :
R _\/ | S+ s | Source (32-bit
floating-point
S: 1st source Y data)
word
R: 1st result word | R+1 | R | Result (32-bit
floating-point
data)
EXPONENT Expacy) | | Calculates the natural (base e) exponential of a 32-bit floating-point Output 631
EXP (467) number and places the result in the specified result words. Required
@EXP S
467 Source (32-bit
R | S+1 | S | floating-point
S: 1st source e ‘ data)
word
R: 1st result word | R+1 | R | Result (32-bit
floating-point
data)
LOGARITHM LOG(a68) | | Calculates the natural (base e) logarithm of a 32-bit floating-point Output 633
LOG (468) number and places the result in the specified result words. Required
@LOG S
468 Source (32-bit
R |09e| S+1 S | floating-point
S: 1st source Y data)
word
R: 1st result word | R R | Result (32-bit
floating-point
data)
EXPONENTIAL | | PWRea0) | | Raises a 32-bit floating-point number to the power of another 32-bit Output 635
POWER (840) floating-point number. Required
PWR
@PWR B ___———Power
840 E
R B+1| s | —~ [Ri] R|
B: 1st base word ——— Base
E: 1st exponent
word
R: 1st result word

69

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FLOATING SYM- | ysing LD: Compares the specified single-precision data (32 bits) or constants LD: 636
BOL COMPARI- and creates an ON execution condition if the comparison result is true. | Not required
SON (CS1-H, Symbol option Three kinds of symbols can be used with the floating-point symbol
CJ1-H, CJ1M, or si comparison instructions: LD (Load), AND, and OR. AND or OR:
CS1D only) S2 Required
LD, AND. or OR
+ | Using AND:
=F (329), | | —
<>F (330)’ Symbol, option|
<F (331), S1
<=F (332), s2
>F (333),
or >=F (334) Using OR:
Symbol, option #
S1
S2
S1: Comparison data 1
S2: Comparison data 2
FLOATING- Converts the specified single-precision floating-point data (32-bit deci- | Output 640
POINT TO ASCIlI |— FSTR(448) | | mal-point or exponential format) to text string data (ASCIl) and outputs | required
(CS1-H, CJ1-H, the result to the destination word.
CJ1M, or CS1D S
only)
FSTR C
@FSTR D
448
S: 1st source
word
C: Control word
D: Destination
word
ASCIl TO FLOAT- Converts the specified text string (ASCII) representation of single-pre- | Output 645
ING-POINT (CS1- |~ | FVAL(449) [| cision floating-point data (decimal-point or exponential format) to 32-bit | required
H, CJ1-H, CJ1M, single-precision floating-point data and outputs the result to the desti-
or CS1D only) S nation words.
FVAL
@FVAL D
449
S: Source word
D: 1st destination
word
MOVE FLOAT- Transfers the specified 32-bit floating-point number to the destination | Output 649
ING-POINT — | MOVF(469) | words. required
(SINGLE)
(CI1-H-R only) S | S+1 s
MOVF D
@MOVF v
469 | S: First source
word | D+1 D

D: First destination
word

70

I nstruction Functions

Section 2-2

2-2-14 Double-precision Floating-point Instructions

The Double-precision Floating-point Instructions are supported only by the

CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE FLOAT- Converts the specified double-precision floating-point data (64 bits) to 16- | Output 657
ING TO 16-BIT — FIXD(841) | | bit signed binary data and outputs the result to the destination word. Required
BINARY
FIXD S
@FIXD D
841
S: 1st source
word
D: Destination
word
DOUBLE FLOAT- Converts the specified double-precision floating-point data (64 bits) to 32- | Output 658
ING TO 32-BIT — FIXLD(842)| | bit signed binary data and outputs the result to the destination words. Required
BINARY
FIXLD S
@FIXLD D
842
S: 1st source
word
D: 1st destination
word
16-BIT BINARY Converts the specified 16-bit signed binary data to double-precision float- | Output 660
TO DOUBLE —| DBL(843) ing-point data (64 bits) and outputs the result to the destination words. Required
FLOATING
DBL S
@DBL D
843
S: Source word
D: 1st destination
word
32-BIT BINARY Converts the specified 32-bit signed binary data to double-precision float- | Output 661
TO DOUBLE — DBLL(844) | | ing-point data (64 bits) and outputs the result to the destination words. Required
FLOATING
DBLL S
@DBLL D
844
S: 1st source
word
D: 1st destination
word
DOUBLE FLOAT- Adds the specified double-precision floating-point values (64 bits each) Output 663
ING-POINT ADD |— +D(845) and outputs the result to the result words. Required
+D
@+D Au
845 Ad
R

Au: 1st augend
word

Ad: 1st addend
word

R: 1st result word

71

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE FLOAT- Subtracts the specified double-precision floating-point values (64 bits Output 665
ING-POINT SUB- |— -D(846) each) and outputs the result to the result words. Required
TRACT -
D Mi
@D Su
846
R
Mi: 1st minuend
word
Su: 1st subtra-
hend word
R: 1st result word
DOUBLE FLOAT- Multiplies the specified double-precision floating-point values (64 bits Output 667
ING-POINT MUL- |— *D(847) each) and outputs the result to the result words. Required
TIPLY
xD Md
847
R
Md: 1st multipli-
cand word
Mr: 1st multiplier
word
R: 1st result word
DOUBLE FLOAT- Divides the specified double-precision floating-point values (64 bits each) | Output 669
ING-POINT — /D(848) and outputs the result to the result words. Required
DIVIDE
D Dd
@/ Dr
848
R
Dd: 1st Dividend
word
Dr: 1st divisor
word
R: 1st result word
DOUBLE Converts the specified double-precision floating-point data (64 bits) from | Output 671
DEGREES TO — RADD(849)| | degrees to radians and outputs the result to the result words. Required
RADIANS
RADD S
@RADD R
849
S: 1st source
word
R: 1st result word
DOUBLE RADI- Converts the specified double-precision floating-point data (64 bits) from | Output 673
ANS TO —| DEGD(850)| | radians to degrees and outputs the result to the result words. Required
DEGREES
DEGD S
@DEGD R
850
S: 1st source
word
R: 1st result word
DOUBLE SINE Calculates the sine of the angle (radians) in the specified double-precision | Output 674
SIND |~ SIND(851) | | floating-point data (64 bits) and outputs the result to the result words. Required
@SIND S
851
R

S: 1st source
word
R: 1st result word

72

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE Calculates the cosine of the angle (radians) in the specified double-preci- | Output 676
COSINE — COSD(852)| | sion floating-point data (64 bits) and outputs the result to the result words. Required
COSD S
@COosD
852 R
S: 1st source
word
R: 1st result word
DOUBLE TAN- Calculates the tangent of the angle (radians) in the specified double-preci- | Output 678
GENT — | TAND(853)| | sion floating-point data (64 bits) and outputs the result to the result words. | Required
TAND
@TAND S
853 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the sine value in the specified dou- | Output 680
SINE | ASIND(854)| | ble-precision floating-point data (64 bits) and outputs the result to the Required
ASIND result words. (The arc sine function is the inverse of the sine function; it
@ASIND S returns the angle that produces a given sine value between -1 and 1.)
854 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the cosine value in the specified Output 682
COSINE —|ACOSD(855) | double-precision floating-point data (64 bits) and outputs the result to the | Required
ACOSD result words. (The arc cosine function is the inverse of the cosine function;
@ACOSD S it returns the angle that produces a given cosine value between -1 and 1.)
855 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the tangent value in the specified Output 684
TANGENT ~|ATAND(856)| | double-precision floating-point data (64 bits) and outputs the result to the | Required
ATAND result words. (The arc tangent function is the inverse of the tangent func-
@ATAND S tion; it returns the angle that produces a given tangent value.)
856 R
S: 1st source
word
R: 1st result word
DOUBLE Calculates the square root of the specified double-precision floating-point | Output 686
SQUARE ROOT |~ |SQRTD(857) | data (64 bits) and outputs the result to the result words. Required
SQRTD S
@SQRTD
857 R
S: 1st source
word
R: 1st result word
DOUBLE EXPO- Calculates the natural (base e) exponential of the specified double-preci- | Output 688
NENT | EXPD(858) | | sion floating-point data (64 bits) and outputs the result to the result words. | Required
EXPD S
@EXPD
858 R
S: 1st source
word
R: 1st result word

73

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE LOGA- Calculates the natural (base e) logarithm of the specified double-precision | Output 690
RITHM — | LOGD(859)| | floating-point data (64 bits) and outputs the result to the result words. Required
LOGD S
@LOGD
859 R
S: 1st source
word
R: 1st result word
DOUBLE EXPO- Raises a double-precision floating-point number (64 bits) to the power of | Output 692
NENTIAL — PWRD(860)| | another double-precision floating-point number and outputs the result to Required
POWER the result words.
PWRD B
@PWRD E
860
R
B: 1st base word
E: 1st exponent
word
R: 1st result word
DOUBLE SYM- Using LD: Compares the specified double-precision data (64 bits) and creates an ON | LD: 694
BOL COMPARI- execution condition if the comparison result is true. Not
SON Symbol opten | Three kinds of symbols can be used with the floating-point symbol com- | required
LD, AND. or OR S1 parison instructions: LD (Load), AND, and OR.
+ S2 AND or
=D (335), OR:
<>D (336), | Using AND: Required
<D (337), _
<=D (338), Symbol, option|
>D (339), S1
or >=D (340) S2
Using OR:
— Symbol, option 4
S1
S2
S1: Comparison data 1
S2: Comparison data 2

