

GigE Vision

SWIR CMOS PoE Camera

STC-LBS132POE-SWIR (1.3M / SWIR)

Product Specifications and User's Guide

Table of Contents

1	Product Precautions	9
2	Product conformity / compliance	9
3	Export and Trade Control Laws	9
4	Warranty	10
5	Software Licensing	10
5.	1 LWIP TCP/IP Licensing	10
6	Specifications	11
6.	1 Electronic Specifications	11
6.	2 Spectral Sensitivity Characteristics	13
6.	3 Acquisition image samples	13
6.	4 Mechanical Specifications	14
6.	5 Environmental Specifications	14
7	Connector Specifications	15
7.	1 RJ45 Connector	15
7.	2 Power/IO Connector	16
7.2	2.1 Opto-isolated input	18
7.2	2.2 Opto-isolated output	18
7.2	2.3 Open Collector GPIO	19
7.2	2.4 Input and Output Signal Timing (Hardware Trigger)	20
7.2	2.5 Input and Output Signal Timing (Software Trigger)	21
7.2	2.6 External Hardware Trigger Input Delay	22
7.2	2.6.1 External Trigger Signal Delay (Positive polarity trigger signal)	22
7.2	2.6.2 External Trigger Signal Delay (Negative polarity trigger signal)	22
7.2	2.6.3 Measured External Trigger Signal Delay through Opt-Isolated Port (Line 0)	23

	7.2.6.4 Measured External Trigger Signal Delay through Open Collector GPIO Port (Line 2)	24
8	B Dimensions	25
9	9 Sensor Information	26
	9.1 Pixel Transferring Image	. 26
1	10 Camera Operational Modes	27
	10.1 Normal Mode	. 27
	10.1.1 Timing	27
	10.2 Pulse width trigger mode	. 28
	10.2.1 Timing	28
	10.2.2 Exposure Timing with Positive Polarity Trigger Signal	29
	10.2.3 Exposure Timing with Negative Polarity Trigger Signal	30
	10.3 Edge Preset Trigger Mode	. 31
	10.3.1 Timing	31
	10.3.2 Exposure Timing with Positive Polarity Trigger Signal	32
	10.3.3 Exposure Timing with the Negative Polarity Trigger signal	33
	10.4 Edge Preset Trigger Mode (Trigger input while image is out)	. 34
	10.4.1 Timing	34
1	11 Camera Functions	35
	11.1 Save and load the camera settings	. 35
	11.1.1 Saving Camera Settings	35
	11.1.2 Loading Camera Settings	36
	11.1.3 Loading Camera Settings when Camera Power is on	36
	11.1.4 Camera Settings Initialization	36
	11.2 Frame rate	. 37
	11.3 Gain	. 37
	11.3.1 Analog Gain	37

11.3.2	Digital Gain3	7
11.4 E	xposure Time	8
11.5 B	Black Level	8
11.6 A	LC (Auto Light Control)39	9
11.6.1	ALC control method	0
11.6.2	Blooming Reduction Mode4	1
11.6.3	AGC (Auto Gain Contorl)4	1
11.6.4	Auto shutter	2
11.6.5	ALC settings procedure	2
11.7 B	Black Level Correction45	3
11.8 G	Samma correction45	3
11.9 R	OI (Region of Interest)44	4
11.10	Pixel Format49	5
11.11	Binning 49	5
11.12	Decimation40	6
11.13	Trigger4	7
11.13.1	Trigger signal processing procedure4	7
11.14	Image Flip48	8
11.15	Flat Field Correction Function48	8
11.15.1	FFC function procedure	9
11.16	LUT Control50	0
11.17	Defective pixel correction5	1
11.18	Counter And Timer Control 52	2
11.19	Event Control53	3
11.20	Chunk Control54	4
11.21	Action Control54	4
11.22	IEEE1588	5

12	GenICam command 57	7
12.1	DeviceControl	7
12.2	ImageFormatControl59)
12.3	AcquisitionControl 60)
12.4	AnalogControl 61	1
12.5	LUTControl62	2
12.6	FlatFieldCorrectionControll62	2
12.7	DigitallOControl63	3
12.8	LogicBlockControl 63	3
12.9	SoftwareSignalControl63	3
12.1	0 CounterAndTimerControl64	4
12.1	1 EventControl65	5
12.1	2 UserSetControl65	5
12.1	3 ChunkDataControl66	ô
12.1	4 ActionControl 66	ô
12.1	5 File AccessControl67	7
12.1	6 TestControl 67	7
12.1	7 TransportLayerControl 68	3
13	Revision History70)

Precautions for safety

Please read carefully this "Precautions for safety" before use the camera. Then the camera uses correctly with agreeing with below notes.

In this "Precautions for safety", notes divides into "Warning" and "Caution" to use the camera safety and prevent to harm and damage.

⚠ Warning	This shows, assumption for possibility of serious accident leading death or serious injury if ignore this note and camera uses incorrectly.
	This shows, assumption for possibility of bear the damage or physical damage if ignore this note and camera uses incorrectly.

About Graphic symbols

This symbol shows general prohibition.

This symbol shows completion or instruction.

[Environment / condition]

Do not use flammable or explosiveness atmospheres.

This will cause of personal injury or fire.

Do not use for "safety for human body" related usage.

This camera is designed for use "do not harm human body immediately" if by any chance the camera has malfunction.

Caution

Use and store under specified environmental conditions (Vibration, shock, temperature, humidity) in the specifications for this camera. This will cause of fire or damage the camera.

[Installation and cable wiring]

Marning

Do not use with out of power voltage range that is specified in the specifications for this camera

Do not wrong wiring.

This will cause of fire or malfunction.

This will cause of fire, electrification or malfunction.

The camera housing and 0 V line of camera inside circuit are isolated.

There is a risk of short circuit between camera inside ciurcuit and frame ground through other devices

This will cause of malfunction.

It is necessary to wiring and mounting that is specified in the specifications for this camera.

This will cause of fire or malfunction.

It is necessary to wiring with turn off the camera. This will cause of electrification or malfunction.

It is necessary to mounting the camera without stress for the cable.

This will case of electrification or fire.

[Usage instruction]

Warning

Do not touch the terminal and PCB board While turn on the camera.

This will cause of electrification or accident caused by malfunction.

Do not put combustibles near the camera.

This will cause of fire.

Do not use without usage that is specified in the specifications for this camera.

This will cause of personal injury or malfunction.

Do not push metals including screw driver into radiation holes.

This will cause of electrification or malfunction.

Do not touch the camera housing while or afterusing the camera.

There is a risk of get burned.

Do not push contamination into opening of the camera.

This will cause of electrification or malfunction.

Do not block the radiation holes.

This will cause of fire due to increase the camera inside temperature.

[Maintenance]

Do not disassemble or repair the camera. This will cause of fire, electrification or malfunction.

It is turn off the camera when maintaining or inspecting the camera.

This will cause of electrification.

Caution It is necessary to dispose as industrial waste. In EU, it is necessary to dispose of accordance with WEEE directive.

[Security Measures, Anti-virus protection]		
Install the latest commercial-quality antivirus software on the computer connected to the control system and maintain to keep the software up-to-date.		

1 Product Precautions

- Do not give shock to the camera.
- Do not haul or damage the camera cable.
- > Do not wrap the camera with any material while using the camera. This will cause the internal camera temperature to increase.
- When the camera moving or using the place that temperature difference is extreme, countermeasure for dew condensation (heat removal / cold removal) is necessary.
- While the camera is not using, keep the lens cap on the camera to prevent dust or contamination from getting in the sensor or filter and scratching or damaging it.

Do not keep the camera under the following conditions.

- · In wet, moist, high humidity or dusty place
- · Under direct sunlight
- · In extreme high or low temperature place
- · Near an object that releases a strong magnetic or electric filed
- · Place with strong vibrations
- Apply the power that satisfies the specified in specifications for the camera.
- The defective pixels may appear due to the sensor characteristics.
- > Use below recommend materials (or equivalent materials) to clean the surface of glass.
 - · Air dust: Non Freon air duster (NAKABAYASHI Co., LTD.)
 - · Alcohol: Propan-2-ol (SAN'El KAKO Co., LTD.)
 - Non-woven: nikowipe clean room (NKB)
- > Use a soft cloth to clean the camera.

2 Product conformity / compliance

Please confirm regulation in each country by responsibility of exporter and importer when exporting this product from Japan.

3 Export and Trade Control Laws

This product is classed as a commodity (or technology) requiring acquisition of export permission in accordance with foreign exchange and overseas trade control laws.

When this product is to be taken outside of Japan, adopt the required procedures such as application for export permission by the Japanese government.

When this product is to be taken outside of countries after imported from Japan, please confirm export and trade control laws of country and adopt the required procedures.

4 Warranty

■Warranty period

One year after delivery (However, the camera had malfunction with camera uses correctly) In below case for a fee even within warranty period.

- The malfunction caused by incorrect usage, incorrect modify or repair.
- The malfunction caused by external shock including the camera dropping after delivery the camera.
- The malfunction caused by fire, earthquake, flood disaster, thunderbolt struck, other natural disaster or wrong voltage.

■Warranty coverage

Exchange or repair the malfunction camera if the malfunction is occurred by our responsibility. "Warranty" mean is warranty for the delivered camera itself. Please accept the induction damage by the camera malfunction is not included.

5 Software Licensing

5.1 LWIP TCP/IP Licensing

The software in this camera includes LWIP TCP/IP implementation. The copyright information is

Copyright (c) 2001-2004 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

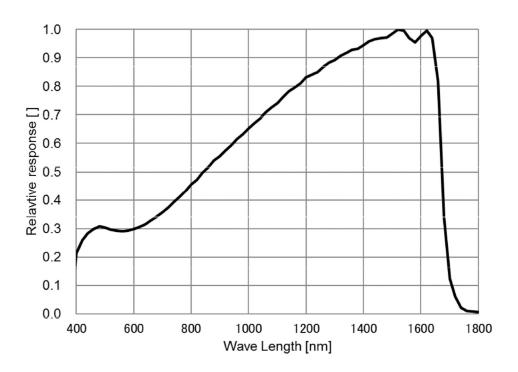
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6 Specifications

6.1 Electronic Specifications

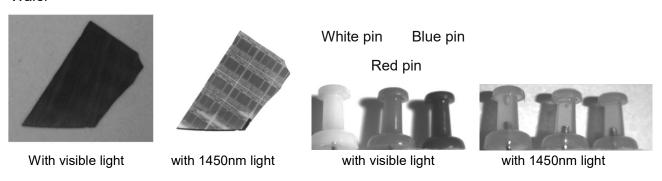
Product		STC-LBS132POE-SWIR	
Image Sensor		1/2" 1.3M Progressive SWIR CMOS	
		(SONY: IMX990)	
Shutter Ty	уре	Global Shutter	
Active Pic	ture Elements	1,280 (H) x 1,024 (V)	
Cell Size		5.0 (H) x 5.0 (V) μm	
Scanning	Mode	Full scanning (Full resolution) / ROI	
Frame rat	e (at full scanning)	8bits: 84 fps / 10bits: 42 fps / 10bits Packed: 56 fps / 12bits: 42 fps / 12bits Packed: 56 fps	
		Maximum frame rate: 2,039 fps @ 8 lines (8bits)	
ADC bit de	epth	10bits / 12bits	
Image Ou	tput Format	Mono8 / Mono10 / Mono10Packed / Mono12 / Mono12Packed	
Noise	8bits output	Less than 1 digit (Gain 0 dB)	
Level	10bits / 10bits Packed output	Less than 4 digits (Gain 0 dB)	
	12bits / 12bits Packed output	Less than 16 digits (Gain 0 dB)	
Spectral S	Sensitivity Range	400 to 1,700 nm	
Exposure	Time	8 μseconds to 16.777 seconds (Default: 11,749 μseconds)	
Gain	Analog Gain	0 to 14.8 dB (Default: 0 dB)	
	Digital Gain	x1 to x3 (Default: x1)	
ROI		Horizontal: 8 to 1,280 pixels, Vertical: 8 to 1,024 lines (Default: 1,280 x 1,024)	
		Adjustable steps for size: 8 pixels in horizontal direction and 8 lines in vertical direction	
		Adjustable steps for offset: 8 pixels in horizontal direction and 8 lines in vertical direction	
Gamma		Gamma 0.1 to 4.0 (Default: 1.0)	
Binning		Horizontal and Vertical decimation (2x2) / Off	
Decimation		Horizontal and Vertical decimation (2x2) / Off	
Image Flip		Horizontal / Vertical / Horizontal and Vertical / Off	
Defective	Pixel Correction	Up to 8,192 points (Default: On)	
Auto	Auto Exposure	Support (Default: OFF)	
Image	Auto Gain	Support (Default: OFF)	
Control	Auto White Balance	N/A	
Operational Mode		Edge preset trigger / Pulse width trigger / Free run	
Interface		PoE: IEEE802.3af CLASS3 (1000BASE-T)	
Protocol		GigE Vision 2.1 and GenlCam SFNC 2.6, IEEE1588 (PTP)	
I/O		One opto-isolated input, one opto-isolated output and one open collector GPIO (Input or output)	
Power	Input Voltage (*1) (*2)	+10.8 to +26.4 Vdc External power (via Power/IO connector) /	
		Power Over Ethernet (IEEE802.3af)	
	Consumption (*3)	+12 V / +24 V: 10.1 W, PoE: 10.2 W	

