

Single Source Machine Control ……………………………………………..…...………………. Power // Flexibility // Ease of Use

21314 Lassen St. Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

USER’S MANUAL

^3 Power PMAC User’s Manual

^4 050-PRPMAC-0U0

^5 May 19, 2023

Power PMAC

^6 O014-E-01

http://www.deltatau.com/

Power PMAC User’s Manual

Copyright Information

© 2023 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses

are unauthorized without written permission of Delta Tau Data Systems, Inc. Information

contained in this manual may be updated from time-to-time due to product improvements,

etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support

Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers

contain static sensitive components that can be damaged by incorrect handling. When

installing or handling Delta Tau Data Systems, Inc. products, avoid contact with highly

insulated materials. Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from

hazardous or conductive materials and/or environments that could cause harm to the

controller by damaging components or causing electrical shorts. When our products are

used in an industrial environment, install them into an industrial electrical cabinet or

industrial PC to protect them from excessive or corrosive moisture, abnormal ambient

temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are

directly exposed to hazardous or conductive materials and/or environments, we cannot

guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

Power PMAC User’s Manual

Safety Instructions

Qualified personnel must transport, assemble, install, and maintain this equipment. Properly qualified

personnel are persons who are familiar with the transport, assembly, installation, and operation of

equipment. The qualified personnel must know and observe the following standards and regulations:

IEC364resp.CENELEC HD 384 or DIN VDE 0100

IEC report 664 or DIN VDE 0110

National regulations for safety and accident prevention or VBG 4

Incorrect handling of products can result in injury and damage to persons and machinery. Strictly adhere

to the installation instructions. Electrical safety is provided through a low-resistance earth connection. It

is vital to ensure that all system components are connected to earth ground.

This product contains components that are sensitive to static electricity and can be damaged by incorrect

handling. Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.). Place the

product on a conductive surface. Discharge any possible static electricity build-up by touching an

unpainted, metal, grounded surface before touching the equipment.

Keep all covers and cabinet doors shut during operation. Be aware that during operation, the product has

electrically charged components and hot surfaces. Control and power cables can carry a high voltage,

even when the motor is not rotating. Never disconnect or connect the product while the power source is

energized to avoid electric arcing.

A Warning identifies hazards that could result in personal injury or

death. It precedes the discussion of interest.

Warning

!

Caution

A Caution identifies hazards that could result in equipment damage. It

precedes the discussion of interest.

Note

A Note identifies information critical to the understanding or use of

the equipment. It follows the discussion of interest.

Power PMAC User’s Manual

REVISION HISTORY

REV. DESCRIPTION DATE CHG APPVD

1 New Manual Generated 11/28/2011 SS Curt Wilson

2 Updating Table of Contents 01/19/2012 SS Curt Wilson

3 Updating the manual for firmware version 1.5 release 08/10/2012 SS Curt Wilson

4 Updating the manual for firmware version 1.6 release 03/17/2014 SS Curt Wilson

5 Updating the manual for firmware version 2.0 release 01/16/2015 SS Curt Wilson

6 Updating the manual for firmware version 2.1 release 04/11/2016 SS Curt Wilson

7 Added Omron Part Number 07/15/2016 Sgm Sgm

8 Updating the manual for firmware version 2.2 release 10/25/2016 SS Curt Wilson

9 Updating the manual for firmware version 2.3 release 10/20/2017 EH Curt Wilson

10 Updating the manual for firmware version 2.4 release 5/4/2018 SM Curt Wilson

11 Updating the manual for firmware version 2.5 release 3/22/2019 SM Curt Wilson

12 Added bookmarks 4/24/2019 SM RN

13 Fixed spline move mode section 5/15/2019 SM RN

14 Updating the manual for firmware version 2.6 release 10/05/2020 SM RN

15

Updated the following manual sections:

- Setting Up the Servo Loop

- Making Your Power PMAC Application Safe

- Setting Up Coordinate Systems

3/22/2021 SM RN

A Uploaded manual to Agile 1/18/2022 AE SS

B

Updated the following manual sections:

- Power PMAC Family Overview

- Talking to Power PMAC

- Power PMAC System Configuration

- Setting Up Feedback and Master Position Sensors

- Setting Up the Encoder Conversion Table

- Basic Motor Setup

- Setting Up the Servo Loop

- Setting Up Compensation Tables

- Executing Individual Motor Moves

- Setting Up Coordinate Systems

- Computational Features

- Using General Purpose Digital I/O With Power PMAC

- Writing C Functions and Programs in Power PMAC

7/28/2022 AE CW

Power PMAC User’s Manual

C

Updated the following manual sections:

- Power PMAC System Configuration

- Setting Up the Servo Loop

- Setting Up Compensation Tables

- Setting Up Electronic Cam Tables

- Making Your Power PMAC Application Safe

- Writing C Functions and Programs in Power PMAC

5/19/2023 AE CW

Power PMAC User’s Manual

Table of Contents vi

Table of Contents

POWER PMAC FAMILY OVERVIEW.. 25

What Is Power PMAC? ...25

Power PMAC Configurations ...25
Power UMAC... 25
Compact Power UMAC ... 26
CK3M (µUMAC) ... 26
Power PMAC Etherlite .. 26
CK3E (µPowerPMAC) .. 27
Power Brick Configurations .. 27
Power Clipper .. 29
CK3C (ARM Power Clipper) ... 29
Power PMAC on Sysmac IPC .. 30

What Power PMAC Does ..31
Execute Sequenced Motion Programs ... 31
Execute Asynchronous PLC Programs .. 31
Perform Kinematic Transformations ... 31
Process Feedback and Master Position Data .. 31
Compute Commanded Motor Trajectories .. 32
Calculate Compensation Table Corrections .. 32
Calculate Cam Table Motions ... 32
Close Motor Position/Velocity Servo Loops .. 32
Perform Electronic Phase Commutation ... 32
Close Motor Current Loops ... 32
Provide Synchronous Data Gathering ... 33
Perform General Housekeeping and Safety Checks .. 33
Respond to Host Computer Commands ... 33
Execute Independent C Applications ... 33

Key Hardware Components ..34
CPU Section... 34
Machine Interface ICs ... 35

TALKING TO POWER PMAC .. 40

Communications Security ...40

Physical Interface ..40

Use of the Internet Protocol Suite ...40
Layers of the Internet Protocol Suite ... 40

Low-Level Terminal Communications ...42
Terminal Emulator Programs .. 42
Establishing First Communications... 42
Communicating with the Power PMAC Control Application .. 44

Establishing Communications with the IDE ...45
Startup Communications Control Window .. 45

Power PMAC User’s Manual

Table of Contents vii

Embedded Communications Control Window ... 46
Changing the Power PMAC IP Address .. 47
Finding an Unknown IP Address ... 48

Special Power-On/Reset Modes ...49
PowerPmacNoRTLoad Folder .. 49
PowerPmacFactoryReset Folder ... 49
PowerPmacConfigLoad Folder ... 49
PowerPmacFirmwareInstallandConfigLoad Folder ... 49
PowerPmacIp Folder ... 49

Power PMAC Commands ...50
On-Line (Immediate) Commands... 50
Buffered Program Commands ... 52
Power PMAC Processing of Commands ... 53
Error Reporting for Commands ... 55

POWER PMAC SYSTEM CONFIGURATION .. 58

Processors (CPUs)..58
Power PC ... 58
ARM .. 58
X86 .. 58

Memory ..58
Active Memory (RAM) .. 58
Non-Volatile Memory (Flash) ... 58
Use of Memory in Power PMAC Applications ... 59

Physical Configuration Status Reporting ..60
General Configuration ... 60

Interface ICs Present .. 61
Interface IC Addresses .. 61
Interface IC Configuration Information ... 62
Change in Configuration ... 62

Power PMAC System Clock Source ..63
CPU Self Clocking .. 63
Default Clock Source ... 63
IC Clock Generation Facilities ... 63
EtherCAT Network Distributed Clocks .. 64
Distribution of Clock Signals ... 65
Re-Initialization Clock Actions .. 66
Normal Reset Clock Actions .. 66
Changing the Clock Source from Default ... 67

Setting System Clock Frequencies ..68
Phase and Servo-Clock Hardware Tasks ... 68
Phase-Clock Software Tasks ... 68

Servo-Clock Software Tasks .. 68
Real-Time Interrupt Software Tasks .. 70
Phase and Servo Hardware and Software Synchronization .. 70

Power PMAC User’s Manual

Table of Contents viii

Background Tasks .. 72
Multi-Tasking Example .. 75
Multiple-Core Task Assignments ... 75
Using the IDE to Set Phase and Servo Clock Frequencies ... 76
Setting Phase and Servo Clock Frequencies in PMAC2-Style ICs 77
Setting Phase and Servo Clock Frequencies in PMAC3-Style ICs 79
Clock-Related Software Settings .. 81
Setting the Phase and Servo Clock Period in the CPU ... 82

Diagnosing Issues with Clock Settings ...84
Missing Clock Signals ... 84

Task Priority Duty Cycles ... 84

Interrupt Response Latency ...87

SETTING UP THE MACRO RING ... 89

MACRO Ring Overview ..89

Power PMAC MACRO Interfaces ..89
ACC-5E MACRO Interface for UMAC .. 89
ACC-5E3 MACRO Interface for UMAC .. 89
ACC-5EP3 MACRO Interface for Etherlite ... 90
MACRO Interface for Power Brick ... 90

Configuring Master and Slave Devices ...90
PMAC2-Style MACRO IC .. 90
PMAC3-Style MACRO IC .. 91

Setting the Ring Frequency ...93
PMAC2-Style MACRO IC .. 93
PMAC3-Style MACRO IC .. 94
Extending the Phase Software Update ... 94

Enabling MACRO Nodes ..96
Node Allocation ... 96
Typical Mapping of MACRO Nodes to Motors ... 96
Enabling Nodes in a PMAC2-Style MACRO IC .. 97
Enabling Nodes in a PMAC3-Style MACRO IC .. 98

Ring Check Function ...99
Ring Check Parameters ... 99

MACRO Node Register Organization ..99
Standard Use of Registers in a Servo Node ... 99
Data Elements in a PMAC2-Style MACRO IC .. 99
Data Elements in a PMAC3-Style MACRO IC .. 100

Processing Position Feedback from the MACRO Ring .. 100
Encoder Table Entry Method: EncTable[n].type .. 100
Encoder Table Entry Source Address: EncTable[n].pEnc .. 101
Intermediate Processing: EncTable[n].index1, index2 ... 102
Change Limiting: EncTable[n].index3, MaxDelta .. 103

Power PMAC User’s Manual

Table of Contents ix

Setting Up Motor Addressing Elements ... 104
Command Output Address ... 104
Position Feedback Address .. 105
Absolute Position Feedback Address and Format ... 105
Interface Type .. 105
Input Flag Addresses ... 105
Input Flag Bits ... 106
Output Flag Addresses .. 106
Output Flag Bits .. 107
Commutation Addresses .. 107

Setting Up a Motor as a Network Slave ... 110
Command Modes ... 110
Coordinating Power PMAC Motor Setup .. 111
Network-Slave Power PMAC Motor Setup .. 114

SETTING UP FEEDBACK AND MASTER POSITION SENSORS 117

Setting Up Digital Quadrature Encoders ... 117
Signal Format .. 117
Hardware Setup ... 118
Hardware-Control Parameter Setup ... 120
Using the Resulting Position Information ... 123

Setting Up Digital Hall Sensors ... 125
Signal Format .. 125
Hardware Setup ... 126
Hardware-Control Parameter Setup ... 126
Using the Resulting Position Information ... 127

Setting Up Serial Encoders ... 128
Signal Format .. 128
Hardware Setup ... 128
Hardware-Control Parameter Setup ... 128
Using the Resulting Position Information ... 138

Setting Up Analog Sinusoidal Encoders .. 142
Signal Format .. 142
Sinusoidal Encoder Interfaces ... 143
Hardware Setup ... 144
Hardware Control Parameter Setup .. 146
Using the Resulting Position Information ... 158

Setting Up Resolvers .. 164
Signal Format .. 164
Hardware Setup ... 165
Hardware-Control Parameter Setup ... 165
Using the Resulting Position Information ... 168

Setting Up MLDTs ... 172
Signal Format .. 172
Hardware Setup ... 173

Power PMAC User’s Manual

Table of Contents x

Hardware-Control Parameter Setup ... 173
Using the Resulting Position Information ... 176

Setting Up Parallel Data Position Inputs .. 178
Signal Format .. 178
Hardware Setup ... 178
Hardware Control Parameter Setup .. 178
Using the Resulting Position Information ... 179

Setting Up Analog Data Position Inputs .. 181
Signal Format .. 181
Hardware Setup ... 182
Hardware Control Parameter Setup .. 183
Using the Resulting Position Information ... 186

SETTING UP THE ENCODER CONVERSION TABLE ... 192

What the Encoder Conversion Table Does ... 192

Conversion Table Execution ... 193

Conversion Table Structure ... 193

Conversion Method Overview ... 194

IDE Table Configuration Window .. 194

Scaling of Entry Results .. 195

Using Conversion Table Results ... 196

Default Conversion Table Setup ... 197

Conversion Method Details ... 197
Type 0: End of (Active) Table .. 197
Type 1: Single-Register Read .. 198
Type 2: Double-Register Read ... 205
Type 3: Software 1/T Encoder Extension .. 206
Type 4: Software Arctangent Sinusoidal Encoder Extension .. 208
Type 5: Four-Byte Read ... 212
Type 6: Resolver Arctangent Direct Conversion ... 213
Type 7: Extended Hardware Arctangent Interpolation ... 214
Types 8 and 9: Addition and Subtraction .. 215
Type 10: Triggered Time Base... 216
Type 11: Floating-Point Register Read ... 218
Type 12: Single Register Read with Error Check .. 219

BASIC MOTOR SETUP .. 223

IDE Interactive Setup .. 224

Parameters to Set Up Basic Motor Operation ... 224

Initial Setup Parameters .. 226
Activating the Motor: Motor[x].ServoCtrl .. 226
Activating PMAC Motor Commutation: Motor[x].PhaseCtrl ... 226

Power PMAC User’s Manual

Table of Contents xi

Motor Address Setup Parameters ... 227
Command Output Address: Motor[x].pDac .. 228
Motor vs. Load Feedback .. 228
Outer (Position) Loop Feedback: Motor[x].pEnc, PosSf .. 229
Inner (Velocity) Loop Feedback: Motor[x].pEnc2, Pos2Sf ... 230
Changing Feedback on the Fly .. 230
Feedback Source and Type: Motor[x].EncType .. 231
Encoder Status Address: Motor[x].pEncStatus ... 231
Position-Capture Flag Address: Motor[x].pCaptFlag, CaptFlagBit .. 232
Limit Flag Address: Motor[x].pLimits, LimitBits .. 232
Amplifier Fault Flag Address: Motor[x].pAmpFault, AmpFaultBit ... 233
Amplifier Enable Flag Address: Motor[x].pAmpEnable, AmpEnableBit.. 233
Absolute Power-On Position Address: Motor[x].pAbsPos ... 234

Is Power PMAC Commutating or Closing the Current Loop for This Motor? 235

Setting Up Power PMAC for Velocity or Torque Control .. 235
Hardware Setup ... 235
ASIC Programmable Signal Setup ... 238

Setting Up Power PMAC for Pulse-and-Direction Control ... 241
Hardware Setup ... 242
Signal Timing ... 242
Power PMAC Parameter Setup ... 243

Setting Up Power PMAC for Position-Output Control .. 250
Power PMAC Parameter Setup ... 250

SETTING UP POWER PMAC-BASED COMMUTATION AND/OR CURRENT LOOP

... 252

Selection of Phase Update Frequency .. 252

Beginning Setup of Commutation .. 253
Commutation Enable: Motor[x].PhaseCtrl ... 253
Commutation Position Feedback Source: Motor[x].pPhaseEnc ... 254
Commutation Position Source Processing: Motor[x].PhaseEncRightShift, Motor[x].PhaseEncLeftShift

 ... 255
Commutation Position Scale Factor: Motor[x].PhasePosSf ... 256
Current Loop in Power PMAC or Not: Motor[x].pAdc .. 257

Setting Up for Sine-Wave Output Control .. 258
Hardware Setup ... 258
Motor Software Setup .. 260

Setting Up For Direct PWM Control ... 264
Introduction ... 264
Digital Current Loop Principle of Operation .. 264
Hardware Setup ... 267
Motor Software Setup .. 271

Voltage-Mode Direct-PWM Control ... 281

Direct PWM Control of Brush Motors .. 283

Power PMAC User’s Manual

Table of Contents xii

Motor Settings Common with Brushless Motors ... 284
Motor Settings Special for Brush Motors .. 285
Special Instructions for Tuning Current Loop ... 285

Direct Microstepping with Direct PWM Control .. 287
Principle of Operation ... 287
Speed Limitations... 288
Hardware Setup ... 288
Encoder Conversion Table Entry Setup ... 288
Simulated Servo Loop Setup .. 289
Commutation and Current-Loop Setup .. 290
Limiting Parameters .. 292

Establishing a Phase Reference (Synchronous Motors) .. 293
Absolute Phasing Reads .. 295
Correcting an Approximate Phase Reference.. 301

Finishing Setting Up Power PMAC Commutation (Direct PWM or Sine Wave), Asynchronous
(Induction) Motors ... 303

Calculating Motor[x].DtOverRotorTc Slip Constant .. 303
Setting Motor[x].IdCmd Magnetization Current ... 305

SETTING UP THE SERVO LOOP .. 307

Servo Update Rate .. 307
Choosing an Update Rate ... 307
Ramifications of Changing the Rate .. 307
Setting the Servo Clock Frequency/Period .. 308
Extending the Servo Update Period for a Motor ... 308
Closing the Servo Loop Under the Phase Interrupt for a Motor... 308

Types of Amplifiers ... 310
Amplifiers for Which Servo Produces Position Command ... 310
Amplifiers for Which Servo Produces Velocity Command .. 310

Amplifiers for Which Servo Produces Torque/Force Command .. 312

Selecting a Servo Algorithm .. 313

Position Command Output Algorithm ... 314
Position Output Values ... 314
Using Actual Position .. 314
Auxiliary Command Outputs ... 315

Basic PID Algorithm .. 318
Feedback Terms .. 318
Feedforward Filter .. 320
Auxiliary Command Output .. 321

Standard Servo Algorithm .. 322
Polynomial Filters ... 322
Integration Modes ... 332
Friction Feedforward .. 333
Static Friction Feedforward .. 334

Power PMAC User’s Manual

Table of Contents xiii

Acceleration Feedback .. 334
Input Deadband Compensation .. 334
Output Hysteretic Deadband ... 336

“Legacy” Servo Algorithm ... 337
Algorithm Structure .. 337
Polynomial Filters ... 338
Conversion Details ... 338

Adaptive Servo Control .. 340
Selecting the Adaptive Control Algorithm ... 340
Establishing the Reference System ... 341
Software Setup for Adaptive Control ... 341
Gain Scheduled Adaptive Control .. 342
Executing the Adaptive Control Algorithm .. 342

Cross-Coupled Gantry Control .. 345
Selecting the Cross-Coupled Control Algorithm ... 346

Enabling the Gantry with Cross-Coupling ... 346
Tuning the Non-Coupled Terms .. 347
Tuning the Cross-Coupled Terms .. 347

Custom User Servo Algorithms ... 348

Tuning the Servo Loop in the IDE .. 349
Automatic Tuning ... 350
Sample Interactive Tuning Process ... 352

Cascading Servo Loops ... 357
Strategies for Coupling the Loops ... 357
To Integrate Outer Loop Command or Not .. 358
Inner Loop General Setup .. 359
Outer Loop General Setup .. 359
Joining the Loops through Position Following Function .. 359
Joining the Loops through Compensation Table .. 362
Joining the Loops Directly ... 364
Tuning the Outer Loop .. 365
Programming the Outer-Loop Motor ... 366
Setup Examples .. 366
Changing the Operational Mode of Control ... 368

Trajectory Pre-Filter .. 371
Typical Uses of the Pre-Filter .. 371
Overview ... 372
Saved Setup Elements .. 372
Filter DC Gain ... 373
Spliner Reconstruction ... 373

Automated Filter Setup ... 373
Manual Filter Calculations .. 374

SETTING UP COMPENSATION TABLES .. 378

Power PMAC User’s Manual

Table of Contents xiv

Table Data Structure ... 378

Reserving Memory for the Tables .. 379
Defining the Data Buffer Size .. 379
Dynamic Allocation of Buffer Memory to Tables.. 380

Defining the Table Structure .. 381
Dimension Indices .. 381
Number of Active Dimensions: Nx[n] > 0 ... 381
Source Motors for Each Dimension: Source[n] .. 383
Source Position Used for Each Dimension: SourceCtrl ... 383
Number of Data Zones in Each Active Dimension: Nx[n] .. 383

Starting Source Location for Each Active Dimension: X0[n] .. 384
Source Span for Each Active Dimension: Dx[n] ... 384
Interpolation-Order and Boundary-Mode Control: Ctrl ... 385
Target Register Addresses: Target[q] ... 387
Target Output Scale Factors: Sf[q] .. 390
Overwriting vs. Additive Outputs: OutCtrl ... 390

Entering the Table Data Points .. 391
Entering Table Data Points in C .. 392

Enabling Compensation Tables ... 392

Action of the Compensation Tables .. 393

Use of “0D” Compensation Tables .. 393

Iterative Learning Control for Torque Compensation Tables .. 394

Sample Compensation Tables ... 395
1D “Leadscrew Compensation” Table .. 395
2D “Planar” Position Compensation Table .. 396

SETTING UP ELECTRONIC CAM TABLES .. 398

Uses of Electronic Cam Tables .. 398
Position Commands ... 398

Torque Offset Commands .. 398
Direct Output Commands ... 398

Comparison to External Time Base Techniques .. 399

Table Design Techniques ... 400

Table Data Structure ... 401

Reserving Memory for the Tables .. 402
Defining the Data Buffer Size .. 402
Dynamic Allocation of Buffer Memory to Tables.. 403

Defining the Table Structure .. 403
Source Motor Number: Source ... 403
Number of Data Zones: Nx ... 404
Starting Source Location: X0, SlewX0 .. 405
Source Span: Dx ... 405

Power PMAC User’s Manual

Table of Contents xv

Target Motor Number: Target .. 405
Target Position Scale Factor: PosSf .. 405
Target Position Offset Slew: SlewPosOffset ... 405
Target Torque Offset Enable Control: DacEnable .. 405
Target Torque Scale Factor: DacSf .. 406
Output Address: pOut ... 406
Buffered Output Address: pOutBuf ... 406
Output Shifting:OutLeftShift .. 406
Output Masking: OutBits .. 406

Entering the Table Data Points .. 407

Returning vs. Non-Returning Position Tables .. 407
Returning Position Tables .. 407
Non-Returning Position Tables ... 408

Enabling the Cam Tables.. 409

Action of the Cam Tables ... 409

Adjusting of the Table Action .. 410
Adjusting on Source Motor Position ... 410
Adjusting on Target Motor Position ... 410
Phasing the Cam Cycle on a Source Motor Trigger .. 411

Rollover of the Table ... 413
Position Output at Rollover .. 413
Torque Offset Output at Rollover ... 413
General Purpose Outputs at Rollover ... 413

Iterative Learning Control ... 413

Combining Cam Motion with Other Motion ... 414

Reporting Motor Position with Cam Table Motion .. 414

Disabling the Cam Tables... 415

Switching Between Cam Tables ... 415

MAKING YOUR POWER PMAC APPLICATION SAFE .. 416

Watchdog Timer .. 416
Soft Watchdog Trips .. 416
Hard Watchdog Trips ... 418

Global Abort-All Input ... 419
Software Setup .. 419
Action on Trip .. 419

Voltage Interlock Circuits ... 420

Following Error Limits .. 421
Fatal Following Error Limit ... 421
Warning Following Error Limit .. 422

Position (Overtravel) Limits ... 423

Power PMAC User’s Manual

Table of Contents xvi

Software Overtravel Limit Parameters .. 423
Hardware Overtravel Limit Switches ... 426

Software Motor Interlocks .. 429

Encoder Loss Detection ... 430
Signal Loss Detection Circuits .. 430
Software Setup for Loss Detection .. 432

Auxiliary Fault Detection .. 436
Software Setup for Auxiliary Fault Detection .. 437

Automatic Brake Control .. 438
Specifying the Brake Control Output .. 439
Specifying the Brake Timing .. 439

Amplifier Enable and Fault Lines ... 440
Amplifier Enable Output Configuration .. 440
Amplifier Fault Input Configuration ... 441

Current Limits ... 442
Intermittent Current Limits ... 442

Time-Integrated Current Limits ... 443
RMS Current Calculations .. 446
Reference Frame Conversions .. 448
Torque Control Mode ... 450
Sinewave Output Mode ... 451
Direct PWM Output Mode ... 453

Velocity Limits ... 457
Programmed Vector Velocity Limit .. 457
Programmed Motor Velocity Limit ... 457
Position-Following Velocity Limit ... 458

Acceleration Limits ... 458
Programmed Vector Acceleration Limits ... 458
Programmed Motor Acceleration Limits ... 458
Motor Move Acceleration Command ... 459
Position-Following Acceleration Limit .. 459

Jerk Limits ... 460
Programmed Motor Jerk Limit... 460
Motor Move Jerk Command ... 460

Commanded Safety Stops .. 460
Abort: Controlled Stop .. 460
Disable: Uncontrolled Stop .. 461
Hybrid Abort/Disable .. 461

EXECUTING INDIVIDUAL MOTOR MOVES .. 462

Jogging Move Control ... 462
Jog Speed Control .. 462
Jog Acceleration Control ... 462

Power PMAC User’s Manual

Table of Contents xvii

Example Jog Move Profile ... 466
Jog Commands... 466

Triggered Motor Moves ... 469
Types of Triggered Moves ... 469
Trigger Conditions... 469
Capturing the Position at Trigger ... 473
Processing the Hardware-Captured Position .. 477
Processing the Software-Captured Position .. 486
Post-Trigger Move ... 486
Homing-Search Moves ... 486
Jog-Until-Trigger Moves ... 491
Program Move-Until-Trigger .. 492

Open-Loop Moves .. 493

SETTING UP COORDINATE SYSTEMS .. 494

What is a Coordinate System? .. 494
Number of Coordinate Systems ... 494
Strategy for Assigning Coordinate Systems ... 494
Fault Sharing ... 495

What is an Axis? ... 495
Single-Motor Axes ... 495
Multiple-Motor Axes .. 495
Phantom Axes .. 496

Axis Definition Statements .. 496
Matching Motor to Axis ... 497
Scaling and Offset .. 497
The Null Definition .. 497
Defining a Motor to Multiple Axes .. 497
Cartesian Axis Sets .. 499
Rotary Axes with Rollover Capability ... 500
The Spindle Axis Definition ... 501
Conversion from Axis to Motor Position ... 502
Conversion from Motor to Axis Positions .. 503

Coordinate-System Kinematic Subroutines ... 505
Creating the Kinematic Program Buffers .. 506
Generalizing the Routines to Multiple Coordinate Systems .. 516

Axis Transformation Matrices .. 519
Transformation Matrix Data Structures .. 520
Using the Matrices ... 521
Examples .. 522
Rescaling Feedrate and Tool Radius ... 523

Segmentation Mode .. 524

Time-Base Control and Override Techniques ... 525
Time-Base Control ... 525

Power PMAC User’s Manual

Table of Contents xviii

Segmentation Override .. 528

Axis Target Position and Distance-to-Go Reporting .. 531
Setting Up the Target Position Buffer .. 531
Querying the Target Position Data ... 532

Path Vector Speed and Angle Reporting ... 535
Enabling the Path Calculations ... 535
Configuring the 2D Path Calculations .. 535
Additionally Configuring the 3D Path Calculations ... 536
Using With Non-Cartesian Systems ... 537
Using the Reported Results .. 537

POWER PMAC COMPUTATIONAL FEATURES ... 541

Computational Priorities .. 541
Phase (Commutation) Update ... 541
Servo Update ... 541
Real-Time Interrupt Tasks ... 542
Background Tasks .. 542
Monitoring Processing Time ... 542

Numerical Values .. 543
Internal Formats .. 543

Pre-Defined Data Structures ... 546
Specifying Data Structure Indices ... 547

User Variables .. 548
Direct Access to User Variables .. 548
User-Specified Variable Names Through IDE .. 549
Automatically Assigned Declared Variables ... 549
System Global (“P”) Variables ... 551
Coordinate System Global (“Q”) Variables ... 552
User Pointer (“M”) Variables ... 553
Pre-Defined Setup Pointer (“I”) Variables ... 553
Local (“L”) Variables ... 554
Return/Stack (“R”) Variables .. 556
Coordinate System Kinematic Axis (“C”) Variables... 557
Non-Stack Local (“D”) Variables ... 557
User Shared Memory Buffer Variables ... 558

Operators .. 560
Arithmetic Operators ... 560
Bit-Wise Operators .. 560
Standard Assignment Operators .. 561
Synchronous Assignment Operators .. 561

Functions .. 562
Scalar Functions .. 562
Vector Functions .. 562
Matrix Functions ... 563

Power PMAC User’s Manual

Table of Contents xix

Expressions .. 564

The {data} Syntax ... 565

Standard Variable Value Assignment .. 565

Synchronous Variable Value Assignment.. 566
Variables That Can Be Assigned Synchronously ... 566
Why Needed in Motion Programs .. 567
Why Needed in PLC Programs .. 568
The Synchronous Assignment Buffer ... 569
Execution Details ... 569

Comparators ... 569

Conditions ... 570
Explicit Comparisons ... 570
Compound Conditions ... 570
Condition Negation .. 571

USING GENERAL PURPOSE DIGITAL I/O WITH POWER PMAC 572

Note on Using “Dedicated” I/O for General Purpose Use .. 572

Digital I/O Hardware and Configuration ... 572
UMAC Digital I/O Boards ... 572
Compact UMAC ACC-11C Digital I/O ... 573
UMAC ACC-5E Digital I/O ... 574
UMAC ACC-5E3 Digital I/O ... 574
Power Brick Digital I/O ... 575
Power Clipper Digital I/O ... 575
ACC-34 Family Multiplexed Digital I/O ... 576

Software Configuration for Digital I/O Use ... 578
UMAC Digital I/O Boards ... 578
Compact UMAC ACC-11C Digital I/O ... 580
UMAC ACC-5E Digital I/O ... 580
UMAC ACC-5E3 Digital I/O ... 582
Power Brick Digital I/O ... 583
Power Clipper Digital I/O ... 583
ACC-34 Family Multiplexed Digital I/O ... 584

Accessing Digital I/O Points in the Script Environment .. 588
Accessing Output Points at Different Priority Levels .. 588
UMAC Digital I/O Boards ... 589
Compact UMAC ACC-11C Digital I/O ... 590
UMAC ACC-5E Digital I/O ... 590
UMAC ACC-5E3 Digital I/O ... 591
Power Brick Digital I/O ... 592
Power Clipper Digital I/O ... 592
ACC-34 Family Multiplexed Digital I/O ... 593

Using Cyclic Scanned Buffered Inputs and Outputs .. 594
Enabling Cyclic Scanned I/O ... 594

Power PMAC User’s Manual

Table of Contents xx

Specifying Scanned Input Registers ... 595
Override “Forcing” of Inputs ... 596
Filtering of Inputs .. 596
Resulting Registers .. 597
Using the Resulting Values .. 597
Writing to Outputs Using Holding Registers ... 597
Override “Forcing” of Outputs ... 598
Specifying Scanned Output Registers .. 598

Accessing Digital I/O Points in the C Environment .. 600
Accessing Output Points at Different Priority Levels .. 600
Volatile Variable Declarations .. 600
Using Data Structures ... 600
Using Direct Pointer Variables ... 601
UMAC Digital I/O Boards ... 602
Compact UMAC ACC-11C Digital I/O ... 603
UMAC ACC-5E Digital I/O ... 603
UMAC ACC-5E3 Digital I/O ... 605
Power Brick Digital I/O ... 606
Power Clipper Digital I/O ... 608
ACC-34 Family Multiplexed Digital I/O ... 609

WRITING AND EXECUTING SCRIPT PROGRAMS IN THE POWER PMAC 610

Classes of Script Programs ... 610
Motion Programs ... 610
Rotary Motion Programs ... 610
PLC Programs ... 610
Subprograms .. 611
Kinematic Subroutines ... 611

Script Language Syntax Features ... 611
Mathematical Capabilities ... 611
Program Flow Control .. 612
Motion Specification .. 617
Program Direct Commands ... 620

Downloading Rules for Script Programs .. 622
Motion Programs ... 622
Rotary Motion Programs ... 622
PLC Programs ... 623
Subprograms .. 623
Kinematic Subroutines ... 624

Implementing Script Programs in the IDE .. 624
Organizing Your Program Files .. 624
User Variable Names ... 625
IDE Program Enhancements ... 627

Execution Rules for Script Programs ... 632
Motion Programs ... 632

Power PMAC User’s Manual

Table of Contents xxi

Rotary Motion Programs ... 637
PLC Programs ... 637
Subprograms .. 640
Kinematic Subroutines ... 640

Starting and Stopping Script Program Execution ... 641
Coordinate System Addressing for Motion Programs ... 641
Starting Script Motion Program Execution ... 641
Stopping Script Motion Program Execution .. 644
Starting Script PLC Program Execution ... 649
Stopping Script PLC Program Execution .. 650

Implementing an RS-274 Style Motion Program .. 652
G, M, T, and D-Codes .. 652
S-Codes .. 653
H-Codes ... 654
Standard G-Codes ... 654

POWER PMAC MOVE MODE TRAJECTORIES ... 663

Modal Move-Rule Commands ... 663

Move Commands .. 663

Rapid Move Mode ... 664
Rapid Mode Declaration ... 664
Position or Distance Specification .. 664
Velocity Specification .. 664
Acceleration Specification ... 664
Sample Move Profile .. 668
Multi-Axis Path Options .. 669
Rapid-Mode Move-Until-Trigger .. 669
Breaking into a Rapid-Mode Move .. 671
Executing Rapid-Style Moves with Linear Mode ... 671

Linear Move Mode .. 672
Optional Segmentation Mode .. 672
Linear Mode Declaration .. 672
Position or Distance Specification .. 672
Feedrate or Move-Time Specification ... 673
Acceleration Specification ... 677
Linear Move Examples .. 679
Blending Moves Together .. 681
Special Linear Contouring Mode .. 686
Using Linear Mode for “Rapid” Moves .. 687

Circle Move Mode ... 688
Enabling Move Segmentation .. 688
Specifying the Interpolation Plane .. 688
Circle Mode Declaration ... 690
Position or Distance Specification .. 690
Center Specification ... 690

Power PMAC User’s Manual

Table of Contents xxii

Motion of Other Axes ... 693
Feedrate or Move-Time Specification ... 693
Acceleration Specification ... 695
Blending Moves Together .. 695
Blended Move “Cornering” Control ... 696

Tool (Cutter) Radius Compensation .. 705
Two-Dimensional Tool Radius Compensation .. 705
Three-Dimensional Tool Radius Compensation .. 720

PVT Move Mode ... 727
PVT Mode Declaration .. 727
Position or Distance Specification .. 727
Velocity Specification .. 727
Power PMAC Calculations .. 727
Use of PVT Mode in Contouring ... 729
Lookahead with PVT Moves .. 730
Blending PVT Moves with Linear and Circle Moves... 730
Issues with Single-Stepping ... 732
Enhanced PVAT Moves ... 732

Spline Move Mode .. 734
Spline Mode Declaration ... 734
Position or Distance Specification .. 734
Uniform-Time Calculations ... 734
Non-Uniform-Time Calculations ... 736
Use of Spline Mode for Contouring ... 737

Power PMAC Special Lookahead Function ... 738
Principle of Operation ... 738
Sample Effect Diagrams .. 739
Interactions with Kinematics ... 740
Transparent Operation .. 740
Quick Instructions: Setting Up Lookahead .. 740
Detailed Instructions: Setting Up to use Lookahead ... 741
Running a Program with Lookahead ... 747
Stopping While in Lookahead .. 748
Reversal While in Lookahead .. 750
Feedrate Override with Lookahead ... 751

SYNCHRONIZING POWER PMAC TO EXTERNAL EVENTS 752

A Note on “Master/Slave” Techniques ... 752

Processing the Master Position Signal .. 753
Processing a Quadrature Encoder with a PMAC2-Style IC ... 754
Processing an External Clock Signal with a PMAC2-Style IC .. 754
Processing a Sinusoidal Encoder with a PMAC2-Style IC ... 754
Processing a Quadrature Encoder with a PMAC3-Style IC ... 755
Processing an External Clock Signal with a PMAC3-Style IC .. 755
Processing a Sinusoidal Encoder with a PMAC3-Style IC ... 755

Power PMAC User’s Manual

Table of Contents xxiii

Processing a Serial Encoder with a PMAC3-Style IC ... 756

Position Following (Electronic Gearing) ... 756
Position Following Master Address .. 757
Position Following “Gear Ratio” ... 757
Enabling and Disabling Following.. 758
Following Mode: Normal vs. Offset .. 758
Speed and Acceleration Limiting in Following ... 759
Custom Following Algorithms ... 763
Tuning the Servo Loop of the Slave Motor .. 763

External Time-Base Control .. 763
What is External Time-Base Control? ... 763
Comparison to Electronic Cam Tables .. 764
How External Time-Base Works .. 764
Time-Base Entry in the Encoder Conversion Table .. 765
Using the Scaled Master Value .. 765
Writing the Motion Program ... 766
Simple Time-Base Example: Crosscut on Moving Web ... 767
Triggered Time Base .. 767

Hardware Position-Capture Functions ... 772
Requirements for Hardware Capture .. 772
Setting the Trigger Condition .. 772
Automatic Move-Until-Trigger Functions ... 773
Semi-Automatic Position-Capture Monitoring Function... 773
Manual Use of the Hardware-Capture Feature .. 774
Manually Converting to Motor and Axis Positions ... 777

Hardware Position-Compare Functions ... 780
Setup on a PMAC2-Style IC... 780
Setup on a PMAC3-Style IC... 783
Handling Fractional Count Values .. 789
Converting from Motor and Axis Coordinates .. 789

WRITING C FUNCTIONS AND PROGRAMS IN POWER PMAC 792

Priorities for C Programs and Routines in Power PMAC ... 792

Creating C Functions and Programs ... 793

Accessing Shared Memory and Structures .. 794

Accessing ASIC Hardware Registers .. 794
Using the Data Structures .. 795
Using Direct Pointer Variables .. 796

Capture/Compare Interrupt Service Routine ... 797
ASIC Interrupt Control Register .. 797
Writing a Capture/Compare Interrupt Service Routine ... 798
Executing the Capture/Compare Interrupt Service Routine .. 798
Capture Interrupt Routine Example ... 798
Compare Interrupt Routine Example ... 799

Power PMAC User’s Manual

Table of Contents xxiv

User-Written Phase Routines ... 801
Declaration.. 801

Automatic Preparation for Routine .. 801
Input/Output Access .. 801
Basic Example Routine ... 802
Compiling and Downloading ... 802

User-Written Servo Routines ... 803
Declaration.. 805
Automatic Preparation of Input Values ... 805
Automatic Processing of Returned Value .. 805
Basic Example Routine ... 805
Multi-Motor Routines ... 806
Compiling and Downloading ... 807

Real-Time Interrupt C PLC Routine ... 807

Background C PLC Routines ... 808

CfromScript Function ... 809
Declaring CfromScript() .. 809
Calling CfromScript from Script Programs .. 810
Using Local Data Variables within CfromScript ... 810
Calling CfromScript from Multiple Script Programs .. 811

Background C Application Programs .. 815

POWER PMAC EXAMPLE SCRIPT PROGRAMS ... 816

Simple Motion Programs ... 816
Example 1: Basic Moves .. 816
Example 2: A More Complex Move Sequence ... 817
Example 3: Moves with Looping, Branching, and I/O .. 818
Example 4: Coordinated and Blended Moves with Linear and Circular Interpolation 819
Example 5: Coordinated Path Motion ... 821
A Move with Separate Acceleration and Deceleration .. 827
Motion with Related Machine I/O ... 828
Interactive Jog Control PLC Programs ... 829
SCARA Robot Kinematics .. 832

Power PMAC User’s Manual

Power PMAC Family Overview 25

POWER PMAC FAMILY OVERVIEW

The Power PMAC family of controllers is the latest generation of motion and machine controllers

from Delta Tau Data Systems, Inc. It is available in a large and increasing number of

configurations, permitting the user to configure controller hardware and software to particular

application needs. This chapter provides a brief overview of the Power PMAC structure; all items

mentioned here are covered in more detail elsewhere in the User’s Manual or in related reference

manuals.

What Is Power PMAC?

Power PMAC is a general-purpose embedded computer with a built-in motion and machine-

control application. It also provides a wide variety of hardware machine interface circuitry that

permits connection to common servo and stepper drives, feedback sensors, and analog and digital

I/O points.

Power PMAC Configurations

Power PMAC is available in multiple physical configurations, optimized for different styles of

applications. Each configuration shares the same core software capabilities, but the hardware

interfaces differ between configurations.

Power UMAC

The Power UMAC is a modular rack-mounted configuration of the Power PMAC. It consists of a

set of 3U-format (100mm x 160mm) boards in a Euro-Card rack. Along with the required Power

PMAC CPU board, a customized set of interface boards can be added, communicating over a

common backplane. These include digital and analog servo interface boards, digital and analog

general-purpose I/O boards, machine network interface boards, and industrial fieldbus interface

boards. A power supply installed in the rack can be used, or an external supply.

Example Power UMAC Configuration

Because of its modular nature, the Power UMAC provides the most flexible configuration for

Power PMAC systems.

Power PMAC User’s Manual

Power PMAC Family Overview 26

Compact Power UMAC

The Power PMAC is also available in the “Compact Power UMAC” configuration. This is similar

to the standard Power UMAC, with 3U-format (100mm x 160mm) boards on a common

backplane. However, the field wiring is distributed behind the backplane, as in the Compact PCI

format (but there is no PCI interface). This requires a customized and engineered distribution

scheme, so this format is intended for high-volume OEMs who have the capability and financial

justification for such a distribution scheme.

CK3M (µUMAC)

The CK3M is a small modular rack-mounted configuration of the Power PMAC, with similar

form factor to the Omron NJ/NX PLCs. Along with the required Power PMAC CPU module, a

customized set of interface boards can be added, communicating over a common backplane

within one rack (line), and extensible to up to 4 lines through expansion modules and cables.

Example CK3M (µUMAC) Controller Configuration

Power PMAC Etherlite

The Power PMAC Etherlite is a compact and cost-effective configuration intended for control

through industrial networks and fieldbuses. It consists of a Power PMAC CPU board, a network

interface board that can be configured for the MACRO fiber optic network, the EtherCAT

electrical network, or both. Optionally, a fieldbus interface board for buses such as Profibus,

DeviceNet, or CCLink can be installed.

Power PMAC Etherlite Controller

Power PMAC User’s Manual

Power PMAC Family Overview 27

The Power PMAC Etherlite is commonly used for large systems where networked connections

are important to simplify system wiring.

CK3E (µPowerPMAC)

The µPowerPMAC [CK3E] controller is a packaged single-board controller that interfaces to

servo drives and I/O devices through the EtherCAT network.

CK3E (µPowerPMAC) Controller

Power Brick Configurations

The Power Brick controllers are integrated “boxed” configurations of Power PMAC. The come in

three configurations: Power Brick AC, Power Brick LV, and Power Brick Controller.

All of these configurations can support multiple styles of position feedback: digital incremental

(quadrature) encoders, serial encoders, analog incremental (sinusoidal) encoders, and resolvers.

All configurations provide a standard set of “flags” (e.g. limit, home, and user) for each axis, with

a set of general-purpose digital I/O. General-purpose analog I/O is also available.

Power Brick AC

The Power Brick AC combines a Power PMAC controller with integrated 3-phase motor

amplifier circuits for 4, 6 or 8 axes. The AC power input for the amplifiers can be up to 240VAC.

Power Brick AC 4-Axis Configuration

Power PMAC User’s Manual

Power PMAC Family Overview 28

Power Brick LV

The Power Brick LV combines a Power PMAC controller with integrated motor amplifier circuits

for 2-phase and 3-phase motors for 4 or 8 axes. It accepts a DC power input for the amplifiers of

up to 60VDC. Each axis can be configured by the user for 2-phase or 3-phase motors, open-loop

(stepper) or closed-loop (servo).

Power Brick LV 8-Axis Configuration

Power Brick Controller

The Power Brick Controller combines a Power PMAC controller with an integrated multi-axis

amplifier-interface board in a single boxed package. Both analog and digital amplifier interface

boards are available, and each can be provided in 4-axis and 8-axis configurations.

Power Brick Controller 4-Axis Configuration

Power PMAC User’s Manual

Power PMAC Family Overview 29

Power Clipper

The Power Clipper is a compact and cost-effective configuration of the Power PMAC for

embedded applications. It combines the Power PMAC CPU, 4 channels of axis interface circuitry,

32 general-purpose digital I/O points, and 4 optional analog inputs onto a single small circuit

board. A second Clipper board, built without the CPU, provides another set of axis and general-

purpose I/O.

Power Clipper Controller Board (without fan assembly)

CK3C (ARM Power Clipper)

The CK3C is the newest Power Clipper controller, utilizing the latest ARM processors.. It is a

compact and cost-effective configuration of the Power PMAC for embedded applications. It

combines the Power PMAC CPU, 4 channels of axis interface circuitry, 32 general-purpose

digital I/O points, and 4 optional analog inputs onto a single small circuit board. It can accept

several “stack” accessory boards for additional axis, digital, and analog I/O.

CK3C (ARM Power Clipper) Controller Board with Enclosure

Power PMAC User’s Manual

Power PMAC Family Overview 30

Power PMAC on Sysmac IPC

The Power PMAC software has also been configured to run on Omron’s Sysmac IPC (Industrial

Personal Computer). The Sysmac IPC is a multi-core PC, using one core for Power PMAC

interrupt-driven foreground tasks, and a second core for its background tasks, both running under

a real-time Linux operating system. Remaining cores are available for other uses such as HMI

and network interfaces, running under the Microsoft Windows operating system. The operation of

both operating systems is managed by an overall “hypervisor”.

The interface to the servo drives and I/O devices on these PC-based systems is done through the

EtherCAT network.

Omron Sysmac IPC

Power PMAC User’s Manual

Power PMAC Family Overview 31

What Power PMAC Does

Power PMAC can handle all of the tasks required for machine control, constantly switching back

and forth between the different tasks thousands of times per second. The major tasks involved in

machine control are summarized here. More details on how these tasks are prioritized are given in

the chapter Power PMAC System Configuration.

Execute Sequenced Motion Programs

The most obvious task of Power PMAC is executing sequences of motions given to it in a motion

program written in the Power PMAC Script language. When told to execute a motion program,

Power PMAC works through the program one move at a time, performing all the calculations up

to that move command (including non-motion tasks) to prepare for actual execution of the move.

Power PMAC is always working ahead of the actual move in progress, so it can blend properly

into the upcoming move(s), if required. See the chapter Writing and Executing Script Programs

for more details.

Execute Asynchronous PLC Programs

The sequential nature of the motion program suits it well for commanding a series of moves and

other coordinated actions but these programs are not good at performing actions that are not

directly coordinated with the sequence of motions. For those types of tasks, Power PMAC

provides the capability for users to write “PLC programs”. These are named after Programmable

Logic Controllers because they operate in a similar manner, continually scanning through their

operations as processor time allows. These programs are very useful for any task that is

asynchronous to the motion sequences. PLC programs can be written both in the Power PMAC

Script language and in C. Both types of programs can execute either as interrupt-driven

foreground tasks, or as background tasks. See the chapters Writing and Executing Script

Programs and Writing C Functions and Programs for more details.

Perform Kinematic Transformations

Power PMAC can automatically perform user-specified transformations between “tool-tip” (axis)

coordinates in a geometry that the user finds easy to work with (e.g. a Cartesian reference frame)

and the underlying “joint/actuator” (motor) coordinates in which the machine is built. The

transformation can be a basic, mathematically linear, scaling and offset transformation, permitting

scaling and offsetting into user engineering units and a flexible programming origin for each axis.

This can be accomplished with simple “axis-definition” equations.

The transformation can also be a complex, mathematically non-linear, transformation

implemented in user-written “kinematic” subroutines. These subroutines can employ

sophisticated math and logic to perform the transformation, selecting if necessary between

multiple solutions, and even iterating to solutions when closed-form solutions are not available.

See the chapter Setting Up a Coordinate System for more details

Process Feedback and Master Position Data

Power PMAC can perform sophisticated processing of sampled position-related data to prepare it

for feedback or master use in servo-loop algorithms. This is done each servo cycle in a structure

called the “Encoder Conversion Table”. The ECT can combine several sampled values to provide

an enhanced net position value, as with timer-based extension of incremental encoders or

sinusoidal interpolation of analog encoders. It can filter noisy values, automatically eliminate

obviously erroneous values, integrate values, and combine multiple values by sum or difference.

Power PMAC User’s Manual

Power PMAC Family Overview 32

See the chapters Setting Up Feedback and Master Position Sensors and Setting Up the Encoder

Conversion Table for details.

Compute Commanded Motor Trajectories

Each servo cycle, Power PMAC can compute a new commanded position for each active motor,

providing a “setpoint” for the servo loop to act upon. This commanded position can be from a

programmed axis move, a direct motor move such as a jogging or homing search move, a position

following (electronic gearing) algorithm, or some combination of the above. See the chapters

Executing Individual Motor Moves and Power PMAC Move Mode Trajectories for details.

Calculate Compensation Table Corrections

Each servo cycle, Power PMAC can calculate table-based corrections to key motor parameters.

Each table can be based on the position of 1, 2, or 3 motors (linear, planar, or volumetric tables,

respectively), and can compensate the position, torque, or backlash correction of one or more

motors. The “target” motor may or may not be the same as one of the “source” motors. These

tables can provide classic “leadscrew” compensation, and more sophisticated corrections,

including for cross-axis position compensations for straightness errors, and torque compensations

for motor cogging torque variations. See the chapter Setting Up Compensation Tables for details.

Calculate Cam Table Motions

Each servo cycle, Power PMAC can calculate table-based motion for a motor based on the

position of another motor, providing “electronic cam table” capability. In each “zone” of the

table, Power PMAC computes the cam position by 3rd-order interpolation between table points,

torque offset by 3rd-order interpolation between table points, and a discrete output word for the

zone. It is possible to have Power PMAC compute the optimal torque offsets for each zone itself

through “iterative learning control” to minimize the position errors over multiple cycles. See the

chapter Setting Up Electronic Cam Tables for details.

Close Motor Position/Velocity Servo Loops

Each servo cycle, Power PMAC can close the servo loop for all active motors. Using the

computed command position for the servo cycle, the processed actual position information, and

the user-set servo gain term values, it calculates the feedback and feedforward components of the

servo effort that is designed to minimize the difference between the commanded and actual

position values. See the chapter Setting Up the Servo Loop for details.

Perform Electronic Phase Commutation

If Power PMAC is configured to perform the commutation for a multiphase motor, it will

automatically perform commutation updates at a selectable fixed frequency (often around 9 kHz).

The commutation, or phasing, update for a motor consists of measuring and/or estimating the

rotor magnetic field orientation, then apportioning the command that was calculated by the servo

update among the different phases of the motor. Once configured, this task occurs automatically

without the need for any explicit commands. See the chapter Setting Up Power PMAC-Based

Commutation and/or Current Loop for more details.

Close Motor Current Loops

If Power PMAC is configured to perform digital current-loop closure for a motor (as part of the

commutation algorithm), each commutation update it will automatically read the motor phase

current values from analog-to-digital converter registers, compare these values to the commanded

current values, and compute the phase voltage command levels necessary to obtain the command

Power PMAC User’s Manual

Power PMAC Family Overview 33

current levels. These phase voltage commands are usually encoded as PWM duty cycles, with the

PWM signals directly driving the amplifier power transistors. See the chapter Setting Up Power

PMAC-Based Commutation and/or Current Loop for more details.

Provide Synchronous Data Gathering

Every servo cycle (or every “n” servo cycles), Power PMAC can automatically log the values of

up to 128 user-specified hardware and/or software registers into a data buffer for later analysis.

Power PMAC’s Integrated Development Environment (IDE) software for the PC can

automatically upload the gathered data and plot it in a variety of user-configurable formats. This

functionality is also used for interactive and automatic tuning algorithms. It is also possible to

gather the contents of up to 16 user-specified registers every phase cycle; this functionality is

mainly used for setting up commutation and tuning the digital current loop.

Perform General Housekeeping and Safety Checks

Power PMAC is continually and automatically monitoring its hardware and software functions,

updating status information and performing key safety checks for all active motors and coordinate

systems. The safety checks include hardware and software overtravel position limits, position

following error, amplifier fault signals, integrated current limits, encoder loss detection, and a

watchdog timer check. See the chapter Making Your Power PMAC Application Safe for details.

Respond to Host Computer Commands

Power PMAC is continually checking for commands over its Ethernet port. As a networked

device, commands can come from multiple tasks within a single computer, and from multiple

computers. These commands can be for an action, as in jogging a motor or starting a program, or

can be to query a value or state in the controller. See the chapter Talking to Power PMAC for

details.

Execute Independent C Applications

Power PMAC can execute independent applications written in C under the general-purpose

operating system (GPOS). These applications have access to Power PMAC’s shared memory and

I/O, but do not need to use these structures. See the chapter Writing C Functions and Programs in

Power PMAC for details.

Power PMAC User’s Manual

Power PMAC Family Overview 34

Key Hardware Components

Power PMAC hardware consists primarily of the CPU and machine interface circuitry. This

section summarizes these key hardware components. Note that the Soft Power PMAC, running on

an industrial PC (IPC) as the “Motion Machine”, does not have the interface hardware. Instead, it

uses an Ethernet-based network to communicate with the machine.

CPU Section

The core of the Power PMAC is the central processing unit (CPU), consisting of a

microprocessor, active memory, and non-volatile memory. The following figure shows the block

diagram of the Power PMAC CPU for the UMAC rack-mounted controller. Other configurations

are similar.

Power PMAC CPU Section Block Diagram

Processor

Initial hardware implementations of the Power PMAC use an embedded Power PC RISC

microprocessor. This 32-bit processor has relatively low heat dissipation requiring only limited

cooling, and it has a substantial number of peripherals built in, keeping the parts count of the

CPU section small. The processor has a dedicated hardware floating-point math engine, capable

of processing mathematical operations directly on both single-precision (32-bit) and double-

precision (64-bit) floating-point values.

Power PMAC
CPU

800Mhz - 1.0Ghz

DDR2
1GB or 2GB
RAM w/ ECC

Removable SOCDIMM
16M Motion Prog Buffer (adjustable)

8M PPmac Memory Map (Fixed)
1M User Shared Memory (adjustable)

AMD
NOR Boot Flash

64MB

Contains everything
necessary to boot

Linux RTOS Kernel

Lattice CPLD
UBUS I/F

*Can be used as
SATA or PCIe (x1)

USB
Hub/Card
Reader

SD/MMC Expansion Slot
(User Expansion)

Soldered Down NAND
Flash 2 or 8GB

Contains Complete
Operating System
Files

plus Add on products
ie. IEC1131, EPICS
NC Application,
Ethercat, etc ...
User Interface Software

USB 2.0 Host

Expansion Port

(User Expansion)

USB 2.0 Device

1G Eth

1G Eth

RS232

USB 2.0

PCIe (x1) PCIe (x4) SATA

Disk

Drive

Ethercat,
Powerlink,
Modbus, etc…

PC Comm
i.e. -Web,
TCP Sockets

Up to 32GB SDHC
Memory Card (User

Programs)

UBUS

Keyboard,
Mouse, RS232,
Hard Drive,
Memory Stick etc.

RS232

Ethernet

Ethernet

USB

USB

Video Card

Vision System Card
Fieldbus Cards,
etc...

Power PMAC User’s Manual

Power PMAC Family Overview 35

Subsequent hardware implementations use embedded microprocessors with the ARM

architecture. These also have low heat dissipation requiring minimal cooling.

Single-core processors running at 800 MHz and 1.0 GHz are available. Dual-core processors

running at 1.2 GHz are available.

When Power PMAC software runs on a PC, such as Omron’s IPC, the processor is of the x86

architecture.

Active Memory (RAM)

The active memory in Power PMAC is DDR2 or 3 class RAM, typically with a capacity of 1 – 2

gigabytes (GB). The Power PMACs with Power PC processors use error-correcting memory

modules. The more cost-effective ARM processors use standard memory modules without error

correction

Non-Volatile Memory (Flash)

The non-volatile memory provided with Power PMAC is solid-state flash memory. The computer

BIOS for boot loading is stored in NOR flash. The operating system, PMAC application software

and user projects are stored in NAND flash and loaded into RAM automatically on power-up and

reboot/reset. The built-in NAND flash is typically provided with a capacity of 1 – 4 GB.

Users can provide additional NAND flash capacity through USB-stick and/or SD card modules,

depending on the configuration of the Power PMAC.

Machine Interface ICs

The processor interfaces to the machine through a variety of “machine interface” ICs. These

appear to the processor as a set of memory-mapped registers and provide a variety of input and

output signals to machine devices. Different ICs provide various interfaces, both for motion

control and for general-purpose analog and digital I/O.

PMAC2-Style “DSPGATE1” Servo IC

The PMAC2-style Servo IC is called the “DSPGATE1”. It is a 4-channel part with 64 memory-

mapped registers. Each channel supports the following features:

 3 output command signal sets, configurable as either:

o 2 serial data streams to digital-to-analog converters of up to 18 bits, and one

pulse-and-direction pair, or

o 3 pulse-width-modulated (PWM) top and bottom pairs

 Input for digital quadrature with index, pulse-and-direction, or MLDT feedback

 4 input flags (home, +/-limit, user) that can trigger hardware encoder capture

 Amplifier-fault input

 4 supplemental input flags (T, U, V, W) for hall commutation sensors, sub-count data,

fault codes, or general use

 Amplifier-enable output

 Hardware position-compare output

 Input from 2 analog-to-digital converters of up to 18 bits (from amplifier or accessory

board)

The DSPGATE1 IC also has on-board software-configurable clock generation circuitry. It can

generate the “servo” and “phase” clocks for the entire Power PMAC system (only one IC will do

Power PMAC User’s Manual

Power PMAC Family Overview 36

this; the others will accept these as inputs). It also generates the clock signals that drive its own

circuitry: encoders, DACs, ADCs, PWM and PFM (pulse-frequency-modulation).

Clock, PLL

Encoder/Flag

Status & Control

Flag 4

Encoder 4

Flag 3

Encoder 3

Flag 2

Encoder 2

Flag 1

Encoder 1 Output1 A,B,C

ADCIN1 A,B

Output2 A,B,C

ADCIN2 A,B

Output3 A,B,C

ADCIN3 A,B

Output4 A,B,C

ADCIN4 A,B

Output/ADCIN

Control

24-bit

DATA BUS

6-bit

ADDRESS BUS

6

2

6

2

6

2

6

2

2

3

9

2

3

9

2

3

9

2

3

9

2

PMAC2 Gate Array IC

“DSPGATE1”

2

PMAC2-Style “DSPGATE1” Servo IC

The DSPGATE1 IC is presently provided on the following Power PMAC products:

 ACC-24E2 UMAC PWM Axis-Interface Board

 ACC-24E2A UMAC Analog Axis-Interface Board

 ACC-24E2S UMAC Stepper Axis-Interface Board

 ACC-51E UMAC Sine-Encoder Interpolator Board

 ACC-58E UMAC Resolver Converter Board

 ACC-24C2A Compact UMAC Analog Axis-Interface Board

 ACC-51C UMAC Compact Sine-Encoder Interpolator Board

PMAC2-Style “DSPGATE2” MACRO IC

The PMAC2-style “DSPGATE2” MACRO IC provides a 16-node bi-directional interface for the

MACRO ring. Of these nodes, eight can be used as “servo nodes”, each of which can transfer all

Power PMAC User’s Manual

Power PMAC Family Overview 37

of the command and feedback data required for the servo and commutation of a motor. Six of the

nodes can be used for general-purpose I/O, each node supporting 72 bits of hard real-time I/O in

each direction. Two of the nodes are for non-real-time communications, including “broadcast”

mode in which a master controller can talk to all of its slave devices simultaneously.

The DSPGATE2 IC also has on-board software-configurable clock generation circuitry. It can

generate the “servo” and “phase” clocks for the entire Power PMAC system (only one IC will do

this; the others will accept these as inputs).

The DSPGATE2 IC is presently provided on the ACC-5E UMAC MACRO-Interface Board.

PMAC2-Style “IOGATE” Digital I/O IC

The PMAC2-style IOGATE IC is used to access general-purpose digital I/O on most of the

UMAC I/O boards. It provides 48 I/O points, addressed as 6 bytes in consecutive registers.

Different boards use different buffers and drivers around the IOGATE to provide the specific I/O

features desired. While on the IOGATE itself, each I/O point is individually selectable as to

direction, on most of the I/O boards, each point’s direction is fixed by the external circuitry for

that point. The IOGATE must be set up at power-on/reset to support the particular direction

configuration of the board it is used on.

The IOGATE IC is presently provided on the following Power PMAC products:

 ACC-11E UMAC 24V 24-Point Sinking/Sourcing Output, 24-Point Sinking/Sourcing

Input Board

 ACC-14E UMAC 5V 48-Point I/O Board

 ACC-65E UMAC Protected 24V 24-Point Sourcing Output, 24-Point Sinking/Sourcing

Input Board

 ACC-66E UMAC Protected 24V 48-Point Sinking/Sourcing Input Board

 ACC-67E UMAC Protected 24V 48-Point Sourcing Output Board

 ACC-68E UMAC Protected 24V 24-Point Sinking Output, 24-Point Sinking/Sourcing

Input Board

 ACC-11C Compact UMAC 24V 24-Point Sinking/Sourcing Output, 24-Point

Sinking/Sourcing Input Board

Power PMAC User’s Manual

Power PMAC Family Overview 38

PMAC3-Style “DSPGATE3” Machine Interface IC

The PMAC3-style “DSPGATE3” machine interface IC provides servo, MACRO, and I/O

interfaces in a single IC. In different products, different parts of this interface are used. It appears

to the processor as 512 memory-mapped 32-bit registers.

Servo Channel 1

(Chan[0])

Servo Channel 3

(Chan[2])

I/O Bank 1

(Gpio[0])

Servo Channel 2

(Chan[1])

I/O Bank 2

(Gpio[1])

Clock Control

Configuration

Control

I/O Bank 3

(Gpio[2])

Servo Channel 4

(Chan[3])

I/O Bank 4

(Gpio[3])

MACRO A Nodes

MACRO B Nodes

32

32

32

32

32

32 9Data

Bus

Address

Bus

2

From

MACRO

Ring

To

MACRO

Ring

DSPGATE3 Machine Interface IC Block Diagram

It provides 4 servo channels, with each servo channel supporting the following features:

 4 output command signal sets, configurable as either:

o 3 serial data streams to digital-to-analog converters of up to 24 bits, and one

pulse-and-direction pair, or

o 4 pulse-width-modulated (PWM) top and bottom pairs

 Input for digital quadrature with index, pulse-and-direction, or MLDT feedback

 Hardware “1/T” timer-based sub-count interpolation

 4 input flags (home, +/-limit, user) that can trigger hardware encoder capture

 Amplifier-fault input

 4 supplemental input flags (T, U, V, W) for hall commutation sensors, sub-count data,

fault codes, or general use

 Amplifier-enable output

 3 additional output flags

 Hardware position-compare output

 Input from 8 analog-to-digital converters of up to 18 bits (from amplifier or accessory

board)

 Hardware 16-bit arctangent interpolation from “sine” and “cosine” ADCs for sine

encoder and resolver conversion

Power PMAC User’s Manual

Power PMAC Family Overview 39

The DSPGATE3 IC also provides 4 banks of 32 general-purpose digital I/O points, with each I/O

point individually selectable for direction and software polarity. The first bank has dedicated pins

on the IC; the second, third, and fourth banks share pins with the second, third, and fourth servo

channels, respectively, with each pin individually selectable with regard to function.

In addition, it provides a 32-node bi-directional interface for the MACRO ring. Of these nodes,

16 can be used as “servo nodes”, each of which can transfer all of the command and feedback

data required for the servo and commutation of a motor. 12 of the nodes can be used for general-

purpose I/O, each node supporting 72 bits of hard real-time I/O in each direction. Four of the

nodes are for non-real-time communications, including “broadcast” mode in which a master

controller can talk to all of its slave devices simultaneously.

Finally, it has on-board software-configurable clock generation circuitry. It can generate the

“servo” and “phase” clocks for the entire Power PMAC system (only one IC will do this; the

others will accept these as inputs).

The DSPGATE3 IC is presently provided on the following Power PMAC products:

 ACC-24E3 UMAC Axis-Interface Board

 ACC-5E3 UMAC MACRO-Interface Board

 ACC-5EP3 Etherlite MACRO/EtherCAT-Interface Board

 ACC-59E3 UMAC ADC/DAC Board

 Power Brick Control Board

 Power Clipper Controller Board

 ACC-24S3 Clipper Axis Expansion Board

 CK3W Axis Board for µUMAC (CK3M)

Power PMAC User’s Manual

Talking to Power PMAC 40

TALKING TO POWER PMAC

During applications development, and often during applications execution, one or more “host”

computers will communicate with Power PMAC. This section covers the basic aspects of

communicating with Power PMAC from a host computer.

Communications Security

Communication with Power PMAC is intended to be done within a secure communications

environment. Any cybersecurity measures must be taken on the devices and networks that are in

communication with the Power PMAC.

OMRON SHALL NOT BE RESPONSIBLE AND/OR LIABLE FOR ANY LOSS, DAMAGE, OR
EXPENSES DIRECTLY OR INDIRECTLY RESULTING FROM THE INFECTION OF OMRON
PRODUCTS, ANY SOFTWARE INSTALLED THEREON OR ANY COMPUTER EQUIPMENT,
COMPUTER PROGRAMS, NETWORKS, DATABASES OR OTHER PROPRIETARY MATERIAL
CONNECTED THERETO BY DISTRIBUTED DENIAL OF SERVICE ATTACK, COMPUTER
VIRUSES, OTHER TECHNOLOGICALLY HARMFUL MATERIAL AND/OR UNAUTHORIZED
ACCESS.

It shall be the users sole responsibility to determine and use adequate measures and
checkpoints to satisfy the users particular requirements for (i) antivirus protection, (ii) data
input and output, (iii) maintaining a means for reconstruction of lost data, (iv) preventing
Omron Products and/or software installed thereon from being infected with computer
viruses and (v) protecting Omron Products from unauthorized access.

Physical Interface

Power PMAC utilizes an Ethernet interface for its main communications channel. Its Ethernet

ports are capable of 1 gigabit-per-second (1Gbps, 1000-Base-T) communications, but can also

communicate at lower speeds (e.g. 100Mbps, 100-Base-T), if that is all that the network or the

linked computer is capable of.

Power PMAC’s “ETH0” port is reserved for communications with the host computer(s)/network.

(Its “ETH1” port is reserved for Ethernet-based “fieldbus” communications that are not the

subject of this chapter.) It accepts a standard Ethernet cable with an RJ-45 jack. The connection

can be direct to the host computer or through a network, including through hubs and routers.

Use of the Internet Protocol Suite

Power PMAC communications utilizes standards from the “Internet Protocol Suite”, even when

the communications does not actually utilize the Internet. These standards are widely used around

the world, and Power PMAC’s employment of these standard protocols facilitates familiarity and

ease of use in applications.

Layers of the Internet Protocol Suite

The Internet Protocol Suite is a set of communications protocols for the Internet and similar

networks. It consists of four “encapsulated” abstraction layers, each with a variety of possible

protocols for different applications.

Power PMAC User’s Manual

Talking to Power PMAC 41

Link Layer

The “link layer” is the lowest of these abstraction layers, operating just above the physical layer.

It handles specific networking requirements on the local link. Common link layer protocols

include ARP (Address Resolution Protocol), NDP (Neighbor Discovery Protocol), and MAC

(Media Access Control – for Ethernet, DSL, and FDDI).

Power PMAC employs the MAC link-layer protocol on its Ethernet interface. Each Power PMAC

has a unique MAC address for its Ethernet interface that makes it identifiable at any physical

location. This MAC address is not changeable by the user.

Internet Layer

The “internet layer” provides for basic datagram transmission between (potentially) different, and

different types, of networks (hence, “internetworking”, or “Internet”). The common protocols for

this layer have been Version 4 of the Internet Protocol (IPv4), Version 6 of the Internet Protocol

(IPv6), and Internet Control Message Protocol (ICMP).

Power PMAC employs Internet Protocol Version 6 (IPv6). Each Power PMAC has an IP address.

This is set at the factory to the default IP address of 192.168.0.200. The user can change this

address. (See Changing the Power PMAC IP Address, below.) If there are multiple Power

PMACs on the same network, each must have a unique address.

Transport Layer

The “transport layer” establishes data channels between host ports, providing end-to-end

communications services for applications. Common transport-layer protocols include UDP (User

Datagram Protocol), TCP (Transmission Control Protocol), RDP (Reliable Datagram Protocol),

and DCCP (Datagram Congestion Control Protocol).

Power PMAC employs the most common on these protocols, TCP. The use of TCP permits

communications with Power PMAC over indirect links, across networks, and even between

networks. Data packets can arrive out of order and be properly re-ordered by the recipient, and

packets with errors can be detected and retransmitted.

Application Layer

The “application layer” implements process-to-process communications across networks.

Different types of applications (“processes”) use different protocols at this layer. Telnet

implements “open text” (unsecured) communications by a virtual terminal. SSH (Secure Shell)

implements protected communications by a virtual terminal. FTP (File Transfer Protocol)

implements the movement of entire files across the network. DHCP (Dynamic Host

Configuration Protocol) permits the automatic assignment of IP addresses at execution time. POP

(Post Office Protocol) and SMTP (Simple Mail Transfer Protocol) are commonly used for e-mail

transmission.

Power PMAC employs several of these application-layer protocols. Basic command/response

communications is done through Telnet or SSH (“Secure Shell”) protocols. The Integrated

Development Environment (IDE) software for Windows PCs provided by Delta Tau uses SSH by

default for these functions, such as its “terminal window”, but this can be changed to Telnet by

the user. Most users prefer the added security of SSH, but some will choose the speed and

simplicity of Telnet.

Power PMAC User’s Manual

Talking to Power PMAC 42

Power PMAC uses the FTP protocol for transfers of files to and from the Power PMAC,

including the applications project files, and gathered-data files.

Low-Level Terminal Communications

No matter how fancy the host communications software that implements command/response

communications with the Power PMAC, the underlying communications can be viewed as

occurring from a “terminal-emulator” window. For this reason, it is instructive for a new user to

implement communications with the Power PMAC through a simple software package that

implements such a terminal window. Typing commands and viewing responses permit the user to

understand how this command/response action works. This will aid the user in writing his own

software to automate the communications process.

Note

It is not required for any user to execute the examples shown in

this section. Most users will want first to establish

communications using the IDE software. However, reading

these examples and attempting to duplicate them can help the

user to understand how the communications works, especially

useful for those starting to write their own communications

software.

Terminal Emulator Programs

There are many terminal emulator programs available for Windows, Apple, Linux, and Unix

computers. The examples shown here use the Windows “Command Prompt” terminal emulator

(CMD.EXE) provided automatically with Microsoft Windows operating systems, but other

programs may be used as well.

Establishing First Communications

The first step is to tell the program to establish communications with the Power PMAC at its IP

address. In Windows Command Prompt, this is done by typing “telnet” followed by the IP

address, as shown in the following screen capture using the default IP address:

Power PMAC User’s Manual

Talking to Power PMAC 43

Establishing Communications from a Terminal Emulator

If the program does find the Power PMAC, it will display the response from the Power PMAC.

The first line of this response identifies the Power PMAC. The second line requests a user login.

At the login prompt, type “root” and hit Enter to request communications at the root

(administrator) level.

Next, Power PMAC will request the password. At this prompt, type “deltatau” and hit Enter.

This will provide the program with access to fundamental communications with the Power

PMAC computer. The following screen capture shows the communications so far:

Logging Into the Power PMAC Computer

Power PMAC User’s Manual

Talking to Power PMAC 44

At this point, you are talking to the computer operating system (Linux), not the control

application within the computer. You can use standard Linux commands to perform various tasks

on the computer.

Communicating with the Power PMAC Control Application

Once you have established communications with the Linux computer, you can communicate with

the Power PMAC control application within the computer by starting the basic communications

application gpascii. This application is in the opt/ppmac directory, so with the Linux

prompt (#) at this directory (which it will be as you first establish communications), type

“gpascii” and hit Enter.

The following screen capture shows the Linux “dir” (directory) command given at the

opt/ppmac prompt, showing that the gpascii communications application is present in that

directory, followed by the command to execute the gpascii application. The Power PMAC

response (shown) is “STDIN Open for ASCII Input”

Starting Communications with the Power PMAC Control Application

At this point, you are talking to the Power PMAC control application within the computer, and

you can issue Power PMAC commands and view the responses. You might start by issuing

several query commands to find out basic information about the Power PMAC. The following

screen shot shows the response to the Power PMAC commands cpu, date, vers, size, and

free. The “spade” figure at the end of each Power PMAC response is the ACK (acknowledge)

character (ASCII value 07), which Power PMAC uses as its “end of transmission” character.

Power PMAC User’s Manual

Talking to Power PMAC 45

Basic Commands and Responses with the Power PMAC Control Application

Establishing Communications with the IDE

Delta Tau’s Integrated Development Environment (IDE) software package for PCs running

Microsoft Windows operating systems will be utilized by virtually all Power PMAC users to

develop their application. It hides a lot of the lower-level details of the communications seen in

the examples above from the user.

Different versions of the IDE are compatible with different versions of the Windows OS. Consult

the IDE manual for details.

Startup Communications Control Window

When you start the IDE, you will be presented with the control window shown below. It allows

you to specify the address and protocol details for communication with your Power PMAC. The

IP address shown in the control must match that of your Power PMAC. You can enter a new IP

address in this control if the address shown here does not match that of your Power PMAC. Note

that the address you enter here simply specifies the IP address at which the IDE will attempt to

communicate; it does not set or change the IP address of the Power PMAC.

Most users will retain the default SSH underlying communications protocol, which automatically

selects virtual port number 22. Similarly, most users will select the default “Apply All Controls”

setting of “True”, which is the most convenient setting in the vast majority of cases where there is

only one Power PMAC in the system.

If you leave “Select Device at Startup” at its default setting of “True”, you will be presented with

this control window every time you start the IDE. If you set this to “False”, the IDE will

automatically try to establish communications at startup using the last settings you have made.

Click on “Connect” to attempt to establish communications with the Power PMAC at the

specified IP address. If the IDE is successful in establishing communications with the Power

Power PMAC User’s Manual

Talking to Power PMAC 46

PMAC computer, it will execute the gpascii application so it can communicate with the Power

PMAC control application.

IDE Startup Control Window for Establishing Communications

Embedded Communications Control Window

If you want to view or change these settings after the start of execution of the IDE, select “Tools”

on the top menu bar, then “Options” from the pull-down menu. When the Options control

window appears, select Power PMAC. This will give you access to the same configuration

choices as the start up control window, as shown below.

Power PMAC User’s Manual

Talking to Power PMAC 47

IDE Menu Control Window for Establishing Communications

Changing the Power PMAC IP Address

The IDE can also be used to change the IP address of the Power PMAC. To do this, select

“Tools” on the top menu bar, then “Options” from the pull-down menu. When the Options

control window appears, expand the “Power PMAC” selection and select “Network Settings”.

This will provide you with a control window (shown below) that permits you to change the IP

address. Type in your new desired IP address, then click on “Test”. If the test is successful, click

on “Apply Permanently” to make the change.

IDE Menu Control Window for Changing Power PMAC IP Address

Power PMAC User’s Manual

Talking to Power PMAC 48

Of course, you must select an IP address that is unique on your network and will not conflict with

any other IP address. You may need to consult with your network administrator to select a

permitted address.

Finding an Unknown IP Address

If you do not know the IP address of your Power PMAC, it is of course impossible to ask for the

address using Ethernet communications. If you find yourself in this situation, you have two

methods for finding the address.

Using a Removable Memory Module

In the first method, you can get Power PMAC to copy its IP address onto a removable memory

module, either a USB memory stick or an SD memory card, which you can then read on a

separate computer.

To do this, first create a directory folder named “PowerPmacIP” at the root level on the memory

device. This is usually done on a PC. The memory device must employ the FAT32 file system,

which is by far the most common system for these devices. The folder can be left empty at this

point; no files need to be created in it. Make sure the device is safely removed from the computer

so the file system cannot be corrupted.

Install this device in your Power PMAC, and apply power to the Power PMAC to turn it on. Wait

for the boot sequence to complete – you will hear a relay click – or just allow a full minute to

elapse. Then turn off the Power PMAC and remove the memory device.

Next, install this device back in your PC and view the contents of the new “interfaces” text file in

the “PowerPmacIP” folder. This will contain the IP address. You can then use this address to

establish Ethernet communications using the IDE or your communications program (and

subsequently change this address if you wish).

Using an RS-232 Terminal Program

In the second method, you can get Power PMAC to communicate over its RS-232 port to disclose

its present IP address. If the Power PMAC does not have an RS-232 port, you can communicate

to its USB port with a USB-to- RS-232 converter.

To do this, connect a PC’s RS-232 serial port to Power PMAC’s RS-232 serial port. Start a

terminal utility program, such as HyperTerminal for Windows XP systems, or PuTTY for

Windows 7 systems, telling it to use the connected COM port. The settings for Power PMAC’s

serial port are:

 115,200 baud

 8 data bits, 1 stop bit

 No parity

 No handshake, no XON/XOFF flow control

Turn on the Power PMAC, and wait for the command prompt to appear in the terminal window.

Log in as “root”, then enter the password (“deltatau”) at the next prompt. Power PMAC will then

transmit information to the terminal window, including the IP address. You can then use this

address to establish Ethernet communications using the IDE or your communications program

(and subsequently change this address if you wish).

Power PMAC User’s Manual

Talking to Power PMAC 49

Special Power-On/Reset Modes

On power-on or reset, Power PMAC automatically checks any present USB memory sticks or SD

memory cards for certain folder names. The existence of any of these folders at the top level

forces the Power PMAC into a special mode (known as “recovery mode”) instead of the normal

operational mode, which automatically boots and installs the project saved in flash memory.

PowerPmacNoRTLoad Folder

If a folder with the name “PowerPmacNoRTLoad” is present, Power PMAC will run as a generic

Linux computer without loading the Power PMAC application. No files need to be present in this

folder.

PowerPmacFactoryReset Folder

If a folder with the name “PowerPmacFactoryReset” is present, Power PMAC will start up in

factory reset mode, equivalent to executing a $$$*** command. In this mode, the Power PMAC

application will be loaded, but no saved project will be loaded into active memory from flash

memory. All saved setup elements will be set to factory default values. No files need to be

present in this folder.

PowerPmacConfigLoad Folder

If a folder with the name “PowerPmacConfigLoad” is present, Power PMAC will copy the

project from the files and sub-folders available in this folder to Power PMAC’s own flash

memory, replacing any existing project there. The project should be under the

“/PowerPmacConfigLoad/usrflash” sub-folder.

PowerPmacFirmwareInstallandConfigLoad Folder

If a folder with the name “PowerPmacFirmwareInstallandConfigLoad” is present, Power PMAC

will install the firmware for the Power PMAC application and copy the project from the files and

sub-folders available in this folder to Power PMAC’s own flash memory, replacing any existing

project there. The firmware should be in a file with a name like “powerpmac.deb” in the main

folder. The project should be under the “/PowerPmacConfigLoad/usrflash” sub-folder.

PowerPmacIp Folder

If a folder with the name “PowerPmacIP” is present with no “interfaces” file in the folder, Power

PMAC will automatically copy its internal interfaces file into this folder, along with a boot.log

file. This is useful if the present IP address of the Power PMAC is not known.

If a folder with the name “PowerPmacIP” is present with an “interfaces” file in the folder, Power

PMAC will use the IP address in that file for communications instead of the address in Power

PMAC’s internal interfaces file.

Power PMAC User’s Manual

Talking to Power PMAC 50

Power PMAC Commands

The Power PMAC control application is fundamentally a command-driven device. You make

Power PMAC do things by issuing it ASCII command text strings, and Power PMAC generally

provides information to the host computer in ASCII text strings. Power PMAC provides a

powerful, flexible, and easy-to-use Script language comprised of an extensive set of commands.

There are two fundamental classes of Script commands to the Power PMAC control application:

on-line commands, and buffered program commands. These two classes of commands are

documented in separate chapters in the Software Reference Manual. It is very important to

understand the distinction between these two types of commands.

On-Line (Immediate) Commands

Many of the commands given to Power PMAC are on-line commands; that is, they are executed

immediately by Power PMAC, to cause some actions, change some variable value, or report some

information back to the host. The command itself is discarded after executing (so cannot be listed

back), although its effects may stay in the Power PMAC. These on-line commands provide a

simple but powerful interactive interface, whether the user is typing in these commands directly,

or the host computer is assembling and transmitting these commands automatically.

Note that some on-line commands are also valid as buffered program commands, so if a program

buffer is open when such a command is sent, the command will be stored in the buffer instead of

being immediately executed.

Types of On-Line Commands

There are 4 basic types of on-line commands:

1. Thread-specific commands, which only affect the action of subsequent commands on the

same communications thread

2. Motor-specific commands, which only affect the addressed or listed motor[s].

3. Coordinate-system-specific commands, which only affect the addressed or listed

coordinate system[s].

4. Global commands, whose effect is the same regardless of any addressing modes.

In the On-Line Commands chapter of the Software Reference Manual, each command is

classified into one of these types under the “Scope” descriptor.

Each type of command is discussed briefly below.

Thread-Specific On-Line Commands

In order to maintain truly independent communications among multiple communications threads,

it is necessary for certain commands that affect the operation of subsequent commands only to

affect commands in the same communications thread. For this reason, the addressing commands -

#n for motors and &n for coordinate systems – as well as buffer open and close commands,

affect only subsequent commands in the same thread.

Power PMAC User’s Manual

Talking to Power PMAC 51

For example, the IDE terminal window can modally address a certain motor and coordinate

system, while the watch window, utilizing a separate communications thread, addresses a

different motor and coordinate system.

Motor-Specific On-Line Commands

A motor is addressed in a communications thread with the #n command, where n is the motor

number, with a legal range of 0 to Sys.MaxMotors - 1. This addressing is modal, so the motor

remains addressed in this thread until another #n command addresses a different motor.

It is therefore not required to precede each motor-specific on-line command with a motor

addressing command. Working in terminal mode, you may type #1j+ to start Motor 1 jogging in

the positive direction. You can then simply type j/ to stop this same motor, as Motor 1 is still the

addressed motor in the thread. However, when generating motor-specific on-line commands in

software for Power PMAC, you are strongly advised to address the motor before each command

to avoid possible intervening changes in the modally addressed motor.

Note that at power-on/reset, Motor 0 (#0) is addressed by default in all communications threads.

Since this is generally not used as a real motor, it is usually necessary to explicitly address a

motor before issuing any motor-specific commands.

Motor-specific commands include the “action” commands – enabling, disabling, jogging,

homing, open-loop output – and the “query” commands – requests for motor information such as

position, velocity, and following error.

It is possible to “list” multiple motors to be affected by a single on-line command. For example,

#2,4,6hm starts homing-search moves on Motors 2, 4, and 6 simultaneously. When multiple

motors are specified this way, the addressing is not modal; only the immediately following

command is affected. (Contrast this with #2hm#4hm#6hm, which leaves Motor 6 as the modally

addressed motor.) The #* command non-modally causes the immediately following motor-

specific command to affect all active motors on the Power PMAC.

An on-line motor “action” command, such as jogging, homing, or open-loop output, is not

permitted if the motor is assigned to an axis in a coordinate system that is running a motion

program, even if the motion program is not directly commanding any axis assigned to that motor.

Such a command will be rejected with an error.

Coordinate-System-Specific On-Line Commands

A coordinate system is addressed in a communications thread with the &n command, where n is

the coordinate system number, with a legal range of 0 to Sys.MaxCoords - 1. This addressing is

modal, so the coordinate system remains addressed in this thread until another &n command

addresses a different coordinate system.

It is therefore not required to precede each motor-specific on-line command with a motor

addressing command. Working in terminal mode, you may type &1b5r to start Coordinate

System 1 execution of motion program 5. You can then simply type q to stop motion program

execution in this same coordinate system, as Coordinate System 1 is still the addressed coordinate

system in the thread. However, when generating coordinate-system-specific on-line commands in

software for Power PMAC, you are strongly advised to address the coordinate system before each

command to avoid possible intervening changes in the modally addressed coordinate system.

Power PMAC User’s Manual

Talking to Power PMAC 52

Note that at power-on/reset, Coordinate System 0 (&0) is addressed by default in all

communications threads. Since this is generally not used as a real coordinate system, it is usually

necessary to explicitly address a coordinate system before issuing any coordinate-system-specific

commands.

Coordinate-system-specific commands include axis-definition commands (because motors are

defined to an axis in a particular coordinate system), motion-program control commands, Q-

variable assignment and query commands (because Q-variables are specific to a coordinate

system), coordinate-system buffer-management commands (for kinematic, rotary, and lookahead

buffers) and axis query commands – requests for axis information such as position, velocity, and

following error.

It is possible to “list” multiple coordinate systems to be affected by a single on-line command.

For example, &1..4a aborts programs and moves for Coordinate Systems 1 through 4

simultaneously. When multiple coordinate systems are specified this way, the addressing is not

modal; only the immediately following command is affected. (Contrast this with

#1a#2a#3a#4a, which leaves Coordinate System 4 as the modally addressed coordinate

system.) The &* command non-modally causes the immediately following coordinate-system-

specific command to affect all active coordinate systems on the Power PMAC.

Global Commands

The effect of some on-line commands does not depend on which motor or coordinate system is

addressed. For instance, the command P1=1 sets the value of global variable P1 to 1 regardless

of what is addressed. Among these global commands are the global buffer-management

commands (motion-program, PLC program, and subprogram buffers), and the saving and

resetting commands.

Multiple-Variable Query and Setting Commands

With on-line commands, it is possible to use a single command to query the values of multiple

variables, or to set the values of multiple variables (to the same value). To do this, a “list” of

variables is used in the command where typically a single variable name is used.

For numbered variables (e.g. I, P, Q, M, L), the list can specify a continuous range (e.g.

P100..199, or Q0..8191), or a set of evenly spaced variables (e.g. P100,10 or

I122,5,100). In both cases, the starting variable is specified first. In the case of a continuous

range, the number of the last variable in the continuous range is specified after two periods. In the

case of a set of evenly spaced variables, the next value specified (after a comma) is the quantity

of variables in the list, and the following value (after another comma) is the numerical spacing of

the variables. If there is no following value, the spacing is taken to be 1.

For indexed data structure elements, the list can specify a set of evenly spaced indices for the

element (e.g. Motor[1].Servo.Kp,4 or Coord[2].ProgActive,6,2). The next value

specified (after a comma) is the quantity of elements in the list, and the following value (after

another comma) is the numerical spacing of the indices for the list. If there is no following value,

the spacing is taken to be 1.

Buffered Program Commands

As their name implies, Power PMAC Script buffered program commands are not acted on

immediately, but held (buffered) for later execution. Sending a buffered program command to

Power PMAC User’s Manual

Talking to Power PMAC 53

Power PMAC merely causes the command to be loaded into the open program buffer; the

command will not actually be executed until that program is run.

Power PMAC has many Script program buffers – 1023 regular motion program buffers, 1 rotary

motion program buffer for each coordinate system, 1 forward-kinematic and 1 inverse-kinematic

program buffer for each coordinate system, 32 PLC program buffers, and 1023 subprogram

buffers.