74

I nstruction Functions Section 2-2
2-2-15 Table Data Processing Instructions
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
SET STACK — sseT(e30) | | Defines a stack of the specified length beginning at the specified word Output 703
SSET and initializes the words in the data region to all zeroes. Required
SSET
@ 630 1B Internal 1/0
N memory address
TB: 1st stack {TBTﬁ m+(N-1) —] $+1 N word
address words
N: Number of {TB+2_ maa —|m+2 in stack
words Last word TB+3| m+3
in stack m4
Stack
pointer
m+(N-1)
E¥E(';KONTO —{Fushi(eaz) | | Writes one word of data to the specified stack. gz:ﬁrted 706
PUSH B Internal I/O Internal I/O
@PUSH memory address memory address
2 S
63 B n B n
TB: 1st stack {IE*; {IT?;
address y m PUSH(632 & m+1
S: Source word [153 . ST 1(632) = l:> B+
o EEdm ; m
u m+1
n
n
LASTINFIRST | __ | LIForsaa | | Reads the last word of data written to the specified stack (the newest Output 712
out (634) data in the stack). Required
LIFO
@LIFO 1B Stack Internal 1/0 Internal 1/0
634 D pointer memory address memory address
TB: 1st stack T8 n B n
address TB+1 Newest TB+1
D: Destination {TB+2 m data {TB+2
word TB+3 TB+3 m-—1
Stack :
pointer
? m-1
M Alis left
un-
n n changed.
The pointer is Last-in first-out
decremented. L-p
FIRSTIN FIRST | | oF Reads the first word of data written to the specified stack (the oldest Output 709
ouT 0(633) | | data in the stack). Required
@E:ES B Internal 1/0 Internal 1/0
633 D memory address memory address
B B
Stack TB+ n Oldest 15,4 n
TB: 1st stack ointer data
address P {TB+2 i _ {TB+2_ —
D: Destination TB+3| TB+3
word Stack
pointer|
T M m-1
M m : M m
n n
First-in first-out

75

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DIMENSION Defines a record table by declaring the length of each record and the Output 715
RECORD TABISII;:\/I DIM(631) number of records. Up to 16 record tables can be defined. Required
@DIM N Table number (N)
631 LR - 3
NR Record 1
B
N: Table number
LR: Length of Number of records > LR x NR words
each record
NR: Number of
records
TB: 1st table { Record NR
word - “
SET RECORD Writes the location of the specified record (the internal /O memory Output 718
LOCATION SETR(635) [| address of the beginning of the record) in the specified Index Required
SETR N Register. Int /O
@SETR nterna
635 R Table number (N) Memory address
D SETR(635) writes the internal 1/0
memory address (m) of the first word of
N: Table number n record R to Index Register D.
R: Record
number D
D: Destination |
Index Register R III
GET RECORD Returns the record number of the record at the internal 1/0 memory Output 720
NUMBER GETR(636) | | address contained in the specified Index Register. Required
GETR N
@GETR
636 IR Table number (N)| |ntermal 1/0
D memory address
N: Table number GETR(636) writes the
IR: Index mCH record number of the
Register record that includes
D: Destination I/O memory address
word (m) to D.
of n]
DATA SEARCH s Output 722
—_— Searches for a word of data within a range of words.
SRCH SRCH(181) 9 Required
@SRCH C Internal 1/0
181 memory address
R1
R1 >.. Search
Cd . k
C: 1st control
word
R1: 1st word in
range R1+(C-1
Cd: Comparison +C)
data

76

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
SWAP BYTES —{swapr Switches the leftmost and rightmost bytes in all of the words in the Output 725
(637) .
SWAP range. o Required
@SWAP N Byte position is swapped.
637
R1
N: Number of R1 ' '
words
R1: 1st word in N
range
{ }
FIND MAXIMUM - ; ; Output 727
I Finds the maximum value in the range.
MAX MAX(182) 9 Required
@MAX Internal 1/0
C memory address
182 R1
R1
D C words
C: 1st control Max.
word . value
R1: 1st word in R1+(W-1) 7
range
D: Destination |ROII|
word
FIND MINIMUM Finds the minimum value in the range. Output 731
MIN MIN(183) g Required
@MIN C Internal 1/0
memory address
183 R1
R1
D C words
C: 1st control)
word Min. value
R1: 1st word in R1+(W-1) 7 D}
range
D: Destination Roo[m]
word
SUM ; Output 735
— sum(1s4) Adds the bytes or words in the range and outputs the result to two .
SUM words. Required
@SuM c c
184
R1
D R1
C: 1st control WCH
word
R1: 1st word in R1+(W—1)
range +)
D: 1st destination | | |
word
D+1 D
FRAME CHECK- rs Output 738
SUM — FCs(180) Calculates the ASCII FCS value for the specified range. Required
FCS C
@FCS
180 R1 C units
D
C: 1st control . ASCII conversion
word Calculation FCS vl
R1: 1st word in va Ue—l
range 5
D: 1st destination
word

77

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
STACK SIZE Counts the amount of stack data (humber of words) in the specified stack. | Output 742
READ (CS1-H, — SNUM(638) required
CJ1-H, CJ1M, or
CS1D only) B
SNUM D
@SNUM
638 | TB: First stack
address
D: Destination
word
STACK DATA Reads the data from the specified data element in the stack. The offset Output 744
READ (CS1-H, —SREAD(639)| | value indicates the location of the desired data element (how many data | required
CJ1-H, CJ1M, or elements before the current pointer position).
CS1D only) B
SREAD C
@SREAD
639 D
TB: First stack
address
C: Offset value
D: Destination
word
STACK DATA Writes the source data to the specified data element in the stack (overwrit- | Output 747
OVERWRITE —|SWRIT(640)| | ing the existing data). The offset value indicates the location of the desired | required
(CS1-H, CJ1-H, data element (how many data elements before the current pointer posi-
CJ1M, or CS1D TB tion).
only)
SWRIT c
@SWRIT S
640
TB: First stack
address
C: Offset value
S: Source data
STACK DATA Inserts the source data at the specified location in the stack and shifts the | Output 750
INSERT (CS1-H, |— 1 SINS(641) | |rest of the data in the stack downward. The offset value indicates the loca- | required
CJ1-H, CJ1M, or tion of the insertion point (how many data elements before the current
CS1D only) TB pointer position).
SINS C
@SINS
641 S
TB: First stack
address
C: Offset value
S: Source data
STACK DATA Deletes the data element at the specified location in the stack and shifts | Output 753
DELETE (CS1-H, |— SDEL(642)| | the rest of the data in the stack upward. The offset value indicates the required
CJ1-H, CJ1M, or location of the deletion point (how many data elements before the current
CS1D only) B pointer position).
SDEL C
@SDEL
642 D
TB: First stack
address
C: Offset value
D: Destination
word

78

I nstruction Functions

Section 2-2

2-2-16 Data Control Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

PID CONTROL
PID
190

S: Input word

C: 1st parameter
word

D: Output word

Executes PID control according to the specified parameters.
l* Parameters (C to C+8)

PID control

l

Manipulated variable (D)

PVinput (S) —

Output 757

Required

PID CONTROL
WITH AUTOTUN-
ING

— PIDAT(191)

PIDAT S
191 c

(CS1-H, CJ1-H, D
or CJ1M only)

S: Input word

C: 1st parameter
word

D: Output word

Executes PID control according to the specified parameters. The PID
constants can be auto-tuned with PIDAT(191).

Output 769

required

LIMIT CONTROL
LMT

@LMT

680

,_
=
O|10|» |5
®
A=

S: Input word
C: 1st limit word
D: Output word

Controls output data according to whether or not input data is within

upper and lower limits.
D

Upper limit .. .
C+1

Lower limit ,
C .

Output 779

Required

DEAD BAND

CONTROL —] BAND(681)

BAND S

@BAND
681 C

D

S: Input word
C: 1st limit word
D: Output word

Controls output data according to whether or not input data is within
the dead band range.