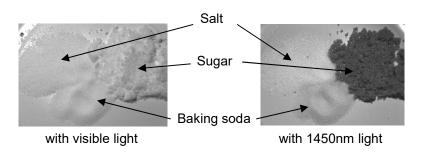
Default: Bold



Precautions

- (*1) The camera operates with external power when power suppling by external power supply and PoE to camera at same time.
- (*2) Please provide the range of input power voltage that specifies in the electronic specifications. If providing voltage is lower than this inputs power voltage, camera may not operate correctly.
- (*3) The power consumption will be change with cooling function of camera depending on temperature condition and operating condition.
- * When the strong light is incident on extensive area of the image sensor of camera, the image could be become dark due to characteristics of image sensor on this camera.


Please adjust incident light with adjusting lens iris or other way to avoid strong light is not incident on the image sensor of camera.


6.2 Spectral Sensitivity Characteristics

6.3 Acquisition image samples

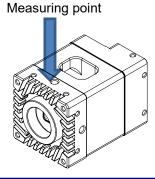
Wafer

6.4 Mechanical Specifications

Model Number	er STC-LBS132POE-SWIR	
Dimensions	58 (W) x 58 (H) x 85 (D) mm (*1)	
Optical Filter No Optical Filter		
Optical Center Accuracy	Positional accuracy in Horizontal and Vertical directions: +/- 0.4 mm	
	Rotational accuracy of Horizontal and Vertical: +/- 1.5 deg.	
Material	Aluminum Alloy	
Lens Mount	C mount	
Interface Connectors	Ethernet connector: RJ45 connector x 1	
	Power/IO connector: HR10A-7R-6PB (Hirose) or equivalent x 1	
Camera Mounting Eighteen M4 screw holes (Four on front, bottom, right, three on top and light p		
Weight Approximately 465 g		

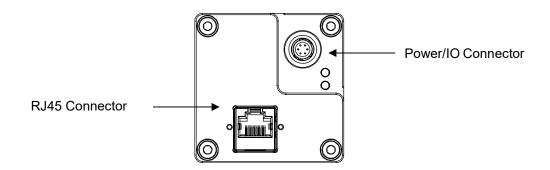
^(*1) Excluding the connectors

6.5 Environmental Specifications


Model Number		STC-LBS132POE-SWIR	
Operational Minimum		Environmental Temperature: 0 deg. C,	
Temperature /		Environmental Humidity: 20 to 85 %RH (No condensation)	
Humidity	Maximum	Environmental Temperature: +56 deg. C, Environmental Humidity: 20 to 85 %RH (No condensation), or	
		Camera housing temperature (top plate) shall not exceed +68 deg. C (*1)	
Storage Temperature / Humidity		Environmental Temperature: -20 to +75 deg. C,	
		Environmental Humidity: 20 to 85 %RH (No condensation)	
Vibration		20 Hz to 200 Hz to 20 Hz (5 min. / cycle), acceleration 10 G, XYZ 3 directions, 30 min. each	
Shock		Acceleration 38 G, half amplitude 6 ms, XYZ 3 directions, 3 times each	
Standard Compliancy		EMS: EN61000-6-2, EMI: EN55011	
RoHS		RoHS Compliance	

(*1) When the temperature sensor of camera (DeviceTemperatureSelector = Sensor) exceeding +15 deg. C, white spots and/or noise are increasing. Recommend using camera under less than 38 deg. C environmental temperature or camera housing temperature (top plate) shall not exceed +68 deg. C.

Please ensure the camera is installed with the appropriate heat dissipation. If camera has a mounted lens and a tripod with an aluminum plate, this could decrease the camera housing temperature for heat dissipation. When the internal temperature sensor (DeviceTemperatureSelector = Sensor) on the camera shows less than 29 deg. C, the camera housing temperature (top plate) will be less than 68 deg. C.

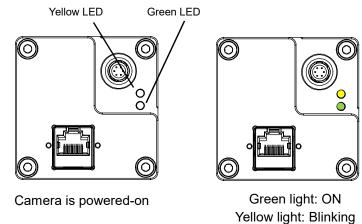

Taking these steps will maintain the heat rating of the electronic components of the camera.

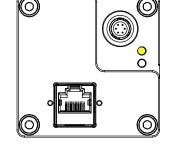
Upper side of camera

7 Connector Specifications

7.1 RJ45 Connector

This product is PoE compliant.


Please supply power (+10.8 to +26.4 Vdc) through Power/IO connector when using non-PoE-compliant NIC.


Pin Assignment

-	

Pin No.	Signal Name
1	TA+
2	TA-
3	TB+
4	TC+
5	TC-
6	TB-
7	TD+
8	TD-

Green LED	Yellow LED	Status
Green Light ON	Yellow Light OFF	Power ON (1 Gbps NIC)
Green Light OFF	Yellow Light OFF	Power ON (100 Mbps NIC)
Green Light ON	Yellow Light Blinking	1 Gbps Transferring
Green Light OFF	Yellow Light Blinking	100 Mbps Transferring

Green light: OFF Yellow light: Blinking 100 Mbps Transferring

<u>Please use a 1 Gbps supported NIC, Network Switcher and Ethernet cable.</u>

<u>Check the setting of NIC and Network Switcher being used is "1 Gbps transferring".</u>

1 Gbps Transferring

7.2 Power/IO Connector

HR10A-7R-6PB (Hirose) or equivalent


This connector is for the power supply and input / output signals.

The power from this connector is priority power for camera when power supplies through this connector and PoE at same time.

Please use HR10A-7P-6S (Hirose) or equivalent for cable.

Pin assignment

Pin No.	Signal Name	IN / OUT	Voltage
1	POWER IN	IN	+10.8 to +26.4 Vdc
2	Opto-isolated in	IN	Low: Smaller than +1.0 V
	(Line0)		High: +3.0 to +26.4 V
			* Potential difference between
			TRG_in and Opt. Isolated Common
3	Open Collector	IN / OUT	+3.0 to +26.4 V / Open Collector
	GPIO		
	(Line2)		
4	Opto-isolated out	OUT	Open Collector
	(Line1)		
5	Opto-isolated	IN	
	Common		
6	GND	IN	0 V

Configuration of Line2 (Pin No.3) and Line1 (Pin No.4)

Output signal can be assign by GenlCam command.

GenlCam
1) Frame Trigger Wait (Default for all output)
2) Frame Trigger Internal
3) Exposure Active
4) Acquisition Trigger Wait
5) Acquisition Trigger Internal
6) Sensor Read Out
7) Line 0
8) Line 2
9) User Output 1
10) User Output 2
11) Timer 0 Active
12) Software Signal 0
13) Software Signal 1
14) Logic Block 0
15) Pulse Per Second

1) Frame Trigger Wait

The condition of camera operation with trigger signal can be check.

"LOW" state of signal is out between "start exposing" to "image out".

2) Frame Trigger Internal

The input trigger signal with the trigger delay (camera internal process delay).

3) Exposure Active

While camera exposing, "HIGH" state of signal is out. The signal state will be "LOW" after finish exposing.

4) Acquisition Trigger Wait

While image transferring from camera to PC, "Low" state of signal is out. The signal state will be "High" after finish image transferring.

5) Acquisition Trigger Internal

The image transferring starts signal is out.

6) Sensor Read Out

FVAL (Frame valid, HIGH state) signal is out.

7) Line0

Debounced Line0 signal is out.

8) Line2

Debounced Line2 signal is out.

9) User Output 1 (User Output signal through Line 1)

Selected "HIGH" or "LOW" state of signal is out.

10) User Output 2 (User Output signal through Line 2)

Selected "HIGH" or "LOW" state of signal is out.

11) Timer 0 Active

Selected signal at "Timer Counter" is out.

When signal synchronizing with "Exposure Active" signal, signal can use for strobe control.

12) Software Signal 0

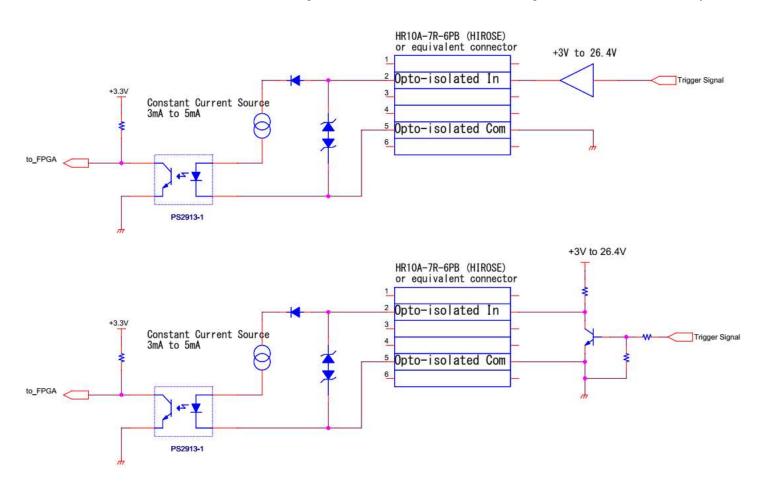
Selected signal for "Software Signal 0" at "Software Signal Control" is out.

13) Software Signal 1

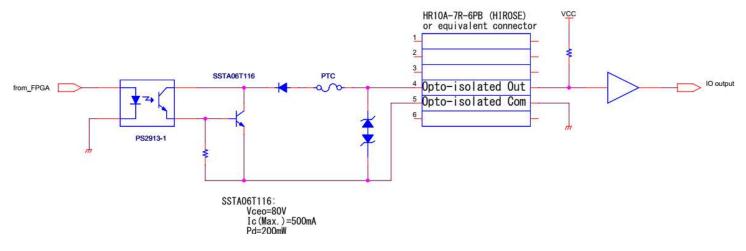
Selected signal for "Software Signal 1" at "Software Signal Control" is out.

14) Logic Block 0

"Logic Block 0" signal is out.


15) Pulse Per Second

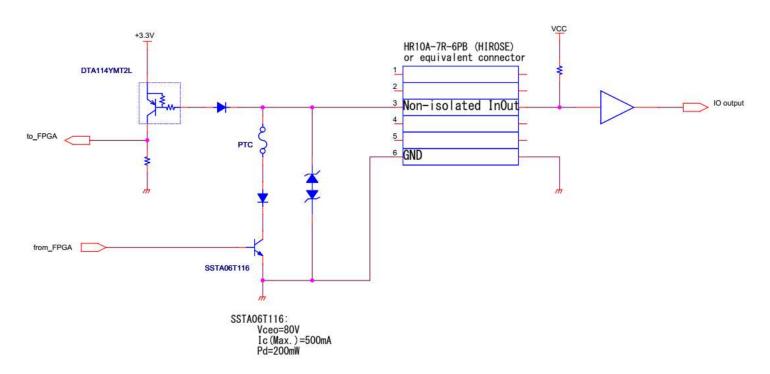
"Pulse / second" signal (50% Duty, 1 Hz interval) is out.