Before commands can be entered into a program buffer, that buffer must be opened (e.g. open

prog 3, open plc 7, open subprog 1000, &3 open rotary). Note that buffered

commands can only be entered into the buffer through the same communications thread that

issued the open command. Only one communications thread at a time may have an open

program buffer.

With the exception of the rotary motion program buffers, the act of opening the buffer

automatically clears the contents of the buffer, so the next buffered program command sent

becomes the first command in the program buffer. For rotary motion program buffers, it is

possible to add commands to follow the already loaded commands after a new open rotary

command. If it is desired to clear the contents of a rotary motion program buffer, the clear

rotary command should be issued.

Note that some buffered program commands (e.g. P1=1) are also valid as on-line commands, and

will be executed as such if sent when no program buffer is open on the communications thread.

Note that some of these commands will have completely different actions as on-line or buffered

commands. Other buffered program commands (e.g. X100Y100) are not valid as on-line

commands; if such a command is sent when no program buffer is open on the communications

thread, this command will be rejected with an error.

Power PMAC Processing of Commands

The Power PMAC control application receives a Script command – on-line or buffered program –

as ASCII text embedded within one or more TCP/IP data packets. The command must be

terminated with a “carriage-return” (CR) character (ASCII value 0D hex); this control character is

what causes Power PMAC to interpret the preceding set of alphanumeric characters as a

command and to take the appropriate action.

None of the command reserved words or data-structure element names is case-sensitive in a

Script command. (Note that data-structure element names are case-sensitive in C programs.)

Comments

Any characters in a command line after a double-slash (//) are considered comments, and are

ignored by the Power PMAC. The IDE downloader treats all characters between “slash-star” (/*)

and “star-slash” (*/) as comments and will not download them to Power PMAC. However, if

Power PMAC receives these from another source, it will not recognize them as comments, and

will try to interpret them as commands, leading to errors.

Command Acknowledgement

Power PMAC acknowledges commands with the ACK character (ASCII value 07 hex) – this

character was shown as the “spade” figure in the terminal emulator examples above. (However,

Power PMAC User’s Manual

Talking to Power PMAC 54

the commands that restart the Power PMAC – $$$ (reset), $$$*** (re-initialize), and reboot

– are not acknowledged with the ACK character.)

If the command requires no data response, only the ACK character is sent. If the command does

require a data response, this response comes before the ACK character. In this way, the ACK

character acts as an “end-of-transmission” character for any Power PMAC command response,

also indicating that any actions specified by the command have been executed.

Data Response

If the command does require a data response (i.e. an on-line “query” command), each item of the

response is provided as ASCII text followed by a carriage-return character, forming a “line” of

the response on a terminal screen. There can be multiple data response items, each followed by a

carriage-return character, forming multiple lines in response to a single command. After the last

line of the response, the ACK character is sent.

Echo Mode in Data Response

When the value of a variable or data structure element, or the definition of a pointer variable (I or

M-variable), is queried, Power PMAC can either “echo” the query command as part of the

response, or not. If the query command is echoed in the response, the response is of a form that

could then be used as a command to set the value or definition. It also makes it obvious what

command this is a response to. However, it does increase the length of transmission.

For example, with echoing enabled, the query command:

Motor[1].JogSpeed

will create a response such as:

Motor[1].JogSpeed=32

With echoing disabled, the same query command will create a response such as:

32

Each communications thread (e.g. each window in the IDE) can have its own echo mode. Many

users will want echoing enabled in the Terminal window, but not in the Watch window (where

the command is already displayed).

The echo mode for a communications thread is set by the echo n on-line command. The value

n has a range of 0 to 15 with 4 independent control bits.

Bit 0 (value 1) controls whether the command is echoed back in a query for the value of a data

structure element. If the bit is set to 1, echoing is disabled.

Bit 1 (value 2) controls whether the command is echoed back in a query for the value of a

numbered variable. If the bit is set to 1, echoing is disabled.

Bit 2 (value 4) controls whether the command is echoed back in a query for the definition of a

pointer variable. If the bit is set to 1, echoing is disabled.

Power PMAC User’s Manual

Talking to Power PMAC 55

Bit 3 (value 8) controls whether the values of “bit-field” and “address” data structure elements are

reported as hexadecimal or decimal numbers. If the bit is set to 1, they are reported in decimal.

Bits 4, 5, and 6 control how data is reported in response to backup commands. Refer to the

description of the echo{constant} command for details.

The power-on default echo-mode value is 0, which enables echoing in all these queries, and

reports bit-field and address element values in hexadecimal. IDE control windows have a saved

echo-mode setting, which can be viewed or changed by right-clicking on the window, then

clicking on “Properties”, “Control”, and “General”.

Error Reporting for Commands

If there is an error in the command, the Power PMAC will return an error message with error

number and error type. For example:

nonsensecommand

stdin:3:1: error #20: ILLEGAL CMD: nonsensecommand

motor[333].JogSpeed

stdin:4:1: error #21: ILLEGAL PARAMETER: motor[333].JogSpeed

The following table shows the implemented command error numbers and messages:

Power PMAC User’s Manual

Talking to Power PMAC 56

Error ID Error Message

0..2 Reserved

3 SYSTEM FILE NOT AVAILABLE

4 Reserved

5 SYSTEM LOAD CONFIG FILE

6 SYSTEM SAVE CONFIG FILE

7 SYSTEM SEMAPHHORES NOT AVAILABLE

8 SYSTEM SHM NOT AVAILABLE

9 SYSTEM RESET TIMEOUT

10..19 Reserved

20 ILLEGAL CMD

21 ILLEGAL PARAMETER

22 PROGRAM NOT IN BUFFER

23 OUT OF RANGE NUMBER

24 OUT OF ORDER NUMBER

25 INVALID NUMBER

26 INVALID RANGE

27..30 Reserved

31 COMPILE ERR

32 BREAK POINTS SET

33 BUFFER IN USE

34 BUFFER FULL

35 INVALID LABEL

36 INVALID LINE #

37 INVALID BRKPT

38 PROGRAM RUNNING

39 NOT READY TO RUN

40 BUFFER NOT DEFINED

41 BUFFER ALREADY DEFINED

42 NO MOTORS DEFINED

43 MOTOR NOT CLOSED LOOP

44 MOTOR NOT PHASED

45 MOTOR NOT ACTIVE

46 COORD JOGGED OUT OF POSITION

47 SERVO REQUEST ACTIVE

48..49 Reserved

50 MACRO COM TIMEOUT

51 MACRO PORT NOT OPEN

52

MACRO RING SELECTED NOT AVAILABLE OR PPMAC NOT SYNCH

MASTER

53 MACRO NOT AVAILABLE, NO MACRO ICs

54 MACRO ASCII REQUEST EXCEEDED BUFFER SIZE

55 MACRO ASCII COM TIMEOUT

Power PMAC User’s Manual

Talking to Power PMAC 57

56 MACRO RING INTEGRITY IN FAILED STATE

57 MACRO SYNC MASTER MUST HAVE STN=0

58 MACRO ASCII COM IN USE BY ANOTHER THREAD

59 MACRO MRO FILE OPEN OR READ ERR

60..69 Reserved

70 Struct Write Data Error

71 Struct Write Undefined Gate Error

72 Struct Write L Parameter Error

73 Struct Write Index Error

74 Struct Write Card ID Error

75 Struct Write Error

76 Write To Struct Address Error

77 Struct Write Gate Part Number Error

78..79 Reserved

80 MODBUS SOCKET NOT CONNECTED

81 MODBUS SOCKET BUSY

82 MODBUS SOCKET SEND/RECV ERROR

83 MODBUS SOCKET CREATE ERROR

84 MODBUS SERVER EXCEPTION ERROR

85 MODBUS SOCKET IN USE

86 MODBUS SERVER RESPONSE FORMAT ERROR

87 MODBUS SOCKET CONNECT ERROR

88 MODBUS SERVER SOCKET LISTEN ERROR

89..90 Reserved

91 MACRO STATION: ILLEGAL(I,M,P,Q) DATA_TYPE

92 MACRO STATION: ILLEGAL(I,M,P,Q) DATA_NUMBER

93 Reserved

94 MACRO STATION: REMOTE COM TIMEOUT

95 MACRO STATION: ANOTHER STATION AT THIS ADDRESS

96 UNKNOWN # & ERROR

Power PMAC User’s Manual

Power PMAC System Configuration 58

POWER PMAC SYSTEM CONFIGURATION

Power PMAC systems have extensive capabilities for automatically identifying and self-

configuring their systems. This is particularly important for Power UMAC systems, with their

wide variety of configurations. These capabilities provide the user with ease of use and flexibility

in getting started with a particular configuration.

Processors (CPUs)

Different Power PMAC platforms use a variety of processors. For many purposes, the differences

between these processors are invisible to the user. However, there are a few reasons why it may

be important to understand which CPU family is used.

Power PC

The first Power PMAC implementations have processors that use the Power PC architecture.

These include the AMCC 460EX single-core CPU and the AMCC 465 (APM86xx) single or

dual-core CPU.

ARM

Newer embedded Power PMAC controllers have processors that use the ARM architecture. These

include the Freescale 1021A dual-core CPU and the Freescale 1043A quad-core CPU.

X86

Omron Industrial PCs (IPCs) with PMAC firmware installed have processors that use the “x86”

architecture. This include the Intel i7 and Celeron CPUs.

Memory

Power PMAC systems use both active and non-volatile memory. It is important to understand

how they work together.

Active Memory (RAM)

Power PMAC systems use standard double data rate (DDR) synchronous dynamic random-access

memory (RAM) modules for active memory. The standard RAM capacity is 1 GB. In most Power

PMAC products, larger capacities (usually 2 GB) are available as options.

Non-Volatile Memory (Flash)

The Power PMAC uses non-volatile flash memory to store information while electrical power is

not applied. Specific user operations are required to write to flash memory.

NOR flash

Embedded Power PMACs use a NOR flash IC to store the Linux operating system. The user does

not write to the NOR flash in any normal operation.

NAND flash

Power PMACs use NAND flash “solid-state disks” (SSDs) to store user application information

when power is not applied.

Power PMAC User’s Manual

Power PMAC System Configuration 59

Use of Memory in Power PMAC Applications

It is important to understand how the active memory (RAM) and non-volatile memory (flash) are

used in Power PMAC applications. The application is developed interactively as a “project” in

the Integrated Development Environment (IDE) software running on a PC.

Downloading the Project to Active Memory

When you are ready to try the project on the Power PMAC, you “download” the project from the

PC to the Power PMAC, or “build and download” if there are C routines or applications to be

compiled as part of the project.

The first step in this process simply copies the project files with Script commands from the PC

into a directory (/var/ftp/usrflash) in Power PMAC’s RAM. If there are C routines or applications,

the IDE cross-compiles them for the Power PMAC processor, and transfers the executable code

files. The source code files are not transferred to the Power PMAC in the default project

configuration. However, the project properties can be changed to include the source code files in

the download

The second step is to internally issue the PMAC Script commands (both on-line and buffered

program) just as if they had been externally issued from the terminal command window. This can,

and usually does, include commands to set the values of savable setup elements. The project is

now ready for execution.

Active

Project

Files
/var/ftp/usrflash/

Program &

Table

Buffers

Saved

Setup

Elements
/usrflash/projects/

configuration/ppsave.cfg

Active

Setup

Elements

)1(Re set

)1(save

)2(save

)2(Re set

PowerPMAC

erHostComput

)2(Download

)3(Re set

)1(

Pr

Download

oject
Commands

Commands

Memory

Flash

volatileNon

RAM

Active

Volatile

Saved

Project Files
/opt/ppmac/usrflash/

Power PMAC Project Download, Save, and Reset Processes

Power PMAC User’s Manual

Power PMAC System Configuration 60

Saving the Project to Flash Memory

If you wish to store your project to non-volatile memory so you can cycle power and not need to

download again from the IDE, you can issue the save command. This first causes the present

active values of all savable setup elements to be copied into a file in flash memory. Then all of

the active project files in RAM are copied into a corresponding directory in flash memory.

Note that if you transfer any programs, tables, etc. to the Power PMAC outside of the project (for

example, a CNC “part program” that is only intended to be used temporarily), it will not be

copied to flash memory in a save operation.

Resetting the Power PMAC

When Power PMAC is reset, either by cycling power or by a $$$ reset command, the saving

process is essentially reversed. First, the saved values of the setup elements are copied back into

their active registers.

Second, the most recent set of project files that has been saved in flash memory is copied into the

matching directory in active memory, just as it would have been in the download process from

the PC IDE program.

Third, the PMAC Script commands (on-line and buffered program) in these files are internally

issued, just as in the download process. Note that if any of the on-line commands in a file set the

value of a saved setup element, this will overwrite the value that was just copied directly from

flash memory for that element.

Re-Initializing the Power PMAC

If the Power PMAC is re-initialized by a $$$*** command, the values of all saved setup elements

are set to factory defaults, and no project is loaded into active memory. If there is a project stored

in flash memory, it is not lost – it just is not loaded into active memory. It can subsequently be

loaded into active memory on a normal reset.

If there is an error on a normal power-on/reset event, including a change in the hardware

configuration since the last save operation, the Power PMAC is re-initialized instead, just as with

an explicit re-initialization command. A previously saved project is not loaded into active

memory, but it is not lost.

Physical Configuration Status Reporting

On any power-up or reset, including re-initialization, the Power PMAC processor automatically

queries all possible interface addresses to see what hardware configuration is present in the

system. Information as to what is found is stored in software data structures that are accessible by

the user. This information is used by smart setup software in the Integrated Development

Environment (IDE) software to help guide the user through the setup choices that are possible

within a given hardware configuration. It is also possible for the user to access this information

directly, but this is generally not necessary for the execution of an application – it is mostly used

for troubleshooting.

General Configuration

A Power PMAC system can report key aspects of its configuration to the user. Typically the best

way to see this information is in the “CPU Information” window of the IDE’s Task Manager

(selected from the “Tools” menu). A sample is shown here:

Power PMAC User’s Manual

Power PMAC System Configuration 61

Sample IDE Task Manager CPU Information Window

This window uses several basic query commands to obtain its information, such as cpu, type,

vers, date, and free.

Interface ICs Present

Power PMAC will report the interface ICs (“Gates”) of each type that it has found in the

following status data structure elements:

 Sys.Gate1AutoDetect DSPGATE1 PMAC2-style Servo ICs

 Sys.Gate2AutoDetect DSPGATE2 PMAC2-style MACRO ICs

 Sys.Gate3AutoDetect DSPGATE3 PMAC3-style machine interface ICs

 Sys.CardIoAutoDetect IOGATE (or equivalent) PMAC2-style I/O ICs

 Sys.CardDPRAutoDetect Dual-ported RAM ICs

Each of these variables is a bit field. Bit i of the variable is set to 1 if the IC of that index number

has been detected, to 0 if it has not. For example, if Sys.Gate1Autodetect had a value of $150,

where bits 4, 6, and 8 were set to 1, this means that DSPGATE1 IC represented by data structures

Gate1[4], Gate1[6], and Gate1[8] were detected, and no others.

Note that the old ACC-11E UMAC digital I/O card cannot be auto-detected by the processor,

even though it has an IOGATE IC, because it lacks the circuitry required for auto-detection.

Interface IC Addresses

In addition, Power PMAC will report the offset from the start of memory-mapped I/O (which is

found in Sys.piom) of the base address of each interface IC it finds in the following status data

structure elements:

Power PMAC User’s Manual

Power PMAC System Configuration 62

 Sys.OffsetGate1[i] Base address offset of Gate1[i] DSPGATE1 IC

 Sys.OffsetGate2[i] Base address offset of Gate2[i] DSPGATE2 IC

 Sys.OffsetGate3[i] Base address offset of Gate3[i] DSPGATE3 IC

 Sys.OffsetCardIo[i] Base address offset of I/O IC

 Sys.OffsetCardDPR[i] Base address offset of dual-ported RAM IC

These address offsets can be useful for creating pointer variables in C to hardware registers in the

ICs. The (absolute) register address is the sum of Sys.piom, this base address offset, and the

register offset from this base (which can be found in the Power PMAC ASIC Register Element

Addresses chapter of the Software Reference Manual). A value of 0 is reported for any IC not

found.

Note that many of the PMAC2-style digital I/O cards can be represented by the GateIo[i] data

structure, but the analog I/O cards cannot. They must be represented by their own data structures,

such as Acc28E[i], Acc36E[i], and Acc59E[i].

Interface IC Configuration Information

For each interface IC auto-detected, Power PMAC will provide information in data structure

elements about the hardware configuration present with the IC, as each type of IC can be used in

several different configurations:

For PMAC2-style ICs, these status elements are:

 Gaten[i].PartNum Accessory 6-digit Delta Tau part number

 Gaten[i].PartOpt Option code for accessory configuration

 Gaten[i].PartRev Revision number of accessory

 Gaten[i].PartType Interface class of accessory

Here, n is ‘1’ for DSPGATE1 ICs, ‘2’ for DSPGATE2 ICs, and ‘Io’ for IOGATE ICs. The same

status elements are available for the Acc28E[i], Acc36E[i], and Acc59E[i] analog I/O structures.

For PMAC3-style ICs, these status elements are:

 Gate3[i].PartNum Accessory 6-digit Delta Tau part number

 Gate3[i].PartOptn Option code for accessory component n configuration

 Gate3[i].PartRev Revision number of accessory

 Gate3[i].PartType Interface class of accessory

Change in Configuration

If, during the auto-detection process at power-on/reset, the Power PMAC CPU discovers that the

physical configuration is different from the configuration that was present the last time a save

command was issued to store configuration and project information to non-volatile flash memory,

it will automatically set the Sys.HWChangeErr status bit and re-initialize the system to factory

defaults.

This detection of a configuration change can occur if a card has been added or removed, or if

there is a hardware problem that prevents something in the configuration from being detected

properly. The re-initialization is performed because it is very likely that the saved settings and

project are no longer appropriate for safe and effective operation.

Power PMAC User’s Manual

Power PMAC System Configuration 63

Power PMAC System Clock Source

In a Power PMAC system, the system phase and servo clocks, which interrupt the processor and

latch key input and output data for the servos, come from one (and only one) of the Servo ICs or

MACRO ICs in the system. There must be a unique source of the phase and servo clocks for an

entire Power PMAC system. This section explains how to specify that clock source. A later

section of this chapter, Setting System Clock Frequencies, explains how to set the frequencies

once the source has been determined.

CPU Self Clocking

Note that in a system with no Servo or MACRO ICs, it is possible to have the processor generate

its own timer-based interrupts. This can be used for network-based servo interfaces such as

EtherCAT, or for simulation purposes. Saved setup element Sys.CpuTimerIntr should be set to

1 in this case.

The CPU cannot output servo or phase clock signals, so if there are Servo ICs and/or MACRO

ICs in this setting, their hardware operation will not be synchronous to the software operation of

the CPU.

Default Clock Source

The re-initialization (factory-default) source for these clock signals is appropriate in almost all

applications. Only in specialized cases will another source be used. The Power PMAC Setup

control in the Integrated Development Environment (IDE) software will walk you through the

setup of the frequencies for the source selected (setting the frequencies is discussed in the next

section).

IC Clock Generation Facilities

Each PMAC2-style Servo IC (DSPGATE1 IC), PMAC2-style MACRO IC (DSPGATE2 IC), and

PMAC3-style machine-interface IC (DSPGATE3 IC with both servo and MACRO circuitry) has

the capability for generating its own phase and servo clock signals, or for accepting external

phase and servo clock signals. Only one of these ICs in a system may generate its own clock

signals; the others must accept an external signal.

Note that it is strongly recommended that all Servo and MACRO ICs in the system be set up for

the same phase and servo clock frequencies as the IC that is generating the system clock signals.

When these ICs are set up to receive external clock signals, they are still generating internal clock

frequencies, but are pulled into synchronization with the external signals through phase-locked-

loop (PLL) circuits. Intermediate signals, such as those used in PWM generation, operate better if

the PLLs are only making small corrections.

Power PMAC User’s Manual

Power PMAC System Configuration 64

CPU
DSPGATEn

PSD = 0

DSPGATEn

PSD = 3

DSPGATEn

PSD = 3
IOGATE

Buffer Bi-dir. Buffer Bi-dir. Buffer Bi-dir. Buffer Buffer

Servo Clock

Phase Clock

PSD: Gaten[i].PhaseServoDir

Power PMAC System Clock Generation Example

Saved setup element Gaten[i].PhaseServoDir controls the “direction” of the clock signal for

each of these DSPGATEn ICs. If the variable value is 0, the IC generates its own clock signals

and outputs them. If the variable value is 3, the IC accepts the clock signals from a source

external to it. Only one of these ICs can have this variable at a value of 0; the rest must be set to

3.

Note

If more than one of these ICs is set up to use its own clock

signals and to output them, the processor will be interrupted by

multiple sources and will not operate normally – it is possible

that the watchdog timer will trip. (Because the outputs are

open-collector types, there will be no hardware damage from

signal contention, but system software operation will be

compromised.)

EtherCAT Network Distributed Clocks

If the Power PMAC is commanding servo drives over an EtherCAT network, the network must

be put in “distributed clock” (DC) mode to keep the controller and the drives fully synchronized.

Otherwise, the different devices on the network will gradually drift apart over time because each

device’s reference frequency will be slightly different. This drift can manifest itself as periodic

glitches in the motion each time the drift goes past a full network cycle.

With the Etherlab EtherCAT stack (Sys.EcatType = 0), ECAT[i].DistrClocks must be set to 1 to

enable DC mode. With the Acontis EtherCAT stack (Sys.EcatType = 1), the EtherCAT Network

Information (ENI) initialization file created by the configuration program must contain the

command to enable DC mode.

Shift Mode Selection

In DC mode, one of the devices on the network is configured to provide the reference clock, and

the other devices must be configured to adjust their own clock settings to maintain

Power PMAC User’s Manual

Power PMAC System Configuration 65

synchronization. If the reference device is the EtherCAT master (Power PMAC), all of the slaves

must adjust; this is called “bus shift mode”. If the reference device is one of the slaves, the master

must adjust; this is called “master shift mode”.

In most configurations, either bus shift or master shift mode can be used. However, some

EtherCAT slave devices do not synchronize properly in one or the other mode, and this can force

the user to choose a particular mode for the network. If Power PMAC is the master on multiple

EtherCAT networks simultaneously, all of the networks must be operated in bus shift mode.

Bus Shift Mode

In bus shift mode, all of the slave devices must be configured to adjust their clock settings

dynamically; each type of device has its own particular details for configuration. Power PMAC

must be configured for bus shift mode by setting ECAT[i].DCRefMaster to 1. In this mode,

none of the clock adjustment settings in Power PMAC is used.

Master Shift Mode

Power PMAC is configured for master shift mode by setting ECAT[i].DCRefMaster to 0. It also

must be configured to specify which slave it gets its synchronization signal from. With the

Etherlab stack, ECAT[i].DCRefSlave must be set to the number of the slave. With the Acontis

stack, the initialization file created by the configuration program must specify the slave.

In master shift mode, the Power PMAC must be set up to specify how it will adjust its servo

clock frequency to stay synchronized to the reference slave. There are two adjustment methods.

The first method is a PID feedback algorithm that has variable adjustments each cycle. The

second method is a hysteresis loop with a fixed adjustment rate outside of a deadband.

Both of these methods can be used whether the servo clock is generated by a Servo or MACRO

ASIC, or by the processor itself. If the servo clock is generated by a DSPGATE1 or DSPGATE2

IC, the value in Gaten[i].PwmPeriod is adjusted. If the servo clock is generated by a

DSPGATE3 IC, the value in Gaten[i].PhaseFreq is adjusted. If the servo clock is generated

inside the processor, the value in an internal timer register (originally set from Sys.ServoPeriod)

is adjusted.

The PID algorithm is selected by setting the proportional (P) gain term ECAT[i].DCKp greater

than 0.0. Then the integral (I) gain term ECAT[i].DCKi, derivative (D) gain term

ECAT[i].DCKd, integration limit ECAT[i].DCiLimit, and maximum correction

ECAT[i].DCMaxAdjust are used as well. The default settings of these terms work well for most

configurations.

The hysteresis loop is selected by setting ECAT[i].DCKp to 0.0 (not its default). Then the fixed

adjustment rate terms ECAT[i].DCRefPlus and ECAT[i].DCRefMinus, and deadband

ECAT[i].DCRefBand are used. The default settings of these terms work well for most

configurations.

Distribution of Clock Signals

Whatever the source of the phase and servo clock signals, these signals must be available to the

processor and all Servo ICs and MACRO ICs, plus any other circuits that use these signals in

their functioning (such as I/O cards that are used for parallel or serial feedback). Note that the

“hardware clock” signals – the DAC clock, ADC clock, encoder sample clock, and PFM clock –

are generated locally inside each Servo IC and MACRO IC, and are not shared between ICs.

Power PMAC User’s Manual

Power PMAC System Configuration 66

In Power UMAC systems, the phase and servo clocks are shared across the “UBUS” backplane

board in differential format among the different 3U-format cards inserted into that backplane.

Each card has differential buffer ICs for these signals as they interface to the backplane. On cards

that are potential sources of the phase and servo clock signals, such as the ACC-24E/C axis

boards or the ACC-5E MACRO board, these buffers can be configured as either inputs or

outputs.

On each UMAC board with a PMAC2-style Servo IC that could be a clock source, there is a

jumper that controls the configuration of the clock-direction buffers. In one setting, the board can

only input the clock signals. This setting is required for the older UMAC MACRO, in which the

clock signals always come from the MACRO interface board. It is permissible, but not

recommended, for boards in UMAC Turbo systems that will be not be generating their own phase

and servo clock signals. This setting is not permissible for the UMAC board that is generating the

system phase and servo clocks.

In the other setting (the factory default setting), the direction of the clock-signal buffers can be

reversed by the CPU. This setting is required for the board that is generating the system clocks; it

is recommended for the other boards as well (so the source can be changed without moving any

buffers). At power-up/reset, the CPU will configure the buffers the board containing the Servo IC

or MACRO IC that is specified by the saved configuration to generate the system clocks as

outputs to the UBUS backplane; it will configure the buffers on all other boards to be inputs from

the UBUS backplane.

Re-Initialization Clock Actions

On re-initialization of a Power PMAC system with the $$$*** command, the CPU searches all

possible locations of Servo ICs and MACRO ICs to see which are present. It selects one as the

clock source based on the following priority:

1. Lowest-numbered PMAC3-style IC MACRO interface found

2. Lowest-numbered PMAC2-style IC MACRO interface found

3. Lowest-numbered PMAC3-style IC Servo or I/O interface found

4. Lowest-numbered PMAC2-style IC Servo interface found

It will set the Gaten[i].PhaseServoDir element for this IC to 0, and for all of the other ICs to 3.

The global status element Sys.ClockSource indicates the type and index of the selected IC.

Normal Reset Clock Actions

On a normal power-up or reset sequence, the Power PMAC CPU reads the configuration

information that was previously saved to flash memory and sets the Gaten[i].PhaseServoDir

elements for each IC to the appropriate value. If there are bi-directional clock-signal buffers

whose directions need to be set, the CPU will automatically do this as well.

If the hardware configuration the CPU finds on power-up/reset is not the same as that in the last

valid saved configuration, the Power PMAC will come up in an error condition, setting global

status bit Sys.HWChangeErr to 1. In this case, the user must make the software system

configuration match the new hardware configuration (usually by using the $$$*** re-

initialization command), save this configuration, and reset the system before proceeding.

Power PMAC User’s Manual

Power PMAC System Configuration 67

If the CPU does not receive phase and servo clock signals after it configures the Servo and

MACRO ICs and bi-directional clock buffers, it will come up in an error condition not permitting

control, and set global status bit Sys.NoClocks to 1.

Changing the Clock Source from Default

In the rare event it is desired to select a clock source that is different from that automatically

selected on system re-initialization, a simple procedure can be followed. This entails changing

directions of the clock signals of the old and new source ICs. This must be done with multiple

commands on a single command line, so there is no period when there is a double clock source or

no clock source, either of which could cause a watchdog timer trip.

The change involves changing the setting of Gaten[i].Chan[j].PhaseServoDir for the default

source from 0 to 3 and for the new source from 3 to 0. In addition, for any PMAC2-style

DSPGATE1 IC (as on an ACC-24E2x board) or DSPGATE2 IC (as on an ACC-5E board), a

separate parameter Cid[x].Dir must be changed as well to turn around the direction of an external

bi-directional buffer IC. (This is done automatically with PMAC3-style DSPGATE3 ICs.)

Cid[x].Dir must be set to 0 when the IC is not a source, so it can accept the clock signals as

inputs, and to 1 when the IC is a source, so it can output the clock signals. The Software

Reference Manual chapter Power PMAC I/O Address Offsets has a table of the x index values for

all Gaten[i] IC values. The most commonly used are Cid[2] for Gate1[4] and Cid[4] for

Gate2[0].

For example, to change the clock source from an ACC-5E at Gate2[0] to an ACC-24E3 at

Gate3[0], the following command line could be used:

Gate3[0].PhaseServoDir=0 Gate2[0].PhaseServoDir=3 Cid[4].Dir=0

These changes must be saved to maintain the settings through a reset or power cycle. After this,

global status element Sys.ClockSource should reflect the IC you have chosen as the source of the

system clocks. (If it reports a negative value, you have multiple clock sources, and you must

correct this before you can continue.)

Power PMAC User’s Manual

Power PMAC System Configuration 68

Setting System Clock Frequencies

The phase clock and servo clock signals set the “heartbeat” for the entire Power PMAC system,

synchronizing both hardware and software operations. While the factory default frequencies –

9.04 kHz for the phase clock and 2.26 kHz for the servo clock – are suitable for most

applications, some applications will either require changes, or could benefit from changes in one

or both of these frequencies. Factors that go into the decision as to what frequencies to select are

covered in the chapters on commutation and servo-loop closure. In general, higher frequencies

can lead to higher performance (although there are points of diminishing returns, and other

system limitations can cap performance no matter how fast the Power PMAC is running), at the

cost of increase processor usage

Phase and Servo-Clock Hardware Tasks

The hardware tasks that are driven by the phase and servo clock signals include:

 Latching of encoder counters (phase and servo clocks)

 Latching of parallel feedback registers (phase or servo clock)

 Strobing of serial encoders and latching of resulting data (phase or servo clock)

 Strobing of A/D converters and latching of resulting data (phase clock)

 Output to D/A converters (phase clock)

 Output to PWM circuits (phase clock)

 Communication over MACRO ring (phase clock)

Phase-Clock Software Tasks

The software tasks that are driven by the phase clock signal include:

 “Servo-in-phase” updates: sub-interpolation and loop closure for fast-tools

 Digital current loop closure

 Motor phase commutation

 Demuxing of muxed A/D converters

 Phase data gathering

Note that there are no phase tasks executed on PMACs that do not support Servo or MACRO ICs

(e.g. CK3Es, IPCs).

Servo-Clock Software Tasks

The software tasks that are driven by the servo clock signal include:

 Encoder conversion table pre-processing

 Trajectory (fine) interpolation

 Position following (electronic gearing) calculations

 Compensation table and cam table update

 Position/velocity loop closure

 Motor commanded move (jog) equation calculations

 Motor status/error checks: following error, desired velocity zero, in position

 EtherCAT cyclic data transfers (if enabled)

 Servo data gathering

Power PMAC User’s Manual

Power PMAC System Configuration 69

While most users do not need to know the specific order of tasks within the servo interrupt,

advanced users, especially those writing custom algorithms, may find this information useful. The

order of tasks is:

1. For Etherlab EtherCAT stack (Sys.EcatType = 0), EtherCAT cyclic input transfers (if

enabled), loading input data including servo feedback into ECAT[i].IO[k].Data memory

holding elements.

For Acontis EtherCAT stack (Sys.EcatType = 1), no transfers are done at this time.

2. Encoder conversion table pre-processing of feedback and master data, starting with the

entry whose index is specified by Sys.FirstEnc and continuing in numerical order until

the first entry with EncTable[n].type = 0.

3. Update raw actual positions (Motor[x].Pos, Pos2) for all active motors, from lowest to

highest numbered. For each:

a. Read encoder conversion table results and add into previous cycle’s position

b. Update buffers for filtered velocity calculations

4. Update cam table and compensation table outputs for all active tables

5. Update commanded position for all active motors, from lowest to highest numbered. For

each:

a. Compute master position following, if enabled

b. If pending motor move command (jog or home), calculate trajectory equations

c. Update computed move trajectory

d. Execute trajectory pre-filter if enabled

e. Store combined and filtered value into Motor[x].DesPos

6. Servo loop update for each active motor, from lowest to highest numbered. For each:

a. Add in compensation and backlash position corrections to raw actual positions to

get net actual positions Motor[x].ActPos, ActPos2

b. Compute intermediate values Motor[x].PosError, DesVel, ActVel for servo

algorithm

c. Update status for following error, desired-velocity-zero, and in-position

d. Call selected (built-in or custom) servo algorithm

e. Offset and clamp returned servo output value as needed

7. Update time-base (%) value for each active coordinate system, from lowest to highest

8. For Etherlab EtherCAT stack (Sys.EcatType = 0), EtherCAT cyclic output transfers (if

enabled), transmitting output data including servo commands from ECAT[i].IO[k].Data

memory holding elements over the network.

For Acontis EtherCAT stack (Sys.EcatType = 1), EtherCAT cyclic input transfers (if

enabled), loading input data including servo feedback into ECAT[i].IO[k].Data memory

holding elements. Then EtherCAT cyclic output transfers (if enabled), transmitting output

Power PMAC User’s Manual

Power PMAC System Configuration 70

data including servo commands from ECAT[i].IO[k].Data memory holding elements

over the network.

9. Servo data gathering (if enabled)

Real-Time Interrupt Software Tasks

The “real-time interrupt” in Power PMAC is a software interrupt that occurs every

(Sys.RtIntPeriod + 1) servo interrupts. At the end of the servo tasks for these cycles, the real-

time interrupt software tasks are performed. These include:

 Foreground PLC and CPLC execution

 Motion program move planning

 Trajectory coarse interpolation (segmentation)

 Kinematic transformations

 Buffered lookahead calculations

 Motor safety and status checks*

o Hardware and software overtravel limit checks

o Amplifier enable and fault handshaking

o Encoder-loss and auxiliary-fault checks

o Integrated current (I2T) checks

o Brake release/engage delay calculations

o Backlash compensation calculations

o Triggered move trigger check and software position capture

o General status updates

 Coordinate system status updates

 Watchdog timer update

*Can specify the number of motors to execute these checks each RTI with Sys.MotorsPerRtInt.

Phase and Servo Hardware and Software Synchronization

In Power PMAC systems with Servo an MACRO Interface ICs, the hardware and software are

very tightly coordinated to minimize delays between feedback and output, and to minimize the

variation in delays as well.

The following diagram shows how key phase and servo clock hardware and software tasks are

coordinated:

Power PMAC User’s Manual

Power PMAC System Configuration 71

Phase

Clock

Servo

Clock

Phase

Tasks

Servo

Tasks

Strobe

Serial

Phase*

Feedback

Strobe

Serial

Phase

Feedback

Strobe

Serial

Phase

Feedback

Strobe

Serial

Phase*

Feedback

Latch

Data

Into

Registers

Latch

Data

Into

Registers

Latch

Data

Into

Registers

Latch

Data

Into

Registers

Latch

Data

Into

Registers

Strobe

Serial

Servo

Feedback

Interrupt

CPU

Interrupt

CPU

Interrupt

CPU

Interrupt

CPU

Output

Cmd

Signals

Output

Cmd

Signals

Output

Cmd

Signals

Latch

Data

Into

Registers

[1] [1]

[2]
[2] [2]

[1] Servo command for motors not

commutated by PMAC

[2] Servo command for motors

commutated by PMAC

*Can be used for servo as well

Power PMAC Hardware/Software Synchronization

Strobing and Latching Feedback Data

Feedback data that can be read directly by the processor, such as incremental encoder counter

data, is latched on the falling edge of the phase or servo clock signal. This edge is also the

interrupt to the CPU, which will be able to use this data almost immediately in its software tasks.

Feedback devices that provide data to the Power PMAC serially, such as serial-protocol encoders,

serial ADCs, and the MACRO ring, must be strobed earlier than these interrupt-causing clock

edges to provide time for the full data transfer before the interrupt, at which time the data is

latched into processor-readable registers. Usually, these are strobed on the preceding rising edge

of the phase clock, meaning that there is an added one-half phase cycle delay in using this data.

Some of the serial encoder and serial ADC interfaces permit the strobing to be delayed somewhat

past this clock edge, permitting a reduction the time delay before use at the CPU interrupt. The

serial encoder interfaces permit the strobing to occur on the previous falling edge of the phase

clock, or on either edge of the servo clock, if there is not enough time to transmit the data in one-

half phase cycle.

Phase and Servo Software Execution

On the falling edge of the phase clock signal, the CPU is interrupted and it starts executing its

phase software tasks. The CPU is expecting that any feedback data be immediately available for it

to read. The command outputs for each motor are written directly to the specified registers after

they are computed.

When the phase tasks are completed in any cycle where the servo clock signal is low, the servo

software tasks immediately start. As each motor’s servo loop is executed, if the motor is not

commutated by PMAC, its command output is written directly to the specified register at this

time. (See arrows marked [1].) If the motor is commutated by PMAC, its command output is held

Power PMAC User’s Manual

Power PMAC System Configuration 72

in memory for use by the commutation algorithm that starts in the next phase clock cycle. This

value may be used as input to the commutation algorithm in multiple phase cycles. (See arrows

marked [2].)

Transmission of Command Data

Command data, whether from a phase or servo task, that has been written to Delta Tau Servo and

MACRO ICs is transferred from the CPU-addressed registers to the working circuitry on the

rising edge of the phase clock signal.

In virtually all applications, the phase tasks for all motors will complete before the rising edge of

the phase clock, so there is only a one-half phase cycle delay from the start of computation to the

start of transmission. If the phase tasks for any motor complete after this rising edge, the

command values will not be transmitted until the next rising edge, resulting in a one-and-one-half

cycle delay. (This is very rare.)

In many applications, the servo tasks for all motors will complete before the first rising edge of

the phase clock. In this case, for motors not commutated by PMAC, command transmission will

start at this first rising edge. If there are the default 4 phase cycles per servo cycle, there will be a

1/8-servo-cycle delay from the start of computation to the start of transmission. If the servo tasks

for any motor not commutated by PMAC complete after this rising edge, the command values

will not be transmitted until the next rising edge. With 4 phase cycles per servo cycle, this results

in a 3/8-servo-cycle delay.

For a motor commutated by PMAC, if the servo tasks for a motor are completed by the next

falling edge of the phase clock, the servo command output is used as an input to the commutation

algorithm in this next phase cycle. If the servo tasks for a motor are not completed by this edge,

the servo command output will not be used until the following phase cycle.

Background Tasks

For “single-core” versions of the CPU, in the time available between cycles of the above tasks,

the Power PMAC processor performs background tasks, both those controlled by Power PMAC’s

scheduler, and independent applications running under the general-purpose operating system

(GPOS).

For “multi-core” versions of the CPU, in the default configuration, the interrupt-driven tasks

listed above execute in one core, and the background tasks execute simultaneously in a separate

core.

The Power PMAC scheduled software tasks running in background include:

 Background Script PLC programs

 Background C PLC programs

 General housekeeping and status updates

 Watchdog timer reset

In Power PMACs with “kernel mode” operation (UMAC, Clipper, Brick, CK3M), each

background cycle, Power PMAC repeats a loop of executing one scan of one active background

Script PLC program, then one scan of all active background C PLC programs until all of the

active background Script PLC programs have executed, followed by one pass of the background

housekeeping and status update tasks.

Power PMAC User’s Manual

Power PMAC System Configuration 73

In Power PMACs with “Posix mode” operation (CK3E, Sysmac IPC, NJ/NX PLC), each

background cycle, Power PMAC repeats a loop of executing one scan of one active background

Script PLC program, followed by one pass of the background housekeeping and status update

tasks.

In either case, when a background cycle is complete, the Power PMAC background scheduler

“sleeps” for an interval to provide time for independent applications and GPOS tasks (including

the “gpascii” communications threads) to run. The “sleep” interval is set by saved setup

element Sys.BgSleepTime, and can range from 0.25 milliseconds to 10.0 milliseconds, with a

default of 1.0 millisecond.

Power PMAC User’s Manual

Power PMAC System Configuration 74

This diagram shows the background process flow for “kernel mode” Power PMACs:

Script
PLC 1

Background
CPLC 1

Background
CPLC 2

Script
PLC 2

Background
CPLC 1

Background
CPLC 2

Script
PLC 3

Background
CPLC 1

Background
CPLC 2

House-
keeping

Background
Sleep Time

C Apps,
GPOS

PMAC Scheduled Background Tasks
Independent

OS Tasks

“Kernel Mode” Power PMAC Example Background Cycle

This diagram show the background process flow for “Posix mode” Power PMACs:

Script
PLC 1

Background
CPLC 1

Background
CPLC 2

Script
PLC 2

Script
PLC 2

Background
CPLC 1

Background
CPLC 2

House-
keeping

Background
Sleep Time

C Apps,
GPOS

PMAC Scheduled Background Tasks

Independent
OS Tasks

Background
Sleep Time

C Apps,
GPOS

Independent
OS Tasks

House-
keeping

“Posix Mode” Power PMAC Example Background Cycle

Power PMAC User’s Manual

Power PMAC System Configuration 75

Multi-Tasking Example

The following time-line drawing provides an example of how a single-core Power PMAC

processor allocates time for different tasks. The top line shows one phase cycle, with the phase

tasks highlighted in red at the beginning of the cycle, immediately following the interrupt. The

second line shows a servo cycle, with the servo tasks highlighted in blue occurring after the

higher-priority phase tasks have finished.

The third line shows a real-time interrupt cycle, with the RTI tasks highlighted in green occurring

after the higher-priority phase and servo tasks have finished. The last line shows a background

cycle (which is not a fixed-time cycle like the above cycles are), with the background tasks

highlighted in yellow occurring when all the interrupt tasks have finished.

Phase

Interrupt
Phase

Interrupt

Servo

Interrupt

Servo

Interrupt

RTI RTI

#1 #3 #4#2

Phase Update

(Lower Priority Tasks)

(Ph) (Ph) (Ph) (Ph)ECT Interp Comp (Lower Priority) (Lower Priority Tasks) (Lower Priority Tasks)

Phase

Cycle

Servo

Cycle

RTI

Cycle

Servo Update

(Ph/Srv) (Ph/Srv) (Ph/Srv)

S. U.

Loops

&1 &2 &3

Motion Prog

RTPLC RTCPLC (Background) (Background)

Background

Cycle (Interrupt Tasks) (Interrupt Tasks)BGPLC BGCPLCs Sleep for GPOS Apps

Example Power PMAC Multi-Tasking Time Line (Single Core)

Multiple-Core Task Assignments

Power PMACs with multiple CPU cores can run multiple tasks simultaneously on different cores,

substantially increasing the total computational capability of the processor.

In a dual-core CPU, the core executing the interrupt tasks is idle during the periods where a

single-core CPU would be executing background tasks (yellow in the above example). The other

core will be executing background tasks concurrently.

Power PMAC User’s Manual

Power PMAC System Configuration 76

This next time-line drawing shows how time is allocated for different tasks on a dual-core

processor with the default task assignments. This diagram is the equivalent of the last line of the

single-core time line above.

Core 1
(Ph/Srv) (Ph/Srv) (Ph/Srv)Motion Prog RTPLC

Core 0

RTCPLC

1 BGPLC* BGCPLCs

Sleep for

GPOS Apps 1 BGPLC* BGCPLCs

Sleep for

GPOS Apps

(Idle)

RTI RTI

* If no BGCPLCs, all Script BGPLCs will execute 1 scan before sleep

(Idle)

Example Power PMAC Multi-Tasking Time Line (Dual Core)

Power PMACs with Dual Core ARM CPUs (LS1021A) and Quad Core ARM CPUs (LS1043A)

permit the user to change the task assignments from the default configuration through the IDE.

Note, however, that the default configuration is appropriate for the large majority of applications,

so the assignments should be changed only if the default is found to be not appropriate. See the

section “Task Priority Duty Cycles” below for information on analyzing these cases.

The IDE control for assigning tasks to cores is shown below for the Quad Core CPU. If the

configuration is changed, a full reboot or power cycling is required to implement the change.

Using the IDE to Set Phase and Servo Clock Frequencies

It is possible to use the IDE to set the phase and servo clock frequencies without the need to

understand the underlying mechanisms that control the frequencies. From the top menu of the

IDE, select “Tools”, then “System Setup”. A window like the following will appear:

Power PMAC User’s Manual

Power PMAC System Configuration 77

IDE System Setup Global Clock Setting Control

In this window, you can enter your desired phase-clock frequency directly in kilohertz (kHz). For

the servo-clock frequency, which must be derived from the phase-clock frequency, you must

choose from the pick list of possible frequencies. The PWM frequencies of hardware that can

generate pulse-width-modulated signals can also be selected from a pick list by right-clicking on

the hardware name. Once you have entered the settings you want, click on the “Accept” button on

the right to load the appropriate settings into the Power PMAC.

The following sections explain how to make these settings manually and directly, both for

understanding and to permit other avenues for specifying these settings.

Setting Phase and Servo Clock Frequencies in PMAC2-Style ICs

In a PMAC2-style Servo or MACRO IC, the internally generated phase and servo clock

frequencies are determined by the setting of three saved setup elements for the IC:

 Gaten[i].PwmPeriod

 Gaten[i].PhaseClockDiv

 Gaten[i].ServoClockDiv

In this description, n is 1 for a DSPGATE1 Servo IC, or 2 for a DSPGATE2 MACRO IC.

The following figure shows the block diagram for the circuits that generate these clock signals, as

well as the “hardware clock” signals in a PMAC2-style IC.

Power PMAC User’s Manual

Power PMAC System Configuration 78

PMAC2 Gate Array IC Clock Control

24

Data
1

3

1

2n

1

2n

1

2n

1

2n

PWM

Up/Down

Counter

6

Address

1

2n

1

2n

x6 Phase

Locked Loop
16

External

Phase

External

Servo

n = 0 - 15

n = 0 - 15

n = 0 - 7

n = 0 - 7

n = 0 - 7

n = 0 - 7

PHASE

SERVO

ADCCLK

DACCLK

PFMCLK

SLCK

DT / PW

PWM COUNT

16

8

40 MHz

Phase

Clock Control

Encoder Sample

Clock Control

PFM

Clock Control

DAC

Clock Control

ADC

Clock Control

Servo

Clock Control

Int/Ext Phase

Int/Ext Servo

PWM Max

Count

PWM Dead Time/

PFM Pulse Width

20 MHz

Max Phase

120 MHz

SIGN

DIR

Gaten[i].PwmPeriod: MaxPhase Clock Frequency Control

As the name suggests, Gaten[i].PwmPeriod sets the period of the PWM cycle in the IC, to a time

proportional to its value. The frequency is, of course, inversely proportional to the period. But it

also sets the period of the internal “MaxPhase” clock signal, which is always ½ of the PWM

cycle period – so its frequency is twice the PWM frequency. Even if you are not using PWM

signals from the IC, the setting of this element is important.

To set Gaten[i].PwmPeriod for a desired “MaxPhase” clock frequency, the following formula

can be used:

1
)(*2

)(8.964,117
].[

kHzeqMaxPhaseFr

kHz
PwmPeriodiGaten

Gaten[i].PhaseClockDiv: Phase Clock Frequency Control

From the internal “MaxPhase” clock signal, the phase clock signal is generated with a frequency

divider circuit that is controlled by Gaten[i].PhaseClockDiv. The phase clock frequency is equal

to the “MaxPhase” clock frequency divided by (Gaten[i].PhaseClockDiv + 1).

The equation for Gaten[i].PhaseClockDiv is:

Power PMAC User’s Manual

Power PMAC System Configuration 79

1
)(

)(
].[

kHzPhaseFreq

kHzeqMaxPhaseFr
DivPhaseClockiGaten

At the default value of 0 (divide by 1) and the default MaxPhase frequency of 9.04 kHz, this sets

a phase clock frequency of 9.04 kHz (110 μsec period).

Gaten[i].ServoClockDiv: Servo Clock Frequency Control

From the phase clock signal, the servo clock signal is generated with a frequency divider circuit

that is controlled by Gaten[i].ServoClockDiv. The servo clock frequency is equal to the phase

clock frequency divided by (Gaten[i].ServoClockDiv + 1).

The equation for Gaten[i].ServoClockDiv is:

1
)(

)(
].[

kHzServoFreq

kHzPhaseFreq
DivServoClockiGaten

At the default value of 3 (divide by 4) and the default phase clock frequency of 9.04 kHz, this sets

a servo clock frequency of 2.26 kHz (442 μsec period).

The following diagram shows the relationship between the PWM counter, whose

period/frequency is set by the Gaten[i].PwmPeriod parameter, the resulting MaxPhase clock

signal, and the phase and servo clock signals that are derived from MaxPhase.

PMAC2 Clock Signal Example

PWM

Counter

+Pwm

Period

-Pwm

Period

t

Max

Phase

Phase

Servo

Setting Phase and Servo Clock Frequencies in PMAC3-Style ICs

In a PMAC3-style “DSPGATE3” machine-interface IC, the internally generated phase and servo

clock frequencies are determined by the setting of two saved setup elements for the IC:

 Gate3[i].PhaseFreq

Power PMAC User’s Manual

Power PMAC System Configuration 80

 Gate3[i].ServoClockDiv

Note

Sys.WpKey must be set to $AAAAAAAA in order to enable

changes to Gate3[i] setup elements. While the IDE does this

automatically for its interactive controls that set these elements,

if you set them directly through commands, you must explicitly

set this key value.

The following figure shows the block diagram for the circuits that generate these clock signals, as

well as the “hardware clock” signals in a PMAC3-style IC.

x12 Phase

Locked Loop

Gate3[i].

PhaseFreq

Gate3[i].Chan[0].

PwmFreqMult

Gate3[i].

PhaseClockDiv

Gate3[i].Chan[1].

PwmFreqMult

Gate3[i].Chan[2].

PwmFreqMult

Gate3[i].Chan[3].

PwmFreqMult

Gate3[i].

PhaseServoDir

Gate3[i].

PhaseClockMult

25 MHz 300 MHz

External

Phase

Clock

Gate3[i].

ServoClockDiv

PSD Bit 0 = 1

PSD Bit 0 = 0

PSD Bit 0 = 1

PSD Bit 0 = 0

PSD Bit 1=1

PSD Bit 1=0

External

Servo

Clock

<- PSD Bit 1 = 0

-> PSD Bit 1 = 1

To IC circuits

To IC circuits

Internal

Phase

Clock

Internal

Servo

Clock

'
2

1
PhasePWM f

PFM
f

PCD

PhaseExt

Phase

f

f

2

'

'

"

2 Phase
PCM

Phase

f

f

1

SCD

f
f PhaseInt

Servo

0PWMf

1PWMf

2PWMf

3PWMf

PMAC3 IC Clock Generation Circuitry

Gate3[i].PhaseFreq: Phase Clock Frequency Control

In the DSPGATE3 IC, the phase clock frequency is generated directly from a 300 MHz clock

signal as controlled by the saved setup element Gate3[i].PhaseFreq. This element is a floating-

point value, expressed directly in Hertz (not kHz!). The default value of 9035.69 sets a frequency

of approximately 9.04 kHz.

If the IC is generating its own phase clock, it is possible for it to output a phase clock signal to the

system that is 2, 4, or 8 times the frequency that it uses internally, as controlled by saved setup

element Gate3[i].PhaseClockMult. The internal frequency is multiplied by a value of

(2^Gate3[i].PhaseClockMult) to obtain the output frequency. At the default value of 0, the

output frequency is the same as the internal frequency, and this should only be changed for

Power PMAC User’s Manual

Power PMAC System Configuration 81

specialized systems, generally those that require a very wide range of PWM frequencies from

different ICs.

If the IC is accepting an external phase clock, it is possible for it to divide down this frequency

for internal use by a factor of 2, 4, or 8, as controlled by saved setup element

Gate3[i].PhaseClockDiv. The external frequency is divided by a value of

(2^Gate3[i].PhaseClockDiv) to obtain the internal frequency. At the default value of 0, the

internal frequency is the same as the input frequency, and this should only be changed for

specialized systems, generally those that require a very wide range of PWM frequencies from

different ICs.

Note that in the DSPGATE3 IC, the channel PWM frequencies are derived from the phase clock

frequency, whereas in the older PMAC2-style ICs, the phase clock frequency is derived from the

(common) PWM frequency. In the DSPGATE3 IC, a channel’s PWM frequency is determined by

Gate3[i].Chan[j].PwmFreqMult, and can range from 0.5 to 3.5 times the phase clock frequency.

Gate3[i].ServoClockDiv: Servo Clock Frequency Control

From the phase clock signal, the servo clock signal is generated with a frequency divider circuit

that is controlled by Gate3[i].ServoClockDiv. The servo clock frequency is equal to the phase

clock frequency divided by (Gate3[i].ServoClockDiv + 1).

The equation for Gate3[i].ServoClockDiv is:

1
)(

)(
].[3

kHzServoFreq

kHzPhaseFreq
DivServoClockiGate

At the default value of 3 (divide by 4) and the default phase clock frequency of 9.04 kHz, this sets

a servo clock frequency of 2.26 kHz (442 μsec period).

Clock-Related Software Settings

There are several software setup elements related to the phase and servo clock settings.

Sys.PhaseCycleExt: Phase Cycle Extension

In the Power PMAC, it is possible to skip hardware phase clock cycles between consecutive

executions of the phase update software. Power PMAC will execute the phase update software –

mainly phase commutation and current-loop closure – every (Sys.PhaseCycleExt + 1) phase

clock cycles. The default value of Sys.PhaseCycleExt is 0, so normally Power PMAC executes

the phase update software every cycle of the hardware phase clock.

If the Power PMAC is closing the current loop for direct PWM control over the MACRO ring, it

is desirable to have two hardware ring update cycles (which occur at the hardware phase clock

frequency) per software phase update. This eliminates one ring cycle of delay in the current loop,

which permits higher gains and performance. To do this, the phase clock frequency would be set

twice as high as the desired current-loop closure frequency (e.g. 18 kHz vs. 9 kHz), and

Sys.PhaseCycleExt would be set to 1.

Sys.PhaseOverServoPeriod: Ratio of Phase to Servo Period

If a Power PMAC motor has been set up to close its servo loop under the phase interrupt by

setting bit 3 (value 8) of Motor[x].PhaseCtrl to 1, it must compute a new desired position every

software phase update with a “sub-interpolation” algorithm from the desired positions computed

Power PMAC User’s Manual

Power PMAC System Configuration 82

in the servo update. To do this, it must know what fraction of the servo update period the phase

update period is. Global saved setup element Sys.PhaseOverServoPeriod must be set to specify

this properly. For example, at the default setting where the phase update frequency is 4 times the

servo update frequency, Sys.PhaseOverServoPeriod would be set to 0.25 (1/4). If no motor is

closing its servo loop under the phase interrupt, this parameter is not used.

Sys.ServoPeriod: Servo Update Time Parameter

Once the period/frequency of the phase and servo clock signals is set, the user must tell the Power

PMAC what the scaled time period of the servo clock signal is. This numeric value is used in the

trajectory interpolation algorithms as the (nominal) time update value between consecutive servo

cycles. Saved setup element Sys.ServoPeriod must contain this value in units of milliseconds.

Unless the processor is generating its own interrupts internally (Sys.CpuTimerIntr = 1), this

parameter does not control the servo update period, it merely notifies the interpolation software

what this period is. The default value of Sys.ServoPeriod matches the default settings for the

servo update period in the Gaten[i] data structures.

Motor[x].Stime: Motor Servo-Loop Closure Extension

It is possible to extend the time between consecutive servo loop closures for an individual motor

by setting Motor[x].Stime to a value greater than 0. The motor skips this many servo interrupt

periods between consecutive loop closures, so closes its loop every (Motor[x].Stime + 1) servo

interrupt periods. This feature is valuable for actuators with very slow dynamics. This is

discussed in more detail in the Setting Up the Servo Loop chapter of the User’s Manual.

Sys.RtIntPeriod: Real-Time Interrupt Period

The real-time interrupt (RTI) is the next lower priority after the servo interrupt. The period is an

integer multiple of the servo period – it executes every (Sys.RtIntPeriod + 1) servo periods. At

the default setting, it occurs every third servo period. The main tasks performed in the real-time

interrupt are motion program calculations and foreground PLC (script and C) program

calculations. It also decrements the watchdog timer counter each RTI period, and this must

happen more than 40 times per second to avoid a watchdog timer trip.

Sys.MotorsPerRtInt: Number of Motors Checked per RTI

By default, Power PMAC will perform a safety and status update for each active motor every

real-time interrupt, checking for issues such as overtravel limits, amplifier faults, encoder loss,

and integrated current limits. This checking can often take 0.5 microseconds or more per motor

per RTI.

In applications with very high RTI frequencies, typically for very high move block rates, this

frequency of checking is not needed and can consume a noticeable percentage of CPU time.

Setting Sys.MotorsPerRtInt (new in V1.6 firmware, released 1st quarter 2014) to a value greater

than 0 means that only the specified number of motors will be checked each RTI. This parameter

provides the user with additional flexibility in allocating CPU time in demanding applications.

Setting the Phase and Servo Clock Period in the CPU

If there are no DSPGATEn ICs in the Power PMAC system to generate system phase and servo

clocks to interrupt the processor, the processor can be set up to generate its own interrupt

internally. This is done by setting saved setup element Sys.CpuTimerIntr to 1. (At the default

value of 0, the processor is expecting to receive external clock signals from an IC.) In this mode,

Sys.ServoPeriod actually sets the period/frequency of the phase and servo updates (which are the

same), rather than just reporting a value to the interpolation routines.

Power PMAC User’s Manual

Power PMAC System Configuration 83

This mode of operation is used when the Power PMAC is commanding servo drives over a

network such as EtherCAT and does not need any local ICs, or for software simulation purposes

when only a CPU is present. Note that the CPU cannot output physical phase and servo clock

signals in this mode, so it could not be kept synchronized with any of these local ICs.

Power PMAC User’s Manual

Power PMAC System Configuration 84

Diagnosing Issues with Clock Settings

Power PMAC provides numerous status indicators to permit you to optimize and troubleshoot

your clock settings.

Missing Clock Signals

At power-up/reset, if the Power PMAC is expecting to receive hardware phase and servo clock

signals (that is, the saved value of Sys.CpuTimerIntr is 0) but does not receive them, it will set

global status bit Sys.NoClocks to 1. When this occurs, the processor continues to operate, but no

motors may be enabled. This setting allows the user to reconfigure the system for the proper

hardware or software clock source, save these settings, and reset the system to continue with

system development.

If Power PMAC detects valid clock signals at power-up/reset, but loses them subsequently, the

watchdog timer will trip, shutting down operation of the system. If saved setup element

Sys.BgWDTReset is set well, a “soft” trip will occur, leaving the processor running, but forcing

all interface hardware into its reset state. If such a soft trip does not occur, the hardware watchdog

timer circuitry will force a “hard” trip, completely shutting down the processor as well as forcing

all interface hardware into its reset state. For more details on the watchdog timer, refer to the

User’s Manual chapter Making Your Power PMAC Application Safe.

Task Priority Duty Cycles

Power PMAC provides numerous status elements for the user to understand how much processor

time is spent at each priority level. This information is valuable in optimizing the clock

frequencies for a given application. The IDE’s “task manager” display summarizes this

information well. A sample display for a single-core CPU is shown below:

Power PMAC IDE Single-Core CPU Task Time Overview Display

Power PMAC User’s Manual

Power PMAC System Configuration 85

A sample display for a dual-core CPU is shown in the next figure. It shows the time usage of each

core separately.

Power PMAC IDE Dual-Core CPU Task Time Overview Display

Note that the time status elements used for these displays, and detailed below, are only directly

accessible from the Script environment, as they actually implement function calls to calculate the

scaled values.

Phase Task Statistics

The following status data structure elements can be used to understand the processor loading

under the phase-clock interrupt:

 Sys.PhaseDeltaTime Time between start of last two phase cycles (µsec)

 Sys.PhaseTime Time to complete tasks in last phase cycle (µsec)

 Sys.FltrPhaseTime Filtered average time in recent phase cycles (µsec)

 Sys.MinPhaseTime Lowest time to complete tasks in a phase cycle (µsec)

 Sys.MaxPhaseTime Highest time to complete tasks in a phase cycle (µsec)

 Sys.PhaseErrorCtr # of phase cycles tasks failed to complete in time

The user can set the Sys.MinPhaseTime and Sys.MaxPhaseTime elements to 0.0 to “reset”

them, and Power PMAC will restart its evaluation of the lowest and highest times, respectively,

from this point. This is useful when a change in configuration is made.

Any incrementing of the Sys.PhaseErrorCtr value should be considered a serious problem that

requires correction.

Power PMAC User’s Manual

Power PMAC System Configuration 86

Servo Task Statistics

The following status data structure elements can be used to understand the processor loading

under the servo-clock interrupt:

 Sys.ServoDeltaTime Time between start of last two servo cycles (µsec)

 Sys.ServoTime Time to complete tasks in last servo cycle (µsec)

 Sys.FltrServoTime Filtered average time in recent servo cycles (µsec)

 Sys.MinServoTime Lowest time to complete tasks in a servo cycle (µsec)

 Sys.MaxServoTime Highest time to complete tasks in a servo cycle (µsec)

 Sys.ServoBusyCtr # of servo cycles tasks failed to complete in time

 Sys.ServoErrorCtr # of servo cycles skipped entirely due to task overrun

The user can set the Sys.MinServoTime and Sys.MaxServoTime elements to 0.0 to “reset”

them, and Power PMAC will restart its evaluation of the lowest and highest times, respectively,

from this point. This is useful when a change in configuration is made.

If the servo tasks are interrupted by the phase clock before they are finished, the time elapsed

measured for the servo tasks, which is simply the difference between the times when they started

and when they ended, includes any intervening higher-priority phase tasks. For details of how to

derive the actual servo task time, refer to the individual element descriptions in the Software

Reference Manual.

Any incrementing of the Sys.ServoBusyCtr value, or especially the Sys.ServoErrorCtr value,

should be considered a serious problem that requires correction.

Real-Time Interrupt Task Statistics

The following status data structure elements can be used to understand the processor loading

under the real-time interrupt:

 Sys.RtIntDeltaTime Time between start of last two RTI cycles (µsec)

 Sys.RtIntTime Time to complete tasks in last RTI cycle (µsec)

 Sys.FltrRtIntTime Filtered average time in recent RTI cycles (µsec)

 Sys.MinRtIntTime Lowest time to complete tasks in an RTI cycle (µsec)

 Sys.MaxRtIntTime Highest time to complete tasks in an RTI cycle (µsec)

 Sys.RtIntBusyCtr # of RTI cycles tasks failed to complete in time

 Sys.RtIntErrorCtr # of RTI cycles skipped entirely due to task overrun

The user can set the Sys.MinRtIntTime and Sys.MaxRtIntTime elements to 0.0 to “reset” them,

and Power PMAC will restart its evaluation of the lowest and highest times, respectively, from

this point. This is useful when a change in configuration is made.

Note

Because of the way the user’s real-time interrupt C PLC

(rticplc) program is called, its execution time is not included in

these time calculations.

If the real-time interrupt tasks are interrupted by the phase or servo clock before they are finished,

the time elapsed measured for the real-time interrupt tasks, which is simply the difference

Power PMAC User’s Manual

Power PMAC System Configuration 87

between the times when they started and when they ended, includes any intervening higher-

priority phase or servo tasks. For details of how to derive the actual RTI task time, refer to the

individual element descriptions in the Software Reference Manual.

Incrementing of the Sys.RtIntBusyCtr value, or even the Sys.RtIntErrorCtr value, especially if

only occasional, is not necessarily a problem, but it may be important to understand that this is

happening.

Background Task Statistics

The following status data structure elements can be used to understand the processor loading in

the scheduled background task cycle:

 Sys.BgDeltaTime Time between start of last two BG cycles (µsec)

 Sys.BgTime Time to complete tasks in last BG cycle (µsec)

 Sys.FltrBgTime Filtered average time in recent BG cycles (µsec)

 Sys.MinBgTime Lowest time to complete tasks in a BG cycle (µsec)

 Sys.MaxBgTime Highest time to complete tasks in a BG cycle (µsec)

The user can set the Sys.MinBgTime and Sys.MaxBgTime elements to 0.0 to “reset” them, and

Power PMAC will restart its evaluation of the lowest and highest times, respectively, from this

point. This is useful when a change in configuration is made.

In the standard single-core CPUs, if the scheduled background tasks are interrupted by the phase,

servo, or RTI clock before they are finished, the time elapsed measured for the background tasks,

which is simply the difference between the time when they started and when they ended, includes

any intervening higher-priority phase, servo, or RTI tasks.

In a multi-core CPU, the background tasks are running on a separate core, so are not interrupted

by foreground tasks. In this case, the time elapsed from start to finish is the time actually spent

computing these tasks.

The background cycle does not have a fixed period. After a background cycle’s tasks complete,

the background execution thread “sleeps” for the time set by Sys.BgSleepTime (1.0 millisecond

by default) before it will look to start the next cycle. This interval provides independent C

applications with time to execute. Of course, all interrupt-based tasks will pre-empt any

background tasks.

Interrupt Response Latency

The typical delay between the hardware interrupt signal and the start of interrupt software tasks is

about 1 microsecond. However, there will be variations in this delay from cycle to cycle, and at

very high phase and servo update rates, it is possible for these variations to impact performance.

The time from the start of interrupt software tasks in one phase cycle to the start of these tasks in

the next phase cycle can be found in status element Sys.PhaseDeltaTime. The longest time found

is stored in Sys.MaxPhaseDeltaTime; the shortest time found is stored in

Sys.MinPhaseDeltaTime. (The user can set these max and min elements to 0.0 to “reset” them.)

If there is an unusually long latency in one cycle, Sys.PhaseDeltaTime for that cycle will be

large. If the following cycle has a typical delay, Sys.PhaseDeltaTime for this next cycle will be

small. A good estimate of worst case latency (WCL) can be made by calculating:

Power PMAC User’s Manual

Power PMAC System Configuration 88

1
2

..

ltaTimeMinPhaseDeSysltaTimeMaxPhaseDeSys
WCL

In this equation, the variation in latency is determined by subtracting the “min” value from the

“max” value and dividing by 2. This variation is then added to the typical latency of 1 μsec.

In a single-core CPU, the primary cause of intermittent high latency is heavy Ethernet

communications, as there are certain tasks in the communications that cannot be interrupted.

These can cause occasional latencies of 10 μsec or more. In a dual-core CPU, Ethernet

communications is handled on a different core from the interrupt tasks, so this is not an issue.

In a dual-core CPU, the primary cause of intermittent high latency is arbitration of shared

resources between cores, such as the external memory bus. These can cause occasional latencies

of 3 to 4 μsec.

If the worst case latency causes the command output value of a phase or servo task to be

computed after it should be sent to the output devices, this can cause a “glitch” in the control

effort, which may not be tolerable in the application.

Power PMAC User’s Manual

Setting Up the MACRO Ring 89

SETTING UP THE MACRO RING

Many Power PMAC applications will utilize the MACRO ring for communications between

controllers, amplifiers, and I/O modules. Setup of the MACRO ring requires hardware and

software configuration summarized in this section. Individual MACRO devices have

documentation explaining details particular to the individual devices. Many of the instructions in

this chapter relating to the software setup of the encoder conversion table and motors to use the

MACRO ring are also covered in chapters for those features, but the uses of the MACRO ring is

dispersed throughout those chapters.

If your Power PMAC application does not utilize the MACRO ring, this chapter can be skipped.

MACRO Ring Overview

MACRO is a real-time motion and machine control network in a ring configuration. Developed

by Delta Tau Data Systems, it is an open protocol with many vendors providing compatible

components. It is built around 100 megabit-per-second Ethernet technology (125 Mbit/sec with

error correction bits) for high-speed transfers around the ring, minimizing transport delays. Most

commonly used is fiber-optic transmission between stations on the ring, which provides complete

noise immunity and the capability for long transmission between stations.

MACRO is a master/slave network. Power PMAC is most commonly used as a master on the

ring, sending commands to slave servo drives, I/O modules, and other peripherals on the ring, and

receiving feedback values from them. However, it is possible to configure Power PMAC as a

slave device on the ring, and for its motors to be set up to accept cyclic servo commands over the

ring. This permits a single Power PMAC (the master) to compute all of the coordinated tasks, but

to distribute the individual motor tasks such as servo-loop closure and motor commutation, and

the hardware, across the ring.

Power PMAC MACRO Interfaces

There are several hardware interfaces to the MACRO ring for Power PMAC configurations. With

each interface, the Power PMAC can be configured as a master or a slave on the ring, although it

is much more common to configure it as a master.

ACC-5E MACRO Interface for UMAC

In a Power UMAC rack, the ACC-5E can be used for the MACRO interface. It can be configured

with one or two PMAC2-style “DSPGATE2” MACRO ICs. Each IC supports up to 16 nodes of

communication over the ring, with a separate “master IC” number for each IC. The registers of

each IC can be accessed with the Gate2[i] data structure, or its “alias” of the Acc5E[i] data

structure. Note that the IC’s data structure index i does not need to match the IC’s master number

on the ring, although it will in most applications.

ACC-5E3 MACRO Interface for UMAC

Alternately, the Power UMAC can use the ACC-5E3 for the MACRO interface. This device can

be configured with one or two PMAC3-style “DSPGATE3” MACRO ICs. Each IC supports up to

32 nodes of communication over the ring, in two banks, with a separate “master IC” number for

each bank in the IC. The registers of each IC can be accessed with the Gate3[i] data structure, or

its “alias” of the Acc5E3[i] data structure. Note that an IC with a single data structure index i

supports two separate “master IC” numbers on the ring, so in general, the index and the IC

number will not match.

Power PMAC User’s Manual

Setting Up the MACRO Ring 90

ACC-5EP3 MACRO Interface for Etherlite

The Power PMAC Etherlite network controller uses the ACC-5EP3 for the MACRO interface.

This device can be configured with one or two PMAC3-style “DSPGATE3” MACRO ICs. Each

IC supports up to 32 nodes of communication over the ring, in two banks, with a separate “master

IC” number for each bank in the IC. The registers of each IC can be accessed with the Gate3[i]

data structure, or its “alias” of the Acc5EP3[i] data structure. Note that an IC with a single data

structure index i supports two separate “master IC” numbers on the ring, so in general, the index

and the IC number will not match.

MACRO Interface for Power Brick

The optional MACRO interface for the Power Brick line of controllers and integrated

controller/amplifiers uses the same PMAC3-style “DSPGATE3” ICs that are used for the servo

and I/O interfaces within the Brick. It can be configured with one or two of these ICs. Each IC

supports up to 32 nodes of communication over the ring, in two banks, with a separate “master

IC” number for each bank in the IC. The registers of each IC can be accessed with the Gate3[i]

data structure, or its “alias” of the PowerBrick[i] data structure. Note that an IC with a single

data structure index i supports two separate “master IC” numbers on the ring, so in general, the

index and the IC number will not match.

Configuring Master and Slave Devices

The MACRO ring is a “master/slave” network, a configuration that is more deterministic than

“peer-to-peer” networks. This is important for high-performance real-time control. In general, a

controller is a “master” on the ring, and a drive or and I/O device is a slave.

In addition, a MACRO ring can be configured as a “multi-master” network, with each master

device commanding its own slave devices over a common ring. In this setup, one of the master

devices must be configured as the “synchronizing master”, which provides the overall control of

the ring. Other masters on the same ring must be configured as “non-synchronizing” masters. In

the physical connection of the ring, the synchronizing master must be “upstream” of the other

masters. (In a single-master ring, the master device must be configured as a synchronizing

master.)

Note that a single device on a MACRO ring may have multiple MACRO ICs, and each IC must

be configured as to its function on the ring. Only a single IC on the ring may be configured as a

synchronizing master. Other ICs on master devices, even if on the same device as the IC

configured as a synchronizing master, must be set up as non-synchronizing masters.

The function of a MACRO IC on a ring is determined by a saved setup element for the IC. The

exact functionality of this setup element differs based on the IC used.

PMAC2-Style MACRO IC

In a PMAC2-style “DSPGATE2” MACRO IC, the IC’s function on the ring is determined by

saved setup element Gate2[i].MacroMode. (Remember that you can also use the accessory name

for the structure, so you could refer to it as Acc5E[i].MacroMode.) The important bits in this

element are bit 4, bit 5, and bit 7.

Bit 4 (value $10) should be set to 1 if the IC is used as a master on the ring, synchronizing or not.

It should be set to 0 if the IC is used as a slave on the ring.

Power PMAC User’s Manual

Setting Up the MACRO Ring 91

Bit 5 (value $20) should be set to 1 if the IC is used as the synchronizing master on the ring (in

which case bit 4 must also be set to 1). It should be set to 0 if the IC is used as a non-

synchronizing master or as a slave.

Bit 7 (value $80) determines whether the IC’s phase clock counter is automatically reset on the

IC’s receipt of the “sync” data packet. This bit should be set to 0 if the IC is used as a

synchronizing master, because its own phase clock will control the entire ring (but setting it to 1

will not hurt operation). The bit should be set to 1 if the IC is used as a non-synchronizing master

or as a slave, in order to keep it in sync with the synchronizing master.

Synchronizing Master IC

The IC used as the ring’s synchronizing master (most commonly Gate2[0]) should have bits 4

and 5 set to 1, and bit 7 set to 0, so Gate2[i].MacroMode should be set to $30 for this IC.

Non-Synchronizing Master IC

An IC used as a non-synchronizing master should have bit 4 set to 1 and bit 5 set to 0. If the IC is

in the same Power PMAC system as the ring’s synchronizing master IC, it receives the ring-

controlling phase clock signal directly, and does not need to use the receipt of the sync packet to

stay synchronized. For such an IC (such as the 2nd MACRO IC on the same ACC-5E as the

synchronizing master, or a MACRO IC on another ACC-5E in the same UMAC rack), bit 7 can

be set to 0, so Gate2[i].MacroMode should be set to $10.

However, if the IC is in a different Power PMAC system from the ring’s synchronizing master

IC, it must use the receipt of the sync packet to stay properly synchronized on the ring. For such

an IC, bit 7 should be set to 1 to maintain this synchronization. In addition, the IC must be able to

accept “broadcast” communications from the synchronizing master, which has a different master

IC number. These broadcast messages are sent on Node 14, so bit 14 (value $4000) of this

element should also be set to 1 to disable the “master-number check” for the Node 14 packet.

This means that Gate2[i].MacroMode should be set to $4090 for this IC (Node 14 master-

number check disable, sync packet receipt lock, and master IC).

Slave IC

An IC used as a slave on the ring should have bits 4 and 5 both set to 0 to disable any master

functionality. Bit 7 should be set to 1 to lock in the IC’s phase clock on receipt of the sync packet.

Bit 14 should be set to 1 to disable the “master-number check” on the Node 14 packet. This

means that Gate2[i].MacroMode should be set to $4080 for this IC (Node 14 master-number

check disable, sync packet receipt lock). This is the default value for the IC.

Element Status Bits

Note that bits 0, 1, 2, 3, and 6 of this element are status bits, and could report non-zero values

when the element is read. Bits 0 – 3, represented in the last hex digit, are error bits that will

seldom report a value of 1 in a properly working ring. Bit 6 reports a value of 1 for an IC that has

received a sync packet since the last time the register has been read, a likely occurrence in a

properly working ring. For example, if Gate2[i].MacroMode has been set to $4090, its value is

likely to be reported as $40D0 when queried on a working ring, or $409F on a non-working ring.

Note that the act of reading this register automatically clears any of these status bits that are set.

PMAC3-Style MACRO IC

In a PMAC3-style “DSPGATE3” MACRO IC, the IC’s function on the ring is determined by

saved setup elements Gate3[i].MacroModeA and Gate3[i].MacroModeB. Note that the

Power PMAC User’s Manual

Setting Up the MACRO Ring 92

DSPGATE3 IC acts as a “double IC” on the MACRO ring, with two separate master numbers,

one for bank “A” of MACRO nodes, and one for bank “B”.

(Remember that you can also use the accessory name for the structure, so you could refer to the

elements as Acc5E3[i].MacroModeA and Acc5E3[i]MacroModeB for Power UMAC systems,

or Acc5EP3[i].MacroModeA and Acc5EP3[i].MacroModeB for Power PMAC EtherLite

controllers.) The important bits in this element are bit 12, bit 13, and bit 15.

As key setup variables in the DSPGATE3 IC, these elements are write-protected to prevent

inadvertent changes by unauthorized personnel. In the Script environment, global variable

Sys.WpKey should be set to $AAAAAAAA to permit changes to the values of these elements. In

the C environment, IC variable Gate3[i].WpKey should be set to $AAAAAAAA before each

command that would change the value of these elements in the IC.

Bit 12 (value $1000) should be set to 1 if the IC is used as a master on the ring, synchronizing or

not. It should be set to 0 if the IC is used as a slave on the ring.

Bit 13 (value $2000) should be set to 1 if the IC is used as the synchronizing master on the ring

(in which case bit 12 must also be set to 1). It should be set to 0 if the IC is used as a non-

synchronizing master or as a slave.

Bit 15 (value $8000) determines whether the IC’s phase clock counter is automatically reset on

the IC’s receipt of the “sync” data packet. This bit should be set to 0 if the IC is used as a

synchronizing master, because its own phase clock will control the entire ring (but setting it to 1

will not hurt operation). The bit should be set to 1 if the IC is used as a non-synchronizing master

or as a slave, in order to keep it in sync with the synchronizing master.

Synchronizing Master IC

The IC used as the ring’s synchronizing master (most commonly Gate3[0]) should have bits 12

and 13 set to 1, and bit 15 set to 0, so Gate3[i].MacroModeA and Gate3[i].MacroModeB

should be set to $3000 for this IC.

Non-Synchronizing Master IC

An IC used as a non-synchronizing master should have bit 12 set to 1 and bit 13 set to 0. If the IC

is in the same Power PMAC system as the ring’s synchronizing master IC, it receives the ring-

controlling phase clock signal directly, and does not need to use the receipt of the sync packet to

stay synchronized. For such an IC (such as the 2nd MACRO IC on the same ACC-5E3 or ACC-

5EP3 as the synchronizing master, or a MACRO IC on another ACC-5E3 in the same UMAC

rack), bit 15 can be set to 0, so Gate3[i].MacroModeA and Gate3[i].MacroModeB should be

set to $1000.

However, if the IC is in a different Power PMAC system from the ring’s synchronizing master

IC, it must use the receipt of the sync packet to stay properly synchronized on the ring. For such

an IC, bit 15 should be set to 1 to maintain this synchronization. In addition, the IC must be able

to accept “broadcast” communications from the synchronizing master, which has a different

master IC number. These broadcast messages are sent on Node 14, so bit 22 (value $400000) of

this element should also be set to 1 to disable the “master-number check” for the Node 14 packet.

This means that Gate3[i].MacroModeA and Gate3[i].MacroModeB should be set to $409000

for this IC (Node 14 master-number check disable, sync packet receipt lock, and master IC).

Power PMAC User’s Manual

Setting Up the MACRO Ring 93

Slave IC

An IC used as a slave on the ring, as in a Power Brick drive used as a slave device, should have

bits 12 and 13 both set to 0 to disable any master functionality. Bit 15 should be set to 1 to lock in

the IC’s phase clock on receipt of the sync packet. Bit 23 should be set to 1 to disable the

“master-number check” on the Node 23 packet. This means that Gate3[i].MacroMode should be

set to $808000 for this IC (Node 15 master-number check disable, sync packet receipt lock).

Element Status Bits

Note that bits 8, 9, 10, 11, and 14 of this element are status bits, and could report non-zero values

when the element is read. Bits 8 – 11, represented in the third-to-last hex digit, are error bits that

will seldom report a value of 1 in a properly working ring. Bit 14 reports a value of 1 for an IC

that has received a sync packet since the last time the register has been read, a likely occurrence

in a properly working ring. For example, if Gate3[i].MacroModeA has been set to $409000, its

value is likely to be reported as $40D000 when queried on a working ring, or $409F00 on a non-

working ring. Note that the act of reading this register automatically clears any of these status bits

that are set.

Setting the Ring Frequency

The update frequency for a MACRO ring is set by the phase-clock frequency of the

“synchronizing master” controller IC for the ring. The phase-clock frequency for other ICs on the

ring, both master and slave, should be set a close as possible to this frequency for best

performance, so that the clock does not drift too far away before being re-synchronized.

The synchronizing master IC for the ring should also be the source of the phase-clock signal for

the Power PMAC in which it resides. When a Power PMAC system is re-initialized, it

automatically selects the lowest numbered MACRO IC it finds (with a preference for PMAC3-

style ICs over PMAC2-style ICs if both are present) as its source for the phase (and servo) clock

signal it uses internally.

The general topic of setting the clock frequencies for a Power PMAC system is covered in the

Power PMAC System Configuration chapter of the User’s Manual. This section covers those

aspects particular to systems with a MACRO ring interface.

PMAC2-Style MACRO IC

In a PMAC2-style “DSPGATE2” MACRO IC, the phase-clock frequency is determined by the

settings of saved setup elements Gate2[i].PwmPeriod, which sets the internal “MaxPhase” clock

frequency, and Gate2[i].PhaseClockDiv, which controls how the phase-clock signal itself is

divided down from MaxPhase.

The required setting for Gate2[i].PwmPeriod to obtain a desired MaxPhase clock frequency is

given by the following equation:

1
)(*2

)(8.964,117
].[2

kHzeqMaxPhaseFr

kHz
PwmPeriodiGate

This is typically rounded down to the next integer if the equation produces a fractional

component.

The frequency of the phase clock signal is given by the following equation:

Power PMAC User’s Manual

Setting Up the MACRO Ring 94

1].[2

)(
)(

DivPhaseClockiGate

kHzeqMaxPhaseFr
kHzPhaseFreq

In almost all MACRO systems, it is acceptable to set the phase-clock frequency to the MaxPhase

frequency, so Gate2[i].PhaseClockDiv can be set to 0, and Gate2[i].PwmPeriod can be used

directly to set the phase-clock frequency. In this case, the frequency of any PWM signals

generated by this IC are one-half that of the phase clock. It is rare that the same IC is used to

generate PWM signals, so this is not a constraint in most systems.

For example, to set a phase-clock frequency of 8 kHz, with the internal MaxPhase frequency the

same, Gate2[i].PwmPeriod would be calculated as:

73711
8*2

8.964,117
].[2 PwmPeriodiGate

Gate2[i].PhaseClockDiv would be set to 0 so that the phase-clock frequency is the same as the

MaxPhase clock frequency.

PMAC3-Style MACRO IC

In a PMAC3-style “DSPGATE3” MACRO IC, the phase-clock frequency is determined by the

setting of saved setup element Gate3[i].PhaseFreq, which specifies the frequency directly in

Hertz. To set a phase-clock frequency of 8 kHz, Gate3[i].PhaseFreq would be set to 8000.

As a key setup variable in the DSPGATE3 IC, thiselement is write-protected to prevent

inadvertent changes by unauthorized personnel. In the Script environment, global variable

Sys.WpKey should be set to $AAAAAAAA to permit changes to the value of this element. In the

C environment, IC variable Gate3[i].WpKey should be set to $AAAAAAAA before each

command that would change the value of this element in the IC.

Extending the Phase Software Update

Because data is transmitted serially across the ring between master and slave devices, there are

delays introduced in any feedback loop closed across the ring: one ring-cycle delay for command

data from master to slave, and one ring-cycle delay for feedback data from slave to master. These

time delays can increase the “phase lag” of the feedback loop, reducing or even eliminating the

stability margins of the loop.

If Power PMAC is closing the current loops of motors in “direct PWM” mode, as with Delta

Tau’s Geo MACRO drives, the added ring delays can have a significant impact on the quality of

the resulting performance. In this mode, many users want to increase the hardware ring-cycle

frequency to lessen these delays.

Saved setup element Sys.PhaseCycleExt specifies the number of hardware phase-clock cycles

that are skipped between each phase-clock cycle that causes the software tasks such as

commutation and current-loop closure to execute. At the default value of 0 that is used in almost

all non-MACRO applications, these software tasks are executed every hardware phase-clock

cycle.

If Sys.PhaseCycleExt is set greater than 0, one or more hardware cycles are skipped between

consecutive phase software updates in the Power PMAC. Since the MACRO ring operates on the

hardware phase-clock cycle, it is possible to raise the ring-update frequency without increasing

Power PMAC User’s Manual

Setting Up the MACRO Ring 95

the software load on the Power PMAC processor, but reduce the ring transport delays to improve

loop performance.

Many MACRO users will set Sys.PhaseCycleExt to 1 so that one hardware cycle is skipped

between consecutive phase software updates. For example, a 20 kHz ring-cycle update frequency

could be used with only a 10 kHz phase-software update rate. This reduces the ring transport

delays from two 100-microsecond periods to two 50-microsecond periods, which can permit

significantly higher performance.

The following timeline diagram shows how the overall data transmission and loop calculations

work with Sys.PhaseCycleExt set to 0 and 1, with the phase-clock frequency doubled when the

setting is 1. Note that the overall loop delays are cut in half in this case, but the frequency of loop

calculations in the master Power PMAC is unchanged.

Slave Input

Transmission

Slave Feedback

Processing

Ring Feedback

Transmission

Master Loop

Calculation

Ring Command

Transmission

Slave Command

Processing

Slave Output

Transmission
Cycle n:

Ring Feedback

Transmission

Master Loop

Calculation

Ring Command

Transmission

Slave Command

Processing

Slave Output

Transmission
Cycle n-1:

Cycle n+1:
Slave Input

Transmission

Slave Feedback

Processing

Ring Feedback

Transmission

Master Loop

Calculation

Ring Command

Transmission

Phase

Clock

Master

Loop

Calc

Total Loop

Delay

Ring

Cmd

Xmit

Slave

Cmd

Proc

Slave

Output

Xmit

Ring

Fdbk

Xmit

Slave

Fdbk

Proc

Slave

Input

Xmit

Master

Loop

Calc

Slave

Fdbk

Proc

Ring

Cmd

Xmit

Slave

Cmd

Proc

Slave

Output

Xmit

Phase

Clock

Cycle n-1:

Cycle n:

Master

Loop

Calc

Cycle n+1:

Ring

Fdbk

Xmit

Ring

Fdbk

Xmit

Slave

Fdbk

Proc

Slave

Input

Xmit

Ring

Cmd

Xmit

Slave

Cmd

Proc

Total Loop

Delay

Slave

Input

Xmit

Slave

Input

Xmit

Slave

Fdbk

Proc

Slave

Fdbk

Proc

Ring

Fdbk

Xmit

Ring

Fdbk

Xmit

(skipped

cycle)

(skipped

cycle)

Ring

Cmd

Xmit

Ring

Cmd

Xmit

Slave

Cmd

Proc

Slave

Cmd

Proc

Slave

Output

Xmit

Slave

Output

Xmit

* *

* *

* For signals with significant

transmission time

Loop closure every ring cycle

Loop closure every second ring cycle

MACRO Loop Delays Without and With Phase Cycle Extension

If Power PMAC is commanding drives over the MACRO ring in torque or velocity mode, as with

most third-party MACRO drives, the fact that the ring is updated every phase-clock cycle, but

new data is only used every servo cycle typically provides sufficient “oversampling” of the ring

(assuming that the phase-clock frequency is higher than the servo-clock frequency) so that this

software extension is not useful.

Power PMAC User’s Manual

Setting Up the MACRO Ring 96

Enabling MACRO Nodes

MACRO ring communication occurs through “nodes” on the ring, with each enabled node

transmitting a data packet every ring cycle. An enabled node on a master device will transmit a

command packet every ring cycle, and then expect a feedback packet later in the cycle. An

enabled node on a slave device will expect a command packet every ring cycle, which it will trap

and immediately substitute a feedback packet for return to the master over the ring.

Each node is identified by a 4-bit master number (0 to 15) and a 4-bit slave number (0 to 15).