Output
A

Lower limit (C)
I

15 T > nput

Upper limit (C+1)

Output 781

Required

79

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DEAD ZONE ifi i i Output 784
CONTROL —] zonE@s2) Adds the specified bias to input (d)ata and outputs the result. Reguired
ZONE S utput)
@ZONE
682 C L
Positive bias (C+1) = 37
D
S: Input word - b Input
C: 1st limit word
D: Output word o . .
P / < Negative bias (C)
TIME-PROPOR- Inputs the duty ratio or manipulated variable from the specified word, | Output 787
TIONAL OUTPUT | _T'roq (6g5) | | converts the duty ratio to a time-proportional output based on the spec- | Required
TPO S ified parameters, and outputs the result from the specified output.
685
(CSs/CJ-series C
Unit Ver. 2.0 or
later only) R
S: Input word
C: 1st parameter
word
R: Pulse Output
Bit
SCALING SCL(194] |Gonverts unsigned binary data into unsigned BCD data according to Output 795
SCL () the specified linear function. Required
@scCL S
194 R (unsigned BCD) Scaling is performed according
P1 to the linear function defined by
points A and B.
R
i Ad (BCD
S: Source word Bd————————————————P—qlptB P () Converted
P1: Istparameter | IBoMTA ; P1+ 1| As (BIN) value
\évogj | « | ' ' P1+2]| Bd (BCD)]C red
: Result wor ! ! onverte
E : P1+ 3| Bs (BIN) value
As Bs S (unsigned binary)

80

I nstruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SCALING 2 — scLoase) | | Converts signed binary data into signed BCD data according to the Output 800
SCL2 specified linear function. An offset can be input in defining the linear | Required
@SCL2 s function.
486
P1 Positive Offset Negative Offset
R R (signed BCD) R (signed BCD)

S: Source word
P1: 1st parameter
word

AY
R: Result word

Offset AX

AX
/S(signed binary)/L_ S (signed
Offset binary)

Offset of 0000

P1 Offset (Signed binary) R (signed BCD)
P1+1 AY (Signed binary)
P1+2 AX (Signed BCD)
AY
Offset = 0000 hex
AX
S (signed
binary)

81

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SCALING 3 —1 SCL3(487) Converts signed BCD data into signed binary data according to the Ompl_]t e
SCL3 specified linear function. An offset can be input in defining the linear Required
@Si;:; S function.
Positive Offset Negative Offset
P1 g
R R (signed binary) R (signed binary)
S: Source word M Max conversion
P1: 1st parameter ax
word conver- p-ocotoooooogy pomTTooooomooooooooes 7
R: Result word sion
AY AY
/ -1 AX AX
Min 771 | Offset Oﬁset\ S (signed BCD)
conver- S (signed BCD) -5
sion Z Min. conversion
Offset of 0000
R (signed binary)
Max [Tttt
conver-
sion
AY
X
A S (signed BCD)
----| Min. conversion
AVERAGE Calculates the average value of an input word for the specified Output 807
AVG AVG(195) | | number of cycles. Required
195
S [S: Source word |
N
R
S: Source word
N: Number of | N: Number of cycles
cycles
R: Result word
Rl | —
R+1[] | Pointer |
Average Valid Flag Average
R+ 2| |
R+ 3| |
! , N values
Lo |
R+N+1

82

I nstruction Functions

Section 2-2

2-2-17 Subroutine Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SUBROUTINE Calls the subroutine with the specified subroutine number and Output 811
CALL SBS(091) | | executes that program. Required
SBS . -
@SBS N Execution condition ON
091 | N: Subroutine 5
number — SBS
n
> Main program B
B
<N
3 P
SBN
n
Subroutine N
\ program
A (SBN(092) to
RET(093))
S |
v
RET J Program end
END
MACRO —{WoRowse| | Calls the subroutine with the specified subroutine number and Output 817
MCRO (099)] | executes that program using the input parameters in S to S+3 and the | Required
@MCRO N output parameters in D to D+3.
099
S MCRO(099)
s —— AB0O 1t MCRO
D S+1 — A601 ‘ N ey
) S+2 — A602 s P
N: Subroutine 53 —— A603 p)
number [
S: 1stinput B o MeRo
parameter word { rouine botvcen | S :
D: 1st output [RET(OS3. =
parameter word MCRO(099) [
D — A604 SBN
D+1 —= A605
p e " e stbroutine uses A’
B3 ey AB03 as inputs and A604 to
AB07 as outputs.
SUBROUTINE Indicates the beginning of the subroutine program with the specified | Output 821
ENTRY SBN(092) [| subroutine number. Not required
SBN N
092
N: Subroutine —f—— sBs MCRO
number S N or
SBN
1 Subroutine region
RET
SUBROUTINE Indicates the end of a subroutine program. Output 824
RETURN RET(093) Not required
RET
093

83

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
GLOBAL SUB- Calls the subroutine with the specified subroutine number and exe- Output 824
ROUTINE CALL |~ |GSBS(750)| | cutes that program. Not required
(CS1-H, CJI1-H,
CJ1M, or CS1D N
only)) .
csss | Speroare
750
GLOBAL SUB- Indicates the beginning of the subroutine program with the specified Output 832
ROUTINE ENTRY | = |GSBN(751) | subroutine number. Not required
(CS1-H, CJI1-H,
CJ1M, or CS1D N
only) .
GsBN | N: Subroutine
751 number
GLOBAL SUB- Indicates the end of a subroutine program. Output 835
ROUTINE Not required
RETURN (CS1-H,
CJ1-H, CJ1M, or
CS1D only)
GRET
752
2-2-18 Interrupt Control Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
,\SAEATS:L\'TERRUPT —{ msKs(690) Sets up interrupt processing for I/O interrupts or scheduled Outpgt 839
(Not supported interrupts. Both I/O interrupt tasks and scheduled interrupt tasks Required
by CSllF))pCPU N are masked (disabled) when the PC is first turned on.
Units for Duplex- MSKS(690) can be used to unmask or mask I/O interrupts and
CPU Systems.) C set the time intervals for scheduled interrupts.
@M§E§ N: Interrupt Interrupt Input Unit 0 to 3
690 identifier
C: Control data /O
|nterrupt
Mask (1) or unmask (0)
interrupt inputs 0 to 7.
Time interval
Scheduled
|nterrupt Set scheduled
interrupt time interval.
READ Reads the current interrupt processing settings that were set with Output 846
INTERRUPT | MSKR(692) | | MSKS(690). Required
MASK N
(Not supported
by CS1D CPU D
Units for Duplex-
CPU Systems.) | N: Interrupt
MSKR | identifier
@MSKR | D: Destination
692 | word

I nstruction Functions

Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ICI:\ILTI?EARRRUPT —{ CLI(691) Clears or retains recorded interrupt inputs for I/O interrupts Ompl_]t 851
N d or sets the time to the first scheduled interrupt for scheduled Required
(Not supporte N interruot
by CS1D CPU errupts.
Units for Duplex-
CPU Systems.) C N=0to3
@(C:ZH N In;e.rrupt Interrupt Interrupt
identifier inputn — inputn —
691 | C: Control data ' :
Internal Internal
status ' status '
Recorded interrupt cleared Recorded interrupt retained
N=4t05
MSKS(690) i
Execution of scheduled
\ interrupt task.
Time to first
scheduled interrupt
DISABLE INTER- DI Disables execution of all interrupt tasks except the power OFF Output 855
RUPTS (693) interrupt. Required
DI
@Dl
T
0000.00
Disables execution of all
interrupt tasks (except
the power OFF interrupt).
= 3
ENABLE INTER- Enables execution of all interrupt tasks that were disabled with Output 858
RUPTS El(694) DI(693). Not required
El
694 _|
Disables execution of all
interrupt tasks (except the
power OFF interrupt).
Enables execution of all
disabled interrupt tasks.

85

I nstruction Functions

Section 2-2

2-2-19 High-speed Counter and Pulse Output Instructions
(CJ1IM-CPU21/22/23 Only)

P: Port specifier
M: Output mode

F: 1st pulse fre-
guency word

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
MODE CONTROL N INI(880) is used to start and stop target value comparison, to | Output 864
INI change the present value (PV) of a high-speed counter, to Required
@INI P change the PV of an interrupt input (counter mode), to change
880 p the PV of a pulse output, or to stop pulse output.
NV
P: Port specifier
C: Control data
NV: 1st word with
new PV
HIGH-SPEED PRV PRV(881) is used to read the present value (PV) of a high- Output 868
SCE)XSITER PV speed counter, pulse output, or interrupt input (counter mode). | Required
P
PRV
@PRV c
881 D
P: Port specifier
C: Control data
D: 1st destination
word
COUNTER FRE- Reads the pulse frequency input from a high-speed counter and either | Output 874
QUENCY CON- PRV2 converts the frequency to a rotational speed (number of revolutions) or | Required
VERT c1 converts the counter PV to the total number of revolutions. The result is
PRV2 output to the destination words as 8-digit hexadecimal. Pulses can be
883 c2 input from high-speed counter 0 only.
(CJ1M CPU Unit D
Ver. 2.0 or later
only) C1: Control data
C2: Pulses/revo-
lution
D: 1st destination
word
COMPARISON CTBL(882) is used to perform target value or range comparisons for Output 878
TABLE LOAD — 1 CTBL || the present value (PV) of a high-speed counter. Required
CTBL =]
@CTBL
882 €
B
P: Port specifier
C: Control data
TB: 1st compari-
son table word
SPEED OUTPUT SPED(885) is used to specify the frequency and perform pulse output | Output 882
SPED SPED || without acceleration or deceleration. Required
@SPED o]
885 M
F

86

I nstruction Functions

Section 2-2

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

SET PULSES

PULS
@PULS

886

PULS

P

T

N

P: Port specifier
T: Pulse type

N: Number of
pulses

PULS(886) is used to set the number of pulses for pulse output.

Output
Required

887

PULSE OUTPUT

PLS2
@PLS2

887

PLS2

P

M
S
E

P: Port specifier
M: Output mode
S: 1st word of set-
tings table

F: 1st word of
starting frequency

PLS2(887) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with different acceleration/deceleration rates). Only positioning is pos-
sible.