7.2.1 Opto-isolated input

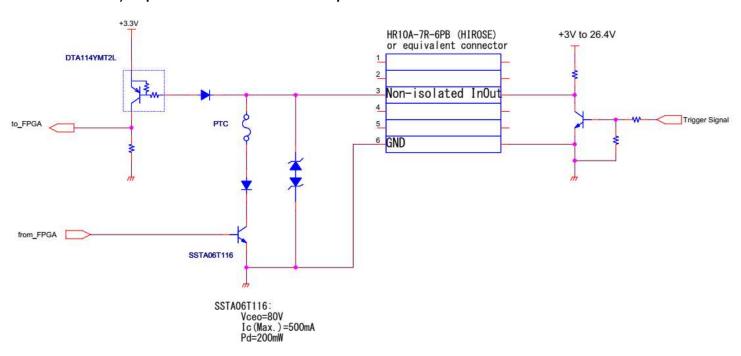
The camera has current limiting circuit on camera. The current limiting resistor does not necessary.

7.2.2 Opto-isolated output

It is necessary to have current limit control to keep less than 50 mA.



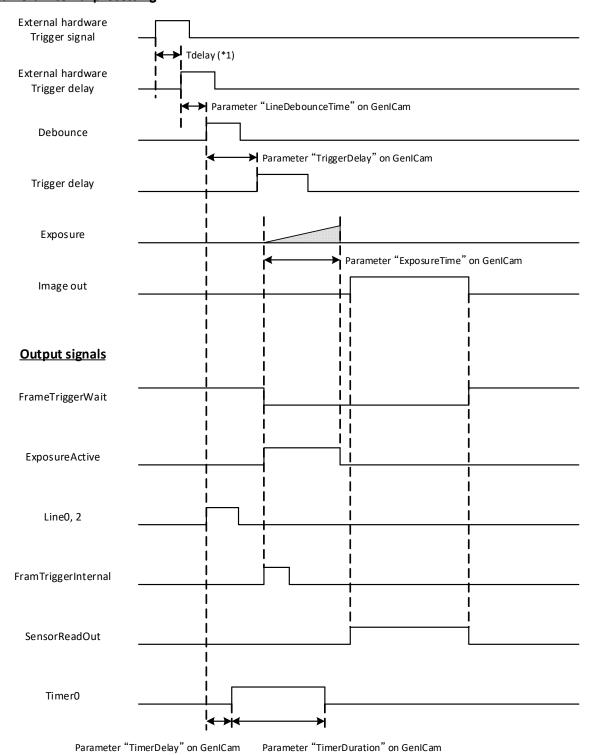
7.2.3 Open Collector GPIO


This GPIO can be used for input or output.

When using as output, it is necessary to have current limit control to keep current less than 50 mA. When using as input, current limiting resistor does not necessary. However, camera does not have current limiting circuit on camera. The camera inside circuit may get damage if accidentally uses as output without current limiting resistor. For safety, please add current limiting resistor even use as input.

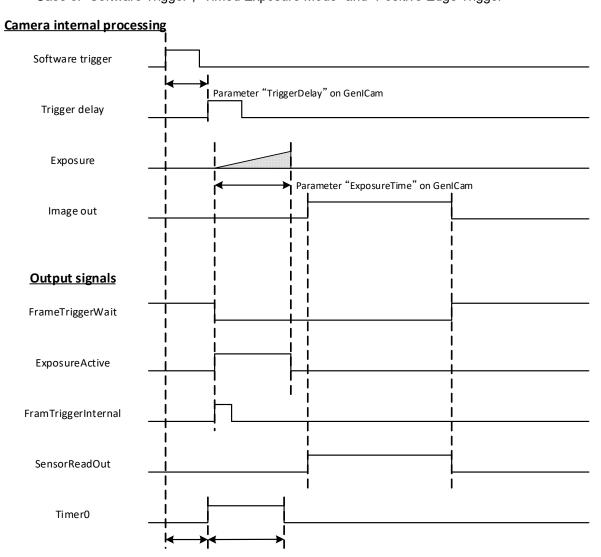
a) Open Collector GPIO uses as output

b) Open Collector GIPO uses as input



7.2.4 Input and Output Signal Timing (Hardware Trigger)

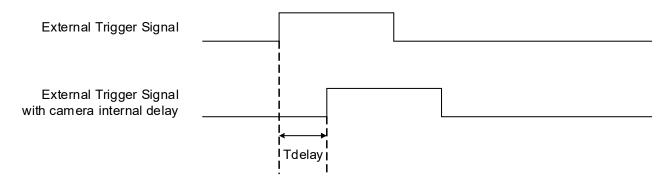
Case of "External Hardware Trigger", "Timed Exposure Mode" and "Positive Edge Trigger"


Camera internal processing

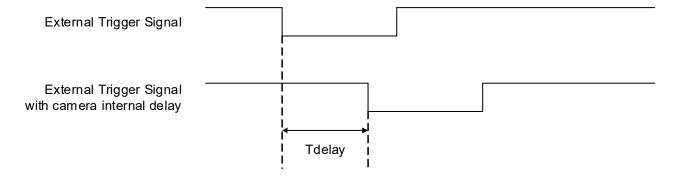
(*1) Please refers "External Hardware Trigger Input Delay" for more details about "External hardware trigger delay"

7.2.5 Input and Output Signal Timing (Software Trigger) Case of "Software Trigger", "Timed Exposure Mode" and "Positive Edge Trigger"

Parameter "TimerDelay" on GenlCam Parameter "TimerDuration" on GenlCam

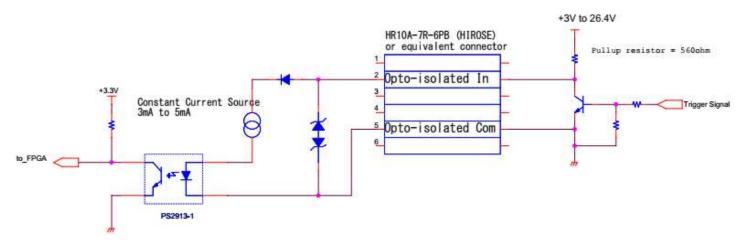


7.2.6 External Hardware Trigger Input Delay


The input trigger signal has some delay inside camera by photo coupler or transistor.

Please refers example measurement of delay in below.

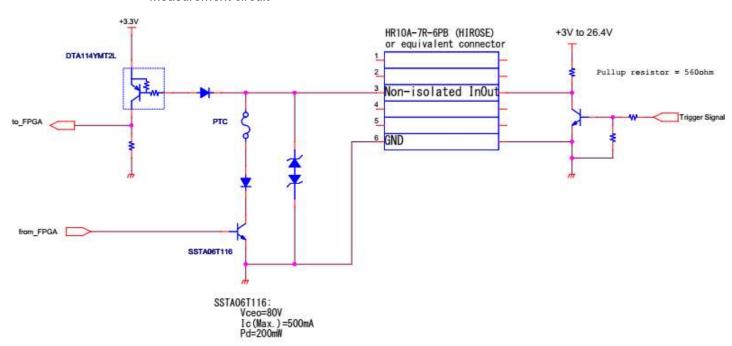
7.2.6.1 External Trigger Signal Delay (Positive polarity trigger signal)


7.2.6.2 External Trigger Signal Delay (Negative polarity trigger signal)

7.2.6.3 Measured External Trigger Signal Delay through Opt-Isolated Port (Line 0)

Measurement circuit

Positive polarity trigger signal

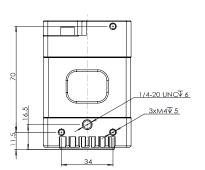

|--|

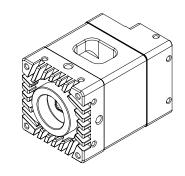
Pull-up voltage	Tdelay	Minimum active pulse duration	Pull-up voltage	Tdelay	Minimum active pulse duration
+3.3 V	3 µseconds	4 µseconds	+3.3 V	54 µseconds	57 µseconds
+12 V	2 µseconds	2 µseconds	+12 V	61 µseconds	65 µseconds
+24 V	2 µseconds	2 µseconds	+24 V	61 µseconds	65 µseconds

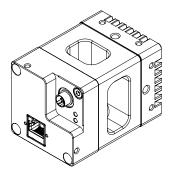
Note. Please use this measured delay as reference. The delay time may fluctuate depending on photo coupler variation, pull-up voltage and pull-up resister.

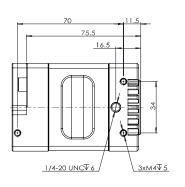
7.2.6.4 Measured External Trigger Signal Delay through Open Collector GPIO Port (Line 2)

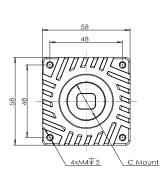
Measurement circuit

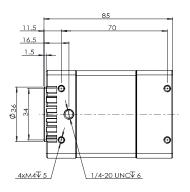

Positive polarity trigger signal

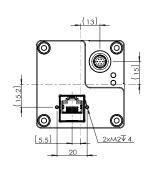

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Negative	nolarity	/ triaaar	eignal
Negative	Dulant	เมนนษา	Sidilai

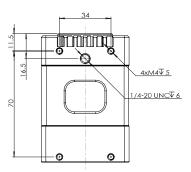

Pull-up voltage	Tdelay	Minimum active pulse duration	Pull-up voltage	Tdelay	Minimum active pulse duration
+3.3 V	3.9 µseconds	6 µseconds	+3.3 V	0.6 µseconds	6 µseconds
+12 V	3.8 µseconds	3 µseconds	+12 V	0.8 µseconds	3 µseconds
+24 V	2.2 µseconds	2 µseconds	+24 V	0.8 µseconds	2 µseconds

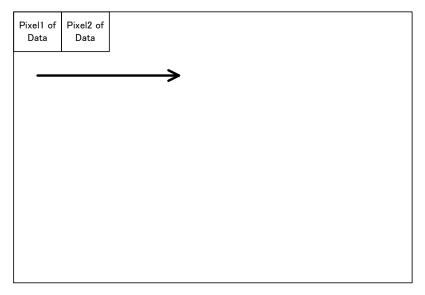

Note. Please use this measured delay as reference. The delay time may fluctuate depending on transistor variation, pull-up voltage and pull-up resister.


8 Dimensions





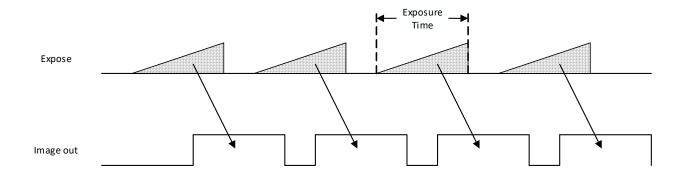




Unit: mm

9 Sensor Information

9.1 Pixel Transferring Image

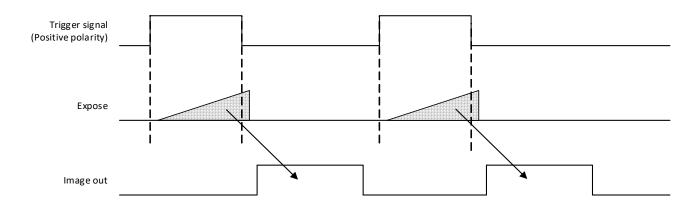

Pixel (m) of Data: mth pixel being transferred

10 Camera Operational Modes

10.1 Normal Mode

10.1.1Timing

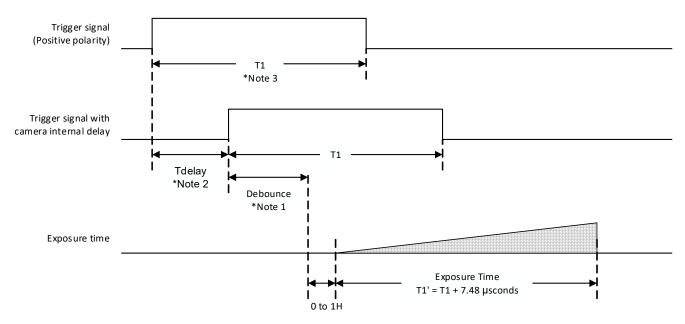
^{*} The exposure time for each line is same.