This means that each master number supports 16 slave numbers. The net 8-bit node number must

match between master and slave devices for communication to take place between the devices.

Node Allocation

For each master IC number, there are 16 nodes, numbered 0 – 15, for which a data packet can be

transmitted each ring cycle. In most MACRO systems, these nodes are organized as follows:

 Servo nodes: 0, 1, 4, 5, 8, 9, 12, 13

 I/O nodes: 2, 3, 6, 7, 10, 11

 Auxiliary nodes: 14, 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Node

Auxiliary

Nodes

I/O Nodes

Servo Nodes

MACRO IC Node Allocation

Typical Mapping of MACRO Nodes to Motors

While many different mappings between motors and MACRO nodes in a Power PMAC are

possible, the standard mapping works in numerical order with the lowest-numbered motor

mapped to the lowest-numbered servo node of the first MACRO IC, the next motor mapped to

the next servo node of this IC, and so on until all 8 servo nodes of this IC (or bank of the IC) have

been allocated. The next motor is then mapped to the lowest-numbered servo node of the next

MACRO IC (or next bank of the IC).

For example, with PMAC2-style ICs, the standard mapping for a 20-axis system would be:

Motor MACRO Node Motor MACRO Node

Power PMAC User’s Manual

Setting Up the MACRO Ring 97

Motor[1] Gate2[0].Macro[0] Motor[11] Gate2[1].Macro[4]

Motor[2] Gate2[0].Macro[1] Motor[12] Gate2[1].Macro[5]

Motor[3] Gate2[0].Macro[4] Motor[13] Gate2[1].Macro[8]

Motor[4] Gate2[0].Macro[5] Motor[14] Gate2[1].Macro[9]

Motor[5] Gate2[0].Macro[8] Motor[15] Gate2[1].Macro[12]

Motor[6] Gate2[0].Macro[9] Motor[16] Gate2[1].Macro[13]

Motor[7] Gate2[0].Macro[12] Motor[17] Gate2[2].Macro[0]

Motor[8] Gate2[0].Macro[13] Motor[18] Gate2[2].Macro[1]

Motor[9] Gate2[1].Macro[0] Motor[19] Gate2[2].Macro[4]

Motor[10] Gate2[1].Macro[1] Motor[20] Gate2[2].Macro[5]

With PMAC3-style ICs, the standard mapping for a 20-axis system would be:

Motor MACRO Node Motor MACRO Node

Motor[1] Gate3[0].MacroA[0] Motor[11] Gate3[0].MacroB[4]

Motor[2] Gate3[0].MacroA[1] Motor[12] Gate3[0].MacroB[5]

Motor[3] Gate3[0].MacroA[4] Motor[13] Gate3[0].MacroB[8]

Motor[4] Gate3[0].MacroA[5] Motor[14] Gate3[0].MacroB[9]

Motor[5] Gate3[0].MacroA[8] Motor[15] Gate3[0].MacroB[12]

Motor[6] Gate3[0].MacroA[9] Motor[16] Gate3[0].MacroB[13]

Motor[7] Gate3[0].MacroA[12] Motor[17] Gate3[1].MacroA[0]

Motor[8] Gate3[0].MacroA[13] Motor[18] Gate3[1].MacroA[1]

Motor[9] Gate3[0].MacroB[0] Motor[19] Gate3[1].MacroA[4]

Motor[10] Gate3[0].MacroB[1] Motor[20] Gate3[1].MacroA[5]

In both cases, a motor will use the encoder conversion table entry of the same index number (e.g.

Motor[2] will use EncTable[2]).

Enabling Nodes in a PMAC2-Style MACRO IC

In a PMAC2-style “DSPGATE2” MACRO IC, the node enabling function is controlled by saved

setup element Gate2[i].MacroEnable. This 24-bit element is split into three parts. In the first

part, bits 0 – 15, which form the last four hex digits, specify which of Nodes 0 – 15 are enabled,

with bit n specifying for Node n. A value of 1 enables the node; a value of 0 disables the node.

In the second part, bits 16 – 19, which form the second hex digit, specify the node number of the

sync packet. In standard Power PMAC operation, this packet belongs to Node 15, so this hex

digit is set to $F.

In the third part, bits 20 – 23, which form the first hex digit, specify the master number for the IC,

whether the IC is used as a master or a slave device. If it is a slave device, this value specifies the

number of the master to which it responds. While it is possible for separate ICs to share the same

master number, particularly for slave devices, it is essential that no two master devices with the

same master number or no two slave devices with the same master number have any of the same

servo or I/O nodes enabled.

For example, to enable the first six servo nodes (0, 1, 4, 5, 8, and 9), the first three I/O nodes (2,

3, and 6), and the two auxiliary nodes (14 and 15) for master number 1 with sync node 15,

Gate2[i].MacroEnable would be set to $1FC37F.

Hex digit 1 F C 3 7 F

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Value 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1

Power PMAC User’s Manual

Setting Up the MACRO Ring 98

Component Master IC Sync Packet # Node Enable Control Bits

Enabling Nodes in a PMAC3-Style MACRO IC

In a PMAC3-style “DSPGATE3” MACRO IC, the node enabling function is controlled by saved

setup elements Gate3[i].MacroEnableA and Gate3[i].MacroEnableB. These 32-bit elements

are split into three active parts. (Note that bits 0 – 7 of these elements are not used.) In the first

part, bits 8 – 23, which form the sixth-to-last through third-to-last hex digits, specify which of

Nodes 0 – 15 are enabled, with bit n specifying for Node n-8. A value of 1 enables the node; a

value of 0 disables the node.

In the second part, bits 24 – 27, which form the second hex digit, specify the node number of the

sync packet. In standard Power PMAC operation, this packet belongs to Node 15, so this hex

digit is set to $F.

In the third part, bits 28 – 31, which form the first hex digit, specify the master number for the IC,

whether the IC is used as a master or a slave device. If it is a slave device, this value specifies the

number of the master to which it responds. While it is possible for separate ICs to share the same

master number, particularly for slave devices, it is essential that no two master devices with the

same master number or no two slave devices with the same master number have any of the same

servo or I/O nodes enabled.

As key setup variables in the DSPGATE3 IC, these elements are write-protected to prevent

inadvertent changes by unauthorized personnel. In the Script environment, global variable

Sys.WpKey should be set to $AAAAAAAA to permit changes to the values of these elements. In

the C environment, IC variable Gate3[i].WpKey should be set to $AAAAAAAA before each

command that would change the value of these elements in the IC.

For example, to enable the first five servo nodes (0, 1, 4, 5, and 8), the first four I/O nodes (2, 3,

6, and 7), and the two auxiliary nodes (14 and 15) for master number 0 with sync node 15,

Gate3[i].MacroEnableA would be set to $0FC1FF00.

 0 F C 1 F F 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 - - - - - - - -

 Master IC Sync Packet # Node Enable Control Bits

Power PMAC User’s Manual

Setting Up the MACRO Ring 99

Ring Check Function

For robust operation of the MACRO ring, it is important to monitor for errors on a continuous

basis. Power PMAC can perform automatic monitoring of the ring for communications errors,

and provide an orderly shutdown if too many errors are detected.

Ring Check Parameters

Saved setup element Macro.TestPeriod sets the evaluation period in real-time interrupt periods

(not ring cycles) over which errors are counted. If it is set to the default value of 0, this evaluation

is not performed. A value of 50 is suggested for performing the evaluation.

Saved setup element Macro.TestMaxErrors specifies the maximum number of errors that can

be detected within a single evaluation period without causing a shutdown. A value of 2 is

suggested for performing the evaluation, which means that the ring would be shut down on a third

error in a given evaluation period.

Saved setup element Macro.TestReqdSynchs specifies the minimum number of the specified

synch packets that must be received within a single evaluation period to avoid a shutdown. A

value of (TestPeriod – 2) is suggested for performing the evaluation, which means the ring

would be shut down if only 2 or more expected sync packets were not received during the test

period.

MACRO Node Register Organization

Each MACRO node in an IC has 8 hardware data registers – 4 output registers and 4 input

registers. In a master device on the MACRO ring (which the Power PMAC usually is), the output

registers of a servo node are “command” registers, and the input registers are “feedback”

registers. In a slave device, the input registers of a servo node are “command” registers, and the

output registers are “feedback” registers.

For the 4 registers in each set, the register index values are 0, 1, 2, and 3. Register 0 has 24 bits (3

bytes) of real data that is transmitted across the ring each cycle. Registers 1, 2, and 3 each have 16

bits (2 bytes) of real data that is transmitted across the ring each cycle.

Standard Use of Registers in a Servo Node

The MACRO protocol describes a standard usage for the command and feedback registers of a

servo node. This usage is described in the following table.

Direction Register 0 Register 1 Register 2 Register 3

Command Velocity/Torque/Phase A

Command

(24 bits)

Phase B

Command

(16 bits)

Phase C

Command

(16 bits)

Control Flags

(16 bits)

Feedback Position Feedback

(24 bits)

Phase A Current

Feedback

(16 bits)

Phase B Current

Feedback

(16 bits)

Status Flags

(16 bits)

Data Elements in a PMAC2-Style MACRO IC

In a PMAC2-style “DSPGATE2” MACRO IC, the MACRO data software elements for accessing

the hardware registers of a node are Gate2[i].Macro[j][k], where i is the IC number (0 to 15), j is

the node number (0 to 15) within the IC, and k is the register number (0 to 3) within the node. In

this IC, each element represents both an output register and an input register. When the element is

Power PMAC User’s Manual

Setting Up the MACRO Ring 100

written to, the value is placed in the output register; when the element is read from, the value

returned is from the input register.

Note

Having separate input and output registers at the same address

means that the user cannot read back a value that has been

written to the output register.

All of these data elements are 24-bit values (found in the high 24 bits of Power PMAC’s 32-bit

bus). For registers 1, 2, and 3 of a node, the real 16 bits of data are found in the high 16 bits of the

24-bit element. It is important to realize that many of the automatic functions will access the full

32-bit register, so care must be taken in comparing the 24-bit value in the element with the 32-bit

value used by the automatic function (which will be 256 times larger).

Data Elements in a PMAC3-Style MACRO IC

In a PMAC3-style “DSPGATE3” MACRO IC, the MACRO data software elements for accessing

the hardware output registers of a node are Gate3[i].MacroOutA[j][k] and

Gate3[i].MacroOutB[j][k] for banks A and B, respectively, of the IC, where i is the IC number

(0 to 15), j is the node number (0 to 15) within the IC, and k is the register number (0 to 3) within

the node.

Similarly, in this IC, the MACRO data software elements for accessing the hardware input

registers of a node are Gate3[i].MacroInA[j][k] and Gate3[i].MacroInB[j][k] for banks A and

B, respectively, of the IC. Since the output and input hardware registers are accessed by separate

elements in this IC, it is possible to read back a value written to an output register, which can be

useful for debugging an application.

All of these data elements are 32-bit values. For register 0 of a node, the real 24 bits of data are

found in the high 24 bits of the 32-bit element. For registers 1, 2, and 3 of a node, the real 16 bits

of data are found in the high 16 bits of the 32-bit element.

Processing Position Feedback from the MACRO Ring

As with any other source of position feedback for Power PMAC servo loops, feedback provided

through the MACRO ring, from whatever ultimate source, must be processed through the encoder

conversion table (ECT), before it is used by the servo loop. Often significant processing will

already have occurred at the remote MACRO device before transmission to the Power PMAC.

In almost all cases, the ECT entry will be reading the single value in a MACRO node input

register 0, with real data in bits 8 – 31 of the 32-bit data bus, with the low 5 bits of this data

representing a fractional count value (so the integer count data starts in bit 13).

Encoder Table Entry Method: EncTable[n].type

In virtually all cases, the encoder conversion method will simply be a single-register read, as any

processing of multiple registers will already have been performed at the remote MACRO device.

So EncTable[n].type should be set to 1 to specify this single-register read.

Power PMAC User’s Manual

Setting Up the MACRO Ring 101

Encoder Table Entry Source Address: EncTable[n].pEnc

The encoder table entry will read the input (feedback) register for the node as the source of its

data. To specify this, EncTable[n].pEnc for the entry needs to be set to the address of this

register. For a PMAC2-style MACRO IC, the address is specified as Gate2[i].Macro[j][0].a,

where i is the IC number (0 to 15) and j is the node number. For a PMAC3-style MACRO IC, the

address is specified as Gate3[i].MacroInA[j][0].a or Gate3[i].MacroInB[j][0].a.

In most cases, the mapping of encoder table entry numbers to MACRO node numbers is the same

as the mapping of motor numbers to MACRO node numbers explained above (although this is

not required). In this scheme, the motor numbers will match the encoder table entry numbers

number (e.g. Motor[2] will use EncTable[2]).

Note

The EncTable[0] entry is typically not used for standard

feedback. It is not auto-assigned to any hardware address at re-

initialization, and few users utilize it for processing motor

feedback sensors.

For example, with PMAC2-style ICs, the standard mapping for a 20-axis system would be:

ECT Pointer Variable PMAC2 IC Source Address

EncTable[1].pEnc Gate2[0].Macro[0][0].a

EncTable[2].pEnc Gate2[0].Macro[1][0].a

EncTable[3].pEnc Gate2[0].Macro[4][0].a

EncTable[4].pEnc Gate2[0].Macro[5][0].a

EncTable[5].pEnc Gate2[0].Macro[8][0].a

EncTable[6].pEnc Gate2[0].Macro[9][0].a

EncTable[7].pEnc Gate2[0].Macro[12][0].a

EncTable[8].pEnc Gate2[0].Macro[13][0].a

EncTable[9].pEnc Gate2[1].Macro[0][0].a

EncTable[10].pEnc Gate2[1].Macro[1][0].a

EncTable[11].pEnc Gate2[1].Macro[4][0].a

EncTable[12].pEnc Gate2[1].Macro[5][0].a

EncTable[13].pEnc Gate2[1].Macro[8][0].a

EncTable[14].pEnc Gate2[1].Macro[9][0].a

EncTable[15].pEnc Gate2[1].Macro[12][0].a

EncTable[16].pEnc Gate2[1].Macro[13][0].a

EncTable[17].pEnc Gate2[2].Macro[0][0].a

EncTable[18].pEnc Gate2[2].Macro[1][0].a

EncTable[19].pEnc Gate2[2].Macro[4][0].a

EncTable[20].pEnc Gate2[2].Macro[5][0].a

Power PMAC User’s Manual

Setting Up the MACRO Ring 102

With PMAC3-style ICs, the standard mapping for a 20-axis system would be:

ECT Variable PMAC3 IC Source Address

EncTable[1].pEnc Gate3[0].MacroInA[0][0].a

EncTable[2].pEnc Gate3[0].MacroInA[1][0].a

EncTable[3].pEnc Gate3[0].MacroInA[4][0].a

EncTable[4].pEnc Gate3[0].MacroInA[5][0].a

EncTable[5].pEnc Gate3[0].MacroInA[8][0].a

EncTable[6].pEnc Gate3[0].MacroInA[9][0].a

EncTable[7].pEnc Gate3[0].MacroInA[12][0].a

EncTable[8].pEnc Gate3[0].MacroInA[13][0].a

EncTable[9].pEnc Gate3[0].MacroInB[0][0].a

EncTable[10].pEnc Gate3[0].MacroInB[1][0].a

EncTable[11].pEnc Gate3[0].MacroInB[4][0].a

EncTable[12].pEnc Gate3[0].MacroInB[5][0].a

EncTable[13].pEnc Gate3[0].MacroInB[8][0].a

EncTable[14].pEnc Gate3[0].MacroInB[9][0].a

EncTable[15].pEnc Gate3[0].MacroInB[12][0].a

EncTable[16].pEnc Gate3[0].MacroInB[13][0].a

EncTable[17].pEnc Gate3[1].MacroInA[0][0].a

EncTable[18].pEnc Gate3[1].MacroInA[1][0].a

EncTable[19].pEnc Gate3[1].MacroInA[4][0].a

EncTable[20].pEnc Gate3[1].MacroInA[5][0].a

This type of entry does not use a secondary source, so the setting of EncTable[n].pEnc1 does not

matter. It is fine to leave it at its factory-default setting of Sys.pushm.

Intermediate Processing: EncTable[n].index1, index2

With the real data in the high 24 bits of the 32-bit source register and unknown values in the low

8 bits, some processing is necessary to use only the valid data. EncTable[n].index2 should be set

to 8 to cause an initial “shift-right” of the data by 8 bits to eliminate the low “garbage data”.

The most significant bit of position data in the 24-bit hardware register must end up in the highest

bit of the 32-bit intermediate result in order to support rollover of the source data properly. In the

most common case, there is true position data in all 24 bits of the hardware register. In this case,

EncTable[n].index1 should be set to 8 to cause a secondary “shift-left” of the data by 8 bits to

return the position data to its original position in the 32-bit register (but now with all zeros in the

low 8 bits).

Occasionally, there will not be a full 24 bits of position data in the source register, and this second

operation will need to be slightly different. For example, if the source register contains only 17

bits of position data starting in bit 8 of the 32-bit register (bit 0 of the 24-bit hardware register and

data structure element), after the initial shift-right of 8 bits, the most significant bit of position

data is in bit 16. In order to have this bit end up in bit 31 of the intermediate result, a subsequent

shift-left of 15 bits is required, so EncTable[n].index1 should be set to 15.

Note that in the common case of having 24 bits of true position data, leaving index1 and index2

at their default values of 0 will generally provide acceptable results, with the “noise” from

undetermined data in the low 8 bits not being noticeable in most applications. However, it is

recommended that these elements be set as explained above to minimize the chances of any

problems.

Power PMAC User’s Manual

Setting Up the MACRO Ring 103

Change Limiting: EncTable[n].index3, MaxDelta

In the multi-step process of returning the position feedback value over the MACRO ring, it is

possible that occasional bit errors could occur. If one or more higher-order bits are wrong when

received by the Power PMAC, it could have significant effects on performance.

The ECT permits you to implement a “maximum change” filter in an encoder table entry to

mitigate the effects of such errors. If EncTable[n].MaxDelta is set to positive value, it represents

the maximum change (either velocity or acceleration) that will be regarded as real. Changes

larger than this will be considered due to data errors in the received data, and this data will not be

used.

Note that many users will not implement change limiting when they are establishing initial

functionality, leaving MaxDelta at 0 during this stage of development. However, it is strongly

recommended that some sort of change limiting be implemented before development is finished,

even if no problems have been noted during development.

Velocity Limiting

If EncTable[n].index3 is set to its default value of 0, MaxDelta acts as the maximum velocity

that will be considered real. It is expressed in least-significant-bits (LSBs) of the feedback per

servo cycle. It assumes that the LSB is found in the bit of the 32-bit register specified by the

index2 element for the entry. Note that in many cases using MACRO products, this LSB will be a

fraction (often 1/32) of a “count” of the feedback.

If the magnitude of change in the source data is greater than MaxDelta, the sample will be

assumed to be erroneous, and so the source data will not be used. Instead, the data will be

assumed to have changed the same amount it did in the previous cycle (i.e. to have maintained the

last velocity), using the value held in the status element EncTable[n].PrevDelta. If in the next

servo cycle, the change is still too large, a change in the source data is assumed to have occurred,

and the result will be changed by MaxDelta. This rate will be maintained until the result matches

the new source.

In this mode, it is recommended that MaxDelta be set to a value about 25% greater than the

maximum true velocity that is expected.

For example, quadrature encoder feedback with 1/T extension is received with units of 1/32 of a

count. The maximum expected speed is 200 quadrature counts per servo cycle, or 6400 LSBs per

servo cycle. To set a speed limit, index3 is set to 0, and MaxDelta is set to 8000, providing a

25% margin.

Acceleration Limiting

If EncTable[n].index3 is set to a value greater than 0, MaxDelta acts as the maximum

acceleration that will be considered real. It is expressed in LSBs per servo cycle per servo cycle,

assuming that the LSB is found in the bit of the 32-bit register specified by index2. If the

magnitude of change in the rate of change (i.e. the second derivative) in the source data is greater

than MaxDelta, the sample will be assumed to be erroneous, and so the source data will not be

used. Instead, the data will be assumed to have the same second derivative it did in the previous

cycle (i.e. to have maintained the last acceleration), using the value held in PrevDelta. If

subsequent readings are also considered erroneous, the acceleration used in PrevDelta will be

used for a total of index3 servo cycles. After this, it will use the value in MaxDelta to slew to the

new source value.

Power PMAC User’s Manual

Setting Up the MACRO Ring 104

In this mode, it is recommended that MaxDelta be set to a value about 25% greater than the

maximum true acceleration that is expected.

For example, absolute encoder feedback is received in units of LSBs of the encoder. In any servo

cycle, the velocity is not expected to change more than 12 LSBs per servo cycle. We want to be

able to “ride through” three bad readings. To set the acceleration limit this way, index3 should be

set to 3, and MaxDelta should be set to 15 (providing a 25% margin).

Numerical Integration

As with other sources of feedback, Power PMAC can numerically integrate the source feedback

in the ECT entry. EncTable[n].index4 specifies the number of times the incoming data is

integrated, and it can be set to 0 (no integration), 1 (single integration – velocity to position), or 2

(double integration – acceleration to position). It is rare to integrate feedback received over the

MACRO ring, so usually index4 is left at its default value of 0.

Output Scale Factor

Most users will want the result of the ECT entry to be in meaningful units of the sensor, and a

final multiplication of the intermediate result by the saved floating-point setup element

EncTable[n].ScaleFactor provides this capability.

After the data shifting, the unit of the sensor usually ends up in bit 8 (if no “sub-count” data was

provided) or bit 13 (if 5 bits of “sub-count” data was provided) of the 32-bit intermediate value.

In the first case, ScaleFactor should be set to 1/28, or 1/256 (= 0.00390625) so the result is in the

proper units. In the second case, ScaleFactor should be set to 1/213, or 1/8192 (=

0.0001220703125). In the case of the 17-bit encoder whose LSB was left in bit 15, ScaleFactor

should be set to 1/215, or 1/32,768. It is usually best to enter these values as expressions and let

Power PMAC compute the exact numerical values.

Setting Up Motor Addressing Elements

When Power PMAC controls a motor over the MACRO ring, it reads its inputs from MACRO IC

registers, and writes its outputs to MACRO ring registers. The actual hardware inputs and outputs

occur at a slave node on the ring. To configure this, the motor’s addressing elements specify the

addresses of MACRO IC node registers, not of hardware input and output registers. This section

explains the proper settings for this type of control.

The MACRO IC node registers are expressed “generically” in this section, using IC index i, and

node index j. In most cases, these index values will be those in the table shown above in the

section Typical Mapping of MACRO Nodes to Motors.

Command Output Address

Motor[x].pDac specifies the address of the register where the motor’s command output is written

(or if there are multiple registers, as when commutating a multi-phase motor, the address of the

first register). When using the MACRO ring, this should be the address of Output Register 0 of

the proper MACRO IC and node.

When a PMAC2-style MACRO IC is used, the setting will be of the form Motor[x].pDac =

Gate2[i].Macro[j][0].a.

When a PMAC3-style MACRO IC is used, the setting will be of the form Motor[x].pDac =

Gate3[i].MacroOutA[j][0].a or Gate3[i].MacroOutB[j][0].a.

Power PMAC User’s Manual

Setting Up the MACRO Ring 105

If Power PMAC is not performing commutation or current-loop closure for the motor, the single

command output from the servo loop will be written to this register.

If Power PMAC is performing commutation for the motor, but not the digital current-loop closure

(sinewave output mode), the first phase-current command (A) will be written to this register (0),

and the second phase-current command (B) will be written to the next register (1) for the node.

If Power PMAC is performing both commutation and current-loop closure (direct-PWM output

mode) for the motor, the first phase-voltage command (A) will be written to this register (0), the

second phase-voltage command (B) will be written to the next register (1) for the node, and the

third phase-voltage command (C) will be written to the subsequent register (2) for the node.

Position Feedback Address

Motor[x].pEnc specifies the address of the register where the motor’s outer (position-loop)

position feedback is read. Motor[x].pEnc2 specifies the address of the register where the motor’s

inner (velocity-loop) position feedback is read. In most cases, the same sensor is used for both

loops, so these two specify the same address.

These position values must have been processed through the encoder conversion table, so these

elements must specify the address of a table entry. So Motor[x].pEnc and Motor[x].pEnc2 are

set to EncTable[n].a. In the most common case of a single sensor, both of these are set to the

address of the same entry. Usually the entry index n is the same as the motor index x.

Absolute Position Feedback Address and Format

If there is absolute power-on position available over the MACRO ring, Motor[x].pAbsPos

should be set to Gate2[i].Macro[j][0].a to specify the address of the IC and node for this absolute

position value. (Otherwise, pAbsPos should be set to its default value of 0.)

Motor[x].AbsPosFormat should be set to $01103808 to specify the use of the high 24 bits of

this address and the high 16 bits of the next register, supporting a possible 40 bits of absolute

position value.

Motor[x].AbsPosSf should be set to 0.03125 (= 1/32) if the data is provided in the common

scaling of 1/32 of a count.

Interface Type

Motor[x].EncType should be set to 4 to denote that this motor uses a MACRO interface to a

slave device, or to 12 to denote that this motor uses a MACRO interface to a Turbo PMAC or

Power PMAC acting as a MACRO slave. While this saved setup element does not do much

directly, the act of setting it in the Script environment causes several key motor addressing

settings to be made automatically, as explained below.

However, if Motor[x].EncType is set to 4 or 12, the hardware-captured position for triggered

moves such as homing search moves is obtained automatically through non-cyclic MACRO

commands. The setting of Motor[x].pCaptPos is not used in this case.

Input Flag Addresses

Motor[x].pEncStatus is a “parent” address for the input flags for the motor. If the specific flag

address parameters are the same as this, the input register does not need to be read again, saving

access time.

Power PMAC User’s Manual

Setting Up the MACRO Ring 106

Motor[x].pAmpFault, Motor[x].pLimits, and Motor[x].pCaptFlag specify the addresses of the

registers where the motor’s amplifier-fault, hardware overtravel limit, and capture trigger flags

are read. In most cases, these will be the same address, as all of these flags can be provided in the

MACRO input flag register for a single node.

When a PMAC2-style MACRO IC is used, the settings will be of the form Motor[x].p{flag} =

Gate2[i].Macro[j][3].a.

When a PMAC3-style MACRO IC is used, the settings will be of the form Motor[x].p{flag} =

Gate3[i].MacroInA[j][3].a or Gate3[i].MacroInB[j][3].a.

Input Flag Bits

In addition to specifying the addresses of the registers where the input flags are read, the

particular bits in the register must be specified as well. When using the standard MACRO

protocol, the following settings should be used:

Motor[x].AmpFaultBit = 23

Motor[x].LimitBits = 25

Motor[x].CaptFlagBit = 19

The MACRO standard calls for a high-true amplifier fault bit, so Motor[x].AmpFaultLevel

should be set to the default value of 1.

When using quadrature encoder feedback with 5 bits of 1/T sub-count extension, the following

settings should be used to process whole-count captured data, as for homing:

Motor[x].CaptPosShiftLeft = 13

Motor[x].CaptPosShiftRight = 0

Motor[x].CaptPosRound = 1

When receiving flags over the MACRO ring for a motor, Motor[x].EncType should be set to 4

to tell Power PMAC of the expected format of the flags. With this setting, when

Motor[x].pEncStatus is set to an address address (Gate2[i].Macro[j][3].a for a PMAC2-style

IC, Gate3[i].MacroInA[j][3].a or Gate3[i].MacroInB[j][3].a for a PMAC3-style IC), Power

PMAC automatically sets the above bit values to the appropriate settings for the MACRO

protocol.

Output Flag Addresses

Motor[x].pEncCtrl specifies the address of the register the motor uses for its output control flags

used to set up position-capture functions (as for homing) over the MACRO ring.

When a PMAC2-style MACRO IC is used, the setting will be of the form Motor[x].pEncCtrl =

Gate2[i].Macro[j][3].a.

When a PMAC3-style MACRO IC is used, the setting will be of the form Motor[x].pEncCtrl =

Gate3[i].MacroOutA[j][3].a or Gate3[i].MacroOutB[j][3].a.

Motor[x].pAmpEnable specifies the address of the register where the motor’s amplifier-enable

output flag is written.

Power PMAC User’s Manual

Setting Up the MACRO Ring 107

When a PMAC2-style MACRO IC is used, the setting will be of the form

Motor[x].pAmpEnable = Gate2[i].Macro[j][3].a.

When a PMAC3-style MACRO IC is used, the setting will be of the form

Motor[x].pAmpEnable = Gate3[i].MacroOutA[j][3].a or Gate3[i].MacroOutB[j][3].a.

Output Flag Bits

In addition to specifying the addresses of the registers where the output flags are written, the

particular bit in the register must be specified as well. When using the standard MACRO

protocol, the following setting should be used:

Motor[x].AmpEnableBit = 22

When sending flags over the MACRO ring for a motor, Motor[x].EncType should be set to 4 to

tell Power PMAC of the expected format of the flags. With this setting, when Motor[x].EncCtrl

is set to an address (Gate2[i].Macro[j][3].a for a PMAC2-style IC, Gate3[i].MacroOutA[j][3].a

or Gate3[i].MacroOutB[j][3].a for a PMAC3-style IC), Power PMAC automatically sets the

above bit value to the appropriate setting for the MACRO protocol.

Commutation Addresses

If Power PMAC is performing the phase commutation tasks for a motor controlled over the

MACRO ring, several more address settings must be made properly to interface with the

MACRO ring.

For these motors, Motor[x].PhaseCtrl must be set to 4 to enable commutation using “unpacked”

data (the data to and from each motor phase in a separate register), because none of the MACRO

ICs support “packed” data.

Commutation Position Address and Processing

Motor[x].pPhaseEnc specifies the address of the register where the Power PMAC reads the

commutation rotor angle position data. In the most common single-feedback configuration, this

should be set to Gate2[i].Macro[j][0].a for a PMAC2-style MACRO IC, or to

Gate3[i].MacroInA[j][0].a or Gate3[i].MacroInB[j][0].a for a PMAC3-style MACRO IC, the

same address as for servo-loop feedback.

Note that Power PMAC will read the entire 32-bit value at this address, even though there is only

real data in the upper 24 bits (i.e. starting at bit 8). In addition, with many MACRO devices, the

low 5 bits of the real data may contain fractional-count data for improved servo resolution, so a

single “count” of feedback may appear in bit 13 of the 32-bit register. This must be taken into

account when scaling the data into commutation cycles.

Power PMAC can perform “data shifting” operations on the value read from this register using

Motor[x].PhaseEncRightShift and Motor[x].PhaseEncLeftShift. While PhaseEncRightShift

can be used to shift out the low 8 bits of “garbage data” in the register, since Power PMAC only

uses 11 bits of position data in a commutation cycle, this is seldom needed.

If true position data is not present in the highest bit of the register read, PhaseEncLeftShift must

be used to shift the most significant bit of true position data to bit 31 of the resulting register.

Otherwise, the rollover of the value in the register will not be handled properly. For example, if

Power PMAC User’s Manual

Setting Up the MACRO Ring 108

the register holds only 17 bits of single-turn position data in bits 8 – 24 of the 32-bit register,

PhaseEncLeftShift should be set to 7 to move the MSB to bit 31.

Motor[x].PhasePosSf multiplies this 32-bit value to convert the units of this (entire) register to

the commutation units of 1/2048 of a commutation cycle (motor pole pair). The formula for

computing this element is:

 cyccommBsregisterLSN

cyccommunits
PhasePosSfxMotor

2048
].[

So the main step is to figure out how many (“N”) LSBs of the 32-bit register (after any shifting

operations) there are per commutation cycle. This is best illustrated by some common examples.

In the first example, a 1000-line quadrature encoder is used on a 4-pole motor. At the remote

MACRO device, “times-4” decode is performed on the encoder to obtain 4000 counts per

revolution, and “1/T” extension is performed to provide 5 bits of fractional count data before the

data is sent to Power PMAC over the MACRO ring. This setup yields 2000 full encoder counts

per commutation cycle, with a count appearing in bit 13 (8 + 5) of the 32-bit register. So there are

(2000 * 213), or 16,384,000 register LSBs per commutation cycle. Motor[x].PhasePosSf should

be set to 2048 / 16,384,000. It is usually best to enter this as an expression and let Power PMAC

compute the exact resulting value. (In this case, the expression could be reduced to 1 / 8000).

In the second example, an encoder provides 20 bits of single-turn data on an 8-pole motor. Each

phase cycle, 24 bits of position data (covering 16 motor revolutions) are provided over the

MACRO ring, with no fractional data. With 4 commutation cycles per motor revolution, there are

218, or 262,144 encoder LSBs per commutation cycle, with an encoder LSB appearing in bit 8 of

the 32-bit register. So there are (218 * 28) = 226, or 67,108,864 register LSBs per servo cycle.

Motor[x].PhasePosSf should be set to 2048 / 67108864. (This could be reduced to 1 / 32768.)

In the third example, an encoder provides 17 bits of single-turn data on a 4-pole motor. Each

phase cycle, these 17 bits of position data are provided over the MACRO ring, with no fractional

data. This data appears in bits 8 – 24 of the 32-bit register, with zeros above.

Motor[x].PhaseEncLeftShift should be set to 7 to move the encoder MSB to bit 31 of the

register. This leaves the encoder LSB in bit 15 of the register. With 2 commutation cycles per

motor revolution, there are 216, or 65,536 encoder LSBs per commutation cycle, with an encoder

LSB appearing in bit 15. So there are (216 * 215) = 231 register LSBs per servo cycle.

Motor[x].PhasePosSf should be set to (211 / 231) = 1 / 220, or 1 / 1048576.

Current Feedback Address and Processing

If Power PMAC is not also performing digital current-loop closure for the motor, operating in

“sinewave output” mode, Motor[x].pAdc is set to 0. However, if Power PMAC is performing

digital current-loop closure, operating in “direct PWM” mode, Motor[x].pAdc must be used to

specify the address of the (first) register where the Power PMAC reads the phase current data

from the A/D converters.

Using the standard MACRO protocol, this should be set to Gate2[i].Macro[j][1].a for a PMAC2-

style protocol, or to Gate3[i].MacroInA[j][1].a or Gate3[i].MacroInB[j][1].a for a PMAC3-

style MACRO IC. This will cause Power PMAC to read the node’s input register 1 for the Phase

A current value, and input register 2 for the Phase B current value.

Power PMAC User’s Manual

Setting Up the MACRO Ring 109

For n-bit ADCs, the true feedback data will appear in the high n bits of the 16-bit hardware

register (and of the full 32-bit value read). The high n bits of the 32-bit saved setup element

Motor[x].AdcMask should be set to 1 to tell Power PMAC which bits to use. For the most

common 12-bit ADCs, AdcMask should be set to $FFF00000.

Power PMAC User’s Manual

Setting Up the MACRO Ring 110

Setting Up a Motor as a Network Slave

It is possible to set up a Power PMAC motor to receive and act on cyclic commands from a

network such as a MACRO ring. This is typically used to coordinate large numbers of motors on

multiple Power PMAC systems together over a network. All of the coordination is done in one of

the Power PMACs, with cyclic commands generated from the coordinated motion sent over the

network to other Power PMACs.

This technique is particularly useful when individual Power PMAC systems are limited in the

number of physical hardware channels they can interface to. For example, Power PMAC Brick

systems are limited to 8 channels of local interface, so can only directly control 8 axes. However,

this same system can also command 32 additional axes across the MACRO ring (for example on

4 other Power PMAC Bricks), bringing the total to 40 axes. (Its software supports a total of 256

axes.) In an alternate configuration a Power PMAC Etherlite network controller can command

large number of axes on Power PMAC Bricks through this technique. If all of the coordinating

software tasks (e.g. motion programs) are executed on a single Power PMAC, it is much easier to

accomplish.

This technique can also reduce the computational load on the coordinating Power PMAC by

offloading some of the high-frequency cyclic tasks such as phase commutation and current-loop

closure to other Power PMACs. This can permit the coordinating Power PMAC to execute its key

tasks at higher frequencies than would be possible if it had to do all of these high-frequency tasks

as well.

One advantage of this technique is the ability for the network-slave Power PMAC to take full

control of its axes in the event of a problem such as a ring break. This can provide important fault

recovery capabilities, such as permitting the retraction of motors to safe positions. (Any fault

recovery algorithms must be written by the user for any particular application.)

Command Modes

Cyclic commands of any of the following types can be sent to the network-slave motor:

1. Commanded position

2. Commanded velocity

3. Commanded torque/force

4. Commanded phase currents (“sinewave” mode)

5. Commanded phase voltages (“direct PWM” mode)

The most common command format in this mode of operation is torque/force. This offloads the

high-frequency phase-commutation and current-loop closure tasks to the remote Power PMAC,

but the main position/velocity servo loop is in the coordinating Power PMAC, making setup and

tuning easier. Current-loop closure is done locally in the network slave, avoiding network

transport delays inside the high-bandwidth current loop. In this mode, operation is the same as for

commanding many third-party MACRO drives.

The second most common command format is phase voltages (PWM). While this does not

offload any computational load from the coordinating Power PMAC, all motor setup, including

commutation setup and current-loop tuning, is in the coordinating Power PMAC. In this mode,

operation is the same as for commanding Delta Tau Geo MACRO drives.

Power PMAC User’s Manual

Setting Up the MACRO Ring 111

Note that, while cyclic commanded positions can be sent across the network, certain important

functionality, such as establishing position reference, is not fully supported at this time.

Coordinating Power PMAC Motor Setup

The coordinating Power PMAC will perform the higher-level tasks for the motor. It is here that

the motor will be assigned to an axis in a coordinate system and will generate commanded

trajectories, either from the axis through a motion program, or from separate motor moves.

Depending on how many of the subsequent motor tasks are performed in the network-slave motor

on the remote PMAC, additional tasks such as servo-loop closure and commutation can be

performed in the coordinating Power PMAC as well.

A motor in the coordinating Power PMAC commanding a network-slave motor over the MACRO

ring in another Power PMAC is set up just as if it were commanding a separate MACRO drive. A

quick guide to the setup of the coordinating Power PMAC motor is given here.

Motor Activation and Mode

For the motor in the coordinating Power PMAC, Motor[x].ServoCtrl should be set to 1 (or

possibly to 8 for a “gantry follower”). Motor[x].MotorMode should be set to 0 so this motor is

not a network slave (this is the “network master” motor).

Motor[x].EncType should be set to 4 to specify the motor’s hardware interface will be of the

MACRO style. This automatically sets several parameters, including Motor[x].AmpEnableBit,

Motor[x].AmpFaultBit, Motor[x].CaptFlagBit, and Motor[x].LimitBits, to the values

matching the MACRO protocol.

MACRO Ring Addresses

One MACRO servo node should be selected to transfer all of the command and feedback data,

including control and between the coordinating Power PMAC and the network slave Power

PMAC. Servo nodes are numbered (j) 0, 1, 4, 5, 8, 9, 12, and 13. Several saved setup elements

will be set to addresses of registers in this node.

Motor[x].pDac should be set to the address of output register 0 of this MACRO servo node so

the command output value(s) of whatever format will be sent over the ring through that node. For

a PMAC2-style “DSPGATE2” MACRO IC, the setting will be of the form

Gate2[i].Macro[j][0].a. For a PMAC3-style “DSPGATE3” IC, the setting will be of the form

Gate3[i].MacroOutα[j][0].a.

Motor[x].pEncCtrl should be set to the address of output register 3 of this MACRO servo node

so the trigger flag on the remote Power PMAC can be properly armed. For a PMAC2-style

“DSPGATE2” MACRO IC, the setting will be of the form Gate2[i].Macro[j][3].a. For a

PMAC3-style “DSPGATE3” IC, the setting will be of the form Gate3[i].MacroOutα[j][3].a.

Motor[x].pAmpEnable should be set to the address of output register 3 of this MACRO servo

node so the amplifier-enable flag value is sent over the ring through the command-flag register of

the node. For a PMAC2-style “DSPGATE2” MACRO IC, the setting will be of the form

Gate2[i].Macro[j][3].a. For a PMAC3-style “DSPGATE3” IC, the setting will be of the form

Gate3[i].MacroOutα[j][3].a.

Motor[x].pEncStatus should be set to the address of input register 3 of this MACRO servo node

so encoder flag functions sent over the ring are read. For a PMAC2-style “DSPGATE2” MACRO

Power PMAC User’s Manual

Setting Up the MACRO Ring 112

IC, the setting will be of the form Gate2[i].Macro[j][3].a. For a PMAC3-style “DSPGATE3” IC,

the setting will be of the form Gate3[i].MacroInα[j][3].a.

Motor[x].pAmpFault, Motor[x].pCaptFlag, and Motor[x].pLimits should be set to the address

of input register 3 of this MACRO servo node so the input flag values sent over the ring through

the status-flag register of the node are read. For a PMAC2-style “DSPGATE2” MACRO IC, the

setting will be of the form Gate2[i].Macro[j][3].a. For a PMAC3-style “DSPGATE3” IC, the

setting will be of the form Gate3[i].MacroInα[j][3].a.

Encoder Conversion Table Setup for Position Feedback

EncTable[n].pEnc for the encoder conversion table entry processing the position feedback from

the network slave should be set to the address of input register 0 of this MACRO servo node. For

a PMAC2-style “DSPGATE2” MACRO IC, the setting will be of the form

Gate2[i].Macro[j][0].a. For a PMAC3-style “DSPGATE3” IC, the setting will be of the form

Gate3[i].MacroInα[j][0].a.

EncTable[n].type for this entry should be set to 1 (single-register read). EncTable[n].index1

and EncTable[n].index2 should both be set to 8 to shift the 24-bit value right and then left 8 bits

to eliminate possible “garbage data” from the low 8 bits of the 32-bit bus.

EncTable[n].ScaleFactor should be set to 1/256 if it is desired that the LSB of the 24-bit register

be one unit of output from the entry. If the value from the network slave has 8 bits of fractional

data, as with 1/T incremental encoder interpolation from a DSPGATE3 IC, this should be set to

1/256/256, or 1/65,536, so an encoder count is one unit of output from the entry.

It is recommended that EncTable[n].MaxDelta be set to a non-zero value to represent a

maximum legal velocity magnitude (if EncTable[n].index3 = 0) or a maximum legal

acceleration magnitude (if EncTable[n].index3 > 0) to protect against any possible data

corruption during ring transfer.

Motor[x].pEnc and Motor[x].pEnc2 should be set to the address of this encoder conversion

table entry (EncTable[n].a) so the processed feedback value is used for the outer-loop and inner-

loop, respectively, actual position. Note that if dual feedback is desired, the secondary encoder

would need to be transmitted back to the coordinating Power PMAC through a software

mechanism other than the automatic motor transfers.

Position Command Setup

If the corresponding network-slave motor is expecting position commands, Motor[x].Ctrl for the

coordinating Power PMAC motor should be set to Sys.PosCtrl so that no servo-loop closure is

done by the Power PMAC motor, and position commands from the trajectory generator are

directly output each servo cycle. (Remember that some non-cyclic positioning functions like

establishing a position reference may not be fully supported in this mode of operation.)

In this mode of operation, setup terms for the position/velocity servo loop, phase commutation

algorithm, and digital current-loop are not used. The actual position feedback value from the

network slave is only used for monitoring purposes – actual position can be queried, and the

difference between commanded and actual position can be checked against the following error

limits. Motor[x].PhaseCtrl should be set to 0 to disable phase tasks in the coordinating Power

PMAC.

Power PMAC User’s Manual

Setting Up the MACRO Ring 113

Velocity Command Setup

If the corresponding network-slave motor is expecting velocity commands, Motor[x].Ctrl for the

coordinating Power PMAC motor is usually set to the address one of the standard servo loop

algorithms. Leaving it at the default value of Sys.ServoCtrl is fine for most applications, but

because many of the important servo tasks are done in the network-slave motor algorithms, using

the simpler algorithm at Sys.PidCtrl is usually sufficient and will save some processor time. This

can be important in high-axis-count applications. In this mode, it is very unlikely that any of the

more advanced servo algorithms, such as those at Sys.AdaptiveCtrl or Sys.GantryXCtrl, will be

used, because those algorithms need to control the torque/force commands.

In this mode of operation, no “inner-loop” feedback gains should be used, as the tasks they

accomplish (e.g. damping) are done in the network-slave motor servo loop. In particular, velocity

feedback gains Motor[x].Servo.Kvfb and Kvifb should be set to 0.0. Motor[x].PhaseCtrl

should be set to 0 to disable phase tasks in the coordinating Power PMAC.

Torque/Force Command Setup

If the corresponding network-slave motor is expecting velocity commands, Motor[x].Ctrl for the

coordinating Power PMAC motor is usually set to the address one of the standard servo loop

algorithms. The user’s choice of the default Sys.ServoCtrl, the basic but fast Sys.PidCtrl, or the

advanced Sys.AdaptiveCtrl or Sys.GantryXCtrl will be made for the same reasons as when the

motor is fully locally controlled.

In this mode of operation, it is essential that the inner (velocity) servo loop be properly tuned on

the coordinating Power PMAC as well as the outer (position) servo loop. Motor[x].PhaseCtrl

should be set to 0 to disable phase tasks in the coordinating Power PMAC.

Phase Current (“Sinewave”) Command Setup

If the corresponding network-slave motor is expecting phase-current (“sinewave mode”)

commands, Motor[x].Ctrl for the coordinating Power PMAC motor is usually set to the address

one of the standard servo loop algorithms. The user’s choice of the default Sys.ServoCtrl, the

basic but fast Sys.PidCtrl, or the advanced Sys.AdaptiveCtrl or Sys.GantryXCtrl will be made

for the same reasons as when the motor is fully locally controlled.

In this mode of operation, it is essential that the inner (velocity) servo loop be properly tuned on

the coordinating Power PMAC as well as the outer (position) servo loop. Motor[x].PhaseCtrl

should be set to 4 to enable phase tasks in the coordinating Power PMAC interfacing through a

MACRO IC. Motor[x].pAdc should be set to 0 to disable current-loop closure in the

coordinating Power PMAC, since that task will be performed in the network-slave Power PMAC.

Phase Voltage (“PWM”) Command Setup

If the corresponding network-slave motor is expecting phase-voltage (“direct-PWM mode”)

commands, Motor[x].Ctrl for the coordinating Power PMAC motor is usually set to the address

one of the standard servo loop algorithms. The user’s choice of the default Sys.ServoCtrl, the

basic but fast Sys.PidCtrl, or the advanced Sys.AdaptiveCtrl or Sys.GantryXCtrl will be made

for the same reasons as when the motor is fully locally controlled.

In this mode of operation, it is essential that the inner (velocity) servo loop be properly tuned on

the coordinating Power PMAC as well as the outer (position) servo loop. Motor[x].PhaseCtrl

should be set to 4 to enable phase tasks in the coordinating Power PMAC interfacing through a

MACRO IC. Motor[x].pAdc should be set to the address of input register 1 of the MACRO

Power PMAC User’s Manual

Setting Up the MACRO Ring 114

servo node to enable current-loop closure in the coordinating Power PMAC using the values read

in registers 1 and 2 of the node. For a PMAC2-style “DSPGATE2” MACRO IC, the setting will

be of the form Gate2[i].Macro[j][1].a. For a PMAC3-style “DSPGATE3” IC, the setting will be

of the form Gate3[i].MacroInα[j][1].a.

Network-Slave Power PMAC Motor Setup

A Power PMAC motor that will be used as a network-slave motor in the actual application is

usually set up initially as an independent motor to establish basic functionality. Then it will be

converted to network-slave mode to operate under the control of a motor from the coordinating

Power PMAC.

Establishing Network-Slave Functionality

For the motor in the network-slave Power PMAC, Motor[x].MotorMode must be set to a value

greater than 0 to put the motor in network-slave mode so it accepts cyclic commands from the

network and provides cyclic feedback to the network. The specific non-zero value of

Motor[x].MotorMode tells the motor what kind of command to expect. The choices are:

1. Commanded position

2. Commanded velocity

3. Commanded torque/force

4. Commanded phase currents (“sinewave” mode)

5. Commanded phase voltages (“direct PWM” mode)

Motor[x].pMotorNode should be set to the address of the MACRO ring register where the cyclic

command value (or the first cyclic command value in the case of multiple phase commands) is

expected. This is virtually always the input register 0 of a MACRO servo node.

When the MACRO IC is a PMAC2-style “DSPGATE2” IC, as in a UMAC ACC-5E this setting

will be of the form Gate2[i].Macro[j][0].a, where i is the IC index, j is the node number.

When the MACRO IC is a PMAC3-style “DSPGATE3” IC, as in a Power Brick or UMAC ACC-

5E3, the setting will be of the form Gate3[i].MacroInα[j][0].a, where i is the IC index, j is the

node number, and α is “A” or “B”.

Motor[x].MotorNodeOffset should be set to the difference in address between this first

command register and the register where the position feedback is written, virtually always the

output register 0 of the same MACRO servo node.

When the MACRO IC is a PMAC2-style “DSPGATE2” IC, this will be set to 0, because in this

IC the input and output registers for a MACRO node have the same addresses.

When the MACRO IC is a PMAC3-style “DSPGATE3” IC, this will be set to 64, because in this

IC the output registers start at an address 64 higher than the input registers of the same MACRO

node.

Network-Slave Motor Machine Interface Functionality

For the motor in the network-slave Power PMAC, the addressing saved setup elements are

configured just as if the motor were operating independently. These elements will be set to the

addresses of input and output registers in the Power PMAC itself. This permits the motor to be set

Power PMAC User’s Manual

Setting Up the MACRO Ring 115

up for independent operation first, then easily converted to network-mode. It also permits the

motor to be converted back to independent operation if necessary for fault recovery.

Typical settings for these addressing elements are:

 Motor[x].pDac: Gaten[i].Chan[j].Pwm[0].a

 Motor[x].pEncCtrl: Gate1[i].Chan[j].Ctrl.a

 Gate3[i].Chan[j].OutCtrl.a

 Motor[x].pAmpEnable: Gate1[i].Chan[j].Ctrl.a

 Gate3[i].Chan[j].OutCtrl.a

 Motor[x].pEncStatus: Gaten[i].Chan[j].Status.a

 Motor[x].pAmpFault: Gaten[i].Chan[j].Status.a

 Motor[x].pCaptFlag: Gaten[i].Chan[j].Status.a

 Motor[x].pLimits: Gaten[i].Chan[j].Status.a

Processing of Position Feedback

The position feedback for this motor that is to be sent back to the coordinating Power PMAC

must be processed through the encoder conversion table just as if the motor were in independent

operation, so the EncTable[n] entry should be set up in the same way as it would be for

independent motor operation, reading the actual hardware input registers such as encoder

counters and timers, and producing a single processed (“converted”) result.

Motor[x].pEnc should be set to the address of this entry (to EncTable[n].a). If

Motor[x].MotorMode is greater than 0, the resulting value will be sent back to the coordinating

Power PMAC through the specified MACRO node. If Motor[x].MotorMode is set to 1, it will

also be used to close the outer (position) loop on this network-slave Power PMAC.

Note that when this position value is received by the coordinating Power PMAC, it will be

processed through an encoder conversion table entry there. That entry will not do significant

processing. In many cases, it will simply pass the value through, although a “maximum change”

filter to catch spurious values is recommended.

In single-feedback systems, Motor[x].pEnc2 should be set to the address of this entry as well. In

dual-feedback (load and motor) systems, it will be set to the address of a different entry to get a

separate position value. Note that the position value obtained from the register pointed to by

pEnc2 is not automatically sent back to the coordinating Power PMAC through this mechanism.

However, if Motor[x].MotorMode is set to 1 or 2 (position or velocity commands), it will be

used on the network-slave Power PMAC to close the inner (velocity) loop.

Commutation and Current Loop

In almost all cases, the network-slave Power PMAC will be performing some motor tasks under

the phase interrupt, even if only transferring phase-command values from the ring to output

registers, so Motor[x].PhaseCtrl should be set to a value greater than 0. It should be set to 1 if it

will be using a DSPGATE3 IC in the efficient “packed” mode for direct PWM (with

Power PMAC User’s Manual

Setting Up the MACRO Ring 116

Gate3[i].Chan[j].PackOutData set to its default value of 1 and Gate3[i].Chan[j].PackInData

set to its default value of 2). It should be set to 4 if it will be using a Servo IC without packing

two phases into one hardware register access (the only way you can use a DSPGATE1 IC).

If Motor[x].MotorMode is set to 5, the network-slave Power PMAC will simply take the phase-

voltage commands it receives and write them to the registers specified by Motor[x].pDac, then

read the actual phase-current values from the registers specified by Motor[x].pAdc and write

them to the MACRO feedback registers. The phase-position register for the motor will be the

same one as used for position-loop servo feedback (unless some other mechanism is used to send

a separate value back). In this mode, no other commutation or current-loop parameters need to be

set.

If Motor[x].MotorMode is set to 1, 2, or 3, and the network-slave Power PMAC performs

commutation and current-loop closure for the motor (this is the most common style of operation),

then all of the commutation and current-loop parameters must be set on this Power PMAC, just as

when the motor is operating independently.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 117

SETTING UP FEEDBACK AND MASTER POSITION
SENSORS

Power PMAC systems can interface to a wide variety of position sensors for both feedback and

“master” use. This section summarizes the basic hardware and software setup issues; more details

can be found in the appropriate hardware reference manuals and the Power PMAC Software

Reference Manual.

Note that the initial setup for feedback or master sensors is independent of any motor or

coordinate system. A motor or coordinate system may use the numerical value resulting from the

initial hardware and/or software processing of a position signal, but this is not required. It is also

possible for user programs or commands to access these position values directly, without a motor

or coordinate-system automatic function using them at all.

Setting Up Digital Quadrature Encoders

Digital quadrature encoders are the most common position sensors used with Power PMACs.

Interface circuitry for these encoders comes standard on Power UMAC axis-interface boards,

Power Clipper boards, and Power Brick control boxes. In addition, axis interface channels based

on the PMAC3-style “DSPGATE3” IC can use the serial encoder lines for auxiliary quadrature

encoders.

Signal Format

Quadrature encoders provide two digital signals that are a function of the position of the encoder,

each nominally with 50% duty cycle, and nominally one-quarter cycle apart. This format provides

four distinct states per cycle of the signal, or per line of the encoder. The phase difference of the

two signals permits the decoding electronics to discern the direction of travel, which would not be

possible with a single signal.

A

B

1 2 3 4 5 6 1 2 3 4 5 6

“Clockwise” “Counterclockwise”

Quadrature Waveforms Showing Direction Sense

Typically, these signals are at 5V TTL/CMOS levels, whether single-ended or differential. The

input circuits are powered by the main 5V supply for the controller, but the can accept up to +/-

12V between the signals of each differential pair, and +/-12V between a signal and the GND

voltage reference.

Differential encoder signals can enhance noise immunity by providing common-mode noise

rejection. Modern design standards virtually mandate their use for industrial systems, especially

in the presence of PWM power amplifiers, which generate a great deal of electromagnetic

interference.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 118

Hardware Setup

This section describes the Power PMAC encoder hardware interface in general terms. Consult the

Hardware Reference Manual for your particular configuration for details.

Power PMAC’s encoder interface circuitry employs differential line receivers, but can accept

single-ended encoders as well as differential encoders. The following diagram shows the basic

interface circuitry for a phase of an encoder:

A+

A-

R aR

+

-

bR

A

A?

+5V

1

2

3

Power PMAC Incremental Encoder Input Circuitry

The differential inputs for the phase (A+ and A-) are at left. They are connected to the two inputs

of a differential line receiver whose digital output state is dependent on which signal has a higher

voltage. The “+” signal has a pull-up resistor (with R about 1 kΩ) to the internal 5V supply. The

“-” signal has a higher-valued pull-up resistor (with aR about 2 kΩ) to the internal 5V supply, and

a second resistor with value bR that is (at least by default) pulled down to the 0V signal GND

return.

PMAC2-Style Interfaces

On the PMAC2-style ACC-24E2, ACC-24E2A, and ACC-24E2S UMAC axis-interface boards,

this second resistor is implemented with a reversible socketed resistor pack for the encoder. The

resistors in this pack have the same value as the pull-up resistors (bR = aR) for this signal. In the

default configuration (pin 1 of the pack – marked with the dot – matching pin 1 of the socket), it

provides pull-down resistors that create a voltage divider that holds the “-” line at 2.5V if there is

no input on the line. The resistor pack must be in this configuration to accept single-ended

encoder signals on the “+” lines; nothing should be connected to the “-” lines.

Encoders with differential line-driver signal pairs (RS-422 signal type), the most common type of

industrial encoders, can be used with the resistor pack in either orientation. However, in the

default orientation, the encoder-loss detection circuit is not enabled. If the resistor pack is

reversed in the socket, making these pull-up resistors, the encoder-loss detection circuit,

explained below, is enabled.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 119

PMAC3-Style Interfaces

On the PMAC3-style ACC-24E3 UMAC axis-interface board with the digital feedback

mezzanine and on the PMAC3-style Power Brick control board, the second resistor for the “-”

line is hardwired to ground, but it is of a higher-value than the pull-up resistor in a 3-to-2 ratio, so

it creates a voltage divider that holds the line at 3V if there is no input on the line. The encoder-

loss logic uses TTL-level inputs that consider 3V a high logic level. In this way, the circuitry can

be used for single-ended encoders and for differential encoders with encoder-loss detection

enabled.

Encoder-Loss Detection Circuitry

Many users want to be able to detect directly the loss of signal from an encoder, as this can

produce a dangerous runaway condition before software algorithms are able to detect the

resulting problems. With differential signal pairs, one of the pair should produce a logic high and

one a logic low at any given time. If when the signal is lost, both inputs are pulled to the same

logic level, this condition can be detected directly by the input circuitry.

Power PMAC encoder interface circuits provide this capability. Each signal pair is connected to

the two inputs of an “exclusive-or” (XOR) gate, as well as to the differential line receiver. With a

properly acting encoder with the two signals in different logic states, the output of the XOR gate

is high. If the signal is lost, as when the cable comes disconnected, and the resistors on the input

lines pull both signals to a high logic state, the output of the XOR gate goes low, indicating signal

loss.

Power PMAC software can provide automatic detection and shutdown of this encoder-loss

condition. For more details, refer to the section on encoder loss detection in the chapter Making

Your Power PMAC Application Safe of the User’s Manual.

Power Supply and Isolation

With the standard Power PMAC interfaces, the encoder circuitry is not isolated from Power

PMAC’s digital circuitry and the signals are referenced to Power PMAC’s digital common level

GND. Typically the encoders in this case are powered from Power PMAC’s +5V lines with a

return on GND. The total encoder current draw must be considered in sizing the Power PMAC

power supply.

It is also possible to use a separate supply for the encoders with non-isolated signals connected to

Power PMAC. In this case, the return of the supply should be connected to the digital common

GND on Power PMAC to give the signals a common reference. The +5V lines of separate

supplies should not be tied together, as they could fight each other to control the exact voltage

level.

Isolated Encoder Signals

In some systems, the user will want to optically isolate the encoder circuitry from Power PMAC’s

digital circuitry. This is common in systems with long distances from the encoder to the controller

(>10m or 30 ft) and/or systems with very high levels of electrical noise. Isolation can be achieved

using the ACC-8D Opt 6 4-channel encoder isolator board. With an isolated encoder, a separate

power supply is required for the encoders to maintain isolation, and the return on this supply

must not be connected directly to the Power PMAC’s digital common GND, or the isolation will

be defeated.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 120

Simulated Encoder Signals

Special consideration must be given to systems that have a simulated encoder signal provided

from circuitry such as a resolver-to-digital converter in a servo drive. In these systems, the

encoder signals are almost always referenced to the amplifier’s signal return, which in turn is

connected to Power PMAC’s analog common AGND. The best setup in these cases is to isolate

the simulated encoder signal from the Power PMAC digital circuitry with the ACC-8D Opt 6

isolator board or similar module. This will keep full isolation between the Power PMAC digital

circuitry and the amplifier.

If isolation of the simulated encoder signals is not feasible, Power PMAC’s digital circuitry and

the amplifier signal circuitry (including any Power PMAC’s analog circuitry) must be well tied

together to provide a common reference voltage. This is best done by putting jumpers on the

Power PMAC interface board (E-Points E85, E87, and E88 on many boards), tying the digital and

analog circuits on Power PMAC together, and therefore also the analog signal circuits. What must

be avoided is having the simulated encoder cable(s) providing the only connection between the

circuits. This can result in lost signals from bad referencing, or even component damage from

ground loops.

Wiring Techniques

There are several important techniques in the wiring of the encoders that are important for noise

mitigation. First, the encoder cable should be kept physically separate from the motor power

cable if at all possible. Second, both of these cables should be shielded, the motor cable to prevent

noise from getting out, and the encoder cable to prevent noise from getting in. The encoder

shields should be grounded at the “inward” end only, that is, to the device that is itself tied to a

ground.

A third important noise mitigation technique is to twist the leads of the complementary pairs

around each other. With these “twisted pairs”, what noise does get in tends to cancel itself out in

opposite halves of the twist.

Hardware-Control Parameter Setup

The Power PMAC ASICs are set up by default to accept quadrature feedback, but you may need

to tweak some settings to optimize operation.

Encoder Sample Clock Frequency

After the front-end processing through the differential line receivers, the quadrature encoder

inputs are sampled by digital logic in a PMAC2-style “DSPGATE1” Servo IC or PMAC3-style

“DSPGATE3” IC at a rate determined by the frequency of the SCLK “encoder sample clock”,

which is user settable. The higher the SCLK frequency, the higher the maximum permissible

count rate; the lower the SCLK frequency, the more effective the “digital delay” noise filter is.

Each encoder input channel has a digital delay filter consisting of three cascaded D-flip-flops on

each line, with a best two-of-three voting scheme on the outputs of the flip-flops. The flip-flops

are clocked by the SCLK signal. This filter does not pass through a state change that only lasts for

one SCLK cycle; any change this narrow should be a noise spike. In doing this, the filter delays

actual transitions by two SCLK cycles – a trivial delay in virtually all systems.

If both the A and B channels change state at the decode circuitry (post-filter) in the same SCLK

cycle, an unrecoverable error to the counter value will result. The ASIC hardware notes this

problem by setting and latching the “encoder count error” bit in the channel’s status word,

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 121

accessible with the Gaten[i].Chan[j].CountError status element. The problem can also be

detected by capturing the count value each revolution on the index pulse and seeing whether the

correct number of counts have elapsed.

The SCLK frequency must be at least 4 times higher than the maximum encoder cycle (line)

frequency input, regardless of the quadrature decoding method used (with the most common

“times-4” decode, the SCLK frequency must be at least as high as the count rate). In actual use,

due to imperfections in the input signals, a 20 – 25% safety margin should be used.

Few users will change the default SCLK frequency settings in the interface ICs. Some will

increase the frequency to permit very high count rates, and some will lower the frequency for

increased noise immunity.

PMAC2-Style Servo IC SCLK Frequency Control

In a PMAC2-style Servo IC, as on the UMAC Acc-24E2x axis-interface boards, the SCLK

frequency is set by bits 0 – 3 of the 12-bit saved setup element Gate1[i].HardwareClockCtrl.

These 3 bits, which collectively can take a value from 0 to 7, indicate the number of times an

internal 39.32 MHz clock frequency is divided by 2 to produce the SCLK signal.

The other three clock frequencies that this element controls are virtually never changed, so the

following table may be useful for setting the SCLK frequency with the others left at the default

frequency:

HardwareClockCtrl SCLK Frequency HardwareClockCtrl SCLK Frequency

2256 39.32 MHz 2260 2.46 MHz

2257 19.66 MHz 2261 1.23 MHz

2258* 9.83 MHz* 2262 612 kHz

2259 4.92 MHz 2263 306 kHz

*Default

The default SCLK frequency of 9.83 MHz can reliably accept count frequencies up to 8 MHz,

corresponding to 2 MHz line cycle frequencies.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 122

PMAC3-Style Interface IC SCLK Frequency Control

In a PMAC3-style machine-interface IC, as on the UMAC Acc-24E3 axis-interface boards, the

SCLK frequency is set by 4-bit saved setup element Gate3[i].EncClockDiv. This element, which

can take a value from 0 to 15, indicates the number of times an internal 100 MHz clock frequency

is divided by 2 to produce the SCLK signal. At the default element value of 5, there is a net

division by 32 yielding a 3.125 MHz SCLK frequency, which can reliably accept count

frequencies up to about 2.5 MHz, corresponding to 625 kHz line cycle frequencies. The following

table shows the possible settings and the clock frequencies they produce:

Setting Divisor Frequency Setting Divisor Frequency

0 1 100 MHz 8 256 390.6 kHz

1 2 50 MHz 9 512 195.3 kHz

2 4 25 MHz 10 1,024 97.65 kHz

3 8 12.5 MHz 11 2,048 48.82 kHz

4 16 6.25 MHz 12 4,096 24.41 kHz

5 32* 3.125 MHz 13 8,192 12.21 kHz

6 64 1.562 MHz 14 16,384 6.104 kHz

7 128 781.2 kHz 15 32,768 3.052 kHz

*default

Note that while the ASIC itself could accept a 25 MHz signal frequency for a 100 MHz

quadrature count rate, the line receiver circuitry is only rated to a 10 MHz signal frequency.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

Encoder Decode Control: Gaten[i].Chan[j].EncCtrl

The decoding of the encoder signal, both as to resolution and direction, is determined by a

channel-specific saved setup element for the IC. For PMAC2-style ICs, this is

Gate1[i].Chan[j].EncCtrl; for PMAC3-style ICs, this is Gate3[i].Chan[j].EncCtrl.

This variable is almost always set for “times-4” decode, which derives 4 counts per signal cycle,

one for each signal edge. This requires a variable value of 3 or 7. The difference between these

two values is the direction sense – which direction of motion causes the counter to count up.

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the feedback to increment in the

positive direction – otherwise a dangerous runaway

condition will occur when the servo loop is closed.

Changing the direction sense of the decode of a feedback

sensor in a properly working servo loop without changing

the direction sense of the servo loop outputs will result in a

dangerous runaway.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 123

Using the Resulting Position Information

Position information resulting from the IC’s decoding and counting is available to the processor

in several memory-mapped registers for the channel, each represented by pre-defined status data

structure elements.

The following diagram shows a block diagram of the PMAC2-style “DSPGATE1” IC’s encoder

circuitry, including the memory-mapped registers available to the processor.

TimeBetweenCts

ServoCapt

PhaseCapt

HomeCapt

TimeSinceCts

CounterDecoder

Timers

Flag

Select

A

B

C

HOME

PLIM

MLIM

USER

Trigger

Phase

Clock

Servo

Clock

EncCtrl

CaptFlagSel

Trigger

Select

CaptCtrl

Address Data

DSPGATE1 IC Channel Incremental Encoder Processing Circuitry

The following diagram shows a block diagram of the PMAC3-style “DSPGATE3” IC’s encoder

circuitry, including the memory-mapped registers available to the processor.

Home Capture

Whole Count

Servo Capture

Whole Count

Phase Capture

Whole Count

Phase

Fraction

Servo

Fraction

Home

Fraction

Timer

Extension

CounterDecoder

Arctangent

Extension

ADC Shift

Registers

A

B

SinData

CosData

Count

Dir

Phase

Clock

Servo

Clock

Servo

Clock

Phase

Clock

Trigger

Trigger

AtanEna

Address Data

DSPGATE3 IC Channel Incremental Encoder Processing Circuitry

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 124

Commutation Phase Position

Each phase clock cycle, on the falling edge of the clock, the present value in the channel’s

encoder counter is latched into the register represented by the element

Gaten[i].Chan[j].PhaseCapt. Most commonly, this element is used for the rotor angle feedback

for commutation by setting Motor[x].pPhaseEnc to the address of this element.

Servo Feedback or Master Position

Each servo clock cycle, on the falling edge of the clock, the present value in the channel’s

encoder counter is latched into the register represented by the element

Gaten[i].Chan[j].ServoCapt. Most commonly, this element is used for servo feedback or master

position. The value in this register must first be processed through the encoder conversion table

(ECT).

PMAC2 ASIC-Based Interface

With a PMAC2-style IC, the ECT will typically perform the software “1/T” timer-based

extension of the count. This is a “Type 3” conversion, with the element

Gate1[i].Chan[j].ServoCapt as the main position source. The following saved setup elements

must be specified:

 EncTable[n].Type = 3 // Software 1/T extension of count value

 EncTable[n].pEnc = Gate1[i].Chan[j].ServoCapt.a

 EncTable[n].pEnc2 = Gate1[i].Chan[j].TimeBetweenCts.a

 EncTable[n].ScaleFactor = 1/512 // Scale output in whole counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

PMAC3-ASIC-Based Interface

With a PMAC3-style IC, the 1/T extension, if performed, has been done in the IC, and the ECT

entry will simply use Gate3[i].Chan[j].ServoCapt, which will have the extended count value, as

the only position source using the “Type 1” single-register-read conversion. The following saved

setup elements must be specified:

 EncTable[n].Type = 1 // Single-register read

 EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a

 EncTable[n].index1 = 0 // No left shift

 EncTable[n].index2 = 0 // No right shift

 EncTable[n].ScaleFactor = 1/256 // Scale output in whole counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

If the encoder is connected to the serial encoder lines of an interface channel that uses a PMAC3-

style IC, with the serial interface disabled, the ECT entry is the same as above except that

EncTable[n].pEnc is set to Gate3[i].Chan[j].SerialEncDataA.a.

These conversions are covered in detail in the chapter “Setting Up the Encoder Conversion

Table”.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 125

Setting Up Digital Hall Sensors

Three-phase digital Hall-effect position sensors (or their equivalent) are popular for commutation

feedback. They can also be used with Power PMAC as low-resolution position/velocity sensors.

As commutation position sensors, they are typically just used by Power PMAC for approximate

power-up phase position; ongoing phase position is typically derived from the same high-

resolution encoder that is used for servo feedback. (Many controllers and amplifiers use these hall

sensors as their only commutation position feedback, starting and ongoing, but that is a lower-

performance technique).

Many optical encoders have “Hall tracks”. These commutation tracks provide signal outputs

equivalent to those of magnetic Hall commutation sensors, but use optical means to create the

signals.

Note

These digital Hall-effect position sensors should not be

confused with analog Hall-effect current sensors used in many

amplifiers to provide current feedback data for the current

loop.

Signal Format

Digital Hall sensors provide three digital signals that are a function of the position of the motor,

each nominally with 50% duty cycle, and nominally one-third cycle apart. This format is often

called “120° spacing”. Power PMAC can also support “60° spacing” for the purpose of power-on

commutation position, but its use is discouraged because of the increased difficulty in detecting

signal failure.

The 3-phase Hall format provides six distinct states per cycle of the signal. Typically, one cycle

of the signal set corresponds to one electrical cycle, or pole pair, of the motor. These sensors,

then, can provide absolute (but low-resolution) information about where the motor is in its

commutation cycle, and eliminate the need to do a power-on phasing search operation.

U/A

V/B

W/C

“Clockwise” “Counterclockwise”

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

3-Phase Hall Sensor Waveforms Showing Direction Sense

This diagram shows the signal format for the 120° spacing for two full cycles. Note that the states

where all signals are “high” and all are “low” are not valid states in this format. Since the

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 126

common failure modes (such as a disconnected cable) would likely leave the signals in one of

these invalid states, it is quite easy to detect signal failure.

The 60° spacing format can be obtained by inverting any of the signals in the above diagram. In

this format, the states where all signals are “high” and all are “low” are valid states, so it is much

more difficult to detect the common failure modes.

Hardware Setup

If just used for power-up commutation position feedback, the hall sensors are typically wired into

the U, V, and W supplemental flag inputs on a PMAC2-style or PMAC3-style interface channel.

These are single-ended 5V digital inputs on all existing hardware implementations. They are not

optically isolated inputs; if isolation is desired from the sensor, this must be done externally.

Note

In the case of magnetic hall sensors, the feedback signals

sometimes come back to the controller in the same cable as the

motor power leads. In this case, the possibility of a short to

motor power must be considered; safety considerations and

industrial design codes may make it impermissible to connect

the signals directly to the Power PMAC TTL inputs without

isolation.

If used for servo position and velocity feedback, the three hall sensors are connected to the A, B,

and C “encoder” inputs, so that the signal edges can be counted. As with quadrature encoders,

these inputs can be single-ended or differential. They are not optically isolated inputs; if isolation

is desired from the sensor, this must be done externally. There may be applications in which the

signals are connected both to U, V, and W inputs (for power-on commutation position) and to A,

B, and C inputs (for servo feedback).

Hardware-Control Parameter Setup

Use of Hall sensor feedback requires some setup of the ASIC. This setup is fundamentally the

same in both the PMAC-style and PMAC3-style ASICs.

Hall Sensor Demux Control: Gaten[i].Chan[j].IndexGateState

If the Hall sensors are connected to the channel’s U, V, and W inputs, you must make sure that bit

1 (value 2) of the channel’s “Hall Sensor Demux Control” saved setup element

Gaten[i].Chan[j].IndexGateState is set to the default of 0. If this bit is set to 1, the information

in the U, V, and W bits of the channel’s status register is de-multiplexed from the C-channel of

the encoder input based on the states of the A and B inputs, as with Yaskawa Sigma I incremental

encoders (a rarely used format in new systems).

Encoder Decode Control: Gaten[i].Chan[j].EncCtrl

If the Hall sensors are wired into the encoder inputs A, B, and C, they can be used as a 3-phase

incremental encoder (if they use 120° spacing). The decoding of the signal for the counter is

determined by the channel-specific saved setup element Gaten[i].Chan[j].EncCtrl. For the 3-

phase hall sensors, the decoding must be set to “times-6” decode, which derives 6 counts per

signal cycle, one for each signal edge. This requires a variable value of 11 or 15. The difference

between these two values is the direction sense – which direction of motion causes the counter to

count up.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 127

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the counter to count in the positive

direction – otherwise a dangerous runaway condition will

occur when the servo loop is closed. Changing the

direction sense of the decode of a feedback sensor in a

properly working servo loop without changing the

direction sense of the servo loop outputs will result in a

dangerous runaway.

Using the Resulting Position Information

The resulting position information values are used differently depending on whether the Halls are

connected into the channel’s U, V, and W inputs, or to the channels, A, B, and C inputs

Position from the U, V, and W Inputs

When the Hall signals are connected into a channel’s U, V, and W inputs, the input states are

simply latched into the channel’s status register, where they can be read by the processor. The

present state can be seen in the 3-bit status element Gaten[i].Chan[j].UVW.

To use this value for power-on phase position, the following settings are typically used:

 Motor[x].pAbsPhasePos = Gaten[i].Chan[j].Status.a

 Motor[x].AbsPhasePosFormat = $0400031C (for a PMAC2-style “Gate1” IC)

 Motor[x].AbsPhasePosFormat = $0400030C (for a PMAC3-style “Gate3” IC)

 Motor[x].AbsPhasePosSf = +/-2048/12

 Motor[x].AbsPhasePosOffset = {application-dependent setting}

For details on setting up these variables, refer to the “Setting Up Commutation” chapter of the

User’s Manual.

Position from the A, B, and C Inputs

When the Hall signals are connected into a channel’s A, B, and C inputs and processed with a

“times-6” decode, they are being used as an incremental encoder, but with 3 phases instead of the

two phases of a quadrature encoder. Subsequent use, whether for ongoing commutation position,

or servo-loop position, is just as for quadrature encoders, and is explained above in that section. It

is possible, and recommended, to use the 1/T timer-based extension to increase the effective

resolution for both commutation and servo uses.

Note

The use of Hall sensors for ongoing servo and/or commutation

feedback typically occurs for large motors in rugged

environments where it is difficult to employ encoders. These

cases are usually primarily velocity-control applications, and

tight position control will probably not be possible due to the

low position resolution of the Hall sensors.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 128

Setting Up Serial Encoders

Position encoders that provide numerical position information in a serial data stream, usually

representing absolute position information, are becoming increasingly popular. Power PMAC

provides two basic interfaces for serial encoders. The first is an FPGA-based interface, as used in

the ACC-84E UMAC board, the ACC-84B add-in board for the Power Brick products, and the

ACC-84S stack board for the Power Clipper. The second is an ASIC-based interface employing

the “DSPGATE3” IC, as used in the ACC-24E3 UMAC board, the Power Brick control board,

and the Power Clipper controller itself.

Multiple serial encoder protocols can be supported by each interface type. In the FPGA-based

interface, the board must be ordered with a (single) particular protocol installed for all channels.

In the ASIC-based interface, all of the protocols are installed simultaneously, and the particular

protocol desired is selected in software for all channels.

Signal Format

The signal format for the encoder is dependent on the particular protocol, but in all protocols,

there is a “strobe” and/or “clock” output from the controller, and a data channel into the processor

from the encoder. The encoder is queried synchronously with the Power PMAC’s phase or servo

clock, and the incoming serial data is latched into a memory-mapped register for the processor to

read.

Hardware Setup

This section describes the Power PMAC serial encoder hardware interface in general terms.

Consult the Hardware Reference Manual for your particular configuration for details.

All of the supported serial encoder interfaces use differential signal pairs at 5V RS-422 levels. All

have clock and/or “strobing” outputs, and all have a data signal input. In some protocols, the data

line is bi-directional, supporting data output commands to the encoder.

Hardware-Control Parameter Setup

The configuration of the hardware control registers differs slightly between the ASIC-based

interface used on the ACC-24E3 and the Power Brick, which employs the 32-bit “DSPGATE3”

IC, and the FPGA-based interface used on the ACC-84E, which employs the 24-bit “SEIGATE”

FPGA. However, the principles of setup are the same in both cases.

Because of the serial data protocol, the transfer of data from the encoder to the Power PMAC

interface circuitry takes a significant amount of time. The data must be ready for the processor

immediately after the falling edge of the phase and/or servo clock signals, which are the interrupts

to the processor telling it to start those respective tasks.

The process of querying the encoder for data must start well before these signal edges, and this

timing must be carefully considered. If it starts too late, the data will not be ready in time. If it

starts too early, unnecessary delay is introduced into the feedback loop, possibly compromising

its performance. In both styles of interface, the multi-channel saved setup element permits the

user to optimize the timing by selecting the edge (rising or falling) of the clock signal (phase or

servo) that starts the triggering process, and the time delay from this edge until the actual

triggering occurs. The following diagram shows the time lines for the possible configurations:

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 129

TD1 TD2

TD1

Xmit1 Used1 Used2Xmit2

Xmit1

Used1

 TD2 Xmit2 Used2

Phase

Clock

Servo

Clock

t = 0

t = 1

t = 2

t = 3 TD1 Xmit1 Used1

Used1TD1 Xmit1

t: Trigger select code – clock and edge

TDn: Trigger delay from edge for cycle n

Xmitn: Data transmission for cycle n

Usedn: Data used by software for cycle n

Serial Encoder Interface Timing

ASIC-Based ACC-24E3, Power Brick, Power Clipper, CK3M

The PMAC3-style “DSPGATE3” ASIC has a multi-channel setup element that affects all

channels on the IC, a single-channel setup element for each channel, and an enabling setup

control bit for each channel.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

This section describes the setup elements for the serial encoder interface in general terms.

Detailed information for each serial encoder protocol can be found in the Power PMAC software

reference manual, and the manual for the appropriate hardware device.

Multi-Channel Saved Setup Element

The multi-channel saved setup element Gate3[i].SerialEncCtrl specifies several aspects of the

serial encoder configuration for all four channels of the IC: the protocol, the trigger, and the clock

frequency. All three of these aspects must be common to all four channels of the IC, so it is not

possible, for instance, to interface to encoders with different protocols from the same IC.

The different components of this 32-bit full-word element cannot be accessed as independent

elements, so it is necessary to assemble the full-word value from the values of the individual

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 130

components. It is easiest to treat the value as a hexadecimal value, so the individual components

can be seen independently.

Gate3[i].SerialEncCtrl can be viewed in hexadecimal form as $mmntddpp, where:

 pp (SerialProtocol) is an 8-bit quantity specifying which of the supported serial encoder

protocols is used

 dd (SerialTrigDelay) is an 8-bit quantity specifying the delay in triggering the encoder

from the specified clock edge

 t (SerialTrigEdge, SerialTrigClock) is a 2-bit quantity specifying whether the rising or

falling edge of the servo or phase clock is used to start the triggering of the encoder

 n (SerialClockNDiv) is a 4-bit quantity specifying the “exponential” division factor used

to create the serial encoder clock

 mm (SerialClockMDiv) is an 8-bit quantity specifying the “linear” division factor used to

create the serial encoder clock

The full 32-bit element can be viewed as follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

Note

This section provides information about

Gate3[i].SerialEncCtrl that is common to all protocols. For

more detailed and protocol-specific information, refer to the

Power PMAC Software Reference Manual and the appropriate

hardware manual.

The protocols presently supported in the ASIC, and their specifying codes in “pp”, are:

 $00: No serial protocol enabled

 $01: SPI

 $02: SSI

 $03: EnDat2.1/2.2 (no additional information)*

 $04: Hiperface

 $05: Sigma I

 $06: Sigma II/III/V (no fault clear or reset)*

 $07: Tamagawa

 $08: Panasonic

 $09: Mitutoyo

 $0A: Kawasaki

* The ACC-84x FPGA-based interface has a more comprehensive interface for these protocols.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 131

Note

The DSPGATE3 ASIC used here has the interface circuitry for

all of these protocols installed simultaneously (unlike the

FPGA-based designs). The user can simply select which

protocol – common to all 4 channels – is to be used by setting

the value of this component of the element.

The serial encoder signal lines can also be used for a simple auxiliary quadrature-encoder

interface, independent of the main incremental encoder interface for the channel. This can be

done when Gate3[i].SerialEncEna is set to its default value of 0. In this case, the clock and data

lines are used for the A and B channel inputs of the quadrature encoder (there is no index channel

input). The status register Gate3[i].Chan[j].SerialEncDataA contains the 32-bit clock-latched

count value of the encoder, with the low 8 bits containing the timer-based sub-count estimation.

The trigger select component “t” can presently take four values:

 $0: Trigger on rising edge of phase clock

 $1: Trigger on falling edge of phase clock

 $2: Trigger on rising edge of servo clock

 $3: Trigger on falling edge of servo clock

Refer to the figure “Serial Encoder Interface Timing”, above, for an illustration of these options.

It is best to choose the edge that minimizes the delay between the triggering of the encoder and its

use by the Power PMAC software. The software will use the received encoder value immediately

after the falling edge of the phase clock for commutation feedback, and immediately after the

falling edge of the servo clock for servo feedback.

If you are using the serial encoder data for commutation feedback, you must trigger using the

phase clock in order to get new data every phase cycle. If there is sufficient time to receive the

data in one half of a phase clock cycle, you should use the rising edge of the phase clock to

trigger. For example, at the default phase clock frequency of 9 kHz, a clock cycle is 110 µsec. If

the serial encoder data can be received within 55 µsec, the rising edge should be used. If not, the

falling edge must be used.

If you are only using the serial encoder data for servo, and not commutation, feedback, the servo

clock can be used for the trigger. However, it is still advisable to use the phase clock if possible to

minimize the delay. When using the servo clock, as with the phase clock, use the rising edge if

possible for the trigger, and the falling edge only if required.

Remember that the servo clock signal is low only for one half phase clock cycle. For example,

with the default 9 kHz phase clock and 2.25 kHz servo clock, the servo clock is low for only a

half of 110 µsec phase clock cycle, and the delay from the rising edge to the next falling edge is

385 µsec.

The triggering does not need to start exactly on the specified clock edge. The trigger delay

component “dd” specifies the number of serial encoder clock cycles after the specified clock edge

before the triggering of the encoder actually begins. It can take a value of $00 to $FF (0 to 255

clock cycles). Non-zero values can be used to minimize the delay between triggering of the

encoder and the use of its data in the next software cycle.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 132

The linear clock-frequency division component “mm” controls how an intermediate clock

frequency is generated from the IC’s fixed 100 MHz clock frequency. The resulting serial-

encoder clock frequency is then generated from this intermediate clock frequency by the

exponential division component “nn”, described below.

The equation for this intermediate clock frequency is:

1

100
int

M
MHzf

where M is the numerical value of “mm”. This 8-bit component can take a value from 0 to 255, so

the resulting intermediate clock frequencies can range from 100 MHz down to 392 kHz.

The exponential clock-frequency division component “n” controls how the final serial-encoder

clock frequency is generated from the intermediate clock frequency set by “mm”. The equation

for this final frequency is:

 NNser
M

MHzf
MHzf

2*1

100

2

int

where N is the numerical value of “n”. This 4-bit component can take a value from 0 to 15, so the

resulting 2N divisor can take a value from 1 to 32,768.

For serial-encoder protocols with an explicit clock signal and fixed timing on reading the data, the

resulting frequency is the frequency of the clock signal that is output from the IC. For “self-

clocking” protocols without an explicit clock signal or for those with time-delay compensation

circuitry, this frequency is the input sampling frequency, and will be 20 to 25 times higher than

the input bit rate. Refer to the instructions for the particular protocol for details.

Single-Channel Saved Setup Element

Each channel of the ASIC has a 32-bit saved setup element Gate3[i].Chan[j].SerialEncCmd that

specifies exactly how the channel’s serial encoder interface will operate, given the protocol,

trigger timing, and frequency specified by the multi-channel element. It has multiple components

that specify different aspects of this interface. These components cannot be accessed as

independent data structure elements, so the value of the element must be “built up” from the

value of the individual components, which are summarized in the following table.

Component Bits Functionality

SerialEncCmdWord 31 – 16 Serial encoder output command

SerialEncParity 15 – 14 Serial encoder parity type

SerialEncTrigMode 13 Serial trigger mode: continuous or one-shot

SerialEncTrigEna 12 Serial trigger enable

SerialEncGtoB 11 Serial SSI data Gray-to-binary convert control

SerialEncDataReady 10 Serial encoder received data ready

SerialEncStatusBits 09 – 06 Serial encoder SPI number of status bits

SerialEncNumBits 05 – 00 Serial encoder bit length control

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 133

The full 32-bit element can be viewed as follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SerialEncCmdWord Parity TM TE GB Rdy StatusBits NumBits

Note

This section provides information about

Gate3[i].Chan[j].SerialEncCmd that is common to all

protocols. For more detailed and protocol-specific information,

refer to the Power PMAC Software Reference Manual and the

appropriate hardware manual.

The 16-bit component SerialEncCmdWord is used to define a command value sent to the serial

encoder in a protocol-specific manner.

The 2-bit component SerialEncParity defines the parity type to be expected for the received data

packet (for those protocols that support parity checking). A value of 0 specifies no parity; a value

of 1 specifies odd parity; a value of 2 specifies even parity. (A value of 3 is reserved for future

use.)

The 1-bit component SerialEncTrigMode specifies whether the encoder is to be repeatedly

sampled or just one time. A value of 0 specifies continuous sampling (every phase or servo cycle

as set by the multi-channel element Gate3[i].SerialEncCtrl); a value of 1 specifies one-shot

sampling. One-shot sampling is generally used if the encoder is only used for power-on absolute

position, as with EnDat2.1 and Hiperface.

The 1-bit component SerialEncTrigEna specifies whether the encoder is to be sampled or not. A

value of 0 specifies no sampling; a value of 1 enables sampling of the encoder. If sampling is

enabled with SerialEncTrigMode at 0, the encoder will be repeatedly sampled (every phase or

servo cycle as set by the multi-channel element Gate3[i].SerialEncCtrl) as long as

SerialEncTrigEna is left at a value of 1. However, if sampling is enabled with

SerialEncTrigMode at 1, the encoder will be sampled just once, and the IC will automatically set

SerialEncTrigEna back to 0 after the sampling.

The 1-bit component SerialEncGtoB specifies whether the data returned in SSI protocol

undergoes a conversion from Gray format to numerical-binary format or not. A value of 0

specifies that no conversion is done; a value of 1 specifies that the incoming data undergoes a

Gray-to-binary conversion.

The 1-bit component SerialEncDataReady is a read-only status bit indicating the status of the

serial data reception. It reports 0 during the data transmission indicating that valid new data is not

yet ready. It reports 1 when all of the data has been received and processed. This is particularly

important for slower interfaces that may take multiple servo cycles to complete a read; in these

cases, the bit should be polled to determine when data is ready.