Output
Required

890

ACCELERATION
CONTROL

ACC
@ACC
888

ACC

P

M

S

P: Port specifier
M: Output mode

S: 1st word of set-
tings table

ACC(888) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with the same acceleration/deceleration rate). Both positioning and
speed control are possible.

Output
Required

896

ORIGIN SEARCH

ORG
@ORG

889

ORG

P

C

P: Port specifier
C: Control data

ORG(889) is used to perform origin searches and returns.

Output
Required

903

PULSE WITH
VARIABLE DUTY
FACTOR
PWM
@
891

PWM

P

F

D

P: Port specifier
F: Frequency
D: Duty factor

PWM(891) is used to output pulses with a variable duty factor.

Output
Required

906

87

I nstruction Functions

Section 2-2

2-2-20 Step Instructions

only)
DLNK
@DLNK

226

N: Unit number

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
STEP DEFINE STEP(008) functions in following 2 ways, depending on its position and | Output 909
STEP |~ | STEP(008) | | whether or not a control bit has been specified. Required
008 B (1)Starts a specific step.
(2)Ends the step programming area (i.e., step execution).
B: Bit
STEP START SNXT(009) is used in the following three ways: OQutput 909
SNXT SNXT(009) [| (1)To start step programming execution. Required
009 B (2)To proceed to the next step control bit.
(3)To end step programming execution.
B: Bit
2-2-21 Basic I/O Unit Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
I/O REFRESH I’ Output 926
S Refreshes the specified /O words.
IORF IORF(097) P Required
@IORF St I/O bit area or /O Unit or
097 = Special I/O Unit bit area Special I/O Unit
St: Starting word st
E: End word 1/0 refreshing
E
SPECIAL I/O Performs I/O refreshing immediately for the specified Special I/0O Unit's | Output 929
UNIT I/O —[FIORF(225)| | allocated CIO Area and DM Area words.t with the specified unit num- | Required
REFRESH ber.
(CI1-H-R only) N
FIORF N: Unit number
@FIORF
225
CPU BUS UNIT Immediately refreshes the I/O in the CPU Bus Unit with the specified | Output 932
I/0 REFRESH — |DLNK(226)] | unit number. required
(CS1-H, CJ1-H,
CJ1M, or CS1D N

88

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
7-SEGMENT Converts the hexadecimal contents of the designated digit(s) into Output 937
DECODER SDEC(078) 8-bit, 7-segment display code and places it into the upper or lower Required
SDEC S 8-bits of the specified destination words.
@SDEC
078 Di 15 1211 87 43 0
D piL 0 { 1 [m [n |
m-_Number of digits |
S SO_U!’CG word - A ~ First digit to convert
Di: Digit
designator
D: 1st destination S+1
word
HEX
@ Rightmost 8 bits (0)
7-segment
DIGITAL SWITCH Reads the value set on an external digital switch (or thumbwheel Output 940
INPUT DSW (210) | | switch) connected to an Input Unit or Output Unit and stores the 4-digit | Required
DSW | or 8-digit BCD data in the specified words.
210
(CSs/CJ-series 0
CPU Unit Ver. 2.0 D
or later only)
Cl
C2
I: Data input word
(DO to D3)
O: Output word
D: 1st result
word
C1:Number of
digits
C2: System word
TEN KEY INPUT Reads numeric data from a ten-key keypad connected to an Input Unit | Output 945
TKY TKY (211) | | and stores up to 8 digits of BCD data in the specified words. Required
211 [
(CS/CJ-series
CPU Unit Ver. 2.0 D1
or later only) D2
I: Data input
word
D1: 1st register
word
D2: Key input
word

89

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
HEXADECIMAL Reads numeric data from a hexadecimal keypad connected to an Input | Output 948
KEY INPUT T [HKY (212) | | Unit and Output Unit and stores up to 8 digits of hexadecimal datain | Required
HKY | the specified words.
212
(CS/CJ-series ©)
CPU Unit Ver. 2.0 D
or later only)
C
I: Data input
word
O: Output word
D: 1stregister
word
C: System word
MATRIX INPUT Inputs up to 64 signals from an 8 x 8 matrix connected to an Input Unit | Output 953
MTR MTR (213) | | and Output Unit (using 8 input points and 8 output points) and stores Required
213 | that 64-bit data in the 4 destination words.
(CS/CJ-series
CPU Unit Ver. 2.0 O
or later only) D
C
I: Data input
word
O: Output word
D: 1st
destination
word
C: System word
7-SEGMENT DIS- Converts the source data (either 4-digit or 8-digit BCD) to 7-segment | Output 957
PLAY OUTPUT | 7SEG (214)| | display data, and outputs that data to the specified output word. Required
7SEG s
214
(CS/CJ-series ©)
CPU Unit Ver. 2.0 C
or later only)
D
S: 1st source
word
O: Output word
C: Control data
D: System word

90

I nstruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
INTELLIGENTVO | _| Reads the contents of the memory area for the Special I/O Unit o“tpl_’t 962
IORD or CPU Bus Unit (see note).
@IORD c S
222 S S+1 \
D Uni ber of Special I/0 Uni
nit number of Special nit
C: Control data P
S: Transfer
source and }
number of words |_Desig-
D: Transfer nated
destination and D] numbert
number of words : read.
Note: CS/CJ-series CPU Unit Ver. 2.0 or later (including CS1-H, CJ1-H,
and CJ1M CPU Units from lot number 030418 or later) can read
from CPU Bus Units.
WEELELIGENT o | __| IOWR(223) | | Qutputs the contents of the CPU Unit's I/O memory area to the Output 967
OWR Special I/0 Unit or the CPU Bus Unit (see note). Required
@IOWR c D
223 S D+1 —
D
C: Control data Unit number of Special I/O Unit
S: Transfer
source and
number of words
D: Transfer —
destination and s J
number of words : Desig-
nated
number of
words writ-
ten.
Note: CS/CJ-series CPU Unit Ver. 2.0 or later (including CS1-H, CJ1-H,
and CJ1M CPU Units from lot number 030418 or later) can write
to CPU Bus Units.

91

I nstruction Functions

Section 2-2

2-2-22 Serial Communications Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

PROTOCOL
MACRO

PMCR
@PMCR

260

PMCR(260)
C1
c2
S
R

C1: Control word 1
C2: Control word 2
S: 1st send word

R: 1st receive word

Calls and executes a communications sequence registered in a Serial
Communications Board (CS Series only) or Serial Communications
Unit.

CPU Unit Serial Communications Unit

Port

External
device

Output
Required

974

TRANSMIT

TXD
@TXD

236

TXD(236)
S
C

N

S: 1st source
word

C: Control word
N: Number of
bytes

0000 to 0100 hex
(0 to 256 decimal)

Outputs the specified number of bytes of data from the RS-232C port
built into the CPU Unit or the serial port of a Serial Communications
Board (version 1.2 or later).

Output
Required

983

RECEIVE

RXD
@RXD

235

RXD(235)
D
C
N

D: 1st destination
word

C: Control word
N: Number of
bytes to store
0000 to 0100 hex
(0 to 256 decimal)

Reads the specified number of bytes of data from the RS-232C port
built into the CPU Unit or the serial port of a Serial Communications
Board (version 1.2 or later).

Output
Required

993

TRANSMIT VIA
SERIAL COMMU-
NICATIONS UNIT
TXDU
@TXDU
256

— TXDU(256)
S
C
N

S: 1st source word
C: 1st control
word

N: Number of
bytes

0000 to 0256 BCD

Outputs the specified number of bytes of data from the serial port of a
Serial Communications Unit (version 1.2 or later). The data is output in
no-protocol mode with the start code and end code (if any) specified in
the allocated DM Setup Area.

Output
Required

1005

92

| nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
RECEIVE VIA Reads the specified number of bytes of data from the serial port of a | Output 1013
SERIAL COMMU- RXDU(255)| | Serial Communications Unit (version 1.2 or later). The data is read in | Required
NICATIONS UNIT no-protocol mode with the start code and end code (if any) specified in
RXDU D the allocated DM Setup Area.
@RXDU C
255
N
D: 1st destination
word
C: 1st control
word
N: Number of
bytes to store
0000 to 0256 BCD
CHANGE SERIAL Changes the communications parameters of a serial port on the CPU | Output 1021
PORT SETUP —| STUP(237)| | Unit, Serial Communications Unit (CPU Bus Unit), or Serial Communi- Required
STUP cations Board. STUP(237) thus enables the protocol mode to be
@STUP C changed during PLC operation.
237 S
C: Control word
(port)
S: First source
word
2-2-23 Network Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
NETWORK SEND | | SEND(090) | | Transmits data to a node in the network. Output 1044
SEND Required
@SEND S Local node Destination node
090
D ; 15 0 15 0
— D—
C n: No. n
of send
S: 1st source words)3
word
D: 1st destination
word
C: 1st control
word
NETWORK RECV(09a) | | Requests data to be transmitted from a node in the network and Output 1050
RECEIVE (098) | | receives the data. Required
RECV S
@RECV
098 D Local node Source node
15 0 15 0
C D— (S 4(
S: 1st source m 1 n 1
word
D: 1st destination =
word
C: 1st control
word