10.2 Pulse width trigger mode

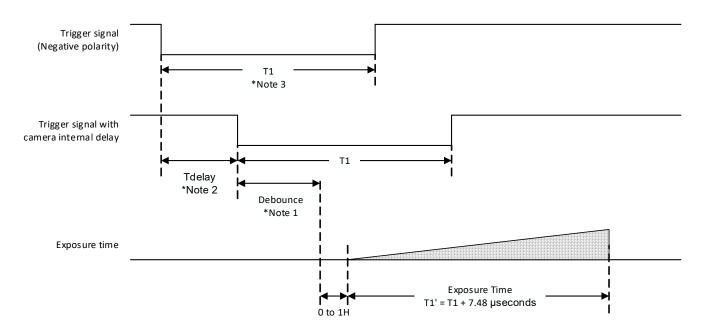
In this trigger mode with positive polarity, the expose starts at rising edge of trigger signal and stops at falling edge of trigger signal. The expose period is high states of trigger signal.

In this trigger mode with negative polarity, the expose starts at falling edge of trigger signal and stops at rising edge of trigger signal. The expose period is low states of trigger signal.


10.2.1Timing

Note: The exposure time is active pulse duration of trigger signal. Please refers "Exposure Timing" for more details.

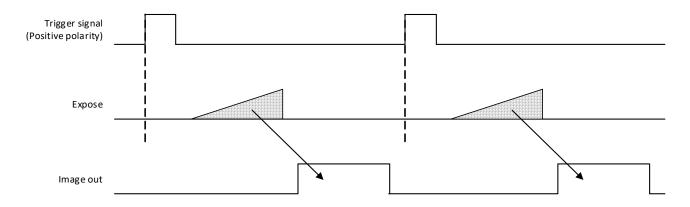
10.2.2Exposure Timing with Positive Polarity Trigger Signal


Mono8, Mono10: $1H = 9.428 \mu seconds$ Mono12: $1H = 13.091 \mu seconds$

- Note 1: The trigger signal will be removed by filtering if active pulse width of input trigger signal is less than "LineDebounceTime" setting time. Please input trigger signal has more than "LineDebounceTime" time active pulse width trigger signal.
- Note 2: Please refers "External Hardware Trigger Input Delay" for more details about "External hardware trigger delay".
- Note 3: Please refers "External Hardware Trigger Input Delay" for shortest active pulse duration of trigger signal.

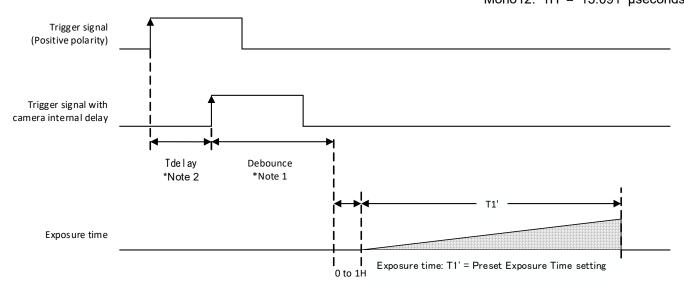
10.2.3Exposure Timing with Negative Polarity Trigger Signal

Mono8, Mono10: $1H = 9.428 \mu seconds$ Mono12: $1H = 13.091 \mu seconds$


- Note 1: The trigger signal will be removed by filtering if active pulse width of input trigger signal is less than "LineDebounceTime" setting time. Please input trigger signal has more than "LineDebounceTime" time active pulse width trigger signal.
- Note 2: Please refers "External Hardware Trigger Input Delay" for more details about "External hardware trigger delay".
- Note 3: Please refers "External Hardware Trigger Input Delay" for shortest active pulse duration of trigger signal.

10.3 Edge Preset Trigger Mode

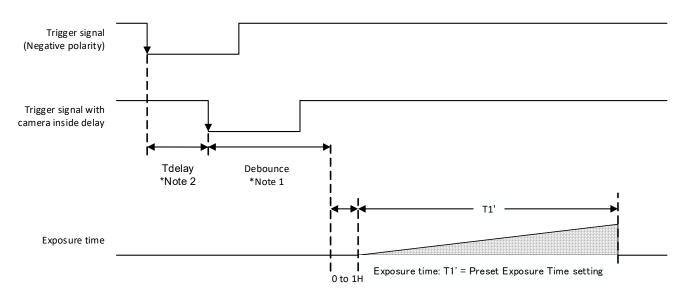
In this trigger mode with positive polarity, the expose starts at rising edge of trigger signal. The exposure duration time is based on preset exposure setting stored by camera setting communication. In this trigger mode with negative polarity, the expose starts at falling edge of trigger signal. The exposure duration time is based on preset exposure setting stored by camera setting communication.


10.3.1Timing

Note: The exposure time is "Exposure Time" on GenICam setting.

10.3.2Exposure Timing with Positive Polarity Trigger Signal

Mono8, Mono10: $1H = 9.428 \mu seconds$ Mono12: $1H = 13.091 \mu seconds$


Note 1: The trigger signal will be removed by filtering if active pulse width of input trigger signal is less than "LineDebounceTime" setting time. Please input trigger signal has more than "LineDebounceTime" time active pulse width trigger signal.

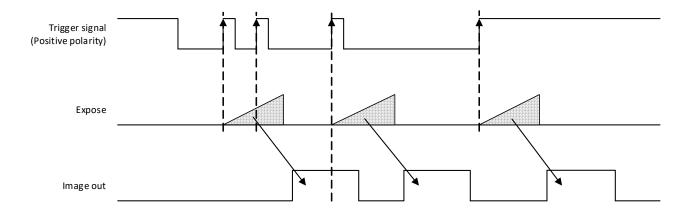
Note 2: Please refers "External Hardware Trigger Input Delay" for more details about "External hardware trigger delay".

10.3.3Exposure Timing with the Negative Polarity Trigger signal

Mono8, Mono10: $1H = 9.428 \mu seconds$ Mono12: $1H = 13.091 \mu seconds$

Note 1: The trigger signal will be removed by filtering if active pulse width of input trigger signal is less than "LineDebounceTime" setting time. Please input trigger signal has more than "LineDebounceTime" time active pulse width trigger signal.

Note 2: Please refers "External Hardware Trigger Input Delay" for more details about "External hardware trigger delay".


10.4 Edge Preset Trigger Mode (Trigger input while image is out)

In this trigger mode with positive polarity, the expose starts at rising edge of trigger signal.

The exposure duration time is based on the preset exposure setting stored by camera setting communication. In this trigger mode with negative polarity, the expose starts at falling edge of trigger signal.

The exposure duration time is based on the preset exposure setting stored by camera setting communication. However, if the trigger signal input while exposing with previous trigger signal or output image, trigger signal is disregard.

10.4.1Timing

Note: The exposure time is "Exposure Time" on GenICam setting.

11 Camera Functions

11.1 Save and load the camera settings

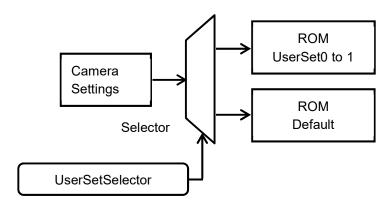
The camera has the camera setting save function, and camera setting including factory default loads function.

The camera has below two type of camera settings.

Default: The factory default settings (This setting cannot change)

UserSetX: Over writeable camera settings (X: 0 to 1)

These camera settings load from ROM to register in RAM on camera, and camera settings at register in RAM on camera save to ROM.


The camera settings saving and loading are controllable with Parameters ("UserSetSelector", "UserSetDefault"), and commands ("UserSetLoad", "UserSetSave") in "UserSetControl" category of GenlCam.

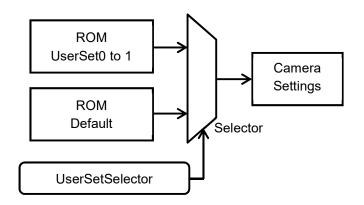
The details of the parameters and the functions are in the table below:

GenlCam Parameters

UserSetSelector	IEnumeration Type	Select "Default" or "UserSetX"
		"UserSetLoad" or "UserSetSave" process for selected settings.
UserSetLoad	ICommand Type	The camera settings load from ROM to register in RAM.
UserSetSave	ICommand Type	The camera settings at register in RAM save to ROM.
UserSetDefault	IEnumeration Type	Select which settings ("Default" or "UserSetX") load automatically when camera
		power is on. This selection saves automatically.

11.1.1 Saving Camera Settings

Setting Procedure

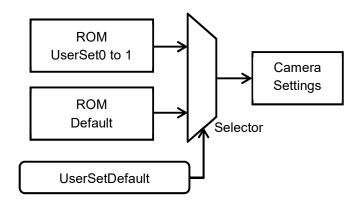

- 1. Selects "UserSetX" at "UserSetSelector"
- 2. Execute "UserSetSave"

When executing "UserSetSave", camera settings at the register in RAM are saved to the ROM that is selected at "UserSetSelector".

Caution:

"UserSetSave" CANNOT execute when "Default" was selected at "UserSetSelector"

11.1.2 Loading Camera Settings



When executing "UserSetLoad", camera settings load from selected ROM that was selected at "UserSetSelector" to register at RAM.

Setting Procedure

- 1. Select "UserSetX" (or Default) at "UserSetSelector"
- 2. Execute "User Set Load"

11.1.3 Loading Camera Settings when Camera Power is on

When the camera power is on, camera settings load from selected ROM that was selected at "UserSetDefault" to register at RAM.

Setting Procedure

1. Set "UserSetX" or "Default" at "UserSetDefault"

11.1.4 Camera Settings Initialization

Please follow the procedure in below for camera settings put back to factory default settings.

Setting Procedure

- 1. Selects "Default" at "UserSetSelector".
- 2. Executes "UserSetLoad".
- 3. Select "UserSetX" at "UserSetSelector".
- 4. Executes "UserSetSave".

11.2 Frame rate

This parameter sets the frame rare (fps) of output image from camera.

GenlCam Parameters

AcquisitionFrameRate	IFloat Type	Sets frame rate in Hz unit (*1)
		Range is changed with exposure time setting
		Default: 83.980233 (8bits output)

^(*1) The approximate value of set value, sets to camera and display it.

11.3 Gain

The gain has Analog Gain, Digital Gain.

11.3.1 Analog Gain

This parameter sets analog gain.

Selects "AnalogAll" at "GainSelector", sets gain at "Gain".

GenlCam Parameters

GainSelector	IEnumeration Type	Selects control gain
		AnalogAll: Analog Gain
Gain	IFloat Type	Analog Gain
		Range: 0 to 148
		Default: 0

Analog Gain Formula

Gain (dB) = Gain / 10

11.3.2 Digital Gain

This parameter sets digital gain.

Selects "DigitalAll" at "GainSelector", sets gain at "Gain".

GenICam Parameters

GainSelector	IEnumeration Type	Selects control gain
		DigitalAll: Digital Gain
DigitalGain	IFloat Type	Digital Gain
		Range: 0 to 255
		Default: 0

Digital Gain Formula

Gain (x times) = 1 + ("Digital Gain" / 128)

11.4 Exposure Time

This parameter sets variable exposure time.

The control method is selectable from

Manual exposure control, which uses preset exposure time.

Auto exposure control, which is maintain exposure time with brightness of target.

GenlCam Parameters

ExposureMode	IEnumeration Type	Exposure control selection
		Selection: "Off" and "Timed"
		Off: Exposure time is "1 / Frame rate"
		Timed: Exposure time is "ExposureTime"
ExposureTime	IFloat Type	Exposure time (in µsecond) (*1)
[ExposureTime		Range: 8.000000 to 16,777,215.000000
Selector]		Default: 11,749.000000
ExposureAuto	IEnumeration Type	Auto exposure ON / OFF selection (*2)

- (*1) The approximate value of set value, sets to camera and display it.
- (*2) Please sets range of auto exposure control with "ExposureAutoLimitMin" and "ExposureAutoLimitMax" when using auto exposure control.

11.5 Black Level

This parameter sets the black level (clamp level for black signal).

Sets the black level at "BlackLevel".

The lower limit of signal is clamped at this setting level. The signal does not lower than this.

BlackLevel	IFloat Type	Black Level
		Range:
		12bits output: 0 to 240
		10bits output: 0 to 60
		8bits output: 0 to 15
		Default: 0

11.6 ALC (Auto Light Control)

ALC function has two control methods, which is AGC (Auto Gain Control) and auto shutter. The AGC and auto shutter can be set individually.