The 4-bit component SerialEncStatusBits specifies the number of status bits the interface will

expect from the encoder in the SPI protocol. The valid range of settings is 0 to 12.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 134

The 6-bit component SerialEncNumBits specifies the number of data bits the interface will expect

from the encoder in the SPI, SSI, or EnDat protocol. The valid range of settings is $0C to $3F (12

to 63 bits).

Single-bit saved setup element Gate3[i].Chan[j].SerialEncEna controls whether the serial

encoder interface for the IC’s channel is enabled. If it is set to 0, the interface is disabled and the

output pin SENC_MODEn for the channel is held low. In this case, the serial encoder data and

clock lines can be used for an auxiliary quadrature encoder input. If it is set to 1, the interface is

enabled and SENC_MODEn for the channel is set high (which can enable the serial encoder

driver and receiver circuits in many products).

FPGA-Based ACC-84E, ACC-84B, ACC-84S

The “SEIGATE” FPGA on the ACC-84E UMAC board, the ACC-84B add-in board for the

Power Brick products, or the ACC-84S stack board for the Power Clipper, has a multi-channel

setup element that affects all channels on the IC, and a single-channel setup element for each

channel.

This section describes the setup elements for the serial encoder interface in general terms.

Detailed information for each serial encoder protocol can be found in the Power PMAC software

reference manual, and the manual for the appropriate hardware device.

Note

This section describes the setup of the FPGA-based elements

using the Acc84E[i] data structure. If you are using the FPGA-

based serial encoder interface in the Power Brick or Power

Clipper, substitute “Acc84B[i]” or “Acc84S[i]”, respectively,

for “Acc84E[i]”.

Multi-Channel Saved Setup Element

The multi-channel saved setup element Acc84E[i].SerialEncCtrl specifies several aspects of the

serial encoder configuration for all four channels of the IC: the protocol, the trigger, and the clock

frequency. All three of these aspects must be common to all four channels of the IC, so it is not

possible, for instance, to interface to encoders with different protocols from the same IC.

The different components of this 24-bit full-word element cannot be accessed as independent

elements, so it is necessary to assemble the full-word value from the values of the individual

components. It is easiest to treat the value as a hexadecimal value, so the individual components

can be seen independently.

Acc84E[i].SerialEncCtrl can be viewed in hexadecimal form as $mmntdp, where:

 p (SerialProtocol) is a 4-bit (read-only) quantity specifying which of the supported serial

encoder protocols has been installed at the factory

 d (SerialTrigDelay) is a 4-bit quantity specifying the delay in triggering the encoder from

the specified clock edge

 t (SerialTrigEdge, SerialTrigClock) is a 2-bit quantity specifying whether the rising or

falling edge of the servo or phase clock is used to start the triggering of the encoder

 n (SerialClockNDiv) is a 4-bit quantity specifying the “exponential” division factor used

to create the serial encoder clock

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 135

 mm (SerialClockMDiv) is an 8-bit quantity specifying the “linear” division factor used to

create the serial encoder clock

The full element can be viewed in the following format. In the Script environment, it is a 24-bit

element. In the C environment, it is a 32-bit element with the real data in the high 24 bits.

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

Note

This section provides information about

Acc84E[i].SerialEncCtrl that is common to all protocols. For

more detailed and protocol-specific information, refer to the

Power PMAC Software Reference Manual and the appropriate

hardware manual.

The serial protocols presently supported in the FPGA, and their specifying codes in “p”, are:

 $2: SSI

 $3: EnDat2.1/2.2

 $4: Hiperface

 $6: Sigma II/III/V

 $7: Tamagawa

 $8: Panasonic

 $09: Mitutoyo

 $B: BiSS-B/C (Unidirectional)

 $C: Matsushita

 $D: Mitsubishi

 $E: Omron 1S

Note

The FPGA used here comes with the interface for only a single

serial protocol, which was pre-installed at the factory as

specified in the order. (This is unlike the DSPGATE3 ASIC,

which has all of the protocols installed.) This component of the

element is read-only, simply notifying the user which protocol

has been installed.

The trigger select component “t” can presently take four values:

 $0: Trigger on rising edge of phase clock

 $1: Trigger on falling edge of phase clock

 $2: Trigger on rising edge of servo clock

 $3: Trigger on falling edge of servo clock

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 136

Refer to the figure “Serial Encoder Interface Timing”, above, for an illustration of these options.

It is best to choose the edge that minimizes the delay between the triggering of the encoder and its

use by the Power PMAC software. The software will use the received encoder value immediately

after the falling edge of the phase clock for commutation feedback, and immediately after the

falling edge of the servo clock for servo feedback.

If you are using the serial encoder data for commutation feedback, you must trigger using the

phase clock in order to get new data every phase cycle. If there is sufficient time to receive the

data in one half of a phase clock cycle, you should use the rising edge of the phase clock to

trigger. For example, at the default phase clock frequency of 9 kHz, a clock cycle is 110 µsec. If

the serial encoder data can be received within 55 µsec, the rising edge should be used. If not, the

falling edge must be used.

If you are only using the serial encoder data for servo, and not commutation, feedback, the servo

clock can be used for the trigger. However, it is still advisable to use the phase clock if possible to

minimize the delay. When using the servo clock, as with the phase clock, use the rising edge if

possible for the trigger, and the falling edge only if required.

Remember that the servo clock signal is low only for one half phase clock cycle. For example,

with the default 9 kHz phase clock and 2.25 kHz servo clock, the servo clock is low for only a

half of 110 µsec phase clock cycle, and the delay from the rising edge to the next falling edge is

385 µsec.

The triggering does not need to start exactly on the specified clock edge. The trigger delay

component “d” specifies the number of 20-microsecond intervals after the specified clock edge

before the triggering of the encoder actually begins. It can take a value of $0 to $F (0 to 15, or 0

to 300 microseconds). Non-zero values can be used to minimize the delay between triggering of

the encoder and the use of its data in the next software cycle.

The linear clock-frequency division component “mm” controls how an intermediate clock

frequency is generated from the IC’s fixed 100 MHz clock frequency. The resulting serial-

encoder clock frequency is then generated from this intermediate clock frequency by the

exponential division component “nn”, described below.

The equation for this intermediate clock frequency is:

1

100
int

M
MHzf

where M is the numerical value of “mm”. This 8-bit component can take a value from 0 to 255, so

the resulting intermediate clock frequencies can range from 100 MHz down to 392 kHz.

The exponential clock-frequency division component “n” controls how the final serial-encoder

clock frequency is generated from the intermediate clock frequency set by “mm”. The equation

for this final frequency is:

 NNser
M

MHzf
MHzf

2*1

100

2

int

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 137

where N is the numerical value of “n”. This 4-bit component can take a value from 0 to 15, so the

resulting 2N divisor can take a value from 1 to 32,768.

For serial-encoder protocols with an explicit clock signal and fixed timing on reading the data, the

resulting frequency is the frequency of the clock signal that is output from the IC. For “self-

clocking” protocols without an explicit clock signal or for those with time-delay compensation

circuitry, this frequency is the input sampling frequency, and will be 20 to 25 times higher than

the input bit rate. Refer to the instructions for the particular protocol for details.

Single-Channel Saved Setup Element

Each channel of the FPGA has a 24-bit saved setup element Acc84E[i].Chan[j].SerialEncCmd

that specifies exactly how the channel’s serial encoder interface will operate, given the protocol,

trigger timing, and frequency specified by the multi-channel element. It has multiple components

that specify different aspects of this interface. Not all components are used in every protocol.

Acc84E[i].Chan[j].SerialEncCmd is comprised of the following components. These

components cannot be accessed as independent data structure elements, so the value of the

element must be “built up” from the value of the individual components.

Component Script

Bits

Hex

Digit #

C

Bits

Functionality

SerialEncCmdWord 23 – 16 1 – 2 31 – 24 Serial encoder output command

SerialEncParity 15 – 14 3 23 – 22 Serial encoder parity type

SerialEncTrigMode 13 3 21 Serial trigger mode: continuous or one-shot

SerialEncTrigEna 12 3 20 Serial trigger enable

SerialEncGtoB 11 4 19 Serial SSI data Gray-to-binary convert control

SerialEncEna/

SerialEncDataReady

10 4 18 Serial encoder circuitry enable (write)

Serial encoder received data ready (read)

SerialEncStatusBits 09 – 06 4 – 5 17 – 14 Serial encoder SPI number of status bits

SerialEncNumBits 05 – 00 5 – 6 13 – 08 Serial encoder bit length control

The full element can be viewed in the following format. In the Script environment, it is accessed

as a 24-bit element. In the C environment, it is accessed as a 32-bit element with the real data in

the high 24 bits.

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

Note

This section provides information about

Acc84E[i].Chan[j].SerialEncCmd that is common to all

protocols. For more detailed and protocol-specific information,

refer to the Power PMAC Software Reference Manual and the

appropriate hardware manual.

The 8-bit component SerialEncCmdWord is used to define a command value sent to the serial

encoder in a protocol-specific manner. This value can be changed during an application for

different functionality, such as resetting an encoder. Not all protocols require a command value.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 138

The 2-bit component SerialEncParity defines the parity type to be expected for the received data

packet (for those protocols that support parity checking). A value of 0 specifies no parity; a value

of 1 specifies odd parity; a value of 2 specifies even parity. (A value of 3 is reserved for future

use.)

The 1-bit component SerialEncTrigMode specifies whether the encoder is to be repeatedly

sampled or just one time. A value of 0 specifies continuous sampling (every phase or servo cycle

as set by the multi-channel element Acc84E[i].SerialEncCtrl); a value of 1 specifies one-shot

sampling.

The 1-bit component SerialEncTrigEna specifies whether the encoder is to be sampled or not. A

value of 0 specifies no sampling; a value of 1 enables sampling of the encoder. If sampling is

enabled with SerialEncTrigMode at 0, the encoder will be repeatedly sampled (every phase or

servo cycle as set by the multi-channel element Acc84E[i].SerialEncCtrl) as long as

SerialEncTrigEna is left at a value of 1. However, if sampling is enabled with

SerialEncTrigMode at 1, the encoder will be sampled just once, and the ACC-84E’s IC will

automatically set SerialEncTrigEna back to 0 after the sampling.

The 1-bit component SerialEncGtoB specifies whether the data returned in SSI protocol

undergoes a conversion from Gray format to numerical-binary format or not. A value of 0

specifies that no conversion is done; a value of 1 specifies that the incoming data undergoes a

Gray-to-binary conversion.

The 1-bit component SerialEncEna / SerialEncDataReady has separate functions for writing to

and reading from the register. When writing to the register, this bit represents SerialEncEna,

which enables the driver circuitry for the serial encoder. This bit must be set to 1 to use any

protocol of serial encoder on the channel. If there is an alternate use for the same signal pins, this

bit must be set to 0 so the encoder drivers do not conflict with the alternate use. Note that you

cannot read back the value you have written to this bit!

When reading from the register, you get the SerialEncDataReady status bit indicating the state of

the serial data reception. It reports 0 during the data transmission indicating that valid new data is

not yet ready. It reports 1 when all of the data has been received and processed. This is

particularly important for slower interfaces that may take multiple servo cycles to complete a

read; in these cases, the bit should be polled to determine when data is ready.

The 4-bit component SerialEncStatusBits specifies the number of status bits the interface will

expect from the encoder in the SPI protocol. The valid range of settings is 0 to 12.

The 6-bit component SerialEncNumBits specifies the number of data bits the interface will expect

from the encoder in the SSI, EnDat, or BiSS protocol. The valid range of settings for these

protocols is 12 – 63. In other protocols, the number of bits is not specified this way, and this value

does not matter, so this component is usually left at 0.

Using the Resulting Position Information

Serial encoder position information is commonly used for both absolute power-on position and

ongoing position, and both for the servo and commutation algorithms.

Ongoing Commutation Phase Position

For the commutation algorithm’s ongoing phase position, Power PMAC reads the entire 32-bit

register specified by Motor[x].pPhaseEnc every phase cycle. In order to be able to handle

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 139

rollover of this data properly, the most significant bit (MSB) of this data must end up in bit 31 of

the 32-bit result, shifted if necessary. With most protocols, no shifting is necessary, but some will

require a net “left shift” to achieve this result.

PMAC3 ASIC-Based Interface

To use serial encoder position from an ASIC-based interface for ongoing phase position, the

following saved setup elements must be specified:

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].SerialEncDataA.a

 Motor[x].PhaseEncRightShift = 0 // If encoder LSB in Register 0

 Motor[x].PhaseEncLeftShift = (32 - # of bits)

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle)

In the 32-bit PMAC3 ASIC, the LSB of the encoder data is generally found in bit 0 on the 32-bit

data bus. If the encoder protocol does not provide a full 32 bits of data in the SerialEncDataA

register, the data will need to be “shifted left” so that the MSB ends up in bit 31 of the result. For

purposes of computing the scale factor, the LSB of the resulting (post-shift) 32-bit value should

be used as the “LSB”.

ACC-84E FPGA-Based Interface

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing phase

position, the following saved setup elements must be specified:

 Motor[x].pPhaseEnc = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].PhaseEncRightShift = 8 // If encoder LSB in Register 8

 Motor[x].PhaseEncLeftShift = (32 - # of bits)

 Motor[x].PhasePosSf = 2048 / (Register LSBs per commutation cycle)

In the 24-bit ACC-84E, the LSB of the encoder data is generally found in bit 8 on the 32-bit data

bus, with unpredictable values in the lowest 8 bits of the bus. While this low “phantom” data is

not known to affect actual commutation performance in real systems, some users will want to

remove this data with an 8-bit “shift right” operation. When this is done, a “shift left” operation

must also be done to leave the MSB of encoder data in bit 31 of the result. For purposes of

computing the scale factor, the LSB of the resulting (post-shift) 32-bit value should be used as the

“LSB”.

Power-On Commutation Phase Position

Because most serial encoders provide absolute position information, especially over one motor

revolution, they are commonly used to provide the absolute rotor-angle position at power-up for

the commutation algorithms. Doing this requires assigning proper values to several saved setup

elements.

This section gives an overview of those settings; details can be found in the element descriptions

in the Software Reference Manual, the Setting Up Commutation chapter of the User’s Manual,

and the Hardware Reference Manual for the interface. In addition the motor setup routines in the

IDE software will walk you through this setup.

PMAC3 ASIC-Based Interface

To use serial encoder position from an ASIC-based interface for absolute power-on phase

position, the following saved setup elements must be specified:

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 140

 Motor[x].pAbsPhasePos = Gate3[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPhasePosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPhasePosSf = 2048 / (LSBs per commutation cycle)

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

For the format variable, the LSB of the encoder data is typically found in bit 0 of the 32-bit

register, and only enough bits to cover a single commutation cycle need to be used. (However, it

does not hurt to specify more bits than are required.) It is almost never required to use data from

the next register.

ACC-84E FPGA-Based Interface

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on

phase position, the following saved setup elements must be specified:

 Motor[x].pAbsPhasePos = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPhasePosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPhasePosSf = 2048 / (LSBs per commutation cycle)

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit

register, and only enough bits to cover a single commutation cycle need to be used. (However, it

does not hurt to specify more bits than are required.) It is seldom required to use data from the

next register.

Ongoing Servo Position

To use the serial encoder position for ongoing servo position, the data must first be processed in

the encoder conversion table. This is done with a “Type 1” single-register-read conversion from

SerialEncDataA. In order to be able to handle rollover of this data properly, the most significant

bit (MSB) of this data must end up in bit 31 of the 32-bit result, shifted if necessary. With most

protocols, no shifting is necessary, but some will require a net “left shift” to achieve this result.

PMAC3 ASIC-Based Interface

To use serial encoder position from a PMAC3 ASIC-based interface for ongoing servo position,

the following saved setup elements must be specified:

 EncTable[n].Type = 1

 EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a

 EncTable[n].index1 = (32 - # of bits) // Shift left # of bits

 EncTable[n].index2 = 0 // Shift right # of bits

 EncTable[n].ScaleFactor = 1/ (232 - # of bits) // For result in encoder LSBs

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

ACC-84E FPGA-Based Interface

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing servo

position, the following saved setup elements must be specified:

 EncTable[n].Type = 1

 EncTable[n].pEnc = Acc84E[i].Chan[j].SerialEncDataA.a

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 141

 EncTable[n].index1 = (32 - # of bits) // Shift left # of bits

 EncTable[n].index2 = 8 // Shift right # of bits

 EncTable[n].ScaleFactor = 1/ (232 - # of bits) // For result in encoder LSBs

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Power-On Servo Position

Many serial encoders can provide absolute position over the entire range of travel of the motor. If

so, Power PMAC can execute an absolute power-on read of the encoder to establish the reference

position, eliminating the need for a homing search move.

This section gives an overview of those settings; details can be found in the element descriptions

in the Software Reference Manual, the Basic Motor Setup chapter of the User’s Manual, and the

Hardware Reference Manual for the interface. In addition the motor setup routines in the IDE

software will walk you through this setup.

PMAC3 ASIC-Based Interface

To use serial encoder position from an ASIC-based interface for absolute power-on servo

position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = Gate3[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPosSf = (Motor units per sensor LSB)

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

For the format variable, the LSB of the encoder data is typically found in bit 0 of the 32-bit

SerialEncDataA register. If the encoder provides more than 32 bits of absolute position data, the

format element permits data from SerialEncDataB to be used as well.

ACC-84E FPGA-Based Interface

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on

phase position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPosSf = (Motor units per sensor LSB)

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit

SerialEncDataA register. If the encoder provides more than 24 bits of absolute position data, the

format element permits data from SerialEncDataB to be used as well. Note, however, that the

data in SerialEncDataA must go all the way to bit 31 for this to work. In protocols such as

Tamagawa and Panasonic, which provide only 17 bits of data in SerialEncDataA and more in

SerialEncDataB, the full absolute position must be assembled in a user algorithm.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 142

Setting Up Analog Sinusoidal Encoders

Analog sinusoidal encoders can provide the highest-resolution feedback available. Power PMAC

has interface circuitry available that can accept the sinusoidal signals directly and provide

interpolation capability that can resolve up to 65,536 states per line of the encoder.

Note

This section describes the interface to encoders that output

analog sinusoidal signals, where Power PMAC performs the

interpolation. Some encoders have internal analog sinusoidal

signals that are used to perform interpolation inside the

encoder. Those encoders output a digital position word, usually

in a serial format. Interfacing to that style of encoder with

Power PMAC is covered in a separate section.

Signal Format

The sinusoidal encoder interfaces for Power PMAC are designed to accept “sine” and “cosine”

signals (90° out of phase with each other), of 1-volt (peak-to-peak) magnitude. Most commonly,

these signals are differential pairs, wired into the SIN+, SIN-, COS+, and COS- inputs for the

channel. Single-ended inputs can also be used, wired into the SIN+ and COS+ inputs for the

channel, with the SIN- and COS- inputs connected directly to the 2.5V signal provided on the

connector.

The ideal signals are both centered around the reference voltage, exactly one-quarter cycle out of

phase with each other, and of the same magnitude. Deviations from this ideal will cause errors in

the resulting interpolated position values. The following diagram shows the common signal

errors:

CosOffset

CosMag

SinMag

SinOffset
90°

φ

(φ = PhaseError)

V

θ

Sinusoidal Encoder Common Signal Errors

Power PMAC hardware and software have the capability of correcting for some or all of these

errors. The accuracy requirements of a particular system can dictate which type of interface is

used.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 143

Sinusoidal Encoder Interfaces

Power PMAC provides three basic styles of interfaces for sinusoidal encoders. The first is based

on the PMAC2-style “DSPGATE1” Servo IC, as used in the ACC-51E UMAC interpolator

board. This requires the processor to compute the interpolated position from the hardware

readings.

The second style is based on the PMAC3-style “DSPGATE3” ASIC, as used in the standard

analog feedback option for the UMAC ACC-24E3 axis-interface board or for the Power Brick

family. This can compute the interpolated position in hardware, so the processor simply needs to

read the result. Alternately, the data from this IC can be interpolated in software with additional

correction terms.

The third style is based on a combination of a PMAC3-style “DSPGATE3” ASIC and a pre-

processing FPGA, as used in the “auto-correcting” analog feedback option for the UMAC ACC-

24E3 axis-interface board or for the Power Brick family. In this style, the FPGA automatically

detects and corrects for the common signal errors of voltage offsets, magnitude mismatch, and

phase error. It also uses oversampling and averaging to reduce the effect of electrical noise on the

resulting position.

Comparison of Interface Type Performance

The different sinusoidal encoder interpolator interface styles have different performance criteria.

The best choice for a system depends on the system performance needs. This section summarizes

the performance for each style.

First Interface Type: ACC-51E PMAC2-Style Interpolator

 Software-based interpolation only (in encoder conversion table)

 Four I/O register reads required each servo cycle

 Data not ready until 5 microseconds after servo interrupt

 No automatic identification of signal errors

 Software compensation for voltage offsets in ECT

 Software compensation for phase error in ECT

 Software compensation for magnitude mismatch error in ECT

 Software filtering for noise in ECT at servo rates (in kHz)

 Resulting position value has 12 bits of interpolation (4096 states per line)

 Interpolated hardware capture and compare based on uncorrected signals

Second Interface Type: ACC-24E3, Power Brick Standard Interpolator

 Hardware-based or software-based interpolation

 Hardware-based interpolation (in ASIC):

o One I/O register read required each servo cycle

o Encoder sampled half phase cycle before servo interrupt, ready at interrupt

o No automatic identification of signal errors

o Hardware compensation for voltage offsets in ASIC

o No compensation for phase error or magnitude mismatch

o Software filtering for noise in ECT at servo rates (in kHz)

o Resulting position value has 14 bits of interpolation (16,384 states per line)

o Interpolated hardware capture and compare based on uncorrected signals

 Software-based interpolation (in encoder conversion table):

o Four I/O register reads required each servo cycle

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 144

o Encoder sampled half phase cycle before servo interrupt, ready at interrupt

o No automatic identification of signal errors

o Software compensation for voltage offsets in ECT

o Software compensation for phase error in ECT

o Software compensation for magnitude mismatch error in ECT

o Software filtering for noise in ECT at servo rate (in kHz)

o Resulting position value has 14 bits of interpolation (16,384 states per line)

o Interpolated hardware capture and compare based on uncorrected signals

Third Interface Type: ACC-24E3, Power Brick Auto-Correcting Interpolator

 Hardware-based interpolation (in ASIC or FGPA)

 One I/O register read required each servo cycle

 Encoder sampled ~3 microseconds before servo interrupt (for serial read from FPGA)

 Encoder sampled half phase cycle before servo interrupt (for ASIC interpolation)

 Automatic identification of signal errors in FPGA

 Hardware compensation for voltage offsets in FPGA

 Hardware compensation for phase error in FPGA

 Hardware compensation for magnitude mismatch in FPGA

 Hardware filtering for noise in FPGA at oversampling rate (in MHz)

 Resulting position value has 16 bits of interpolation (65,536 states per line)

 Interpolated hardware capture and compare based on corrected signals

Hardware Setup

This section describes the Power PMAC interpolator hardware interface in general terms. Consult

the Hardware Reference Manual for your particular configuration for details.

Interface Circuitry

The interpolator analog hardware interfaces operate on a single 5V supply relative to the GND

reference voltage. There is no isolation from the digital 5V circuitry. It is intended that the analog

input signals be centered on the intermediate 2.5V level. If the signals are differential, this

centering does not have to be precise, but the signal levels cannot go above 5V or below GND. If

the signals are single-ended, they must be directly compared to an intermediate voltage, most

likely the regulated 2.5V level generated in the interface and supplied on the connector.

The “+” and “-” input pairs are connected in the interface through termination resistors. These

resistors both serve to preserve the signal quality by preventing ringing and to facilitate signal-

loss detection by pulling the two inputs to the same voltage in the absence of a driving signal.

The sinusoidal input signals are fed into both differential receivers acting as comparators that

produce digital quadrature signals into the ASIC, and into analog-to-digital converters (ADCs)

that produce numbers proportional to the sine and cosine signal levels.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 145

 The following diagram shows the principle of the Power PMAC standard processing of the

sinusoidal encoder signals.

ADC

ADC

Quad

Decode
Counter

Fraction

Interpolated Position

Arctangent

Hardware in PMAC2 and PMAC3
Software (ECT) in PMAC2,

Hardware (ASIC) in PMAC3

Sin+
A

B

Sin-

Cos+

Cos-

+

-

+

-

SCLK (MHz)

Servo Clock (kHz)

Power PMAC Sinusoidal Encoder Standard Interpolation Technique

The following diagram shows the principle of the Power PMAC Auto-Correcting Interpolator’s

processing of the sinusoidal encoder signals.

ADC

ADC

Quad

Decode
Counter

Fraction

Interpolated Position

Arctangent

Sin+
A

B
Sin-

Cos+

Cos-

+

-

+

-

SinData

CosData

Serial Encoder Position

SinData'

CosData'

A'

B'

PosData'

Signal Error

Auto-Detection

and

Correction

FPGA DSPGATE3 ASIC

20 MHz

Raw

Readings

Corrected

Readings

Power PMAC Sinusoidal Encoder Auto-Correcting Interpolation Technique

Wiring Techniques

In order to get good position information from the sinusoidal encoder interface, it is vital that

proper wiring techniques be employed. The impact of a small amount of noise on these analog

signals is much greater than for digital signals.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 146

The use of differential signal pairs is very important in reducing the amount of noise at the

receiver circuits. These signal pairs provide common-mode noise rejection, with the resulting

voltage difference being much smaller than the disturbance to the individual signals. The signal

pairs should be wired as twisted pairs, providing cancellation of received noise.

The encoder cable should be kept physically separate from the motor power cable if at all

possible. Running the two cables parallel and adjacent provides a strong coupling mechanism for

noise. Both motor cable and encoder cable should be shielded, the motor cable to prevent noise

from getting out, and the encoder cable to prevent noise from getting in.

If the motor is driven by a pulse-width-modulated (PWM) or similar switching drive, the rapid

switching of the power signals generates high levels of noise that are difficult to keep out of the

encoder signal. Often, chokes must be installed on the outputs from the drive to “soften” the

transitions and reduce the generated noise. Note that in the highest-resolution systems, linearly

modulated amplifiers are often employed to eliminate this switching noise altogether.

The encoder cable for sinusoidal encoders is often double-shielded, with the inner shield tied to

the signal ground (0V) at the controller end, and the outer shield tied directly to the chassis

ground at the controller end. Some users prefer to tie the encoder casing to the outer shield, but

the inner shielding should be left floating at the encoder end. This configuration provides the

optimal protection of the encoder signal.

The following diagram illustrates the optimal wiring and shielding for sinusoidal encoders. In the

diagram, each signal pair is individually shielded. Many users will put all of the signal pairs

inside a single shield, which provides protection almost as good for substantially reduced cost.

A+/SIN+

A-/SIN-

B+/COS+

B-/COS-

C+/IDX+

C-/IDX-

0V

0V

0V

Chassis

Ground

PMAC

SIN+

SIN-

COS+

COS-

IDX+

IDX-

Encoder

Recommended Wiring and Shielding for Sinusoidal Encoders

Hardware Control Parameter Setup

Setting up the interpolator hardware to process the signals correctly requires the proper setting of

several saved setup elements for the ASIC used to provide the interface. Some of these elements

can use the default settings, but not all.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 147

ACC-51E PMAC2-Style Interface

The UMAC ACC-51E interpolator uses the PMAC2-style DSPGATE1 ASIC to interface to the

signals. With this accessory, the actual interpolation is always performed in software in the

encoder conversion table.

Encoder Sample Clock Frequency: Gate1[i].HardwareClockCtrl

The digital quadrature signals created by the differential receivers in the interpolator circuitry are

sampled by the ASIC at a rate determined by the SCLK encoder sample clock frequency just as

for digital quadrature encoders themselves. The frequency of this sample clock must be high

enough so that at most one quadrature edge (of which there are 4 per encoder line) occurs in a

single SCLK cycle. In the vast majority of cases, the default settings of 9.83 MHz for PMAC2-

style ICs can be used.

Instructions for setting the SCLK frequency are given in the section on digital quadrature

encoders, above. Note that with analog sinusoidal encoders, noise issues must be dealt with well

in the hardware interface, so that optimizing the ASIC’s digital delay filter is not important here.

Encoder Decode Control: Gate1[i].Chan[j].EncCtrl

The decoding of the digital encoder signal created in the interpolator hardware is determined by a

channel-specific saved setup element for the IC – Gate1[i].Chan[j].EncCtrl. For interpolation of

sinusoidal encoders, this must be set for “times-4” quadrature decode, which derives 4 counts per

signal cycle. This requires a variable value of 3 or 7 (default). The difference between these two

values is the direction sense – which direction of motion causes the counter to count up.

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the feedback to increment in the

positive direction – otherwise a dangerous runaway

condition will occur when the servo loop is closed.

Changing the direction sense of the decode of a feedback

sensor in a properly working servo loop without changing

the direction sense of the servo loop outputs will result in a

dangerous runaway.

For proper operation, the direction sense of this decode must also match the direction sense of the

“arctangent” processing of the sine and cosine ADC values so the whole-count and sub-count

polarities match; otherwise rough operation will occur. When the interpolation is done in software

in the encoder conversion table, as with the ACC-51E, the matchup only occurs on the

initialization of the table entry (which is automatically done at power-up/reset of the Power

PMAC). If the decode direction sense is changed between 3 and 7, the table entry must be re-

initialized by setting EncTable[n].index3 to 0.

PMAC3 Standard ASIC-Based Interface

The standard interpolator for the UMAC ACC-24E3 and Power Brick uses the PMAC3-style

DSPGATE3 ASIC to interface to the signals. Note that some settings must be made differently

depending on whether the interpolation calculations are done in hardware in the ASIC (which is

faster but only supports correction for voltage offsets) or in software in the encoder conversion

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 148

table (which is slower but supports corrections for voltage offsets, phase error, and magnitude

mismatch.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

Encoder Sample Clock Frequency: Gate3[i].EncClockDiv

The digital quadrature signals created by the differential receivers in the interpolator circuitry are

sampled by the ASIC at a rate determined by the SCLK encoder sample clock frequency just as

for digital quadrature encoders themselves. The frequency of this sample clock must be high

enough so that at most one quadrature edge (of which there are 4 per encoder line) occurs in a

single SCLK cycle. In the majority of cases, the default setting of 3.125 MHz for PMAC3-style

ICs can be used, supporting signal frequencies up to about 600 kHz.

Gate3[i].EncClockDiv specifies the frequency of the SCLK signal. The default value of 5

specifies a frequency of 3.125 MHz. This supports signal frequencies up to about 600 kHz,

suitable for the majority of cases. Reducing the value of this element supports higher frequencies.

Note that with analog sinusoidal encoders, noise issues must be dealt with well in the hardware

interface, so that optimizing the ASIC’s digital delay filter is not important here.

A/D-Converter Clock Frequency: Gate3[i].AdcEncClockDiv

Gate3[i].AdcEncClockDiv specifies the frequency of the clock signal that drives the serial A/D

converters for the channel’s encoder circuitry. The default value of 5 specifies a frequency of

3.125 MHz, which is typically fast enough to get the serial data into the ASIC register in time for

use. It takes 25 clock cycles to complete the serial transfer, and at 3.125 MHz, each clock cycle is

320 nanoseconds, this takes 8 microseconds. If faster transfers are required, a setting of 4 for a

frequency of 6.25 MHz or a setting of 3 for a frequency of 12.5 MHz can be used.

Latch/Strobe Delay: Gate3[i].EncLatchDelay

In the PMAC3-style ASIC, the strobing of the encoder ADCs and the latching of the encoder

counter by default occur on the rising edge of the phase clock, so the conversion and transfer of

the ADC values, the arctangent calculation of sub-count data, and the combination of this data

with the latched whole-count data can be completed by the falling edge of the phase clock (which

in some cycles is coincident with the falling edge of the servo clock), when the resulting data

must be available to the processor.

In this process, there is a delay of half of a phase-clock cycle between when the data is sampled

and when the data is used. In a high-performance servo system, this time delay might produce a

noticeable degradation of servo performance. In many cases, this half-cycle delay may be

significantly more than is required to acquire and process the data. In these cases, saved setup

parameter Gate3[i].EncLatchDelay permits this sampling to be started after the rising edge of

the phase clock, thus reducing the delay between sampling and use. Gate3[i].EncLatchDelay is

in units of 16 encoder ADC clock cycles (each default 320 nanoseconds, set by

Gate3[i].AdcEncClockDiv), specifying how many of these cycles elapse before the encoder data

is sampled. It can range from the default of 0 to 255, for 4080 ADC clock cycles.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 149

Acquiring and processing the encoder data requires 25 cycles of the encoder ADC clock, which is

8 microseconds at the default ADC clock frequency. At the default phase clock frequency of 9

kHz, sampling fully a half phase cycle ahead yields a 55 microsecond delay, over 40

microseconds more than is needed. If Gate3[i].EncLatchDelay is set to 125, the sampling is

delayed for 40 microseconds from the rising edge, reducing the net delay from sampling until use

to 15 microseconds, but still providing enough time to acquire and process the data.

A/D-Converter Number of Header Bits: Gate3[i].AdcEncHeaderBits

The A/D-converters used in this interpolator provide 1 “header bit” in front of the actual data, so

Gate3[i].Chan[j].AdcEncHeaderBits should be set to the default value of 1 to interpret this data

properly.

A/D-Converter Signed/Unsigned Format: Gate3[i].AdcEncUtoS

The A/D-converters used in this interpolator provide signed numerical values, so

Gate3[i].AdcEncUtoS should be set to the default value of 0 to disable any unsigned-to-signed

format conversion.

Encoder Decode Control: Gate3[i].Chan[j].EncCtrl

The decoding of the digital quadrature encoder signal created in the interpolator hardware is

determined by a channel-specific saved setup element for the IC – Gate3[i].Chan[j].EncCtrl.

For interpolation of sinusoidal encoders, this must be set for “times-4” quadrature decode, which

derives 4 counts per signal cycle. This requires a variable value of 3 or 7 (default). The difference

between these two values is the direction sense – which direction of motion causes the counter to

count up.

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the feedback to increment in the

positive direction – otherwise a dangerous runaway

condition will occur when the servo loop is closed.

Changing the direction sense of the decode of a feedback

sensor in a properly working servo loop without changing

the direction sense of the servo loop outputs will result in a

dangerous runaway.

For proper operation, the direction sense of this decode must also match the direction sense of the

“arctangent” processing of the sine and cosine ADC values so the whole-count and sub-count

polarities match; otherwise rough operation will occur. If the interpolation calculations are done

in hardware in the interpolator, this matchup occurs automatically. However, if the interpolation

calculations are done in software in the encoder conversion table, the matchup only occurs on the

initialization of the table entry (which is automatically done at power-up/reset of the Power

PMAC). If the decode direction sense is changed between 3 and 7 (which often happens during

initial setup), the table entry must be re-initialized by setting EncTable[n].index3 to 0.

ASIC Bias Compensation: Gate3[i].Chan[j].AdcOffset[k]

Before computing the sub-count interpolated position with the arctangent calculation, the

PMAC3-style ASIC can add in offset terms to the measured values in the ADC registers to

compensate for voltage biases in the encoder and/or receiving circuitry. The value in saved setup

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 150

element Gate3[i].Chan[j].AdcOffset[0] is added to the value measured from the “sine” signal in

Gate3[i].Chan[j].AdcEnc[0], and the value in Gate3[i].Chan[j].AdcOffset[1] is added to the

value measured from the “cosine” signal in Gate3[i].Chan[j].AdcEnc[1].

If the sub-count interpolation is to be done in the encoder conversion table using a software-based

arctangent calculation there, these bias-compensation terms in the ASIC are not used. The

equivalent bias values should be placed in software elements EncTable[n].SinBias and

EncTable[n].CosBias, respectively. These terms are used along with magnitude-mismatch error

term EncTable[n].CoverSerror (cosine-over-sine error) and phase-error term

EncTable[n].TanHalfPhi for a more complete correction of encoder signal errors.

Arctangent Extension: Gate3[i].Chan[j].AtanEna

The PMAC3-style ASIC has the capability to compute the sub-count interpolated position itself

in hardware and to combine this value with the whole-count data from the quadrature counter.

The sub-count data is always calculated from the ADC values and placed in the status element

Gate3[i].Chan[j].Atan. If saved setup element Gate3[i].Chan[j].AtanEna is set to 1, this data is

combined with the whole-count data and latched into Gate3[i].Chan[j].PhaseCapt each phase

cycle, and into Gate3[i].Chan[j].ServoCapt each servo cycle. The low 12 bits of these values

represent sub-count data, so there are 4096 states per quadrature count, or 16,384 states per

encoder line, in the resulting values.

If the sub-count interpolation is to be done in the encoder conversion table using a software-based

arctangent calculation there, Gate3[i].Chan[j].AtanEna must be set to 0 to disable the

combination of the hardware-calculated value with the quadrature count. The software-based

interpolation has the capability to correct for phase-offset and magnitude-mismatch errors, but

does require more processor time. It should only be used if correction for phase-offset and/or

magnitude-mismatch errors is performed.

PMAC3 Auto-Correcting FPGA & ASIC-Based Interface

The Auto-Correcting Interpolator for the UMAC ACC-24E3 uses the PMAC3-style DSPGATE3

ASIC working through a custom FPGA to interface to the signals. Because the ASIC is not

interfacing directly to the A/D converters or quadrature comparators, some of the ASIC element

settings are used differently from the standard interpolator. The encoder signals themselves are

sampled by fast A/D converters at a fixed 20 MHz rate.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

Encoder Sample Clock Frequency: Gate3[i].EncClockDiv

The corrected digital quadrature signals synthesized by the FPGA are sampled by the ASIC at a

rate determined by the SCLK encoder sample clock frequency just as for digital quadrature

encoders themselves. The frequency of this sample clock must be high enough so that at most one

quadrature edge (of which there are 4 per encoder line) occurs in a single SCLK cycle. In the

majority of cases, the default setting of 3.125 MHz for PMAC3-style ICs can be used, supporting

signal frequencies up to about 600 kHz.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 151

Gate3[i].EncClockDiv specifies the frequency of the SCLK signal. The default value of 5

specifies a frequency of 3.125 MHz. This supports signal frequencies up to about 600 kHz,

suitable for the majority of cases. Reducing the value of this element supports higher frequencies.

Each reduction of 1 supports twice the frequency.

A/D-Converter Clock Frequency: Gate3[i].AdcEncClockDiv

Gate3[i].AdcEncClockDiv specifies the frequency of the clock signal that drives the synthesized

corrected serial A/D values from the FPGA for the channel’s encoder. The default value of 5

specifies a frequency of 3.125 MHz, which is typically fast enough to get the serial data into the

ASIC register in time for use. It takes 25 clock cycles to complete the serial transfer, and at 3.125

MHz, each clock cycle is 320 nanoseconds, this takes 8 microseconds. If faster transfers are

required, a setting of 4 for a frequency of 6.25 MHz or a setting of 3 for a frequency of 12.5 MHz

can be used.

Latch/Strobe Delay: Gate3[i].EncLatchDelay

In the PMAC3-style ASIC, the strobing of the encoder ADCs and the latching of the encoder

counter by default occur on the rising edge of the phase clock, so the conversion and transfer of

the ADC values, the arctangent calculation of sub-count data, and the combination of this data

with the latched whole-count data can be completed by the falling edge of the phase clock (which

in some cycles is coincident with the falling edge of the servo clock), when the resulting data

must be available to the processor. In the auto-correcting interpolator, this process operates on

synthesized corrected signals from the FPGA.

In this process, there is a delay of half of a phase-clock cycle between when the data is sampled

and when the data is used. In a high-performance servo system, this time delay might produce a

noticeable degradation of servo performance. In many cases, this half-cycle delay may be

significantly more than is required to acquire and process the data. In these cases, saved setup

parameter Gate3[i].EncLatchDelay permits this sampling to be started after the rising edge of

the phase clock, thus reducing the delay between sampling and use. Gate3[i].EncLatchDelay is

in units of 16 encoder ADC clock cycles (each default 320 nanoseconds, set by

Gate3[i].AdcEncClockDiv), specifying how many of these cycles elapse before the encoder data

is sampled. It can range from the default of 0 to 255, for 4080 ADC clock cycles.

Acquiring and processing the encoder data requires 25 cycles of the encoder ADC clock, which is

8 microseconds at the default ADC clock frequency. At the default phase clock frequency of 9

kHz, sampling fully a half phase cycle ahead yields a 55 microsecond delay, over 40

microseconds more than is needed. If Gate3[i].EncLatchDelay is set to 125, the sampling is

delayed for 40 microseconds from the rising edge, reducing the net delay from sampling until use

to 15 microseconds, but still providing enough time to acquire and process the data.

Operational Mode Control: Gate3[i].AdcEncStrobe

The auto-correcting interpolator has multiple modes of operation, controlled by saved setup

element Gate3[i].AdcEncStrobe. Because the DSPGATE3 ASIC is not communicating directly

with the A/D converters in this interpolator, but instead communicates to the auto-correcting

FPGA, which communicates with the A/D converters, this setup element is used to control the

mode of operation of the FPGA in processing the input signals. Each phase cycle, this 24-bit

word is output serially, most significant bit (MSB) first, one bit per AdcEncClock cycle, from the

ASIC to the FPGA.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 152

For standard operation with continuous auto-identification and auto-correction of encoder signal

errors, Gate3[i].AdcEncStrobe should be set to $800000, which sets only the MSB to 1. In any

mode of operation, this bit must be set to 1 to start the conversions synchronized to the phase

clock cycle. The other bits of this element can be set to 1 for alternate modes of operation, as

discussed here. Most of these alternate modes are for diagnostic purposes.

Note

The 24-bit element Gate3[i].AdcEncStrobe is part of the full-

word (32-bit) element Gate3[i].AdcEncCtrl, forming the high

24 bits of the 32-bit element. Many users will simply want to

set Gate3[i].AdcEncCtrl to $80000000. This full-word setting

also specifies zero header bits (required), no unsigned-to-

signed conversion (required), and no strobe/latch delay

(acceptable for most applications).

The individual bit meanings of Gate3[i].AdcEncStrobe are shown in the following diagram:

Hex Digit ($)

Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Channel A
ll

C
h
an

[0
]

C
h
an

[1
]

C
h
an

[2
]

C
h
an

[3
]

C
h
an

[0
]

C
h
an

[1
]

C
h
an

[2
]

C
h
an

[3
]

C
h
an

[0
]

C
h
an

[1
]

C
h
an

[2
]

C
h
an

[3
]

C
h
an

[0
]

C
h
an

[1
]

C
h
an

[2
]

C
h
an

[3
]

C
h
an

[0
]

C
h
an

[1
]

C
h
an

[2
]

C
h
an

[3
]

n
o
n

e

n
o
n

e

A
ll

Function

S
ta

rt
 C

o
n
v

er
t

=
 1

A
d

d
it

io
n

al
 D

at
a

R
eq

u
es

t
B

it
 0

A
d

d
it

io
n

al
 D

at
a

R
eq

u
es

t
B

it
 1

A
d

d
it

io
n

al
 D

at
a

R
eq

u
es

t
B

it
 2

H
o

ld
 P

re
se

n
t

C
o

rr
ec

ti
o
n

s

C
le

ar

C
o

rr
ec

ti
o
n

s

In
v
er

t
S

er
ia

l
E

n
c

C
lo

c
k

Start Convert: The most significant bit (MSB) of Gate3[i].AdcEncStrobe must be set to 1 for

the interpolator to operate properly. This is the first bit of the word output serially, and it starts the

transmission of data from the FPGA to the ASIC.

Clear Corrections: To use the uncorrected encoder signals in the interpolations, set the “Clear

Corrections” bit for the channel to 1. To do this without changing any other settings, the

following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800040 // Set bit 6 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800020 // Set bit 5 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800010 // Set bit 4 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800008 // Set bit 3 for Chan[3]

To start using the corrected encoder signals in the interpolations again, reset the “Clear

Corrections” bit for the channel to 0. To do this without changing any other settings, the

following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFBF // Clear bit 6 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFDF // Clear bit 5 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFEF // Clear bit 4 for Chan[2]

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 153

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFF7 // Clear bit 3 for Chan[3]

Hold Corrections: To freeze the present corrections to use in the interpolations, set the “Hold

Corrections” bit for the channel to 1. To do this without changing any other settings, the

following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800400 // Set bit 10 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800200 // Set bit 9 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800100 // Set bit 8 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800080 // Set bit 7 for Chan[3]

To start using new corrections in the interpolations again, reset the “Hold Corrections” bit for the

channel to 0. To do this without changing any other settings, the following commands can be

used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFBFF // Clear bit 10 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFDFF // Clear bit 9 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFEFF // Clear bit 8 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFF7F // Clear bit 7 for Chan[3]

Additional Data Requests: The auto-correcting interpolator permits the processor to access

additional information for a channel in that channel’s alternate A/D converter registers

Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3]. The following types of

additional data are presently supported:

0. Unfiltered uncorrected (“raw”) A/D-converter data

1. Unfiltered corrected A/D-converter data

2. Present sine and cosine bias values

3. Present magnitude-mismatch and phase-error values

4. Velocity and acceleration values, “x1” scaling

5. Velocity and acceleration values, “x4” scaling

6. Velocity and acceleration values, “x16” scaling

7. Velocity and acceleration values, “x64” scaling

Unfiltered uncorrected (“raw”) A/D-Converter Data: If the additional data request value for a

channel is set to 0, the interpolator will place the unfiltered uncorrected A/D-converter values for

the sine and cosine signals into Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3],

respectively, each phase cycle. These are the most recent direct readings from the ADCs.

To request the uncorrected A/D converter values for a channel, set bit 0 of the “additional data

request value” for the channel to 0. To do this without changing any other settings, the following

commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $BFFFFF // Clear bit 22 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $DFFFFF // Clear bit 21 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $EFFFFF // Clear bit 20 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $87FFFF // Clear bit 19 for Chan[3]

Unfiltered corrected A/D-Converter Data: If the additional data request value for a channel is set

to 1, the interpolator will place the unfiltered, but corrected A/D-converter values for the sine and

cosine signals into Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], respectively,

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 154

each phase cycle. Note that while these values are not filtered, they are corrected using the most

recently determined correction factors.

To request the unfiltered corrected A/D converter values for a channel, set bit 0 of the “additional

data request value” for the channel to 1. To do this without changing any other settings, the

following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C00000 // Set bit 22 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A00000 // Set bit 21 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $900000 // Set bit 20 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $880000 // Set bit 19 for Chan[3]

Present Sine and Cosine Bias Values: If the additional data request value for a channel is set to 2,

the interpolator will place the present bias values for the sine and cosine signals into

Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], respectively, each phase cycle.

To request the present sine and cosine bias values for a channel, set bit 1 of the “additional data

request value” for the channel to 1. To do this without changing any other settings, the following

commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $840000 // Set bit 18 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $820000 // Set bit 17 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $810000 // Set bit 16 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $808000 // Set bit 15 for Chan[3]

Present Magnitude-Mismatch and Phase-Error Values: If the additional data request value for a

channel is set to 3, the interpolator will place the present magnitude-mismatch value (ratio of sine

over cosine) into Gate3[i].Chan[j].AdcEnc[2] and the present phase-error value (signed 16-bit

value with full range representing ±180°) into Gate3[i].Chan[j].AdcEnc[3], each phase cycle.

To request the present magnitude-mismatch and phase-error values for a channel, set bits 0 and 1

of the “additional data request value” for the channel to 1. To do this without changing any other

settings, the following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C40000 // Set bits 22 & 18 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A20000 // Set bits 21 & 17 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $910000 // Set bits 20 & 16 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $888000 // Set bits 19 & 15 for Chan[3]

Velocity and Acceleration Data: As part of the process of identifying and correcting encoder

errors, the FPGA in the Auto-Correcting Interpolator is continually calculating high-quality

velocity and acceleration values from the encoder signals. If the additional data request value for

a channel is set to 4, 5, 6, or 7, the interpolator will place these values into

Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], respectively. These are 32-bit

elements, with real data in the high 24 bits.

It is possible to use these values for servo feedback, which can provide superior performance

since these values have less time delay and time jitter than those values obtained by single and

double differentiation of position values.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 155

Note

These velocity and acceleration values should not be used in

integrated form for the outer-loop servo position feedback.

They cannot be guaranteed to integrate properly into the actual

position. The outer-loop position feedback should always come

from one of the position values generated by the interpolator.

The difference in operation from the possible additional data-request values 4, 5, 6, and 7 is just

one of the scaling of the reported velocity and acceleration quantities, with each setting differing

from the next by a value of 4. The scale factor SF for the velocity value can be computed as:

)(**
75

16
HzServoFreqnSF

where the reported velocity value (considered as a 32-bit value) multiplied by SF would equal the

value obtained by the difference between the position values in consecutive servo cycles (the

alternate method of computing velocity) when the position value is scaled in 1/65,536 of an

encoder line. The possible values of “n” are:

 Additional data request value: 4 n = 1

 Additional data request value: 5 n = 4

 Additional data request value: 6 n = 16

 Additional data request value: 7 n = 64

A smaller value of n and therefore a smaller scale factor SF means a larger reported velocity

number for the same physical velocity. This means a lower maximum velocity before saturation,

but more resolution in the reported velocity. The optimal setting is the lowest scale factor that

supports the maximum physical velocity without saturation, as this will provide the highest

resolution possible.

To request the velocity and acceleration values for a channel with n = 1 scaling, set bit 2 of the

“additional data request value” for the channel to 1. To do this without changing any other

settings, the following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $804000 // Set bit 14 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $802000 // Set bit 13 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $801000 // Set bit 12 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800800 // Set bit 11 for Chan[3]

To request the velocity and acceleration values for a channel with n = 4 scaling, set bits 2 and 0 of

the “additional data request value” for the channel to 1. To do this without changing any other

settings, the following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C04000 // Set bits 22 & 14 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A02000 // Set bits 21 & 13 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $901000 // Set bits 20 & 12 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $880800 // Set bits 19 & 11 for Chan[3]

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 156

To request the velocity and acceleration values for a channel with n = 16 scaling, set bits 2 and 1

of the “additional data request value” for the channel to 1. To do this without changing any other

settings, the following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $844000 // Set bits 18 & 14 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $822000 // Set bits 17 & 13 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $811000 // Set bits 16 & 12 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $808800 // Set bits 15 & 11 for Chan[3]

To request the velocity and acceleration values for a channel with n = 64 scaling, set bits 2, 1, and

0 of the “additional data request value” for the channel to 1. To do this without changing any

other settings, the following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C44000 // Set bits 22, 18, 14 for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A22000 // Set bits 21, 17, 13 for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $911000 // Set bits 20, 16, 12 for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $888800 // Set bits 19, 15, 11 for Chan[3]

Disable Additional Data Request: To disable the request for additional information for a channel,

reset all of the bits of the “additional data request value” for the channel to 0. To do this without

changing any other settings, the following commands can be used:

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $BBBFFF // Clear bits for Chan[0]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $DDDFFF // Clear bits for Chan[1]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $EEEFFF // Clear bits for Chan[2]

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $F777FF // Clear bits for Chan[3]

A/D-Converter Number of Header Bits: Gate3[i].AdcEncHeaderBits

The simulated A/D-converter data from the FPGA in this interpolator do not provide any “header

bits” in front of the actual data, so Gate3[i].Chan[j].AdcEncHeaderBits must be set to 0 (the

default value is 1) to interpret this data properly.

A/D-Converter Signed/Unsigned Format: Gate3[i].AdcEncUtoS

The A/D-converters used in this interpolator provide signed numerical values, so

Gate3[i].AdcEncUtoS should be set to the default value of 0 to disable any unsigned-to-signed

format conversion.

Reading the Data as a Modified Sinusoidal Encoder

In the Auto-Correcting Interpolator, the FPGA outputs signals to the DSPGATE3 ASIC that

mimic the signals from standard interpolator circuitry, but from a more perfect sinusoidal

encoder. These signals include both digital quadrature on a continuous basis, and serial A/D

converter values every phase cycle.

The DSPGATE3 ASIC should be set up to accept these signals. Even if the primary position

feedback is read from a simulated serial encoder signal (see next section), the quadrature and A/D

data should be used to support the possibility of full-resolution hardware capture and compare in

the ASIC, and to be able to read additional data values in the supplementary A/D converter

registers.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 157

Encoder Decode Control: Gate3[i].Chan[j].EncCtrl: The decoding of the digital quadrature

encoder signal created in the interpolator hardware is determined by a channel-specific saved

setup element for the IC – Gate3[i].Chan[j].EncCtrl. For interpolation of sinusoidal encoders,

this must be set for “times-4” quadrature decode, which derives 4 counts per signal cycle. This

requires a variable value of 3 or 7 (default). The difference between these two values is the

direction sense – which direction of motion causes the counter to count up.

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the feedback to increment in the

positive direction – otherwise a dangerous runaway

condition will occur when the servo loop is closed.

Changing the direction sense of the decode of a feedback

sensor in a properly working servo loop without changing

the direction sense of the servo loop outputs will result in a

dangerous runaway.

For proper operation, the direction sense of this decode must also match the direction sense of the

“arctangent” processing of the sine and cosine ADC values so the whole-count and sub-count

polarities match; otherwise rough operation will occur. If the interpolation calculations are done

in hardware in the interpolator, this matchup occurs automatically. (With the Auto-Correcting

Interpolator, there is no good reason to do the interpolation in software in the encoder conversion

table.)

ASIC Bias Compensation: Gate3[i].Chan[j].AdcOffset[k]: Before computing the sub-count

interpolated position with the arctangent calculation, the PMAC3-style ASIC can add in offset

terms to the measured values in the ADC registers to compensate for voltage biases in the

encoder and/or receiving circuitry. However, because the auto-correcting circuitry in the FPGA of

this interpolator has already included the corrections in the synthesized data sent to the ASIC, the

correction terms in the ASIC should not be used, and Gate3[i].Chan[j].AdcOffset[0] and

Gate3[i].Chan[j].AdcOffset[1] should be left at their default values of 0.

Arctangent Extension: Gate3[i].Chan[j].AtanEna: The PMAC3-style ASIC has the capability to

compute the sub-count interpolated position itself in hardware and to combine this value with the

whole-count data from the quadrature counter. The sub-count data is always calculated from the

ADC values and placed in the 16-bit status element Gate3[i].Chan[j].Atan. If saved setup

element Gate3[i].Chan[j].AtanEna is set to 1, the high 14 bits of this 16-bit value is combined

with the whole-count data and latched into the 32-bits elements Gate3[i].Chan[j].PhaseCapt

each phase cycle, and into Gate3[i].Chan[j].ServoCapt each servo cycle. These 14 bits show the

location within one line of the encoder, providing 16,384 states per line of the encoder (4,096

states per quadrature count) in a single register. (It is possible in the encoder conversion table to

include the last 2 bits from the arctangent value in the Atan element to get a full 65,536 states per

line of the encoder.)

Reading the Data as a Serial-Interface Position Value

The FPGA of the auto-correcting interpolator can also provide the corrected position to the ASIC

through the ASIC’s serial encoder interface each phase and servo cycle. Using the data provided

this way for servo feedback provides several advantages that might be valuable in the highest-

performance applications.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 158

First, as it is possible to request the data on the actual servo and phase interrupt and have it ready

in time for use, there is less time delay inside the feedback loop. Second, it is possible to obtain

this position with less time jitter due to the higher frequency of the serial encoder clock compared

to the A/D converter clock. Third, the processor can access the fully interpolated value by just

reading a single I/O register, rather than two, saving processor time each servo cycle. Most

applications would not notice these improvements, but the highest-precision applications could

see an advantage.

The E1 jumper on the Auto-Correcting Interpolator board must be configured to connect pins 2

and 3 to use this simulated serial-encoder value. If it is configured to connect pins 1 and 2, an

external serial encoder can be read through this interface instead.

It is possible to use this simulated serial position value for servo and commutation feedback, and

simultaneously use the counter values for hardware capture and compare functionality.

Multi-Channel Configuration: Gate3[i].SerialEncCtrl: To set up the serial interface, first set

Gate3[i].SerialEncCtrl to $01010001. This specifies the SPI serial-encoder protocol for all

channels with a 50 MHz clock rate, sampled on the falling edge of the phase clock (which is also

the interrupt). Note that at a 50 MHz clock rate, the data will be ready for use by the processor

within 1 microsecond, in time for the interrupt service routine to use the new position data.

Single-Channel Configuration: Gate3[i].Chan[j].SerialEncCmd: Then, for each channel that is

to use the serial interface, set Gate3[i].Chan[j].SerialEncCmd to $000010A0. This sets up the

ASIC channel to request SPI data on a cyclic basis with 2 status bits and 32 data bits. The 32-bit

position data has 14 bits of sub-count data (16 bits of sub-line data), so there are 16,384 states per

quadrature count, or 65,536 states per encoder line, in the resulting value.

Single-Channel Enabling: Gate3[i].Chan[j].SerialEncEna: In order for the ASIC channel to

request and read this data, Gate3[i].Chan[j].SerialEncEna must be set to 1.

Using the Resulting Position Information

Position data from sinusoidal encoders is commonly used for both ongoing phase commutation

position and ongoing servo position functions. Because it is incremental position data, it is not

used for absolute power-on position for either phase commutation or servo functions.

Ongoing Commutation Phase Position

For the commutation algorithm’s ongoing phase position, Power PMAC reads the entire 32-bit

register specified by Motor[x].pPhaseEnc every phase cycle. It then multiplies the value of the

full register by Motor[x].PhasePosSf to rescale it into units of the standard commutation cycle

(2048 per commutation cycle).

ACC-51E PMAC2-Style Interface

To use the (uninterpolated) sinusoidal encoder position from an ACC-51E interface for ongoing

phase position, the following saved setup elements must be specified to read the encoder counter

position value:

 Motor[x].pPhaseEnc = Gate1[i].Chan[j].PhaseCapt.a

 Motor[x].PhasePosSf = 2048 / (256 * 4 * lines per commutation cycle)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 159

In the 24-bit ACC-51E, the LSB of the encoder counter is found in bit 8 on the 32-bit data bus,

and so is equal to 256 LSBs of the 32-bit register. Each LSB of the counter is ¼ of an encoder

line, because “times-4” decode is in force. Note that even this uninterpolated count value has

enough resolution for high-performance commutation in virtually all cases.

PMAC3 Standard ASIC-Based Interface

To use the sinusoidal encoder position from a PMAC3 standard ASIC-based interface for

ongoing phase position, the following saved setup elements must be specified:

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].PhaseCapt.a

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle)

With the arctangent interpolation active in the ASIC channel (Gate3[i].Chan[j].AtanEna = 1),

the LSB of the PhaseCapt register is 1/16,384 of an encoder line. The denominator of the

expression for PhasePosSf should therefore be 16,384 times the number of encoder lines (signal

cycles) per commutation cycle (or 4096 times the number of quadrature counts per commutation

cycle).

With the arctangent interpolation not active in the ASIC channel (Gate3[i].Chan[j].AtanEna =

0), the LSB of the PhaseCapt register is 1/1024 of an encoder line. The denominator of the

expression for PhasePosSf should therefore be 1024 times the number of encoder lines (signal

cycles) per commutation cycle (or 256 times the number of quadrature counts per commutation

cycle).

PMAC3 Auto-Correcting FPGA & ASIC-Based Interface

To use the sinusoidal encoder position from a PMAC3 standard ASIC-based interface for

ongoing phase position, the following saved setup elements must be specified:

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].PhaseCapt.a

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle)

With the arctangent interpolation active in the ASIC channel (Gate3[i].Chan[j].AtanEna = 1),

the LSB of the PhaseCapt register is 1/16,384 of an encoder line. The denominator of the

expression for PhasePosSf should therefore be 16,384 times the number of encoder lines (signal

cycles) per commutation cycle (or 4096 times the number of quadrature counts per commutation

cycle).

With the arctangent interpolation not active in the ASIC channel (Gate3[i].Chan[j].AtanEna =

0), the LSB of the PhaseCapt register is 1/1024 of an encoder line. The denominator of the

expression for PhasePosSf should therefore be 1024 times the number of encoder lines (signal

cycles) per commutation cycle (or 256 times the number of quadrature counts per commutation

cycle).

To use the encoder position in the ASIC obtained from the FPGA through the serial encoder

interface for ongoing phase position, the following saved setup elements must be specified:

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].SerialEncDataA.a

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 160

The LSB of the SerialEncDataA register is 1/65,536 of an encoder line. The denominator of the

expression for PhasePosSf should therefore be 65,536 times the number of encoder lines (signal

cycles) per commutation cycle.

Ongoing Servo Position

To use the interpolated sinusoidal encoder position for ongoing servo position, the data must first

be processed in the encoder conversion table. This processing can be different for the PMAC3-

style interface, where the interpolation can have already been performed in the ASIC, and the

PMAC2-style interface, where the interpolation has not been performed in the ASIC, and so must

be performed in the software conversion.

ACC-51E PMAC2-Style Interface

To use the interpolated sinusoidal encoder position from an ACC-51E interface for ongoing servo

position, the following saved setup elements must be specified:

 EncTable[n].Type = 4 // Software arctangent extension conversion

 EncTable[n].pEnc = Gate1[i].Chan[j].Status.a // Register with quadrature state

 EncTable[n].pEnc1 = Gate1[i].Chan[j].Adc[0].a // Register with sine input

 EncTable[n].index5 = 0 // Use PMAC2-style IC format

 EncTable[n].ScaleFactor = 1/1024 // For result in encoder quadrature counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Here the conversion table entry performs the (12-bit) arctangent interpolation in software using

the A/D-converter values it reads. The choice of ScaleFactor depends on whether the units of the

result are LSBs of the interpolation (= 1.0), quadrature counts (= 1/1024, as shown), or lines of

the encoder (= 1/4096).

Software Corrections: The following saved setup elements in the table entry can be set to non-

zero values to correct for signal imperfections:

 EncTable[n].SinBias // Voltage offset correction for sine value

 EncTable[n].CosBias // Voltage offset correction for cosine value

 EncTable[n].CoverSerror // Magnitude mismatch correction

 EncTable[n].TanHalfPhi // Phase-offset error correction

Software Filtering: The analog front end of the standard interpolator circuitry has very “light”

filtering, to permit the use of very high encoder signal frequencies (and therefore very high motor

speeds). If the noise level on the resulting position values is too high, software filtering can be

performed in the conversion table entry. This is enabled by setting EncTable[n].index2 to a

value of 32 or larger, with EncTable[n].index1 and EncTable[n].index2 acting as the gains of

the filter. Refer to the User’s Manual chapter Setting Up the Encoder Conversion Table for

details.

PMAC3 Standard ASIC-Based Interface

To use the hardware-interpolated sinusoidal encoder position from a PMAC3 standard ASIC-

based interface for ongoing servo position, the following saved setup elements must be specified:

 EncTable[n].Type = 1 // Single-register read conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a // Combined position register

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 161

 EncTable[n].index1 = 0 // No left shift

 EncTable[n].index2 = 0 // No right shift

 EncTable[n].ScaleFactor = 1/4096 // For result in encoder quadrature counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Here, the (14-bit) arctangent interpolation has been performed in the ASIC, and the conversion

table simply needs to read the combined whole-count/fractional count value in the channel’s

ServoCapt element. The choice of ScaleFactor depends on whether the units of the result are

LSBs of the interpolation (= 1.0), quadrature counts (= 1/4096, as shown), or lines of the encoder

(= 1/16384).

To use software-based arctangent interpolated position from a PMAC3 standard ASIC-based

interface, which can compensate for more types of signal errors, for ongoing servo position, the

following saved setup elements must be specified:

 EncTable[n].Type = 4 // Software arctangent extension conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].Status.a // Register with quadrature state

 EncTable[n].pEnc1 = Gate3[i].Chan[j].AdcEnc[0].a // Register with sine input

 EncTable[n].index5 = 1 // Use PMAC3-style IC format

 EncTable[n].ScaleFactor = 1/16384 // For result in encoder quadrature counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Here the conversion table entry performs the (16-bit) arctangent interpolation in software using

the A/D-converter values it reads. The choice of ScaleFactor depends on whether the units of the

result are LSBs of the interpolation (= 1.0), quadrature counts (= 1/16384, as shown), or lines of

the encoder (= 1/65536).

Software Corrections: The following saved setup elements in the table entry can be set to non-

zero values to correct for signal imperfections:

 EncTable[n].SinBias // Voltage offset correction for sine value

 EncTable[n].CosBias // Voltage offset correction for cosine value

 EncTable[n].CoverSerror // Magnitude mismatch correction

 EncTable[n].TanHalfPhi // Phase-offset error correction

Software Filtering: The analog front end of the standard interpolator circuitry has very “light”

filtering, to permit the use of very high encoder signal frequencies (and therefore very high motor

speeds). If the noise level on the resulting position values is too high, software filtering can be

performed in the conversion table entry. This is enabled by setting EncTable[n].index2 to a

value of 32 or larger, with EncTable[n].index1 and EncTable[n].index2 acting as the gains of

the filter. Refer to the User’s Manual chapter Setting Up the Encoder Conversion Table for

details.

PMAC3 Auto-Correcting FPGA & ASIC-Based Interface

With the Auto-Correcting Interpolator, there are several possibilities for using the resulting data

in the servo loop: hardware-interpolated position, simulated serial-encoder position, direct

velocity value, and direct acceleration value.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 162

Hardware-Interpolated Position: To use the full hardware- interpolated sinusoidal encoder

position from a PMAC3 auto-correcting FPGA and ASIC-based interface for ongoing servo

position, the following saved setup elements must be specified:

 EncTable[n].Type = 7 // Extended interpolated conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a // Combined position register

 EncTable[n].pEnc1 = Gate3[i].Chan[j].AtanSumOfSqr.a // Full-res interpolation

 EncTable[n].index1 = 0 // No left shift or filtering

 EncTable[n].index2 = 0 // No right shift or filtering

 EncTable[n].ScaleFactor = 1/16384 // For result in encoder quadrature counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Here, the (16-bit) arctangent interpolation has been performed in the ASIC, and the conversion

table needs to read the combined whole-count/fractional count value in the channel’s ServoCapt

register and combine it with the extended interpolation in the channel’s AtanSumOfSqr register.

The choice of ScaleFactor depends on whether the units of the result are LSBs of the

interpolation (= 1.0), quadrature counts (= 1/16,384, as shown), or lines of the encoder (=

1/65,536).

Note that the auto-correcting interpolator oversamples the signal and performs filtering in digital

hardware, so further filtering in the encoder conversion table is not recommended in this case.

Simulated Serial Encoder Position: To use the encoder position in the ASIC obtained from the

FPGA through the serial encoder interface for ongoing servo position, the following saved setup

elements must be specified:

 EncTable[n].Type = 1 // Single-register read conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a // Serial register

 EncTable[n].index1 = 0 // No left shift or filtering

 EncTable[n].index2 = 0 // No right shift or filtering

 EncTable[n].ScaleFactor = 1/16384 // For result in encoder quadrature counts

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Note that the auto-correcting interpolator oversamples the signal and performs filtering in digital

hardware, so further filtering in the encoder conversion table is not recommended in this case.

Direct Velocity Value: If the additional data request value has been set to obtain a direct velocity

value from the FPGA, this value can be used to close the inner servo loop. (It should not be used

to close the outer servo loop.) Use of this value may provide superior servo performance

compared to using the differentiated position value.

To use this value for inner-loop position, which requires a single numerical integration, the

following saved setup elements must be specified:

 EncTable[n].Type = 1 // Single-register read conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].AdcEnc[2].a // Auxiliary ADC register

 EncTable[n].index1 = 8 // Shift left 8 bits

 EncTable[n].index2 = 8 // Shift right 8 bits

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 163

 EncTable[n].index4 = 1 // Single integration (velocity to position)

 EncTable[n].ScaleFactor = SF* // User settable scaling

 Motor[x].pEnc2 = EncTable[n].a // Use table result for inner-loop feedback

* SF = N * 24 * Sys.ServoPeriod / (20 * 256), where N is scaling factor of reported

velocity (1, 4, 16, or 64)

Direct Acceleration Value: If the additional data request value has been set to obtain a direct

acceleration value from the FPGA, this value can be used to close the inner servo loop. (It should

not be used to close the outer servo loop.) Use of this value may provide superior servo

performance when acceleration feedback is used (typically for “electronic flywheel” effects)

compared to using the differentiated position value.

To use this value for inner-loop position, which requires double numerical integration, the

following saved setup elements must be specified:

 EncTable[n].Type = 1 // Single-register read conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].AdcEnc[3].a // Auxiliary ADC register

 EncTable[n].index1 = 8 // Shift left 8 bits

 EncTable[n].index2 = 8 // Shift right 8 bits

 EncTable[n].index4 = 2 // Double integration (acceleration to position)

 EncTable[n].ScaleFactor = SF* // User settable scaling

 Motor[x].pEnc2 = EncTable[n].a // Use table result for inner-loop feedback

* SF = N * 24 * Sys.ServoPeriod / (20 * 256), where N is scaling factor of reported

velocity (1, 4, 16, or 64)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 164

Setting Up Resolvers

Resolvers are often used as position sensors when the environmental conditions – temperature,

shock, vibration, radiation, etc. – do not permit the use of optical or magnetic encoders. In

addition resolvers are absolute sensors, at least over one revolution of the motor. Power PMAC

provides two basic interfaces for resolvers. The first is based on the PMAC3-style “DSPGATE3”

IC, as used with the analog feedback option of the ACC-24E3 axis-interface board and of the

Power Brick. The second is based on the PMAC2-style “DSPGATE1” Servo IC, as used in the

UMAC ACC-58E resolver-to-digital (R/D) converter board.

Note that in many uses of resolver feedback, the resolver interface and conversion is performed in

the servo drive, and a simulated encoder signal, usually in digital quadrature format, is output

from the drive to the controller. This is the case if it is a brushless motor drive operating in

“torque mode”, “velocity mode”, or even “position mode”, because the drive needs the resolver

position information for commutation. In these cases, Power PMAC setup is for the simulated

signal type.

Generally, Power PMAC performs the resolver interface and conversion only if it is performing

commutation for the motor, usually with a “direct PWM” amplifier.

Signal Format

The Power PMAC resolver interfaces generate a sinusoidal “excitation” signal output for each

resolver, and accept differential “sine” and “cosine” feedback signals from the resolver. The

excitation signal has a programmable frequency, magnitude, and phase offset from the system

clocks. The feedback signals contain this same “carrier” frequency, and demodulated, their

magnitudes reflect the sine and cosine of the physical angle of the resolver.

The Power PMAC interfaces effectively demodulate the feedback signals by sampling them

synchronously into analog-to-digital converters (ADCs) at or near the peaks of the carrier signal;

the angle is then calculated as the arctangent of the sine and cosine numbers produced by the

ADCs.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 165

The following diagram shows the principle of operation for this type of resolver interface.

θ

Exc+

Exc-

Sin+

Sin-

Cos+Cos-

sin(θ)sin(ωt)

cos(θ)sin(ωt)

sin(ωt+φ)

Phase

Clock

Excitation

Output

Sine

Feedback

Cosine

Feedback

Resolver Interface Principle of Operation

Hardware Setup

The two leads for the resolver’s excitation signal are connected between the channel’s RESOUT

(R1) signal and the GND reference voltage. The four leads for the resolver’s differential sine and

cosine signals are connected in pairs to the channel’s SIN+ (S2) and SIN- (S4), COS+ (S3) and

COS- (S1) inputs.

WARNING

Exchanging any pair of resolver leads will have the effect

of changing the direction polarity and the zero angle of the

resolver. Changing the direction sense on the feedback

resolver for a motor with a properly operating servo loop

can cause a dangerous runaway condition. Changing the

zero-angle on the feedback resolver for a motor with

properly operating commutation can cause a dangerous

runaway condition.

Hardware-Control Parameter Setup

The Power PMAC hardware interface for resolvers is configurable in software with saved setup

elements.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 166

PMAC3 ASIC-Based Interface

For the resolver interface using the PMAC3 ASIC, there are two setup elements in the IC, one

multi-component element for all channels, and one element for each channel.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

Excitation Signal Control: Gate3[i].ResolverCtrl

The key configuration element in the PMAC3 ASIC-based resolver interface is multi-channel

element Gate3[i].ResolverCtrl. This is a 32-bit element, with the only the high 12 bits,

represented by the first three hexadecimal digits, presently being used. This element specifies the

magnitude, frequency, and phase of the automatically generated sinusoidal excitation signal used

for all four channels of the ASIC.

The highest 8 bits of the element, which form component ResolverExciteShift, represented in the

first two hex digits of the element, specify the phase shift of the excitation sine wave relative to

the phase clock. It can take a value from $00 (0) to $FF (255), in units of 1/512 of an excitation

cycle. This component is usually set experimentally, to maximize the magnitude of the feedback

signals, which are sampled on the rising edge of the phase clock. Resolvers with different

electrical L/R time constants will require different phase shifts to provide maximum readings.

The IDE setup control for resolver feedback does this automatically; it is also possible to do this

manually, by monitoring the magnitude of status element Gate3[i].Chan[j].SumofSquares for

the ASIC channel. The ASIC automatically computes this value each phase cycle from the

readings of input elements Gate3[i].Chan[j].AdcEnc[0] and AdcEnc[1].

The next 2 bits of the element, which form component ResolverExciteGain, represented in the

high part of the third hex digit, specify the magnitude of the excitation output. Values of 0, 1, 2,

and 3 for this component specify magnitudes of 1/4, 1/2, 3/4, and 1 times, respectively, the

maximum magnitude. The highest magnitude that does not cause saturation of the feedback

ADCs (which can be detected by values in SumOfSquares greater than 32,767) should be used.

The next 2 bits of the element, which form component ResolverExciteFreq, represented in the

low part of the third hex digit, specify the frequency of the excitation output. Values of 0, 1, 2,

and 3 for this component specify frequencies of 1, 1/2, 1/4, and 1/6 times, respectively, the phase

clock frequency. The frequency that comes closest to that recommended by the resolver

manufacturer should be used.

For example, to set up an excitation signal with a ¼-cycle (128/512 of a cycle) lag, ½ of the

maximum magnitude, and at ¼ of the phase clock frequency, Gate3[i].ResolverCtrl would be set

to $80500000.

Direction Sense Control: Gate3[i].Chan[j].EncCtrl

The direction sense of the resolver conversion for a channel is determined by bit 2 (value 4) of

channel saved setup element Gate3[i].Chan[j].EncCtrl. Usually the element value is just

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 167

changed between its default value of 7 and 3, but for purposes of the resolver conversion, all that

matters is the value of bit 2.

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the feedback to increment in the

positive direction – otherwise a dangerous runaway

condition will occur when the servo loop is closed.

Changing the direction sense of the decode of a feedback

sensor in a properly working servo loop without changing

the direction sense of the servo loop outputs will result in a

dangerous runaway.

ACC-58E PMAC2-Style Interface

The key configuration elements in the ACC-58E resolver-interface board are in the same

auxiliary IC that contains the board identification information. These elements are called

Gate1[i].PartData[k], also accessible as Acc58E[i].PartData[k].

Excitation Phase Shift: Gate1[i].PartData[2]

Bits 8 – 17 of Gate1[i].PartData[2] specify the phase shift of the excitation sine wave relative to

the phase clock. These bits can take a value from $00 (0) to $1FF (511), in units of 1/512 of an

excitation cycle. The low 8 bits of this element are read-only, so it does not matter what is written

to them. A value of $1FF00 written to the element specifies the maximum phase shift. This

element is usually set experimentally, to maximize the magnitude of the feedback signals, which

are sampled on the rising edge of the phase clock. Resolvers with different “L/R” electrical time

constants will require different phase shifts to provide maximum readings.

Excitation Magnitude: Gate1[i].PartData[1]

Bits 8 – 11 of Gate1[i].PartData[1] specify the magnitude of the excitation output. Values of 0

to 15 in these bits specify magnitudes of 1/16 to 1 times, respectively, the maximum magnitude.

The highest magnitude that does not cause saturation of the feedback ADCs (which can be

detected by reading the values in Gate1[i].Chan[j].Adc[0] and Adc[1]) should be used. The low

8 bits of this element are read-only, so it does not matter what is written to them. A value of $F00

written to the element specifies the maximum magnitude.

Excitation Frequency: Gate1[i].PartData[3]

Bits 8 – 9 of Gate1[i].PartData[3] specify the frequency of the excitation output. Values of 0, 1,

2, and 3 for these bits specify frequencies of 1, 1/2, 1/4, and 1/6 times, respectively, the phase

clock frequency. The frequency that comes closest to that recommended by the resolver

manufacturer should be used. The low 8 bits of this element are read-only, so it does not matter

what is written to them. A value of $300 written to the element specifies the minimum frequency.

Direction Sense Control: Gate1[i].Chan[j].EncCtrl

The position value is calculated in software in the encoder conversion table from the ADC

readings. The ECT uses the value of bit 2 (value 4) of Gate1[i].Chan[j].EncCtrl to determine the

direction sense of the position value it calculates. Usually the element value is just changed

between its default value of 7 and 3, but for purposes of the resolver conversion, all that matters is

the value of bit 2.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 168

The ECT entry only reads this bit from the IC when the value of EncTable[n].index3 is 0 for the

entry; it then copies the value of the IC channel’s EncCtrl element into its index3 element, which

it then uses each servo cycle to determine the direction sense of its conversion (this saves

significant computation time). Normally, this is done just at power-on reset. If you change the

value of Gate1[i].Chan[j].EncCtrl during setup to change the direction sense, also set the value

of EncTable[n].index3 to 0, so the ECT entry will use the new direction sense.

WARNING

For a feedback sensor, the sensor’s direction sense must

match the servo-loop output’s direction sense – a positive

servo output must cause the feedback to increment in the

positive direction – otherwise a dangerous runaway

condition will occur when the servo loop is closed.

Changing the direction sense of the decode of a feedback

sensor in a properly working servo loop without changing

the direction sense of the servo loop outputs will result in a

dangerous runaway.

Using the Resulting Position Information

Resolver position information is commonly used for both absolute power-on position and

ongoing position and both for the servo and commutation algorithms.

Note that with the PMAC2-style ACC-58E interface, the resolver position is computed in the

encoder conversion table (ECT), which executes under the servo interrupt. Therefore, if the phase

interrupt is at a higher frequency than the servo interrupt, it will not get new position data each

cycle. Because the required position resolution for the commutation algorithm is not that high, the

resulting errors usually do not matter. A simple compensation can be done using the

Motor[x].AdvGain “phase advance” term, so that errors at velocity average to zero. Alternately,

the servo clock frequency can be set equal to the phase clock frequency, and the servo-loop

closure rate slowed if necessary by setting Motor[x].Stime greater than zero to skip interrupts

between successive closures.

Ongoing Commutation Phase Position

Resolvers are commonly used for ongoing phase position as well, providing the rotor angle

information each phase cycle. The resolver position information, whether calculated in the

PMAC3 ASIC hardware, or in software in the ECT from the ACC-58E, ends up in the high 16

bits of a 32-bit register.

Power PMAC reads the entire 32-bit register each phase cycle and scales the result to the 2048-

part commutation cycle. (Note that this means that only the high 11 bits are really needed.) One

cycle of the resolver position in this register has a range of 4,294,967,298 (232) LSBs of the

register. This covers the travel over one north-south pole pair of the resolver. For the most

common 2-pole resolver, this is a full mechanical revolution of the resolver.

For an n-pole motor, one mechanical revolution covers n/2 commutation cycles of the motor.

With the typical 2-pole resolver, one resolver cycle covers these n/2 commutation cycles. In the

more general case of an nr-pole resolver on an nm-pole motor, one resolver cycle covers nm/nr

resolver cycles.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 169

PMAC3 ASIC-Based Interface

To use resolver position from a PMAC3-style ASIC-based interface for ongoing phase position,

the following saved setup elements must be specified:

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].AtanSumOfSqr.a // ASIC position

 Motor[x].PhasePosSf = nm/nr * 2,048/4,294,967,298 // Scale to 2048-part cycle

ACC-58E PMAC2-Style Interface

To use resolver position generated from the readings in an ACC-58E for ongoing phase position,

the position calculated in the ECT must be used. The following saved setup elements must be

specified:

 Motor[x].pPhaseEnc = EncTable[n].PrevEnc.a // ECT position

 Motor[x].PhasePosSf = nm/nr * 2,048/4,294,967,298 // Scale to 2048-part cycle

Power-On Commutation Phase Position

Because resolvers provide absolute position information, at least of one motor revolution, they

are commonly used to provide the absolute rotor-angle position at power-up for the commutation

algorithms. With the Power PMAC resolver interfaces, the same register is read for power-on

phase position as for ongoing phase position, although the processing is done a little differently.

In either interface, the value of AbsPhasePosOffset is usually found by executing the “stepper-

motor” phasing search, which forces the motor to the zero point of the commutation cycle, and

reading the value of the resolver position there. The negative of this value (using the proper

number of bits) is multiplied by AbsPhasePosSf and written into AbsPhasePosOffset.

PMAC3 ASIC-Based Interface

To use resolver position from a PMAC3-style ASIC-based interface for power-on phase position,

the following saved setup elements must be specified:

 Motor[x].pAbsPhasePos = Gate3[i].Chan[j].AtanSumOfSqr.a

 Motor[x].AbsPhasePosFormat = $00001010 // Use high 16 bits of 32-bit register

 Motor[x].AbsPhasePosSf = = nm/nr * 2048/65536 // Scale to 2048-part cycle

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

ACC-58E PMAC2-Style Interface

To use resolver position from an ACC-58E interface for power-on phase position, the position

calculated in the ECT must be used, so the following saved setup elements must be specified:

 Motor[x].pAbsPhasePos = EncTable[n].PrevEnc.a

 Motor[x].AbsPhasePosFormat = $00001010 // Use high 16 bits of 32-bit register

 Motor[x].AbsPhasePosSf = = nm/nr * 2048/65536 // Scale to 2048-part cycle

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

Ongoing Servo Position

To use the interpolated sinusoidal encoder position for ongoing servo position, the data must first

be processed in the encoder conversion table. This processing is different for the PMAC3-style

interface, where the interpolation has already been performed in the ASIC, and the PMAC2-style

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 170

interface, where the interpolation has not been performed in the ASIC, and so must be performed

in the software conversion.

PMAC3 ASIC-Based Interface

To use the hardware-converted resolver position from a PMAC3 ASIC-based interface for

ongoing servo position, the following saved setup elements must be specified:

 EncTable[n].Type = 1 // Single-register read conversion

 EncTable[n].pEnc = Gate3[i].Chan[j].AtanSumofSqr.a

 EncTable[n].index1 = 16 // 16-bit left shift to bring back to high end

 EncTable[n].index2 = 16 // 16-bit right shift to eliminate low bits

 EncTable[n].ScaleFactor = 1/65536 // For result in 16-bit conversion LSBs

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Here, the 16-bit arctangent conversion has been performed in the ASIC, and the conversion table

simply needs to read the value in the upper half of the channel’s AtanSumOfSqr element.

ACC-58E PMAC2-Style Interface

To use the converted position from an ACC-58E interface for ongoing servo position, the

following saved setup elements must be specified:

 EncTable[n].Type = 6 // Software arctangent resolver conversion

 EncTable[n].pEnc = Acc58E[i].PartData[0].a // Excitation value address

 EncTable[n].pEnc1 = Acc58E[i].Chan[j].Adc[0].a

 EncTable[n].index3 = 0 or 1 // Specifies direction sense

 EncTable[n].ScaleFactor = 1/65536 // For result in conversion LSBs

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Here the conversion table entry performs the 16-bit arctangent calculation in software using the

A/D-converter values it reads.

Filtering in the Conversion Table

Resolver feedback is often noisy. If the noise level on the resulting position values is too high,

software filtering can be performed in the conversion table entry. This is enabled by setting

EncTable[n].index2 to a value of 32 or larger, with EncTable[n].index1 and

EncTable[n].index2 acting as the gains of the filter. Refer to the User’s Manual chapter Setting

Up the Encoder Conversion Table for details.

Power-On Servo Position

It is possible to use the resolver position for absolute power-on servo position, but because a

single resolver is only absolute over one motor revolution, this is seldom very useful. (A set of

geared resolvers can provide multi-turn absolute position, but a custom algorithm is required to

read these encoders and assemble the readings into a single position value. With the motor

disabled, this value can be written into Motor[x].Pos.)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 171

PMAC3 ASIC-Based Interface

To use (a single) resolver position from a PMAC3-style ASIC-based interface for power-on servo

position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = Gate3[i].Chan[j].AtanSumOfSqr.a

 Motor[x].AbsPosFormat = $00001010 // Use high 16 bits of 32-bit register

 Motor[x].AbsPosSf = 1.0 // Motor units of 65,536 per resolver cycle

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero)

PMAC3 ASIC-Based Interface

To use (a single) resolver position from an ACC-58E PMAC2-style interface, where the position

is calculated in the ECT, for power-on servo position, the following saved setup elements must be

specified:

 Motor[x].pAbsPos = EncTable[n].PrevEnc.a

 Motor[x].AbsPosFormat = $00001010 // Use high 16 bits of 32-bit register

 Motor[x].AbsPosSf = 1.0 // Motor units of 65,536 per resolver cycle

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 172

Setting Up MLDTs

A Power PMAC can provide direct interface to magnetostrictive linear displacement transducers

(MLDTs), such as MTS’s Temposonics® brand, with either PMAC3-style ICs as used on the

UMAC ACC-24E3 boards or in the Power Brick products, or PMAC2-style ICs, as used on the

UMAC ACC-24E2x boards. MLDTs can provide absolute position information in rugged

environments; they are particularly well suited to hydraulic applications. In this interface Power

PMAC provides a periodic excitation pulse output to the MLDT, receives the echo pulse that

returns at the speed of sound in the transducer, and very accurately measures the time between

these pulses, which is directly proportional to the distance of the moving member from the

stationary base of the transducer. The timer therefore contains a position measurement.

Signal Format

MLDTs are available with several different interface formats; for this interface, a format with

“external excitation” is required, because Power PMAC provides the excitation pulse. Usually

this format has an “RS-422” interface, because the excitation and echo pulses are at RS-422

levels. The Power PMAC MLDT interface inputs and outputs are at RS-422 levels.

Note

Some MLDTs come with internal excitation and computation

of position, providing a position value in a format such as

Synchronous Serial Interface (SSI) or an analog voltage. In

these cases, setting up the Power PMAC interface is dependent

only on the data format, not on the underlying principle of the

sensor. Refer to the appropriate feedback-format section for

details.

There are two common signal formats of the external excitation type; MTS calls them “RPM”

and “DPM”. In the RPM format there are two short pulses returned from the MLDT: an

immediate “start” pulse, and a delayed “stop” pulse.

RPM Signal Format

Pulse Out

Return

Start Stop

Since Power PMAC uses the first rising signal edge returned after the falling edge of the output

pulse to latch the timer, the key setup issue in this format is to make sure that the output pulse

width is large enough so that the falling edge of the output pulse occurs after the rising edge of

the return line’s start pulse (see “PFM Pulse Width”, below).

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 173

In the DPM format, there is only one long pulse returned from the MLDT.

DPM Signal Format

Pulse Out

Return

Start Stop

The rising edge of the return pulse in the DPM format is the equivalent of the rising edge of the

start pulse in the RPM format. The falling edge of the return pulse in the DPM format is the

equivalent to the rising edge of the stop pulse in the RPM format. Because Power PMAC is

expecting a rising signal edge to latch the timer, in this signal format the return signals should be

inverted so that the ‘+’ output of the MLDT is wired into Power PMAC’s ‘-’ input, and vice

versa.

Hardware Setup

The PULSEn output that is commonly used to command stepper drives is used as the excitation

signal for the MLDT; the CHAn input that is typically part of encoder feedback is used to accept

the response. The PULSEn output is an RS-422 style differential line-drive pair. The CHAn input

is an RS-422 style differential line receiver pair. The use of differential pairs for both inputs and

outputs is strongly encouraged for the common-mode noise rejection it provides.