93

I nstruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DELIVER : Output 1056
COMMAND —— CMND(490) Sends FINS commands and receives the response. Required
CMND S Local node Destination node
@CMND 15 0
D
490 P :
C Com- | Command
mand
S: 1st command j data (n =
word (5-1) bytes)
D: 1st response + 0 : :
word 2
C: 1st control L, I
word I
~_ —
15 0
D— Res|
Re- ponse
. sponse
(D-1) data (m =
+ m bytes)
2
EXPLICIT MES- Sends an explicit message with any Service Code. Output 1066
SAGE SEND —[EXPLT (720) Required
EXPLT S
720
(CS/CJ-series D
CPU Unit Ver. 2.0 C
or later only)
S: 1stword of
send
message
D: 1stword of
received
message
C: 1st control
word
EXPLICIT GET Reads status information with an explicit message (Get Attribute Sin- | Output 1074
ATTRIBUTE —[EGATR (721)| | gle, Service Code: OE hex). Required
EGATR s
721
(CSICJ-series D
CPU Unit Ver. 2.0 C
or later only)
S: 1stword of
send
message
D: 1stword of
received
message
C: 1st control
word
message
EXPLICIT SET Writes status information with an explicit message Output 1081
ATTRIBUTE —|ESATR (722) | (Set Attribute Single, Service Code: OE hex) Required
ESATR s
722
(CSICJ-series C
CPU Unit Ver. 2.0)
or later only) S:First word of
send message
C: First control
word

94

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
EXPLICIT WORD Reads data to the local CPU Unit from a remote CPU Unit in the net- | Output 1087
READ —IecHrD (723) work. (The remote CPU Unit must support explicit messages.) Required
ECHRD
723 S
(CS/CJ-series D
CPU Unit Ver. 2.0
or later only) C
S: 1st source
word in remote
CPU Unit
D: 1st destination
word in local
CPU Unit
C: 1st control
word
EXPLICIT WORD Writes data from the local CPU Unit to a remote CPU Unit in the net- | Output 1091
WRITE work. (The remote CPU Unit must support explicit messages.) Required
ECHWR | —ECHWR (724)
724 S
(CS/CJ-series
CPU Unit Ver. 2.0 D
or later only)
C
S: 1st source
word in local
CPU Unit

D: 1st destination
word in remote
CPU Unit

C: 1st control
word

95

I nstruction Functions

Section 2-2

2-2-24 File Memory Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
READ DATA FILE Reads the specified data or amount of data from the specified data file | Output 1099
FREAD FREAD(700)(|in file memory to the specified data area in the CPU Unit. Required
@FREAD C
700 Starting read ad-
St dress specified in File specified
S2 S1+2 and S1+3 in S2 CPU Unit
D /

C: Control word
S1: 1st source
word

S2: Filename

D: 1st destination
word

L7

Number of
words specified
in S1 and S1+1

Memory Card or

EM file memory

(Specified by the

4t digit of C.)

/

L7

File specified
in S2

words

Memory Card or EM

file memory

(Specified by the 4th digit of C.)

Number of

Number
of words
written to
D and
D+1.

CPU Unit |

4{D+?§

96

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
WRITE DATA FWRIT(70n| | Overwrites or appends data in the specified data file in file memory Output 1106
FILE (7OD] | with the specified data from the data area in the CPU Unit. If the Required
FWRIT C specified file doesn't exist, a new file is created with that filename.
@FWRIT
701 D1 CPU Unit Starting word - File specified in D2
Startin specified in
D2 9 D1+2 and
addrggs 15 o | D143
S
specified in D1
31 Cio?trol word Ao
i 1s
destin_ation word Overwrite Q
D2: Filename
S: 1st source Memory Card or EM file memory
word (Specified by the 4t digit of C.)
CPU Unit File specified in D2
Starting End of Existing
address 15___ o | file data
Number of w—o-rd
specified in D1
and D1+1
Memory Card or EM file memory
(Specified by the 4t digit of C.)
Beginning File speci-
CPU Unit of file —‘ fied inpD2 New file created
Starting e
address 15 FPEE
specified Number of words
inS specified in D1
and D1_+_1_, .7
Memory Card or EM file memory
(Specified by the 4th digit of C.)
WRITE TEXT Reads ASCII data from I/O memory and stores that data in the Memory | Output 1113
FILE —1 TWRIT Card as a text file (writing a new file or appending a file). The data is Required
TWRIT c stored in the TXT format.
@TWRIT
704 S1
(CSICJ-series s2
CPU Units with
unit version 4.0 or S3
later only)
S4
C: Control word
S1: Number of
bytes to write
S2: Directory and
file name
S3: Write data
S4: Delimiter

97

Instruction Functions Section 2-2
2-2-25 Display Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DISPLAY Reads the specified sixteen words of extended ASCII and displays the | Output 1119
MESSAGE MSG(046) | | message on a Peripheral Device such as a Programming Console. Required
MSG
@MSG N
046 M
N: Message
number
M: 1st message
word
2-2-26 Clock Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
CALENDARCAA%% — cADD(730) Adds time to the calendar data in the specified words. gutpgt q 1122
equire
@CADD C 15 87 0 d
730 C Minutes _{Seconds
T C+1| Day !Hour
R c+2| Year ‘Month
C: 1st calendar g5
word
T: 1st time word 15. 8.7 0
R: 1st result word T Minutes !Seconds
T+1 Hours
15 87 0
R Minutes !Seconds
R+1| Day Hour
R+2| Year ‘Month
gﬁg%ggg? —{ csuB(za1) | | Subtracts time from the calendar data in the specified words. (R)“tpl.‘t g 1126
equire
CSUB c 15 87 0 q
@CSuUB C Minutes | Seconds
731 T C+1| Day Hour
R C+2| Year Month
C: 1st calendar -
word 15 87 0
E:_ 11sstt trlgnsil\?/\?vrc?r q T [Minutes | Seconds
' T+1 Hours
15 8|7 0
R Minutes | Seconds
R+1| Day ' Hour
R+2| Year i Month

98

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
HOURS TO Converts time data in hours/minutes/seconds format to an equivalent | Output 1129
SECONDS SEC(065) [| time in seconds only. Required
SEC S
@SEC 5 15 0
065 S| Minutes ! Seconds
S: 1st source S+ Hours
word
D: 1st destination
word l
15 0
D
Seconds
D+1
a%%OR';DS 0 — HMS(066) Converts seconds data to an equivalent time in hours/minutes/ g“tpL.“ d 1131
seconds format. equire
HMS S
@HMS 15 0
066 D s
S: 1st source Sa1 Seconds
word
D: 1st destination
word l
15 0
D | Minutes ! Seconds
D+1 Hours
CLOCK Changes the internal clock setting to the setting in the specified Output 1134
ADJUSTMENT DATE(735) | | source words. Required
DATE S
@DATE CPU Unit
735 |s: 1st source
word
Internal clock
i i Seconds
New S1 | Minutes :
setting S+1 | Day { Hour
S4+2 | Year ' Month
S+3 |00 ! Day of week
2-2-27 Debugging Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TRACE When TRSM(045) is executed, the status of a preselected bit or word | Output 1136
MEMORY TRSM(045)| | is sampled and stored in Trace Memory. TRSM(045) can be used any- | Not required
SAMPLING where In the program, any number of times.
TRSM

045

99

I nstruction Functions

Section 2-2

2-2-28 Failure Diagnosis Instructions

C: Control word
T: Monitoring time
R: 1st register
word

isn't turned ON within the monitoring time.

|__!Execution
'condition A ! FPD
____________ s
T Error-pro-
cessing
R__ Iblock (op-
____________ tional)

Next instruction block

Logic diagnosis block*

i Logic diagnosis \
[execution condition C !
! 1

Diagnostic output B

Logic diagnosis function
Determines which inputin C
prevents output B from going ON.

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FAILURE ALARM . 114
v FAL |] FAL(006) Generates or clears user-defined non-fatal errors. Non-fatal errors gutpgt d 0
FAL do not stop PC operation. equire
@ N Also generates non-fatal errors with the system.
006 S FAL Error Flag ON
Execution of Corresponding Executed FAL
N: FAL number H FAL |—-FAL(006) gumberdFIag '(t)tN 10 A4OD
S: 1st message N generates a E::g: ggdz ‘elivrqld (teirr:weowrinen to Error
word or error 5000 nqn-fatal error Log Area
code to gener- with FAL
ate number N. Ny
i ~F- ERR Indicator flashes
Message
: I:l displayed on
T Programming
Console
SEVERE - : Output 1148
—_— Generates user-defined fatal errors. Fatal errors stop PC operation. ’
FAILURE ALARM FALS(007) Also generates fatal errors with the system. Required
FALS N FALS Error Flag ON
007 S H FaLs Execution of Error code written to A400
FALS(007) Error code and time/date written to
Error Log Area
N: FALS number N ?;g?g?:gf a g
S: 1st message 0000 with FALS hind
word or error number N. © 7~ ERR Indicator lit
code to gener- :
ate :
. I:' Message displayed
on Programming
Console
E?EI‘II'_ILEJCI:?‘II'EISI\JOINT ——{ Frp(269) | | Diagnoses a failure in an instruction block by monitoring the time Output 1156
between execution of FPD(269) and execution of a diagnostic output | Required
FPD C and finding which input is preventing an output from being turned ON.
269
T Time monitoring function:
Starts timing when execution condition A goes
R ON. Generates a non-fatal error if output B