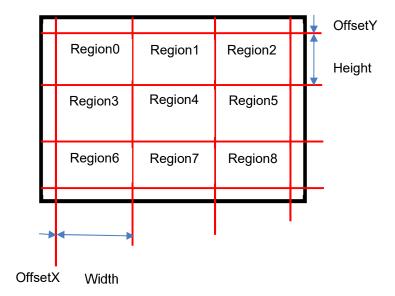
The camera parameters are adjusted to brightness of image is maintained with target brightness automatically with ALC function.

AGC or auto shutter have to set "On" to activate ALC function.

AutoLuminanceTarget	IInteger Type	Target brightness
		Range: 0 to 255
		Default: 128
AutoLuminanceRegion	IEnumeration Type	ALC weight region to set area, position and weight
Selector		Selection: Region 0 to Region 8
AutoLuminanceWidth	IInteger Type	Width for selected ALC weight region
		Range: 4 to 1,280
		Default: 405 for all regions
AutoLuminanceHeight	IInteger Type	Height for selected ALC weight region
		Range: 2 to 1,024
		Default: 317 for all regions
AutoLuminance	IInteger Type	Horizontal offset for selected ALC weight region
OffsetX		Range: 0 to 1,276
		Default: 32 (Region 0, 3 and 6), 437 (Region 1, 4 and 7),
		842 (Region 2, 5 and 8)
AutoLuminance	IInteger Type	Vertical offset for selected ALC weight region
OffsetY		Range: 0 to 2,998
		Default: 36 (Region 0 to 2), 353 (Region 3 to 5),
		670 (Region 6 to 8)
AutoLuminanceWeight	IInteger Type	Weight
		Range: 0 to 15
		Default: 1 * Sets 10 on Region 4 only
		Sets the weight for each weight area.
AutoLuminancePeak	IInteger Type	Importance ratio for the brightness peak at ALC control.
		Range: 0 to 255
		Default: 0

Target Brightness Formula (AutoLuminanceTarget)

12bits output: Target Brightness (Gradient) = "AutoLuminanceTarget" × 16 10bits output: Target Brightness (Gradient) = "AutoLuminanceTarget" × 4 8bits output: Target Brightness (Gradient) = "AutoLuminanceTarget"


About the importance ratio for brightness peak at ALC control (AutoLuminancePeak)

When setting 0, Average: 100 %, Peak: 0 %. The ALC control with brightness average. When setting 255, Average: 0 %, Peak: 100 %. The ALC control with brightness peak. When setting 128, Average: 50 %, Peak: 50 %.

11.6.1 ALC control method

The ALC control with weight region 0 to 8.

The weight area setting parameters are in below:

The brightness average and peak calculate for each weight area.

The target brightness comparison value calculates with "AutoLuminancePeak", the brightness average and peak then compare with target brightness to define necessary brightness control (to dark or to bright). The brightness of image maintains to "AutoLuminanceTarget" with AGC and auto shutter functions.

If AGC and auto shutter are ON for ALC control, auto shutter function maintains brightness first. The AGC function maintains brightness if brightness cannot maintain to "AutoLuminanceTarget" with auto shutter.

11.6.2 Blooming Reduction Mode

When using this mode, the blooming between pixels at pixel saturation, can be reduced. It is necessary to set more than 6 dB at AnalogGain when using this function.

GenlCam Parameter

BloomingReductionMode	IEnumeration	Blooming reduction mode selection
	Туре	Selection: ON (On), OFF (Off)
		Default: Off

11.6.3 AGC (Auto Gain Contorl)

The brightness of image maintains to keep target brightness with gain automatically. If the brightness of image is darker than target brightness, gain increases up to "GainAutoLimitMax". If the brightness of image is brighter than target brightness, gain decreases down to "GainAutoLimitMin".

GainSelector	IEnumeration Type	Adjustable gain selection
		Selected gain can be adjusting by Gain [GainSelector].
		Please select "AnalogAll" when AGC is turned on.
		Selection: "AnalogAll" (analog gain) and "DigitalAll" (digital gain)
		Default: "AnalogAll"
Gain [GainSelector]	IFloat Type	Gain
		Selected gain at "GainSelector" is adjusting
		Analog gain:
		Range: 0 to 148
		Default: 0
		Digital gain:
		Range: 0 to 255
		Default: 0
		Analog gain cannot adjustable when AGC is turned on.
GainAuto	IEnumeration Type	AGC ON / OFF selection
[GainSelector]		Selection: "ON" (Continuous) and "OFF" (Off)
		Default: OFF
GainAutoLimitMin	IFloat Type	Minimum gain for AGC
[GainSelector]		Range: 0 to 148
		Default: 0
		This cannot be set greater than "GainAutoLimitMax"
GainAutoLimitMax	IFloat Type	Maximum gain for AGC
[GainSelector]		Range: 0 to 148
	I	
		Default: 148

11.6.4 Auto shutter

The brightness of image maintains to keep target brightness with shutter automatically. If the brightness of image is darker than target brightness, exposure time extends up to "ExposureAutoLimitMax".

If the brightness of image is brighter than target brightness, exposure time becomes shorter up to "ExposureAutoLimitMin".

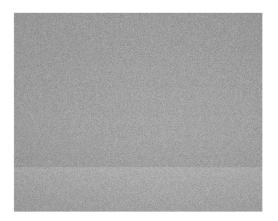
GenICam Parameters

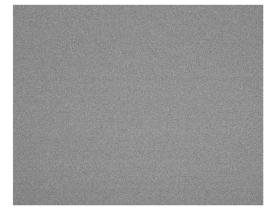
ExposureAuto	IEnumeration Type	Auto shutter ON / OFF selection
		Selection: "ON" (Continuous), "OFF" (Off)
		Default: "OFF"
ExposureAutoLimitMin	IFloat Type	Minimum exposure time (in µsecond) for auto shutter
		Range: 8 to 16,777,215
		Default: 8
ExposureAutoLimitMax	IFloat Type	Maximum exposure time (in µsecond) for auto shutter
		Range: 8 to 16,777,215
		Default: 11,749

11.6.5 ALC settings procedure

ALC Settings Procedure

- 1. Sets "AutoLuminanceWidth", "AutoLuminanceHeight", "AutoLuminanceOffsetX", "Aut LuminanceOffsetY" and "AutoLuminanceWeight" for "AutoLuminanceRegion0 to 8".
- 2. Sets "Continuous" for "GainAuto" when using AGC function.
- 3. Sets "GainAutoLimitMin" and "GainAutoLimitMax" when using AGC function.
- 4. Sets "Continuous" for "ExposureAuto" when using auto shutter function.
- 5. Sets "ExposureAutoLimitMin" and "ExposureAutoLimitMax" when using auto shutter function.
- 6. Sets "Auto Luminance Target".




11.7 Black Level Correction

When the exposure is starting while image is output, below left image, which is different offset image may acquire due to the characteristics of CMOS image sensor of this camera.

This issue can be avoided with adjusting timing of exposure start. But adjusting timing of exposure start influences frame rate.

Also, this issue can be improving when using Black Level Correction function without influences frame rate.

When "Black Level Correction" is Off

When "Black Level Correction" is On

GenlCam Parameters

BlackLevelCorrection	IEnumeration	Black Level Correction ON / OFF selection
	Туре	Selection: On, Off
		Default: On

^{*} Note1: The image may not saturate due to adjust Black level automatically when enabling Black Level Correction function.

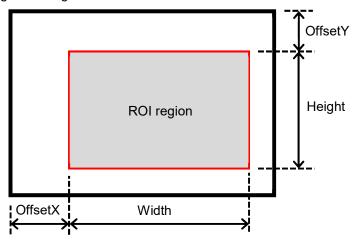
In this case, please adjust digital gain to saturate image.

Please adjust digital gain while checking image quality.

11.8 Gamma correction

The gamma correction is changeable.

Gamma	IFloat Type	Gamma correction
		Range: 0 to 4.0
		Default: 1.0


11.9 ROI (Region of Interest)

The specified region of image can be output from camera with ROI function.

GenlCam Parameters

Width	IInteger Type	Width (horizontal size) of output image (in pixel)
		("Width" + "OffsetX") should not exceeded maximum width.
Height	IInteger Type	Height (vertical size) of output image (in line)
		("Height" + "OffsetY") should not exceeded maximum height.
OffsetX	IInteger Type	Horizontal offset for output image (in pixel)
		Default: 0
		Adjustable steps: 8
OffsetY	IInteger Type	Vertical offset for output image (in line)
		Default: 0
		Adjustable steps: 8

The ROI region settings are below:

Width / Height setting range

		STC-LBS132POE-SWIR
Width	Setting range:	8 to 1,280 pixels
	Default:	1,280 pixels
	Setting steps	8 pixels
Height	Setting range:	8 to 1,024 lines
]	Default:	1,024 lines
	Setting steps	8 lines

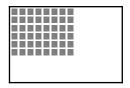
11.10 Pixel Format

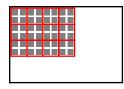
The image format from camera can be set on PixelFormat.

GenlCam Parameters

PixelFormat IEnumeration Type PixelFormat

The following chart shows the available Pixel Formats on camera:


Output Bits	PixelFormat
8bits	Mono8
10bits	Mono10
10bits Packed	Mono10Packed
12bits	Mono12
12bits Packed	Mono12Packed


Each format specified on GenlCam PFNC (Pixel Format Naming Convention).

11.11 Binning

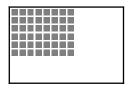
Binning is added adjacent pixels into one pixel.

The pixel data inside of red square add or average as one pixel.

Binning X (OFF), Y (OFF)

Binning X (ON), Y (ON)

BinningHorizontal	IInteger Type	Sets binning on horizontal direction
		Selection: 1: Disable Binning, 2: x2 Binning
		Default: Disable Binning
BinningVertical	IInteger Type	Sets binning on vertical direction
		Selection: 1: Disable Binning, 2: x2 Binning
		Default: Disable Binning


- (*1) Binning cannot change horizontal only or vertical only. Selection applies for horizontal and vertical.
- (*2) Binning and decimation cannot use simultaneously.



11.12 Decimation

When using Decimation mode, the decimated image can be output.

The images below show decimated pixels (red squares) where they are output.

Decimation X (OFF), Y (OFF)

Decimation X (ON), Y (ON)

DecimationHorizontal	IInteger Type	Sets decimation on horizontal direction
		Selection: 1: Disable Decimation, 2: Decimate one of two pixels
		Default: Disable Decimation
DecimationVertical	IInteger Type	Sets decimation on vertical direction
		Selection: 1: Disable Decimation, 2: Decimate one of two pixels
		Default: Disable Decimation

- (*1) Decimation cannot change horizontal only or vertical only. Selection applies for horizontal and vertical.
- (*2) Binning and decimation cannot use simultaneously.
- (*3) It is necessary to change exposure time (to shorten exposure time), to increase frame rate when using Decimation.

11.13 Trigger

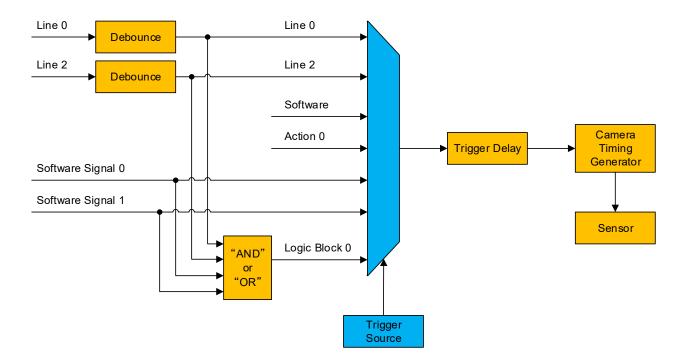
The trigger type (trigger source) is selectable at "TriggerSource" under "AcquisitionControl". The trigger type (trigger source) is listed in below table.

Software Signal 0 Software trigger generates by "TriggerSoftware"

Software Signal 0 Software trigger generates by "SoftwareSignalControl"

Software Signal 1 Software trigger generates by "SoftwareSignalControl"

Action 0 Action command trigger


Line 0 Hardware trigger through "Line0" Line 2 Hardware trigger through "Line2"

Logic Block 0 Trigger generates by "LogicBlockControl"

Please refers "Trigger signal processing procedure" for more details

11.13.1 Trigger signal processing procedure

The camera internal process for external hardware trigger signal or software trigger signal input is below:

The trigger signal is selectable by GenlCam commands.