On some interface boards (e.g. ACC-24E2A, ACC-24E2S), the PULSEn+/- signals are output on

lines that would otherwise be supplemental flag inputs, and jumper(s) must be installed to enable

the outputs on these lines. Consult the hardware reference manual for your board for details.

Remember that in the DPM signal format or equivalent (see above), the ‘+’ output of the MLDT

should be wired into the CHAn- input, and the ‘-’ output of the MLDT should be wired into the

CHAn+ input.

Hardware-Control Parameter Setup

With either the PMAC3-style ASIC or the PMAC2-style ASIC, some saved setup elements for

the ASIC must be set properly to configure the ASIC channel to output the excitation pulse and

measure the time until the echo pulse is received. The setup is different between the two ICs.

PMAC3-Style Interface

The PMAC3-style “DSPGATE3” Servo IC uses a channel’s pulse-frequency-modulation (PFM)

output circuits and encoder timer input circuits to interface to an MLDT. Several setup elements

must be configured for this interface.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 174

PFM Format Select: Gate3[i].Chan[j].OutputMode

The Phase D output signal for a channel used for the MLDT interface must be configured for

PFM output rather than PWM output. The signal format is determined by bit 3 (value 8) of saved

setup element Gate3[i].Chan[j].OutputMode. This bit must be set to 1 to select PFM output,

making the element 8 or greater. The A phase signal format is usually selected as DAC when

using MLDTs, in which case the element value should be 9, 11, 13, or 15.

MLDT Interface Select: Gate3[i].Chan[j].TimerMode

The multi-purpose timers for the IC channel must be configured for the MLDT interface. This is

done by setting saved setup element Gate3[i].Chan[j].TimerMode to 1. In this mode, the PFM

output is automatically configured to output an excitation pulse on the falling edge of each servo

cycle, regardless of the value in the PFM command register for the channel. Status element

Gate3[i].Chan[j].TimerA will contain the time from this excitation pulse until the echo pulse is

received on the encoder A-phase input, in units of the 600 MHz timer.

Output Pulse Width: Gate3[i].Chan[j].PfmWidth

The width of the output pulse for the Phase D output signal for a channel when it is in PFM mode

is determined by the value of saved setup element Gate3[i].Chan[j].PfmWidth for the channel.

This element is expressed in units of cycles of the internal PFM clock signal for the IC. This

clock frequency is set for all IC channels by saved setup element Gate3[i].PfmClockDiv, whose

default value is 5, establishing a 3.125 MHz frequency and 320 nanosecond period. At this clock

setting the default value for Gate3[i].Chan[j].PfmWidth of 15 generates a 4.8 µsec pulse width.

When using the RPM format or equivalent (see Signal Format, above), the pulse width must be

large enough to enclose the rising edge of the returned “start” pulse – that is, it must be longer

than the delay between the output pulse and the returned start pulse.

PMAC2-Style Interface

The PMAC2-style “DSPGATE1” Servo IC uses a channel’s pulse-frequency-modulation (PFM)

output circuits and encoder timer input circuits to interface to an MLDT. Several setup elements

must be configured for this interface.

PFM Format Select: Gate1[i].Chan[j].OutputMode

The Phase C output signal for a channel used for the MLDT interface must be configured for

PFM output rather than PWM output. The signal format is determined by bit 1 (value 2) of saved

setup element Gate1[i].Chan[j].OutputMode. This bit must be set to 1 to select PFM output,

making the element equal to 2 or 3. The A and B phase signal formats are usually selected as

DACs when using MLDTs, in which case the element value should be 3.

Pulse Output Frequency: Gate1[i].Chan[j].Pfm

In the PMAC2-style interface, the excitation pulse output frequency must be explicitly set using

the channel’s PFM-control elements. This frequency is a function of both the PFM clock

frequency and the PFM command value.

The frequency of the pulse output should produce a period just slightly longer than the longest

expected response time for the echo pulse. For MLDTs, the response time is approximately 0.35

sec/mm (9 sec/inch). On an MLDT 1500 mm (~60 in) long, the longest response time is

approximately 540 sec; a recommended period between pulse outputs for this device is 600

sec, for a frequency of 1667 Hz. Note that the frequency should always be at least as high as the

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 175

servo update frequency for the motor, so each servo cycle uses new data. This may require

lowering the servo update frequency for the motor.

The PFM clock frequency, which sets the finest interval to which the pulse output timing can be

controlled, is determined by the value of multi-channel saved setup element

Gate1[i].HardwareClockCtrl. The PFM clock frequency at the factory default value for this

element is 9.83 MHz, and this should not need to be changed for any MLDT application.

The value in the non-saved 24-bit channel command register Gate1[i].Chan[j].Pfm determines

the pulse output frequency given the clock frequency. Note that as a non-saved element, it must

be set in the user’s project or program after each power-on or reset.

To produce the desired pulse output frequency from a channel, the following formula can be

used:

)(_
216,777,16

].[].[1
)(kHzFreqPFMCLK

PfmjChaniGate
kHzOutputFreq

or:

)(_

)(
*216,777,16].[].[1

kHzFreqPFMCLK

kHzOutputFreq
PfmjChaniGate

To produce a pulse output frequency of 1.667 kHz with the default PFMCLK frequency of 9.83

MHz (9,830 kHz), we calculate:

982,2
830,9

667.1
*216,777,16].[].[1 PfmjChaniGate

Pulse Width: Gate1[i].PwmDeadTime

The width of the output pulse for all channels on the IC is controlled by the PFM clock frequency

and the value of (dual-use) multi-channel saved setup element Gate1[i].PwmDeadTime. This

element specifies the PFM pulse width as the number of PFM clock cycles. At the default PFM

clock frequency of 9.83 MHz, the default value of 15 produces a 1.5µsec output pulse width. This

should be satisfactory for most MLDT devices. When using the RPM format or equivalent (see

Signal Format, above), the pulse width must be large enough to enclose the rising edge of the

returned “start” pulse – that is, it must be longer than the delay between the output pulse and the

returned start pulse.

PFM Format Select: Gate1[i].Chan[j].OutputMode

The Phase C output signal for a channel used for the MLDT interface must be configured for

PFM output rather than PWM output. The signal format is determined by bit 1 (value 2) of saved

setup element Gate1[i].Chan[j].OutputMode. This bit must be set to 1 to select PFM output,

making the element equal to 2 or 3. The A and B phase signal formats are usually selected as

DACs when using MLDTs, in which case the element value should be 3.

MLDT Feedback Select: Gate1[i].Chan[j].EncCtrl

The decoding of the feedback signals on the “encoder” inputs for an IC channel is controlled by

saved setup element Gate1[i].Chan[j].EncCtrl. For proper decoding of the MLDT signal, this

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 176

element must be set to 12. With this setting, the pulse timer is cleared to zero at the falling edge

of the output pulse. It then counts up at 117.96 MHz until a rising edge on the return pulse is

received, at which time the timer’s value is latched into status element Gate1[i].Chan[j].TimerA.

Note

The MLDT feedback uses the same circuitry that would be

used for quadrature encoder feedback on that channel, so you

cannot simultaneously connect an encoder and MLDT to the

same channel’s feedback on Power PMAC. In this mode, it is

the pulse timer that is used as a position measurement for

feedback, not the pulse counter that is used with encoders. The

counter still registers the number of pulses returned, but does

not represent a position measurement here.

Using the Resulting Position Information

Position information from the MLDT, found in a channel timer register, is typically used for both

absolute power-on servo position and ongoing servo position. Both of these uses are covered

below. It is almost never used for commutation position.

The timer register contains the time elapsed between the excitation pulse output and the echo

pulse feedback. It is in the units of cycles of the high-frequency clock for the IC: 8.477

nanoseconds for the PMAC2 IC’s 117.96 MHz clock, and 1.667 nanoseconds for the PMAC3

IC’s 600 MHz clock.

At the nominal speed of sound in these devices, 2.81 mm/µsec (0.110 in/µsec), each timer

interval represents 0.0238 mm (0.000937 in) for a PMAC2 IC, or 0.00468 mm (0.000184 in) for a

PMAC3 IC. Check with the manufacturer for the actual transmission speed for the particular

sensor.

Ongoing Servo Position

To use the MLDT position for ongoing servo position, the data must first be processed in the

encoder conversion table. This is done with a “Type 1” single-register-read conversion from the

ASIC timer register.

PMAC3-Style Interface

To use the MLDT position value from the timer registers in a PMAC3-style IC for ongoing servo

position, the following saved setup elements must be specified:

 EncTable[n].Type = 1 // Single-register read

 EncTable[n].pEnc = Gate3[i].Chan[j].TimerA.a

 EncTable[n].index1 = 8 // Shift left 8 bits to restore position

 EncTable[n].index2 = 8 // Shift right to eliminate lower 8 bits

 EncTable[n].ScaleFactor = 1/256 // For units of timer LSB

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

PMAC2-Style Interface

To use the MLDT position value from the timer registers in a PMAC2-style IC for ongoing servo

position, the following saved setup elements must be specified:

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 177

 EncTable[n].Type = 1 // Single-register read

 EncTable[n].pEnc = Gate1[i].Chan[j].TimeBetweenCts.a

 EncTable[n].index1 = 8 // Shift left 8 bits to restore position

 EncTable[n].index2 = 8 // Shift right to eliminate lower 8 bits

 EncTable[n].ScaleFactor = 1/256 // For units of timer LSB

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

Power-On Servo Position

Absolute power-on servo position from an MLDT is found simply by reading the 24-bit timer

register, scaling and offsetting it into motor units.

PMAC3-Style Interface

To use the MLDT position value from the timer register in a PMAC3-style IC for absolute power-

on servo position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = Gate3[i].Chan[j].TimerA.a

 Motor[x].AbsPosFormat = $00001808 // Use high 24 bits of 32-bit register

 Motor[x].AbsPosSf = (Motor units per 600 MHz period)

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero)

PMAC2-Style Interface

To use the MLDT position value from the timer register in a PMAC2-style IC for absolute power-

on servo position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = Gate1[i].Chan[j].TimeBetweenCts.a

 Motor[x].AbsPosFormat = $00001808 // Use high 24 bits of 32-bit register

 Motor[x].AbsPosSf = (Motor units per 117.96 MHz period)

 Motor[x].AbsPosOffset = (Application specific value)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 178

Setting Up Parallel Data Position Inputs

Power PMAC can accept parallel-data position, usually through the ACC-14E UMAC TTL I/O

card. While parallel-data formats are becoming less common, largely replaced by serial data

formats, they are still used.

Signal Format

The ACC-14E card can accept up to 48 digital inputs at 5V TTL/CMOS levels. These levels are

suitable for most parallel-format position data.

Hardware Setup

The multiple bits of the parallel position data word are connected to consecutively numbered I/O

lines on the ACC-14E, with the LSB connected to the lowest numbered I/O pin of the set.

Typically one 24-bit port of the ACC-14E is used for one set of data. Port A provides pins I/O00

to I/O23, with I/O00 typically used for the LSB of the position data. Port B provides pins I/O24

to I/O47, with I/O24 typically used for the LSB of the position data.

Note that if the position data is not absolute, as with an interferometer, it may not be necessary to

connect all of the bits provided. Only enough bits need to be connected so that the resulting

numerical value cannot cover more than half of its cycle between consecutive servo cycles. If this

is the case, Power PMAC can handle the rollover properly and extend the position data

indefinitely.

For example, many interferometers provide 32 bits of incremental position data, but it is rarely

necessary to connect more than the low 24 bits. This permits a velocity of over 8 million (223)

LSBs per servo cycle. At a 5 kHz servo update and a 1.25 nanometer LSB, this permits a top

speed of over 50 meters per second.

The ACC-14E provides several possibilities for handshaking and latching the data using the

phase or servo clock signals and/or some other high-frequency clocks. Refer to the ACC-14E

manual to select the appropriate method and implement it properly.

Hardware Control Parameter Setup

The IOGATE ASIC used in the ACC-14E is software configurable for a variety of I/O

functionality. While the initialization values set by the auto-detection function will usually work

properly, the user should check these values to ensure proper configuration of the card for

feedback purposes.

Each ACC-14E has a saved initialization sub-structure GateIo[i].Init (or Acc14E[i].Init). The

following are the suggested settings for latched feedback inputs on all 48 pins (6 byte-wide data

registers).

GateIo[i].Init.CtrlReg should be set to $3F so that outputs on all 6 registers are disabled, and

cannot interfere with the connected input values.

The values of GateIo[i].Init.DataReg0[j], which set initial output values, do not matter, and can

be left at 0.

The values of GateIo[i].Init.DataReg64[j], which set the inversion control for the specified data

register (j = 0 to 5), are typically set to $FF to specify all inputs non-inverting (high = 1).

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 179

The values of GateIo[i].Init.DataReg128[j], which control the numeric form expected for the

specified data register (j = 0 to 5), should be set to $00 for the typical numeric binary, or to $FF

for Gray code.

The values of GateIo[i].Init.DataReg192[j], which control which value is read for the specified

data register (j = 0 to 5), should be set to $FF to read the value latched on the most recent clock

(rather than the “transparent” value).

Using the Resulting Position Information

The parallel position data brought into an ACC-14E can be used for both ongoing phase and

servo position feedback data. If it represents absolute position, it can also be used for power-on

phase and servo reference position.

In all the sections below, if the LSB of the position word is connected to pin I/O00 on Port A,

DataReg[0] is addressed. If the LSB of the position word is connected to pin I/O24 on Port B,

DataReg[3] is addressed.

Ongoing Servo Position

To use the parallel position data from the ACC-14E for ongoing servo position, the data must first

be processed in the encoder conversion table. This is done with a “Type 5” byte-wise register-

read entry. The following entries must be specified:

 EncTable[n].type = 5 // Byte-wise register read

 EncTable[n].pEnc = GateIo[i].DataReg[j].a // Starting (low) register address

 EncTable[n].pEnc1 = GateIo[i].DataReg[j+1].a // Next register address

 EncTable[n].index1 = (32-# of bits) // Shift left to permit rollover

 EncTable[n].index2 = 0 // No shift right

 EncTable[n].ScaleFactor = (1/2index1) // For result units of LSBs

 Motor[x].pEnc = EncTable[n].a // Use result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use result for velocity-loop feedback

Power-On Servo Position

If the parallel position data from the ACC-14E is absolute over the entire range of travel for the

motor, it can be used for power-on absolute servo position, eliminating the need for a homing

search move. To use parallel position data from an ACC-14E for absolute power-on servo

position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = GateIo[i].DataReg[j].a

 Motor[x].AbsPosFormat = $aa20cc08 // $cc is number of bits, $aa is format

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

Ongoing Commutation Phase Position

Because the position data in the ACC-14E is not found in a single register, it cannot be used

directly for ongoing commutation phase position feedback. If the position information is to be

used for this purpose, it is best to use the intermediate single-register value from encoder

conversion table processing. This will add some delay to the use of the data in the phase

algorithms, but unless the commutation frequency is extremely high, this will not have a

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 180

noticeable effect on commutation performance. If necessary, this time delay can be compensated

for with Motor[x].AdvGain.

To use this processed data for ongoing commutation feedback, set Motor[x].pPhaseEnc to

EncTable[n].PrevEnc.a, where n is the index of the ECT entry that is processing the feedback.

The ECT processing needs to have performed any shifting necessary for the data to roll over

properly, so Motor[x].PhaseEncRightShift and Motor[x].PhaseEncLeftShift should be left at

their default values of 0.

To scale the 32-bit value in the PrevEnc register into the commutation units of 1/2048 of a

commutation cycle (pole-pair), you will need to know how many LSBs of the input data there are

per commutation cycle, and in what bit n of the PrevEnc register the data LSB resides (which

should be equal to the value of EncTable[n].index1 for the entry. The scaling element

Motor[x].PhasePosSf can then be set according to the following equation:

 cyclecommLSBs
PhasePosSfxMotor

n _/*2

2048
].[

Power-On Commutation Phase Position

If the parallel position data is absolute over a range of at least one commutation cycle, it can be

used for absolute power-on phase position of a synchronous brushless servo motor, eliminating

the need for a power-on phasing search move. To use parallel position data from an ACC-14E for

absolute power-on servo position, the following saved setup elements must be specified:

 Motor[x].pAbsPhasePos = GateIo[i].DataReg[j].a

 Motor[x].AbsPhasePosFormat = $aa20cc08 // $cc is number of bits, $aa is format

 Motor[x].AbsPhasePosSf = (Motor units per LSB) // Must match ongoing pos res

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 181

Setting Up Analog Data Position Inputs

Power PMAC can accept analog inputs for position (and other) servo-loop data through a variety

of accessories, including:

 ACC-28E UMAC 4-channel 16-bit ADC board

 ACC-36E UMAC 16-channel 12-bit ADC board

 ACC-59E UMAC 8-channel 12-bit ADC (+ 8-channel 12-bit DAC) board

 ACC-59E3 UMAC 16-channel 16-bit ADC (+ 8-channel 16-bit DAC) board

 Power Brick optional 4/8-channel 16-bit ADCs

 Power Clipper optional 4/8-channel 12-bit ADCs

These accessories can be used to interface to analog sensors such as LVDTs and RVDTs (already

demodulated), potentiometers, capacitive distance sensors, tachometers, accelerometers, strain

gauges, and others, to be used as servo loop feedback or master data.

Note

The coupled analog signals of sinusoidal encoders and

resolvers are processed using hardware interfaces and software

algorithms specific to those sensors. These are covered in

separate sections in this chapter.

Signal Format

The analog-input accessories for the Power PMAC accept a voltage input that is intended to be

proportional to the quantity being measured. (The ACC-59E3 can also be configured to accept 4 –

20 mA current inputs, but that is seldom used for feedback data.) All of these accessories have

differential analog inputs, measuring the voltage difference between ADCn+ and ADCn- input

lines.

While differential inputs are strongly recommended due to the common-mode noise rejection

they provide, it is easy to use single-ended analog inputs simply by tying the ADCn- input to the

AGND reference voltage provided on the same connector.

ACC-28E

On the ACC-28E, if jumper En (n = 1 to 4) for hardware channel ADCn connects pins 1 and 2 to

select unipolar conversion, then the range of input voltage difference (V[ADCn+] – V[ADCn-])

is 0 to +10V, corresponding to converted values of 0 to 65,535.

If jumper En connects pins 2 and 3 to select bipolar conversion, then the range of input voltage

difference (V[ADCn+] – V[ADCn-]) is -10V to +10V, corresponding to converted values of 0 to

65,535.

ACC-36E, ACC-59E

On the ACC-36E and ACC-59E, if the software convert code specifies unipolar conversion, then

the range of input voltage difference (V[ADCn+] – V[ADCn-]) is 0 to +20V, corresponding to

converted values of 0 to 4,095.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 182

If the software convert code specifies bipolar conversion, then the range of input voltage

difference (V[ADCn+] – V[ADCn-]) is -10V to +10V, corresponding to converted values of -

2048 to +2,047.

ACC-59E3

On the ACC-59E3, the range of input voltage difference (V[ADCn+] – V[ADCn-]) is -10V to

+10V, corresponding to converted values of -32,768 to +32,767.

Power Brick Optional ADCs

On the Power Brick’s optional analog inputs, the range of input voltage difference (V[ADCn+] –

V[ADCn-]) is -10V to +10V, corresponding to converted values of -32,768 to +32,767.

Hardware Setup

The ADCs on all of these accessories are sampled based on the system phase clock. Also, the

highest frequency at which the converted values can be read by the processor is that of the phase

clock. In almost all cases, the source of the phase clock signal is not the ADC accessory itself. (It

is possible, but rare, for the ACC-59E3 to be the source of the system phase clock.)

ACC-28E

On the ACC-28E, all 4 ADCs are sampled simultaneously on the rising edge of the phase clock.

The data is available to be read by the processor on the next falling edge of the phase clock,

which is the phase interrupt to the processor. Every “N” phase-clock interrupts to the processor is

also the servo clock interrupt, which causes servo tasks to be performed.

ACC-36E, ACC-59E

The ACC-36E and ACC-59E use multiplexed 8-channel ADCs. In the de-multiplexing scheme

explained in the next section, on each falling edge of the phase clock, one of these 8 channels can

be read by the processor, and the next channel selected and sampled for reading in the next phase

clock cycle.

ACC-59E3

On the ACC-59E3, all 16 ADCs are sampled every phase clock cycle. The lower two numbered

hardware channels on each connector (1, 2, 5, 6, 9, 10, 13, and 14) are sampled on the rising edge

of the phase clock ,with the data available to be read by the processor on the next falling edge of

the phase clock (one-half cycle later), which is the phase interrupt to the processor. The higher

two numbered hardware channels on each connector (3, 4, 7, 8, 11, 12, 15, and 16) are sampled

on the falling edge of the phase clock with the data available to be read by the processor on the

following falling edge (one full cycle later). Every “N” phase-clock interrupts to the processor is

also the-servo clock interrupt, which causes servo tasks to be performed.

Power Brick Optional ADCs

On the Power Brick products, the optional 4 or 8 channels of ADCs are all sampled on the falling

edge of the phase clock with the data available to be read by the processor on the following

falling edge (one full phase cycle later). Every “N” phase-clock interrupts to the processor is also

the-servo clock interrupt, which causes servo tasks to be performed.

Power Clipper Optional ADCs

On the Power Clipper and its expansion board, the first two channels on each board (ADC1 and

ADC2) are sampled on the rising edge of the phase clock with the data available to be read by the

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 183

processor on the next falling edge (one half phase cycle later). The last two channels on each

board (ADC3 and ADC4) are sampled on the falling edge of the phase clock with the data

available to be read by the processor on the following falling edge (on full phase cycle later).

Every “N” phase-clock interrupts to the processor is also the-servo clock interrupt, which causes

servo tasks to be performed.

Hardware Control Parameter Setup

For some of the analog input accessories, there are control parameters to set up the hardware to

provide the desired data to the processor.

ACC-28E

On the ACC-28E, no setup parameters are necessary to prepare the ADC data for access by the

processor, for either servo or non-servo tasks.

De-Multiplexing ACC-36E and ACC-59E ADCs

The ACC-36E and ACC-59E use multiplexed 8-channel ADCs. The ACC-59E has one of these

8-channel ADCs, the ACC-36E has two (mapped into a single register). For use in the Power

PMAC servo loops, the individual input values must first be “de-multiplexed” into separate

registers using the built-in algorithms.

Power PMAC’s automatic de-multiplexing algorithms select one register to read each phase cycle

(which selects two ADCs on the ACC-36E). To create a “ring” cycle of reading all 8 channels of

a multiplexed ADC takes 8 phase cycles. When ADC readings are used for servo purposes, there

should be a new value every servo update. To ensure this happens, the user has several options.

First, the hardware phase update frequency relative to the servo update frequency can be raised to

be 8 times higher (the default is 4 times). If necessary, the bulk of the software tasks executed in

the phase cycle – mainly the motor commutation algorithms – can be performed at a lower

frequency than by setting Sys.PhaseCycleExt above its default value of 0. (The de-multiplexing

still takes place at the phase clock frequency.)

Second, the servo update frequency of a motor using this data can be set lower than the servo

clock frequency by setting Motor[x].Stime above its default value of 0. (Since this is done on a

motor-by-motor basis, other motors can be updated at the servo clock frequency.)

Third, the de-multiplexing ring cycle can be made smaller than the full cycle of 8 ADC channels.

However, any ADC channels that are not part of this ring cycle cannot be used at all, even for

lower-priority non-servo tasks.

To configure the ring cycle, the saved setup elements AdcDemux.Address[i] must be set to the

address offset of the card in Power PMAC’s I/O space (e.g. to $A00000 for Acc36E[0] or

Acc59E[0]). If every entry in the ring cycle is for the same card, each of these elements will be

set to the same value. For example, to configure an 8-way ring cycle for the ADCs of Acc36E[1],

the elements AdcDemux.Address[0] through AdcDemux.Address[7] should all be set to

$B00000.

Next, the ADC or pair of ADCs at the specified address for each ring slot, and the conversion

format(s), must be selected with AdcDemux.ConvertCode[i]. These elements take a value of

$m00n00, although for the ACC-59E, only the last 3 hex digits ($n00) are needed. The value of

the variable hex digit n specifies the software index of the selected channel in the “low” 8-

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 184

channel ADC, which is 1 less than the hardware channel number (e.g. 3 for ADC4). The value of

the variable hex digit m is 9 less than the hardware channel number of the “high” 8-channel ADC

on the ACC-36E (e.g. 5 for ADC14). If the ADC is to be sampled as a bipolar voltage, returning a

signed value (rather than as a unipolar voltage, returning an unsigned value), a value of 8 should

be added to the digit.

For example, to sample all eight ADC channels of an ACC-59E as unipolar values in an 8-slot

ring, the following settings would be made:

AdcDemux.ConvertCode[0] = $000

AdcDemux.ConvertCode[1] = $100

AdcDemux.ConvertCode[2] = $200

AdcDemux.ConvertCode[3] = $300

AdcDemux.ConvertCode[4] = $400

AdcDemux.ConvertCode[5] = $500

AdcDemux.ConvertCode[6] = $600

AdcDemux.ConvertCode[7] = $700

In another example, to sample all sixteen ADC channels of an ACC-36E as bipolar values in an

8-slot ring, the following settings would be made:

AdcDemux.ConvertCode[0] = $800800

AdcDemux.ConvertCode[1] = $900900

AdcDemux.ConvertCode[2] = $A00A00

AdcDemux.ConvertCode[3] = $B00B00

AdcDemux.ConvertCode[4] = $C00C00

AdcDemux.ConvertCode[5] = $D00D00

AdcDemux.ConvertCode[6] = $E00E00

AdcDemux.ConvertCode[7] = $F00F00

Finally, AdcDemux.Enable must be set to specify the number of slots in the ring cycle. Setting it

to a value of 8 will cause Power PMAC to use the values of AdcDemux.Address[i] and

AdcDemux.ConvertCode[i] for i = 0 to 7.

ACC-59E3

On the ACC-59E3, several setup parameters in the Acc59E3[i] data structure (documented under

the generic Gate3[i] structure name) are necessary to prepare the ADC data for access by the

processor, either for servo or non-servo tasks. Most of the saved setup elements can use their

factory default values. When setting the values of these elements, Sys.WpKey must be set to

$AAAAAAAA to enable changes in their values.

Acc59E3[i].AdcAmpStrobe should be set to its default value of $FFFFFC.

Acc59E3[i].AdcAmpDelay should be set to its default value of 0. Acc59E3[i].AdcAmpUtoS

should be set to its default value of 0. Acc59E3[i].AdcAmpHeaderBits should be set to 1 (not its

default). All of these settings can be made by setting the full-word element

Acc59E3[i].AdcAmpCtrl to $FFFFFC01.

The cutoff frequency of the analog low-pass filtering on the card is configurable in software for

each input. Two control bits per ADC channel permit the -3dB cutoff frequency to be selected

from the choices of 3.2 kHz, 4.3 kHz, 12.2 kHz, and 24.5 kHz.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 185

To enable the use of these control bits, saved direction-control element Acc59E3[i].GpioDir[0]

must be set to $FFFFFFFF – not the default – so that all 32 of the IC’s 32 digital I/O lines are

configured as outputs, and the saved polarity-control element Acc59E3[i].GpioPol[0] should be

left at its default value of $00000000.)

The value of the 32-bit non-saved element Acc59E3[i].GpioData[0] determines the value of

these two control bits for each of the 16 inputs. To set all 16 analog inputs to the same cutoff

frequency, the following settings can be used:

 3.2 kHz: Acc59E3[i].GpioData[0] = $FFFFFFFF

 4.3 kHz: Acc59E3[i].GpioData[0] = $FFFF0000

 12.2 kHz: Acc59E3[i].GpioData[0] = $0000FFFF

 24.5 kHz: Acc59E3[i].GpioData[0] = $00000000

Since Acc59E3[i].GpioData[0] is not a saved element, it must be explicitly set after each power-

on/reset. This can be done in pp_startup.txt or in a power-on PLC program. If no explicit

action is taken, all inputs are configured for a 24.5 kHz cutoff frequency. If you wish to set

different cutoff frequencies for different inputs, refer to the ACC-59E3 manual for details.

Further filtering can be done digitally in the encoder conversion table entry that processes the

input.

Power Brick Optional ADCs

On the Power Brick products, several setup parameters in the PowerBrick[i] data structure

(documented under the generic Gate3[i] structure name) are necessary to prepare the ADC data

for access by the processor, either for feedback or non-feedback tasks. Most of the saved setup

elements can use their factory default values. When setting the values of these elements,

Sys.WpKey must be set to $AAAAAAAA to enable changes in their values.

PowerBrick[i].AdcAmpStrobe should be set to its default value of $FFFFFC.

PowerBrick[i].AdcAmpDelay should be set to its default value of 0.

PowerBrick[i].AdcAmpUtoS should be set to its default value of 0.

PowerBrick[i].AdcAmpHeaderBits should be set to 0 (not its default). All of these settings can

be made by setting the full-word element Acc59E3[i].AdcAmpCtrl to $FFFFFC00.

Power Clipper Optional ADCs

On the Power Clipper, several setup parameters in the Clipper[i] data structure (documented

under the generic Gate3[i] structure name) are necessary to prepare the ADC data for access by

the processor, either for servo or non-servo tasks. Most of the saved setup elements can use their

factory default values. When setting the values of these elements, Sys.WpKey must be set to

$AAAAAAAA to enable changes in their values.

Clipper[i].AdcEncStrobe should be set to its default value of $FFFFFC.

Clipper[i].AdcEncDelay should be set to its default value of 0. Clipper[i].AdcEncUtoS should

be set to its default value of 0. Clipper[i].AdcEncHeaderBits should be set to 1 (not its default).

All of these settings can be made by setting the full-word element Acc59E3[i].AdcEncCtrl to

$FFFFFC01.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 186

Using the Resulting Position Information

The analog data can be used for either ongoing servo position feedback or master data, and if

absolute, for power servo reference position. (Because analog position data has a very limited

range, it is very rarely used for the cyclic position feedback for phase commutation.)

Ongoing Servo Position

To use the parallel position data from an analog input card for ongoing servo position, the data

must first be processed in the encoder conversion table (ECT). This is done with a “Type 1”

single-register read entry in the table. Remember that this reads an entire 32-bit register, even if

“real data” is only in part of that register. The details of the entry setup are dependent on which

accessory is used.

The examples shown in this section use the entry parameters EncTable[n].index1 and index2 to

create a type of low-pass filter called a digital tracking filter. This can be used to reduce the effect

of high-frequency noise in the signal. It is also possible to use these parameters to eliminate any

“garbage data” from the low bits of the 32-bit source register, but since generally there is noise on

at least the LSB of “real data”, any sub-LSB noise from the “garbage data” will not have any real

effect on the resulting performance.

If both EncTable[n].index1 and index2 are set to their default values of 0, no filtering or shifting

is performed. This may be suitable for many applications.

Note that unlike many other forms of feedback data, the numerical value from these analog

signals will not roll over, so it is not required to shift the data so that the MSB of the real data

ends up in the MSB of the 32-bit register. (It is acceptable, but not necessary.)

If it is desired to perform numerical integration on source data in the ECT entry, as to convert

velocity or acceleration data into position, it is not possible to perform explicit low-pass filtering

as well. (The numerical integration automatically has the effect of low-pass filtering.)

ACC-28E

For an ACC-28E, the channel hardware register is read directly over the 32-bit bus. The data is in

the high 16 bits of the 32-bit bus. (If you are reading the source element directly from a Script

program, it is a 16-bit element from the high 16 bits of the bus.)

For the ADC1 – ADC4 inputs on an ACC-28E, the values can be found in the status elements

Acc28E[i].AdcSdata[j] or Acc28E[i].AdcUdata[j], where the index j (= 0 to 3) is one less than

the hardware channel number. These two elements for each index j access the same data, just

interpreting it differently, as signed or unsigned data, respectively. When specifying the address

of the entire 32-bit register for the encoder conversion table entry, it does not matter which

element name you use.

The key elements for the ECT entry to process this value and for the motor to use the processed

result are:

 EncTable[n].type = 1 // Single register read

 EncTable[n].pEnc = Acc28E[i].AdcSdata[j].a // ADC j+1 register address

 EncTable[n].index1 = (filter Ki) // For possible digital tracking filter

 EncTable[n].index2 = (filter gain) // For possible digital tracking filter

 EncTable[n].ScaleFactor = 1/65536 // For result units of LSBs

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 187

 Motor[x].pEnc = EncTable[n].a // Use result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use result for velocity-loop feedback

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the

motor units will be LSBs of the ADC.

This example shows the most common setup, with a low-pass “tracking filter” to reduce noise,

but no numerical integration. It is also possible to perform one or two integrations (e.g. velocity

or acceleration into position) instead of filtering.

ACC-36E, ACC-59E

For an ACC-36E or ACC-59E, the de-multiplexed value is read from its holding register in

memory over the 32-bit data bus. The actual data is in the low 12 bits of the 32-bit bus.

For the ADC1 – ADC8 inputs on either the ACC-36E or ACC-59E, the de-multiplexed value can

be found in status element AdcDemux.ResultLow[i], where the index i matches that of saved

setup elements AdcDemux.Address[i] and AdcDemux.ConvertCode[i].

The key elements for the ECT entry to process this value and for the motor to use the processed

result are:

 EncTable[n].type = 1 // Single register read

 EncTable[n].pEnc = AdcDemux.ResultLow[i].a // Demuxed ADC value address

 EncTable[n].index1 = (filter Ki) // For possible digital tracking filter

 EncTable[n].index2 = (filter gain) // For possible digital tracking filter

 EncTable[n].ScaleFactor = 1.0 // For result units of LSBs

 Motor[x].pEnc = EncTable[n].a // Use result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use result for velocity-loop feedback

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the

motor units will be LSBs of the ADC.

For the ADC9 – ADC16 inputs on the ACC-36E, the de-multiplexed value can be found in status

element AdcDemux.ResultHigh[i], where the index i matches that of saved setup elements

AdcDemux.Address[i] and AdcDemux.ConvertCode[i].

ACC-59E3

For an ACC-59E3, the channel hardware register is read directly over the 32-bit bus. The actual

data is in the high 16 bits of the 32-bit register. (If you are reading the source element from a user

Script program or command, it is also a 32-bit value with real data in the high 16 bits.)

The status element for each input can be accessed as Acc59E3[i].Chan[j].AdcAmp[k], where the

channel and register indices for each input can be found in the following table:

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 188

Input IC Channel

Index j

Channel Register

Index k

Input IC Channel

Index j

Channel Register

Index k

ADC1 0 0 ADC9 2 0

ADC2 0 1 ADC10 2 1

ADC3 0 2 ADC11 2 2

ADC4 0 3 ADC12 2 3

ADC5 0 0 ADC13 3 0

ADC6 0 1 ADC14 3 1

ADC7 0 2 ADC15 3 2

ADC8 0 3 ADC16 3 3

The key elements for the ECT entry to process this value and for the motor to use the processed

result are:

 EncTable[n].type = 1 // Single register read

 EncTable[n].pEnc = Acc59E3[i].Chan[j].AdcAmp[k].a // ADC register address

 EncTable[n].index1 = (filter Ki) // For possible digital tracking filter

 EncTable[n].index2 = (filter gain) // For possible digital tracking filter

 EncTable[n].ScaleFactor = 1/65536 // For result units of LSBs

 Motor[x].pEnc = EncTable[n].a // Use result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use result for velocity-loop feedback

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the

motor units will be LSBs of the ADC.

This example shows the most common setup, with a low-pass “tracking filter” to reduce noise,

but no numerical integration. It is also possible to perform one or two integrations (e.g. velocity

or acceleration into position) instead of filtering.

Power Brick Optional ADCs

For the Power Brick optional ADCs, the channel hardware register is read directly over the 32-bit

bus. The data is in the high 16 bits of the 32-bit register. (If you are reading the source element

from a user Script program or command, it is also a 32-bit value with real data in the high 16

bits.)

For the ADC1 – ADC4 values on the Power Brick, the data can be found in

PowerBrick[0].Chan[j].AdcAmp[2], where j (= 0 to 3) is one less than the hardware channel

number. For the ADC5 – ADC8 values, the data can be found in

PowerBrick[1].Chan[j].AdcAmp[2], where j (= 0 to 3) is five less than the hardware channel

number. In both cases, the structure name Gate3[i] can be used instead of PowerBrick[i]. The

indices for each input are shown in the following table:

Input IC

Index i

IC

Channel

Index j

Channel

Register

Index k

Input IC

Index i

IC

Channel

Index j

Channel

Register

Index k

ADC1 0 0 2 ADC5 1 0 2

ADC2 0 1 2 ADC6 1 1 2

ADC3 0 2 2 ADC7 1 2 2

ADC4 0 3 2 ADC8 1 3 2

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 189

The key elements for the ECT entry to process this value and for the motor to use the processed

result are:

 EncTable[n].type = 1 // Single register read

 EncTable[n].pEnc = PowerBrick[i].Chan[j].AdcAmp[2].a // ADC register address

 EncTable[n].index1 = (filter Ki) // For possible digital tracking filter

 EncTable[n].index2 = (filter gain) // For possible digital tracking filter

 EncTable[n].ScaleFactor = 1/65536 // For result units of LSBs

 Motor[x].pEnc = EncTable[n].a // Use result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use result for velocity-loop feedback

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the

motor units will be LSBs of the ADC.

Power Clipper Optional ADCs

For the Power Brick optional ADCs, the channel hardware register is read directly over the 32-bit

bus. The data is in the high 12 bits of the 32-bit register. (If you are reading the source element

from a user Script program or command, it is also a 32-bit value with real data in the high 12

bits.)

For the ADC1 – ADC4 values on the Power Clipper board, the data can be found in

Clipper[0].Chan[0].AdcEnc[k], where k (= 0 to 3) is one less than the hardware channel

number. For the ADC1 – ADC4 values on the optional ACC-24S3 axis expansion stack board,

the data can be found in Clipper[1].Chan[0].AdcEnc[k], where k (= 0 to 3) is one less than the

hardware channel number. In both cases, the structure name Gate3[i] can be used instead of

Clipper[i]. The indices for each input are shown in the following table:

Clipper

Input

IC

Index i

IC

Channel

Index j

Channel

Register

Index k

ACC-

24S3

Input

IC

Index i

IC

Channel

Index j

Channel

Register

Index k

ADC1 0 0 0 ADC1 1 0 0

ADC2 0 0 1 ADC2 1 0 1

ADC3 0 0 2 ADC3 1 0 2

ADC4 0 0 3 ADC4 1 0 3

The key elements for the ECT entry to process this value and for the motor to use the processed

result are:

 EncTable[n].type = 1 // Single register read

 EncTable[n].pEnc = Clipper[i].Chan[0].AdcAmp[k].a // ADC register address

 EncTable[n].index1 = (filter Ki) // For possible digital tracking filter

 EncTable[n].index2 = (filter gain) // For possible digital tracking filter

 EncTable[n].ScaleFactor = 1/1048576 // For result units of LSBs

 Motor[x].pEnc = EncTable[n].a // Use result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use result for velocity-loop feedback

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the

motor units will be LSBs of the ADC.

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 190

Power-On Servo Position

If the analog position data from one of these accessories is absolute over the entire range of travel

for the motor, it can be used for power-on absolute servo position, eliminating the need for a

homing search move.

The addresses given in this section are the same as for ongoing servo position, and are specified

in more detail in that section, above.

ACC-28E

To use analog position data from an ACC-28E for absolute power-on servo position, the

following saved setup elements must be specified:

 Motor[x].pAbsPos = Acc28E[i].AdcSdata[j].a

 Motor[x].AbsPosFormat = $aa001010 // $aa is 00 for unsigned, 01 for signed

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

ACC-36E, ACC-59E

To use analog position data from ADC1 – ADC8 on an ACC-36E or ACC-59E for absolute

power-on servo position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = AdcDemux.ResultLow[i].a

 Motor[x].AbsPosFormat = $aa000C14 // $aa is 00 for unsigned, 01 for signed

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

To use analog position data from ADC9 – ADC16 on an ACC-36E for absolute power-on servo

position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = AdcDemux.ResultHigh[i].a

 Motor[x].AbsPosFormat = $aa000C14 // $aa is 00 for unsigned, 01 for signed

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

ACC-59E3

To use analog position data from an ACC-59E3 for absolute power-on servo position, the

following saved setup elements must be specified:

 Motor[x].pAbsPos = Acc59E3[i].Chan[j]AdcAmp[k].a

 Motor[x].AbsPosFormat = $00001010 // Unsigned 16 bits from high 16 bits

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

Power Brick Optional ADCs

To use analog position data from the analog option of a Power Brick for absolute power-on servo

position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = PowerBrick[i].Chan[j]AdcAmp[2].a

 Motor[x].AbsPosFormat = $00001010 // Unsigned 16 bits from high 16 bits

Power PMAC User’s Manual

Setting Up Feedback and Master Position Sensors 191

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

Power Clipper Optional ADCs

To use analog position data from the analog option of a Power Clipper for absolute power-on

servo position, the following saved setup elements must be specified:

 Motor[x].pAbsPos = Clipper[i].Chan[0]AdcAmp[k].a

 Motor[x].AbsPosFormat = $00000C14 // Unsigned 12 bits from high 12 bits

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero)

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 192

SETTING UP THE ENCODER CONVERSION TABLE

Power PMAC uses a two-step process to work with its feedback and master position information

for the servo algorithms, in order to provide maximum power and flexibility. (Note that the

commutation algorithms, which usually operate at higher frequencies, generally use raw feedback

registers unprocessed by the conversion table.) For most Power PMAC users with quadrature

encoder feedback, this process can be virtually transparent, with no need to worry about the

details. However, some users will need to understand this conversion process in some detail to

make the changes necessary to use other types of feedback, to optimize their system, or to

perform special functions. This section is for those users.

The first stage in the position processing uses the hardware registers such as encoder counters

with associated timers, A/D registers, or accessory cards for parallel input. These work

continually without direct software intervention (although they can be configured through

software), with data typically latched on the servo interrupt. This stage is covered in the

Hardware Reference manual for the particular device, and the Setting Up Feedback chapter of the

User’s Manual. Beyond this point, the process is software-controlled.

What the Encoder Conversion Table Does

Most controllers directly use the raw data in the hardware registers for feedback or master

position data. However, Power PMAC has an intermediate step using a software structure called

the “Encoder Conversion Table” (ECT) to pre-process the information in the latched registers.

This table tells Power PMAC what registers to process, and how to process them; it also holds the

intermediate processed data.

Note

Despite the name “Encoder Conversion Table”, the ECT is not

limited to processing the data from encoders. It can work with

a wide variety of feedback types.

Why is this pre-processing step necessary? There are several reasons:

 All raw feedback data is “fixed-point” (integer) data. The servo algorithms require

floating-point data. The ECT converts the data from fixed-point to floating-point data.

 There are several pieces of raw data that need to be combined into one resulting position

number, as with the counter and timers for “1/T” encoder interpolation.

 There is some checking for special conditions, such as rollover or sudden changes

indicative of noise, which needs to be done to ensure robust data.

 Mathematical processing of the raw data, such as addition, subtraction, differentiation, or

integration, needs to be done to get the resulting value.

While the primary purpose of the table is to produce processed (“converted”) values for feedback

and master position data for the servo algorithms to use, other uses are possible. The table’s

guaranteed execution at the beginning of each servo cycle, and its many tools for processing data,

permit other uses as well.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 193

Conversion Table Execution

The conversion table executes automatically at the beginning of each servo cycle, immediately

after the servo interrupt. The entire active part of the table executes before any servo loops

execute that cycle. Each entry in the table is executed every servo interrupt, even if the result is

used less often (as when a motor’s own servo cycle is extended with Motor[x].Stime) or not at

all.

The table is executed in order from top (normally Entry 0, but if Sys.FirstEnc is set to a non-zero

value, at the entry specified by its value) to bottom (last active entry before the first “end of table”

entry found) each cycle. If a value from one entry is used as the source for another entry, it is

usually desirable to have the second entry further down in the table, so a servo cycle’s delay is

not introduced.

Conversion Table Structure

The conversion table is accessed through the EncTable[n] data structure. Each entry has its own

index number n, where n can range from 0 to the value of system constant Sys.MaxEncoders - 1.

(Sys.MaxEncoders = 768 in most Power PMAC systems.) Each entry processes one set of

source data, and produces a single output value. Each entry has multiple saved setup elements,

summarized here:

 EncTable[n].Type Conversion method

 EncTable[n].pEnc Primary source address

 EncTable[n].pEnc1 Secondary source address

 EncTable[n].index1 First conversion factor (0 .. 255)

 EncTable[n].index2 Second conversion factor (0 .. 255)

 EncTable[n].index3 Third conversion factor (0 .. 15)

 EncTable[n].index4 Fourth conversion factor (0 .. 15)

 EncTable[n].index5 Fifth conversion factor (0 .. 15)

 EncTable[n].index6 Sixth conversion factor (0 .. 232-1)

 EncTable[n].EncBias Pre-integration offset

 EncTable[n].MaxDelta Largest permitted input change

 EncTable[n].SinBias First offset term for sinusoidal feedback

 EncTable[n].CosBias Second offset term for sinusoidal feedback

 EncTable[n].TanHalfPhi Phase error term for sinusoidal feedback

 EncTable[n].CoverSerror Magnitude mismatch term for sinusoidal feedback

 EncTable[n].ScaleFactor Multiplication factor for output

The 32-bit MaxDelta element and the two 16-bit elements SinBias and CosBias share a single

32-bit register. The register is used for one or the other purpose depending on the conversion

method. The EncBias element shares a register with the PrevDelta status element.

Not all of these setup elements are used in every conversion type. Each is discussed where

appropriate below, and also in the Software Reference Manual chapter on Saved Data Structure

Elements.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 194

Conversion Method Overview

The data conversion method for each entry is determined by the setting of EncTable[n].Type for

the entry. Presently the following conversion methods are supported:

 EncTable[n].Type = 0 End of table

 EncTable[n].Type = 1 Single 32-bit register read

 EncTable[n].Type = 2 Double (24-bit + 8-bit) register read

 EncTable[n].Type = 3 Software 1/T encoder extension (PMAC2 ICs)

 EncTable[n].Type = 4 Software arctangent encoder extension

 EncTable[n].Type = 5 Four-byte read

 EncTable[n].Type = 6 Resolver direct arctangent conversion

 EncTable[n].Type = 7 Extended hardware arctangent conversion (PMAC3 ICs)

 EncTable[n].Type = 8 Addition of two entry results

 EncTable[n].Type = 9 Subtraction of two entry results

 EncTable[n].Type = 10 Triggered time base

 EncTable[n].Type = 11 Floating-point register read

 EncTable[n].Type = 12 Single-register read with error check

 EncTable[n].Type = 13+ (Reserved for future use)

Each of these conversion methods is covered in detail below.

IDE Table Configuration Window

The Integrated Development Environment (IDE) program on the PC has a user-friendly

configuration window for the ECT. This window hides much of the underlying complexity of the

table, including most of the individual setup elements, from the user. Instead, it asks the user for

the required information from a user’s perspective and derives the values of the required setup

elements itself.

This configuration window can be found under the “Delta Tau” menu bar item, then selecting

“Configure” from the pull-down menu, followed by “Encoder Conversion Table”.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 195

IDE Encoder Conversion Table Setup Window

Scaling of Entry Results

Each entry has a user-set floating-point output scale factor term EncTable[n].ScaleFactor that

multiplies the internal integer result value and converts it to floating-point format. This means

that the user can make the units of the result value anything he likes. However, there are several

important things to keep in mind when setting this term.

Most users prefer to have the results in natural units of the sensors. For example, “counts” for

quadrature encoders, “LSBs” (least significant bits) for ADCs and serial or parallel numeric

feedback. There are subsequent motor scale factors for each motor term that uses an ECT result

that can convert these raw units to engineering units, and also axis scale factors that can perform a

further conversion.

If you change the scale factor in the conversion table entry, you are changing the units of any

subsequent motor and axis functions that use the result. Changing to larger engineering units can

effectively disable many safety limits for motors, such as following-error and overtravel limits,

that are scaled in the resulting motor units. For feedback terms, you are also changing the overall

feedback-loop gain, which could result in dangerous instability in some cases.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 196

It is also possible to change the sign of the entry scale factor to invert the direction sense of the

result. However, doing so for data that is presently being used successfully to close a feedback

loop will result in unstable positive feedback and a potentially dangerous runaway condition.

In addition, if you are using hardware position capture for triggered moves such as homing-search

moves, the motor must properly match the scaling of the servo data from the table result with the

scaling of the captured position in hardware.

Using Conversion Table Results

To use the processed result of a conversion table entry, the motor addressing parameter simply

contains the address of the entry itself: EncTable[n].a. This is true for the motor outer-loop

(position) feedback address parameter Motor[x].pEnc, the motor inner-loop (velocity) feedback

address parameter Motor[x].pEnc2, and the motor master position address parameter

Motor[x].pMasterEnc. For example:

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

Motor[1].pMasterEnc = EncTable[0].a

These motor addressing parameters must be set to the address of an ECT entry. This means that

any feedback or master position information for a motor must be processed through an ECT

entry.

Note that if a motor is specified to use “servo in phase” by setting bit 3 (value 8) of

Motor[x].PhaseCtrl to 1, executing its servo algorithms under the phase interrupt, these position

addressing elements must point to hardware registers that are updated every phase interrupt,

instead of the ECT results that are only updated on the servo interrupt. For details, see the chapter

Setting Up the Servo Loop.

The final result for each ECT entry every servo cycle is actually stored in the data structure

element EncTable[n].DeltaPos. However, the motor addressing elements just described should

not be given the address of this register directly, as Power PMAC automatically adds in the offset

from the starting address of the entry to the DeltaPos element.

Note that the DeltaPos element contains the change in position for the most recent servo cycle as

a scaled floating point value. Power PMAC automatically adds in this change to the previous

cycle’s value for the outer-loop feedback position and the master position, so this is a hidden

detail for most users.

Another common use of the result of a conversion table entry is for “external time base” for a

coordinate system. Here the coordinate system’s time-base addressing parameter

Coord[x].pDesTimeBase should contain the address of the DeltaPos element itself, not the base

address of the entry, as there is no automatic address offset. For example:

Coord[1].pDesTimeBase = EncTable[0].DeltaPos.a

The most recent cycle’s position value is stored in the data structure element

EncTable[n].PrevEnc. Power PMAC stores this value for the next servo cycle to compute the

change in position for that cycle. The value in PrevEnc incorporates the initial processing, but

does not include the final output scaling. It is a 32-bit integer value.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 197

Default Conversion Table Setup

When the Power PMAC receives a $$$*** re-initialization command, it automatically checks

the axis-interface hardware that is present, and sets up a table to do the most common type of

processing for that hardware.

For each PMAC2-style Servo IC it finds on a board designed for quadrature feedback, as on an

ACC-24E2x board, it will set up a Type 3 “software 1/T encoder extension” entry for all four

channels on the IC.

For each PMAC2-style Servo IC it finds on a board designed for sinusoidal feedback, as on an

ACC-51E board, it will set up a Type 4 “sinusoidal encoder arctangent extension” entry for all

four channels on the IC.

For each PMAC2-style MACRO IC it finds on a board designed for MACRO interface, as on an

ACC-5E board, it will set up a Type 1 single-register read of the Register 0 for each of the 8

MACRO servo nodes present on every IC found.

For each PMAC3-style IC it finds on a servo card, as on an ACC-24E3 board, it will set up a

Type 1 single-register read of the ServoCapt register for all four channels of the IC. This IC can

automatically perform 1/T or arctangent extensions in hardware and provide the extended

position in a single register, so all the ECT needs to access is this single register.

For each PMAC3-style IC it finds on a board designed for MACRO interface, as on an ACC-5E3

board, it will set up a Type 1 single-register read of the Register 0 for each of the 16 MACRO

servo nodes present on every IC found.

It starts assigning these entries with EncTable[1]. After all of the real entries it creates, all

higher-numbered entries are set to the Type 0 “end of table” method so the Power PMAC does

not waste time performing unneeded conversions. For example, if two 4-channel ICs are found,

EncTable[1] through EncTable[8] are set up to use these. EncTable[9] and up are set to Type 0.

In the default configuration, the entry EncTable[0] is set up to do a “dummy” conversion – a

single-register read of the first register in the user shared-memory buffer. While many users will

leave this entry as a dummy, some will use it for master position processing. If this is changed to

a Type 0 “end of table” entry, no entries will be executed at all.

As part of the re-initialization default parameter setup, motors starting with Motor 0 point to the

results of the ECT entries of the same number for outer-loop (position) feedback and inner-loop

(velocity) feedback. All motors point the result of Entry 0 for their master position (but following

is disabled by default).

Conversion Method Details

This section details the settings required for each conversion method. Elements not specified for a

particular method should be left at 0.

Type 0: End of (Active) Table

The Type 0 method in an entry specifies that only previous (lower-numbered) entries are to be

processed. No subsequent (higher-numbered) entries will be processed, even if configured

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 198

properly. The first entry encountered with Type 0 does nothing except indicate end of table; the

values of other setup elements in the entry do not matter.

Note

If global setup element Sys.FirstEnc, which specifies the first

entry to be processed, is set to a non-zero value, it does not

matter if any entries with an index less than its value are Type

0. Non-zero values for Sys.FirstEnc are typically only used

during development to compare different conversion strategies.

Type 1: Single-Register Read

The Type 1 method reads a single 32-bit register and processes it, using part or all of the word.

EncTable[n].type is set to 1 to specify this method.

Note

The Type 12 method performs the same single-register

position read, but adds an addition read of an error register.

This provides additional robustness for many serial encoder

protocols.

Address of Single Register: pEnc

EncTable[n].pEnc is set to the address of the source register. Usually it is set by naming the data

structure element of the source register, followed by the .a (“address of”) suffix. The data can be

in any continuous zone within this 32-bit register.

(Real data anywhere in word)

031

at pEnc:

Source Data in ECT Single-Register Read

It is commonly used to access registers in the PMAC3-style “DSPGATE3” IC, as in the ACC-

24E3 axis-interface accessory. Common types of settings are:

EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a

EncTable[n].pEnc = Gate3[i].Chan[j].TimerA.a

EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a

EncTable[n].pEnc = Gate3[i].Chan[j].Atan.a

EncTable[n].pEnc = Gate3[i].Chan[j].AdcAmp[k].a

 The ServoCapt register has an encoder count value that is extended by either timers or

arctangent calculations in hardware (so software extension calculations are not required).

 The TimerA register can hold the time elapsed before the echo pulse of an MLDT sensor

is received (and therefore the position of the sensor). It can also hold the pulse count of

the pulse-frequency modulation (PFM) output for stepper-type motors (or simulated

motors).

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 199

 The SerialEncDataA register holds the low 32 bits of position data from a serial encoder

attached to the channel. (If there are more bits, only the low 32 bits are used every servo

cycle.)

 The Atan register holds the arctangent of the “sine” and “cosine” ADC registers, and so

the position of a resolver whose winding voltages are read by these ADCs.

 The AdcAmp[k] register holds the converted value of the analog input for that register,

as for the analog-to-digital converters of the ACC-59E3 board.

EncTable[n].pEnc can also be set to the address of registers in the PMAC2-style “DSPGATE1”

Servo IC. Common types of settings are:

EncTable[n].pEnc = Gate1[i].Chan[j].PhaseCapt.a

EncTable[n].pEnc = Gate1[i].Chan[j].TimeBetweenCts.a

 The PhaseCapt register has an encoder count value without any extension, useful to read

when the pulse count of the PFM output drives the counter circuit.

 The TimeBetweenCts register can hold the time elapsed before the echo pulse of an

MLDT sensor is received (and therefore the position of the sensor).

EncTable[n].pEnc can be set to the address of the low 24 bits of position data from a serial

encoder attached to a channel of an ACC-84E or related serial encoder board:

EncTable[n].pEnc = Acc84E[i].Chan[j].SerialDataA.a

EncTable[n].pEnc can be set to the address of the position data from a MACRO input node on

an ACC-5E (Gate2) or ACC-5E3 (Gate3):

EncTable[n].pEnc = Gate2[i].Macro[j][0].a

EncTable[n].pEnc = Gate3[i].MacroInα[j][0].a

EncTable[n].pEnc can be set to the address of an EtherCAT input data register

EncTable[n].pEnc = ECAT[i].IO[k].Data.a

Secondary Address: pEnc1

EncTable[n].pEnc1 is not used in this method, so its setting does not matter.

Data-Shifting Operations: index1 and index2 (index2 < 32)

EncTable[n].index1 and EncTable[n].index2 control how the raw data is processed by

“shifting” operations to eliminate parts of the 32-bit word that do not contain real data. First the

raw data is shifted right by the number of bits specified in index2. Generally, index2 is set to the

bit number of the LSB of actual data in the source register, so all of the “garbage data” below it is

eliminated.

Next, this result is shifted left by the number of bits specified in index1. Generally, index1 is set

to the quantity 32 minus the number of bits of real data in the source register. This will cause the

MSB of actual data in the source register to end up in the highest bit of the intermediate result

register. This must occur if Power PMAC is to handle rollover of the source data value properly.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 200

For example, if the source register has 20 bits of real data starting at bit 8 (so in bits 8 – 27 of the

32-bit register), index2 should be set to 8 to eliminate the original bits 0 – 7, and index1 should

be set to (32 – 20), or 12, so that the MSB of real data in the source register (bit 27) ends up in bit

31 of the intermediate result. The process is shown in the following diagram.

- - - - - - - -20 bits real data- - - -

20 bits real data- - - - - - - - - - - -

(zeros)20 bits real data

0

0

0

78272831

192031

111231

8

12

ECT Data Shifting Example

It is common to get feedback from Turbo-PMAC-generation interfaces, which have 24-bit

registers mapped into the high 24 bits of the 32-bit Power PMAC data bus. These interfaces

include those using the DSPGATE1 (Gate1[i]) ASIC, MACRO interfaces, and ACC-84x serial

encoder interfaces. In these cases, index2 should be set to 8 to shift out the low 8 bits that do not

represent real data, and if there is the possibility of rollover in the data, index1 should also be set

to 8 so the MSB of the source data ends up in the highest bit of the intermediate register.

If the source data cannot roll over and comes from the most significant bits of the 32-bit register,

as is the case with some types of feedback processed through an analog-to-digital converter, it is

not necessary to perform the shift-left operation, so index1 can be set to 0. Eliminating this

second shift has two advantages in this case. First, it eliminates the slight possibility that a jump

of more than half the range of the source in a single servo cycle could lead to an inadvertent

rollover extension of the result. Second, if the LSB of the source data ends up in bit 0 of the 32-

bit intermediate register, the output scale factor for the entry can be 1.0.

Note, however, that if index2 is set to a value of 32 or greater (an impossible shift!), then index1

and index2 are used as gains in a tracking filter, and no shifting is performed. The operation of

the tracking filter is described in a later section.

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

If EncTable[n].index2 is set to a value 32 or greater, a digital tracking filter is enabled for the

entry, and no shifting operations are performed for parallel-read conversions (so all 32 bits are

used). This software tracking filter mimics the dynamics of hardware tracking loops often found

in devices such as resolver-to-digital converters. This permits low-pass filtering of noisy input

data, but with no steady-state tracking error at constant velocity. It is commonly used for

fundamentally analog feedback sensors such as resolvers, sinusoidal encoders, and LVDTs.

In the tracking filter, index2 serves as the “proportional” gain term, index1 serves as the

“mantissa” of the “integral” gain term, and index4 serves as the “exponent” of the “integral” gain

term. All are 8-bit unsigned integer values, with a range of 0 to 255.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 201

Filter Execution

The following equations are executed by a tracking filter in a Power PMAC encoder conversion

table (ECT) entry each servo cycle k:

1 kkk outinerr

kidkk errKierrierr 1

kkpdkk ierrerrKoutout 1

where the digital gain terms Kid (digital integral gain) and Kpd (digital proportional gain),

expressed in terms of entry parameters, are:

42*256

1
indexid

index
K

256

2256 index
K pd

Re-arranging these equations and converting to digital (z) transform form, we get:

k

j

jidkpdkk errKerrKoutout
0

1

 zErr
z

K
zErrKzzOut id

pd 1

1

1
1

Converting to an equivalent analog (s) transform using
sT

z
s

11
 , where Ts is the servo sample

time, we get:

 sErr
sT

K
sErrKsOutsT

s

id

pds

 sErr
sT

K

T

K
sOuts

s

id

s

pd

2

 sErr
s

K
KsOuts i

p

where the analog gain terms are:

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 202

242 2256

1

s

index

s

id

i
T

index

T

K
K

ss

pd

p
T

index

T

K
K

256

2256

This can be viewed in block diagram form like a traditional tracking loop:

s

K
K i

p

 sIn sErr sOut+

-

s

1

From this, we can compute the overall transfer function of the filter:

ip

ip

i

p

i

p

KsKs

KsK

s

s

s

K
K

s

s

K
K

s

sIn

sOut

22

2

1
1

1

The standardized form of this type of second-order analog filter is:

 22

2

2

2

nn

nn

ss

s

sIn

sOut

From this, we can derive the analog gain terms from standard filter specifications:

2

niK

npK 2

Next, we can compute the digital gain terms and the tracking filter parameters:

snps TKTindex 5122562256

sn Tindex 5122562

222 256256'1 snis TKTindex

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 203

If the integral gain term specified by index1 is set to 0, then the filter reduces to a 1st-order low-

pass filter with a time constant in servo cycles of (256 /[256- index2]) – 1. It is not recommended

to use a 1st-order filter for servo feedback terms, because there will be steady-state error at

velocity.

Recommended Design Procedure

The following procedure is recommended for designing a tracking filter:

1. Select a cutoff frequency f c in Hertz. This is the frequency beyond which the filter will

start attenuating the signal. Generally values from 100 – 200 Hz are used for resolvers,

and values of about 1000 Hz are used for sinusoidal encoders.

2. Compute the filter’s natural frequency ωn = 2 * π * fc.

3. Select a damping ratio ς for the filter (usually = 0.7).

4. Compute the filter’s sample time Ts in seconds. This is the servo update period, and can

be calculated as Sys.ServoPeriod / 1000.

5. Compute the proportional gain term index2 = 256 - 512 * ς * ωn * Ts and round to the

nearest integer.

6. Compute the (tentative) integral gain term index1' = 256 * ωn
2 * Ts

2

7. If index1' is less than 64, rounding it to the nearest integer could change the filter

characteristics too much, so double it enough times to make it greater than 64, set the

element index1 to this value, and set the element index4 to the number of doublings.

Example

As an example, we will design a tracking filter for resolver feedback at the default servo update

period:

1. We select a cutoff frequency f c of 200 Hz.

2. We compute the filter natural frequency ωn = 2 * π *200 = 1257 sec-1

3. We select a damping ratio ς of 0.7

4. We compute the filter sample time in seconds as 0.442 / 1000 = 4.42 x 10-4

5. We compute index2 = 256 – (512 * 0.7 * 1257 * 4.42 x 10-4) = 57

6. We compute index1 = 256 * 12572 * (4.42 x 10-4)2 = 79

Change-Limiting Operations: index3 and MaxDelta

In many types of “parallel-read” feedback, electrical noise and other anomalies can lead to

temporary huge numeric errors in the resulting data. It is therefore often worthwhile to look for

sudden changes in the source data values and reject those that are not physically possible. The

ECT permits you to look for limit violations in the first derivative (velocity) or the second

derivative (acceleration) and reject readings that are in violation.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 204

If EncTable[n].MaxDelta is set greater than 0, this change-limiting is active for the entry. With

this limiting active, if index3 is set to 0, then the first derivative (velocity) of the source data is

limited to MaxDelta, expressed in LSBs of real source data per servo cycle (this assumes that this

LSB is in bit (32 – index1) of the 32-bit source register).

If the magnitude of the source data changes by more than this amount in a single servo cycle, the

source data is rejected, and instead the resulting position is changed by the same amount it was in

the previous servo cycle (i.e., the velocity is maintained), using the value stored in the status

element EncTable[n].PrevDelta for the entry. If the anomaly persists for one or more additional

servo cycles, the source data is still rejected, but the resulting position is now slewed at the

MaxDelta rate toward the new source value. (This case usually occurs during configuration,

when some aspect of the setup or source is changed, yielding a step change in the input value.)

With EncTable[n].MaxDelta greater than 0, if index3 also set greater than 0, then the second

derivative (acceleration) of the source data is limited to MaxDelta, expressed in LSBs of real

source data per servo cycle per servo cycle (again assuming that this LSB is in bit (32 – index1)

of the 32-bit source register). In this case, the value of index3 is the number of servo cycles the

last valid acceleration is maintained in the case of an anomaly. After this number of servo cycles,

if the anomaly persists, the resulting position jumps immediately to the new source value.

Generally, a velocity limit is easier to implement, and is satisfactory for most applications.

However, an acceleration limit can be more sensitive to corrupted data, and provide a more

accurate substitute in case bad data is detected.

Numerical-Integration Operations: index4 and EncBias

If EncTable[n].index2 is less than 32 (no tracking filter), then EncTable[n].index4 specifies the

number of times the source data is integrated into the result data. At the default value of 0, no

numerical integration is performed. A value of 1 specifies that a single integration is performed,

as from a velocity reading into a position result. A value of 2 specifies that two integrations are

performed, as from an acceleration reading into a position result. Values of 3 to 15 specify double

integration with “damping” of the singly integrated (“velocity”) value, with higher values

providing quicker damping.

If index4 is greater than 0 to enable integration, EncTable[n].EncBias (which shares a register

with status element EncTable[n].PrevDelta) acts as the “bias” term on the input data. It is added

to the source data before integration. Also, EncTable[n].MaxDelta acts as a velocity limit

(regardless of whether 1 or 2 integrations are performed) with no limit on the number of

consecutive servo cycles clamped.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result

in which the least significant bit of real data in the source register amounts to one unit of the

result, ScaleFactor should be set to 1 / 2(32 - #ofBits).

In our example of 20 bits of real data, after the two shifting operations, the LSB of real source

data will be in bit 12 of the intermediate register. To get a result value where this LSB amounts to

one unit, this must be multiplied by 1 / 2(32 – 20) = 1 / 212 = 1/4096. It is usually best to enter the

value for ScaleFactor as an expression and let Power PMAC compute the exact resulting value.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 205

Type 2: Double-Register Read

The Type 2 method reads two registers to assemble a 32-bit value before further processing. It

can use up to 24 bits from the first register and up to 8 bits from the second register. Note that

even if the source data provides more than 24 bits of data, it is not necessary to use the second

register on an ongoing basis unless it is possible for the source data to change by half the range or

more of the 24-bit register (that is, 223, or 8,388,608, LSBs) in a single servo cycle. If the

maximum speed is less than this amount, a type = 1 single-register read is recommended, as it

saves both hardware access time, and software computation time.

Addresses of the Registers: pEnc and pEnc1

EncTable[n].pEnc is set to the address of the first source register. It takes data from the high 24

bits (bits 8 – 31) of this register and uses this data to form the low 24 bits of the initially

assembled 32-bit value. It can be used to access the low 24 bits of the parallel I/O on the

DSPGATE2 IC, or the low 24 bits from a serial encoder through an ACC-84E board. In these

cases, the setting is like:

EncTable[n].pEnc = Gate2[i].LowIoData.a

EncTable[n].pEnc = Acc84E[i].SerialEncDataA.a

EncTable[n].pEnc1 is set to the address of the second source register. It takes data from bits 8 –

15 of this register and uses this data to form the high 8 bits of the initially assembled 32-bit value.

It can be used to access the high 8 bits of the parallel I/O on the DSPGATE2 IC, or the high 8 bits

from a serial encoder through an ACC84E board. In these cases, the setting is like:

EncTable[n].pEnc1 = Gate2[i].HighIoData.a

EncTable[n].pEnc1 = Acc84E[i].SerialEncDataB.a

The following diagram shows how the data from the two sources is combined in this first step:

- - - - - - - -24-bit data field

- - - - - - - -8-bit data- - - - - - - - - - - - - - - -

 32-bit data field

07831

815

31 0

at pEnc:

at pEnc1:

Combined

Result

0731 16

24 23

ECT Type 2 Double-Register Data Combination

Data-Shifting Operations: index1 and index2 (index2 < 32)

Once the data from the two source registers has been assembled into a single 32-bit value,

subsequent operations work just like those for the single-register read method. For data shifting,

refer to the section under Single-Register Read.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 206

Change-Limiting Operations: index3 and MaxDelta

The change-limiting operations for the double-register read method are identical to those for the

single-register read. Refer to the section under Single-Register Read for details.

Numerical-Integration Operations: index4 and EncBias

The numerical-integration operations for the double-register read method are identical to those for

the single-register read. Refer to the section under Single-Register Read for details.

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

The tracking-filter operations for the double-register read method are identical to those for the

single-register read. Refer to the section under Single-Register Read for details.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result

in which the least significant bit of real data in the first source register amounts to one unit of the

result, ScaleFactor should be set to 1 / 2(32 - #ofBits).

With 28 bits of real data, after the two shifting operations, the LSB of real source data will be in

bit 4 of the intermediate register. To get a result value where this LSB amounts to one unit, this

must be multiplied by 1 / 2(32 – 28) = 1 / 24 = 1/16. It is usually best to enter the value for

ScaleFactor as an expression and let Power PMAC compute the exact resulting value.

Type 3: Software 1/T Encoder Extension

The Type 3 method reads several registers in the channel of a PMAC2-style IC to process

quadrature encoder data and estimate sub-count position data using timer registers in the IC

channel. Nine bits of sub-count fractional data are estimated, for a resulting resolution of 1/512

count.

The following diagram shows the principle of 1/T sub-count extension, with the timer values

being used to estimate the fractional count value between the whole-count information from the

hardware counter.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 207

A

B

T1 T2 T1 T2

Pos = Counter + T2/T1

Latch/

Interrupt

Latch/

Interrupt
Latch/

Interrupt

Pos

Time

Counter

Position

Extended

Position

1/T Sub-Count Extension Principle

The DSPGATE1 Servo IC is commonly used to process up to four quadrature encoders, as on the

ACC-24E2, ACC-24E2A, and ACC-24E2S axis-interface modules for the UMAC rack. It

employs the Gate1[i] data structure. The DSPGATE2 MACRO IC can also be used to process

one or two quadrature encoders, as on the ACC-5E MACRO & I/O module for the UMAC rack.

It employs the Gate2[i] data structure.

Note

The PMAC3-style DSPGATE3 IC performs this timer-based

extension in hardware, so this software extension method

should not be used with the PMAC3-style IC. Instead, a Type 1

single-register read of the IC hardware channel’s ServoCapt

register should be used.

Addresses of the Counter and Timer Registers: pEnc and pEnc1

EncTable[n].pEnc is set to the address of the register for the encoder count value latched on the

servo interrupt. Common setting types are:

EncTable[n].pEnc = Gate1[i].Chan[j].ServoCapt.a

EncTable[n].pEnc = Gate2[i].Chan[j].ServoCapt.a

EncTable[n].pEnc1 is set to the address of the first timer register for the channel. Common

setting types are:

EncTable[n].pEnc1 = Gate1[i].Chan[j].TimeBetweenCts.a

EncTable[n].pEnc1 = Gate2[i].Chan[j].TimeBetweenCts.a

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 208

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result

in which one quadrature count amounts to one unit of the result, ScaleFactor should be set to

1/512, because the intermediate result has 9 bits (29 = 512) of fractional count extension from the

timer values.

Type 4: Software Arctangent Sinusoidal Encoder Extension

The Type 4 method reads several registers in the channel of a PMAC2-style IC or a PMAC3-style

IC to process sinusoidal encoder data and calculate sub-count position data using ADC registers

in the IC channel and pre-determined correction factors. It is the only method available to process

sinusoidal encoder data from a PMAC2-style IC (which uses the Gate1[i] data structure), as from

an ACC-51E or ACC-51C UMAC interpolator board.

If a PMAC3-style IC (which uses the Gate3[i] data structure) is used, as from an ACC-24E3

UMAC board with a standard analog feedback mezzanine board, or a Power Clipper or Power

Brick with a standard analog feedback board, it is possible to use the hardware extension

performed in the IC and simply employ a Type 1 single-register read of the IC channel’s

ServoCapt register with the sub-count position data. This requires substantially less processor

time.

However, the only correction factors the IC’s hardware extension has are those for voltage

offsets. When this Type 4 software extension is employed, magnitude mismatch and phase offset

correction factors can be used as well. Note that when this software extension technique is used,

Gate3[i].Chan[j].AtanEna for the source IC channel must be set to 0 to disable the hardware

extension in the IC.

With an “auto-correcting interpolator” board on the ACC-24E3 UMAC board or in the Power

Brick, all of these errors are detected and corrected for in hardware, resulting in a very accurate

interpolated position value in the ServoCapt or SerialEncDataA register for the channel, so

there is no reason to use this Type 4 software extension in that case..

The following diagram shows the common signal errors found in feedback from a sinusoidal

encoder. Correction terms for these errors are detailed below.

CosOffset

CosMag

SinMag

SinOffset
90°

φ

(φ = PhaseError)

V

θ

Sinusoidal Encoder Common Signal Errors

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 209

When the data comes from a PMAC2-style IC, 10 bits of sub-count fractional data are calculated,

for a resulting resolution of 1/1024 of a quadrature count, or 1/4096 of an encoder line. When the

data comes from a PMAC3-style IC, 14 bits of sub-count fractional data are calculated, for a

resulting resolution of 1/16,384 of a quadrature count, or 1/65,536 of an encoder line.

Note that the hardware extension provides 12 bits of sub-count fractional data in a single register,

for a resulting resolution of 1/4096 of a quadrature count, or 1/16,384 of an encoder line, directly

accessible with the type = 1 single-register read method. The type = 7 extended hardware

arctangent interpolation adds 2 more bits, providing 14 bits of sub-count fractional data, for a

resulting resolution of 1/16,384 of a quadrature count, or 1/65,536 of an encoder line

Addresses of the IC Channel Registers: pEnc and pEnc1

EncTable[n].pEnc is set to the address of the status register of the IC’s channel, where it will

read key information on the encoder that was latched on the most recent servo interrupt. The

setting will be of the form:

EncTable[n].pEnc = Gate1[i].Chan[j].Status.a

EncTable[n].pEnc = Gate3[i].Chan[j].Status.a

EncTable[n].pEnc1 is set to the address of the first ADC register used for the channel. The

setting will be of the form:

EncTable[n].pEnc1 = Gate1[i].Chan[j].Adc[0].a

EncTable[n].pEnc1 = Gate3[i].Chan[j].AdcEnc[0].a

Hardware IC Type: index5

EncTable[n].index5 specifies which type of IC is used for the source data. If index5 is set to the

default value of 0, the table entry treats the source IC as a PMAC2-style IC with the format of a

Gate1[i] data structure. If index5 is set to 1, the table entry treats the source IC as a PMAC3-style

IC with the format of a Gate3[i] data structure.

Image of Encoder Decode Control: index3

In operation, EncTable[n].index3 must contain the value of the encoder decode control value for

the IC channel (which can be read in Gaten[i].Chan[j].EncCtrl). This value is necessary for the

proper combination of the whole-count and fractional-count data. If index3 is set to 0 at the start

of execution of a cycle of the table entry, it will read the control value from the IC and copy this

value into index3 for use in subsequent servo cycles. This increases the efficiency of the

operation by eliminating the need for an additional slow I/O read every servo cycle.

However, on the initial setup of the entry, and on any change to the decode value, it is important

to set this either to 0 or to the (new) value of the EncCtrl element. The EncCtrl element for the

IC channel must be set to 3 (“times-4” decode clockwise) or to 7 (“times-4” decode counter-

clockwise) in order for this entry to process the data correctly. If the direction sense of

EncTable[n].index does not match that of the present value of Gaten[i].Chan[j].EncCtrl, the

direction sense of the resulting sub-count data will not match that of the whole-count data,

resulting in a “sawtooth” pattern in the resulting combined position.

Offset Compensation Terms: SinBias and CosBias

In general, there will be offsets in the ADC readings of the “sine” (Adc[0] in a PMAC2-style IC,

AdcEnc[0] in a PMAC3-style IC) and “cosine” (Adc[1] in a PMAC2-style IC, AdcEnc[1] in a

PMAC3-style IC) values that can limit the accuracy of the position value calculated with the

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 210

arctangent function. The SinBias and CosBias terms allow the user to compensate for this type of

offset. The value of SinBias is added to the reading in Adc[0] or AdcEnc[0], and the value of

CosBias is added to the reading in Adc[1] or AdcEnc[1], before the arctangent is calculated.

SinBias and CosBias are signed 16-bit values, so for the purpose of calculating the needed

offsets, the ADCs should be treated as having 16-bit resolution (even though they are probably 14

bits). For example, if a 14-bit ADC has a reading of -5 LSBs when it should read 0, this is

equivalent to a reading of -20 of a 16-bit ADC, and the bias term should be set to +20 to

compensate. The hardware ADC registers in the ICs – Gate1[i].Chan[j].Adc[k] in a PMAC2-

style IC, Gate3[i].Chan[j].AdcEnc[0] in a PMAC3-style IC – are treated as 24-bit elements in

the Script environment and 32-bit elements in the C environment, with the real data from the n-bit

ADC in the high n bits of the element.

Magnitude Mismatch Compensation Term: CoverSerror

EncTable[n].CoverSerror (Cosine-over-Sine-error) permits the entry to compensate for a

mismatch in the magnitudes of the physical “sine” and “cosine” signals. It is used in a correction

factor that is multiplied by the measured cosine signal value before the arctangent calculations are

performed to compute the sub-count extension value.

EncTable[n].CoverSerror represents the fractional component of the correction factor, not the

entire correction factor. It is a signed 16-bit integer value, and its range of -32,768 to +32,767

represents a fractional value of -1.0 to +0.9999 that is added to 1.0 and the resulting sum is

multiplied by the measured cosine signal value. In this way, the default value of 0 for

CoverSerror represents a correction factor of 1.0, which provides no adjustment. CoverSerror

should be greater than 0 if the measured cosine signal (Adc[1] or AdcEnc[1]) has a lower

numerical magnitude that the measured sine signal, and less than 0 if the measured cosine signal

has a higher numerical magnitude that the measured sign signal.

For example, if the magnitude of the measured sine signal (Adc[0] or AdcEnc[0]) is 7.5% larger

than that of the measured cosine signal (Adc[1] or AdcEnc[1]), the cosine signal values should

be multiplied by a factor of 1.075, and CoverSerror, which represents the fractional component

of 0.075, should be set to 2458 (= 0.075 * 32,768).

Phase Error Compensation Term: TanHalfPhi

EncTable[n].TanHalfPhi permits the entry to compensate for “sine” and “cosine” signals that

are not the ideal 90° of a signal period apart. It is used to adjust both the measured sine and cosine

signal values so that they are 90° part before the arctangent calculations are performed to

compute the sub-count extension value.

EncTable[n].TanHalfPhi represents the tangent of half of the phase error angle (“phi”). A

positive value of phase error phi (and therefore a positive value of TanHalfPhi) means that the

two signals are separated by more than 90°; a negative value of Phi means that the two signals are

separated by less than 90°. TanHalfPhi is a signed 16-bit integer value, and its range of -32,768

to +32,767 represents a range for the tangent of -0.5 to +0.49999, covering a range of “half

angles” of +/-26.5°, or a range of phase error angles of +/-53°.

For example, if the two signals were found to be separated by 80° instead of the ideal 90°, the

phase error phi would be -10°, so the half angle would be -5°, and the tangent of the half angle

would be -0.087488, and TanHalfPhi should be set to -5734 (= -0.087488 * 32,768 * 2).

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 211

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

The tracking-filter operations for the software arctangent sinusoidal-encoder extension method

are identical to those for the single-register read. Refer to the section under Single-Register Read

for details.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and its value implicitly specifies the units of the entry result.

Different users of sinusoidal encoders prefer different result units.

When a PMAC2-style IC is used, for users who wish the result to be scaled in units of LSBs of

the interpolator (1/1024 of a quadrature count, or 1/4096 of an encoder line), this should be set to

1.0. For users who wish the result to be scaled in units of quadrature counts (1/4 of an encoder

line), as if it were a digital quadrature encoder, this should be set to 1/1024. For those who wish

the result to be scaled in units of encoder lines, this should be set to 1/4096. It is usually best to

enter the value for ScaleFactor as an expression and let Power PMAC compute the exact

resulting value.

When a PMAC3-style IC is used, for users who wish the result to be scaled in units of LSBs of

the interpolator (1/16,384 of a quadrature count, or 1/65,536 of an encoder line), this should be

set to 1.0. For users who wish the result to be scaled in units of quadrature counts (1/4 of an

encoder line), as if it were a digital quadrature encoder, this should be set to 1/16,384. For those

who wish the result to be scaled in units of encoder lines, this should be set to 1/65,536. It is

usually best to enter the value for ScaleFactor as an expression and let Power PMAC compute

the exact resulting value.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 212

Type 5: Four-Byte Read

The Type 5 method reads four bytes in four separate registers to assemble a 32-bit value before

further processing. It is mainly intended for data read through the “IOGATE” IC on modules such

as the ACC-14E. This IC has an 8-bit data bus.

Addresses of the Registers: pEnc and pEnc1

EncTable[n].pEnc is set to the address of the least significant byte. It takes data from the second

byte of this register (bits 8 – 15) and uses this data to form the low 24 bits of the initially

assembled 32-bit value. It is most commonly used to access the lowest byte of a 24-bit port (A or

B) on an ACC-14E. In this case the setting is like:

EncTable[n].pEnc = GateIo[i].DataReg[0].a // Low byte of Port A

EncTable[n].pEnc = GateIo[i].DataReg[3].a // Low byte of Port B

EncTable[n].pEnc1 is set to the address of the second source register. It takes data from bits 8 –

15 of this register and uses this data to form the next 8 bits of the initially assembled 32-bit value.

It is most commonly used to access the middle byte of a 24-bit port (A or B) on an ACC-14E. In

this case, the setting is like:

EncTable[n].pEnc1 = GateIo[i].DataReg[1].a // Mid byte of Port A

EncTable[n].pEnc1 = GateIo[i].DataReg[4].a // Mid byte of Port B

The third byte automatically comes from the next register after the one specified by pEnc1 (an

address 4 higher). This will typically be the high byte of a 24-bit port (A or B) on an ACC-14E.

The fourth byte (seldom used) automatically comes from the third-next register after the one

specified by pEnc (an address 12 higher). In the cases where there is real data in this byte, this

will typically be the low byte of Port B of an ACC-14E, where the other three bytes come from

Port A.

The following diagram shows how the data from the 4 registers is combined in this first step:

- - - - - - - -LSByte- - - - - - - - - - - - - - - -

- - - - - - - -2nd Byte- - - - - - - - - - - - - - - -

- - - - - - - - 3rd Byte- - - - - - - - - - - - - - - -

- - - - - - - -MSByte- - - - - - - - - - - - - - - -

data field32-bit

at pEnc:

at pEnc1:

at pEnc1 + 4:

at pEnc + 12:

Combined

Result

07

07

8

8

15

15

16

162324

31

31

ECT Type 5 Four-Byte Data Combination

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 213

Data-Shifting Operations: index1 and index2 (index2 < 32)

Once the data from the four source registers has been assembled into a single 32-bit value,

subsequent operations work just like those for the single-register read method. For data shifting,

refer to the section under Single-Register Read.

Change-Limiting Operations: index3 and MaxDelta

The change-limiting operations for the four-byte read method are identical to those for the single-

register read. Refer to the section under Single-Register Read for details.

Numerical-Integration Operations: index4 and EncBias

The numerical-integration operations for the four-byte read method are identical to those for the

single-register read. Refer to the section under Single-Register Read for details.

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

The tracking-filter operations for the four-byte read method are identical to those for the single-

register read. Refer to the section under Single-Register Read for details.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result

in which the least significant bit of real data in the first source register amounts to one unit of the

result, ScaleFactor should be set to 1 / 2(32 - #ofBits).

With 24 bits of real data, after the two shifting operations, the LSB of real source data will be in

bit 8 of the intermediate register. To get a result value where this LSB amounts to one unit, this

must be multiplied by 1 / 2(32 – 24) = 1 / 28 = 1/256. It is usually best to enter the value for

ScaleFactor as an expression and let Power PMAC compute the exact resulting value.

Type 6: Resolver Arctangent Direct Conversion

The Type 6 method reads several registers of a device like an ACC-58E resolver-to-digital (R/D)

converter board to calculate the angular position of a resolver.

Note that the PMAC3-style DSPGATE3 IC performs this arctangent conversion in hardware, so

this software-based arctangent conversion should not be used with the PMAC3-style IC. Instead,

a Type 1 single-register read of the Atan register should be used.

Addresses of the Output and Input Registers: pEnc and pEnc1

EncTable[n].pEnc is set to the address of the latched numerical excitation output value for the

resolver. This value is needed to correlate with the simultaneously strobed input values. There is a

common excitation value for all of the feedback channels on an ACC-58E. It is found at an

address just past the registers in the DSPGATE1 IC that processes the sine and cosine feedback.

The setting can be of the form:

EncTable[n].pEnc = Gate1[i].a + 256

EncTable[n].pEnc1 is set to the address of the first ADC register for the channel. The setting

will be of the form:

EncTable[n].pEnc1 = Gate1[i].Chan[j].Adc[0].a

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 214

Offset Compensation Terms: SinBias and CosBias

In general, there will be offsets in the ADC readings of the “sine” (Adc[0]) and “cosine” (Adc[1])

values that can limit the accuracy of the position value calculated with the arctangent function.

The SinBias and CosBias terms allow the user to compensate for this type of offset. The value of

SinBias is added to the reading in Adc[0], and the value of CosBias is added to the reading in

Adc[1], before the arctangent is calculated.

SinBias and CosBias are signed 16-bit values, so for the purpose of calculating the needed

offsets, the ADCs should be treated as having 16-bit resolution (even if they have other

resolution).

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

It is strongly recommended that a tracking filter be used as part of the resolver conversion,

because of the noise sensitivity of the direct conversion. The combination of the direct hardware

conversion and the software tracking filter produces dynamics similar to that of the traditional

tracking R/D converters.

The tracking-filter operations for the software arctangent direct resolver conversion method are

identical to those for the single-register read. Refer to the section under Single-Register Read for

details.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and its value implicitly specifies the units of the entry result.

The ACC-58E can provide a 16-bit conversion (65,536 states per resolver cycle), but many times

the noise level in the system means that some of the lower bits of the result do not provide

meaningful information.

For users who wish the result to be scaled in units LSBs of the 16-bit conversion (1/65536 of a

resolver cycle), this should be set to 1.0. For users who wish the result to be scaled as if a lower-

resolution conversion were performed, this should be set to 1/216-n for an n-bit conversion. For

example, to scale the result as if a 14-bit conversion had been performed, ScaleFactor should be

set to 1/216-14 = 1/4. This is the most common setting.

Type 7: Extended Hardware Arctangent Interpolation

When the PMAC3-style DSPGATE3 IC performs hardware interpolation of a sinusoidal encoder,

it automatically combines the whole-count data and interpolated fractional-count data into the

channel’s ServoCapt and PhaseCapt registers, where they can be used directly by reading only a

single register from the IC. These registers provide 16,384 states per line of the encoder (14 bits

of fraction per line, or 12 bits of fraction per quadrature count). Simply reading the ServoCapt

register with a Type 1 single-register read provides the servo with “x16384” interpolation.

With the “auto-correcting” interpolator (released 4th quarter 2013 for the ACC-24E3), it is

possible to obtain a higher degree of interpolation that can be obtained in this register alone. The

Type 7 extended hardware arctangent interpolation method allows the user to obtain 16 bits of

fraction per line (14 bits of fraction per quadrature count) for “x65536” interpolation.

To use this method, Gate3[i].Chan[j].AtanEna for the source IC channel must be set to 1 to

enable the hardware extension in the IC.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 215

Address of Primary Register: pEnc

EncTable[n].pEnc is set to the address of the channel’s ServoCapt register, which latches the

interpolated count value, with 14 bits of fraction per line, each servo cycle. The setting will be of

the form:

EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a

Address of Secondary Register: pEnc1

EncTable[n].pEnc1 is set to the address of the channel’s register containing the Atan element,

which contains 16 bits of fraction per line, updated each servo and phase cycle. The setting will

be of the form:

EncTable[n].pEnc1 = Gate3[i].Chan[j].AtanSumOfSqr.a

It is also possible to specify this simply as the address of the partial-word Atan element, but it

will report back as the address of the full-word AtanSumOfSqr element.