100

I nstruction Functions

Section 2-2

2-2-29 Other Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SET CARRY Sets the Carry Flag (CY). Qutput 1166
STC STC(040) Required
@STC
040
CLEAR CARRY Turns OFF the Carry Flag (CY). Output 1166
CcLC CLC(041) Required
@CLC
041
SELECT EM Changes the current EM bank. Output 1167
BANK —] EMBC(281) Required
EMBC N
@EMBC
2811 N: EM bank
number
EXTEND Extends the maximum cycle time, but only for the cycle in which this Output 1169
MAXIMUM — | WDT(094) | |instruction is executed. Required
CYCLE TIME T
WDT
@WDT | . ;
T: Timer settin
094 g
SAVE CONDI- Saves the status of the condition flags. Output 1171
TION FLAGS Required
(CS1-H, CJI1-H,
CJ1M, or CS1D
only)
CCS
@CCS
282
LOAD CONDI- Reads the status of the condition flags that was saved. Output 1173
TION FLAGS CCL(283) Required
(CS1-H, CJI1-H,
CJ1M, or CS1D
only)
CCL
@CCL
283
CONVERT Converts a CV-series PLC memory address to its equivalent CS/CJ- Output 1174
ADDRESS FROM |—|FRMCV/(284) | series PLC memory address. Required
CV (CS1-H, CJ1-
H, CJ1M, or S
CS1D only) D
FRMCV
@FRMCV S: Word contain-
284 |ing CV-series
memory address
D: Destination
Index Register
CONVERT Converts a CS/CJ-series PLC memory address to its equivalent CV- OQutput 1179
ADDRESS TOCV |~ | TOCV(285) | | series PLC memory address. Required
(CS1-H, CJ1-H,
CJ1M, or CS1D S
only) D
TOCV
@TOCV | .. .
S: Index Register
285 9

containing CS-
series memory
address

D: Destination
word

101

I nstruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DISABLE Disables peripheral servicing during program execution in one of the Output 1183
PERIPHERAL IOSP(287) | | Parallel Processing Modes or Peripheral Servicing Priority Mode. Required
SERVICING
(CS1D CPU Units
for Single-CPU
Systems, CS1-H,
CJ1-H, or CJ1IM
only)
IOSP
@I0SP
287
ENABLE Enables peripheral servicing that was disabled by IOSP(287) for pro- | Output 1185
PERIPHERAL IORS(288) || gram execution in one of the Parallel Processing Modes or Peripheral | Not required
SERVICING Servicing Priority Mode.
(CS1D CPU Unit
for Single-CPU
Systems, CS1-H,
CJ1-H, or CJ1IM
only)
IORS
288
2-2-30 Block Programming Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
EIF_QSEEAM —{ &PRG(096) | | Define a block programming area. For every BPRG(096) there must Output 1191
BEGIN (996) | | be a corresponding BEND(801). Required
N
BPRG I I BPRG o
096 | N: Block program o
number
Block program
Executed when the execu-
A tion condition is ON.
BEND
BLOCK Define a block programming area. For every BPRG(096) there must be | Block program | 1191
PROGRAM END a corresponding BEND(801). Required
BEND
801
BLOCK BPPS Pause and restart the specified block program from another block Block program | 1193
PROGRAM (811 program. Required
PAUSE —|
BPPS N
811 |N: Block program | —}—————BPRG
number
to
B BPPS(811) executed
BEND for block program n.
————BPRG
4 n
o Block program n. Once
BEND paused this block program
will not be executed even

if bit "a" is ON.

102

I nstruction Functions

Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition

BLOCK BPRS Pause and restart the specified block program from another block Block program | 1193
PROGRAM (812) program. Required

RESTART

812
N: Block program —F————BPRa
number
to
BPRS n
to BPRS(812) executed
BEND for block program n.
———1BPRaG
4 n
. Block program n. This block
BEND program will now be executed
as long as bit "a"is ON.
CONDITIONAL | EXIT(806) EXIT(806) without an operand bit exits the program if the execution | Block program | 1199
BLOCK EXIT condition is ON. Required
EXIT | B: Bit operand : :
: Execution Execution
806 BRRG condition condition
OFF ON
A

"A" executed.| "A" executed.

Execution condition

EXIT
B "B" executed. ,’l
BEND /’
Block ended.
CONDITIONAL | EXIT(806)B EXIT(806) without an operand bit exits the program if the execution | Block program | 1199
BLOCK EXIT condition is ON. Required
EXIT | B: Bit operand Operand bit Operand bit
806 {1 BPRG | OFF ON
(ON for (OFF for EXIT
EXIT NOT) NOT)
A "A" executed. | "A" executed.
EXIT R (EXIT NOT R) s,
B "B" executed.
BEND #
Block ended.
CONDITIONAL EXIT NOT(806) EXIT(806) without an operand bit exits the program if the execution Block program | 1199
BLOCK EXIT B condition is OFF. Required
NOT
EXIT NOT | B: Bit operand
806

103

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
CONDITIONAL | IF (802) If the execution condition is ON, the instructions between IF(802) and | Block program | 1196
BLOCK ELSE(803) will be executed and if the execution condition is OFF, the | Required
BRANCHING instructions between ELSE(803) and IEND(804) will be executed.
IF
802 Execution . NO
condition gondition ON2
P YES
A
"A" executed (be- "B" executed
ELSE tween IF and ELSE). (after ELSE).
I
B
[END IEND
(B:(L)(l;lngIONAL IF (802) If the operand bit is ON, the instructions between IF(802) and BIOCk_ program | 1196
BRANCHING B ELSE(803) will be executed. If the operand bit is OFF, the instructions | Required
F between ELSE(803) and IEND(804) will be executed.
B: Bit operand
802
Operand bit
ON?
IFR (IF NOTR
() YES
A
"A" executed "B" executed
ELSE fegesen I and (after ELSE).
|
B
IEND IEND
CONDITIONAL IF (802) NOT The instructions between IF(802) and ELSE(803) will be executed and | Block program | 1196
BLOCK B if the operand bit is ON, the instructions be ELSE(803) and IEND(804) | Required
BRANCHING will be executed is the operand bit is OFF.
(NOT) .
IF NOT | B: Bit operand
802
CONDITIONAL If the ELSE(803) instruction is omitted and the operand bit is ON, the | Block program | 1196
BLOCK instructions between IF(802) and IEND(804) will be executed Required
BRANCHING
(ELSE)
ELSE
803
CONDITIONAL If the operand bit is OFF, only the instructions after IEND(804) will be | Block program | 1196
BLOCK executed. Required
BRANCHING
END
IEND
804

104

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ONE CYCLE AND | WAIT(805) If the execution condition is ON for WAIT(805), the rest of the Block program | 1202
WAIT instruction in the block program will be skipped. Required
WAIT Execution Execution Execution
805 condition condition condition
OFF OFF N
i 1
—F———8PRa w o
executed.; ! Iy
A
§ L
Execution i ‘/ i ‘/ "B" executed.
condition i) i ;!
by LA
WAIT 0 Vo
B E ll’ E ll’
BEND ¥ |/
c ,’I“C" ."“C“ "C" executed.
| executed. || executed.
%—J
Wait
ONE CYCLE AND | WAIT(805) If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the Block program | 1202
WAIT B instructions in the block program will be skipped. In the next cycle, Required
WAIT none of the block program will be executed except for the execution
805 | n. i condition for WAIT(805) or WAIT(805) NOT. When the execution condi-
B: Bit operand tion goes ON (OFF for WAIT(805) NOT), the instruction from
WAIT(805) or WAIT(805) NOT to the end of the program will be exe-
cuted.
ONE CYCLE AND | WAIT(805) NOT If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the Block program | 1202
WAIT (NOT) B instructions in the block program will be skipped. In the next cycle, Required
WAIT NOT none of the block program will be executed except for the execution
805 | B: Bit operand condition for WAIT(805) or WAIT(805) NOT. When the execution condi-
: p tion goes ON (OFF for WAIT(805) NOT), the instruction from
WAIT(805) or WAIT(805) NOT to the end of the program will be exe-
cuted.
HUNDRED-MS | TIMW(813) Delays execution of the block program until the specified time has Block program | 1206
TIMER WAIT N elapsed. Execution continues from the next instruction after Required
T”\é'l’;’ sV TIMW(813)/TIMWX(816) when the timer times ou.
SV: 0t0 999.9 s for BCD and
(BCD) | N: Timer number BPRG 0 to 6,553.5 s for binary
SV: Set value
TIMWX
816 | TIMWX(816) A y E
(Binary) N executed., 4 .
(CS1-H, CJ1-H, SV A AT P
CJ1M, or CS1D £ S
°MY) | N: Timer number TIMW N gy S LA
SV: Set value S preget. K
1 /I : ,’
B LS L "B" executed.
BEND
"C" executed.
C