TriggerSource: select trigger type

11.14 Image Flip

The horizontal flip image can be selected by "ReverseX". The vertical flip image can be selected by "ReverseY".

GenlCam Parameters

ReverseX	IBoolean Type	Horizontal flip image ON / OFF selection
		Selection: "False" (Horizontal flip is Off), "True" (Horizontal flip is On)
		Default: "False" (Horizontal flip is Off)
ReverseY	IBoolean Type	Vertical flip image ON / OFF selection
		Selection: "False" (Vertical flip is Off), "True" (Vertical flip is On)
		Default: "False" (Vertical flip is Off)

11.15 Flat Field Correction Function

When using this function, the unevenness of black level of camera (DSNU) and shading on image that caused by characteristics of lens (amount of through light difference at center and edge of lens) and characteristics of light (unevenness of sensitivity, PRNU) can be correct.

When using this function, please follow below procedure after set exposure time (ExposureTime), analog gain (AnalogGain), black level (BlackLevel).

Please proceed DSNU correction when change exposure time, analog gain or black level.

FFCSelector	IEnumeration Type	FFC function selection
		Offset: DSNU correction
		Gain: PRNU correction
		Default: Gain
FFCEnable	IBoolean Type	FFC function ON / OFF selection
		Selection: "True" (On): selected correction is applied image is
		acquired,
		"False" (Off): selected correction does not apply
		image is acquired.
		Default: False
FFCType [FFCSelector]	IEnumeration Type	FFC correction value acquiring method is displaying
		Pixel: Correction value is acquiring each pixel
		(DSNU correction)
		Mesh: Correction value is acquiring each 8x8 pixels
		(PRNU correction)
FFCAuto [FFCSelector]	IEnumeration Type	FFC auto correction process
		Off: Stop correction process
		Once: Start correction process
FFCValueStatus [FFCSelector]	IEnumeration Type	FFC correction result is displaying
		"Success" is displaying when DSNU correction is
		correctly done.
		"Failure" is displaying when power is off or error
		occurred while proceeding DSNU correction.
		In this case, please do DSNU correction process again.

11.15.1 FFC function procedure

Procedure for unevenness of black level correction (DSNU)

Shading camera

Sets "Offset" at FFCSelector

Sets "Once" at FFCAuto (then start correction process)

(The image stops while proceeding)

(BlackLevel is as target for this process. The process will be done about ten few seconds)

Procedure for unevenness of sensitivity correction (PRNU)

Acquiring even white target

Sets "Gain" at FFCSelector

Sets "Once" at FFCAuto (then start correction process)

(The image stops while proceeding)

(BlackLevel is as target for this process. The process will be done about few seconds)

It is necessary to save FFC settings to memory on camera used by "UserSet Control". Please refers "Save and load the camera settings"

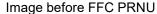


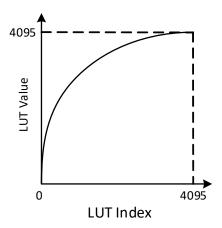
Image after applying FFC PRNU

- * Note1: Please sets "OFF" for "Trigger mode" as free-run operation when using FFC PRNU function.
- * Note2: Please uses FFC function again after adjusting camera parameters when changing lens or light source
- * Note3: Please proceed DSNU correction before process PRNU correction if AnalogGain setting is not "0"

Or please enable DSNU before process PRNU correction.

(FFCSelect:Offset, FFCEnable:True)

- * Note4: Please enabled DSNU (FFCSelect:Offset, FFCEnable:True) when using camera with enabling PRNU (FFCSelect:Gain, FFCEnable:True)
- * Note5: The image may not saturate when proceeding DSNU correction and enabling DSNU. In this case, please adjust digital gain to saturate image.


 Please adjust digital gain while checking image quality.

11.16 LUT Control

The output signal assigned table for input signal.

LUT Selector	IEnumeration Type	Control LUT selection (Luminance is only selectable)	
		Default: Luminance	
LUT Enabled	IBoolean Type	LUT ON / OFF selection	
LUT Index	IInteger Type	Index for LUT	
		Range: 0 to 4,095	
LUT Value	IInteger Type	The output value for input value that specifies by index	
		Range: 0 to 4,095	

e.g. LUT usage (low brightness level enhancement)

11.17 Defective pixel correction

The selected position of defective pixel is correcting with adjacent pixel information.

The selected position of defective pixel of color camera is correcting with adjacent same color of pixel information.

	1	
PixelCorrectionAll	IBoolean Type	Defective pixel correction ON / OFF selection
		Selection: "True" (On), "False" (Off)
		Default: "True"
PixelCorrection	IBoolean Type	Defective pixel correction ON / OFF selection for selected index
Enabled		Selection: "True" (On), "False" (Off)
		Default: "False" (Off)
PixelCorrection	IInteger Type	Index for process defective pixel correction
Index		Range: 0 to 8,191
		Default: 0
PixelCorrectionX	IInteger Type	Horizontal position for selected index for process defective pixel correction
		Range: 0 to 1,279
		Default: 0
PixelCorrectionY	IInteger Type	Vertical position for selected index for process defective pixel correction
		Range: 0 to 1,023
		Default: 0

11.18 Counter And Timer Control

Controls "Timer" and "Counter".

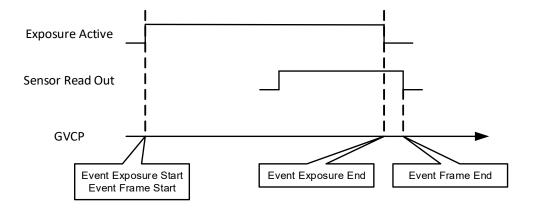
A) Timer Control

GenlCam Parameters

TimerSelector	IEnumeration Type	Fixed as "Timer0"
TimerDelay	IFloat Type	Delay for "Timer0active" signal (in µsecond)
		Range: 0 to 16,777,215
		Default: 0
TimerDuration	IFloat Type	Duration of "Timer0active" signal (in µsecond)
		Range: 1 to 16,777,215
		Default: 1
TimerTrigger	IEnumeration Type	Reference signal selection to generate "Timer0active" signal
Source		Default: "Off"
TimerTrigger	IEnumeration Type	Polarity of reference signal to generate "Timer0active" signal
Activation		Default: "Rising Edge"
TimerValue	IFloat Type	Returns value for "Timer0active" signal

When the timing of "Timer0active" signal is adjusting to active signal of Exposure, "Timer 0" can be used as strobe control signal.

B) Counter Control


CounterSelector	IEnumeration Type	Counter selection
		Default: "Counter0"
CounterEvent	IEnumeration Type	Counter event source selection
Source		
CounterReset	IEnumeration Type	Reference signal selection to reset counter
Source		
CounterReset	IEnumeration Type	Polarity of reference signal to reset counter
Activation		
CounterReset	ICommand Type	Reset switch
		Activate as switch when selecting "Software" at "CounterResetSource"
CounterValue	IInteger Type	Returns number of counter

11.19 Event Control

The camera internal signal can be output as specified event information, like "exposure end", to PC used by GVCP (GigE Vision Control Protocol).

e.g. Event control Notified "Exposure End"

Compani i didinetera		
Event Selector	IEnumeration Type	Event notification selection
		Selection: "Action Late", "Frame Trigger", "Exposure Start", "Exposure End",
		"Frame Start", "Frame End", "Block Discard",
		"Line 0 Input Rising Edge", "Line 0 Input Falling Edge",
		"Line 2 Input Rising Edge" and "Line 2 Input Falling Edge"
Event Notification	IEnumeration Type	Event notification ON / OFF selection
		On: Enable event notification
		Off: Disable event notification

11.20 Chunk Control

This function is attached additional image information to image data.

For example, the exposure time and gain information do not include in image data itself. However, Chunk data transfers these parameters when image was acquiring.

GenlCam Parameters

ChunkModeActive	IBoolean Type	Chunk control ON / OFF selection
		Default: "False" (Off)
ChunkSelector	IEnumeration Type	Transfer Chunk data selection
		Selection: "Image", "Offset X", "Offset Y", "Width", "Height", "Pixel Format",
		"Gain", "Exposure Time", "Black Level", "Line Status All",
		"Device Temperature", "Timer Value" and "Counter Value"
ChunkEnable	IBoolean Type	Enable Chunk data that was selected at "Chunk Selector"
		Selection: "True" (Enable Chunk data) and "False" (Disable Chunk data)

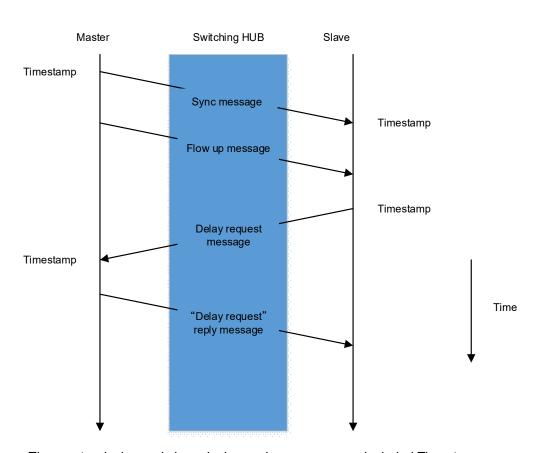
11.21 Action Control

The multiple cameras control by one action signal.

ActionQueueSize	IInteger Type	Size of scheduled action command queue
ActionDeviceKey	IInteger Type	Control identifier of camera
ActionSelector	IInteger Type	Action command application selection
		Fixed as "0"
ActionGroupKey	IInteger Type	Action command applies camera
		* The camera executes action command when group key of action command
		and group key of camera is matched.
ActionGroupMask	IInteger Type	Select camera to apply action command
		Logical AND of Group Mask of camera and Group Mask of action command is 1
		for any bit of 32bits, camera executes action command.

11.22 IEEE1588

Precision Time Protocol (PTP) is implemented on camera, is synchronized to "Master Clock" in same network automatically.


The camera supports IEEE 1588-2008 of PTP Version 2. The accuracy of time (Timestamp) synchronized is different based on network system configuration.

1) BMC (Best Master Clock) function

BMC function is implemented on camera. The most accurate clock in same network is defined as "Master Clock" then time (Timestamp) synchronizes. If there are more than two devices has most accurate clock in same network, clock of smallest MAC address device is defined as "Master Clock".

2) E2E (End-to-End) Transparent Clock

The camera supports E2E method. Time difference is correcting by blow algorithm

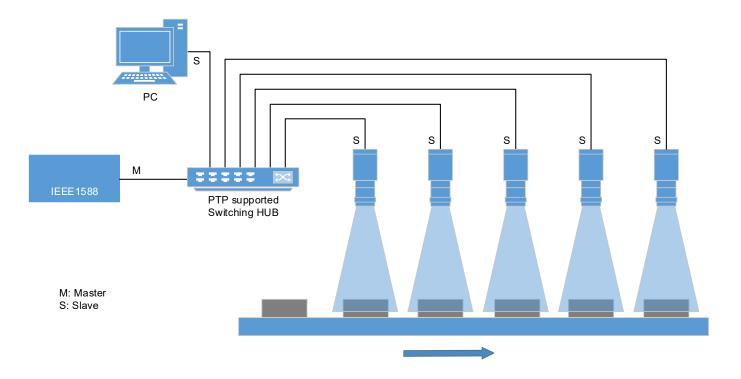
The master device and slave device exchange message included Timestamp.

Defined delay between master device and slave device by comparing these messages.

If time difference between master device and slave device is occurred, adjust internal clock of slave device to synchronize to master device.

Synchronize clock regularly to correcting time drift.

3) How to use PTP


Selects "True" at GevIEEE1588 then synchronize camera time to "Master Clock" (synchronize time is different depending on system). The camera is ready for action command after synchronize to "Master Clock".

4) Synchronized exposure for trigger mode

When action command generating, action command is broadcasting to each camera and camera starts exposing.

Synchronized exposure does not secure if action command does NOT include Timestamp. If action command includes Timestamp, action command will be scheduled automatically and each camera start exposing at same time.