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

The tracking-filter operations for the extended hardware arctangent interpolation method are

identical to those for the single-register read. Refer to the section under Single-Register Read for

details. Note that the auto-correcting interpolator circuitry performs significant filtering itself in

hardware, so this software tracking filter will probably not be helpful.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and its value implicitly specifies the units of the entry result.

Different users of sinusoidal encoders prefer different result units.

For users who wish the result to be scaled in units of LSBs of the interpolator (1/16,384 of a

quadrature count, or 1/65,536 of an encoder line), this should be set to 1.0. For users who wish

the result to be scaled in units of quadrature counts (1/4 of an encoder line), as if it were a digital

quadrature encoder, this should be set to 1/16,384. For those who wish the result to be scaled in

units of encoder lines, this should be set to 1/65,536. It is usually best to enter the value for

ScaleFactor as an expression and let Power PMAC compute the exact resulting value.

Types 8 and 9: Addition and Subtraction

The Type 8 and 9 methods permit the addition and subtraction, respectively, of numerical values.

Almost always, they will use values from other ECT entries that have already been processed

(except for final scaling). These methods assume that the data in the two source registers have the

same scaling. Once the addition or subtraction occurs, further processing is possible.

Addresses of the Registers: pEnc and pEnc1

EncTable[n].pEnc is set to the address of the first source register. It reads the entire 32-bit value

at this register, treating it as a signed integer. In most cases, this register will be the PrevEnc

element of an earlier (lower-numbered) entry in the conversion table. In this case the setting is

like:

EncTable[n].pEnc = EncTable[m].PrevEnc.a

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 216

EncTable[n].pEnc1 is set to the address of the second source register. It reads the entire 32-bit

value at this register, treating it as a signed integer. In most cases, this register will be the

PrevEnc element of an earlier (lower-numbered) entry in the conversion table. In this case the

setting is like:

EncTable[n].pEnc1 = EncTable[l].PrevEnc.a

In Type 8, the value in the second source register is added to the value in the first source register.

In Type 9, the value in the second source register is subtracted from the value in the first source

register. Once this addition or subtraction has been performed, subsequent processing can be done

just as for one of the parallel-read methods. Note, however, that this processing could also have

been done in the ECT entries of the source registers.

Data-Shifting Operations: index1 and index2 (index2 < 32)

Once the data from the two source registers has been mathematically combined into a single 32-

bit value, subsequent operations work just like those for the single-register read method. For data

shifting, refer to the section under Single-Register Read.

Change-Limiting Operations: index3 and MaxDelta

The change-limiting operations for the addition and subtraction methods are identical to those for

the single-register read. Refer to the section under Single-Register Read for details.

Numerical-Integration Operations: index4 and PrevDelta

The numerical-integration operations for the addition and subtraction methods are identical to

those for the single-register read. Refer to the section under Single-Register Read for details.

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

The tracking-filter operations for the addition and subtraction methods are identical to those for

the single-register read. Refer to the section under Single-Register Read for details.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result

in which the least significant bit of real data in the source registers amounts to one unit of the

result, ScaleFactor should be set to 1 / 2(32 - #ofBits).

Type 10: Triggered Time Base

The Type 10 method permits the implementation of “triggered time base” master encoder

functionality. It is actually an alternate “state” of a Type 3 “software 1/T extension” method for a

digital quadrature encoder processed through a PMAC2-style IC, or of a Type 1 “single-register

read” method for a digital quadrature or analog sinusoidal encoder. When the type element for

one of these entries is set to 10 (instead of 1 or 3) the time base value of the DeltaPos element is

always 0.0, regardless of the speed of the encoder, thereby “freezing” the time base until the

specified trigger occurs.

If this master encoder is also used as a feedback encoder, there will likely be two ECT entries

reading the encoder position value. The first will keep the type = 1 or type = 3 setting all the time

so it can be used for servo feedback. The second, used for the triggered time base master, with the

value of type changed between the frozen/armed state and the running state.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 217

Address of the Position Register: pEnc

The address of the main position register specified by EncTable[n].pEnc is the same in the

frozen state as in the running state. For these types of encoders, it must be set to the address of the

“servo capture” register for the encoder channel in the ASIC: Gaten[i].Chan[j].ServoCapt.a.

Address of the Trigger Register: pEnc1

Once the entry is “frozen” by setting type to 10, the secondary register specified by

EncTable[n].pEnc1 must be set to the address of the status register for the encoder channel in

the ASIC: Gaten[i].Chan[j].Status.a. This register contains the capture trigger bit that indicates

that the specified trigger condition has occurred.

“Arming” Control: index1

Once the entry has been frozen by setting type to 10 and prepared for the trigger by setting

pEnc1 to the address of the channel’s status register, it can be “armed” by setting

EncTable[n].index1 to 2 for a PMAC2-style IC, or to 3 for a PMAC3-style IC. The value

specifies which bit in the status register to check for the trigger (different in the two ICs) and how

to set Type and pEnc1 after the trigger is found.

In a PMAC2-style IC, type is set back to 3 and pEnc1 is set back to

Gate1[i].Chan[j].TimeBetweenCts.a to re-enable the software 1/T extension used for the

running time base. In a PMAC3-style IC, type is set back to 1; the setting of pEnc1 while time

base is running is not used. In both cases, index1 is set back to 0 when the trigger is found.

To ensure proper referencing to the master position at the trigger, the arming operation must

occur after the initial move that is to start at the trigger has been fully calculated and ready to

execute. It is best accomplished in a PLC program, where a single program line can arm the entry

if it sees that it is frozen – for example:

if (EncTable[4].type == 10) EncTable[4].index1 = 2;

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. For a time-base

master, it is set based on a user-selected “real-time input frequency” (RTIF). The idea is that

when the master sensor is producing this count frequency, the slave motion will execute in the

programmed time.

If the running state of the entry is type = 3, ScaleFactor for a time base master entry should be

set to 1 / (512 * RTIF), with RTIF expressed in counts per millisecond.

If the running state of the entry is type = 1, ScaleFactor for a time base master entry should be

set to 1 / (256 * RTIF), with RTIF expressed in counts per millisecond.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 218

Type 11: Floating-Point Register Read

The Type 11 method reads a floating-point register, either single-precision (32-bit) or double-

precision (64-bit) and prepares it for use by servo tasks. The main purpose of this method is to

use the commanded servo output of a motor to create simulated feedback in software, without the

requirement to write the output to a fixed-point “dummy” register. This permits techniques such

as “direct microstepping” for open-loop stepper-motor control. It can also be used to provide an

offset command to an inner servo loop in a “cascaded servo loop” configuration.

Format of the Source Register: index6

If index6 is set to the default value of 0, Power PMAC will interpret the source value as a single-

precision (32-bit) floating-point value. If index6 is set to 1, Power PMAC will interpret the

source value as a double-precision (64-bit) floating-point value.

Address of the Source Register: pEnc

If configured for a single-precision source, EncTable[n].pEnc can be set to the address of a

motor’s servo-output register (Motor[x].IqCmd.a), which is useful for simulated or cascaded

servo loops, or of a single-precision register in the user shared memory buffer (Sys.Fdata[i].a).

If configured for a double-precision source, EncTable[n].pEnc can be set to the address of a

motor’s commutation angle register (Motor[x].PhasePos.a), which is useful for direct

microstepping, of a motor’s net desired position register (Motor[x].DesPos.a), useful for tracking

a commanded trajectory, or of a double-precision register in the user shared memory buffer

(Sys.Ddata[i].a).

Pre-Scaling Operation: index5

The input floating-point value can be pre-scaled using the index5 element. The value is

multiplied by (index5 + 1) before conversion to fixed-point format for further operations. At the

default value of 0 for index5, no pre-scaling is performed. Larger values of index5 (up to 255)

permit resolution to be maintained from small source values.

Data Shifting Operations: index1 and index2 (index2 < 32)

Once the data from the floating-point register has been read and converted to fixed-point format,

it can be shifted just as for the single-register (fixed-point) read method. Refer to the section

under Single-Register Read for details.

Change-Limiting Operations: index3 and MaxDelta

The change-limiting operations for the floating-point register read method are identical to those

for the single-register (fixed-point) read method. Refer to the section under Single-Register Read

for details.

Numerical-Integration Operations: index4

The numerical integration operations for the floating-point read are identical to those for the

single-register (fixed-point) read method. When this method is used for a simulated servo

feedback, numerical integration is almost always enabled. For use in cascaded servo loops as the

offset command to the inner loop, no integration is typically used if only small offsets are

provided to the inner loop, or a single integration if indefinitely large offsets can be provided (as

for tensioning a moving web). When the PhasePos commutation angle register is used for direct

microstepping “feedback”, it is not integrated. Refer to the section above under Single-Register

Read for details on setting up the integration in the entry.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 219

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. For the floating-

point read, if index5 is 0 to disable pre-scaling, and ScaleFactor is set to 1.0, the result of the

entry will have a magnitude 256 times that of the source register value. If you wish the result to

have the same scaling as the source, set ScaleFactor to 1/256. For direct microstepping,

ScaleFactor is commonly set to 1/65,536. It is usually best to enter the value for ScaleFactor as

an expression and let Power PMAC compute the exact resulting value.

Type 12: Single Register Read with Error Check

The Type 12 method implements a single-register read as in Type 1, but adds the ability to check

for error bits in a separate source register. If an error is found in a given servo cycle, the source

position is not used; instead the position values from previous valid reads are extended for use in

its place. This method is mainly for use with serial encoders, for which a variety of errors (e.g.

timeout, CRC error) can be detected, but something needs to be done to “ride through” an

occasional error properly.

Address of Single Position Register: pEnc

EncTable[n].pEnc is set to the address of the source position register. Usually it is set by naming

the data structure element of the source register, followed by the .a (“address of”) suffix. As with

Type 1, the data can be in any continuous zone within this 32-bit register.

Because this method is focused on serial encoders, this element is typically used to access the

first serial encoder data register in either the PMAC3-style “DSPGATE3” IC, as in the ACC-

24E3, the Power Brick, or the Power Clipper, or in the ACC-84x FPGA IC:

EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a

EncTable[n].pEnc = Acc84E[i].Chan[j].SerialEncDataA.a

Address of Error Register: pEnc1

EncTable[n].pEnc1 is set to the address of the register containing error, alarm, and/or status bits

for the position source. Power PMAC will read the full 32-bit register at this address, then only

use the specified bits to determine whether or not there is an error.

For the usual serial encoder interface, this element is used to access the second serial encoder data

register in the PMAC3-style “DSPGATE3” IC, or the second or third serial encoder data register

(depending on the protocol) in the ACC-84x FPGA IC.

EncTable[n].pEnc1 = Gate3[i].Chan[j].SerialEncDataB.a

EncTable[n].pEnc1 = Acc84E[i].Chan[j].SerialEncDataB.a

EncTable[n].pEnc1 = Acc84E[i].Chan[j].SerialEncDataC.a

If EncTable[n].pEnc1 is set to the default value of Sys.pushm (the start of the user shared

memory buffer), no read of an error register will be performed, so no errors of this type can be

automatically detected and acted upon.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 220

Error Register Mask: index6

In this method, the 32-bit element EncTable[n].index6 is combined with the value read in the

error register specified by EncTable[n].pEnc1 through a bit-by-bit AND operation. This permits

the user to specify which bits of the source register will be treated as error bits. For example, if

only bit 31 is to be treated as an error bit, index6 should be set to $80000000. If bits 31 and 30

are both to be treated as error bits, index6 should be set to $C0000000.

The following tables show the settings to be used if all of the error bits, and optionally alarm bits

and status bits, are to be treated as real errors by the entry, for both the DSPGATE3 IC and ACC-

84x interfaces. Of course, the user may choose not to monitor all of these bits.

DSPGATE3-Based Interfaces

Protocol Gate3[i] Element Bits Mask Word

index6 value

SPI SerialEncDataB Status bits 31:20* $FFF00000*

SSI SerialEncDataB Error bit 31 $80000000

EnDat 2.1 SerialEncDataB Error bits 31:29 $E0000000

Hiperface (not for cyclic read)

Yaskawa I (not for cyclic read)

Yaskawa II/III/V SerialEncDataB Error bits 31:29

+Alarm bits 27:20

$E0000000

$EFF00000

Tamagawa SerialEncDataB Error bits 31:30

+Alarm bits 23:16

$C0000000

$C0FF0000

Panasonic SerialEncDataB Error bits 31:30

+Alarm bits 15:08

$C0000000

$C000FF00

Mitutoyo SerialEncDataB Error bits 31:30

+Alarm bits 23:16

+Status bits 27:24

$C0000000

$C0FF0000

$CFFF0000

Kawasaki SerialEncDataB Error bits 31:30

+Alarm bits 26:24

$C0000000

$C7000000

* Implementation-specific; most encoders will not use all of these bits.

ACC-84x Interfaces

Protocol Acc84x[i] Element Bits Mask Word

index6 value

BiSS-B/C SerialEncDataB Error bits 31:30

+Status bits 29:24

$C0000000

$FF000000

EnDat 2.1/2.2 SerialEncDataB Error bits 31:30,27:26 $CC000000

Mitutoyo SerialEncDataC Error bits 31:30

+Alarm bits 23:16

$C0000000

$C0FF0000

Panasonic SerialEncDataC Error bits 31:30

+Alarm bits 23:16

$C0000000

$C0FF0000

SSI SerialEncDataB Error bit 31 $80000000

Tamagawa SerialEncDataC Error bits 31:30

+Alarm bits 23:16

$C0000000

$C0FF0000

Yaskawa II/III/V SerialEncDataB or

SerialEncDataC

Error bits 31:29 or

Alarm bits 23:16

$E0000000 or

$00FF0000

If any of the bits in the error register specified by index6 is found to be true in a given servo

cycle, the data in the position register will be considered invalid. In this case, a replacement

position value would be calculated just as if the read position value caused the “maximum

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 221

change” limit, as set by the index3 and MaxDelta elements for the entry, to be exceeded (see

below).

In addition, if any of these errors is found in a given servo cycle, bit 0 of EncTable[n].Status is

set to 1. (If no errors are found in a given servo cycle, this bit is set to 0.) Some users may want to

have the motor’s automatic encoder-loss detection function use this bit, which can effectively

combine multiple error bits. This is done by setting Motor[x].pEncLoss to

EncTable[n].Status.a, Motor[x].EncLossBit to 0, and Motor[x].EncLossLevel to 1.

Motor[x].EncLossLimit, which sets the accumulated number of errors that must be exceeded

before shutdown, should generally be set large enough to permit continued operation on

intermittent errors.

Data-Shifting Operations: index1 and index2 (index2 < 32)

EncTable[n].index1 and EncTable[n].index2 control how the raw data is processed by

“shifting” operations to eliminate parts of the 32-bit word that do not contain real data. First the

raw data is shifted right by the number of bits specified in index2. Generally, index2 is set to the

bit number of the LSB of actual data in the source register, so all of the “garbage data” below it is

eliminated.

Next, this result is shifted left by the number of bits specified in index1. Generally, index1 is set

to the quantity 32 minus the number of bits of real data in the source register. This will cause the

MSB of actual data in the source register to end up in the highest bit of the intermediate result

register. This must occur if Power PMAC is to handle rollover of the source data value properly.

For more information and examples for these elements, refer to the description of Type 1, above.

Tracking-Filter Operations: index1, index2 (index2 > 31), index4

While it is possible to create a digital low-pass tracking filter in a type = 12 entry instead of data

shifting, it is not commonly done. Refer to the description under type = 1 for how to implement a

tracking filter.

Change-Limiting Operations: index3 and MaxDelta

The Type 12 method, as in other methods, permits the user to specify the maximum change in

source position that will be considered valid. If this limit is exceeded in a servo cycle, the source

position value for the cycle will not be used, and in its place will be calculated a value

extrapolated from the most recent valid readings. However, the type = 12 method will also

calculate this replacement value if any of the specified error bits is found to be true. In addition,

the type = 12 method will set bit 0 of EncTable[n].Status to 1 in any servo cycle where the limit

is exceeded.

If EncTable[n].MaxDelta is set greater than 0, this change-limiting is active for the entry. While

this change can be specified as a first derivative (velocity) by setting EncTable[n].index3 to 0, it

is much better in this method to specify it as a second derivative (acceleration) by setting index3

greater than 0, with the value of index3 specifying the number of consecutive servo cycles the

last valid acceleration is maintained in the replacement position value. After this number of servo

cycles, if the anomaly persists, the resulting position jumps immediately to the new source value.

When the change limit is expressed as an acceleration, MaxDelta is expressed in LSBs of the

source data per servo cycle per servo cycle.

Power PMAC User’s Manual

Setting Up the Encoder Conversion Table 222

Numerical-Integration Operations: index4 and EncBias

While it is possible to numerically integrate the source date in a type = 12 entry, it is not

commonly done. Refer to the description under type = 1 for how to implement numerical

integration.

Output Scaling: ScaleFactor

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result

in which the least significant bit of real data in the source register amounts to one unit of the

result, ScaleFactor should be set to 1 / 2(32 - #ofBits).

Power PMAC User’s Manual

Basic Motor Setup 223

BASIC MOTOR SETUP

Power PMAC has many modes for controlling motors. A major part of the initial setup of a

Power PMAC is the hardware and software configuration to specify a specific mode of operation.

The commonly used modes of operation are:

 Analog command of velocity-mode drives

 Analog command of torque-mode drives

 Analog command of sine-wave input drives

 Direct-PWM control of “power-block” drives

 Pulse-and-direction command of stepper or “stepper-replacement” servo drives

 Numerical command of networked position-mode or torque-mode drives

The following diagram shows the tasks that are performed in motor control and the different

places they can be split between the controller and the drive.

Trajectory

Generation

Interpolation

Position

Filter

Velocity

Filter

Phase

Commutation

Current

Filters

Power

Modulation

MotorE

d

dt

+ +
+

+
- -

-

-

Desired Phase Voltages

Desired Phase Currents

Desired Torque

Desired Velocity

Desired Position

Position-

Mode Drive
Velocity-

Mode Drive
Torque-

Mode Drive
Sinewave-

Mode Drive
Direct PWM-

Mode Drive

Phase Currents

Position

Motor Control Task Division Points

Any of these modes can be employed directly in a Power PMAC system, or over the MACRO

ring. When using the MACRO ring, the command and feedback values are passed across the ring

as binary numerical values; the actual generation of command signals and processing of feedback

signals is done at the remote MACRO node. The motor algorithms in the Power PMAC are the

same regardless of whether the MACRO ring is used or not. The choice of mode of operation is

independent for each motor.

Power PMAC User’s Manual

Basic Motor Setup 224

IDE Interactive Setup

Power PMAC’s Integrated Development Environment (IDE) software for the PC has interactive

menus that walk the user through much of this setup. Most users will be able to use these menus

to accomplish their motor setup, reducing or eliminating the need to use the material in this

chapter. However, this chapter does provide useful “low-level” information for those working

without the IDE, or for those who wish to understand fully each step of the operation.

The IDE motor setup control can be invoked by clicking on “Tools” in the top bar, then on

“System Setup” in the pull-down menu. On the left window of the control, click on “Power

PMAC”, then on a motor number, or on “Add Motor”.

IDE Motor Setup Control

Parameters to Set Up Basic Motor Operation

Each motor has setup data structure elements to permit specific software configuration of that

motor’s control algorithms. Most commonly, the inputs and outputs for the motor pass through an

ASIC that has its own setup data structure elements.

Most of the software configuration of a motor involves setting proper values for these variables,

as explained in the following sections. This section has a quick survey of the key variables, and

the variables that are common to all modes. Depending on how you are setting up the motor, you

may branch to other sections of the manual. The following flow chart summarizes the motor setup

possibilities:

Power PMAC User’s Manual

Basic Motor Setup 225

Pulse and

Direction

Setup

Current Loop

Setup/Tuning

Analog

Output

Setup

Beginning

Motor

Setup

Use PMAC to

commutate and/or close

current loop?

Basic

Commutation

Setup

Use PMAC to close

current loop?

Sine-Wave

Output

Setup

Direct PWM

Output

Setup

Synchronous

Motor?

Phase

Referencing

Slip and

Magnetization

Current Setup

Position/Velocity

Servo Loop

Setup

Analog

Output?

Single Output

Setup

YesNo

YesNo

YesNo

No Yes

Motor Setup Flowchart

Power PMAC User’s Manual

Basic Motor Setup 226

Initial Setup Parameters

Activating the Motor: Motor[x].ServoCtrl

The element Motor[x].ServoCtrl must be set to a value greater than 0 for that motor to be used

in an application. It should be set to 0 for any motor that is not used, so Power PMAC will not

waste computation time on that motor. An activated motor can be enabled or disabled; a de-

activated motor is not monitored in any way.

Caution

The value of Motor[x].ServoCtrl should not be changed with

the servo loop enabled. Make sure the servo loop is disabled

(killed) before changing the value of this element.

Presently, two non-zero values are supported. A value of 1 activates this motor in normal mode,

in which it generates its own command trajectory. A value of 8 activates this motor in a special

“gantry follower” mode, in which it uses the commanded trajectory generated by the motor

specified by this motor’s saved setup element Motor[x].CmdMotor. This mode guarantees that

this motor will track the specified “gantry leader” motor during jogging, homing, and

programmed moves. This gantry leader motor is set up identically to an independent motor, with

a value of 1 for this element.

Special Considerations for Gantry Follower Mode

When gantry follower mode (Motor[x].ServoCtrl = 8), special care must be taken in controlling

the states (enabled closed-loop, enabled open-loop, disabled) of the leader and follower motors.

This is true whether the two motors have independent servo loops, or use a single cross-coupled

servo algorithm (Sys.GantryXCtrl).

It is possible for the motors to be in different states, but before attempting any positioning move

commands, both motors should be in the enabled closed-loop state.

If either the leader motor or the follower motor has a killing (disabling) fault, the other motor will

automatically be disabled as well. If the leader motor is disabled by command, the follower motor

will automatically be disabled too. Both motors must be re-enabled with the loops closed before

issuing any positioning move commands to the leader motor.

Typically, a special joint homing search move procedure is performed to reference both motors

and to automatically remove any skew that was present on power-up. This procedure is explained

in the chapter Executing Individual Motor Moves.

Activating PMAC Motor Commutation: Motor[x].PhaseCtrl

The element Motor[x].PhaseCtrl must be set to a value greater than 0 for any phase-interrupt

tasks to be performed for that motor. For multi-phase motor commutation, and possibly current-

loop closure, to be performed, either bit 0 (value 1) or bit 2 (value 4) must be set to 1.

If bit 2 is set to 1 (typically Motor[x].PhaseCtrl = 4), Power PMAC will perform commutation

tasks for the motor with any phase input and output values accessed in separate registers for each

phase. This is known as “unpacked mode”, and must be used with PMAC2-style Servo ICs, as on

the ACC-24E2x UMAC axis-interface boards, or with a MACRO ring interface using either

Power PMAC User’s Manual

Basic Motor Setup 227

PMAC2 or PMAC3 ASICs. It can be used with PMAC3-style ICs, as on the ACC-24E3 UMAC

axis interface boards, provided that the setup elements Gate3[i].Chan[j].PackInMode and

Gate3[i].PackOutMode are changed from their default values of 1 and set to 0.

If bit 0 is set to 1 (typically Motor[x].PhaseCtrl = 1), Power PMAC will perform commutation

tasks for the motor with any phase input and output values accessed in pairs, two values per 32-

bit register – Phases A and B together, Phases C and D (if present) together. This is known as

“packed mode”, and can be used with PMAC3-style ICs, as on the ACC-24E3 UMAC axis

interface boards, provided that the setup elements Gate3[i].Chan[j].PackInMode and

Gate3[i].PackOutMode are set to their default values of 1. Packed mode saves significant time

for input/output operations, which can be important in high-frequency and/or high-axis-count

applications.

If commutation tasks are enabled in either packed or unpacked mode, the commutation setup

elements must be set to specify how commutation is performed. The instructions for setting these

variables are given in the Setting Up Power PMAC Commutation chapter of the User’s Manual.

Note

It is possible in Power PMAC to perform “direct PWM”

control of DC brush motors, closing the current loop digitally

inside the Power PMAC. Because the current-loop algorithm in

Power PMAC is an optional branch of the commutation

algorithm executing under the phase interrupt, it is necessary to

activate the Power PMAC commutation algorithm by setting

Motor[x].PhaseCtrl greater than zero to do this control, even

though it will not actually be performing the commutation.

(The AC nature of the commutation is defeated by setting the

Motor[x].PhasePosSf scaling factor to 0.).

If bit 3 of Motor[x].PhaseCtrl is set to 1 (typically Motor[x].PhaseCtrl = 8), then the servo

loop for this motor will be closed in the phase interrupt, which usually has a higher frequency

than the servo interrupt. This setting is most commonly used for special high-bandwidth actuators

such as galvanometers, piezo-motors, and voice coil motors, permitting them to close their loops

at higher frequencies than the other motors in the system. While it is possible both to close the

servo loop in the phase interrupt and to perform commutation tasks for the motor (using a setting

of 9 or 12), this is very unusual, as these high-bandwidth actuators seldom require electronic

commutation.

Motor Address Setup Parameters

Each Power PMAC motor has several “address” setup elements that tell the motor what registers

to use for its inputs and outputs. Each of these variables contains the Power PMAC address of the

register for the particular function. This provides a “mapping” between the motor calculation

registers and the different types of servo I/O registers (encoders, D/A converters, flags, etc.) used

for the physical interface. By providing a user-settable mapping, Power PMAC makes it very

easy to utilize different types of feedback and output signals for each motor.

The names of these address parameters start with a lower-case “p”, which indicates “pointer to”.

Power PMAC User’s Manual

Basic Motor Setup 228

It is not necessary for the user to know the numerical value of the address specified for one of

these functions. Instead, the name of the data structure element for the register is specified, along

with the “.a” (denoting “address of”) suffix.

Command Output Address: Motor[x].pDac

Motor[x].pDac instructs Power PMAC where to place its output command value(s) for Motor x

by specifying the address of the register (or the first register if multiple outputs are used). Note

that despite the name of this element, it is not required that the address be that of an actual D/A-

converter register.

The default values of Motor[x].pDac use the output registers for the machine interface channel

usually assigned to the motor, or command registers (starting with Register 0) for the MACRO

node usually assigned to the motor. The exact setting is dependent on the mode used, and is

covered in the section for each mode of control. Typical types of settings used are:

 Motor[x].pDac = Gaten[i].Chan[j].Dac[0]

 Motor[x].pDac = Gaten[i].Chan[j].Pwm[0]

 Motor[x].pDac = Gaten[i].Chan[j].Pfm

 Motor[x].pDac = Gate2[i].Macro[j][0]

 Motor[x].pDac = Gate3[i].MacroOutα[j][0]

Motor vs. Load Feedback

A servo system designer faces a choice in placing the feedback device(s); whether there should be

a feedback sensor on the motor, on the load, or both. As in all engineering designs, there are

tradeoffs that must be considered.

Using a feedback sensor on the motor alone is usually the most cost-effective solution, especially

for a rotary motor. If the motor rotation is “geared down” to the load, the sensor provides a higher

resolution when measuring load movement. It is typically easier to protect the sensor from

environmental damage when it is on the motor.

However, a motor-mounted sensor provides a very indirect measurement of the load position,

with many factors capable of introducing errors, including coupling compliance, gear backlash,

and screw tolerances. If only a motor sensor is used, these errors must either be tolerated, or

characterized and compensated.

A feedback sensor mounted directly on the load provides a much more direct, and therefore

accurate, measurement of the load position. However, a load sensor, particularly if linear, tends to

be much more exposed to physical and environmental damage, and is often more expensive. Of

course, effective resolution multiplication through gearing is not possible for a directly mounted

load sensor. If only a load sensor is used, coupling and connection imperfections, such as

compliance and backlash, are “inside” the servo loops closed with its feedback, making it more

difficult to achieve stable control.

Power PMAC makes it easy to utilize dual motor/load feedback to get the advantages of both

sensor placements. It closes an outer position loop with its choice of feedback sensor, and an

inner velocity loop with a separate choice of feedback sensor. While a large majority of users will

select the same sensor for both loops, it is very simple to select separate sensors, closing the

position loop using the load sensor for high accuracy, and the velocity loop using the motor

sensor for good stability and high bandwidth (from the effective high resolution).

Power PMAC User’s Manual

Basic Motor Setup 229

The following diagram shows the basic principle of selecting single or dual feedback with Power

PMAC. The details of this selection are covered in the next sections.

D

P

E

Amp

Motor Load

pDac

pEnc2

pEnc
Encoder

DesPos

ActPos

-
+

-
+

ActPos2

Power PMAC Motor and Load Feedback Selection Options

Outer (Position) Loop Feedback: Motor[x].pEnc, PosSf

Motor[x].pEnc specifies the address of the register Power PMAC reads for the ongoing outer-

loop feedback for the motor. The outer loop is virtually always the position loop for the motor.

This address must be the address of an entry in the “encoder conversion table” (ECT) to access

processed data from the table, so the specification will always take the form of EncTable[n].a.

This means that any data to be used for servo feedback must be processed through the ECT.

Despite the name of this element, it is not required that the feedback ultimately come from an

encoder sensor.

By default, Motor n accesses the result of ECT entry n for its outer-loop feedback. Refer to the

User’s Manual section on the encoder conversion table for more information on that setup.

The data read at this address is multiplied by the value of the scale factor element

Motor[x].PosSf before it is used for motor position. The floating-point data read from the ECT

will almost always have units of “counts” or “LSBs”, even if there is fractional resolution. Most

users will leave Motor[x].PosSf at its default value of 1.0 so that motor units are also in “counts”

or “LSBs”.

However, it is possible to use a different, and usually smaller, value than 1.0 to make the motor

units engineering units such as millimeters and degrees, which virtually always consist of many

feedback “counts”. Note, however, that Motor[x].PosSf acts as a gain term in the servo loop, and

decreases to its value will require corresponding increases to servo-loop gain terms that use the

resulting position values.

Power PMAC User’s Manual

Basic Motor Setup 230

!
Caution

If the motor units are redefined to larger increments by

reducing the value of Motor[x].PosSf, several important motor

safety settings, such as following-error and overtravel limits,

are “opened up”, reducing or practically eliminating their

effectiveness. It is very important that these values be reduced

immediately (by the same factor that Motor[x].PosSf was

reduced to keep the same effective value) to maintain the

safety of the system.

Inner (Velocity) Loop Feedback: Motor[x].pEnc2, Pos2Sf

Motor[x].pEnc2 specifies the address of the register Power PMAC reads for the ongoing inner-

loop feedback for the motor. The inner loop is virtually always the velocity loop for the motor. It

works just like Motor[x].pEnc, and usually contains the same address. However, the ability to

specify a separate address provides a very easy method to use dual motor/load feedback.

The data read at this address is multiplied by the value of the scale factor element

Motor[x].Pos2Sf before it is used for the motor’s inner-loop position. The floating-point data

read from the ECT will almost always have units of “counts” or “LSBs”, even if there is

fractional resolution. Most users will leave Motor[x].Pos2Sf at its default value of 1.0 so that the

motor’s inner-loop units are also in “counts” or “LSBs”.

However, it is possible to use a different, and usually smaller, value than 1.0 to make the inner-

loop units engineering units such as millimeters and degrees, which virtually always consist of

many feedback “counts”. Note, however, that Motor[x].Pos2Sf acts as a gain term in the servo

loop, and decreases to its value will require corresponding increases to inner-loop servo-loop

gains that use the resulting position values.

!
Caution

For a motor that previously had well-performing servo gains,

making a substantial decrease to Motor[x].Pos2Sf without

compensating increases to the servo gains that act on the inner-

loop position can lead to dangerous instability.

Changing Feedback on the Fly

In specialized applications, there may be a need to change sources of feedback during operation.

This can be done simply by changing the values of Motor[x].pEnc and Motor[x].pEnc2 to the

address of a different entry in the conversion table. The entries in the conversion table that are

potential sources of feedback information should always be executing so they are ready to be

used at any time.

When the new feedback source is selected, the motor will immediately start using the change in

position from the new source instead of the old source. Because it reads the change in position

each cycle, and not the position itself, there is no position jump when the new source is selected.

(And there is no need, as in older PMACs, to read and store a “previous position” to compute this

change properly.)

Power PMAC User’s Manual

Basic Motor Setup 231

It is strongly recommended that all sources of feedback position have the same resolution as they

appear to the motor. With differing resolutions, handling issues of servo gains and position

referencing become extremely difficult. If the sensors have different physical resolution, the use

of compensating scale factors in their encoder conversion table entries can provide them with

matching effective resolutions to the motor.

Feedback Source and Type: Motor[x].EncType

Motor[x].EncType specifies the type of the primary feedback used for the motor. On re-

initialization of the Power PMAC it is set automatically based on the interface hardware found by

the processor to the most common type of sensor used with that interface. The user can change

the value subsequently.

The possible settings of Motor[x].EncType at present are:

1. Quadrature encoder, no extension through PMAC2-style IC

2. Quadrature encoder with 1/T extension, through PMAC2-style IC

3. Sinusoidal encoder with arctangent extension, through PMAC2-style IC

4. MACRO-ring feedback from slave-only system

5. Quadrature encoder with 1/T extension, through PMAC3-style IC

6. Sinusoidal encoder with 14-bit arctangent extension, through PMAC3-style IC

7. Sinusoidal encoder with 16-bit arctangent extension, through PMAC3-style IC

12. MACRO-ring feedback from PMAC acting as a MACRO slave

Setting the value of Motor[x].EncType in the Power PMAC script environment (but not in C)

automatically sets the value of several other setup elements for the “flags” for the motor to values

that match the feedback type and interface. These elements include:

 Motor[x].pCaptFlag

 Motor[x].pCaptPos

 Motor[x].CaptFlagBit

 Motor[x].CaptPosRightShift

 Motor[x].CaptPosLeftShift

 Motor[x].CaptPosRound

 Motor[x].AmpEnableBit

 Motor[x].AmpFaultBit

 Motor[x].LimitBits

This automatic assignment sets up for the most common configuration for the interface, but

permits subsequent changes for unusual configurations. Each of these elements is discussed

separately, below, and in the section on triggered moves in the Motor Moves chapter. In addition,

each is described in detail in the Software Reference Manual.

Encoder Status Address: Motor[x].pEncStatus

Motor[x].pEncStatus specifies the address of the register Power PMAC reads for the status

information involved with the encoder and its flags. Almost always, this is the status register for

the channel of an ASIC used for servo interface, so it will take the form of

Gaten[i].Chan[j].Status.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3]

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a

PMAC3-style IC.

Power PMAC User’s Manual

Basic Motor Setup 232

Position-Capture Flag Address: Motor[x].pCaptFlag, CaptFlagBit

Motor[x].pCaptFlag specifies the address of the register Power PMAC reads for the capture

trigger typically used for triggered moves such as homing search. Almost always, this is the status

register for the channel of an ASIC used for servo interface, so it will take the form of

Gaten[i].Chan[j].Status.a or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3]

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a

PMAC3-style IC.. When the value of Motor[x].EncType is set with a script command,

Motor[x].pCaptFlag is automatically set to the same address as Motor[x].pEncStatus.

In order to use the very accurate hardware position capture function of the ASIC, this must use

the status register from the same ASIC and channel as is used for ongoing outer (position) loop

feedback as specified by Motor[x].pEnc and EncTable[i].pEnc from the table entry thus

specified.

Motor[x].CaptFlagBit specifies the bit number within this specified register to be used as the

capture trigger bit. It should be set to 19 for a PMAC2-style Servo IC, or for a MACRO interface;

it should be set to 20 for a servo interface in a PMAC3-style IC. It will be assigned the

appropriate value automatically when a script command sets the value of Motor[x].EncType.

Limit Flag Address: Motor[x].pLimits, LimitBits

Motor[x].pLimits specifies the address of the register Power PMAC reads for the status of the

hardware overtravel limit flag inputs for the motor. Almost always, this is the status register for

the channel of an ASIC used for servo interface, so it will take the form of

Gaten[i].Chan[j].Status.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3]

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a

PMAC3-style IC. If no hardware overtravel limit flags are used for the motor, this element should

be set to 0, disabling the function for the motor.

Saved setup element Motor[x].LimitBits specifies which bit(s) of the 32-bit register are read for

the status of the limit inputs. In the standard range of 0 to 30, its value specifies the bit number of

the positive limit input, with the negative limit input mapped into the next higher bit. This range

should be appropriate for all standard Delta Tau hardware interfaces.

Motor[x].LimitBits should be set to 24 when using a PMAC2-style “DSPGATE1” IC, as on an

ACC-24E2x UMAC board, or to 25 when using the standard MACRO-ring protocol. It should be

set to 9 when using a PMAC3-style “DSPGATE3” IC, as on an ACC-24E3 UMAC board, a

Power Clipper board, or a Power Brick system.

If Motor[x].LimitBits is in the range of 32 to 63, (LimitBits – 32) specifies the bit number of the

single input that is triggered by either the positive or negative limit switch. This configuration is

not recommended, but occasionally must be used, particularly on retrofit systems. Note that with

this setting, it is not possible to command a move out of either limit without first disabling the

limit functionality by setting Motor[x].pLimits to 0.

If Motor[x].LimitBits is in the range of 64 to 94, (LimitBits – 64) specifies the bit number of the

negative limit input, with the positive limit input mapped into the next higher bit. This setting can

be useful for some networked drives with the limit switches wired into the drives.

If Motor[x].LimitBits is in the range of 96 to 127, (LimitBits – 96) specifies the bit number of

the positive limit in the register specified by Motor[x].pLimits. In this case,

Power PMAC User’s Manual

Basic Motor Setup 233

Motor[x].pAuxFault specifies the register for the negative limit input, with

Motor[x].AuxFaultBit setting the bit number for that input in the register. This range permits the

use of separate registers, or non-adjacent bits in the same register, for the two limit input bits,

particularly valuable when the limits are wired into general-purpose I/O points on a fieldbus or

network.

If bit 7 (value 128) of Motor[x].LimitBits is also set, a value of “0” in a specified limit input bit

signifies that the motor is into that limit, rather than a “1” if this control bit is not set. The use of

normally closed limit switches is strongly recommended, and usually these report a “1” when

open (on the limit), so this control bit is rarely set. However, some devices, particularly when

using a fieldbus or network, will have the opposite polarity, requiring the use of the control bit to

configure the system.

Amplifier Fault Flag Address: Motor[x].pAmpFault, AmpFaultBit

Motor[x].pAmpFault specifies the address of the register Power PMAC reads for the status of

the amplifier-fault input flag for the motor. Almost always, this is the status register for the

channel of an ASIC used for servo interface, so it will take the form of

Gaten[i].Chan[j].Status.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3]

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a

PMAC3-style IC. If no amplifier-fault flag is used for the motor, this element should be set to 0,

disabling the function for the motor.

Motor[x].AmpFaultBit specifies the bit number within this specified register to be used as the

amplifier fault bit. It should be set to 23 for a PMAC2-style Servo IC, or for a MACRO interface;

it should be set to 7 for a servo interface in a PMAC3-style IC. It will be assigned the appropriate

value automatically when a script command sets the value of Motor[x].EncType.

Because there is no standard on amplifier-fault interfaces, the value of the saved setup element

Motor[x].AmpFaultLevel (0 or 1) determines which value in the fault status bit of the specified

register will be interpreted as a fault.

Amplifier Enable Flag Address: Motor[x].pAmpEnable, AmpEnableBit

Motor[x].pAmpEnable specifies the address of the register Power PMAC writes to in order to

set the state of the amplifier-enable output flag for the motor. Almost always, this is the control

register for the channel of an ASIC used for servo interface, so it will take the form of

Gaten[i].Chan[j].Ctrl.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3] for

a PMAC2-style MACRO IC, or Gate3[i].MacroOuA[k][3] or Gate3[i].MacroOutB[k][3] for a

PMAC3-style IC. If no amplifier-enable flag is used for the motor, this element should be set to 0,

disabling the function for the motor.

Motor[x].AmpEnableBit specifies the bit number within this specified register to be used as the

amplifier-enable bit. It should be set to 22 for a PMAC2-style Servo IC, or for a MACRO

interface; it should be set to 8 for a servo interface in a PMAC3-style IC. It will be assigned the

appropriate value automatically when a script command sets the value of Motor[x].EncType.

Power PMAC always considers a “0” in the enable control bit to mean a disabled state for the

amplifier, and a “1” to mean an enabled state. Because Power PMAC must be able to force the

disable state in hardware (due to a watchdog timer trip or hardware reset), it is not possible to

change this polarity in software.

Power PMAC User’s Manual

Basic Motor Setup 234

Absolute Power-On Position Address: Motor[x].pAbsPos

Motor[x].pAbsPos specifies the address of the register Power PMAC reads to get absolute

power-on position, if this information is available in the system. If this variable is set to the

default value of 0, there is no power-on absolute position for the motor, and the power-on

position is automatically set to zero (even if an absolute sensor is reporting a non-zero value at

this time). This is the proper setting if there is only an incremental position sensor used. In this

situation, a homing-search move is required to establish the position reference for the motor.

Note that many systems will have a sensor that is absolute over a single motor revolution or

commutation cycle, but not over the entire range of motion for the motor, as with a single-turn

resolver or absolute encoder, or with Hall-style commutation sensors. In these cases, if the motor

position is required to be known over multiple revolutions, a homing-search move will still be

required, and Motor[x].pAbsPos should be set to 0. (If Power PMAC is performing the phase

commutation for such a motor, the similar element Motor[x].pAbsPhasePos can be set to read

this sensor for absolute position within one commutation cycle.)

Motor[x].pAbsPos can be set to the address of the hardware register for the absolute position

sensor (e.g. Gate3[i].Chan[j].SerialEncData.a or GateIo.DataReg[j].a) or to already-processed

data in the encoder conversion table (e.g. EncTable[i].PrevEnc.a). It can also be set to a memory

register (e.g. Sys.udata[i].a) if custom processing by the user is required.

The data read here does not have to be from the same sensor as is used for ongoing outer

(position) loop feedback. It does not have to have the same scaling, offset, or even direction sense

as the ongoing position.

Power PMAC interprets the data at the specified address according to the rules specified by

Motor[x].AbsPosFormat. Note that while this provides great flexibility, the data read must be in

integer (not floating-point) format. Motor[x].AbsPosFormat is a 32-bit value consisting of 4

byte fields, specifying the starting bit number in the specified register, the number of bits to use,

how to use data in any subsequent registers, and how to interpret the data (numerical binary or

Gray code, signed or unsigned).

The formatted value is next multiplied by the scale factor Motor[x].AbsPosSf (which can be

negative to change the direction sense), and then offset by subtraction of the value of

Motor[x].HomeOffset to get the resulting absolute motor position value. Note that

Motor[x].AbsPosSf can be different from the scale factor for “ongoing” position

Motor[x].PosSf, permitting the use of different sensors with different resolution for power-on

and ongoing position.

If the saved value of bit 2 (value 4) of Motor[x].PowerOnMode is set to 1, this absolute position

read function will automatically be performed at power-on/reset. With this setting, it is very

important that the sensor is reliably powered up and ready to respond before Power PMAC

attempts this read. This absolute position read can be commanded at any time (regardless of the

setting of this bit) using the on-line hmz command or the buffered program command homez.

Power PMAC User’s Manual

Basic Motor Setup 235

Is Power PMAC Commutating or Closing the Current Loop for
This Motor?

All motors of significant travel require commutation (reversal of current) in the motor phases in

order to generate consistent torque/force as the motor moves. The only question is where and how

this commutation is done. In a brush DC motor the commutation is performed mechanically

inside the motor. With brushless motors, the commutation is often performed electronically inside

the drive. In these cases, Power PMAC is not performing the commutation.

Virtually all modern servomotor control employs current-loop closure for high response,

tolerance of parameter variation, and protection against overcurrent conditions. While this has

traditionally performed in the servo drive, Power PMAC is capable of closing the current loop

digitally for motors using “power-block” amplifiers in “direct PWM” mode.

If Power PMAC is either performing the phase commutation, closing the current loop, or both, for

the motor, jump to the next chapter, “Setting Up Power PMAC-Based Commutation and/or

Current Loop” for further instructions. If Power PMAC is doing neither task for this motor,

continue below in this chapter.

There are three subsequent sections in this chapter. The first deals with using the traditional

analog velocity-mode or torque-mode interface, still the most common servo-amplifier interface.

The second deals with the pulse-and-direction interface, the traditional and still most common

stepper-amplifier interface, also used with “stepper-replacement” servo amplifiers. The last

covers position-mode amplifiers, with which Power PMAC just provides the trajectory generation

algorithm and does not close any feedback loops.

Setting Up Power PMAC for Velocity or Torque Control

If Power PMAC is not performing the commutation or current loop for a motor, it provides a

single output command value for the motor. Usually this output represents either a velocity

command or a torque (force, or current magnitude) command, and typically this output is encoded

as an analog signal-level voltage. While the servo-loop tuning for velocity and torque commands

is different, the setup until that point is identical for both modes.

The Power PMAC setup for both types of control is the same with the exception of the servo loop

tuning. With a velocity-command output, the velocity loop is closed in the drive, and the velocity-

feedback gains in the Power PMAC can be set to 0.0 (provided the drive’s velocity loop is well

tuned). With a torque-command output, Power PMAC is closing the velocity loop, and at least

one of the velocity feedback gains in the Power PMAC servo algorithm must be set greater than

zero to close a velocity loop.

When driving a hydraulic cylinder through either a proportional valve or a servo valve, the

dynamics appear to the Power PMAC to be those of a velocity command to a motor.

Hardware Setup

Several Power PMAC products and accessories have analog outputs suitable for use as voltage or

torque commands to appropriate servo amplifiers. The most common of these are the UMAC

ACC-24E2A analog servo interface board using PMAC2-style ICs, and ACC-24E3 servo

interface boards using PMAC3-style ICs with “analog amplifier interface” mezzanine boards.

Power PMAC User’s Manual

Basic Motor Setup 236

This diagram shows the output circuitry for a channel of the PMAC2-style DSPGATE1 IC.

Output Mode

Control Bits

Phase A

Command Value

DAC Clock &

Strobe Control

Phase B

Command Value

PWM Frequency

& Deadtime Ctrl

Phase C

Command Value

PFM Clock, Mode

Width Control

Pulse Width

Modulator

DAC Shift

Register

Pulse Width

Modulator

DAC Shift

Register

Pulse Width

Modulator

Pulse Frequency

Modulator

PwmAbot

PwmAtop

DacClk

DacAdata

PwmBtop

PwmBbot

DacStb

DacBdata

PwmCtop

PwmCbot

Dir

Adr

Data

To encoder mux

Pulse

DSPGATE1 IC Channel Servo Output Circuitry

Power PMAC User’s Manual

Basic Motor Setup 237

The following diagram shows the output circuitry for a channel of the PMAC3-style DSPGATE3

IC. It has four phases (A, B, C, and D), rather than the three of the DSPGATE1 IC.

Output Mode

Control Bits

Phase A

Command Value

DAC Clock &

Strobe Control

Phase B

Command Value

PWM Frequency

& Deadtime Ctrl

Phase C

Command Value

PFM Clock, Mode

Width Control

Phase D

Command Value

Pulse Width

Modulator

DAC Shift

Register

Pulse Width

Modulator

DAC Shift

Register

Pulse Width

Modulator

DAC Shift

Register

Pulse Width

Modulator

Pulse Frequency

Modulator

PwmAbot

PwmAtop

DacClk

DacAdata

PwmBtop

PwmBbot

DacStb

DacBdata

PwmCtop

PwmCbot

DacClk

DacCdata

PwmDtop

PwmDbot

Dir/A

Output Packing

Control To encoder mux

or timer

Pulse/B

Adr

Data

DSPGATE3 IC Channel Servo Output Circuitry

The products may have more than one phase of analog output per servo channel. For velocity or

torque-mode control, only one phase is used, typically the “A” phase. The output for a phase may

be used in single-ended format, using just the DAC+ output for the phase with respect to the

reference voltage AGND. Alternately it may be used in differential mode, using the DAC+ and

the DAC- outputs together. Note that the voltage between DAC+ and DAC- is always twice the

voltage between DAC+ and AGND.

Consult the appropriate hardware reference or accessory manual for the details of the hardware

setup and connection.

Power PMAC User’s Manual

Basic Motor Setup 238

ASIC Programmable Signal Setup

The machine interface ICs used in Power PMAC systems have great flexibility to support

different types of interfaces, and so must be set up properly for the particular type of interface

used. This section explains how to set up the IC’s for “true-DAC” analog output commands.

PMAC2-Style IC Signal Setup for True-DAC Analog Output

The PMAC2-style “DSPGATE1” Servo IC is used in several servo-interface accessories for the

Power PMAC. The most common one used for velocity and torque-mode control is the ACC-

24E2A analog-output board. The registers in this IC are accessible through elements of the

Gate1[i] data structure. The user can also access them through the “alias” for this data structure

that uses the name of the accessory, such as Acc24E2A[i]. However, this chapter will use the

underlying Gate1[i] name.

DAC Clock Frequency Control: Gate1[i].HardwareClockCtrl

Gate1[i].HardwareClockCtrl specifies the frequency of the bit clock for the D/A converters

connected to all channels of the specified IC. (It also controls three other clock frequencies for the

IC.) The default value specifies a frequency of 4.92 MHz, which is suitable for all DACs used by

Delta Tau.

DAC Strobe Signal: Gate1[i].DacStrobe

Gate1[i].DacStrobe specifies the common “strobe word” for the D/A converters connected to all

channels of the specified IC. This 24-bit word is shifted out, one bit per DAC clock cycle, most

significant bit first. The default value of $7FFFC0, with 17 bits set to 1, is suitable for use with

the 18-bit DACs used by Delta Tau with these ICs. In general, for an n-bit DAC, n-1 bits of the

strobe word are set to 1.

Output Signal Mode Control: Gate1[i].Chan[j].OutputMode

Gate1[i].Chan[j].OutputMode must be set to 1 or 3 to specify that the Phase A and B outputs

for the specified IC and channel are in DAC mode, not PWM mode. A setting of 1 puts the Phase

C output (not used for servo tasks in this mode of operation) in PWM mode; a setting of 3 puts

the Phase C output in PFM mode.

Output Inversion Control: Gate1[i].Chan[j].OutputPol

Gate1[i].Chan[j].OutputPol controls whether the serial data streams to the DACs for the

specified IC and channel are inverted or not. The default value of 0 (non-inverted) is suitable for

use with any of the Delta Tau analog outputs. Inverting the bits of the serial data stream has the

effect of negating the DAC voltage.

WARNING

In a servo algorithm changing the high/low polarity of the

digital DAC data stream and therefore the analog polarity

of the DAC output also changes the polarity match

between output and input, which would produce a

dangerous runaway condition if the system were working

properly before the inversion.

Power PMAC User’s Manual

Basic Motor Setup 239

PMAC3-Style IC Signal Setup for True-DAC Analog Output

The PMAC3-style “DSPGATE3” machine-interface IC is used in several servo-interface

accessories for the Power PMAC. For analog velocity and torque-mode control, it is used on the

ACC-24E3 with the analog amplifier-interface mezzanine board. The registers in this IC are

accessible through elements of the Gate3[i] data structure. The user can also access them through

the “alias” for this data structure that uses the name of the accessory, such as Acc24E3[i].

However, this chapter will use the underlying Gate3[i] name.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

DAC Clock Frequency Control: Gate3[i].DacClockDiv

Gate3[i].DacClockDiv specifies the frequency of the bit clock for the D/A converters connected

to all channels of the specified IC by specifying how many times the frequency is halved from an

internal. The default value of 4 specifies a frequency of 6.25 MHz, which is suitable for all DACs

used by Delta Tau.

DAC Strobe Signal: Gate3[i].DacStrobe

Gate3[i].DacStrobe specifies the common “strobe word” for the D/A converters connected to all

channels of the specified IC. This 32-bit word is shifted out, one bit per DAC clock cycle, most

significant bit first. The default value of $FFFF0000, with 16 bits set to 1, is suitable for use with

the standard 16-bit DACs used by Delta Tau with these ICs. A value of $FFFFFF00, with 24 bits

set to 1, is suitable for use with the optional 18-bit DACs (which accept a 24-bit data stream) used

by Delta Tau for very high-precision applications. In general, for an n-bit data stream, the high n

bits of the strobe word are set to 1.

Note that because the 18-bit DACs used on the ACC-24E3 in this configuration accept a 24-bit

word, the data must first be shifted. The motor element Motor[x].DacShift must be set to 6 in

this case to orient the data properly before it is written to the hardware.

Output Signal Mode Control: Gate3[i].Chan[j].OutputMode

Gate1[i].Chan[j].OutputMode must be set to 3, 7, 11, or 15 to specify that the Phase A and B

outputs for the specified IC and channel are in DAC mode, not PWM mode. The difference

between these values determines the signal modes of the Phase C and D outputs, which are not

used for servo tasks in this mode of operation.

Output Inversion Control: Gate3[i].Chan[j].OutputPol

Gate3[i].Chan[j].OutputPol controls whether the serial data streams to the DACs for the

specified IC and channel are inverted or not. The default value of 0 (non-inverted) is suitable for

use with any of the Delta Tau analog outputs. Inverting the bits of the serial data stream has the

effect of negating the DAC voltage.

Power PMAC User’s Manual

Basic Motor Setup 240

WARNING

In a servo algorithm changing the high/low polarity of the

digital DAC data stream and therefore the analog polarity

of the DAC output also changes the polarity match

between output and input, which would produce a

dangerous runaway condition if the system were working

properly before the inversion.

PMAC3-Style IC Signal Setup for Filtered-PWM Analog Output

A few Power PMAC products can use the PMAC3 machine interface IC to generate analog

outputs inexpensively by filtering digital PWM commands. At present, these products are the

Power Clipper and a CK3M filtered PWM axis module.

Please consult the product-specific reference manuals for those configurations for detailed

instructions on setting up the filtered-PWM analog outputs.

Motor Parameter Setup

The next step is to configure the basic saved setup elements for the motor.

Phase Task Control: Motor[x].PhaseCtrl

For analog velocity or torque-mode control, bit 0 (value 1) and bit 2 (value 4) of

Motor[x].PhaseCtrl must be set to 0. For the standard case where the servo loop is closed as a

servo-loop task, bit 3 (value 8) is also set to 0, making the value of the entire element equal to 0.

For the special case where the servo loop for this motor is closed in the phase interrupt, bit 3 is set

to 1, making the value of the entire element equal to 8. This is generally done only for special

high-bandwidth actuators such as galvanometers and voice-coil motors.

Command Output Address: Motor[x].pDac

To use the Phase A analog output register of a PMAC2-style or PMAC3 style IC for the motor’s

servo output, Motor[x].pDac must be set to the address of the Dac[0] register for the desired IC

and channel. The assignment would take the form of Gate1[i].Chan[j].Dac[0].a for a PMAC2-

style IC, or Gate3[i].Chan[j].Dac[0].a for a PMAC3-style IC.

Note that these registers share an address with the Pwm[0] registers for the same channel, so

when the value of Motor[x].pDac is queried or backed up, the address will report as that of the

Pwm[0] register.

Power PMAC User’s Manual

Basic Motor Setup 241

Setting Up Power PMAC for Pulse-and-Direction Control

A Power PMAC with PMAC2-style or PMAC3-style ICs is capable of commanding stepper-

motor drives that require pulse-and-direction format input, or “stepper-replacement” servo drives

that require this format. Power PMAC can command these drives either in open-loop fashion, in

which case it internally routes the pulse train into its own encoder counters to create a pseudo-

closed loop, or in closed-loop fashion, in which case an external feedback device is wired to the

Power PMAC to create a true feedback loop.

Note

It is often difficult to get good loop performance with pulse-

and-direction output when using a real encoder for feedback,

due to phase and resolution mismatches. If it is desired to use

an encoder to make sure steps are not lost, it is often better to

use it for end-of-move verification rather than for servo

feedback.

This same technique is useful for creating “virtual” motors with no physical motion hardware

attached. These are often used to follow real motors that do not have incremental encoders, so

counter-associated functions such as position-compare outputs can be used on the virtual motor as

if they were on the actual motor.

A PMAC2-style or PMAC3-style IC creates its pulse-and-direction output signal with an on-

board fully digital pulse-frequency-modulation (PFM) circuit. This circuit repeatedly adds the

latest command frequency value into an accumulator at a programmable rate of up to 40 MHz for

a PMAC2-style IC, or 100 MHz for a PMAC3-style IC. When the accumulator overflows, an

output pulse is generated with a positive direction signal; when the accumulator underflows, an

output pulse is generated with a negative direction signal. This creates a pulse train whose

frequency is directly proportional to the command value, with virtually no harmonic distortion,

and none of the offset problems that affect analog pulse generation schemes.

Servo

Filter
Adder

Accumulator

Stepper

Drive

Decoder/

Counter

DesPos

ActPos

+
-

(Rollover)

Pulse

Dir

PMAC Drive & Motor

PFM Circuit
Simulated Servo

Loop

ASIC

Power PMAC Pulse-and-Direction Output Concept

Power PMAC User’s Manual

Basic Motor Setup 242

Hardware Setup

PMAC2-style and PMAC3-style ICs have pulse-and-direction outputs for each channel on the IC.

In most configurations of interface and breakout hardware, these signals are accessible as RS-

422-level differential line-driver output pairs. These signals are driven by the value in a register

for the channel, with the pulse frequency proportional to the value in this register. For this reason,

these outputs are technically known as pulse-frequency-modulated (PFM) outputs.

The signals from the PFM output register can alternately be used as pulse-width-modulated

(PWM) outputs, and commonly form the last-phase command signals for “direct-PWM” output

of brushless motors.

The pulse-and-direction signals are available on the encoder connectors of the UMAC ACC-

24E2S, ACC-24E2A, and ACC-24E2 axis-interface boards. On the ACC-24E2S and ACC-

24E2A, the outputs use the same pins as the T, U, V, and W flag inputs for the channel; a jumper

must be installed to enable the outputs on these pins.

On the ACC-24E3, these outputs are also shared with the T, U, V, and W input pins on the

encoder connector, but the outputs are enabled under software control by setting the (unsaved)

OutFlagD control bit for the channel to 1 (Gate3[i].Chan[j].OutFlagD = 1). If the digital

amplifier-interface mezzanine board is used, they are directly available as the “D” phase outputs.

Signal Timing

The PULSEn and DIRn signals are driven from the internal PFM clock signal, whose frequency

is controlled by Gate1[i].HardwareClockCtrl or Gate3[i].PfmClockDiv (see below). The width

of the pulse is controlled by the PFM clock frequency and Gate1[i].PwmDeadTime or

Gate3[i].Chan[j].PfmWidth (see below). The output on PULSEn can be high-true (high during

pulse, low otherwise) or low-true, as controlled by Gate1[i].Chan[j].OutputPol or

Gate3[i].Chan[j].OutputPol; the default is high-true. The polarity of the DIRn signal is

controlled by Gate1[i].Chan[j].PfmDirPol or Gate3[i].Chan[j].PfmDirPol.

The DIRn signal is latched in this state at least until the front end of the next pulse. The PULSEn

signal stays true for the number of PFMCLK cycles set by the dual-use multi-channel element

Gate1[i].PwmDeadTime for PMAC2-style ICs, or by the channel-specific element

Gate3[i].Chan[j].PfmWidth for PMAC3-style ICs.

In the PMAC2-style IC, it then goes false and stays false for a minimum of this same time. This

guarantees that the pulse duty cycle never exceeds 50%; the pulse signal can be inverted with

Gate1[i].Chan[j].OutputPol without violating minimum pulse width specifications. If another

pulse is generated internally during this minimum false time, the pulse will be skipped entirely

(not delayed) on the output signal.

In the PMAC3-style IC, there is no minimum time in the false state, so the duty cycle can go to

100%. If the pulse width is less than the cycle length for the commanded frequency, the signal

will go false until the start of the next cycle. If the pulse width is greater than or equal to the cycle

length for the commanded frequency, the signal will simply stay true.

In either case, undesired signal properties will be present at frequencies high enough that the

cycle length becomes almost as short as the pulse width. The user should be careful to ensure that

this cannot occur in the actual application.

Power PMAC User’s Manual

Basic Motor Setup 243

Power PMAC Parameter Setup

Hardware Setup for PMAC2-Style ICs

With the PMAC2-style “DSPGATE1” ICs, many of the Gate1[i] setup elements for the PFM

outputs are shared with other functions.

PFM Clock Frequency: Gate1[i].HardwareClockCtrl

Gate1[i].HardwareClockCtrl determines the frequency of addition of the command value into

the accumulator by setting the frequency of the internal PFM clock signal. One addition is

performed during each PFM clock cycle, so the addition frequency is equal to the PFM clock

frequency. The pulse frequency for a given command value is directly proportional to this

addition frequency. While the default frequency is suitable for almost all applications, those

requiring very high or very low pulse frequencies may need to change this clock frequency.

This PFM clock frequency puts an upper limit on the pulse frequency that can be generated –

with an absolute limit of 1/4 of the PFM clock frequency. Depending on the worst-case frequency

distortion that can be tolerated at high speeds, most people will limit their maximum pulse

frequency to 1/10 of the PFMCLK/addition frequency, therefore selecting a PFMCLK/addition

frequency 10 to 20 times greater than their maximum desired pulse frequency.

The PFMCLK/addition frequency sets a lower limit on the pulse frequency as well – an absolute

limit of one eight-millionth of the addition frequency. The default frequency of approximately 10

MHz can provide a useful range of about 1 Hz to 1 million Hz, and is suitable for a wide variety

of applications, especially with microstepping drives. For full or half step drives, the

PFMCLK/addition frequency will probably be set considerably lower – to the approximately 1.2

MHz or 600 kHz settings.

Gate1[i].HardwareClockCtrl controls the PFM clock frequency for all of the axis-interface

channels on the specified PMAC2-style IC, as well as other hardware clock signals. The input to

the clock control circuitry is a 39.3216 MHz signal; this can be divided by 1, 2, 4, 8, 16, 32, 64,

or 128 to create the PFMCLK signal. Therefore, the possible PFMCLK frequencies and the I-

variable values that set them are:

Divide by: Divider N

(1/2^N)

PFMCLK Freq Element Value*

1 0 39.3216 MHz 2240

2 1 19.6608 MHz 2249

4 2 9.8304 MHz 2258

8 3 4.9152 MHz 2267

16 4 2.4576 MHz 2276

32 5 1.2288 MHz 2285

64 6 611.44 kHz 2294

128 7 305.72 kHz 2303

*SCLK frequency = PFMCLK frequency; ADCCLK and DACCLK frequencies at default

The “divider” N is used in these I-variables to determine the frequency.

These variables also independently control the frequencies of the encoder sample clock SCLK,

plus the clocks for the serial D/A and A/D converters, DACCLK and ADCCLK, which are also

divided down in the same way from the same 39.3216 MHz signal. The SCLK frequency should

be the same as the PFMCLK frequency if the pulse train is fed into the encoder counters. The

Power PMAC User’s Manual

Basic Motor Setup 244

above table shows the value of the I-variable for each possible frequency of the PFMCLCK,

assuming the SCLK frequency is set equal to the PFMCLK frequency, and the DACCLK and

ADCCLK frequencies are left at their default settings.

PFM Pulse Width: Gate1[i].PwmDeadTime

Gate1[i].PwmDeadTime, in addition to controlling the full-off “dead time” of PWM outputs for

the IC, controls the pulse width of PFM outputs for the IC The pulse width is specified in PFM

clock cycles; the valid range is 2 to 255 cycles.

The minimum gap between pulses is equal to the pulse width, so the minimum pulse cycle period

is twice the pulse width set here. This sets a maximum frequency of the PFM output. If the

algorithm asks for a higher frequency, the IC will not produce the requested frequency, and

pulses will be skipped.

Output Mode Control: Gate1[i].Chan[j].OutputMode

Gate1[i].Chan[j].OutputMode controls what types of signals are brought out from the specified

IC and channel’s Phases A, B, & C; it must be set to 2 or 3 to use the PFM signals from the C

register.

Output Inversion Control: Gate1[i].Chan[j].OutputPol

Gate1[i].Chan[j].OutputPol controls whether the pulse signals are inverted or not. A value of 0

or 1 means the PFM pulse is high-true; a value of 2 or 3 means that it is low true

PFM Direction Inversion Control: Gate1[i].Chan[j].PfmDirPol

Gate1[i].Chan[j].PfmDirPol controls the polarity of the PFM direction signal alone (it does not

affect the pulse signal). A value of 0 means positive direction is low; a value of 1 means the

negative direction is low.

Encoder Decode Control: Gate1[i].Chan[j].EncCtrl

Gate1[i].Chan[j].EncCtrl controls the source of the position feedback signal and how it is

decoded. Values of 0 to 7 set up for an external signal wired into PMAC, with the different values

in this range determining how the signal is decoded. One of these values should be used if you

have a real feedback sensor; typically 3 or 7 for “times-4” decode of a quadrature encoder signal.

A value of 8 selects the internally generated PFM signal, and automatically selects the pulse-and-

direction decode for the signal. Note that no external cable is required to feed back the PFM

signal.

For an external feedback signal, the correct setting of Gate1[i].Chan[j].EncCtrl should cause the

encoder counter to count up in the direction you desire. It also must match the direction sense of

the output; a positive command value (for instance, with the out10 command) must cause the

counter to count up, and a negative command value (e.g. out-10) must cause the counter to

count down. You can invert the direction sense of the output with Gate1[i].Chan[j].PfmDirPol,

or by changing the wiring.

Hardware Setup for PMAC3-Style ICs

With the PMAC3-style “DSPGATE3” ICs, the Gate3[i] setup elements for the PFM outputs are

dedicated to the PFM function.

Power PMAC User’s Manual

Basic Motor Setup 245

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

PFM Clock Frequency: Gate3[i].PfmClockDiv

Gate3[i].PfmClockDiv determines the frequency of addition of the command value into the

accumulator by setting the frequency of the internal PFM clock signal. One addition is performed

during each PFM clock cycle, so the addition frequency is equal to the PFM clock frequency. The

pulse frequency for a given command value is directly proportional to this addition frequency.

While the default frequency is suitable for almost all applications, those requiring very high or

very low pulse frequencies may need to change this clock frequency.

This PFM clock frequency puts an upper limit on the pulse frequency that can be generated –

with an absolute limit of 1/4 of the PFM clock frequency. Depending on the worst-case frequency

distortion that can be tolerated at high speeds, most people will limit their maximum pulse

frequency to 1/10 of the PFMCLK/addition frequency, therefore selecting a PFMCLK/addition

frequency 10 to 20 times greater than their maximum desired pulse frequency.

The PFMCLK/addition frequency sets a lower limit on the pulse frequency as well – an absolute

limit of one eight-millionth of the addition frequency. The default frequency of approximately 12

MHz can provide a useful range of about 1.5 Hz to 1 million Hz, and is suitable for a wide variety

of applications, especially with microstepping drives. For full or half step drives, the

PFMCLK/addition frequency will probably be set considerably lower – to the approximately 1.6

MHz or 800 kHz settings.

Gate3[i].PfmClockDiv specifies how many times an internal 100 MHz clock signal is divided by

2 to create the PFM clock signal. It has a range of 0 to 15, permitting a range of PFM clock

frequencies from 100 MHz down to 3 kHz.

The encoder input circuitry for the channel must be able to accept pulses at least as fast as they

are generated, so the encoder sample clock frequency must be at least as great as the PFM clock

frequency. This means that the element Gate3[i].EncClockDiv must be set to a value less than or

equal to that of Gate3[i].PfmClockDiv.

PFM Pulse Width: Gate3[i].Chan[j].PfmWidth

Gate3[i].Chan[j].PfmWidth controls the pulse width of PFM outputs for the specified IC and

channel. The pulse width is specified in PFM clock cycles; the valid range is 1 to 4095 cycles.

Unlike the PMAC2-style ICs, there is no minimum gap between pulses, as long as there is a gap.

If pulses are generated internally faster than the previous pulses end, the pulse output will be

continuously in the “on” state.

Output Mode Control: Gate3[i].Chan[j].OutputMode

Gate3[i].Chan[j].OutputMode controls what types of signals are brought out from the specified

IC and channel’s Phases A, B, C & D; it must be set to 8 or higher to use the PFM signals from

the Phase D.

Power PMAC User’s Manual

Basic Motor Setup 246

Data Packing Control: Gate3[i].Chan[j].PackOutData

Gate3[i].Chan[j].PackOutData determines whether two phases of output data are “packed” into

a single register or not. It must be set to 0 to disable this packing so that the PFM command is

written by itself into Phase D’s command register Gate3[i].Chan[j].Pfm.

Output Inversion Control: Gate3[i].Chan[j].OutputPol

Gate3[i].Chan[j].OutputPol controls whether the pulse signals are inverted or not. A value of 0

or 1 means the PFM pulse is high-true; a value of 2 or 3 means that it is low true.

PFM Direction Inversion Control: Gate3[i].Chan[j].PfmDirPol

Gate3[i].Chan[j].PfmDirPol controls the polarity of the PFM direction signal alone (it does not

affect the pulse signal). A value of 0 means positive direction is low; a value of 1 means the

negative direction is low.

Encoder Decode Control: Gate3[i].Chan[j].EncCtrl, Gate3[i].Chan[j].TimerMode

The PMAC3-style DSPGATE3 IC provides several options for accepting real and simulated

feedback when generating pulse-and-direction outputs with the PFM circuit. The first, and most

common, option is to feed the pulse train back into the encoder counter circuitry for simulated

feedback, with no position sensor of any kind used.

The second option is to feed back the pulse train for simulated feedback, but also to use an

encoder for confirmation periodically. In the PMAC3-style IC, this can all be done in a single

channel (it requires two channels on a PMAC2-style IC).

The third option is to use an actual encoder to close the servo loop. Because of the difficulty in

properly matching encoder counts to pulse outputs, this option is generally not recommended.

There are two possibilities to implement the first option. If Gate3[i].Chan[j].EncCtrl is set to 8,

the encoder decoding circuitry accepts and processes the internally generated PFM signal, and

automatically selects the pulse-and-direction decode mode. With Gate3[i].Chan[j].TimerMode

at the default value of 0, the pulse count, with 8 bits of timer-based fractional-count estimation, is

latched each servo cycle into the Gate3[i].Chan[j].ServoCapt register, where it can be used by

the encoder conversion table to pre-process the simulated motor feedback.

The second possibility is to set Gate3[i].Chan[j].TimerMode to 3. This feeds back the internally

generated PFM signal to the timer circuitry, using it as a counter. In this mode, the pulse count is

latched each servo cycle into the Gate3[i].Chan[j].TimerA register, in units of whole counts,

with no fractional-count estimation. Since the fractional-count estimation can cause unwanted

dithering, this mode is usually preferred for the first option.

To implement the second option, the pulse train must be fed back into the channel’s timer

circuitry with Gate3[i].Chan[j].TimerMode set to 3. The Gate3[i].Chan[j].TimerA register will

be used to close the simulated servo loop. The confirming encoder is fed into the channel’s

encoder inputs, and Gate3[i].Chan[j].EncCtrl is set to a value from 0 to 7 (probably 3 or 7) to

decode this signal.

Gate3[i].Chan[j].EncCtrl controls the source of the position feedback signal and how it is

decoded. Values of 0 to 7 set up for an external signal wired into PMAC, with the different values

in this range determining how the signal is decoded. One of these values should be used if you

have a real feedback sensor; typically 3 or 7 for “times-4” decode of a quadrature encoder signal.

Power PMAC User’s Manual

Basic Motor Setup 247

The pulse count, without fractional-count estimation, is latched each servo cycle into the

Gate3[i].Chan[j].ServoCapt register, where it can be compared to the internal pulse count as

desired.

For the third option of an external feedback signal, the correct setting of

Gate3[i].Chan[j].EncCtrl should cause the encoder counter to count up in the direction you

desire. It also must match the direction sense of the output; a positive command value (for

instance, with the out10 command) must cause the counter to count up, and a negative

command value (e.g. out-10) must cause the counter to count down. You can invert the

direction sense of the output with Gate3[i].Chan[j].PfmDirPol, or by changing the wiring.

Parameters to Set Up Basic Motor Operation

Phase Task Control: Motor[x].PhaseCtrl

For pulse-and-direction control, bit 0 (value 1) and bit 2 (value 4) of Motor[x].PhaseCtrl must

be set to 0. For the standard case where the servo loop is closed as a servo-loop task, bit 3 (value

8) is also set to 0, making the value of the entire element equal to 0. For the special case where

the servo loop for this motor is closed in the phase interrupt, bit 3 is set to 1, making the value of

the entire element equal to 8. This is generally done only for special high-bandwidth actuators

such as galvanometers and voice-coil motors, and would very rarely be done in pulse-and-

direction mode.

Command Output Address: Motor[x].pDac

To use the PFM output register of a PMAC2-style or PMAC3 style IC for the motor’s servo

output, Motor[x].pDac must be set to the address of the Pfm register for the desired IC and

channel. The assignment would take the form of Gate1[i].Chan[j].Pfm.a for a PMAC2-style IC,

or Gate3[i].Chan[j].Pfm.a for a PMAC3-style IC.

Note that these registers share an address with the Pwm[2] register (PMAC2-style IC) or the

Pwm[3] register (PMAC3-style IC) for the same channel, so when the value of Motor[x].pDac is

queried or backed up, the address will report as that of the Pwm[k] register.

Encoder Conversion Table Processing: EncTable[n]

The counter value used for feedback, whether from an actual encoder, or directly from the pulse

train, must be processed by the encoder conversion table (ECT) before it can actually be used by

the Power PMAC motor for feedback. Most people use the setup window in the IDE to configure

the entry, as it calculates many of the needed values for you and presents the possible choices to

you.

When using a PMAC2-style IC, to get the count value with 1/T sub-count extension, you would

select “Type 3” conversion (software 1/T extension). This method has the advantage of being

automatically present in the table already, but it might lead to dithering at rest. In the IDE menu,

you just need to select the IC and channel numbers, and the IDE will make all of the settings to

provide an output scaled in counts (with fractional resolution).

If setting up the entry manually, the following settings should be made (with the appropriate

numerical indices):

EncTable[n].Type = 3

EncTable[n].pEnc = Gate1[i].Chan[j].ServoCapt.a

EncTable[n].pEnc1 = Gate1[i].Chan[j].TimeBetweenCts.a

Power PMAC User’s Manual

Basic Motor Setup 248

EncTable[n].index3 = 0

EncTable[n].MaxDelta = 0

EncTable[n].ScaleFactor = 1/512

When using a PMAC2-style IC, to get the count value without 1/T sub-count extension, you

would select “Type 1” conversion (single-register read). This method has the advantage of not

being susceptible to dithering due to sub-count feedback values. In the IDE menu, you just need

to specify that the source register is the PhaseCapt register for the channel, to use 24 bits starting

at bit 8, with one output unit per count.

If setting up the entry manually, the following settings should be made (with the appropriate

numerical indices):

EncTable[n].Type = 1

EncTable[n].pEnc = Gate1[i].Chan[j].PhaseCapt.a

EncTable[n].index1 = 8

EncTable[n].index2 = 8

EncTable[n].index3 = 0

EncTable[n].MaxDelta = 0

EncTable[n].ScaleFactor = 1/256

When using a PMAC3-style IC, to get the value with 1/T sub-count extension (already done by

the IC), you would select “Type 1” conversion (single-register read). This method has the

advantage of being automatically present in the table already, but it might lead to dithering. In the

IDE menu, you just need to specify that the source register is the ServoCapt register for the

channel, with one output unit per 256 LSBs.

If setting up the entry manually, the following settings should be made (with the appropriate

numerical indices):

EncTable[n].Type = 1

EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a

EncTable[n].index1 = 0

EncTable[n].index2 = 0

EncTable[n].index3 = 0

EncTable[n].MaxDelta = 0

EncTable[n].ScaleFactor = 1/256

When using a PMAC3-style register, to get the pulse-count value from the “timer” register, which

does not have sub-count extension, you would select “Type 1” conversion (single-register read).

This method has the advantage of not being susceptible to dithering due to sub-count feedback

values. In the IDE menu, you just need to specify that the source register is the TimerA register

for the channel, to use 24 bits starting at bit 0, with one output unit per count.

If setting up the entry manually, the following settings should be made (with the appropriate

numerical indices):

EncTable[n].Type = 1

EncTable[n].pEnc = Gate3[i].Chan[j].TimerA.a

EncTable[n].index1 = 0

EncTable[n].index2 = 0

Power PMAC User’s Manual

Basic Motor Setup 249

EncTable[n].index3 = 0

EncTable[n].MaxDelta = 0

EncTable[n].ScaleFactor = 1/256

Feedback Addresses: Motor[x].pEnc, Motor[x].pEnc2

Motor[x].pEnc specifies what register the motor reads for its outer (position) loop feedback. This

must be the result from an encoder conversion table entry, and will always take the form of

EncTable[n].a.

Motor[x].pEnc2 specifies what register the motor reads for its inner (velocity) loop feedback.

This also must be the result from an encoder conversion table entry, and will always take the form

of EncTable[n].a. In this mode, it will virtually always be the same register as is used for outer-

loop feedback.

Parameters to Set Up Motor Servo Gains

If you are using a real feedback sensor, the motor’s servo loop should be tuned just as a normal

servo motor would be. This is covered in a later section of the manual. However, if you are just

using the counted pulse train for feedback to create a fully electronic loop, the response is very

predictable, and the tuning gains can be set directly. The following values provide a responsive

and stable performance at the default servo update frequency for a motor scaled in units of pulses

(counts):

Motor[x].Servo.Kp = 40

Motor[x].Servo.Kvfb = 0

Motor[x].Servo.Kvff = 40

Motor[x].Servo.Ki = 0.001

Deadband

Because it is easy to command end positions with fractional-count components and the system

can only resolve full count (pulse) values at rest, it is strongly advised to implement a count of

true deadband in the simulated servo loop to prevent dithering at rest. To do this, the following

settings should be made:

Motor[x].Servo.BreakPosErr = 1.0 // For motor scaled in counts (pulses)

Motor[x].Servo.Kbreak = 0 // Zero gain inside deadband zone

This deadband functionality is not present in the basic PID algorithm (Sys.PidCtrl). However, it

is present in the default Sys.ServoCtrl algorithm and all of the other built-in algorithms.

Power PMAC User’s Manual

Basic Motor Setup 250

Setting Up Power PMAC for Position-Output Control

The command output value for Power PMAC can also represent a position command. This mode

is typically used in two types of cases: fast-tool actuators such as galvanometers and piezomotors

with very high-bandwidth analog position loops, and smart positioning drives using network

interfaces such as EtherCAT. In this mode of operation, Power PMAC computes the desired

trajectory for the motor, but does not close any of the feedback loops.

Power PMAC Parameter Setup

Since much more of the work is being done external to Power PMAC in this mode, there are

fewer parameters to set up. However, several parameters must be set correctly in order for this

mode to operate correctly.

Phase Task Control: Motor[x].PhaseCtrl

For position-mode control, bits 0 (value 1), 1 (value 2), and 2 (value 4) of Motor[x].PhaseCtrl

must be set to 0 to disable all phase commutation tasks. For the standard case where the servo

loop is closed as a servo-loop task, bit 3 (value 8) is also set to 0, making the value of the entire

element equal to 0. For the special case where the servo loop for this motor is closed in the phase

interrupt, bit 3 is set to 1, making the value of the entire element equal to 8. This is generally done

only for high-bandwidth actuators such as galvanometers and voice-coil motors.

Control Mode: Motor[x].Ctrl

To output position command values, Motor[x].Ctrl must be set to Sys.PosCtrl. This selects the

“servo” algorithm that does not actually close any feedback loops, but simply outputs the net

desired position (including computed trajectory, position following, and position compensation)

as an integer command value.

Command Output Address: Motor[x].pDac

To use the Phase A analog output register of a PMAC2-style or PMAC3 style IC for the motor’s

position-command output, Motor[x].pDac must be set to the address of the Dac[0] register for

the desired IC and channel. The assignment would take the form of Gate1[i].Chan[j].Dac[0].a

for a PMAC2-style IC, or Gate3[i].Chan[j].Dac[0].a for a PMAC3-style IC.

Note that these registers share an address with the Pwm[0] registers for the same channel, so

when the value of Motor[x].pDac is queried or backed up, the address will report as that of the

Pwm[0] register.

To use a network output register, Motor[x].pDac must specify the address of the appropriate

register for that network. Refer to instructions for the particular network for details.

Position Feedback Address: Motor[x].pEnc

Because Power PMAC is not closing the position loop in this mode, it is not necessary to set

Motor[x].pEnc to the address of a register containing the actual position. However, if the Power

PMAC is not reading actual position information through a register specified by Motor[x].pEnc,

the value reported by queries for actual position will not be valid; desired position values must be

queried instead. In addition, Power PMAC will still be computing following error as the

difference between net desired position and net actual position; if the Power PMAC is not reading

actual position, Motor[x].FatalFeLimit should be set to 0.0 to disable a possible shutdown due

to “excessive” following error.

Power PMAC User’s Manual

Basic Motor Setup 251

In the case of a fast actuator with an analog feedback loop, a position feedback value is often not

available (and would require an ADC input on the Power PMAC in any case). However, with a

networked positioning drive, the actual position value is almost always reported back to the

central controller. In this case, it is strongly recommended to process this position value through

the encoder conversion table and read it for the motor through Motor[x].pEnc for both position

reporting and error checking purposes.

In a networked drive, the actual position is often reported back to the Power PMAC one or two

network cycles after the comparable command position is sent. At high velocities, especially with

high feedback resolution, this can lead to Power PMAC computing large numerical following-

error values (which do not exist in the drive). The value of Motor[x].FatalFeLimit may have to

be adjusted to avoid unnecessary failures.

For example, with a 1-millisecond network update period and a 2-cycle delay in reporting actual

position, a motor with a 17-bit encoder (131,072 “counts” per revolution) running at 3000 rpm

(50 rev/sec), Power PMAC would report a following error of:

ctsmsec
msec

sec

sec

rev

rev

cts
FE 107,132*

1000
*50*072,131

This error would be present even if there were no actual following error in the network drive’s

own servo loop. In this case, Motor[x].FatalFeLimit would need to be increased substantially

from its default value of 2000. Of course, the drive should have its own error limit, and the user

should set this as tight as possible without causing nuisance trips.

Auxiliary Command Output Addresses

In addition to the main position command output, it is possible to have auxiliary velocity and

acceleration (torque) output commands each cycle from feedforward gains. This can provide

improved response for position-mode drives that are able to accept “offset” values each cycle.

This functionality is enabled by setting Motor[x].Servo.pVelOut and/or

Motor[x].Servo.pAccOut to the addresses of the specified registers, typically network registers

that are mapped to drive offset registers. See the User’s Manual chapter Setting Up the Servo

Loop section on the position control servo algorithm for details.

Position Compensation Table Functionality

In other control modes, when a compensation table is used to correct for position measurement

errors with the target position register being Motor[x].CompPos, the correction calculated by the

table is added to the raw actual (measured) position value. However, when Power PMAC is

simply outputting the commanded position value in this mode, this would not permit these

corrections. So in position-output mode, this correction is instead subtracted from the commanded

position output value each servo cycle. It is also possible in newer firmware versions to use

Motor[x].CompDesPos as the target register for position corrections; this value is added to the

net desired position value that is output.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 252

SETTING UP POWER PMAC-BASED COMMUTATION
AND/OR CURRENT LOOP

This chapter provides detailed instructions for the step-by-step manual setup of motor phase

commutation and/or digital current-loop closure within the Power PMAC. If you are not

performing the commutation in the Power PMAC, as for mechanically commutated brush motors

or brushless motors commutated in a “velocity-mode” or “torque-mode” amplifier, the

instructions in this chapter do not concern you.

Very few users will do these steps manually; almost all will use the automated procedures of the

IDE’s “motor setup” control, even for the setup of the first unit. The instructions in this section

are for the user who wants a full understanding of the Power PMAC algorithms and how they are

set up for a particular application.

Selection of Phase Update Frequency

The frequency at which the commutation and/or digital current loop algorithms are executed for

each motor is determined by the setting of the (common) phase clock frequency for the Power

PMAC. Instructions for setting the phase clock frequency are given in the earlier chapter Power

PMAC System Configuration. Note that it is possible to extend the software phase update period

to multiple phase clock cycles by setting the value of saved setup element Sys.PhaseCycleExt to

a value greater than the default of 0, specifying the number of hardware clock cycles to be

skipped between consecutive software phase updates.

The selection of an optimal phase clock frequency depends on several factors. The phase clock

frequency must be an integer multiple of the servo clock frequency. While it is possible to set the

phase clock frequency equal to the servo clock frequency, this typically delays the servo

command value from taking effect on the machine for too great a time, because the output does

not occur until the next phase update after the servo loop is closed. For this reason, in most

applications, the phase clock frequency is set to 2 to 4 times the servo clock frequency.

If a motor is being commutated by Power PMAC, but the current loop is being closed in the

amplifier, the key performance factor is ensuring that there are sufficient updates to complete a

cycle. There should be a minimum of 6 software phase updates per commutation cycle of the

motor. Note that this will only become a factor for very high-speed motors. The default phase

update frequency of 9 kHz can support a commutation frequency of 1.5 kHz, which corresponds

to 45,000 rpm on a 4-pole motor.

If the current loop is being closed by Power PMAC, proper selection of the phase update

frequency becomes important in more applications, as the bandwidth of the current loop can be

dependent on the update rate. While the default update rate of 9 kHz is sufficient for many

applications, a significant number of applications can benefit in performance from a higher

update frequency. Remember that the phase update frequency cannot be more than twice the

PWM output frequency for a motor (because only two decisions can be made in a PWM cycle:

the turn-on time, and the turn-off time).

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 253

Beginning Setup of Commutation

If Power PMAC is to perform the commutation of a motor, it must do more than simply close the

position/velocity-loop servo for the motor. Several parameters must be set up correctly to

configure the commutation.

The first steps in setting up the commutation are common whether or not Power PMAC is

performing the current loop closure (direct-PWM output mode) or not (sine-wave output mode).

These steps are described in this section. The next steps differ based on which mode is used;

these are described in the next two sections, only one of which is used for any given motor.

Finally, the last steps in the setup of commutation are again common to the two modes of

operation; these are described in the following section.

Commutation Enable: Motor[x].PhaseCtrl

If Power PMAC is performing the commutation for Motor x, the value of Motor[x].PhaseCtrl

must be set greater than 0. This data structure element has several independent control bits.

“Unpacked” Commutation I/O

If bit 2 (value 4) of Motor[x].PhaseCtrl is set to 1, Power PMAC will perform commutation for

the motor, with the command output for each phase written to separate consecutively registers,

and the phase current feedback (if used) read from separate consecutively addressed registers.

This is known as the “unpacked” format, and it must be selected for commutation with the

DSPGATE1 or DSPGATE2 PMAC2-style ASICs (as in the ACC-24E2x and ACC-5E UMAC

accessories), whether communicating directly with the ASIC that is interfaced to the amplifier

and feedback device or remotely over the MACRO ring.

This unpacked software format can be used with the DSPGATE3 PMAC3-style ASIC (as in the

ACC-24E3 UMAC accessory) if the ASIC channel hardware is also set up in “unpacked” format.

The channel hardware will be in unpacked format if Gate3[i].Chan[j].PackOutData (bit 23 of

the channel’s output control register Gate3[i].Chan[j].OutCtrl) is set to 0, and

Gate3[i].Chan[j].PackInData (bit 22 of the channel’s input control register

Gate3[i].Chan[j].InCtrl) is set to 0. However, this mode is less efficient than “packed” format

(see below), and should generally only be used when more than 16 bits of command output

resolution are required, as with the optional 18-bit DAC outputs of the ACC-24E3.