105

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
COUNTER WAIT | CNTW(814) Delays execution of the rest of the block program until the specified count | BIOCk program | 1209
CNTW N has been achieved. Execution will be continued from the next instruction Required
814 SV after CNTW(814)/CNTWX(818) when the counter counts out.
(BCD) SV: 0 to 9,999 times for BCD and
BPRG 0 to 65,535 times for binary
CNTWX | N: Counter
~ 818 | number \ ‘
(cs1 H(%‘B‘frﬁ) SV: Set value " i /
CIIM. or Cs1p | Count input A executed,’ ,," i
only) | CNTWX(818) P S
N TIMW N
SV S sV / s
R preset. /" [Time elapsed]
N: Counter e i,’/ i,/l "B" executed.
number : '
SV: Set value BEND
I: Countinput e e "C" executed.
C executed. | executed.
JVEAI\II:I'MS TIMER | TMHW(815) Delays execution of the rest of the block program until the specified | Block program | 1212
N time has elapsed. Execution will be continued from the next Required
TM:}’; sV instruction after TMHW(815)/TMHWX(818) when the timer times out.
SV: 0to 99.99 s for BCD
(BCD) | n: Timer number BPRG and 0 to 655.35 s for binary
SV: Set value
TMHWX
817 | TMHWX(817) upr 4 .
(Binary) N executed. /I A
(CS1-H, CJ1-H, sV A e ;o
CJ1M, or CS1D FA Ao
onl P /
¥) N: Timer number TMHW N S\ 7 |
SV: Set value s preseét. /[Time elapsed.
B E s i ,/, "B" executed.
BEND
"C" executed.
C

106

I nstruction Functions

Section 2-2

Location Page

Instruction
Mnemonic

Symbol/Operand

Function
Execution

condition

Block program | 1215

Code

LOOP --

LOOP
809

LOOP(809) designates the beginning of the loop program.

Required

Execution Execution
condition condition
OFF OFF

Execution Execution
condition condition
ON OFF

BPRG

LOOP ;

Execution conditio ,/ ’,’
§ /
7 7

LEND

% Loop repeated

BEND

Block program | 1215

LEND
LEND

810

LEND (810)

LEND(810) or LEND(810) NOT specifies the end of the loop. When
LEND(810) or LEND(810) NOT is reached, program execution will loop
back to the next previous LOOP(809) until the operand bit for

LEND(810) or LEND(810) NOT turns ON or OFF (respectively) or until
the execution condition for LEND(810) turns ON.

Required

Block program | 1215

LEND

LEND
810

LEND (810)

B: Bit operand

If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT),
B execution of the loop is repeated starting with the next instruction after

LOOP(809). If the operand bit is ON for LEND(810) (or OFF for
LEND(810) NOT), the loop is ended and execution continues to the
next instruction after LEND(810) or LEND(810) NOT.

Required

Operand Operand

Operand Operand
bit OFF bit OFF

bit ON bit OFF

Il BPRG

LOOP y p

LEND R (LEND NOTR) ’

T J

< Loop repeated

BEND
Note The status of the operand bit would be
reversed for LEND(810) NOT.

Block program | 1215

LEND NOT

LEND NOT
810

LEND(810) NOT

B: Bit operand

LEND(810) or LEND(810) NOT specifies the end of the loop. When
LEND(810) or LEND(810) NOT is reached, program execution will loop
back to the next previous LOOP(809) until the operand bit for

LEND(810) or LEND(810) NOT turns ON or OFF (respectively) or until
the execution condition for LEND(810) turns ON.

Required

107

I nstruction Functions

Section 2-2

2-2-31 Text String Processing Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

MOV STRING

MOV$
@MOoVvs$
664

—| MOV$(664)
S

D

S: 1st source
word

D: 1st destination
word

Transfers a text string.

S

[ellullelbd

CcC|m|a(®m
[ollul{e]b

[aulimallwlies)

Output
Required

1221

CONCATENATE
STRING
+$
@+$
656

+$(656)
S1
S2
D

S1: Text string 1
S2: Text string 2
D: First

destination word

Links one text string to another text string.

S1—¢ S$2—

Output
Required

1223

GET STRING
LEFT

LEFT$
@LEFT$

652

— LEFT$(652)
S1
S2
D

S1: Text string
first word

S2: Number of
characters

D: First
destination word

Fetches a designated number of characters from the left (beginning)
of a text string.

S2| 00 : 04

}/ . D A

S1

(@]
lw]les]

c|m|O(>
c|To|wm

Output
Required

1226

GET STRING
RIGHT

RGHT$
@RGHT$

653

— RGHT$(653)
S1
S2
D

S1: Text string
first word

S2: Number of
characters

D: First
destination word

Reads a designated number of characters from the right (end) of a
text string.

S1 A s2[00 { 08] D

E
G NUL

Output
Required

1228

GET STRING
MIDDLE

MID$
@MID$
654

MID$(654)
S1
S2
S3
D

S1: Text string
first word

S2: Number of
characters

S3: Beginning
position

D: First
destination word

Reads a designated number of characters from any position in the
middle of a text string.

S2[00 | 06

D—

—|®(m
Ccle|xT|™

NUL | N

82 00 ! 05

Output
Required

1230

108

I nstruction Functions

Section 2-2

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

FIND IN STRING

FIND
@FIND$

660

FIND$(660)
S1
S2

D

S1: Source text
string first word
S$2: Found text
string first word
D: First
destination word

S1—

4-_:3

c|m|O(>
c|To|wm

Finds a designated text string from within a text string.

Found data

D—| 00

03

2—[C [NUL

Output
Required

1233

STRING LENGTH

LENS$
@LENS$
650

LENS$(650)
S
D

S: Text string first
word
D: 1st destination
word

Calculates the length of a text string.

S1—> 1 2

3 4

}/—»D 00 | 05

NUL

Output
Required

1235

REPLACE IN
STRING

RPLC$
@RPLC$
661

RPLC$(654)
S1
S2
S3
S4
D

S1: Text string
first word

S2: Replacement
text string first
word

S3: Number of
characters

S4: Beginning
position

D: First
destination word

position.

AEN

S3|_00 04

Replaces a text string with a designated text string from a designated

f‘\sm K

C|T|x[O|>

T NUL |

=

C—| O[O

NUL

S4| 00 ! 05

Output
Required

1237

DELETE STRING

DEL$
@DELS$
658

DEL$(658)
S1
S2
S3

D

S1: Text string
first word

S2: Number of
characters

S3: Beginning
position

D: First
destination word

Number

of characters to be

deleted (designated by S2).

S1—

-

Deletes a designated text string from the middle of a text string.

D—

c|T|of>

NUL

S3| 00 05

Output
Required

1240

109

I nstruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
EXCHANGE ; ; ; ; ; Output 1242
STRING ——IXCHG$(665) Replaces a designated text string with another designated text string. Required
XCHG$ Ex1 A B Ex1 C D
@XCHG$ e T X TNUC T NOL
665 EX2 o Nz I az o
Ex1: 1st Ex2[__C D Ex2 A B
exchange word 1 NUL NUL NUL NUL
Ex2: 1st
exchange word 2
CLEAR STRING ; ; ; Output 1245
— Clears an entire text string with NUL (00 hex).
CLR$ CLR$(666) g () Required
@CLR$ S s—[_ A B S [NUL NUL
666 C D — UL NUL
S: Text string first NUL : NUL UL : NUL
word
INSERT INTO : - : : Output 1246
STRING — INSs(657) Deletes a designated text string from the middle of a text string. Required
INSS St s2-[M T N
@INS$ NUL | NUL
657 S2
S1—>| A B D—|
S3 C D Js3[00 1 06]
E F+ Inserted
D G H " characters
S1: Base text NUL | NUL
string first word NUL : NUL
S2: Inserted text
string first word
S3: Beginning
position
D: First
destination word
String Compari- LD Sting comparison instructions (=%, <>$, <$, <=$, >$, >=$) compare two 1250
son text strings from the beginning, in terms of value of the ASCII codes. If | D: Not
LD, AND, OR + |— Symbol the result of the comparison is true, an ON execution condition is cre- | required
=$, <>$, <$, <=$, ated for a LOAD, AND, or OR. AND, OR:
>$, >=$ S1 Required
670 (=%)
671 (<>$) S2
672 (<$)
674 (>%) | —
675 (>-3) Symbol
S1
S2
OR
—1 Symbol
S1
S2
S1: Text string 1
S2: Text string 2

110

I nstruction Functions Section 2-2

2-2-32 Task Control Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TASK ON i Output 1255
— Makes the specified task executable.
TKON TKON(820) P Required
@TKON N The specified task's task number The specified task's task number
820 is higher than the local task's is lower than the local task's task
N: Task number |task number (m<n). number (m>n).
Task m Task m
I TkoN O .
n i i
! . [Be-
Becomes | 1 END ; comest_
END execut- ! i g)t()ﬁ: iun
ableinthat| 1 ' |the next
cycle. L — e TR T~< |cycle.
Task n \ Task n \
CH |- I TKoN
n
END END
TASK OFF " : Output 1258
— Puts the specified task into standby status.
TKOF TKOF(821) S v 3 Required
@TKOF N The specified task's task num- The specified task's task num-
821 ber is higher than the local ber is lower than the local
N: Task number task's task number (m<n). task's task number (m>n).
Task m Task m I
—{ TKoF (CH |+
n
In stand- END In stand-
by status by status
that the next
cycle. e ™~ |cycle.
Taskn \ Task n \
OH i+ ——{ TKoF H
e i n
i END | END
I\ _______ o < w

111

I nstruction Functions

Section 2-2

2-2-33 Model Conversion Instructions (CPU Unit Ver. 3.0 or Later Only)

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

BLOCK
TRANSFER

XFERC
@XFERC

565

——XFERC(565)

N

S

D

N: Number of
words

S: 1st source
word

D: 1st destination
word

Transfers the specified number of consecutive words.
S D

o N words o

D+(N—1)

S+(N-1)

Output
Required

1263

SINGLE WORD
DISTRIBUTE

DISTC
@DISTC

566

— DISTC(566)
S
Bs
Of

S: Source word

Bs: Destination
base address

Of: Offset

Transfers the source word to a destination word calculated by adding
an offset value to the base address. Can also write to a stack (Stack
Push Operation).