Action Control setting is required when action command generating.

e.g. PTP configuration

12 GenlCam command

12.1 DeviceControl

Name	Description
DeviceType	Returns the device type.
DeviceScanType	Scan type of the sensor of the device.
DeviceVendorName	Name of the manufacturer of the device.
DeviceModelName	Model of the device.
DeviceFamilyName	Identifier of the product family of the device.
DeviceManufacturerInfo	Manufacturer information about the device.
DeviceVersion	Version of the device.
DeviceHardwareVersion	Version of the hardware in the device.
DeviceFirmwareVersion	Version of the firmware in the device.
DeviceSerialNumber	Device's serial number.
DeviceUserID	User-programmable device identifier.
DeviceSFNCVersionMajor	Major version of the Standard Features Naming Convention that was used to create the device's GenlCam XML.
DeviceSFNCVersionMinor	Minor version of the Standard Features Naming Convention that was used to create the device's GenlCam XML.
DeviceSFNCVersionSubMinor	Sub minor version of Standard Features Naming Convention that was used to create the device's GenlCam XML.
DeviceManifestEntrySelector	Selects the manifest entry to reference.
DeviceManifestXMLMajorVersion	Indicates the major version number of the GenICam XML file of the
[DeviceManifestEntrySelector]	selected manifest entry.
DeviceManifestXMLMinorVersion	Indicates the minor version number of the GenlCam XML file of the
[DeviceManifestEntrySelector]	selected manifest entry.
DeviceManifestXMLSubMinorVersion	Indicates the sub minor version number of the GenlCam XML file of the
[DeviceManifestEntrySelector]	selected manifest entry.
DeviceManifestSchemaMajorVersion	Indicates the major version number of the schema file of the selected
[DeviceManifestEntrySelector]	manifest entry.
DeviceManifestSchemaMinorVersion	Indicates the minor version number of the schema file of the selected
[DeviceManifestEntrySelector]	manifest entry.
DeviceTLType	Transport Layer type of the device.
DeviceTLVersionMajor	Major version of the Transport Layer of the device.
DeviceTLVersionMinor	Minor version of the Transport Layer of the device.
DeviceTLVersionSubMinor	Sub minor version of the Transport Layer of the device.
DeviceMaxThroughput	Maximum bandwidth of the data that can be streamed out of the device.
DeviceLinkSelector	Selects which Link of the device to control.

Name	Description
DeviceLinkSpeed	Indicates the speed of transmission negotiated on the specified Link.
[DeviceLinkSelector]	
DeviceLinkHeartbeatTimeout	Controls the current heartbeat timeout of the specific Link.
[DeviceLinkSelector]	
DeviceLinkCommandTimeout	Indicates the command timeout of the specified Link.
[DeviceLinkSelector]	
DeviceStreamChannelCount	Indicates the number of streaming channels supported by the device.
DeviceStreamChannelSelector	Selects the stream channel to control.
DeviceStreamChannelType	Reports the type of the stream channel.
[DeviceStreamChannelSelector]	
DeviceStreamChannelEndianness	Endianness of multi-byte pixel data for this stream.
[DeviceStreamChannelSelector]	
DeviceEventChannelCount	Indicates the number of event channels supported by the device.
DeviceCharacterSet	Character set used by the strings of the device's bootstrap registers.
DeviceReset	Resets the device to its power up state.
DeviceRegistersStreamingStart	Prepare the device for registers streaming without checking for
	consistency.
DeviceRegistersStreamingEnd	Announce the end of registers streaming.
DeviceRegistersEndianness	Endianness of the registers of the device.
DeviceTemperatureSelector	Selects the location within the device, where the temperature will be
	measured.
DeviceTemperature	Device temperature in degrees Celsius (C).
[DeviceTemperatureSelector]	
DeviceTemperatureAuto	Sets the automatic temperature adjustment mode.
[DeviceTemperatureSelector]	
DeviceTemperatureTarget	Target temperature value for auto temperature control
[DeviceTemperatureSelector]	
TimestampReset	Resets the current value of the device timestamp counter.
TimestampLatch	Latches the current timestamp counter into Timestamp Latch Value.
Timestampl atchValue	Returns the latched value of the timestamp counter.
TimestampLatchValue	

12.2 ImageFormatControl

Name	Description
SensorWidth	Effective width of the sensor in pixels.
SensorHeight	Effective height of the sensor in pixels.
SensorShutterMode	Sets the shutter mode of the device.
WidthMax	Maximum width of the image (in pixels).
HeightMax	Maximum height of the image (in pixels).
BinningSelector	Selects which binning engine is controlled by the Binning Horizontal and Binning Vertical features.
BinningHorizontalMode [BinningSelector]	Sets the mode to use to combine horizontal photo-sensitive cells together when BinningHorizontal is used.
BinningHorizontal [BinningSelector]	Number of horizontal photo-sensitive cells to combine.
BinningVerticalMode [BinningSelector]	Sets the mode to use to combine vertical photo-sensitive cells together when BinningVertical is used.
BinningVertical [BinningSelector]	Number of vertical photo-sensitive cells to combine.
DecimationHorizontal	Horizontal sub-sampling of the image.
DecimationVertical	Vertical sub-sampling of the image.
RegionSelector	Selects the Region of interest to control.
RegionMode [RegionSelector]	Controls if the selected Region of interest is active and streaming.
Width [RegionSelector]	Width of the image provided by the device (in pixels).
Height [RegionSelector]	Height of the image provided by the device (in pixels).
OffsetX [RegionSelector]	Horizontal offset from the origin to the region of interest (in pixels).
OffsetY [RegionSelector]	Vertical offset from the origin to the region of interest (in pixels).
PixelFormat	Format of the pixels provided by the device.
PixelSize	Total size in bits of a pixel of the image.
PixelColorFilter	Type of color filter that is applied to the image.
ReverseX	Flip horizontally the image sent by the device.
ReverseY	Flip vertically the image sent by the device.
TestPatternGeneratorSelector	Selects which test pattern generator is controlled by the Test Pattern feature.
TestPattern	Selects the type of test pattern that is generated by the device as
[TestPatternGeneratorSelector]	image source.
TestPatternInputValue [TestPatternGeneratorSelector]	Test Pattern Input Value

12.3 AcquisitionControl

Name	Description
AcquisitionMode	Sets the acquisition mode of the device.
AcquisitionStart	Starts the Acquisition of the device.
AcquisitionStop	Stops the Acquisition of the device at the end of the current Frame.
AcquisitionFrameCount	Number of frames to acquire in Multi Frame Acquisition mode.
AcquisitionFrameRate	Controls the acquisition rate (in Hertz) at which the frames are captured.
TriggerSelector	Selects the type of trigger to configure.
TriggerMode [TriggerSelector]	Controls if the selected trigger is active.
TriggerSoftware [TriggerSelector]	Generates an internal trigger.
TriggerSource [TriggerSelector]	Specifies the internal signal or physical input Line to use as the trigger source.
TriggerActivation [TriggerSelector]	Specifies the activation mode of the trigger.
TriggerDelay [TriggerSelector]	Specifies the delay in microseconds (us) to apply after the trigger reception before activating it.
ExposureMode	Sets the operation mode of the Exposure.
ExposureTimeSelector	Selects which exposure time is controlled by the Exposure Time feature.
ExposureTime	Sets the Exposure time when Exposure Mode is Timed and Exposure
[ExposureTimeSelector]	Auto is Off.
ExposureAuto	Sets the automatic exposure mode when Exposure Mode is Timed.
ExposureAutoLimitMin	Determine the lower limit of exposure time when Exposure Auto is set to Continuous.
ExposureAutoLimitMax	Determine the upper limit of exposure time when Exposure Auto is set to Continuous.

12.4 AnalogControl

Name	Description
GainSelector	Selects which Gain is controlled by the various Gain features.
Gain [GainSelector]	Controls the selected gain as an absolute physical value.
GainAuto [GainSelector]	Sets the automatic gain control (AGC) mode.
GainAutoLimitMin [GainSelector]	Determine the lower limit of gain when Gain Auto is set to Continuous.
GainAutoLimitMax [GainSelector]	Determine the upper limit of gain when Gain Auto is set to Continuous.
BloomingReductionMode [GainSelector]	Blooming Reduction Mode is enabled.
AutoLuminanceTarget	Target brightness for auto luminance control.
AutoLuminanceRegionSelector	Select the area for auto luminance control.
AutoLuminanceWidth	Determine width of targeted region for auto luminance control.
[AutoLuminanceRegionSelector]	
AutoLuminanceHeight	Determine height of targeted region for auto luminance control.
[AutoLuminanceRegionSelector]	
AutoLuminanceOffsetX	Determine X offset of targeted region for auto luminance control.
[AutoLuminanceRegionSelector]	
AutoLuminanceOffsetY	Determine Y offset of targeted region for auto luminance control.
[AutoLuminanceRegionSelector]	
AutoLuminanceWeight	Weight of the area determined by Auto Luminance Region Selector for
[AutoLuminanceRegionSelector]	auto luminance control.
AutoLuminancePeak	Ratio of peak and average for auto luminance control.
BlackLevelSelector	Selects which Black Level is controlled by the various Black Level
	features.
BlackLevel [BlackLevelSelector]	Controls the analog black level as an absolute physical value.
DigitalGainOffsetMode	Digital Gain Offset Mode is enabled.
AnalogGainOffsetMode	AnalogGainOffsetMode is enabled.
BlackLevelCorrection	Black Level Correction Mode is enabled.
Gamma	Controls the gamma correction of pixel intensity.

12.5 LUTControl

Name	Description
LUTSelector	Selects which LUT to control.
LUTEnable [LUTSelector]	Activates the selected LUT.
LUTIndex [LUTSelector]	Control the index (offset) of the coefficient to access in the selected LUT.
LUTValue [LUTSelector] [LUTIndex]	Returns the Value at entry LUT Index of the LUT selected by LUT Selector.
LUTValueAll [LUTSelector]	Accesses all the LUT coefficients in a single access without using individual LUT Index.
PixelCorrectionAllEnabled	Enable pixel correction for all pixels.
PixelCorrectionIndex	Determine index of targeted pixel for pixel correction.
PixelCorrectionEnabled	Determine if targeted pixel is enabled for pixel correction.
[PixelCorrectionIndex]	
PixelCorrectionX [PixelCorrectionIndex]	Determine x-coordinate of targeted pixel for pixel correction.
PixelCorrectionY [PixelCorrectionIndex]	Determine y-coordinate of targeted pixel for pixel correction.

12.6 FlatFieldCorrectionControll

Name	Description
FFCSelector	Selects which Correction is controlled by the FFC features.
FFCEnable [FFCSelector]	Activates the selected FFC.
FFCType [FFCSelector]	Returns the FFC type.
FFCAuto [FFCSelector]	Sets the automatic FFC mode.
FFCValueStatus [FFCSelector]	Returns the FFC Value Status.

12.7 DigitalIOControl

Name	Description
LineSelector	Selects the physical line (or pin) of the external device connector or the
	virtual line of the Transport Layer to configure.
LineMode [LineSelector]	Controls if the physical Line is used to Input or Output a signal.
LineFormat [LineSelector]	Controls the current electrical format of the selected physical input or
	output Line.
LineSource [LineSelector]	Selects which internal acquisition or I/O source signal to output on the
	selected Line.
LineInverter [LineSelector]	Controls the inversion of the signal of the selected input or output Line.
LineDebounceTime [LineSelector]	Sets the value of the input line debouncer time.
LineStatus [LineSelector]	Returns the current status of the selected input or output Line.
LineStatusAll	Returns the current status of all available Line signals at time of polling
	in a single bitfield.
UseOutputSelector	Selects which bit of the User Output register will be set by User Output
	Value.
UseOutputValue [UseOutputSelector]	Sets the value of the bit selected by User Output Selector.