“Packed” Commutation I/O

If bit 0 (value 1) of Motor[x].PhaseCtrl is set to 1, Power PMAC will perform commutation for

the motor, with the command outputs for the phases written in pairs (C with A, and if needed, D

with B) of 16-bit values in single 32-bit registers. This can be used with the DSPGATE3

PMAC3-style ASIC (as in the ACC-24E3 UMAC accessory) if the ASIC channel hardware is in

“packed” format. The channel hardware will be in packed format if

Gate3[i].Chan[j].PackOutData (bit 23 of the channel’s output control register

Gate3[i].Chan[j].OutCtrl) is set to 1, and Gate3[i].Chan[j].PackInData (bit 22 of the channel’s

input control register Gate3[i].Chan[j].InCtrl) is set to 1. These are the default values for the IC

setup elements, and the use of packed format saves significant time by reducing the number of

time-consuming read and write cycles required.

The “packed” I/O format cannot be used with the PMAC2-style DSPGATE1 or DSPGATE2

ASICs, or when the control is done over the MACRO ring with any ASIC.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 254

Only one of bit 0 and bit 2 of Motor[x].PhaseCtrl should be set to 1 at any given time. Bits 1

and 3 control other features related to use of the phase interrupt, and their settings are

independent of these two bits.

Note

Direct PWM control of brush motors with digital current loop

utilizes Power PMAC’s commutation algorithms even though

the motor does not require electronic commutation; either bit 0

or bit 2 of Motor[x].PhaseCtrl must still be set to 1 for this

case. Setup of this case is covered in a separate section below.

Commutation Position Feedback Source: Motor[x].pPhaseEnc

The saved data structure element Motor[x].pPhaseEnc tells Power PMAC where to get its rotor

angle position feedback for commutation. This is almost always the encoder “phase capture”

position register of a Servo ASIC, or the position feedback Register 0 of a MACRO node.

The element is usually set to the address of the desired register by using the “.a” suffix with the

register’s element name. For an incremental encoder phase capture register, the setting will take

the form of:

Motor[x].pPhaseEnc = Gaten[i].Chan[j].PhaseCapt.a

where n specifies the ASIC type (1, 2, or 3), i specifies the ASIC number in the system, and j

specifies the channel index (0 to 3).

For a serial encoder position register in a PMAC3-style DSPGATE3 IC, the setting will take the

form of:

Motor[x].pPhaseEnc = Gate3[i].Chan[j].SerialEncDataA.a

For a MACRO-node position-feedback register, the setting will take the form of:

Motor[x].pPhaseEnc = Gate2[i].Macro[k][0].a

for a PMAC2-style DSPGATE2 MACRO ASIC, where i specifies the ASIC number in the

system, and k specifies the node number in the ASIC (0 to 15); or:

Motor[x].pPhaseEnc = Gate3[i].MacroInA[k][0].a

Motor[x].pPhaseEnc = Gate3[i].MacroInB[k][0].a

for a PMAC3-style DSPGATE3 ASIC as in the ACC-5E3 MACRO card for UMAC racks. Note

that in this ASIC, there are separate input and output registers, so you must specify a “MacroIn”

register to read the value, and there are two banks of registers, A and B, so you must specify

which one is to be used. As with the PMAC2-style ASIC, i specifies the ASIC number in the

system, and k specifies the node number in the bank (0 to 15).

Power PMAC reads the specified 32-bit register without masking out any bits. If the position data

in the register can roll over, the most significant bit of the data must be in the highest bit (bit 31)

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 255

of the register. If there are a few undetermined low bits in the register, as with 8 low bits when

reading a 24-bit register from a PMAC2-style ASIC or MACRO register, their value will not have

any significance to the resulting calculations.

Commutation Position Source Processing: Motor[x].PhaseEncRightShift,
Motor[x].PhaseEncLeftShift

In most applications, Power PMAC simply reads the 32-bit register whose address is specified by

Motor[x].pPhaseEnc and uses the 32-bit value to calculate the commutation phase angle.

However, there are a few cases where this may not be sufficient. If there is any possibility that the

value in this register could “roll over” between maximum positive value and maximum negative

value, the most significant bit (MSB) of the value must be in bit 31 of the register.

Some serial encoder data protocols separate single-turn and multi-turn data into separate registers.

If the MSB of the single-turn data does not appear on the data bus in bit 31, the data must be

processed before it can be used. In addition, there is the possibility that less significant bits in the

register do not reflect position data, and need to be eliminated. (However, remember that Power

PMAC only uses 11 bits of position data for its 2048-part commutation cycle.)

Each phase cycle, Power PMAC takes the 32-bit data from the register specified by

Motor[x].pPhaseEnc and shifts it right by the number of bits specified in saved setup element

Motor[x].PhaseEncRightShift. A n-bit right shift eliminates the low n bits of the starting value.

Then it takes this new value and shifts it left by the number of bits specified in saved setup

element Motor[x].PhaseEncLeftShift. An m-bit left shift eliminates the high m bits of the

starting value and fills in the low m bits of the result with zeros.

The following diagram shows how the shifting process would work for 20-bit commutation

position feedback that is found in bits 8 through 27 of the 32-bit bus. There is first a right of 8

bits, then a left-shift of 32 – 20 = 12 bits.

- - - - - - - -20 bits real data- - - -

20 bits real data- - - - - - - - - - - -

(zeros)20 bits real data

0

0

0

78272831

192031

111231

Commutation Feedback Data Shifting Example

With both elements at their default value of 0, no net processing is done; the resulting value is the

same as the value read from the source register. If all that is desired is to eliminate some low bits,

the two shift lengths should be the same. If all that is desired is to move the data MSB to bit 31 of

the result, the right shift value should be 0, and the left shift value should be set to 31 minus the

bit number of the MSB in the source data.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 256

Commutation Position Scale Factor: Motor[x].PhasePosSf

The data structure element Motor[x].PhasePosSf is used to multiply the source rotor-angle

position value from the 32-bit register specified by Motor[x].pPhaseEnc to convert this value

into the “normalized” scale of 2048 units per commutation cycle. This value effectively specifies

the size of the commutation cycle, but it is inversely proportional to the feedback units per

commutation cycle.

Motor[x].PhasePosSf converts the data from the raw units of the 32-bit source register (after any

shifting operations) to units of 1/2048 of a commutation cycle. Note that the units of the full

source register will be different from those of the hardware circuit if the hardware does not use

the full range of the 32-bit register. For example, the 24-bit “phase capture” registers of PMAC2-

style ASICs used in ACC-24E2x UMAC boards occupy bits 8 to 31 of the 32-bit register, with bit

8 representing 1 count of the encoder. Bit 0 of the 32-bit register therefore represents 1/256 of a

count, so the source register should be considered to have units of 1/256 of a count.

In the PMAC3-style ASIC, the encoder “phase capture” registers are 32 bits wide, but for

quadrature encoders a single count is in bit 8 (the low 8 bits being fractional-count estimate), so

here also the source register should be considered to have units of 1/256 of a count. For sinusoidal

encoders, the “phase capture” registers have 12 bits of fractional resolution per quadrature count

(14 bits per line of the encoder), so the source register should be considered to have units of

1/4096 of a count (1/16,384 of a line).

The equation for calculating Motor[x].PhasePosSf is:

 cyccommLSBsN

cyccommunits
PhasePosSfxMotor

/

/2048
].[

For example, if there are 5000 quadrature-encoder counts per commutation cycle (as with 10,000

counts per revolution for a 4-pole motor) read through a PMAC2-style Servo IC, this scale factor

should be computed as:

0016.0
/256*5000

/2048
].[

cyccommLSBs

cyccommunits
PhasePosSfxMotor

It is often easier to let Power PMAC do the math for you, so the following command could be

used to set this element for Motor 1:

Motor[1].PhasePosSf = 2048/5000/256

In another example, a linear motor has a 64-millimeter commutation-cycle length, using a

sinusoidal encoder of 20-micron pitch interpolated through a PMAC3-style ASIC. This scale

factor should be computed as:

0000390625.0
/16384*20/64000

/2048
].[

cyccommLSBs

cyccommunits
PhasePosSfxMotor

For direct-PWM control of a brush DC motor, Motor[x].PhasePosSf should be set to 0,

effectively disabling the AC commutation.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 257

Current Loop in Power PMAC or Not: Motor[x].pAdc

Power PMAC can perform commutation for a motor with or without closing the current loop for

the motor phases. If the current loops are closed in the Power PMAC, the outputs from the Power

PMAC are phase voltage commands, usually represented as pulse-width-modulated (PWM)

digital outputs. This technique is called “direct PWM” control, because the PWM signals are

typically used directly as the on/off control signals for the power transistors in the amplifier. If

the current loops are not closed in the Power PMAC, the outputs from Power PMAC are phase

current commands, usually represented as +/-10V analog voltage signals. This technique is called

“sine-wave output” control, because in constant-velocity, constant-torque motion, the outputs

appear as sine waves on an oscilloscope.

Motor[x].pAdc controls which mode of operation is used. If it is set to 0, Power PMAC will not

close the current loops for the motor. Further setup for this mode is covered in the next section,

“Setting Up for Sine-Wave Output Control”.

If Motor[x].pAdc is set to a non-zero address value, Power PMAC will close the current loops

for the motor, with this value specifying the address of the first register for current feedback.

Setup for this mode is covered in the following section, “Setting Up for Direct PWM Control”.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 258

Setting Up for Sine-Wave Output Control

This section explains how to set up the commutation scheme if Power PMAC is performing the

commutation for a motor, but not the digital current loop. In this mode, Power PMAC outputs

two phase current commands to the amplifier, usually as analog voltages through digital-to-

analog converters (DACs). In the steady state (constant velocity and constant load), these

voltages are a sinusoidal function of time, so this mode is often called “sine-wave output”. This

mode is selected by setting bit 0 (value 1) or bit 2 (value 4) of Motor[x].PhaseCtrl to 1 and

setting Motor[x].pAdc to 0.

Sine-wave output mode is typically used to control linearly modulated brushless motor amplifiers

in the highest-precision systems, often with sub-nanometer resolution. There are several reasons

for its use in this class of applications. First, it has the highest-resolution command outputs, with

16-bit or 18-bit DACs directly commanding motor phase currents. Second, the ability to use

linearly modulated amplifiers dramatically reduces electromagnetic interference (EMI) from the

amplifier compared to switching (PWM) amplifiers, reducing noise on the position feedback and

other measurements. Finally, the analog nature of the current-loop closure in the drives eliminates

sampling delays that can reduce control performance.

Power PMAC Sinewave Commutation with Amplifier Current Loop

Hardware Setup

For Power PMAC to operate a motor in the sine-wave commutation analog output mode, two

analog outputs are required for the motor. Typically, these are the Phase A and B DACs on the

same channel of a Servo IC.

Modu-

lation
PI

Modu-

lation
PI

Phase A Current Loop

Phase B Current Loop

Modu-

lation

DAC

DAC
Vb

-
-

-

+

+

-

+

-

-

-

Ia

Va

Vc

Ib

Vb

Va

Balance Loop

E

Torque Command

from Position/

Velocity Servo

IaVolts

IbVolts

dq

to

abc

Quadrature

Current Command

IqCmd

IdCmd
Magnetization

Current Direct Current

Command

SGSlip Constant

DtOverRotorTc

1/s

PMAC Amplifier

+ +

r

e

PhasePos

DC AC

Vc

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 259

PMAC2-Style IC Interface

PMAC2-style “DSPGATE1” Servo ICs are used on ACC-24E2A analog axis interface boards for

the UMAC rack-mounted control systems. These provide two DACs per servo channel.

PMAC2-Style Servo IC Hardware Clock Frequency Control: Gate1[i].HardwareClockCtrl

Gate1[i].HardwareClockCtrl determines the frequency of four hardware clock signals used for

the machine interface channels on a PMAC2-style Servo IC. These can probably be left at the

default values. The four hardware clock signals are SCLK (encoder sample clock), PFMCLK

(pulse frequency modulator clock, DACCLK (digital-to-analog converter clock), and ADCCLK

(analog-to-digital converter clock).

Only the DACCLK signal is directly used with the sine-wave output, to control the frequency of

the serial data stream to the DACs. The default DAC clock frequency of 4.9152 MHz is suitable

for the DACs on all Delta Tau PMAC2-style hardware. Refer to the

Gate1[i].HardwareClockCtrl description for detailed information on setting these variables.

PMAC2-Style Servo IC DAC Strobe Word: Gate1[i].DacStrobe

Gate1[i].DacStrobe defines the 24-bit “strobe word” for all of the D/A converters interfaced to

the “DSPGATE1” PMAC2-style Servo IC. This word is shifted out, MSB first, one bit per

DACCLK cycle, each phase cycle to start the conversion of the D/A converters. The default value

of $7FFFC0 is suitable for use with the 18-bit DACs used on the ACC-24E2A UMAC analog-

output axis-interface boards.

PMAC2-Style Servo IC Channel Output Mode: Gate1[i].Chan[j].OutputMode

Channel-specific element Gate1[i].Chan[j].OutputMode must be set to 1 or 3 to specify that

outputs A and B for the channel are in DAC mode, not PWM mode. A setting of 1 puts output C

(not used for servo or commutation tasks in this mode) in PWM mode; a setting of 3 puts output

C in PFM mode.

PMAC2-Style Servo IC Channel Encoder Decode: Gate1[i].Chan[j].EncCtrl

Gate1[i].Chan[j].EncCtrl must be set up to decode the commutation encoder properly. Almost

always a value of 3 or 7 is used to provide “times-4” decode of a quadrature encoder (4 counts

per encoder line). The difference between 3 and 7 is the direction sense of the encoder; you

should set this variable so your motor counts up in the direction you want.

The sign of the Motor[x].PhaseOffset commutation phase angle parameter must match that of

Gate1[i].Chan[j].EncCtrl for your particular wiring; if it is wrong, you will lock into a position

rather than generate continuous torque. A test for determining this polarity match is given below.

Remember that if you change Gate1[i].Chan[j].EncCtrl on a working motor, you will have to

change Motor[x].PhaseOffset as well.

PMAC3-Style IC Interface

PMAC3-style “DSPGATE3” ICs are used on ACC-24E3 axis interface boards for the UMAC

rack-mounted control systems and in the Power PMAC Brick Controller. These can be ordered

with analog-amplifier interface boards with one or two DACs per servo channel. The

configuration with two DACs per servo channel must be ordered to perform sine-wave output

commutation.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 260

PMAC3-Style IC DAC Clock Frequency Control: Gate3[i].DacClockDiv

Gate3[i].DacClockDiv determines the frequency of the clock signal to the serial DACs

controlled by the IC. It specifies how many times the internal 100 MHz clock signal is divided by

two in order to generate the DACCLK signal. The default value of 5 yields a DACCLK

frequency of 3.125 MHz, which is appropriate for the DACs used with the ACC-24E3.

PMAC3-Style IC DAC Strobe Word: Gate3[i].DacStrobe

Gate3[i].DacStrobe defines the 32-bit “strobe word” for all of the DACs interfaced to the

“DSPGATE3” PMAC3-style IC. This word is shifted out, MSB first, one bit per DACCLK cycle,

each phase cycle to start the conversion of the DACs. The default value of $FFFF0000 is suitable

for use with the 16-bit DACs most commonly used on the ACC-24E3 UMAC analog-amplifier-

interface mezzanine boards. A value of $FFFFFF00 is used for the 24-bit data field of the 18-bit

DACs alternately available on these boards.

PMAC3-Style IC Channel Output Mode: Gate3[i].Chan[j].OutputMode

Bits 0 and 1 of channel-specific element Gate3[i].Chan[j].OutputMode must be set to 1 to

specify that outputs A and B for the channel are in DAC mode, not PWM. This yields possible

settings for the 4-bit element of 3, 7, 11, and 15, which differ in the output modes for Phases C

and D of the channel.

Motor Software Setup

Several saved setup elements for the motor must be configured properly for sinewave-output

commutation mode.

Command Output Address: Motor[x].pDac

Motor[x].pDac instructs Power PMAC where to place its output commands for the motor by

specifying the address of the first register. In sinewave output mode, Power PMAC will write to

this register and the next higher addressed register. Almost always in this mode, the registers

specified are the A and B-phase DAC output registers in a Servo IC, or the matching registers in a

MACRO IC that will send the output information over the ring. These are specified by setting

Motor[x].pDac to the address of the register that feeds the A-phase DAC. In most configurations,

these are the default settings for this setup element.

If a PMAC2-style DSPGATE1 Servo IC is used for the direct interface, as in the ACC-24E2A,

the setting will be of the type:

Motor[x].pDac = Gate1[i].Chan[j].Dac[0].a

where i is the IC number (4 to 19), and j is the channel index number (0 to 3) in the IC. Note that

when the value of this element is queried, it will report back showing the “Pwm” register at the

same address instead of the “Dac” register.

If a PMAC2-style DSPGATE2 MACRO IC is used for the interface over the ring, as in the ACC-

5E, the setting will be of the type:

Motor[x].pDac = Gate2[i].Macro[k][0].a

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC.

Register 0 of the node must be specified to conform to the MACRO standard for this mode.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 261

If a PMAC3-style DSPGATE3 IC is used for the direct interface, as in the ACC-24E3, the setting

will be of the type:

Motor[x].pDac = Gate3[i].Chan[j].Dac[0].a

where i is the IC number (0 to 15), and j is the channel index number (0 to 3) in the IC. Note that

when the value of this element is queried, it will report back as the “Pwm” register at the same

address instead of the “Dac” register.

If a PMAC3-style DSPGATE3 IC is used for the interface over the MACRO ring, as in the ACC-

5E3, the setting will be of the type:

Motor[x].pDac = Gate3[i].MacroOutA[k][0].a

or

Motor[x].pDac = Gate3[i].MacroOutB[k][0].a

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC.

Register 0 of the node must be specified to conform to the MACRO standard for this mode.

Output Data Shift: Motor[x].DacShift

With most output devices, there is no need to shift the computed outputs, and Motor[x].DacShift

can be left at its default value of 0. However, with the 18-bit DACs that are optionally available

on the ACC-24E3 analog amplifier-interface module, the data must be shifted right 6 bits to the

proper place in the 24-bit SPI data field, so Motor[x].DacShift must be set to 6 if these are used.

(The 18-bit DACs on the ACC-24E2A and the 16-bit DACs on the ACC-24E3 do not require this

shift.)

Commutation Output Scale Factor: Motor[x].PwmSf

Motor[x].PwmSf multiplies the normalized internal commutation command values, scaling the

command values that are actually output. It does this for both sinewave output mode and direct-

PWM output mode. For sine-wave output mode, it is almost always set to 32,768 so the full

output range of the DACs can be used. (Torque/current limitations are usually implemented by

reducing Motor[x].MaxDac, which is a clamping limit, not a multiplying scale factor that acts as

a gain term.) Note that changing the sign of Motor[x].PwmSf reverses the direction sense of the

commutation.

Commutation Phase Angle: Motor[x].PhaseOffset

Motor[x].PhaseOffset controls the angular relationship between the phases of a multiphase

motor. Power PMAC splits the commutation cycle into 2048 parts. For a 3-phase motor, the angle

from Phase A to Phase B is ±1/3 of a cycle, so this variable is set to ±683. For a 2-phase motor,

the angle from Phase A to Phase B is ±1/4 of a cycle, so this variable is set to ±512.

The proper sign of Motor[x].PhaseOffset is dependent on the commutation feedback sensor’s

direction sense as determined by its wiring and the encoder decode variable’s direction sense, and

on the wiring of the phases of the motor. This setting is generally determined experimentally

through a test explained below. Changing the sign of Motor[x].PhaseOffset is equivalent to

exchanging two phase wires of the motor.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 262

The test uses the offset variables Motor[x].IaBias and Motor[x].IbBias to force current direction

into the particular phases and drive the motor like a stepper motor. Based on the direction of

motion between the two “steps”, the proper sign for Motor[x].PhaseOffset can be determined.

The following example uses Motor 1, commanded from the terminal window:

#1out0 // Open loop, zero output

Motor[1].IaBias=2000 // Plus offset on Phase A

Motor[1].PhasePos // Request pos (after motor settles)

382 // Power PMAC responds

Motor[1].IbBias=2000 // Plus offset on Phase B

Motor[1].PhasePos // Request pos (after motor settles)

215 // Power PMAC responds

If the phase position changed in the negative direction between these two steps,

Motor[x].PhaseOffset should be a positive value (683 for a 3-phase motor, 512 for a 2-phase

motor). If the phase position changed in the positive direction between these two steps,

Motor[x].PhaseOffset should be a negative value (-683 for a 3-phase motor, -512 for a 2-phase

motor).

Remember to set the bias terms back to zero before continuing!

Intermittent Current Limit: Motor[x].MaxDac

Motor[x].MaxDac is the limit of the output of the position/velocity servo loop, which is the

torque (quadrature) current command input to the commutation algorithm. As such, it acts as an

intermittent (“instantaneous”) current magnitude limit for the motor. Open-loop out commands

are expressed as a percent of Motor[x].MaxDac. A value of 32,768.0 (215) for

Motor[x].MaxDac for this parameter is full range.

If the servo loop computes an output value with a higher magnitude than Motor[x].MaxDac, the

magnitude of the output will be limited to that of Motor[x].MaxDac before it is used by the

commutation algorithm. Note that this is a clamping limit, not a multiplying gain term.

For details on how to calculate the appropriate value for MaxDac, refer to the Current Limits

section of the User’s Manual chapter Making Your Power PMAC Application Safe.

Continuous Current Limit: Motor[x].I2tSet

Motor[x].I2tSet specifies the magnitude of the continuous current limit for the motor/drive

system for integrated-current algorithms for thermal protection. Power PMAC uses “I2T”

protection, squaring the value of the current before integrating it. While this limit can be used to

protect both the motor and the amplifier, most amplifiers will have this protection built in, so this

parameter is typically set to protect the motor, where resistive losses are proportional to the

square of the current.

With sinewave-output commutation, Power PMAC is not measuring the actual current in the

motor and amplifier, so it uses the commanded current values in its calculations

Almost always it is the continuous current rating of the motor that is used for this limit.

Motor[x].I2tSet is calculated in a manner similar to Motor[x].MaxDac:

768,32*2
urrentFullRangeC

tLimitContCurren
tSetI

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 263

For details on how to calculate the appropriate value for I2tSet, refer to the Current Limits

section of the User’s Manual chapter Making Your Power PMAC Application Safe.

Integrated Current Limit: Motor[x].I2tTrip

Motor[x].I2tTrip sets the permitted limit of the time-integrated current over the continuous

current value. If the time-integrated current exceeds this threshold, Power PMAC will kill this

axis as it would for an amplifier fault. Typically, this parameter is set by noting the drive

specification for time permitted at the instantaneous current limit. If I2T protection is used, this

specification is used in the following equation:

 (sec)*22 222 imePermittedTtSetIIdCmdMaxDactTripI

The following diagram illustrates how I2T protection works using a sample time history.

2

32768

 MaxDac

20.1

2

32768

2

 tSetI

232768

2MaxDac

22tSetI

2I
2

normI

Saturation

Integrator

Charge-Up

Integrator

Discharge

(sec)time

I2t Fault

I2T Protection Example – Sinewave Output Mode

For details on how to calculate the appropriate value for I2tTrip, refer to the Current Limits

section of the User’s Manual chapter Making Your Power PMAC Application Safe.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 264

Setting Up For Direct PWM Control

In direct-PWM control mode, Power PMAC is performing both the commutation and current-

loop algorithms for the motor. The amplifier performs only the power conversion task, and is

typically called a “power-block” amplifier. In this mode Power PMAC outputs PWM voltage

commands for each phase of the motor.

Introduction

In this mode, the current control loop is closed by using digital computation operating on

numerical values in registers rather than by using analog processing operating on voltage levels

with op-amps. The digital techniques bring many advantages: there is no need for pot tweaking or

personality modules; there is no drift over temperature or time; computer analysis and auto-tuning

are possible; gain values are easily stored for backup and copying onto other systems; and

adaptive techniques are possible.

When performing digital current loop closure on the Power PMAC, several hardware and

software features must be set up properly to utilize the digital current loop and direct PWM

outputs correctly. The following section details how to perform this setup manually. However,

typically, these steps are automated through the use of the motor setup screens of the IDE

program running on a PC and communicating with the Power PMAC.

Note

The instructions given in this section are for the first-time

setup with an otherwise unknown interface. For a given

interface to the drive, motor and feedback device, many parts

of the setup will simply be taken from a list, and will not have

to be tested, or tested as thoroughly as described in this

chapter. A list of configuration-specific settings should come

with the manual for each particular interface or drive.

Subsequent versions of the same setup should be even easier.

Digital Current Loop Principle of Operation

Traditionally, motor phase current loops have been closed in analog fashion, with op-amp circuits

creating phase voltage commands from the difference between commanded and actual phase

current signal levels. These analog phase voltage commands are converted to PWM format

through analog comparison to a “saw tooth” waveform.

Power PMAC permits digital closure of the motor current loops, mathematically creating phase

voltage commands from numerical registers representing commanded and actual current values.

These numerical phase voltage commands are converted to PWM format through digital

comparison to an up/down counter that creates a digital “saw tooth” waveform. The analog

current measurements must be converted to digital form with ADCs before the loop can be

closed.

The following diagram shows the principle of the PWM signal generation using PMAC2-style

Servo ICs, using the comparison of the PWM command value to the running up/down PWM

counter value. The principle in the PMAC3-style IC is similar.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 265

PWM

Top Signal

PWM

Bottom Signal

Gate1[i].

PwmPeriod

or

16384 (Gate3)

PWM

Counter

Range

-Gate1[i].

PwmPeriod

or

-16384 (Gate3)

PWM

Command

Range

Motor[x].PwmSf

-Motor[x].PwmSf

PWM

Command

Value

PWM

Up/Down

Counter

New

Command

Loaded

PwmDeadTime

time

PWM Signal Generation in PMAC ASICs

By directly commanding the on-off states of the power transistors in this manner, Power PMAC

minimizes the calculation and transport delays in the feedback loops. This permits the use of

higher gains, which in turn permit greater stiffness, acceleration, and disturbance rejection. Also,

digital techniques permit the use of mathematical transformations of the current-loop data,

turning measured AC quantities into DC quantities for loop closure. This technique, explained in

the next section, significantly improves high-speed performance by minimizing high-frequency

problems.

Frames of Reference

A very important advantage of the digital current loop is its ability to close the current loops in

the “field frame”. To understand this advantage, some basic theoretical background is required.

In a motor, there are three frames of reference that are important. The first is the “stator frame”,

which is fixed on the non-moving part of the motor, called the stator. In a brushless motor, the

motor armature windings are on the stator, so they are fixed in the stator frame.

The second frame is the “rotor frame”, which is referenced to the mechanics of the moving part of

the motor, called the rotor. This frame, of course, rotates with respect to the stator. For linear

brushless motors, this is actually a translation, but because it is cyclic, we can easily think of it as

a rotation.

The third frame is the “field frame”, which is referenced to the magnetic field orientation of the

rotor. In a synchronous motor such as a permanent-magnet brushless motor, the field is fixed on

the rotor, so the field frame is the same as the rotor frame. In an asynchronous motor such as an

induction motor, the field “slips” with respect to the rotor, so the field frame and rotor frame are

separate.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 266

Working in the Field Frame

The physics of motor operation are best understood in the field frame. A current vector in the

stator that is perpendicular to the rotor field (that is, current in the stator that produces a magnetic

field perpendicular to the rotor magnetic field) produces torque. This component of the stator

current is known as “quadrature” current. The output of the position/velocity loop servo algorithm

is the magnitude of the commanded quadrature current. For diagnostic purposes on a Power

PMAC, an out command can be used to set a fixed quadrature current command.

A current vector in the stator that is parallel to the rotor field induces current in the rotor that

changes the magnetic field strength of the rotor (when the stator and rotor field are rotating

relative to each other). This component of the stator current is known as “direct” current. For an

induction motor, this is required to create a rotor magnetic field. For a permanent-magnet

brushless motor, the rotor magnets always produce a field, so direct current is not required,

although it can be used to modify the magnetic field strength. On Power PMAC, saved setup

element Motor[x].IdCmd determines the magnitude of the direct current.

Analog Loops in the Stator Frame

In an amplifier with an analog current loop, the closure of the loops on the stator windings must

be closed in the stator frame, because the current measurements are in the stator frame, and

analog circuitry has no practical way to transform these. In such a system, the current commands

must be transformed from the field frame in which they are calculated to the stator frame, and

converted to voltage levels representing the individual stator phase current commands. These are

compared to other voltage levels representing the actual stator phase current measurements.

As the motor is rotating, and/or the field is slipping, these current values, command and actual,

are AC quantities. Overall loop gain, and therefore system performance, is reduced at high

frequencies (high speeds). The back EMF phase voltage, which acts as a disturbance to the

current loop, is also an AC quantity. The current loop integral gain or lag filter, which is supposed

to overcome disturbances, falls well behind at high frequencies.

Digital Loops in the Field Frame

In a system with a digital current loop, it is possible to close the current loops in the field frame

(not all such systems do, however). Instead of transforming the current commands from field

frame to stator frame before closing the loop, the actual current measurements are transformed

from stator frame to field frame. In the field frame, a direct-current loop is closed, and a

quadrature current loop is closed. This produces a direct-voltage command, and a quadrature-

voltage command; these are transformed back into the stator frame to become phase-voltage

commands, which are implemented as PWM values.

The direct and quadrature current values are DC quantities when the motor is moving in one

direction, even as the motor is rotating and the field is slipping. Therefore, the high-frequency

limitations of the servo loop are irrelevant. This provides significantly improved high-speed

performance from identical motors and power electronics.

Power PMAC has a PI (proportional-integral) digital current loop. There is only one set of gains,

which serves for both the direct current loop and the quadrature current loop. Tuning is best done

on the direct current loop, because this will generate no torque, and therefore no movement. The

current-loop auto-tuner in the PMAC Executive program uses the direct current loop to tune. This

is valid even for permanent-magnet brushless motors where no direct current will be used in the

actual application. It is important to remember that current loop performance is not load-

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 267

dependent, so the motor does not need to be attached to the load during the tuning process (for

position/velocity loop tuning, the load does need to be attached).

The following diagram shows the principle of the digital current loop closure in the field frame. It

should be compared to the comparable diagram for sinewave-output mode in the previous section.

Torque Command

from Position/

Velocity Servo

Magnetization

Current

SG

DtOverRotorTc

1/s

PMAC Amplifier

PWM

PWM

PWM

Va

Vb

Vc

E

ADC

ADC

ia

ib

dq

to

abc

Quadrature

Current

Command

DC AC

IaVolts

IbVolts

IcVolts

abc

to

dq

IaMeas

IbMeas

+ +

r

Direct Current

Command

PI

Direct Current Loop

+

-

+

-

P

IdCmd

Quadrature Current Loop

PI
+

-

+

-

P

IqCmd

IdVolts

IqVolts

IdMeas

IqMeas

IpbGain

IpbGain

IpfGain

IiGain

IpfGain

IiGain

PhasePos

PhasePos

Power PMAC Direct PWM Commutation with Digital Current Loop

Hardware Setup

For Power PMAC to operate a motor in the direct PWM output mode, three PWM top-and-

bottom signal pairs, and two current measurements through ADCs, are required for the motor.

Using either the PMAC2-style or PMAC3-style Servo ICs, this requires PWM outputs on the A,

B, and C phases and ADC inputs on the A and B phases for the channel.

PMAC2-Style IC Interface

PMAC2-style “DSPGATE1” Servo ICs are used on ACC-24E2 PWM axis interface boards for

the UMAC rack-mounted control systems. These provide three PWM phase outputs and two

ADC inputs per servo channel.

PMAC2-Style Servo IC PWM Frequency Control: Gate1[i].PwmPeriod

If you are driving the axes directly through a PMAC2-style Servo IC (DSPGATE1 ASIC), as in

an ACC-24E2 direct-PWM interface accessory, set element Gate1[i].PwmPeriod to define the

PWM frequency you want for the 4 channels on the IC according to the equation:

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 268

 1

)(*4

8.964,117
int].[1

kHzPWMFreq

kHz
PwmPeriodiGate

(If the axes are being driven from a MACRO Station, MI900 on the Station controls the PWM

frequency of the first four channels on the Station according to the same equation; MI906 does

the same for the second four channels on the Station.)

The frequency should be set within the specified range for the drives. Too high a frequency can

lead to excessive drive heating due to switching losses; too low a frequency can lead to lack of

responsiveness, excess acoustic noise, possible physical vibration, and excessive motor heating

due to high current ripple.

The PWM frequency for any set of channels must have a definite relationship to the phase clock

frequency. If the channels are driven by the same Servo IC that is generating the phase and servo

clock, this relationship is set automatically. If the PWM frequency for channels on another Servo

IC is the same, this relationship also will automatically hold.

The PWM frequency on other channels does not have to be the same as the frequency of those

channels on the Servo IC generating the phase clock, but they do have to have a synchronous

relationship with the phase clock. The following relationship must hold for proper direct-PWM

operation of other channels:

}_{*2 IntegerPositive
PhaseFreq

PWMFreq

If a Servo IC is used to generate the Phase and Servo clocks, Gate1[i].PwmPeriod for that IC

also sets the frequency of the “MaxPhase” clock to twice the PWM frequency for the channels on

that IC. The MaxPhase clock is the highest frequency at which Power PMAC’s phase update

tasks, which include phase commutation and digital current loop closure, can operate. Note that

any change to this IC’s Gate1[i].PwmPeriod automatically changes the Phase and Servo clock

frequencies for the controller. Gate1[i].PhaseServoDir for the IC generating the system Phase

and Servo clock signals must be set to 0 to tell it to use its internally generated signals and output

them; it must be set to 3 on other ICs to tell them to use externally generated signals for these

clocks.

PMAC2-Style Servo IC Hardware Clock Frequency Control: Gate1[i].HardwareClockCtrl

Gate1[i].HardwareClockCtrl determines the frequency of four hardware clock signals used for

the machine interface channels on a PMAC2-style Servo IC. These can probably be left at the

default values. The four hardware clock signals are SCLK (encoder sample clock), PFMCLK

(pulse frequency modulator clock, DACCLK (digital-to-analog converter clock), and ADCCLK

(analog-to-digital converter clock).

(If the axes are being driven from a MACRO Station, MI903 on the Station controls the hardware

clock frequencies of the first four channels on the Station according to the same equations; MI907

does the same for the second four channels on the Station.)

Only the ADCCLK signal is directly used with the digital current loop, to control the frequency

of the serial data stream from the current-loop ADCs. The ADC clock frequency must be at least

100 times higher than the PWM frequency, but it must be within the capability of the serial

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 269

ADCs. Refer to the Gate1[i].HardwareClockCtrl description for detailed information on setting

these variables.

PMAC2-Style Servo IC PWM Deadtime Control: Gate1[i].PwmDeadTime

Gate1[i].PwmDeadTime determines the PWM deadtime between top and bottom signals for the

machine interface channels on a PMAC2-style Servo IC. Gate1[i].PwmDeadTime has a range of

0 to 255, and the deadtime is 0.135 µsec times the variable value. The deadtime should not be set

smaller than the recommended minimum for the drive, or excessive drive heating could occur.

Too large a deadtime value can cause unresponsive performance. The default value of 15, which

produces a deadtime of 2.0 µsec, is large enough to protect most drives, and small enough not to

create unresponsive performance unless PWM frequencies are extremely high. Some high-power

drives operating from a 480VAC supply will require about 3 µsec of deadtime, for a

Gate1[i].PwmDeadTime setting of about 23.

While most direct-PWM drives enforce a minimum deadtime, it is recommended to specify the

required deadtime here both for redundant protection of the drive, and to maintain the highest

possible resolution, as most drives use a lower-frequency clock signal in their deadtime circuitry.

Relying on the drive’s deadtime setting thus effectively reduces the resolution of the PWM

command signal.

(If the axes are being driven from a MACRO Station, MI904 on the Station controls the hardware

clock frequencies of the first four channels on the Station according to the same equations; MI908

does the same for the second four channels on the Station.)

PMAC2-Style Servo IC ADC Strobe Word: Gate1[i].AdcStrobe

Gate1[i].AdcStrobe defines the 24-bit “strobe word” for all of the A/D converters interfaced to

the “DSPGATE1” PMAC2-style Servo IC. This word is shifted out, MSB first, each phase cycle

to start the conversion of the A/D converters.

The least-significant bit (LSB) of this element is a mode-control bit for formatting the serial data

from the ADCs. If this bit is 0, all bits in the returned serial data stream are considered part of the

numerical current value, with the first bit received ending up in the MSB of the current register in

the IC. No “header bits” can be accepted in this mode. Older direct-PWM amplifiers, such as

Delta Tau’s “Quad Amp”, operate in this mode. Gate1[i].AdcStrobe is usually set to $FFFFFE

for this mode of operation.

If the LSB is set to 1, the IC can accept up to 4 bits of “header” data on the data stream and “roll

it over” to the lowest bits of the ADC register where numerical data is not expected. For an ADC

with n header bits, the first (4 – n) bits of the strobe word should be set to 0 to delay the start of

the strobe (if there are no delays in the data response). The ADCs in Delta Tau’s “Geo” family of

direct-PWM drives have one bit of header data, and so require this last bit to be set.

Gate1[i].AdcStrobe is set to $1FFFFF for ADCs with one header bit, or to $3FFFFF if there is a

clock cycle delay in getting the data back.

(If the axes are being driven from a MACRO Station, MI940 on the Station controls the ADC

strobe word for the first four channels on the Station in this same way; MI941 does the same for

the second four channels on the Station.)

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 270

PMAC2-Style Servo IC Channel Output Mode: Gate1[i].Chan[j].OutputMode

Channel-specific element Gate1[i].Chan[j].OutputMode (node-specific variable MI916 on a

MACRO Station) must be set to 0 to specify that all 3 outputs A, B, and C be in PWM format for

a 3-phase motor.

PMAC3-Style IC Interface

PMAC3-style “DSPGATE3” ICs are used on ACC-24E3 axis interface boards for the UMAC

rack-mounted control systems. These can be ordered with digital-amplifier “mezzanine” boards

with three or four PWM phases per servo channel. They are also used in the Power PMAC

“Brick” integrated controller/amplifier.

PMAC3-Style IC Phase Clock Frequency Control: Gate3[i].PhaseFreq

A DSPGATE3 IC can use its own internally generated phase-clock signal or accept an external

signal (usually from another IC in the system), as determined by saved setup element

Gate3[i].PhaseServoDir. If it is set to 0, it uses its own internally generated phase clock signal

(and servo clock); if it is set to 3, it accepts an external signal (for servo clock as well).

The frequency of the internally generated phase clock signal in a DSPGATE3 IC is determined

by the value of saved setup element Gate3[i].PhaseFreq. This is a floating-point value, in units

of Hertz (Hz). The default value is 9035.69, about 9 kHz. Even if an external phase clock signal is

used by the IC, the IC’s own internally generated frequency set by this element should be set as

close as possible to the frequency resulting from the external signal (as divided by

Gate3[i].PhaseClockDiv + 1), to keep the internal circuitry optimally locked to the external

signal.

If an external phase-clock signal is used, its frequency can be divided down by a factor of up to 4

before it is used internally, as determined by the setting of Gate3[i].PhaseClockDiv. This

element can take a value of 0 to 3, and the resulting division factor is one greater than this value.

It is rare that the value of this element is changed from its default value of 0 (divide by 1), but it

can be used to provide a wider range of PWM frequencies (which are derived from the internal

phase clock frequencies) across different ICs.

PMAC3-Style IC PWM Frequency Control: Gate3[i].Chan[j].PwmFreqMult

The PWM frequency for each channel on the DSPGATE3 IC is individually derived from the

IC’s common internal phase-clock frequency, whether that frequency is internally generated or

derived from an external signal and possibly divided down.

The channel-specific element Gate3[i].Chan[j].PwmFreqMult determines the resulting PWM

frequency for the channel according to the equation:

IntPhasePWM f
tPwmFreqMul

f
2

1

Gate3[i].Chan[j].PwmFreqMult can take a value of 0 to 7, so channel PWM frequencies can

range from 0.5 to 4 times the internal phase-clock frequency.

PMAC3-Style IC PWM Deadtime Control: Gate3[i].Chan[j].PwmDeadTime

The channel-specific element Gate3[i].Chan[j].PwmDeadTime determines the PWM deadtime

between top and bottom signals for the specified channel on a PMAC3-style IC.

Gate3[i].Chan[j].PwmDeadTime has a range of 0 to 255, and the deadtime is 0.053 µsec times

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 271

the variable value. The deadtime should not be set smaller than the recommended minimum for

the drive, or excessive drive heating could occur. Too large a deadtime value can cause

unresponsive performance. The default value of 15, which produces a deadtime of 0.8 µsec, is

suitable for lower-power drives, but may be too small for many higher-power drives, which may

require deadtimes of 1 to 3 µsec. For example, a 2 µsec deadtime requires a

Gate1[i].Chan[j].PwmDeadTime setting of about 38.

While most direct-PWM drives enforce a minimum deadtime, it is recommended to specify the

required deadtime here both for redundant protection of the drive, and to maintain the highest

possible resolution, as most drives use a lower-frequency clock signal in their deadtime circuitry.

Relying on the drive’s deadtime setting thus effectively reduces the resolution of the PWM

command signal.

PMAC3-Style IC Amplifier ADC Clock Frequency Control: Gate3[i].AdcAmpClockDiv

The multi-channel element Gate3[i].AdcAmpClockDiv determines the frequency of the clock

signal that drives the serial analog-to-digital converters (ADCs) providing the current feedback on

all channels, according to the equation:

kDivAdcAmpClocAdcAmpClk

MHz
f

2

100

The default value of 5 produces a 3.125 MHz frequency, suitable for most direct-PWM

amplifiers. In general, this should be set to the lowest value (producing the highest frequency)

that does not exceed the maximum frequency of the ADCs. The ADC clock frequency must be at

least 100 times as high as the PWM frequency in order to receive the complete ADC data in time

for the software interrupt. At the default 3.125 MHz ADC clock frequency, this limits the PWM

frequency to 31 kHz.

PMAC3-Style IC Amplifier ADC Strobe Word: Gate3[i].AdcAmpStrobe

The multi-channel element Gate3[i].AdcAmpStrobe defines the 24-bit “strobe word” for all of

the current-feedback A/D converters interfaced to the IC. This word is shifted out, MSB first,

each phase cycle to start the conversion of the A/D converters. This should be set according to the

instructions of the particular amplifier(s) being driven. The default value of $FFFFFC is suitable

for almost all direct-PWM amplifiers.

PMAC3-Style IC Amplifier ADC Header Processing: Gate3[i].AdcAmpHeaderBits

The multi-channel element Gate3[i].AdcAmpHeaderBits specifies how many “header” bits are

returned from the current-feedback ADCs before the actual current data starts. This count

includes any clock-cycle delays, which produce “null” header bits. This should be set according

to the instructions of the particular amplifier(s) being driven. The default value of 2 is suitable for

most Delta Tau amplifiers, whose ADCs have one true header bit and one clock cycle delay.

Motor Software Setup

Command Output Address: Motor[x].pDac

Motor[x].pDac instructs Power PMAC where to place its output commands for the motor by

specifying the address of the first register. (Despite the name of this element, these registers do

not have to drive D/A converters.) Almost always in this mode, the registers specified are the

PWM output registers in a Servo IC, or the matching registers in a MACRO IC that will send the

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 272

output information over the ring. In most configurations, these are the default settings for this

setup element.

If a PMAC2-style DSPGATE1 Servo IC is used for the direct interface, as in the ACC-24E2, the

setting will be of the type:

Motor[x].pDac=Gate1[i].Chan[j].Pwm[0].a

where i is the IC number (4 to 19), and j is the channel index number (0 to 3) in the IC.

If a PMAC2-style DSPGATE2 MACRO IC is used for the interface over the ring, as in the ACC-

5E, the setting will be of the type:

Motor[x].pDac=Gate2[i].Macro[k][0].a

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC.

Register 0 for the specified node must be used to conform to the MACRO standard for this node.

If a PMAC3-style DSPGATE3 IC is used for the direct interface, as in the ACC-24E3, the setting

will be of the type:

Motor[x].pDac=Gate3[i].Chan[j].Pwm[0].a

where i is the IC number (0 to 15), and j is the channel index number (0 to 3) in the IC.

If a PMAC3-style DSPGATE3 IC is used for the interface over the MACRO ring, as in the ACC-

5E3, the setting will be of the type:

Motor[x].pDac=Gate3[i].MacroOutA[k][0].a

or

Motor[x].pDac=Gate3[i].MacroOutB[k][0].a

where i is the IC number (0 to 15) and k is the MACRO node number (0 to 13) in the bank.

Register 0 for the specified node must be used to conform to the MACRO standard for this node.

Current Feedback Address: Motor[x].pAdc

Motor[x].pAdc, if it is not set to 0, enables the digital current loop and instructs Power PMAC

where to look for its current-feedback values for the motor. Almost always, the registers specified

are the serial ADC shift registers in a Servo IC, or the matching registers in a MACRO IC that

have brought the current information over the ring.

The address specified is that of the first register (Phase A); the next register is automatically read

for Phase B current information. (If Motor[x].PhaseCtrl bit 0 is set to 1 to specify the use of

“packed” format, only a single 32-bit read is performed with Phase A and B feedback expected in

the high and low 16 bits. This format is only supported in direct interface with the PMAC3-style

DSPGATE3 ASIC. It is not supported in PMAC2-style ASICs, or in the MACRO interface in a

PMAC3-style ASIC.)

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 273

If a PMAC2-style DSPGATE1 Servo IC is used for the direct interface, as in the ACC-24E2, the

setting will be of the type:

Motor[x].pAdc=Gate1[i].Chan[j].Adc[0].a

where i is the IC number (4 to 19), and j is the channel index number (0 to 3) in the IC.

If a PMAC2-style DSPGATE2 MACRO IC is used for the interface over the ring, as in the ACC-

5E, the setting will be of the type:

Motor[x].pAdc=Gate2[i].Macro[k][1].a

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC.

Register 1 for the specified node must be used to conform to the MACRO standard for this node.

If a PMAC3-style DSPGATE3 IC is used for the direct interface, as in the ACC-24E3, the setting

will be of the type:

Motor[x].pAdc=Gate3[i].Chan[j].AdcAmp[0].a

where i is the IC number (0 to 15), and j is the channel index number (0 to 3) in the IC.

If a PMAC3-style DSPGATE3 IC is used for the interface over the MACRO ring, as in the ACC-

5E3, the setting will be of the type:

Motor[x].pAdc=Gate3[i].MacroInA[k][1].a

or

Motor[x].pAdc=Gate3[i].MacroInB[k][1].a

where i is the IC number (0 to 15) and k is the MACRO node number (0 to 13) in the bank.

Register 1 for the specified node must be used to conform to the MACRO standard for this node.

Current Feedback Mask Word: Motor[x].AdcMask

Motor[x].AdcMask specifies a mask word to tell Power PMAC what bits of the register(s)

specified by Motor[x].pAdc are to be used in the current-loop algorithm. This permits the use of

ADCs of various resolutions; it also permits use of the rest of the ADC shift register for other

information, such as fault codes. Motor[x].AdcMask is a 32-bit value that is combined with the

feedback word in a bit-by-bit AND operation. The default value of $FFF00000 specifies that the

top 12 bits of the 32-bit feedback word(s) are to be used. Most direct-PWM amplifiers use 12-bit

ADCs, so $FFF00000 is the appropriate value for these amplifiers. If 14-bit feedback is used,

Motor[x].AdcMask should be set to $FFFC0000.

PWM Output Scale Factor: Motor[x].PwmSf

Motor[x].PwmSf multiplies the normalized internal command values, scaling the output

command values so that they use the PWM circuitry effectively. The result of the current-loop

calculations is a fractional value between -1.0 and +1.0. This value is multiplied by

Motor[x].PwmSf before being written to a PWM command register, where it is digitally

compared to a PWM up/down counter.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 274

If a PMAC2-style DSPGATE1 ASIC is being used for the output, the counter moves between

Gate1[i].PwmPeriod + 1 and -Gate1[i].PwmPeriod - 2. To utilize the full dynamic range of the

PWM circuitry well, Motor[x].PwmSf should be set slightly greater than Gate1[i].PwmPeriod.

Typically a value 10% greater is used, permitting full-on conditions at maximum command

values over about 1/6 of the commutation cycle. However, some amplifiers require that the PWM

signals never reach the full-on or full-off condition in order to keep a charge-pump circuit active.

For these amplifiers, Motor[x].PwmSf is typically set to 95% of Gate1[i]. PwmPeriod. Consult

the amplifier manual for details.

If a PMAC3-style DSPGATE3 ASIC is being used for the output, the counter moves between +/-

16,384, regardless of the PWM frequency. To utilize the full dynamic range of the PWM circuitry

well, Motor[x].PwmSf should be set slightly greater than 16,384. Typically a value 10% greater

is used, permitting full-on conditions at maximum command values over about 1/6 of the

commutation cycle. However, some amplifiers require that the PWM signals never reach the full-

on or full-off condition in order to keep a charge-pump circuit active. For these amplifiers,

Motor[x].PwmSf is typically set to 95% of 16,384. Consult the amplifier manual for details.

Motor[x].PwmSf effectively acts as a voltage limit for the motor. If the amplifier is oversized for

the motor, exceeding the maximum permitted voltage for the motor, Motor[x].PwmSf should be

set proportionately less than the full useful range to limit the maximum possible voltage for the

motor. Since Motor[x].PwmSf is a gain, if it is changed, the current loop must be tuned or

retuned afterwards.

Instantaneous Current Limit: Motor[x].MaxDac

Motor[x].MaxDac is the limit of the output of the position/velocity servo loop, which is the

torque (quadrature) current command input to the digital current loop. As such, it acts as an

instantaneous current magnitude limit for the motor. Open-loop out commands are expressed as

a percent of Motor[x].MaxDac.

In most other modes, a value of 32,767 (215-1) for Motor[x].MaxDac for this parameter is full

range. In 3-phase direct-PWM mode, however, the value of 32,767 corresponds to the full-range

readings of the Phase A and Phase B A/D converters. The mathematics involved in the

transformation from the phase currents to the direct and quadrature currents effectively multiplies

the phase values by cos(30°), or 0.866. This means that the Motor[x].MaxDac value

corresponding to the full-range ADC reading is 32,767 * 0.866 = 28,377. Therefore,

Motor[x].MaxDac should never be set to a value greater than 28,377 in 3-phase direct-PWM

mode.

The amplifier manual should specify the level of current that provides full-range feedback from

the ADCs. The user should then take the instantaneous current limit for the drive or for the motor,

whichever is less, and set Motor[x].MaxDac according to the following relationship:

 377,28*,377,28min

urrentFullRangeC

tLimitInstCurren
MaxDac

If the drive outputs analog current readings and the ADCs are on the interface board, the full-

range current value must be calculated from the volts-per-amp gain of the current sensing in the

drive and the full-range voltage into the interface board.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 275

If a non-zero value of Motor[x].IdCmd magnetization current will be used, for induction motor

control or for field weakening of a permanent-magnet brushless motor, then Motor[x].MaxDac

should be replaced in the above equation by 22 IdCmdMaxDac .

In early testing, it may be desirable to set Motor[x].MaxDac to an artificially low value to

prevent accidental overcurrent commands into the motor.

For details on how to calculate the appropriate value for MaxDac, refer to the Current Limits

section of the User’s Manual chapter Making Your Power PMAC Application Safe.

Continuous Current Limit: Motor[x].I2tSet

Motor[x].I2tSet specifies the magnitude of the continuous current limit for the motor/drive

system for integrated-current algorithms for thermal protection. Power PMAC uses “I2T”

protection, squaring the value of the current before integrating it. While this limit can be used to

protect both the motor and the amplifier, most amplifiers will have this protection built in, so this

parameter is typically set to protect the motor, where resistive losses are proportional to the

square of the current.

Almost always it is the continuous current rating of the motor that is used for this limit.

Motor[x].I2tSet is calculated in a manner similar to Motor[x].MaxDac:

377,28*2
urrentFullRangeC

tLimitContCurren
tSetI

Note that in direct-PWM mode, the current values for the I2T calculations are the measured

(actual) current values, instead of commanded current as in other operational modes. With 3-

phase direct PWM control, as with most brushless servo motors and induction motors, the full-

range current values are 32,767 * cos(30°), or 28,377, as used in the above equation. For 2-phase

control, as with stepper motors, the value of 32,767 can be used instead.

For details on how to calculate the appropriate value for I2tSet, refer to the Current Limits

section of the User’s Manual chapter Making Your Power PMAC Application Safe.

Integrated Current Limit: Motor[x].I2tTrip

Motor[x].I2tTrip sets the permitted limit of the time-integrated current over the continuous

current value. If the time-integrated current exceeds this threshold, Power PMAC will kill this

axis as it would for an amplifier fault. Typically, this parameter is set by noting the drive

specification for time permitted at the instantaneous current limit. If I2T protection is used, this

specification is used in the following equation:

 (sec)*22 222 imePermittedTtSetIIdCmdMaxDactTripI

The following diagram illustrates how I2T protection works in 3-phase direct-PWM mode using a

sample time history.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 276

2

32768

 MaxDac

2866.0

2

32768

2

 tSetI

228377

2MaxDac

22tSetI

2I
2

normI

Saturation

Integrator

Charge-Up

Integrator

Discharge

(sec)time

I2t Fault

I2T Protection Example – Three-Phase Direct PWM

For details on how to calculate the appropriate value for I2tTrip, refer to the Current Limits

section of the User’s Manual chapter Making Your Power PMAC Application Safe.

Commutation Phase Angle: Motor[x].PhaseOffset

Motor[x].PhaseOffset controls the angular relationship between the phases of a multiphase

motor. When Power PMAC is closing the current loop digitally for the motor, the proper setting

of this variable is dependent on the polarity of the current measurements.

!
Caution

It is very important to set the value of Motor[x].PhaseOffset

properly for your system; otherwise the current loop will have

unstable positive feedback and want to saturate. This could

cause damage to the motor, the drive, or both, if overcurrent

shutdown features do not work properly.

If the phase current sensors and ADCs in the amplifier are set up so that a positive PWM voltage

command for a phase yields a negative current measurement value, Motor[x].PhaseOffset must

be set to a value greater than 0: 683 for a 3-phase motor, or 512 for a 2-phase or DC brush motor.

If these are set up so that a positive PWM voltage command yields a positive current

measurement value, Motor[x].PhaseOffset must be set to a value less than 0: -683 for a 3-phase

motor, or -512 for a 2-phase or DC brush motor.

Note that for commutation with digital current loops, the proper setting of Motor[x].PhaseOffset

is unrelated to the polarity of the encoder counter. This is different from commutation without

digital current loops in the Power PMAC (“sine-wave” control), in which the polarity of

Motor[x].PhaseOffset (less than or greater than 0) must match the encoder counter polarity.

With the digital current loop, the polarity of the encoder counter must be set for proper servo

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 277

operation; with the analog current loop, once the Motor[x].PhaseOffset polarity match has been

made for commutation, the servo loop polarity match is guaranteed.

Current Loop Gains: Motor[x].IpfGain, IpbGain, IiGain

Motor[x].IpfGain, Motor[x].IpbGain, and Motor[x].IiGain are the gains of the PI

(proportional-integral) current-loop algorithm. The algorithm is the same for both current loops.

Iigain is the integral gain term. There are two proportional gain terms: IpfGain is the “forward-

path” proportional gain, and IpbGain is the “back-path” proportional gain. IpfGain is multiplied

by the current error (commanded minus actual) and the result is added to the output command.

IpbGain is multiplied by the actual current value and the result is subtracted from the output

command.

IpfGain

IiGain

1-z-1

Ipbgain

PwmSf

Commanded

Current

(Id or Iq)

+

- -

+

+

Measured

Current

(Id or Iq)

Commanded

Voltage

(Vd or Vq)

Normalized

to range

-1.0 < I < 1.0

Back Path

Proportional

Gain

Forward Path

Proportional

Gain

Integral

Gain

Output

Scale

Factor

Power PMAC Digital Current Loop

Setting the Current Loop Gains

Most users will use the “current-loop autotune” feature of the IDE to set the current loop gains,

possibly checked with the interactive-tuning step responses of that program.

However, with some basic knowledge of motor and amplifier parameters, it is possible to

calculate the current-loop gains directly. It is strongly advised that these computed gains be

checked against the values determined through the auto-tuning or interactive tuning of the IDE.

The motor parameters needed are:

 Rd/q Motor transformed d/q-phase resistance (Ohms)

= Rpp / 3 (Motor phase-to-phase resistance / 3 for Y-wound 3-phase motors)

 Ld/q Motor transformed d/q-phase inductance (Henries)

= Lpp / 3 (Motor phase-to-phase inductance / 3 for Y-wound 3-phase motors)

The amplifier parameters needed are:

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 278

 Isat Maximum (saturated) current reading from phase-current A/D converter (Amps).

This is a DC value, not an RMS AC value.

This value can be derived from the current-sensor gain Kc (volts/amp) and the maximum

voltage in volts that the A/D-converter can read Vcmax: Isat= Vcmax/Kc.

 VDC DC bus voltage for the amplifier.

This can be derived from the AC RMS supply voltage VAC: VDC=VAC*2.

Finally, the Power PMAC parameter needed is:

 TP Phase-update period (sec)

This can be derived from the phase update frequency fP in kHz: TP=1/(1000*fP)

Next, the following performance specifications for the current loop are required:

 n Desired natural frequency of the closed current loop in radians/sec

This can be derived from the desired natural frequency fn in Hz: n (rad/s) = 2fn (Hz).

If the damping ratio (see below) is in the range 0.7 to 1.0, which it should be in most cases,

the desired bandwidth of the current loop is basically equal to the natural frequency. Usually

values of 200 Hz to 400 Hz are used.

 Desired damping ratio (dimensionless). A value of 0.7 here yields a step-response

overshoot of about 5%; a value of 1.0 here yields no overshoot.

Now we can compute the proportional current-loop gain Kcp and the integral current-loop gain Kci

according to the formulas:

DC

qdqdn

satcp
V

RL
IK

//2

DC

qdnP

satci
V

LT
IK

/
2

Finally, to compute the setup elements to represent these gains, we use the following formulas for

PMAC2-style ICs:

PwmSfxMotor

PwmPeriodiGateK
IpbGainIpfGain

cp

].[

].[1

PwmSfxMotor

PwmPeriodiGateK
IiGain ci

].[

].[1

For PMAC3-style ICs, we use these next formulas:

PwmSfxMotor

K
IpbGainIpfGain

cp

].[

16384

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 279

PwmSfxMotor

K
IiGain ci

].[

16384

Note that the proportional gain term is expressed as the sum of two I-variables. IpfGain is the

“forward-path” proportional gain term, directly responding to changes in the command values;

IpbGain is the “back-path” proportional gain term, directly responding only to the actual current

values. When high position feedback resolution is used in the position/velocity loop, the

quantization noise in the current command is low, and it is better to use IpfGain. When low

position-feedback resolution is used, it is better to use IpbGain. Tradeoffs between

responsiveness and smoothness can be obtained by varying the amount of the proportional gain

term allocated to each of these two variables.

Example

The motor has a phase-to-phase resistance of 3.0 ohms, and a phase-to-phase-inductance of 39

millihenries. The amplifier phase-current sensors provide their maximum 5-volt output for 17.5

amps of current, and the ADCs provide their full-range value for an input of 5 volts. The

amplifier operates from an AC supply voltage of 120Vrms. The Power PMAC is operating at the

default phase update frequency of 9.03 kHz using a PMAC2-style IC. A current-loop natural

frequency of 200 Hz with a damping ratio of 0.7 is desired. The Gate1[i].PwmPeriod variable is

at the default value of 6527, and Motor[x].PwmSf is at the recommended value of 7181 (10%

greater).

Ld/q = Lpp / 3 = 0.039 / 1.732 = 0.0225 H

Rd/q = Rpp / 3 = 3.0 / 1.732 = 1.732 ohms

Isat = Vcmax/Kc = 5.0 / (5.0/17.5) = 17.5 amps

VDC = VAC * 2 = 120 * 1.414 = 170 V

TP = 1 / (1000*fP) = 1 / (1000*9.03) = 0.000110 sec

n (rad/s) = 2 n (Hz) = 2 * * 200 = 1256 rad/sec

Kcp = Isat [(2 n Ld/q) – Rd/q] / VDC = 17.5 [(2 * 0.7 * 1256 * 0.0225)- 1.732] / 170 = 3.89

Kci = Isat Tp n
2 Ld/q / VDC = 17.5 * 0.000110 * 12562 *0.0225 / 170 = 0.401

IpfGain + IpbGain = (Kcp * PwmPeriod) / PwmSf = 3.89 / 1.1 = 3.536

IiGain = (Kci * PwmPeriod) / PwmSf = 0.401 / 1.1 = 0.365

Current Loop Offset Compensation: Motor[x].IaBias, IbBias

Offsets in the current-measuring circuitry, and sometimes in the PWM voltage-command

circuitry can create biases in the current loops. These biases can create torque and velocity ripple

over the commutation cycle. To allow the user to compensate for these offsets, Power PMAC

provides the saved setup elements Motor[x].IaBias and Motor[x].IbBias. Each phase cycle,

these terms are automatically added to the raw measured values for the A and B phases,

respectively. They have the units of 16-bit ADCs (+/-32,768 represents full range), regardless of

the actual resolution of the ADCs.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 280

In general, these bias terms should be set to the negative of the average raw measured value for

the phase when no current should be flowing in the phase. To determine the values for these, a set

of measurements of the actual phase current numerical values when the motor phase currents are

zero should be taken. Multiple measurements are strongly recommended as there is inevitably

noise in the measurements, and the averaging process will remove the noise.

The raw measured phase current values can be read in the ASIC ADC registers:

Gate1[i].Chan[j].Adc[0] and Adc[1] for a PMAC2-style Servo IC

Gate3[i].Chan[j].AdcAmp[0] and AdcAmp[1] for a PMAC3-style Servo IC

Gate2[i].Macro[j][1] and Macro[j][2] for a PMAC2-style MACRO IC

Gate3[i].MacroInα[j][1] and MacroInα[j][2] for a PMAC3-style MACRO IC

If the motor’s IaBias and IbBias terms are 0, these values are copied directly into

Motor[x].IaMeas and Motor[x].IbMeas, but if these bias terms are non-zero, the bias values are

added into these motor registers.

Current Loop Offset Compensation Auto-Detection: Motor[x].CurrentNullPeriod

The process of setting these bias terms can be automated through a built-in current auto-nulling

process. If saved setup element Motor[x].CurrentNullPeriod is set to a non-zero value, a set of

phase current measurements will be accumulated at the start of the standard motor enabling

processes. These measurements are then averaged, and the negative of the averages is

automatically written to the IaBias and IbBias elements before control is established.

Note

Some servo drives, such as those in the Power PMAC Brick,

perform this auto-nulling function themselves, and report

corrected current feedback levels to the controller. With these

drives, the controller should not also perform this auto-nulling

function.

This auto-nulling is performed on motor enabling commands such as J/ (jog stop) and $ (phase

finding – can also be started by setting Motor[x].PhaseFindingStep to 1), and on coordinate

system enabling commands such as enable. If Motor[x].PhaseFindingStep is set to 8, the

auto-nulling is performed without enabling the motor afterwards.

The magnitude of CurrentNullPeriod determines the number of measurements of each phase to

be taken and averaged, typically between 100 and 1000. The sign of CurrentNullPeriod

determines the state of the amplifier when these measurements are taken. If it is positive, the

measurements are taken with the amplifier disabled to prevent any current from flowing in the

phases. If it is negative, the measurements are taken with the amplifier enabled but commanding

zero voltage.

In the first case, the bias measured is in the feedback circuits only (usually the dominant error

source). In the second case, the bias measured is a combination of the feedback circuits and the

voltage-command circuits. Typically, the bias in the feedback circuits is much larger than that in

the voltage-command circuits.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 281

The motor should fundamentally be still during this process, so there is no back-EMF to create

current values. If Power PMAC detects any significant velocity during the auto-nulling

(Motor[x].FltrVel > 0.1% of Motor[x].MaxSpeed), the auto-nulling process will fail.

PWM Deadband Compensation: Motor[x].PwmDbComp, PwmDbI

Due to the fact that the power transistors have a non-zero on/off switching time, and that because

of this a “deadtime” is required between the “on” times of the top and bottom transistors of a half-

bridge, there is a resulting zero-crossing distortion in the current waveform for the phase,

effectively producing a deadband in the phase. Power PMAC software permits you to compensate

for this effect using the saved setup parameters Motor[x].PwmDbComp and

Motor[x].PwmDbI.

Motor[x].PwmDbComp specifies the size of the compensation added to the PWM phase voltage

command values when it is applied, in units of the PWM command values (which have a full

range of +/-Gate1[i].PwmPeriod for a PMAC2-style ASIC, and of +/-16,384 for a PMAC3-style

ASIC). When the magnitude of commanded current for a phase is greater than

Motor[x].PwmDbI, twice the value of PwmDbComp is added to the phase voltage command in

the same direction sense as the sign of the current value, and the value of PwmDbComp is added

to the other two phases in the opposite direction sense. These calculations are done for all three

phases each cycle, with the effect of increasing the voltage difference across the phases to

overcome the deadband effect.

Typically, these parameters are set interactively with the goal of producing AC phase current

waveforms with minimal zero-crossing distortion. This can be done on the analog signals with an

oscilloscope with current probes, or using the IDE’s “scope” plotting feature from the digitized

current values Motor[x].IaMeas and Motor[x].IbMeas.

Voltage-Mode Direct-PWM Control

In some very high-precision applications, it can be desirable to disable the current-loop operation

so that the position/velocity servo output is a voltage, not a current command. This voltage-mode

PWM control is typically used when even small current measurement noise leads to unacceptable

roughness of operation. In these cases, the elimination of noise from disabling the current-loop

closure can be more important than the dynamic improvement closure provides. Voltage-mode

control is also useful for low-end systems that eliminate the cost of the current-sensing circuitry.

Caution

By eliminating the use of current feedback, voltage-mode

PWM control removes some important protections. These

protections typically are not necessary for operation at lower

voltages (< 100 VDC). However, motors that can operate at

higher voltages usually cannot tolerate full applied voltage at

zero or low speeds, so great care must be taken in using voltage

mode at higher voltages, especially during setup operation.

To disable the current-loop closure, set bit 3 (value 8) of Motor[x].PhaseMode to 1. With this

control bit set, actual current measurements are still made, and these measurements can be used

for I2T integrated current protection, but these measured values are not compared to desired

values in the “forward path” to drive closed current loops.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 282

In this voltage mode, the desired current values Motor[x].IqCmd (from the position/velocity

loop) and Motor[x].IdCmd are simply multiplied by the gain term Motor[x].IpfGain, acting

simply as a scaling factor, to get the quadrature and direct voltage values. (Motor[x].IiGain is

not used. Motor[x].IpbGain can be used in the “back path”, but seldom is in this mode, so

usually it will be set to 0.0.) These field-coordinate voltage values are then converted to phase

voltage values in the same way as when current loops are closed.

The following diagram shows the topology of the current loops with and without the forward loop

enabled.

IpfGain

IiGain

1-z-1

IpbGain

PwmSf

Commanded

Current

(Id or Iq)

+

- -

+

+

Measured

Current

(Id or Iq)

Commanded

Voltage

(Vd or Vq)

Normalized

to range

-1.0 < I < 1.0

Back Path

Proportional

Gain

Forward Path

Proportional

Gain

Integral

Gain

Output

Scale

Factor

PhaseMode

Bit 3

1 1

00

Enabling and Disabling Forward Path Current Loop Closure

Generally, Motor[x].IpfGain will be set to 1.0 to make this section a “pass-through”. Lower

values for IpfGain will limit the maximum output command voltage and therefore maximum

motor velocity. Higher values can lead to output saturation.

In this mode of operation, servo loop proportional gain Motor[x].Servo.Kp, current-loop forward

proportional gain Motor[x].IpfGain, and output scale factor Motor[x].PwmSf are all loop gain

terms in series. However, there can be saturation on the output of the servo loop, as set by

Motor[x].MaxDac, and on the output from the commutation algorithm.

In voltage-mode PWM control, the motor’s uncompensated back-EMF acts as a moderate

damping term for the position/velocity servo loop, so derivative gain term Motor[x].Servo.Kvfb

(or Kvifb) will have a lower value than in current-mode PWM control for the same overall

damping effect.

When no forward-path current loop is closed, the current waveforms can significantly lag behind

the voltage waveforms at high frequencies, significantly reducing the torque capabilities at high

speeds unless compensated. Motor[x].AdvGain can be used to compensate for this lag, restoring

high-speed capabilities.

This voltage-mode direct-PWM control mode is new in V2.1 firmware, released 1st quarter 2016.

In older firmware versions, this type of control could be created by setting Motor[x].AdcMask to

$0, forcing the measured current values to 0, but this disabled I2T integrated current monitoring

for the motor.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 283

Direct PWM Control of Brush Motors

Power PMAC supports direct PWM control of DC brush motors. Because the current-loop

closure algorithm is part of Power PMAC’s commutation algorithm, the commutation algorithm

must be activated for this control mode. However, because the actual commutation for these

motors is performed in the motor, the effect of Power PMAC’s commutation algorithm must be

disabled. The basic idea is to trick the commutation algorithm into thinking that the commutation

angle is always stuck at 0 degrees, so current into the A phase is always “quadrature” (torque-

producing) current.

The following block diagram shows how the standard direct PWM commutation and current loop

action is modified for control of DC brush motors:

Torque Command

from Position/

Velocity Servo

Magnetization

Current

PMAC Amplifier

PWM

PWM

PWM

Va

Vb

Vc

E

ADC

ADC

ia

ib

dq

to

abc

Quadrature

Current

Command

IaVolts

IbVolts

IcVolts

abc

to

dq

IaMeas

IbMeas

R=0

Direct Current

Command

PI

Direct Current Loop

+

-

+

-

P

IdCmd

Quadrature Current Loop

PI
+

-

+

-

P

IqCmd

IdVolts = 0

IqVolts

IdMeas

IqMeas

IpbGain

IpbGain

IpfGain

IiGain

IpfGain

IiGain

PhasePos

PhasePos

= 0

(0)

PhaseMode bit 2 = 1

disables Id loop

Holding PhasePos at 0 means:

Ia/Va = +Iq/Vq

Ib/Vb = 0

Ic/Vc = -IqVq

Power PMAC Direct PWM Control of DC Brush Motors

This section summarizes how the saved setup elements must be set for this particular control

mode; many of these elements are discussed in more detail elsewhere. These instructions assume:

 The brush motor’s stator magnetic field comes from permanent magnets or a wound field

excited by a separate means; the field is not controlled by one of the phases of this

channel.

 The two leads of the brush motor’s armature are connected to amplifier phases (half-

bridges) that are driven by the A and C-phase PWM commands from the Power PMAC

servo channel. (Often these amplifier phases are labeled U and W.) The amplifier may

have an unused half-bridge (often labeled V) driven by the channel’s B-phase, but this

does not need to be present.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 284

Motor Settings Common with Brushless Motors

The following settings are the same as for a permanent-magnet brushless motor with an absolute

phase reference:

 Motor[x].PhaseCtrl should be set to 4 to activate the commutation algorithm. (If

“packing” of current-loop inputs and outputs is supported on a PMAC3-style interface –

not true for Delta Tau amplifiers – PhaseCtrl can be set to 1.)

 Motor[x].pDac should be set to Gaten[i].Chan[j].Pwm[0].a, where n is “1” for a

PMAC2-style interface, or “3” for a PMAC3-style interface. If controlling over the

MACRO ring, it should be set to Gate2[i].Macro[j][0].a for a PMAC2-style MACRO

interface, or to Gate3[i].MacroOutα[j][0].a for a PMAC3-style MACRO interface,

where α can be “A” or “B”.

 Motor[x].pAdc should be set to Gate1[i].Chan[j].Adc[0].a for a PMAC2-style interface,

or to Gate3[i].Chan[j].AdcAmp[0].a for a PMAC3-style interface. If controlling over

the MACRO ring, it should be set to Gate2[i].Macro[j][1].a for a PMAC2-style

MACRO interface, or to Gate3[i].MacroInα[j][1].a for a PMAC3-style MACRO

interface, where α can be “A” or “B”. This enables the digital current loop for the motor

and selects the proper register for the current feedback.

 Motor[x].pAbsPhasePos must be set to a non-zero value to enable a power-on phase

position read. Since the purpose of this read is simply to force the phase position to zero,

it does not really matter what address this selects; it is fine to set this to

Gaten[i].Chan[j].PhaseCapt.a or to a MACRO node register so it addresses an actual

feedback encoder position register.

 Motor[x].AdcMask should be set to $FFF00000 for 12-bit current feedback, or to

$FFFC0000 for 14-bit current feedback, just as for brushless motors.

 Motor[x].IdCmd should be set to the default value of 0.0 to command zero direct (field)

current.

 Motor[x].DtOverRotorTc should be set to the default value of 0.0 for zero “slip” in the

commutation angle calculations.

 Motor[x].PhaseFindingTime should be set to 0 to disable a phasing search move.

 Motor[x].PowerOnMode is set as for a brushless motor. The most common value is 2,

which causes the phase referencing to be done automatically on power-up/reset, but does

not close the loop at this time, instead waiting for a command (e.g. j/ for a single motor,

or enable for all the motors in a coordinate system).

It can also be set to 1, which causes the position loop to be closed automatically when the

phase referencing is done, but does not do this referencing immediately on power-

up/reset, instead waiting for a command (the on-line $ command or buffered

Motor[x].PhaseFindingStep=1 command).

 Digital current loop gain terms Motor[x].IpfGain, Motor[x].IpbGain, and

Motor[x].IiGain will be set in the tuning process just as for brushless motors. Note that

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 285

the IDE’s automatic and interactive tuning routines inject “direct” current to monitor the

response. To use these tools with brush motors, manually set Motor[x].PhaseTableBias

to 512 (90°e) so that direct current corresponds to A-phase current. Remember to set

Motor[x].PhaseTableBias back to 0 before actual operation.

 Phase current offset term Motor[x].IaBias and can be set just as for brushless motors to

compensate for offsets in the current value. Motor[x].IbBias is not used in this mode of

control.

Motor Settings Special for Brush Motors

The following settings are unique to the direct-PWM control of brush motors, and will likely be

different from the settings for brushless motors:

 Motor[x].AbsPhasePosSf and Motor[x].AbsPhasePosOffset must both be set to 0.0 so

no matter what value is read as the power-on commutation position feedback, the

commutation angle is forced to zero.

 Motor[x].PhasePosSf must be set to 0.0 so no matter what value is read as the ongoing

commutation position feedback, the commutation angle will not change.

 Motor[x].PhaseOffset must be set to 512 (+90°e) if voltage and current polarities are

opposite (a positive voltage command in a phase produces negative current reading), or to

-512 (-90°e) if voltage and current polarities are the same. This puts the A and C phases

180° apart, so they will get “opposite” phase commands. This setting is the same as for 2-

phase brushless motors, but different from 3-phase motors.

 Motor[x].PhaseMode should be set to 3. This setting disables the integrator for the

direct current loop, so offset and noise on the unused B-phase current sensor cannot

integrate into a substantial value. It also disables the algorithms for “third-harmonic

injection”, which are not needed for brush motors. Note that for the IDE’s current-loop

tuning, which uses the direct-current loop, PhaseMode should be set to 1 so that the

integrator is enabled and the integral gain term can be set correctly. PhaseMode must be

returned to a value of 3 after the tuning tests are completed.

The following settings do not matter for direct-PWM control of brushless motors:

 Motor[x].AbsPhasePosFormat does not matter, because the read value, however

formatted, is always forced to zero. It can be left at its default value of $0.

 Motor[x].pPhaseEnc does not matter, because whatever register is read for ongoing

commutation feedback, the change in angle is always forced to zero. It is fine to leave

this at the default of Gaten[i].Chan[j].PhaseCapt.a.

Special Instructions for Tuning Current Loop

In Power PMAC’s direct PWM control of brush DC motors, there is no “direct” current

component. Quadrature current is always aligned with Phase A current in operation. However, the

IDE’s current-loop tuning controls command direct current in order to minimize the movement of

a brushless motor. This will not work for brush motors controlled this way.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 286

To use the IDE’s current-loop tuning controls, whether automatic or interactive tuning, the

motor’s “phase angle”, fixed at 0° for normal operation, must be set to 90° for the tuning. This is

done by manually setting non-saved setup element Motor[x].PhaseTableBias to 512 (one-

quarter of a commutation cycle) before starting the tuning. With this bias, the direct current

command is mapped to the Phase A current value.

In addition, bit 1 (value 2) of saved setup element Motor[x].PhaseMode must be set to 0 for the

test to enable the integrator for the direct current loop. This changes the value of PhaseMode

from 3 to 1. Note that a direct current command will generate torque and possible movement

during the test.

The setting of Motor[x].PhaseTableBias must be returned to 0, and Motor[x].PhaseMode

returned to 3 after the tuning is complete and before attempting to resume normal control.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 287

Direct Microstepping with Direct PWM Control

Power PMAC has the ability to perform the phase commutation and current-loop closure to

control stepper motors in open-loop microstepping control, working off internally generated

pseudo-feedback for both commutation and servo algorithms. This technique, called “direct

microstepping”, is different from using Power PMAC with a pulse-and-direction output to

command an external microstepping drive; that technique does not utilize Power PMAC’s

commutation or current-loop algorithms at all, as those tasks are performed in the drive.

Direct microstepping with direct PWM control is commonly used on the Power Brick LV

controller, which has built-in amplifiers capable of driving both 2-phase and 3-phase motors.

Product-specific instructions for direct microstepping with the Power Brick LV are included in its

User’s Manual.

When performing direct microstepping commutation with current-loop closure, Power PMAC

calculates the voltage output commands for each phase, represented by PWM signals.

This technique is most widely used to control motors that are marketed as “stepper motors”, but

the principle of control for these motors – open-loop or closed-loop – is the same as for motors

that are marketed as “brushless servo motors”, so the technique can be used for either type of

motor.

Also note that “stepper motors” overwhelmingly (but not universally) are 2-phase motors with

electrically independent phases, whereas “brushless servo motors” are overwhelmingly (but not

universally) 3-phase motors with electrically connected (Y or delta) phases. This direct-

microstepping/direct-PWM technique can be used with either 2-phase or 3-phase motors,

although a couple of setup elements must be made differently, and there must be different power-

stage topologies for the two types of motors.

The intent of this algorithm is to be able to provide position control of stepper motors without the

use of any position sensor such as a shaft encoder. If there is a shaft encoder on the motor,

superior control can be established by treating the motor as a (high pole-count) brushless servo

motor with closed-loop commutation and servo algorithms.

Principle of Operation

This direct microstepping technique works by numerically integrating the servo loop’s command

output value both for its own feedback and to advance the phase angle for the commutation

algorithm. This permits both algorithms to operate without an actual position sensor on the motor,

so open-loop control can be achieved. Both values are driven very directly from the commanded

trajectory.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 288

The following diagram shows the principle of operation for this technique, showing the typical 2-

phase motor configuration.

PID

ECT

Processing

“Slip”

Integration

PI

dq

to

ab

ab

to

dq

PI

Amp

IdCmd

IqCmdDesPos

ActPos

PhasePos

+
-

+
-

+
-

(0)
+ +

Simulated Servo

Loop

IdMeas

IqMeas

IaMeas

IbMeas

Current Loops

Open-Loop Commutation

U

W

V

X

A

B

IaVolts

IbVolts

IdVolts

IqVolts

Power PMAC Direct Microstepping/Direct PWM Block Diagram

Unlike in closed-loop servo control, the motor torque comes mostly from the “direct” current

command value IdCmd, which is generally held constant in magnitude. In direct microstepping,

the servo-loop output “quadrature” current command value IqCmd serves as a velocity, not a

torque command; its main purpose is to rotate the commanded rotor angle, and it provides only a

minimal contribution to the motor torque.

This section summarizes how the saved setup elements must be set for this particular control

mode; these elements are discussed in more detail elsewhere.

Speed Limitations

The direct microstepping technique has a maximum speed of 1024 microsteps per servo cycle.

For a standard 100-pole (1.8°) stepper motor with a 5 kHz update rate, this yields a 3000-rpm

maximum speed. There is also a limit of 512 microsteps (1 full step) per phase cycle. For the

same motor with a 10 kHz phase update rate, there is also a 3000-rpm maximum speed. Few

users will operate stepper motors at these speeds, but these limits should be calculated and update

rates set high enough that desired speeds can be reached.

Hardware Setup

The hardware setup of the Servo ICs for direct microstepping with direct PWM is the same as for

closed-loop servo control with direct PWM. Instructions for setting the IC configuration elements

for direct PWM control are given earlier in this chapter. Tuning of the digital current loops for

direct microstepping is also the same as for closed-loop servo control.

Encoder Conversion Table Entry Setup

This technique creates a simulated position sensor and feedback loop by numerically integrating

the (velocity) command output from the servo loop. This requires a special entry in the encoder

conversion table to read the double-precision floating-point commutation rotor-angle value for

position feedback. The following settings must be made for the entry:

 EncTable[n].type must be set to 11 to specify the reading of a floating-point register.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 289

 EncTable[n].index6 must be set to 1 to specify that there is a double-precision floating-

point value at this register.

 EncTable[n].pEnc must be set to Motor[x].PhasePos.a to read the commutation rotor

angle register

 EncTable[n].index5 should be set to 255 to provide a pre-scaling multiplication factor of

256 to the floating-point input value to keep the maximum resolution from this register.

 EncTable[n].index1 should be set to 5 to shift the intermediate data left 5 bits so it rolls

over properly.

 EncTable[n].index2, index3, and index4 should be left at their default values of 0 to

disable any filtering or integration.

 EncTable[n].ScaleFactor should be set to 1/2097152 (1/221) so the entry output has

appropriate scaling for servo loop closure. With this scaling, one unit of output from the

table entry is one microstep (1/512 of a full step, 1/1024 of a pole, or 1/2048 of a

commutation cycle).

Simulated Servo Loop Setup

This processed data is used to close a simulated servo loop using the following settings:

 Motor[x].pEnc should be set to EncTable[n].a to use the processed PhasePos value as a

simulated position feedback.

 Motor[x].pEnc2 should be set to EncTable[n].a as well for the inner-loop position. If

the servo velocity feedback terms are set to 0.0, as is usual for this type of control, this

position is not used in the simulated servo loop, but it is used in the actual-velocity

calculations for velocity reporting and phase advance.

 Motor[x].PosSf for the outer servo loop, and Motor[x].Pos2Sf for the inner loop should

be set to 1.0 to scale the motor units as “microsteps”. (Other settings are possible, but

these require rescaling many other servo and commutation elements as well.) With this

scaling, there are 2048 motor units per commutation cycle (pole pair). For a common

100-pole (1.8° full-step) stepper motor, this provides 102,400 motor units per revolution.

 The servo-loop proportional gain term Motor[x].Servo.Kp should be set to a value of 1.0

to create a high-performance simulated loop.

 The servo-loop velocity feedback gain terms Motor[x].Servo.Kvfb and Kvifb should be

set to 0.0 because no damping action is required in this simulated loop.

 The servo-loop integral gain term Motor[x].Servo.Ki should be set to 0.0 because there

are no steady-state errors to overcome in this simulated loop.

 The servo-loop velocity feedforward gain term Motor[x].Servo.Kvff should be set to 1.0

to eliminate velocity-dependent tracking errors. Motor[x].Servo.Kviff should be set to

0.0.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 290

 The servo-loop acceleration feedforward gain term Motor[x].Servo.Kaff should be set to

1.0 to eliminate acceleration-dependent tracking errors. (These errors are very small.)

 Other servo-loop gain terms should be set to 0.0, as their action is not needed in this

simple simulated loop.

Commutation and Current-Loop Setup

The following settings are for the basic setup of commutation. Most are the same as for closed-

loop control of brushless motors:

 Motor[x].PhaseCtrl must be set to 6 for a PMAC2-style interface. It can be set to 3 for a

PMAC3-style interface when using the more efficient “packed” I/O, or to 6 when using

“unpacked” I/O, to activate the commutation algorithm. Setting bit 1 (value 2) of this

element to 1 means the “slip” calculations that are used to advance the commutation

angle are based on commanded, not actual values. When using the Power Brick LV, it is

generally suggested to use “unpacked” I/O, so status and error bits in the lower parts of

the ADC current feedback words can be accessed.

 Motor[x].pDac should be set to Gaten[i].Chan[j].Pwm[0].a, where n is “1” for a

PMAC2-style interface, or “3” for a PMAC3-style interface. If controlling over the

MACRO ring, it should be set to Gate2[i].Macro[j][0].a for a PMAC2-style MACRO

interface, or to Gate3[i].MacroOutα[j][0].a for a PMAC3-style MACRO interface,

where α can be “A” or “B”.

 Motor[x].pAdc should be set to Gate1[i].Chan[j].Adc[0].a for a PMAC2-style interface,

or to Gate3[i].Chan[j].AdcAmp[0].a for a PMAC3-style interface. If controlling over

the MACRO ring, it should be set to Gate2[i].Macro[j][1].a for a PMAC2-style

MACRO interface, or to Gate3[i].MacroInα[j][1].a for a PMAC3-style MACRO

interface, where α can be “A” or “B”. This enables the digital current loop for the motor

and selects the proper register for the current feedback.

 Motor[x].AdcMask should be set to $FFF00000 for 12-bit current feedback, or to

$FFFC0000 for 14-bit current feedback, just as for brushless motors. The Power Brick

LV provides 14-bit current feedback.

 For a 2-phase motor (which most stepper motors are), Motor[x].PhaseOffset should be

set to 512 if voltage and current senses are opposite for the phases (true for Delta Tau

drives), or to -512 if voltage and current senses are the same for the phases. For a 3-phase

motor (which most brushless servo motors are), Motor[x].PhaseOffset should be set to

683 if voltage and current senses are opposite for the phases, or to -683 if voltage and

current senses are the same for the phases. Note that Delta Tau’s “LV” amplifiers are

software-configurable to drive 2-phase or 3-phase motors; refer to those manuals for the

required settings for your configuration.

 Motor[x].PhaseMode should be set to 1 for a 2-phase motor to disable “third-harmonic

injection”, or to 0 for a 3-phase motor to enable this feature.

 Motor[x].DtOverRotorTc should be set to its default value of 0.0 so that slip is not a

function of the rotor time constant.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 291

 Motor[x].PhaseFindingTime should be set to 0 to disable a phasing search move.

 Digital current-loop gain terms Motor[x].IpfGain, Motor[x].IpbGain, and

Motor[x].Iigain will be set in the tuning process just as for closed-loop control of

brushless motors. The IDE’s automatic and interactive tuning windows work very well

for this purpose.

 Phase current offset terms Motor[x].IaBias and Motor[x].IbBias can be set just as for

closed-loop control of brushless motors to compensate for offsets in the current values.

Motor[x].CurrentNullPeriod can be used to set these bias terms automatically each

time the motor is enabled.

The following settings are special to direct-microstepping/direct-PWM control, and will likely be

different from closed-loop control of brushless motors:

 Motor[x].pAbsPhasePos must be set to a non-zero value to enable a phasing read to

force the initial phase position. It is fine to set this to Gaten[i].Chan[j].PhaseCapt.a

(even though the value in this register will not really be used).

 Motor[x].AbsPhasePosSf and Motor[x].AbsPhasePosOffset must both be set to 0.0, so

that no matter what value is read as the power-on commutation feedback, the

commutation angle is forced to 0.

 The setting of Motor[x].AbsPhasePosFormat does not matter, because the value read,

however, formatted, will always be scaled and offset to a zero result. It is fine to leave it

at its default value of $0.

 Motor[x].PhasePosSf must be set to 0.0 so no matter what value is read as the ongoing

commutation position feedback, the resulting feedback phase position will not change.

This will permit the entire phase angle to come from the simulated slip due to the

integrated command velocity.

 The setting of Motor[x].pPhaseEnc does not matter, because whatever register is read

for ongoing commutation feedback, the resulting change in angle is always forced to

zero. It is fine to leave this at the default of Gaten[i].Chan[j].PhaseCapt.a.