Bs

Bs+n

Output
Required

1266

DATA COLLECT

COLLC
@coLLC
567

—{COLLC(567)
Bs
Of
D

Bs: Source base
address
Of: Offset

D: Destination
word

Transfers the source word (calculated by adding an offset value to the
base address) to the destination word. Can also read data from a
stack in FIFO or LIFO order (Stack Read Operation).

Bs

n---:

Bs+n |

Output
Required

1269

MOVE BIT

MOVBC
@MovBC

568

—MOVBC(568)
S
C
D

S: Source word or
data

C: Control word
D: Destination
word

T]
¥

Output
Required

1273

BIT COUNTER

BCNTC
@BCNTC

621

—BCNTC(621)
N
S
R

N: Number of
words (BCD)
S: 1st source
word

R: Result word

Counts the total number of ON bits in the specified word(s).

S

N words
Counts the number
of ON bits.

to

S+(N-1) BCD result

 —

Output
Required

1275

112

I nstruction Functions

Section 2-2

2-2-34 Special Function Block Instructions

D2: Destination
word

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
GET VARIABLE Outputs the FINS command variable type (data area) code and word | Output 1277
ID GETID(286)| | address for the specified variable or address. This instruction is gener- | Required
GETID S ally used to get the assigned address of a variable in a function block.
@GETID
286 D1
D2
S: Variable or
address
D1: ID code

113

Alphabetical List of Instructions by Mnemonic Section 2-3

2-3 Alphabetical List of Instructions by Mnemonic

A

Mnemonic Instruction Function code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

ACC ACCELERATION CON- | 888 @ACC 896
TROL

ACOS ARC COSINE 464 @ACOS - 625

ACOSD DOUBLE ARC 855 @ACOSD 682
COSINE

AND AND --- @AND %AND !IAND 165

AND < AND LESS THAN 310 291

AND <$ AND STRING LESS | 672 1250
THAN

AND <> AND NOT EQUAL 305 - - --- 291

AND <>$ AND STRING NOT 671 --- --- --- 1250
EQUAL

AND <>D AND DOUBLE FLOAT- | 336 694
ING NOT EQUAL

AND <> DT AND TIME NOT 342 297
EQUAL

AND <>F AND FLOATING NOT | 330 - - - 636
EQUAL

AND <>L AND DOUBLE NOT 306 201
EQUAL

AND <>S AND SIGNED NOT 307 - - --- 291
EQUAL

AND <>SL AND DOUBLE 308 291
SIGNED NOT EQUAL

AND <D AND DOUBLE FLOAT- | 337 - - --- 694
ING LESS THAN

AND <DT AND TIME LESS 343 - - --- 297
THAN

AND <F AND FLOATING LESS |331 636
THAN

AND <L AND DOUBLE LESS 311 --- --- --- 291
THAN

AND <S AND SIGNED LESS 312 - 291
THAN

AND <SL AND DOUBLE 313 - --- --- 291
SIGNED LESS THAN

AND = AND EQUAL 300 - 291

AND =$ AND STRING EQUALS | 670 - - 1250

AND =D AND DOUBLE FLOAT- | 335 - - 694
ING EQUAL

AND =DT AND TIME EQUAL 341 --- --- --- 297

AND =F AND FLOATING 329 --- --- --- 636
EQUAL

AND =L AND DOUBLE EQUAL | 301 - - 291

AND =S AND SIGNED EQUAL | 302 - - 291

AND =SL AND DOUBLE 303 - - 291
SIGNED EQUAL

AND > AND GREATER THAN | 320 --- --- - 291

AND >$ AND STRING 674 --- -—- - 1250
GREATER THAN

AND >D AND DOUBLE FLOAT- | 339 - - 694
ING GREATER THAN

AND >DT AND TIME GREATER | 345 --- - - 297
THAN

AND >F AND FLOATING 333 - - 636
GREATER THAN

114

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction Function code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

AND >L AND DOUBLE 321 291
GREATER THAN

AND >S AND SIGNED 322 201
GREATER THAN

AND >SL AND DOUBLE 323 201
SIGNED GREATER
THAN

AND LD AND LOAD 172

AND NOT AND NOT IAND NOT 167

AND TST AND BIT TEST 350 182

AND TSTN AND BIT TEST 351 182

AND <= AND LESS THAN OR | 315 291
EQUAL

AND <=$ AND STRING LESS 673 1250
THAN OR EQUAL

AND <=D AND DOUBLE FLOAT- |338 694
ING LESS THAN OR
EQUAL

AND <=DT AND TIME LESS 344 297
THAN OR EQUAL

AND <=F AND FLOATING LESS | 332 636
THAN OR EQUAL

AND <=L AND DOUBLE LESS 316 291
THAN OR EQUAL

AND <=S AND SIGNED LESS 317 291
THAN OR EQUAL

AND <=SL AND DOUBLE 318 201
SIGNED LESS THAN
OR EQUAL

AND >= AND GREATER THAN | 325 291
OR EQUAL

AND >=$ AND STRING 675 1250
GREATER THAN OR
EQUALS

AND >=D AND DOUBLE FLOAT- | 340 694
ING GREATER THAN
OR EQUAL

AND >=DT AND TIME GREATER | 346 297
THAN OR EQUAL

AND >=F AND FLOATING 334 636
GREATER THAN OR
EQUAL

AND >=L AND DOUBLE 326 201
GREATER THAN OR
EQUAL

AND >=S AND SIGNED 327 291
GREATER THAN OR
EQUAL

AND >=SL AND DOUBLE 328 291
SIGNED GREATER
THAN OR EQUAL

ANDL DOUBLE LOGICAL 610 @ANDL --- --- 550
AND

ANDW LOGICAL AND 034 @ANDW 548

APR ARITHMETIC 069 @APR 571
PROCESS

ASC ASCII CONVERT 086 @ASC 504

ASFT ASYNCHRONOUS 017 @ASFT 365
SHIFT REGISTER

ASIN ARC SINE 463 @ASIN 623

ASIND DOUBLE ARC SINE 854 @ASIND 680

ASL ARITHMETIC SHIFT 025 @ASL - --- 370
LEFT

115

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction Function code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
ASLL DOUBLE SHIFT LEFT | 570 @ASLL 371
ASR ARITHMETIC SHIFT | 026 @ASR 373
RIGHT
ASRL DOUBLE SHIFT 571 @ASRL 374
RIGHT
ATAN ARC TANGENT 465 @ATAN 627
ATAND DOUBLE ARC TAN- | 856 @ATAND 684
GENT
AVG AVERAGE 195 807
B
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
BAND DEAD BAND CON- 681 @BAND 781
TROL
BCD BINARY TO BCD 024 @BCD 487
BCDL DOUBLE BINARY TO | 059 @BCDL 489
BCD
BCDS SIGNED BINARY TO 471 @BCDS 523
BCD
BCMP UNSIGNED BLOCK 068 @BCMP 320
COMPARE
BCMP2 EXPANDED BLOCK 502 @BCMP2 322
COMPARE
BCNT BIT COUNTER 067 @BCNT --- 587
BCNTC BIT COUNTER 621 @BCNTC 1275
BDSL DOUBLE SIGNED 473 @BDSL 525
BINARY TO BCD
BEND BLOCK PROGRAM 801 1191
END
BIN BCD TO BINARY 023 @BIN 483
BINL DOUBLE BCD TO 058 @BINL 485
DOUBLE BINARY
BINS SIGNED BCD TO 470 @BINS 517
BINARY
BISL DOUBLE SIGNED 472 @BISL 520
BCD TO BINARY
BPPS BLOCK PROGRAM 811 1193
PAUSE
BPRG BLOCK PROGRAM 096 1191
BEGIN
BPRS BLOCK PROGRAM 812 1193
RESTART
BREAK BREAK LOOP 514 241
BSET BLOCK SET 071 @BSET 347
C
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
CADD CALENDAR ADD 730 @CADD 1122
CCL LOAD CONDITION 283 @CCL 1173
FLAGS
CCs SAVE CONDITION 282 @cCcCs 1171
FLAGS
CJP CONDITIONAL JUMP | 510 232
CJPN CONDITIONAL JUMP | 511 232
CLC CLEAR CARRY 041 @CLC 1166

116

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

CLI CLEAR INTERRUPT 691 @CLI --- --- 851