12.8 LogicBlockControl

Name	Description
LogicBlockSelector	Specifies the Logic Block to configure.
LogicBlockFunction	Selects the combinational logic Function of the Logic Block to
[LogicBlockSelector]	configure.
LogicBlockInputNumber	Specifies the number of active signal inputs of the Logic Block.
[LogicBlockSelector]	
LogicBlockInputSelector	Selects the Logic Block's input to configure.
[LogicBlockSelector]	
LogicBlockInputSource	Selects the source signal for the input into the Logic Block.
[LogicBlockSelector]	
[LogicBlockInputSelector]	
LogicBlockInputInverter	Selects if the selected Logic Block Input source signal is inverted.
[LogicBlockSelector]	
[LogicBlockInputSelector]	

12.9 SoftwareSignalControl

Name	Description
SoftwareSignalSelector	Selects which Software Signal features to control.
SoftwareSignalPulse	Generates a pulse signal that can be used as a software trigger.
[SoftwareSignalSelector]	

12.10 CounterAndTimerControl

Name	Description			
CounterSelector	Selects which Counter to configure.			
CounterEventSource [CounterSelector]	Select the events that will be the source to increment the Counter.			
CounterResetSource [CounterSelector]	Selects the signals that will be the source to reset the Counter.			
CounterResetActivation [CounterSelector]	Selects the Activation mode of the Counter Reset Source signal.			
CounterReset [CounterSelector]	Does a software reset of the selected Counter and starts it.			
CounterValue [CounterSelector]	Reads or writes the current value of the selected Counter.			
TimerSelector	Selects which Timer to configure.			
TimerDuration [TimerSelector]	Sets the duration (in microseconds) of the Timer pulse.			
TimerDelay [TimerSelector]	Sets the duration (in microseconds) of the delay to apply at the			
TimerTriggerSource [TimerSelector]	reception of a trigger before starting the Timer. Selects the source of the trigger to start the Timer.			
TimerTriggerActivation [TimerSelector]	Selects the activation mode of the trigger to start the Timer.			
TimerValue [TimerSelector]	Reads or writes the current value (in microseconds) of the selected Timer.			

12.11 EventControl

Name	Description		
EventSelector	Selects which Event to signal to the host application.		
EventNotification [EventSelector]	Activate or deactivate the notification to the host application of the occurrence of the selected Event.		
EventTestData	Category that contains all the data features related to the Event Test generated using the Test Event Generate command.		
EventExposureStartData	Category that contains all the data features related to the Exposure Start Event.		
EventExposureEndData	Category that contains all the data features related to the Exposure End Event.		
EventFrameTriggerData	Category that contains all the data features related to the Frame Trigger Event.		
EventFrameStartData	Category that contains all the data features related to the Frame Start Event.		
EventFrameEndData	Category that contains all the data features related to the Frame End Event.		
EventLine0RisingEdgeData	Category that contains all the data features related to the Line0 Rising Edge Event.		
EventLine0FallingEdgeData	Category that contains all the data features related to the Line0 Falling Edge Event.		
EventLine2RisingEdgeData	Category that contains all the data features related to the Line2 Rising Edge Event.		
EventLine2FallingEdgeData	Category that contains all the data features related to the Line2 Falling Edge Event.		
EventBlockDiscardData	Category that contains all the data features related to the Block Discard Event.		
EventActionLateData	Category that contains all the data features related to the Action Late Event.		
EventFrameTriggerMissedData	Category that contains all the data features related to the Frame Missed Event.		
EventOverTemperatureEventData	Category that contains all the data features related to the Over Temperature Event.		
EventCriticalTemperatureEventData	Category that contains all the data features related to the Critical Temperature Event.		

12.12 UserSetControl

Name	Description		
UserSetSelector	Selects the feature User Set to load, save or configure.		
UserSetLoad [UserSetSelector]	Loads the User Set specified by User Set Selector to the device and makes it active.		
UseSetSave [UserSetSelector]	Save the User Set specified by User Set Selector to the non-volatile memory of the device.		
UserSetDefault	Selects the feature User Set to load and make active by default when the device is reset.		

12.13 ChunkDataControl

Name	Description			
ChunkModeActive	Activates the inclusion of Chunk data in the payload of the image.			
ChunkSelector	Selects which Chunk to enable or control.			
ChunkEnable [ChunkSelector]	Enables the inclusion of the selected Chunk data in the payload of the image.			
ChunkCounterSelector	Selects which counter to retrieve data from.			
ChunkCounterValue [ChunkCounterSelector]	Returns the value of the selected Chunk counter.			
ChunkGainSelector	Selects which Gain to return.			
ChunkGain [ChunkGainSelector]	Returns the gain used to capture the image.			
ChunkExposureTimeSelector	Selects which Exposure Time to return.			
ChunkExposureTime [ChunkExposureTimeSelector]	Returns the exposure time used to capture the image.			
ChunkBlackLevelSelector	Selects which Black Level to return.			
ChunkBlackLevel [ChunkBlackLevelSelector]	Returns the black level used to capture the image included in the payload.			
ChunkLineStatusAll	Returns the status of all the I/O lines at the time of the Frame Start internal event.			
ChunkTimerSelector	Selects which timer to retrieve data from.			
ChunkTimerValue [ChunkTimerSelector]	Returns the value of the selected Timer.			
ChunkDeviceTemperature	Indicates the value of the temperature when the image was acquired.			

12.14 ActionControl

Name	Description		
ActionDeviceKey	Provides the device key that allows the device to check the validity of		
	action commands.		
ActionQueueSize	Indicates the size of the scheduled action commands queue.		
ActionSelector	Selects to which Action Signal further Action settings apply.		
ActionGroupMask [ActionSelector]	Provides the mask that the device will use to validate the action on		
	reception of the action protocol message.		
ActionGroupKey [ActionSelector]	Provides the key that the device will use to validate the action on		
	reception of the action protocol message.		

12.15 File AccessControl

Name	Description		
FileSelector	Selects the target file in the device.		
FileOperationSelector [FileSelector]	Selects the target operation for the selected file in the device.		
FileOperationExecute	Executes the operation selected by File Operation Selector on the		
[FileSelector] [FileOperationSelector]	selected file.		
FileOpenMode [FileSelector]	Selects the access mode in which a file is opened in the device.		
FileAccessBuffer	Defines the intermediate access buffer that allows the exchange of		
	data between the device file storage and the application.		
FileAccessOffset	Controls the Offset of the mapping between the device file storage and		
[FileSelector] [FileOperationSelector]	the File Access Buffer.		
FileAccessLength	Controls the Length of the mapping between the device file storage		
[FileSelector] [FileOperationSelector]	and the File Access Buffer		
FileOperationStatus	Represents the file operation execution status.		
[FileSelector] [FileOperationSelector]			
FileOperationResult	Represents the file operation result.		
[FileSelector] [FileOperationSelector]			
FileSize [FileSelector]	Represents the size of the selected file in bytes.		

12.16 TestControl

Name	Description
TestPendingAck	Tests the device's pending acknowledge feature.
TestEventGenerate	Generates a Test Event.

12.17 TransportLayerControl

Name	Description		
PayloadSize	Provides the number of bytes transferred for each image or chunl		
	the stream channel.		
PtpEnable	Enable the Precision Time Protocol (PTP).		
PtpClockAccuracy	Indicate the expected accuracy of the device PTP clock when it is the		
	grandmaster, or in the event it becomes the grandmaster.		
PtpDataSetLatch	Latches the current values from the device's PTP clock data set.		
PtpStatus	Returns the latched state of the PTP clock.		
PtpOffsetFromMaster	The latched offset from the PTP master clock in nanoseconds.		
PtpClockID	The latched clock ID of the PTP device. PTP Parent Clock ID.		
PtpParentClockID	The latched parent clock ID of the PTP device. The parent clock ID is		
	the clock ID of the current master clock.		
PtpGrandmasterClockID	The latched grandmaster clock ID of the PTP device. The grandmaster		
	clock ID is the clock ID of the current grandmaster clock.		
GevSupportedOptionSelector	Selects the GEV option to interrogate for existing support.		
GevSupportedOption	Returns if the selected GEV option is supported.		
[GevSupportedOptionSelector]			
GevInterfaceSelector	Selects which logical link to control.		
GevMACAddress	MAC address of the logical link.		
[GevInterfaceSelector]			
GevCurrentlPConfigurationLLA	Controls whether the Link Local Address IP configuration scheme is		
[GevInterfaceSelector]	activated on the given logical link.		
GevCurrentIPConfigurationDHCP	Controls whether the DHCP IP configuration scheme is activated on		
[GevInterfaceSelector]	the given logical link.		
GevCurrentIPConfigurationPersistentIP	Controls whether the Persistent IP configuration scheme is activated		
[GevInterfaceSelector]	on the given logical link.		
GevCurrentlPAddress	Reports the IP address for the given logical link.		
[GevInterfaceSelector]			
GevCurrentSubnetMask	Reports the subnet mask of the given logical link.		
[GevInterfaceSelector]			
GevCurrentDefaultGateway	Reports the default gateway IP address to be used on the given logical		
[GevInterfaceSelector]	link.		
GevIPConfigurationStatus	Reports the current IP configuration status.		
[GevInterfaceSelector]			
GevPersistentIPAddress	Controls the Persistent IP address for this logical link.		
[GevInterfaceSelector]			
GevPersistentSubnetMask	Controls the Persistent subnet mask associated with the Persistent IP		
[GevInterfaceSelector]	address on this logical link.		
GevPersistentDefaultGateway	Controls the persistent default gateway for this logical link.		
[GevInterfaceSelector]			
GevGVCPExtendedStatusCodesSelector	ttendedStatusCodesSelector Selects the GigE Vision version to control extended status codes for.		

Name	Description			
GevGVCPExtendedStatusCodes	Enables the generation of extended status codes.			
[GevGVCPExtendedStatusCodesSelector]				
GevGVCPPendingAck	Enables the generation of PENDING_ACK.			
GevPrimaryApplicationSwitchoverKey	Controls the key to use to authenticate primary application switchover			
	requests.			
GevGVCPExpendedIDMode	Enables the extended IDs mode.			
GevCCP	Controls the device access privilege of an application.			
GevPrimaryApplicationSocket	Returns the UDP source port of the primary application.			
GevPrimaryApplicationIPAddress	Returns the address of the primary application.			
GevMCPHostPort	Controls the port to which the device must send messages.			
GevMCDA	Controls the destination IP address for the message channel.			
GevMCTT	Provides the transmission timeout value in milliseconds.			
GevMCRC	Controls the number of retransmissions allowed when a message			
	channel message times out.			
GevMCSP	This feature indicates the source port for the message channel.			
GevStreamChannelSelector	Selects the stream channel to control.			
GevSCPInterfaceIndex	Index of the logical link to use.			
[GevStreamChannelSelector]				
GevSCPHostPort	Controls the port of the selected channel to which a GVSP transmitter			
[GevStreamChannelSelector]	must send data stream or the port from which a GVSP receiver may			
	receive data stream.			
GevSCPSFireTestPacket	Sends a test packet.			
[GevStreamChannelSelector]				
GevSCPSDoNotFragment	The state of this feature is copied into the "do not fragment" bit of IP			
[GevStreamChannelSelector]	header of each stream packet.			
GevSCPSPacketSize	This GigE Vision specific feature corresponds to			
[GevStreamChannelSelector]	DeviceStreamChannelPacketSize and should be kept in sync with it.			
GevSCFTD [GevStreamChannelSelector]	Controls the delay (in GEV timestamp counter unit) to insert between			
-	each packet for this stream channel.			
GevSCPD [GevStreamChannelSelector]	Controls the delay (in GEV timestamp counter unit) to insert between			
-	each frame for this stream channel.			
GevSCDA [GevStreamChannelSelector]	Controls the destination IP address of the selected stream channel to			
	which a GVSP transmitter must send data stream or the destination IP			
	address from which a GVSP receiver may receive data stream.			
	<u>, </u>			

13 Revision History

Rev	Date	Changes	Note
00	2022/05/12	New Document	
01	2022/06/15	Revised	
		Added notice at environmental specifications.	
02	2022/08/02	Revised	
		Added "Export and Trade Control Laws"	

Note: Product specifications would be changed without notification.

 $\label{eq:GigE} \mbox{GigE Vision is trademark of A3 (Association for Advancing Automation)}.$

GenlCam is trademark of EMVA.

Other company names and product names in this document are trademarks of their respective owners.

OMRON SENTECH CO., LTD.

19F, Ebina Prime Tower 9-50, Chuo 2 chome Ebina-city, Kanagawa 243-0432 Japan TEL 81-46-236-6660 FAX 81-46-236-6661 URL https://www.sentech.co.jp/