 Motor[x].SlipGain must be set to 1 / (Phase cycles per servo cycle). If saved setup

element Sys.PhaseOverServoPeriod has been set correctly, Motor[x].SlipGain can just

be set to the value of Sys.PhaseOverServoPeriod. Each phase cycle, this value is

multiplied by the IqCmd output value from the simulated servo loop and the

commutation angle is advanced by the resulting product. This value properly matches the

servo loop scaling so that one microstep advances the commutation angle one entry in the

commutation table. At the default setting of 4 phase cycles per servo cycle, SlipGain

should be set to 0.25.

 Motor[x].IdCmd must be set to specify the desired current magnitude in the motor. It is

scaled such that 32,768 represents the maximum current that can be read by the A/D

converters in the drive. Remember that this amount of current is used constantly, so any

value used more than momentarily must be within the steady-state current limit of both

the drive and the motor. It is possible to change the value of IdCmd at any time; many

users will lower the value at rest to reduce heating when higher currents are not needed.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 292

 Motor[x].AdvGain should be set to a non-zero value if commutation frequencies over

about 1000 Hz – corresponding to 1200 rpm on a standard 100-pole stepper motor – are

desired. This compensates for the time delay between sampling the phase current and

having the resulting PWM command take effect. For an N phase-cycle delay,

Motor[x].AdvGain should be set to (N/16) * Sys.PhaseOverServoPeriod, where N is

typically 2 to 3. Often the value of AdvGain is optimized experimentally.

After power-on/reset, the motor is initialized with a phase referencing process. This can be done

using the on-line motor-specific $ command, by setting Motor[x].PhaseFindingStep to 1 in a

PLC program, or automatically if bit 1 (value 2) of saved setup element

Motor[x].PowerOnMode is set to 1. If bit 0 (value 1) of PowerOnMode is set to 1, the motor is

automatically enabled with the simulated loop closed at the end of the phase referencing. When

the loop is closed, the motor will be commanded to the zero point in the commutation cycle.

Limiting Parameters

Many users will want to set a velocity limit that provides a safe and predictable shutdown if a

higher commanded velocity is requested. The easiest way of doing this is to set the value of

Motor[x].MaxDac, which acts as the velocity limit into the direct microstepping algorithm.

With servo gains of 1.0 as suggested above, the units of Motor[x].MaxDac are effectively motor

units per servo cycle. To calculate the parameter given a maximum RPM value, the following

equation can be used:

dServoPerioSys
vRePolesPerMaxRPM

MaxDacxMotor .*2048*
2

*
000,60

].[

For example, to set a maximum speed of 1500 rpm on a 100-pole motor at a 5 kHz servo update:

5122.0*2048*
2

100
*

000,60

1500
].[MaxDacxMotor

If the magnitude of the commanded velocity exceeds this amount, the following error in the

simulated servo loop will quickly grow, and will trip when it exceeds Motor[x].FatalFeLimit.

Because the current magnitude in direct microstepping is essentially constant for long periods,

Power PMAC’s “I2T” integrated current limiting is not nearly as important in direct

microstepping as it is in closed-loop applications. Of course, the value of Motor[x].IdCmd used

must be lower than the continuous current rating of the motor and amplifier. It can still be

valuable to set the I2T parameters so that later changes to the value of Motor[x].IdCmd cannot

damage the motor or amplifier.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 293

Establishing a Phase Reference (Synchronous Motors)

When commutating a synchronous multi-phase motor such as a permanent-magnet brushless

servo motor, the commutation algorithm must know the absolute position of the rotor within a

single commutation cycle so it knows the magnetic field orientation of the rotor. The process of

establishing this absolute position sense is known as “phase referencing”.

Fundamentally, there are two methods for establishing the phase reference. The first is a “phasing

search”, in which some kind of excitation signal is applied to the motor, and the physical response

of the motor is sensed in order to determine the phase angle. This does not require a sensor that is

absolute over a full commutation cycle.

The second method is an “absolute phasing read”, in which a sensor that is absolute (non-

repeating) over a full commutation cycle is read and the position value is used to set the

commutation phase angle. Of course, this cannot be done with an incremental sensor such as a

digital quadrature encoder or an analog sinusoidal encoder (although some of these devices have

additional “tracks” that support these absolute phasing reads).

However, even if there is a sensor that is absolute over at least a full commutation cycle and so

can be used for an absolute phasing read, a phasing search move must be done initially to

determine how the sensor is aligned relative to the motor’s commutation cycle. The section

immediately below on phasing search moves, particularly the “stepper motor” phasing search, is

therefore relevant for these applications as well.

Power PMAC will not permit closing the loop on a synchronous (zero-slip) motor commutated by

the controller until a successful phasing reference has been performed. The read-only status bit

Motor[x].PhaseFound is automatically set to 0 at power-on/reset and at the beginning of any

phasing-search move or absolute phase position read. It is only set to 1 if the Power PMAC

judges the move or read to be successful. The servo loop cannot be closed on the motor unless

this bit is 1.

WARNING

It is vital that a reliable method of accurately establishing a

phase reference be implemented before the machine has

the potential to cause damage or injury. A phase reference

grossly in error has the potential to cause runaway

conditions. Even moderate errors can cause overheating of

the motor and amplifier due to sub-optimum utilization of

current. Make sure that Motor[x].FatalFeLimit is set as

small as practicable so any possible runaway condition is

caught quickly.

Power PMAC presently supports two built-in types of phasing search moves. These moves are

specified and controlled by the settings of saved setup elements Motor[x].PhaseFindingTime

and Motor[x].PhaseFindingDac. A value for Motor[x].PhaseFindingTime that is greater than 0

specifies that a phasing search move is to be used for the phasing reference instead of an absolute

position read.

If bit 1 (value 2) of Motor[x].PowerOnMode is 1, a phasing reference is automatically

commanded for the motor at power-on/reset. Regardless of the setting of

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 294

Motor[x].PowerOnMode, the on-line motor-specific $ command initiates a phasing reference.

Setting (unsaved) element Motor[x].PhaseFindingStep to 1 in either an on-line command or a

buffered program command also initiates a phasing-search move.

Bit 0 (value 1) of Motor[x].PowerOnMode specifies the state of the motor after a successful

phasing reference. If it is set to 0, the motor is “killed” (open-loop, zero output, amplifier

disabled). If it is set to 1, the motor is enabled in a closed-loop zero-velocity state. In an actual

application, a value of 1 is almost always desired. After an unsuccessful phasing reference, the

motor is always killed, and the Power PMAC will not permit subsequent closed-loop enabling of

the motor.

“Stepper Motor” Phasing Search

The “stepper motor” phasing search move is so called because it drives the brushless servo motor

like a stepper motor to a known rotor angle orientation. It forces current into motor phases in a

known pattern and waits for the motor to settle. With proper operation, this will be at a known

position in the commutation cycle with reasonable precision.

This method is specified if Motor[x].PhaseFindingTime is set to a value of 256 or greater. The

value specifies the time, in real-time interrupt periods, that each of the two current settings is

held. Motor[x].PhaseFindingDac specifies the peak commanded current magnitude for each

step, in units of a 16-bit output (so 32,767 would be full range).

At the start of a stepper-motor phasing search, Power PMAC ramps up the current to half of the

amount specified in PhaseFindingDac over the time interval specified by PhaseFindingTime to

force the motor to +90° of the commutation cycle (+512 commutation units). Note that there is a

slight possibility the motor will be stuck in its “unstable equilibrium” position of -90°.

Next, the current is ramped up to the full amount specified by PhaseFindingDac over another

time interval of PhaseFindingTime to force the motor to 0° (0 commutation units) of the

commutation cycle. At the end of this period, a value of 0 is forced into the commutation phase

position register.

For the phasing search to be successful, the motion between the ends of the first and second steps,

expressed in commutation units (1/2048 of a commutation cycle) must be greater than the value

in Motor[x].AbsPhasePosOffset. In an ideal phasing search, this distance would be 512 units.

The distance that occurred in the most recent search can be found in Motor[x].New[0].Pos.

Generally, a value of about 400 for AbsPhasePosOffset will catch true failures without rejecting

slightly non-ideal searches.

“Four Guess” Phasing Search

The “four guess” phasing-search move is so called because it makes four separate guesses as to

the phase position, separated by 90° of the commutation cycle, briefly applies a torque command

using each guess, and observes the response of the motor to each command. Based on the

magnitude and direction of these responses, Power PMAC calculates the rotor phase angle.

This method is specified if Motor[x].PhaseFindingTime is set to a value from 4 to 255. The

value specifies the time, in real-time interrupt periods, for each guess. The method is based on the

idea that the torque generated per unit current is proportional to the cosine of the error in the

phase angle used in the guess. While the method cannot measure the generated torque directly, it

can calculate the resulting acceleration from reading the motor position sensor. If external loads

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 295

are not too high, this acceleration is a good proxy for torque. An arctangent calculation from the

accelerations of the “sine” and “cosine” guesses can then determine the phase angle.

This method is quicker than the stepper-motor search method and requires less movement. It is

more sensitive to significant external loads.

With very low external loads, two guesses 90° apart are sufficient to determine the phase angle,

and earlier generations of PMAC used such a “two guess” method. With four guesses spaced

around the commutation cycle, the ability to remove the effect of external loads is greatly

improved, making the method significantly more robust.

For the phasing search to be successful, the sum of the squares of the (load-adjusted)

accelerations of the two pairs of guesses must be greater than the value in

Motor[x].AbsPhasePosOffset. The value in the most recent search for the “sine” guesses can be

found in Motor[x].New[0].Vel. The value in the most recent search for the “cosine” guesses can

be found in Motor[x].New[0].Acc. Generally a value of about 80% of the typical sum of square

for a search will catch true failure without rejecting slightly non-ideal searches.

Absolute Phasing Reads

Power PMAC can use a variety of absolute position sensors to determine the phase angle of the

motor at power-on/reset. These include absolute encoders, resolvers, and Hall sensors, processed

through a variety of interfaces. The saved setup elements used for absolute phase position reads

are:

 Motor[x].pAbsPhasePos

 Motor[x]AbsPhasePosFormat

 Motor[x].AbsPhasePosSf

 Motor[x].AbsPhasePosOffset

Power PMAC reads the data at the address specified by pAbsPhasePos, interprets it according to

the rules specified by AbsPhasePosFormat, multiplies it by AbsPhasePosSf to convert it into

commutation units, then adds AbsPhasePosOffset to incorporate the difference between the

sensor zero position and the commutation zero angle.

Note that the sensor used for absolute power-on phase position can be the same as that used for

ongoing phase position, or it can be different – including having different resolution.

Motor[x].pAbsPhasePos must be set to a non-zero value, and Motor[x].PhaseFindingTime

must be set to zero, in order for an absolute phase position read to be used for the phasing

reference.

Hall Commutation Sensors

Digital Hall commutation sensors (or their optical equivalents) are probably the most common

power-on absolute phase position sensors used with the Power PMAC. With 6 states per

commutation cycle, they provide rough phasing (+/-30° of the commutation cycle) that is good

enough to obtain reasonably efficient controlled motion. Correction of the original rough phasing

is required for optimal operation.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 296

Hall Sensor Address

With the 3 Hall sensor signals connected to the U, V, and W flag inputs for an ASIC servo

channel, as is recommended, the signals can be read in the ASIC channel’s status register, or in

the MACRO input flag register if passed through the MACRO ring. So Motor[x].pAbsPhasePos

should be set to:

 Gate1[i].Chan[j].Status.a for a PMAC2-style ASIC, as on an ACC-24E2x board

 Gate3[i].Chan[j].Status.a for a PMAC3-style ASIC, as on an ACC-24E3 board

 Gate2[i].Macro[k][3].a for a MACRO flag register on a PMAC2-style ASIC, as in the

ACC-5E

 Gate3[i].MacroInα[k][3].a for a MACRO flag register on a PMAC3-style ASIC, as in

the ACC-5E3.

This diagram shows the 3-phase Hall signals in the most common configuration, with the signals

spaced by 120° of the commutation cycle. An alternate configuration has the signals spaced by

60°; with the “V” signal inverted from what is shown in the diagram. The 120° spacing is

generally recommended, as the common failure states of all 0’s or all 1’s are not legal states, and

therefore easily detected.

1

0

1

0

1

0

U

V

W

UVW 1 3 2 6 4 5

Degrees 330 30 90 150 210 270

State 11 1 3 5 7 9

Hall Sensor Commutation States

Hall Sensor Data Format

Motor[x].AbsPhasePosFormat tells Power PMAC how to use the data at this specified register.

It is a 32-bit value organized as 4 byte fields. It is usually represented as a hexadecimal value,

where the 4 byte fields can be shown as $aabbccdd. The $dd byte specifies the starting bit

number to be used in the register. It should be set to $1C (28 decimal) for a PMAC2-style IC, or

to $0C (12 decimal) for a PMAC3-style IC. The $cc byte specifies the number of bits to be used;

it should be set to $03 for any Hall sensors. The $bb byte specifies how data in any subsequent

registers is to be used; since that is not an issue here, it should be set to $00.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 297

The $aa byte specifies the data format to be used. It should be set to $04 for Hall signals with

120° spacing, or to $05 for Hall signals with 60° spacing.

There are four common settings of Motor[x].AbsPhasePosFormat for Hall sensors. They are:

Motor[x].AbsPhasePosFormat = $0400031C // 120° Halls thru PMAC2-style IC or MACRO

Motor[x].AbsPhasePosFormat = $0500031C // 60° Halls thru PMAC2-style IC or MACRO

Motor[x].AbsPhasePosFormat = $0400030C // 120° Halls thru PMAC3-style IC

Motor[x].AbsPhasePosFormat = $0500030C // 60° Halls thru PMAC3-style IC

Hall Sensor Scale Factor

Motor[x].AbsPhasePosSf is used to convert the Hall signal reading into commutation units. Both

its magnitude and sign are important. Because Power PMAC considers Hall sensors to have 12

states per commutation cycle (6 states plus 6 edges) and it has 2048 commutation units per cycle,

the magnitude of Motor[x].AbsPhasePosSf should be 2048/12 = 170.667. (Because this is for a

one-time rough phasing, the fractional value does not need to be precise.)

The proper sign of Motor[x].AbsPhasePosSf is determined by the direction sense of the Hall

signals with respect to the commutation cycle. For 120° spacing, if W leads V and V leads U in

the counting-up sense of the commutation cycle (as determined by the ongoing commutation

sensor), the direction sense agrees, and Motor[x].AbsPhasePosSf should be positive: +170.667.

However, if U leads V and V leads W in the counting-up sense, the direction sense does not

agree, and Motor[x].AbsPhasePosSf should be negative: -170.667.

Hall Sensor Offset

Motor[x].AbsPhasePosOffset is used to compensate for the difference between the sensor’s zero

position and the commutation cycle zero position. The value can be unique to the application. The

zero position for the Hall cycle is the V-signal transition when U is low (0) and W is high (1). In

general, this point will not be at the zero-point in the motor’s commutation cycle.

To set the value of Motor[x].AbsPhasePosOffset “manually”, execute a “stepper-motor”

phasing search to drive the motor to the zero point in the commutation and set

Motor[x].PhasePos to zero. Then, while monitoring Motor[x].PhasePos and

Gaten[i].Chan[j].UVW, best in the IDE’s “Watch” window, turn the motor slowly until you see

this V-signal transition, where the UVW element will change between 1 and 3. It may be best to

kill the motor and turn it by hand to do this. Note the value of PhasePos when this transition

occurs. Assign this value to Motor[x].AbsPhasePosOffset.

Note that this is only an approximate phase referencing; the computed phase angle here could be

up to +/-30° of the commutation cycle off from the true angle, yielding a significant reduction in

torque capability. See the section Correcting an Approximate Phase Reference, below, for

directions on how to follow this step with a more precise referencing.

Invalid Hall Sensor Read

Only 6 of the 8 possible combinations of the 3 Hall signals are valid readings. For the 120°

spacing, all signals at 0 and all signals at 1 are invalid combinations. For the 60° spacing, UVW

patterns of 010 and 101 are invalid combinations. If Power PMAC detects an invalid combination

when it performs an absolute phase-position read, it will consider the operation to have failed.

The status bit Motor[x].PhaseFound will be left at 0, and closed-loop operation of the motor will

be prohibited.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 298

Absolute Encoders

Absolute encoders are increasingly being used as the position sensors for both servo and

commutation feedback. They can serve as the sensors for both power-on and ongoing

commutation position. Note that a “single-turn” absolute encoder can be used for power-on

commutation position, as it only needs to be absolute over one commutation cycle of the motor.

Absolute Encoder Address

The Power PMAC provides several possible interfaces for absolute encoders, with data received

in both serial and parallel format. In either case, the position data can be found in memory-

mapped registers. Motor[x].pAbsPhasePos tells Power PMAC the address of the register to read

for power-on absolute phase position.

The most common absolute encoder interface used with the Power PMAC is the serial-encoder

interface of the PMAC3-style ASIC, found on the ACC-24E3 UMAC servo interface board and

on the Power Brick control board, with dedicated circuitry and registers for the interface. In this

case, Motor[x].pAbsPhasePos should be set to Gate3[i].Chan[j].SerialEncDataA.a for the IC

and channel used. This register contains the low 32 bits of data from the serial encoder.

Parallel-format data can be brought in through the ACC-14E I/O board, which uses the IOGATE

I/O interface IC. In this case, Motor[x].pAbsPhasePos should be set to GateIo[i].DataReg[j].a,

where i specifies the index of the IC used, and j specifies which of the 6 byte-wide data registers

(0 – 5) on the IC contains the least significant byte of the encoder position data.

Other older serial-encoder interface boards exist for UMAC systems that do not have pre-defined

data structures for the memory-mapped registers. For these boards, Motor[x].pAbsPhasePos

should be set to the address directly, in the form of Sys.piom + {offset}, where Sys.piom is the

base address of the memory-mapped I/O space for the Power PMAC (the user does not need to

know the numerical value of this address), and {offset} is the numerical value of the address offset

of the specified register in this I/O space.

The user will calculate this offset in two parts. First is the offset of the base address of the board

from the base address of the I/O space. This is determined by the DIP-switch setting of the board.

For boards using the “general-purpose I/O” address space (all of the standard older serial-

interface boards), these offsets can be found in the following table:

Index # 0 1 2 3 4 5 6 7

IC Base

Offset

$A00000 $B00000 $C00000 $D00000 $A08000 $B08000 $C08000 $D08000

Index # 8 9 10 11 12 13 14 15

IC Base

Offset

$A10000 $B10000 $C10000 $D10000 $A18000 $B18000 $C18000 $D18000

To this must be added the (small) offset of the register used in the IC from the base address of the

IC. Remember that each consecutive register in the IC has an offset of 4 numerical addresses

from the previous register.

For example, to use the second register of an IC mapped to index 1 in the general-purpose I/O

space of the Power PMAC, Motor[x].pAbsPhasePos would be set to Sys.piom + $B00004.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 299

Absolute Encoder Data Format

Motor[x].AbsPhasePosFormat tells Power PMAC how to use the data at this specified register.

It is a 32-bit value organized as 4 byte fields. It is usually represented as a hexadecimal value,

where the 4 byte fields can be shown as $aabbccdd.

The $dd byte specifies the starting bit number to be used in the register. It should generally be set

to $00 when reading data from Gate3[i].Chan[j].SerialEncDataA.a, as the LSB of the encoder

data should be found in bit 0 of the 32-bit register. When reading data from

GateIo[i].DataReg[j].a, it should generally be set to $08, as the LSB of the IOGATE IC registers

is mapped into bit 8 of the 32-bit bus. Most of the older serial-encoder interface boards also map

their LSBs into bit 8, so the $dd byte should be set to $08 for these as well.

The $cc byte specifies the number of bits to be used; it should be set to the number of bits of

encoder data that cover a single commutation cycle, even if the encoder provides more bits of

data. For example, if the encoder provides a total of 27 bits of data with 65,536 LSBs per

revolution of the motor, and the motor has 4 poles (2 commutation cycles per revolution), $cc

should be set to $0F (15 decimal) because there are 215 (32,768) LSBs of the encoder per

commutation cycle, so the low 15 bits of the encoder data should be used.

If the size of the commutation cycle cannot be expressed as a power of 2 of the LSBs of the

encoder, which will generally be the case for linear encoders, then a number of bits at least as big

as that necessary to cover the entire travel of the motor must be used, not just enough to cover a

single commutation cycle. If this requires more than 32 bits starting at the encoder LSB, then

enough of the least significant bits of the encoder should not be used (done by increasing the

value in byte dd) to reduce the total bits used to 32 or less.

The $bb byte specifies how data in any subsequent registers is to be used. Most absolute encoder

interfaces only use a single register, so this byte field is not used (it is recommended to set this to

$00 for these cases). When reading byte-wide data from GateIo[i].DataReg[j].a, it should be set

to $20 to specify that subsequent registers should be read starting at the same bit as the LSB of

the data.

The $aa byte specifies the data format to be used. It should be set to $00 if the data is provided in

numerical binary format, so no conversion is required, or to $02 if the data is provided in Gray

code, specifying that Power PMAC will automatically convert the data to numerical binary form

before use.

Absolute Encoder Scaling

Motor[x].AbsPhasePosSf is used to convert the absolute encoder reading into commutation

units. It multiplies the formatted value so far derived, with the result having 2048 units per

commutation cycle. It therefore should be set to 2048 divided by the number of LSBs of the

encoder per commutation cycle.

For example, if the encoder provides 18 bits of resolution per motor revolution, and the motor has

4 poles (2 commutation cycles) per revolution, there are 131,072 (217) LSBs of the encoder per

commutation cycle, so Motor[x].AbsPhasePosSf should be set to 2048 / 131,072 = 0.015625. It

is advisable to enter this value as an expression, and let Power PMAC compute the result

precisely.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 300

Absolute Encoder Offset

Motor[x].AbsPhasePosOffset is used to compensate for the difference between the sensor’s zero

position and the commutation cycle zero position. The value can be unique to the application. To

set the value of Motor[x].AbsPhasePosOffset “manually”, execute a “stepper-motor” phasing

search to drive the motor to the zero point in the commutation cycle. Read the value of the

encoder position at this point, either from the hardware input register, or if you have already set

up an encoder conversion table entry to process the data for servo use, from the

EncTable[n].PrevEnc register (this is useful especially when the hardware registers are byte-

wide and would need to be combined, as on the ACC-14E).

It is desirable for clarity (but not strictly necessary) to use only the number of bits of this

information that cover a single commutation cycle – that is, the low n bits of data.

Motor[x].AbsPhasePosOffset should be set to the negative of this value, multiplied by the value

of Motor[x].AbsPhasePosSf.

Resolvers

Power PMAC provides two fundamental methods of processing absolute resolver feedback where

the Power PMAC hardware provides a direct analog interface to the resolver. The first, using the

ACC-58E UMAC Resolver-to-Digital (R/D) Converter board, relies on software processing of

the converted analog feedback in the encoder conversion table (ECT). The second uses the

hardware processing of the PMAC3-style “DSPGATE3” IC used on the ACC-24E3 with the

analog feedback module and the Power PMAC Brick control board with the analog feedback

module. The setup for using the resolver position for power-on absolute phase position is

substantially different for these two cases.

Resolver Address

Motor[x].pAbsPhasePos tells Power PMAC the address of the register to read for power-on

absolute phase position. If the resolver is processed through the ACC-58E and the ECT, the

resulting position data is found in the “previous encoder position” register of the table, so

Motor[x].pAbsPhasePos should be set to EncTable[n].PrevEnc.a for the entry n used to

process the data.

If the resolver is processed through the hardware of the PMAC3-style IC, the resulting data is

found in the “arctangent” register of the IC channel, so Motor[x].pAbsPhasePos should be set to

Gate3[i].Chan[j].Atan.a for the IC and channel used.

Resolver Data Format

Motor[x].AbsPhasePosFormat tells Power PMAC how to use the data at this specified register.

It is a 32-bit value organized as 4 byte fields. It is usually represented as a hexadecimal value,

where the 4 byte fields can be shown as $aabbccdd.

The $dd byte specifies the starting bit number to be used in the register. It should generally be set

to $00 when reading data from EncTable[n].PrevEnc.a, as with resolvers interfaced to the ACC-

58E, because the LSB of the data used is found in bit 0 of the register. When reading the data

from Gate3[i].Chan[j].Atan.a, as with resolvers processed by the PMAC3-style IC, it is usually

set to $10 (16 decimal) because the Atan element is found in the high 16 bits of the 32-bit

register. It is also possible to set it to a higher value if the lowest of the 16 bits are considered

spurious data due to noise in the analog circuitry. For example, if you only want to use the high

14 bits of data, this byte should be set to $12 (18 decimal).

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 301

The $cc byte specifies the number of bits to be used; it should be set to the number of bits of

resolver data that cover a single commutation cycle. The value depends on the number of bits of

resolver data used in a resolver cycle, and the number of commutation cycles per resolver cycle.

Most resolvers have a single cycle per motor revolution, and most motors have multiple

commutation cycles per motor revolution.

For example, if you are using 14 bits of feedback from a resolver that has one cycle per motor

revolution, and the motor has 2 commutation cycles (4 poles) per revolution, there are 13 bits per

commutation cycle, and the $cc should be set to $0D (13 decimal).

The $bb byte specifies how data in any subsequent registers is to be used. Since resolver data is

always found in a single register, this byte should always be set to $00.

The $aa byte specifies the data format to be used. It should always be set to $00 for resolver data

to specify that the data is expected in numerical binary format.

Resolver Scaling

Motor[x].AbsPhasePosSf is used to convert the resolver reading into commutation units. It

multiplies the formatted value so far derived, with the result having 2048 units per commutation

cycle. It therefore should be set to 2048 divided by the number of LSBs used from the resolver

conversion per commutation cycle.

For example, if the resolver conversion provides 14 bits of resolution per motor revolution, and

the motor has 4 poles (2 commutation cycles) per revolution, there are 8192 (213) LSBs of the

resolver per commutation cycle, so Motor[x].AbsPhasePosSf should be set to 2048 / 8192 =

0.25. The value can be entered as an expression.

Resolver Offset

Motor[x].AbsPhasePosOffset is used to compensate for the difference between the sensor’s zero

position and the commutation cycle zero position. The value can be unique to the application. To

set the value of Motor[x].AbsPhasePosOffset “manually”, execute a “stepper-motor” phasing

search to drive the motor to the zero point in the commutation cycle. Read the value of the

resolver position at this point from the register specified by Motor[x].pAbsPhasePos.

It is desirable for clarity (but not strictly necessary) to use only the number of bits of this

information that cover a single commutation cycle – that is, the low n bits of data.

Motor[x].AbsPhasePosOffset should be set to the negative of this value, multiplied by the value

of Motor[x].AbsPhasePosSf.

Correcting an Approximate Phase Reference

Sometimes the initial phase referencing is sufficient to be able to generate reasonable torque/force

in the desired direction of movement, but not to optimize the performance of the motor. In these

cases, it is recommended to correct the phase position value when a known is reached.

The motor’s generated torque per unit current is proportional to the cosine of the angle error (in

terms of the commutation cycle) of the phase referencing. Significant errors both reduce the peak

torque capability of the motor, and add significantly to motor heating.

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 302

A phase correction is essential when the initial phase referencing is done using Hall Sensors.

With 60° between edges of the signals, the best accuracy that can be achieved is +30°, which can

lead to a 14% reduction in peak torque, and a 20% increase in motor heating.

A phase correction is recommended when the initial phase referencing is done with a phasing-

search move. Even if initial testing shows the search to perform very reliably, errors can creep in

during the life of the machine, and a phase correction is good insurance.

The most common method of phase correction is to perform a homing-search move, settle at the

home position, and then write a pre-determined value into the Motor[x].PhasePos register. Saved

setup element Motor[x].AbsPhasePosForce is a holding register for the value to be copied into

the active Motor[x].PhasePos element.

Generally, the best technique for determining the value of Motor[x].AbsPhasePosForce for this

method is to perform a stepper-motor phasing search on the (unloaded) motor, then perform a

homing-search move to the index pulse of the encoder. With the motor settled at this home

position, the value of Motor[x].PhasePos is the value we want for

Motor[x].AbsPhasePosForce.

Then, in operation, after the initial rough phase referencing, a homing-search move is performed

that includes the encoder index pulse as part of the trigger. After the motor has settled at the home

position, Motor[x].PhasePos is set to Motor[x].AbsPhasePosForce. Sample PLC program code

to accomplish this is:

home3; // Command homing-search move

while (!(Motor[3].HomeComplete) && !(Motor[3].InPos)) {} // Done?

Motor[3].PhasePos = Motor[3].AbsPhasePosForce; // Correct phasing

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 303

Finishing Setting Up Power PMAC Commutation (Direct PWM or
Sine Wave), Asynchronous (Induction) Motors

Power PMAC commutation of an AC induction motor requires the setup of two I-variables that

can be left at 0 for permanent-magnet brushless motors. One variable is the Motor[x].IdCmd

magnetization-current parameter (which is usually left at 0 for permanent-magnet motors, but can

be changed for them); the other variable is the Motor[x].DtOverRotorTc slip-constant parameter

(which must be left at 0 for permanent-magnet motors).

Typically, the Motor Setup program associated with the IDE can be used to set Motor[x].IdCmd

and Motor[x].DtOverRotorTc automatically. The program stimulates the induction motor to

infer its parameters, and sets these terms appropriately for the results it gets. This section explains

analytical and experimental methods for setting these parameters. Note that these settings are

independent of any mechanical load, so any tests can and should be done with an unloaded motor.

Calculating Motor[x].DtOverRotorTc Slip Constant

One of the most important aspects of field-oriented control of induction motors is the calculation

of the “slip frequency” in each cycle that is necessary to obtain the desired torque. Under the

constraints of field-oriented control, the slip frequency is proportional to the torque value, but the

constant of proportionality is dependent on the motor and controller properties.

The key parameter needed is the ratio between the update time of the control algorithm (“Dt”),

which is Power PMAC’s phase update period, and the electrical time constant of the motor’s

rotort (“RotorTc”). For this reason, the saved setup element in Power PMAC is called

Motor[x].DtOverRotorTc. There are several ways to calculate this parameter, as explained

below.

Calculating from Name Plate Data

The slip constant parameter Motor[x].DtOverRotorTc for an induction motor can be calculated

simply from basic parameters for the motor and for the Power PMAC. You will need:

 The rated speed for the motor, usually given in revolutions per minute (rpm).

 The electrical line frequency given for this rated speed, usually given in Hertz (Hz), or

cycles/sec. This is almost always 50 or 60 Hz.

 The number of poles for the motor.

 The Power PMAC’s phase update period, usually given in microseconds (μsec).

The rated speed can be subtracted from the line frequency (after conversion to consistent units) to

get the slip frequency. This can then be multiplied by the phase update period (again after

conversion to consistent units) to get the Motor[x].DtOverRotorTc slip constant. The formula

is:

768,32

**
_ stdmag

pme

I
TrTcDtOverRoto

where:

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 304

ωe is the electrical frequency given, in radians/sec. To calculate from frequency in Hertz, multiply

by 2π (6.283). For 50 Hz, this is 314.3 radians/sec; for 60 Hz, this is 377.0 radians/sec.

ωm is the rated mechanical pole frequency, in radians/sec. To calculate from motor rated speed in

rpm and the number of poles, divide the speed in rpm by 60, multiply by 2π (6.283), then

multiply by the number of poles and divide by 2.

Tp is the Power PMAC’s phase update time in seconds. To convert from microseconds, divide by

one million.

If the phase update time is set by a PMAC2-style “DSPGATE1” IC, as on an ACC-24E2, the

phase update time can be calculated as:

800,964,117

1].[1*3].[1*2

DivPhaseClockiGatePwmPeriodiGate
Tp

If the phase update time is set by a PMAC3-style “DSPGATE3” IC, as on an ACC-24E3, the

phase update time can be calculated as:

PhaseFreqiGate
Tp

].[3

1

Imag_std is the value of the magnetization current parameter Motor[x].IdCmd that would produce

the same rated speed/torque point as the direct operation off the AC lines. For a first calculation,

you can use a value of 3500 here. It will almost always get you close enough. If you set your

Motor[x].IdCmd value as explained in the next section for this type of operation, you can come

back and adjust this calculation.

Example

A 4-pole induction motor has a rated speed of 1740 rpm at a 60 Hz electrical frequency. It is

being controlled from a Power PMAC with default clock source and frequency from a PMAC2-

style IC. The electrical frequency is:

sec
0.3772*

sec
60

rad

cyc

radcyc
e

The mechanical pole frequency is:

sec
4.364

2

1
*4*2*

sec

min

60

1
*

min
1740

sec

rad

pole

cyc

rev

poles

cyc

radrevrad
m

The default value of Gate1[i].PwmPeriod is 6257, which produces a 4.517 kHz PWM frequency

(222 µsec period) and a 9.035 kHz “MaxPhase” clock frequency (111 µsec period). The default

value of Gate1[i].PhaseClockDiv is 0, for a “divide by 1” from “MaxPhase” to “Phase” clock, so

the phase clock frequency is also 9.035 kHz (111 µsec period). Formally this can be calculated

as:

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 305

sec000111.0

800,964,117

10*36527*2

pT

Motor[x].DtOverRotorTc can now be calculated as:

 000149.0
32768

3500
*000111.0*4.3640.377 rTcDtOverRoto

Calculating from Rotor Time Constant

Occasionally, you can get from the manufacturer the L/R electrical time constant of the induction

motor’s squirrel-cage rotor (this is distinct from, and much larger than, the L/R electrical time

constant of the stator windings). The Motor[x].DtOverRotorTc slip constant can easily be

calculated from this value by the equation:

r

p

T

T
rTcDtOverRoto

where Tp is Power PMAC’s phase update time, and Tr is the rotor’s electrical time constant.

Remember to use the same units for both times.

Example

You are running with a phase update frequency of 8 kHz, and you have a rotor time constant of

0.75 seconds. You can calculate:

000167.0
75.0

000125.0

r

p

T

T
rTcDtOverRoto

Experimentally Optimizing Slip Constant

For a given magnetization current, the optimum slip constant will maximize the acceleration

capabilities of the motor. Changes from the optimum value of Motor[x].DtOverRotorTc in

either direction will degrade performance. Simple tests employing data gathering while using a

low-valued open-loop output command (e.g. out10) to accelerate the motor permit easy

optimization or verification of optimization of the Motor[x].DtOverRotorTc value. If you have

not yet selected your best value of Motor[x].IdCmd magnetization current, you can use a value

of 3000 for these tests.

Setting Motor[x].IdCmd Magnetization Current

Once you have a good value for the Motor[x].DtOverRotorTc slip constant, you are ready to

find your best value of the Motor[x].IdCmd magnetization-current parameter. Motor[x].IdCmd

sets the commanded value for the “direct” current component in commutation, the component in

phase with the rotor’s measured/estimated magnetic field orientation. Motor[x].IdCmd

determines the rotor’s magnetic field strength and so the torque constant Kt and back-EMF

constant Ke for the motor. If Motor[x].IdCmd is not so high that it magnetically saturates the

rotor, torque and back-EMF constants will be proportional to Motor[x].IdCmd.

The higher the value of Motor[x].IdCmd (before saturation), the more torque is produced per

unit of “quadrature” current commanded from the servo loop, but the higher the back-EMF

“generator” voltage produced per unit of motor velocity, so the lower the maximum velocity can

Power PMAC User’s Manual

Setting up Power PMAC-Based Commutation and/or Current Loop 306

be achieved from a given supply voltage. The lower the value of Motor[x].IdCmd, the less

torque is produced per unit of commanded “quadrature” current, but the lower the back-EMF

voltage produced per unit of velocity, so the higher the velocity that can be achieved.

In most applications, a single value of Motor[x].IdCmd will be set and left constant for the

application. However, it is possible to change Motor[x].IdCmd dynamically as a function of

speed, lowering it at high speeds so as to keep the back-EMF under the supply voltage, extending

the motor’s speed range. This technique is generally known as “field weakening” and can be

implemented in a PLC program.

If you do not use the Motor Setup program to set the value of the Motor[x].IdCmd

magnetization-current parameter, it is best to do so experimentally. With a good value of

Motor[x].DtOverRotorTc set, simply issue a low-valued open-loop output command (e.g.

out10) at each of several settings of Motor[x].IdCmd and observe the end velocity the

unloaded motor achieves. This can be done simply by watching the real-time velocity read-out in

the IDE’s “position” window. If you use the data gathering feature, you can also note the rate of

acceleration to that speed.

This velocity is known as the “base speed” for the motor for that setting. Typically, a value of

3200 to 3500 for Motor[x].IdCmd will achieve the approximately a base speed equivalent to the

rated speed of the motor when run directly from a 50 Hz or 60 Hz line.

If your test values of Motor[x].IdCmd are low enough that none of them magnetically saturate

the rotor, the base speeds in the test will be approximately inversely proportional to the value of

Motor[x].IdCmd (and the accelerations to that speed will be approximately proportional to

Motor[x].IdCmd). If you start increasing Motor[x].IdCmd into the range that causes magnetic

saturation of the rotor, increases in Motor[x].IdCmd will not cause further lowering of base

speed and further increase in rate of acceleration to that speed.

Many users will want a value of Motor[x].IdCmd as high as possible without causing rotor

saturation. These users will want to find values of Motor[x].IdCmd that do cause saturation, then

reduce Motor[x].IdCmd just enough to bring it out of saturation.

Power PMAC User’s Manual

Setting Up the Servo Loop 307

SETTING UP THE SERVO LOOP

Power PMAC can automatically close a digital servo loop for each activated motor. The purpose

of the servo loop is to command an output (“control effort”) in such a way so as to try to make the

actual position for the motor match the commanded position as closely as possible. How well it

does this depends on the tuning of the servo loop filter – the setting of its parameters – and the

dynamics of the physical system under control.

Servo Update Rate

As a digital servo controller, Power PMAC closes the motor servo loops at discrete time intervals,

sampling the feedback once per interval, computing a new set point for the motor, and computing

the servo command based on these values. The user can select this time interval (the “servo

period”) for an application, but it should remain fixed for the application. The “servo frequency”

or “servo update rate” is, of course, inversely proportional to the period.

Choosing an Update Rate

How fast should the servo loops be updated in your system? For many applications, the default

setting of a 2.26 kHz (442 sec) update can be retained. There are two basic reasons to change

this time.

Reason to Increase Rate

First, if you are not getting the dynamic performance you require, you should speed up the servo

update rate (decrease the update time). In most systems, a faster update rate means that a stiffer

and more responsive loop can be closed, resulting in smaller errors and lags.

Reason to Decrease Rate

Second, if your routines of lower priority than the servo loop are not executing fast enough, you

should consider slowing down the servo update rate (increasing the update time). You may well

be updating faster than is required for the dynamic performance you need. If so, you are just

wasting processor time on needless extra updates. For example, doubling the servo update time

from 442 sec to 885 sec (halving the update rate from 2.26 kHz to 1.13 kHz), virtually doubles

the time available for motion and PLC program execution, allowing much faster motion block

rates and PLC scan rates.

There are some systems that get better performance with a slower servo update rate. Generally

these are systems with relatively low encoder resolution, usually an encoder only on the load,

where the derivative gain can not be raised enough to give adequate damping without causing an

unstable “buzz” due to amplified quantization errors. In this case, slowing down the update rate

(increasing the update time) can help to give adequate damping without excessive quantization

noise.

Ramifications of Changing the Rate

If you change the servo update rate, many of the existing servo gain terms will behave differently.

To retain equivalent servo performance, you will have to change these values. Refer to the

detailed description of each gain term in the saved setup element descriptions of the Software

Reference Manual to see how these change (or simply retune).

Changing the servo update rate changes the percentage of processor time devoted to the servo

tasks, which can have important implications for lower-priority tasks, such as motion-program

Power PMAC User’s Manual

Setting Up the Servo Loop 308

and PLC-program calculations. Refer to the Computational Features chapter for details on how to

evaluate these changes.

Setting the Servo Clock Frequency/Period

The servo update rate is determined by the frequency of the servo clock signal from one of the

Servo or MACRO ICs in the system. (If there are no Servo or MACRO ICs present, it can be

generated from an internal timer in the processor.) This frequency is controlled by the values of

saved setup elements for the “source” IC. Refer to the chapter Power PMAC System

Configuration for details on selecting the source IC and the servo clock frequency it generates.

Extending the Servo Update Period for a Motor

It is possible to extend the servo update period for individual motors. If saved setup element

Motor[x].Stime is set to a value greater than 0, this number of servo clock periods will be

skipped between consecutive loop closures. For example, if it is set to 3, the servo loop will be

closed every 4th servo clock period. Note that all other servo tasks for the motor, such as

trajectory interpolation, are still executed every servo clock period. Only the actual loop closure is

extended.

Usually the period is extended because of very slow dynamics of the plant controlled by this

motor, which make a long update period desirable. This is very common when the “motor” is not

an actual physical motor but a process variable such as temperature or pressure.

Closing the Servo Loop Under the Phase Interrupt for a Motor

It is possible to close the servo loop for a motor under the phase interrupt, which can have a

higher frequency than the servo interrupt. Generally, this is done for one or two very fast

actuators (“fast-tool servos”) in a system that require high update rates to achieve the bandwidth

that they are physically capable of. Typical actuators used in this manner are voice-coil motors,

galvanometers, magnetostrictive actuators, and piezoelectric actuators. Closing these motors

under a high-frequency phase interrupt and other motors under the lower frequency servo

interrupt helps optimize the computational resources of the Power PMAC.

Setting bit 3 (value 8) of saved setup element Motor[x].PhaseCtrl to 1 enables this mode of

operation for the motor. While it is also possible to set other bits to 1 to enable the commutation

algorithm for the motor, it is rare to require commutation for these fast actuators, so typically

Motor[x].PhaseCtrl is simply set to 8. Motor[x].ServoCtrl must also be set to a non-zero value

(usually 1), because many tasks for this motor will still be done under the servo interrupt.

If Power PMAC is not closing the current loop for this motor, it is best to set Motor[x].pAdc to 0

for the motor. Otherwise, Power PMAC will spend time reading the specified current feedback

registers every phase cycle, even though the results are not used.

Another use of this feature is for high-performance brushless motor control. In the standard

control mode, the command output of the servo loop is held in memory until the next phase

interrupt, when it is used as an input to the commutation/current-loop algorithm, and the

command values from these phase algorithms are output to hardware half a phase cycle later. In

very high performance systems, the added delay can hurt performance.

However, if the servo loop is closed under the phase interrupt and phase algorithms are also

active (Motor[x].PhaseCtrl = 9 or 12), the servo-loop command is immediately used by the

phase algorithm in the same cycle, eliminating a full phase-cycle net delay.

Power PMAC User’s Manual

Setting Up the Servo Loop 309

Note

It is not possible to use multi-motor servo algorithms, such as

the standard GantryXCtrl two-motor algorithm, or custom

multi-motor algorithms, when the servo loop is closed under

the phase interrupt.

Specifying Position Feedback

Because the encoder conversion table executes under the servo interrupt, its pre-processing of

feedback cannot be used when closing the servo loop under the phase interrupt. Instead, the

motor’s position feedback for both inner (velocity) and outer (position) servo loops (as well as

commutation feedback, if used) is determined by saved setup element Motor[x].pPhaseEnc,

which should be set directly to the address of the hardware register used to process the feedback.

However, if Motor[x].pPhaseLoadEnc is set to an address, it specifies the separate source of the

outer (position) servo loop, with Motor[x].pPhaseEnc still specifying the source of the inner

(velocity) loop and commutation position, if used.

For an incremental encoder, it will be set to Gaten[i].PhaseCapt.a, which contains the encoder

counter value latched on the phase interrupt. Note that with a PMAC3-style “DSPGATE3” IC,

this register can include “1/T” timer-based sub-count extension for digital quadrature encoders, or

arctangent-based sub-count extension for analog sinusoidal encoders. However, with the older

PMAC2-style “DSPGATE1” IC, this register can only hold full quadrature counts.

Because these actuators typically have a very short travel, it is often possible to use an analog

feedback device as the position feedback through an A/D converter. It is important to choose an

A/D converter that updates every phase cycle, as on the ACC-28E, the ACC-59E3 or the Power

Brick control board. Multiplexed A/D converters, as on the ACC-36E, do not update individual

readings often enough to be of use here.

If serial encoders are used for feedback, as with the ACC-84E, the ACC-24E3, or the Power

Brick control board, it is important to set them up to be read every phase cycle, not just every

servo cycle. If parallel data is used for feedback, as with the ACC-14E, the data should be latched

on the phase clock signal, not the servo clock signal.

Power PMAC User’s Manual

Setting Up the Servo Loop 310

Types of Amplifiers

Power PMAC can interface to a variety of different types of amplifiers (drives). The type of

amplifier used for a particular motor or hydraulic valve has important ramifications for the tuning

of the servo loop. Each of the common types is explained below. The following block diagram

shows where the split between controller and amplifier tasks can be made:

Trajectory

Generation

Interpolation

Position

Filter

Velocity

Filter

Phase

Commutation

Current

Filters

Power

Modulation

MotorE

d

dt

+ +
+

+
- -

-

-

Desired Phase Voltages

Desired Phase Currents

Desired Torque

Desired Velocity

Desired Position

Position-

Mode Drive
Velocity-

Mode Drive
Torque-

Mode Drive
Sinewave-

Mode Drive
Direct PWM-

Mode Drive

Phase Currents

Position

Motor Control Task Division Points

Amplifiers for Which Servo Produces Position Command

Sometimes Power PMAC will be used with an amplifier that expects a position command. In this

case the Power PMAC’s own servo loop is effectively disabled, and the only task of the servo

algorithm is to output the net commanded position (from programmed moves, position following,

and position compensation tables) properly formatted. This mode of operation is enabled by

setting saved setup element Motor[x].Ctrl to Sys.PosCtrl.

The most common case for this mode involves the use of a smart networked drive (as on the

EtherCAT network) that is run in “position mode”, accepting commanded position values over

the network, and closing all feedback loops itself.

In addition, some high-bandwidth but limited-travel actuator systems such as galvanometers

expect an analog position command and close analog loops internally for the fastest possible

response.

Amplifiers for Which Servo Produces Velocity Command

Several types of amplifiers expect a velocity command out of the Power PMAC servo loop. The

main types of amplifiers in this class are:

 Analog-input velocity-mode servo amplifiers

 Pulse-and-direction-input amplifiers

 Hydraulic-valve amplifiers

Power PMAC User’s Manual

Setting Up the Servo Loop 311

If the command value out of the Power PMAC servo loop, regardless of signal type, is a velocity

command, no velocity loop needs to be closed in the Power PMAC. In general, this means that

the velocity feedback (derivative) gain terms Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb

can be set to 0.

Analog-Input Velocity-Mode Amplifiers

Analog-input velocity-mode servo amplifiers close a velocity loop in the amplifier using the

signal from the Power PMAC as the commanded velocity and sensor feedback for the actual

velocity. It is vital that the amplifier’s velocity loop be tuned properly before attempting to tune

the Power PMAC’s position servo loop around it.

Before tuning Power PMAC’s position loop, it is important that the velocity loop of a velocity-

mode amplifier be well tuned with the load that it will drive. Because the velocity-loop tuning is

load dependent, the amplifier manufacturer cannot do the final tuning; the machine builder must

tune the loop. The velocity step response must not have any significant overshoot or ringing; if it

does, it will not be possible to close a good position loop around it with Power PMAC. The

Power PMAC IDE’s tuning section has a function called “Open-Loop Tuning” that can be used to

give velocity command steps to the amplifier and to observe the response plotted on the screen.

This makes it easy to tune the amplifier, or simply to confirm that it has been well tuned.

Pulse-and-Direction-Input Amplifiers

Pulse-and-direction-input amplifiers interpret each pulse as a commanded position increment. To

generate pulse-and-direction commands, the Power PMAC servo loop computes a pulse

frequency value that is sent to “pulse-frequency modulation” circuitry. This frequency value is

effectively a velocity command. The integrated pulse count received by the amplifier is a position

command, but because the numerical command value calculated by the Power PMAC servo loop

is a velocity command, this is considered to be a velocity-mode servo loop.

Amplifiers with this style of interface are of two types. First there is the stepper drive, for which

there is no position feedback to the drive. Usually, there is no encoder at all for these motors, so

the Power PMAC must use the output pulse train as simulated feedback (this does require use of a

separate encoder channel on a PMAC2-style Servo IC Power PMAC, even though no encoder is

physically connected).

If there is an encoder on the stepper motor, it can be used in either of two ways. It can be used as

regular feedback to the Power PMAC, just as on a servo motor. In this method, the key issue is

the resolution and phasing of the encoder edges relative to the steps or microsteps produced by

the drive – some deadband may have to be created in the Power PMAC servo loop to prevent

hunting at rest. Alternately, the encoder can just be used for position confirmation at the end of

moves. However, this technique requires the use of two encoder channels on the Power PMAC if

a PMAC2-style Servo IC is used: one for the simulated feedback of the pulse train, and one for

the confirmation encoder.

Next, there are the “stepper-replacement” servo amplifiers. These take position feedback from the

servo motor and close all the loops inside the drive. While it is possible in this case to use the

encoder signal from the drive for feedback into Power PMAC’s servo loop, this should not be

done, because the position loops in the drive and the controller will end up fighting each other.

With these drives, the commanded pulse train out of the Power PMAC should be used as

simulated feedback.

Power PMAC User’s Manual

Setting Up the Servo Loop 312

When using simulated feedback, it is possible to set up the Power PMAC servo gains solely with

analytic methods. See the section Setting Up Power PMAC for Pulse-and-Direction Control in

the chapter Basic Motor Setup on Power PMAC for details. When using real encoder feedback,

the servo loop should be tuned just as for an analog velocity-mode drive.

Hydraulic-Valve Amplifiers

Hydraulic-valve amplifiers, whether for servo valves or proportional valves, control a fluid-

volume flow proportional to their command input. Since fluid flow into or out of a hydraulic

cylinder is proportional to the velocity of the moving member of the cylinder, the command into

the valve’s amplifier is effectively a velocity command. With the less expensive proportional

valves, there is usually some physical deadband when crossing through zero velocity; the effect

of this can be reduced with the Power PMAC servo loop’s deadband compensation feature.

Amplifiers for Which Servo Produces Torque/Force Command

Several types of amplifiers require the Power PMAC servo loop to close the velocity loop as well,

making the output of this servo loop a torque or force command. If Power PMAC is not

performing the commutation for this motor, the torque/force command is output to the amplifier;

if Power PMAC is performing the commutation, this command is an input to the commutation

algorithm. The main types of amplifiers that require the controller to close the velocity loop are:

 Analog-input “torque-mode” amplifiers

 Sinusoidal-input amplifiers

 Direct-PWM power-block amplifiers

If the command value out of the Power PMAC servo loop, regardless of signal type, is a torque or

force command, the Power PMAC servo must close the velocity loop for the motor. With the

standard servo algorithms, this means that one or both of the velocity feedback (derivative) gain

terms Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb must be set greater than zero. This

derivative action is required to get the damping action needed for stability. Because motors

produce a torque or force proportional to motor current, the torque/force command out of the

servo can also be considered a current command.

Because no velocity-loop closure is done in these types of amplifiers, there is no need to tune

anything in the amplifier with the load attached to the motor. Any tuning that may be required is

dependent only on motor properties, and can potentially even be done by the amplifier

manufacturer.

Analog-Input Torque-Mode Amplifiers

Analog-input “torque-mode” amplifiers accept an analog voltage that represents a torque/force,

and hence current, command. These amplifiers close a current loop inside, and if for brushless

motors, perform the motor phase commutation as well. Another name occasionally used for these

types of amplifiers is the “transconductance” amplifier, signifying that a voltage input results in a

proportional current output.

Sinusoidal-Input Amplifiers

A sinusoidal-input amplifier accepts two phase-current commands that are sinusoidal functions of

time in the steady state. This type of amplifier expects the controller to calculate the

commutation, using the torque/force command out of the position/velocity-loop servo as the

current-magnitude command into the commutation. The amplifier performs the current-loop

closure in this style.

Power PMAC User’s Manual

Setting Up the Servo Loop 313

Direct-PWM Power-Block Amplifiers

A direct-PWM “power-block” amplifier accepts phase voltage commands encoded as the actual

pulse-width-modulated on-off commands for the power transistors. This type of amplifier expects

the controller to calculate the commutation and current loop, using the torque/force command out

of the position/velocity-loop servo as the current-magnitude command into the commutation and

current loop. The amplifier performs no control functions in this style.

Selecting a Servo Algorithm

Power PMAC has multiple built-in servo algorithms, and it is possible for the user to install

custom servo algorithms as well. The choice of servo algorithm to use is done on a motor-by-

motor basis. Saved setup element Motor[x].Ctrl is set to the address in memory of the start of the

desired algorithm. The numerical value of this address does not need to be known (and can

change between firmware versions). Instead, Motor[x].Ctrl is set to the name of one of the

following elements that contain the starting address of the corresponding algorithm:

 Sys.PosCtrl Position-command output (no internal servo loop closed)

 Sys.PidCtrl Basic PID and feedforward servo control

 Sys.ServoCtrl Standard algorithm with non-linearities and polynomials

 Sys.LegacyCtrl Algorithm matching Turbo PMAC structure

 Sys.GantryXCtrl Cross-coupled dual-motor gantry control

 Sys.AdaptiveCtrl Automatic adaptation to system inertia changes

 UserAlgo.ServoCtrlAddr[i] Specified user custom algorithm

Power PMAC User’s Manual

Setting Up the Servo Loop 314

Position Command Output Algorithm

If Motor[x].Ctrl is set to Sys.PosCtrl, Power PMAC outputs the net commanded position for the

motor. No actual servo-loop closure is performed by the Power PMAC for the motor with this

setting; any actual servo control is performed by the device that is receiving the command

position information. This mode is most commonly used to command networked drives that are

operating in “position mode”, closing all loops themselves. It is also used for certain “fast-tool

servos”, such as galvanometers, that close an analog position loop in the amplifier.

Position Output Values

The output value is the sum of the calculated trajectory position and the master position for the

motor. If position compensation is active for the motor, the value of Motor[x].CompPos is

subtracted from this net commanded position before it is output (when Power PMAC is closing

an actual servo loop, this compensation value is added to the actual position instead), and the

value of Motor[x].CompDesPos, as from a cam table, is added to this net commanded position.

The resulting value is written to the register specified by saved setup element Motor[x].pDac as a

signed 32-bit integer, in the motor position units as defined by the user. This value can roll over if

necessary.

It is not necessary for the Power PMAC to receive any actual position feedback data for the

motor, but Power PMAC will still be computing following error as the difference between the

commanded and actual position registers, and disabling the motor if this difference exceeds the

value in saved setup element Motor[x].FatalFeLimit. If Power PMAC is not receiving actual

position feedback data, Motor[x].FatalFeLimit should be set to 0 to disable this error checking.

Using Actual Position

While the action of the Sys.PosCtrl algorithm each servo cycle while enabled is not dependent on

any actual position value read by the Power PMAC, it is usually still important to read an actual

position value, particularly if the motor has substantial travel range.

There are several reasons why reading an actual position value each servo cycle can be important.

 Monitoring of the physical response of the motor: This can be very useful both in

development and the actual application. Reading the measured position and processing it

into motor actual position permits it to be queried and gathered just as for a motor where

Power PMAC is actually closing the servo loop.

 Ability to use Power PMAC’s warning and fatal following error limit parameters: While

digital networked position-mode drives should have this capability internally, many

analog fast-tool amplifiers that accept position command values do not. Even when the

drive has this functionality, PMAC’s limits can be an important backup. Remember that

with networked drives, delay in receiving the actual position from the drives can result in

apparent large following errors at high speeds just due to the time delay between sending

out a cycle’s commanded position and receiving the actual position for that cycle.

 Elimination of a possible position jump on enabling: Whether enabling for the first time

after power-on/reset, or after a fault, avoiding a position jump, particularly a large jump,

can be very important. When the servo loop is disabled, Power PMAC internally sets the

desired position value equal to the actual position value each servo cycle. When the drive

Power PMAC User’s Manual

Setting Up the Servo Loop 315

is (re-) enabled, it will actively command the motor to the position having this numerical

value. If this value corresponds to the actual physical position, there will be not jump on

enabling.

Reading the measured position and processing it for motor actual position is done in exactly the

same way as for a motor where Power PMAC is actually closing the servo loop. An encoder

conversion table (ECT) entry reads the input register and processes it. The motor’s outer-loop

position-feedback pointer Motor[x].pEnc is set to the address of the ECT entry.

Synchronizing Desired and Actual Position Reporting

Given the delays, often of multiple servo cycles, between the output of a desired position for a

given servo cycle to the drive, and the input of the actual position from the drive for that same

servo cycle, there can be some issues in comparing these values in Power PMAC.

If you are using Power PMAC’s fatal following-error safety function, the error limit

(Motor[x].FatalFeLimit) cannot be set as tightly as would be desirable. For example, if there is a

net 3-cycle delay, and the motor is moving at 100 units per servo cycle, there would be a 300-unit

following error from the reporting delay alone.

Also, if you are using the auxiliary outputs for feedforward, it can be difficult to optimize the

tuning of the feedforward terms because of the time offset between desired and actual position

values.

To compensate for the mismatch from this delay in reporting actual position, it is possible to

buffer and delay the reporting of desired position to match the physical network delay. If

Motor[x].Servo.SwPoly7 is set to a value greater than 0, it specifies the artificial delay in

reporting desired position, in units of 1/32 of a servo cycle.

For example, if the delay is 4.25 servo cycles, Motor[x].Servo.SwPoly7 should be set to 4.25 *

32 = 136. Up to 7 cycles of delay can be specified.

Usually, this value is set by jogging the (unloaded) motor with some integral gain active in the

drive so the steady-state error in the drive is zero. Divide by the following error that PMAC

reports due to the delay by the jogging speed to get the time delay. For example, jogging at 20

units per servo cycle and seeing a 75-unit error in PMAC shows a 75 / 20 = 3.75-cycle delay, so

the SwPoly7 term should be set to 3.75 * 32 = 120.

In general, any trajectory filtering algorithms in the drive should be disabled, as they can

introduce very large delays, and with Power PMAC’s own sophisticated trajectory generation,

such filtering is not required.

Note that the delay in reporting desired position does not delay the desired position that is output

to the drive. The purpose of the delay is to permit the user to properly match the desired and

actual position values in time for error calculations and feedforward optimization.

Auxiliary Command Outputs

When using the Sys.PosCtrl servo algorithm, it is also possible to provide one or two auxiliary

feedforward command outputs in addition to the primary commanded position outputs. Some

networked position-mode drives, notably EtherCAT drives in the DS-402 cyclic position mode,

support cyclic “velocity offset” and “torque offset” command values in addition to the primary

cyclic position command.

Power PMAC User’s Manual

Setting Up the Servo Loop 316

The option for auxiliary feedforward command outputs from the Sys.PosCtrl algorithm is new in

V2.0 firmware, released 1st quarter 2015.

These auxiliary command outputs are enabled by setting saved setup elements

Motor[x].Servo.pVelOut and Motor[x].Servo.pAccOut to the addresses of the registers that

will receive these commands. For EtherCAT drives, the setting will usually be of the form

Motor[x].Servo.pVelOut = ECAT[i].IO[j].Data.a

If these variables are set to their default values of 0, there will be no auxiliary command outputs

from the algorithm. However, if they are set to addresses, Power PMAC will compute

feedforward terms the same as in the default Sys.ServoCtrl algorithm, but instead of including

the resulting feedforward values in the single command output, it will write them separately to the

specified address(es).

The following block diagram shows the terms that are used in each output of the Sys.PosCtrl

servo algorithm:

1-z
-1

1

F(z)

Kaff

Kviff

+

+

DesPos

ActPos

DesVel

Kfff

1-z
-1

SwFffInt

Sys.PosCtrl

Servo Algorithm

+

+

->pAccOut

->pVelOut

->pDac

(for reporting)

Kvff

+

+
CompDac

+

-

-

CompPos

PresBlSizez
-SwPoly7/32(for reporting)

z
-SwZvInt/32

z
-SwZvInt/32

0

1

Position Control Servo Algorithm with Auxiliary Outputs

The terms included in the pVelOut command are:

 Desired velocity multiplied by Kviff velocity feedforward gain

 Sign of desired velocity multiplied by Kfff friction feedforward gain (if SwFffInt is set

to 1)

The terms included in the pAccOut command are:

Power PMAC User’s Manual

Setting Up the Servo Loop 317

 Desired velocity multiplied by Kvff velocity feedforward gain

 Desired acceleration multiplied by Kaff acceleration feedforward gain

 Sign of desired velocity multiplied by Kfff friction feedforward gain (if SwFffInt is set

to 0)

 The value in the Motor[x].CompDac register, usually from a torque compensation table

(new in V2.1 firmware, released 1st quarter 2016).

The desired velocity value can be filtered through the F(z) polynomial filter, which is useful as a

low-pass filter when there is high-frequency noise in the desired trajectory, as when it is tracking

a physical encoder signal (position following or external time base). This filtering smooths the

desired acceleration value as well. (This capability is new in V2.1 firmware, released 1st quarter

2016.)

Delaying the Auxiliary Outputs

Many position-mode network drives buffer one or more cyclic position commands from the

controller in order to perform tasks such as sub-cycle interpolation or model-based anti-resonance

control. These drives typically do not also delay the velocity and torque offset values, so when

these registers are commanded every servo cycle from the feedforward auxiliary outputs from

Power PMAC’s position-command algorithm, these command values will not be properly

synchronized with the position commands.

It is possible to delay in time the output of these command values from the Power PMAC to

compensate for the drive’s delay in using the Power PMAC’s position command output so that

the resulting action in the drive is re-synchronized.

In the position-command output algorithm (Sys.PosCtrl), if the term Motor[x].Servo.SwZvInt is

set to a value greater than zero, the transmitted values of the auxiliary velocity and acceleration

outputs to the drive are delayed from the cycle in which they are calculated. The delay can be up

to 7 servo cycles in time, and is specified in units of 1/32 of a servo cycle.

If the specified delay time includes a fractional component in the number of servo cycles, the

value output in a cycle is computed is a weighted average of the values computed in the whole

cycles on each side of this delay. For example, if SwZvInt is set to 88 to specify a 2.75-cycle

delay, the output in a given cycle is 0.75 times the value calculated 3 cycles ago plus 0.25 times

the value calculated 2 cycles ago.

This capability to use Motor[x].Servo.SwZvInt to delay the auxiliary outputs in the Sys.PosCtrl

algorithm is new in V2.6.1 firmware, released 2nd quarter 2021. At the default value of 0,

operation is compatible with older firmware versions. Its use in other servo algorithms is

unaffected.

Power PMAC User’s Manual

Setting Up the Servo Loop 318

Basic PID Algorithm

If Motor[x].Ctrl is set to Sys.PidCtrl, Power PMAC computes a very basic proportional +

integral + derivative feedback algorithm with two feedforward terms. It does not include the

polynomial filters and non-linearities of the standard servo algorithm. It executes significantly

faster than the standard servo algorithm, so is typically selected when high update rates are

required, but the plant dynamics are relatively simple.

Kp

Ki

1-z
-1

Kviff

1-z
-1

1-z
-1

Kaff

Kvff

Kvifb Kvfb

1-z
-1

MaxPosErr

MaxInt

MaxDac

++
+

+ -

+
+

-

+

-

DesPos IqCmd

ActPos

ActPos2ActVel

DesVel

Sys.PidCtrl

Servo Algorithm

Servo

Out

Power PMAC Basic PID Servo Algorithm

The basic PID algorithm uses the following gain terms, all saved setup elements:

 Motor[x].Servo.Kp Proportional gain

 Motor[x].Servo.Ki Integral gain

 Motor[x].Servo.Kvfb Velocity feedback (derivative) gain

 Motor[x].Servo.Kvifb Velocity feedback gain (before integrator)

 Motor[x].Servo.Kvff Velocity feedforward gain

 Motor[x].Servo.Kviff Velocity feedforward gain (before integrator)

 Motor[x].Servo.Kaff Acceleration feedforward gain

It uses the following limiting terms, all saved setup elements:

 Motor[x].Servo.MaxPosErr Maximum following error magnitude

 Motor[x].Servo.MaxInt Maximum position-error integrator magnitude

 Motor[x].MaxDac Maximum command output magnitude

Feedback Terms

The PID feedback filter consists of proportional (“P”), integral (“I”), and derivative (“D”) terms,

each with its own contribution to the control effort. They operate on position (following) error

Power PMAC User’s Manual

Setting Up the Servo Loop 319

and actual velocity values. The magnitude of the position error, computed as the difference

between the net desired position and net actual position values, is limited to the value of

Motor[x].Servo.MaxPosErr.

Proportional Gain Term

The proportional gain term Motor[x].Servo.Kp provides the basic corrective action for position

errors, providing a control effort proportional to the size of the position (following) error to try to

reduce the error. Proportional gain alone acts like a spring, and the magnitude of the proportional

gain term is the “spring constant”; the higher this gain term, the stiffer the spring action. Note that

without another term to provide a damping effect, either one of the velocity-feedback gains

discussed below, or feedback terms within a velocity-mode drive, proportional gain alone cannot

provide the required stability.

Velocity Feedback (Derivative) Gain Terms

The velocity feedback (derivative) gain terms Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb

yield a “damping” effect by providing a contribution to the control effort proportional to the

actual velocity acting against that velocity. In this respect they act much like a “dashpot” or the

shock absorber of a vehicle’s suspension (and the proportional gain term acts as the suspension’s

spring). The higher the derivative gain, the heavier the damping action.

Some form of derivative action – effectively a velocity loop – is required for a stable position

loop. If a velocity loop is closed in the amplifier, and tuned well, the derivative gain terms in

Power PMAC can be set to 0. However, if there is no velocity loop closed externally, a positive

value of one of these gain terms will be required for stable operation.

Note that in the Power PMAC, this gain acts on the derivative of the actual position, not on the

derivative of the position error, as in some other controllers. This permits the simple use of dual

motor-and-load feedback with a separate sensor on the motor for derivative action (specified by

Motor[x].pEnc2) from the sensor on the load for proportional and integral action (specified by

Motor[x].pEnc).

The difference between the Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb terms is in where

their outputs go in the feedback loop. The result of the Motor[x].Servo.Kvfb term is subtracted

from the result of the other feedback and feedforward terms at the output of the error integrator.

This means that the integrator is acting only on the position error. The result of the

Motor[x].Servo.Kvifb term is subtracted from the other terms at the input to the error integrator.

This means that the integrator is acting on the velocity error.

In most cases, only one of these gain terms will be set to a non-zero value. Which is to be chosen?

Using Motor[x].Servo.Kvfb, which puts the integrator in the position loop, is generally better for

tracking commanded trajectories with minimum following error. Using Motor[x].Servo.Kvifb,

which puts the integrator inside the velocity loop, is generally better for good disturbance

rejection. It is possible to use both of these terms.

Integral Gain Term

The integral gain term Motor[x].Servo.Ki provides for correction against steady-state errors

caused by such effects as friction, gravitational loads, cutting loads, and analog offsets. The

integral gain term controls how fast the position error integrator term “charges up” and

“discharges”; the higher the gain, the faster it acts.

Power PMAC User’s Manual

Setting Up the Servo Loop 320

If the velocity feedback term Motor[x].Servo.Kvifb and the velocity feedforward term

Motor[x].Servo.Kviff are both zero, the integrator acts purely on the position (following) error

value. If either or both of these terms are non-zero, their results are added to the position error

term at the input to the integrator.

Each servo cycle, the input to the integrator is multiplied by Motor[x].Servo.Ki and the product

is added into Motor[x].Servo.Integrator (unless the output has saturated at the

Motor[x].Servo.MaxDac limit). If the magnitude of the value in the Integrator element exceeds

that of Motor[x].Servo.MaxInt, it will be clamped at that limit.

Note that in the basic filter of the PidCtrl algorithm, it is not possible to automatically turn off

the error input to the integrator during commanded motion and just have it on during while

stopped. This feature is implemented in the more extended filter of the ServoCtrl algorithm

explained in the next section, by setting Motor[x].Servo.SwZvInt to 1.

Feedforward Filter

Because a feedback filter is error driven, it is necessary that there be an error between the

commanded and actual positions before it takes any action. The actions of feedforward, on the

other hand, are dependent only on the commanded trajectory, and therefore do not require errors

to cause action. The basic idea of feedforward is to directly apply your best estimate of the

control effort needed to execute the commanded trajectory, without waiting for position errors to

build up. The feedback terms then only need to respond to the errors in this estimate, which are

typically quite small.

In a well-tuned system with low external loads, over 95% of the control effort can come from the

feedforward terms, with the feedback terms just providing small corrections for disturbances and

imperfections in the estimate. Power PMAC’s basic PID algorithm has velocity and acceleration

feedforward terms.

Velocity Feedforward Gain Terms

The velocity feedforward gain terms Motor[x].Servo.Kvff and Motor[x].Servo.Kviff add an

amount to the control effort that is directly proportional to the commanded velocity, to overcome

potential position errors that would be proportional to velocity. These errors can come from

several sources. The first source, and the dominant one, is from the velocity feedback term that

provides the required damping for stability, whether done in the Power PMAC (the

Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb terms) or externally. Other minor sources of

velocity related errors include magnetic losses in the motor and actual viscous damping losses.

Properly set velocity feedforward will essentially eliminate following error components that are

proportional to velocity. If the Power PMAC is closing the velocity loop for the motor, the

optimal Motor[x].Servo.Kvff and Motor[x].Servo.Kviff will typically be equal to, or slightly

greater than the corresponding Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb.

The difference between the Motor[x].Servo.Kvff and Motor[x].Servo.Kviff terms is in where

their outputs go in the servo algorithm. The result of the Motor[x].Servo.Kvff term is added to

the result of the other feedback and feedforward terms at the output of the error integrator. This

means that the integrator is acting only on the position error. The result of the

Motor[x].Servo.Kviff term is added to the other terms at the input to the error integrator. This

means that the integrator is acting on the velocity error.

Power PMAC User’s Manual

Setting Up the Servo Loop 321

In most cases, only one of these gain terms will be set to a non-zero value. Which is to be chosen?

Using Motor[x].Servo.Kvff, which puts the integrator in the position loop, is generally better for

tracking commanded trajectories with minimum following error. Using Motor[x].Servo.Kviff,

which puts the integrator inside the velocity loop, is generally better for good disturbance

rejection. It is possible to use both of these terms.

Acceleration Feedforward Gain Term

The acceleration feedforward term Motor[x].Servo.Kaff adds an amount to the control effort that

is directly proportional to the commanded acceleration, to overcome potential position errors that

would be proportional to acceleration. These errors come from the fundamental tendency of

inertia to resist acceleration. Without acceleration feedforward, there would be a component of

the following error proportional to acceleration.

Properly set acceleration feedforward will essentially eliminate following error components that

are proportional to acceleration. The Motor[x].Servo.Kaff acceleration feedforward term is

essentially an estimate of the inertia of the system, directly providing a force or torque

proportional to it and the commanded acceleration.

Auxiliary Command Output

It is possible to have the feedforward components from the Kvff and Kaff gains output to a

separate register instead of being added into the main servo output value. This is particularly

useful when closing a servo loop over a network such as MACRO or EtherCAT, usually when the

main servo command is a velocity value.

If Motor[x].Servo.pAccOut is set to the address of a valid register (and not to 0), these

feedforward components will be written to that register. Otherwise, these components will be

added into the main servo command value, as shown in the diagram below.

Kp

Ki

1-z
-1

Kviff

1-z
-1

1-z
-1

Kaff

Kvff

Kvifb Kvfb

1-z
-1

MaxPosErr

MaxInt

MaxDac

+
+

+

+ -

+
+

-

+

-

DesPos IqCmd

ActPos

ActPos2ActVel

DesVel

Sys.PidCtrl

Servo Algorithm

->pAccOut

+

Servo

Out

Power PMAC Basic PID Servo Algorithm with Auxiliary Output

Power PMAC User’s Manual

Setting Up the Servo Loop 322

Standard Servo Algorithm

If Motor[x].Ctrl is set to the default value of Sys.ServoCtrl, Power PMAC computes its

“standard” servo algorithm, which includes all of the terms in the basic PID algorithm explained

in the previous section, and adds many other useful terms. It adds six separate polynomial filters

at various places in the algorithms, input and output deadband filters, and a “friction feedforward”

term.

Kp

Ki

1-z
-1

Kviff1-z
-1

1

F(z)

Kaff

Kvff

Kvifb

Kvfb

1

E(z)

MaxPos

Err

MaxInt

MaxDac

++

+

+
-

+

+
-

+

-
DesPos Servo

Out

ActPos

ActPos2

DesVel

ActVel

Kbreak

A(z)

+

Kfff

+

1-z
-1

Kafb

-

1-z
-1

C(z)

D(z)

OutDb

1-z
-1

SwFffInt

B(z)

Sys.ServoCtrl

Servo Algorithm

Iq

Cmd

Power PMAC Standard Servo Algorithm

Polynomial Filters

The standard servo algorithm has six “polynomial filters” that can operate on values at various

points in the servo algorithm. These filters are:

 A: Net desired position, numerator

 B: Outer loop actual position, numerator

 C: Position error, numerator

 D: Position error, denominator

 E: Inner loop actual position, denominator

 F: Net desired velocity, denominator

With the factory default settings for the terms in these filters, they act as “pass-throughs”, where

the output of the filter is always equivalent to the input.

These filters can be used to implement functionality such as notch (band-reject) and low-pass

filters. Setting up these filters manually requires some reasonable knowledge of digital filter and

control theory. The auto-tuning functionality of the Integrated Development Environment (IDE)

software can provide good settings for these filters without the need for such knowledge by the

user.

Power PMAC User’s Manual

Setting Up the Servo Loop 323

Note

The location of the C and D polynomial filters in

Sys.ServoCtrl is better for notch filters compensating for

system resonances. The location of the C and D filters in the

very similar Sys.LegacyCtrl algorithm is better for low-pass

filters compensating for feedback measurement and

quantization noise.

Polynomial Order Control

Filters A, B, C, and D are 7th-order polynomials. Few applications require filters greater than 2nd-

order, so if saved setup element Motor[x].Servo.SwPoly7 is set to its default value of 0, these

only execute as 2nd-order polynomials, saving computation time. If this element is set to 1, these

execute as full 7th-order polynomials. Filters E and F are always 2nd-order polynomials.

How Polynomial Filters Work

Digital polynomial filters operate on a series of samples of the quantity in question. They

multiply the input and/or output values from present (input only) and past sample cycles to

compute the present sample cycle’s output value.

A digital polynomial filter is implemented by the execution of a “difference equation” (the

discrete equivalent of a differential equation), but it is usually presented by the “transfer function”

of the difference equation. In the transfer function, the z-k operator represents a value from k

sample cycles previously.

“Numerator” polynomial filters are so-called because their transfer functions have terms in the

numerator, not the denominator. These polynomials act on the present and past inputs to the filter.

These filters have the general transfer function:

 n

nn zKzKzKKzT ...2

2

1

10

This transfer function represents the difference equation:

nknkkkk InKInKInKInKOut ...22110

That is, the filter output for sample cycle “k” is the sum of products of gain terms Ki and

corresponding input values from sample cycles “k-i”, where i ranges from 0 to n for an nth-order

polynomial.

“Denominator” polynomial filters are so-called because their transfer functions have terms in the

denominator, not the numerator. These polynomials act on past outputs from the filter. These

filters have the general transfer function:

n

n

d
zKzKzK

zT

...1

1
2

2

1

1

This transfer function represents the difference equation:

 1 1 2 2 ...k k k k n k nOut In K Out K Out K Out

Power PMAC User’s Manual

Setting Up the Servo Loop 324

That is, the filter output for sample cycle “k” is the sum of products of gain terms Ki and

corresponding output values from sample cycles “k-i”, where i ranges from 0 to n for an nth-order

polynomial.

The “A” Polynomial Filter

The “A” polynomial filter acts on the net desired position into the servo algorithm. The transfer

function of this polynomial is:

 7

7

6

6

5

5

4

4

3

3

2

2

1

10

 zKazKazKazKazKazKazKaKazA

Each Kai term in this transfer function corresponds to saved setup element Motor[x].Servo.Kai.

The “B” Polynomial Filter

The “B” polynomial term acts on the net actual outer-loop position into the servo algorithm. The

transfer function of this polynomial is:

 7

7

6

6

5

5

4

4

3

3

2

2

1

10

 zKbzKbzKbzKbzKbzKbzKbKbzB

Each Kbi term in this transfer function corresponds to saved setup element Motor[x].Servo.Kbi.

The “C” Polynomial Filter

The “C” polynomial term acts on the error in the outer (position) loop of the servo algorithm. The

transfer function of this polynomial is:

 7

7

6

6

5

5

4

4

3

3

2

2

1

11 zKczKczKczKczKczKczKczC

Each Kci term in this transfer function corresponds to saved setup element Motor[x].Servo.Kci.

The “D” Polynomial Filter

The “D” polynomial term acts on the error in the outer (position) loop of the servo algorithm. The

transfer function of this polynomial is:

 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1

1D z Kd z Kd z Kd z Kd z Kd z Kd z Kd z

Each Kdi term in this transfer function corresponds to saved setup element Motor[x].Servo.Kdi.

The “E” Polynomial Filter

The“E” polynomial term acts on the actual position in the inner (velocity) loop of the servo

algorithm. The transfer function of this polynomial is:

 1 2

1 2

1 1

1E z Ke z Ke z

Each Kei term in this transfer function corresponds to saved setup element Motor[x].Servo.Kei.

Power PMAC User’s Manual

Setting Up the Servo Loop 325

The “F” Polynomial Filter

The “F” polynomial term acts on the net-desired velocity in the feedforward path of the servo

algorithm. The transfer function of this polynomial is:

 1 2

1 2

1 1

1F z Kf z Kf z

Each Kfi term in this transfer function corresponds to saved setup element Motor[x].Servo.Kfi.

Calculating Filter Coefficients Manually

It is most common to specify the characteristics of a continuous-time (“analog”) filter, then

convert this to a sampled, or discrete-time (“digital”) filter. This is the design approach used here.

To perform this conversion, we convert the continuous differential operator “s” to its discrete-

time equivalent. Here we use the simple backward-difference conversion:

11

s

z
s

T

where z is the digital delay operator, and Ts is the sample period in seconds. Other conversions,

such as the more complex “bi-linear” transformation, are possible, but seldom needed in these

applications.

Calculating Notch Filter Coefficients

In feedback controls, a notch filter is an anti-resonance filter used to counteract a physical

resonance. While there are many different philosophies as to how to set up a notch filter, a

common strategy is to use a lightly damped band-reject filter at about 90% of the resonant

frequency, and a heavily damped band-pass filter at a frequency somewhat greater than the

resonant frequency (to reduce the high-frequency gain of the filter itself). Often this is around

150% of the resonant frequency.

The band-reject filter is implemented in the numerator of the filter (N(s) or N(z) generically, C(z)

in the Power PMAC), creating “zeros” in control terms; the band-pass filter is implemented in the

denominator of the filter (P(s) or P(z) generically, D(z) in the Power PMAC), creating “poles” in

control terms.

Consider the continuous-time transfer function for a notch filter:

2 2

2 2

2

2

z nz nz

p np np

N s s s
R s

P s s s

where:

 nz is the natural frequency of the zeros in radians/second (not in Hertz)

 z is the damping ratio of the zeros (unitless)

Power PMAC User’s Manual

Setting Up the Servo Loop 326

 np is the natural frequency of the poles zeros in radians/second (not in Hertz)

 p is the damping ratio of the poles (unitless)

Converting to digital form:

2
1 1

2
1 2 1 2 2

2 1 2 1 2 21 1
2

1 1
2

1 2 2 1

1 2 2 11 1
2

z nz nz
z nz s nz ss s

p np s np s

p np np

s s

z z

z z T z TT T
R z

z z T z Tz z

T T

where Ts is the sample (servo) time in seconds (not msec or µsec).

Rearranging to group by z terms:

2 2 1 2

2 2 1 2

2 1 2 2

2 1 2 2

nz s z nz s z nz s

np s p np s p np s

T T T z z
R z

T T T z z

Then rescaling so the “z0” term is equal to 1 so it can be used in Power PMAC’s C(z) and D(z)

polynomials:

2 2 1 2

2 2 2 2

2 2 1 2

2 2 2 2

2 2 1
2 1 1

2 1 2 1

2 2 1
2 1 1

2 1 2 1

z nz s

nz s z nz s

nz s z nz s nz s z nz s

p np s

np s p np s

np s p np s np s p np s

T
T T z z

T T T TC z
R z K

D z T
T T z z

T T T T

where (defining intermediate variables):

2 2

2 2

2 1

2 1

nz s z nz s
z

pnp s p np s

T T
K

T T

This K value cannot be part of the C(z)/D(z) filter itself, so must be included in the in-line

Motor[x].Servo.Kp proportional gain term.

These equations can be used to set the coefficients for the C(z) and D(z) polynomials:

2 2

2 2 2 2
[]. . 1

2 1

z nz s z nz s

znz s z nz s

T T
Motor x Servo Kc

T T

 2 2

1 1
[]. . 2

2 1 znz s z nz s

Motor x Servo Kc
T T

Power PMAC User’s Manual

Setting Up the Servo Loop 327

2 2

2 2 2 2
[]. . 1

2 1

p np s p np s

pnp s p np s

T T
Motor x Servo Kd

T T

 2 2

1 1
[]. . 2

2 1 pnp s p np s

Motor x Servo Kd
T T

Higher-order terms Motor[x].Servo.Kci and Kdi should be set to zero if this filter is not

performing any other function as well.

The DC gain of the C(z)/D(z) filter itself can be calculated by setting z to 1.

2 2 2

22 2

2 1 2 2 11

1 2 1 2 2 1

nz s z nz s z nz s nz

npnp s p np s p np s

T T TC
DCgain

D T T T

For a notch filter of this type, this gain will be significantly less than 1.0. If you want the overall

servo loop gain to be unchanged when you add this filter, you must change Motor[x].Servo.Kp

by the inverse factor to compensate.

So there are two reasons to change the value of the Kp proportional gain term when the notch

filter is added. The first is to include the K value that could not be included in the C(z)/D(z) filter

itself. The second is to compensate for the non-unity DC gain of the C(z)/D(z) filter. So we have:

2

2
[]. . []. .

np z
new old

nz p

Motor x Servo Kp Motor x Servo Kp

Example: Suppose we have identified a 55 Hz resonance in our mechanical coupling. To

compensate for this, we decide to put a lightly damped band-reject filter (damping ratio 0.2) at 50

Hz natural frequency, and a heavily damped band-pass filter (damping ratio 0.8) at 80 Hz natural

frequency to limit the high-frequency gain of the filter. The servo update time is the default of

0.442 milliseconds.

sec000442.0
sec

sec
10sec*442 6

sT

sec2.31450*2 radHznz

sec7.50280*2 radHznp

2221 snzsnzzz TT

22 000442.0*2.314000442.0*2.314*2.0*21

0748.1

Power PMAC User’s Manual

Setting Up the Servo Loop 328

2221 snpsnppp TT

22 000442.0*7.502000442.0*7.502*8.0*21

4049.1

Next, we compute the filter coefficients:

 2 2 2*0.2*314.2*0.000442 2
[]. . 1 1.912

1.0748

z nz s

z

T
Motor x Servo Kc

1 1
[]. . 2 0.930

1.0748z

Motor x Servo Kc

 2 2 2*0.8*502.7*0.000442 2
[]. . 1 1.677

1.4049

p np s

p

T
Motor x Servo Kd

1 1
[]. . 2 0.712

1.4049p

Motor x Servo Kd

Finally, we compute the DC gain adjustment, assuming for the example that our existing

proportional gain term Motor[x].Servo.Kp had been 500:

2 2

2 2

502.7 1.0748
[]. . []. . 500 979.2

314.2 1.4049

np z
new old

nz p

Motor x Servo Kp Motor x Servo Kp

Calculating First-Order Low-Pass Filter Coefficients

It is common to want to implement a simple low-pass filter to smooth noisy data, such as

quantization noise in the velocity feedback path.

To calculate a first-order low-pass filter, consider the continuous transfer function for the filter:

1

/ 1
R s

s s

where is the cutoff frequency in radians per second (equal to 2f, where f is the cutoff

frequency in Hertz). This value is equal to 1/, where is the time constant of the filter. Note

that the DC gain of this filter (value with s = 0) is 1.0.

Next, convert this to a discrete-time transfer function using the approximation s = (1-z-1)/Ts,

where Ts is the servo update time in seconds.

Power PMAC User’s Manual

Setting Up the Servo Loop 329

 1 11 1

s

s

s

T
R z

z z T

T

Note that the DC gain of this digital implementation of the overall filter (value with z = 1) is 1.0.

Rearranging to group by z terms so it can be used in a generic 1/P(z) denominator polynomial

with the first term equal to 1.0:

 1

1

1 1
*

11 1
1

1

s s

s s

s

T T
R z K

P z T z T
z

T

where:

1
s

s

T
K

T

This K value cannot be part of the polynomial filter itself, so must be included in an in-line gain

term.

This filter can be implemented in any of Power PMAC’s “denominator” polynomial filters: D(z)

acting on the position error, E(z) acting on the actual velocity, or F(z) acting on the desired

velocity. We will show examples using the E(z) filter because that path is most likely to have

high-frequency noise that should be filtered.

The pole term uses the first-order denominator filter parameter such as Motor[x].Servo.Ke1 in

the 1/E(z) filter in the velocity feedback path. The other filter parameters are set to zero if the

filter is used only for this low-pass filter.

1
[]. . 1

1 s

Motor x Servo Ke
T

The DC gain of the 1/P(z) denominator filter itself can be calculated by setting z to 1.

1 11 1

11 1 1
1

1

s s

s s

s

T T
DCgain

P T T

T

This gain value is offset by the K value we pulled out of the equation, which is the reciprocal of

this value. If you want the overall servo loop gain to be unchanged when you add this filter, you

must change the in-line gain term, such as Motor[x].Servo.Kvfb, by the inverse factor to

compensate.

[]. . []. . *
1

s
new old

s

T
Motor x Servo Kvfb Motor x Servo Kvfb

T

Power PMAC User’s Manual

Setting Up the Servo Loop 330

Example: To implement a first-order low-pass filter in the velocity feedback path with a cutoff

frequency of 50 Hz on a Power PMAC with a servo update time of 442 μsec, we compute:

139.0000442.0*50**2 sT

1 1
[]. . 1 0.877

1 1 0.139s

Motor x Servo Ke
T

[]. 2 0Motor x Ke

Finally, we compute the DC gain adjustment, assuming for the example that our existing velocity

feedback gain term Motor[x].Servo.Kvfb had been 500:

0.139
[]. . []. . 500 61.02

1 1.139

s
new old

s

T
Motor x Servo Kvfb Motor x Servo Kvfb

T

Calculating Second-Order Low-Pass Filter Coefficients

To calculate a second-order low-pass filter, we consider the continuous transfer function for a

generalized second-order filter:

2

2 22

n

n n

R s
s s

where ωn is the cutoff frequency of the filter in radians per second, and ς is the damping ratio – a

value of 0.707 produces a “Butterworth” filter here. Note that the DC gain of this filter (value

with s = 0) is 1.0.

Converting to digital form:

2 2 2

2 1 2 1 2 21 1
2

1 2 2 11 1
2

n n s

n s n s

n n

s s

T
R z

z z T z Tz z

T T

where Ts is the sample (servo) time in seconds (not msec or µsec).

Rearranging to group by z terms:

2 2

2 2 1 22 1 2 2

n s

n s n s n s

T
R z

T T T z z

Then rescaling so the “z0” terms are equal to 1 so they can be used in a 1/P(z) Power PMAC

denominator polynomial filter such as the 1/E(z) velocity feedback path filter:

Power PMAC User’s Manual

Setting Up the Servo Loop 331

2 2

2 2
1 2

2 2 2 2

1 1

2 2 12 1
1

2 1 2 1

n s

n sn s n s

n s n s n s n s

T
R z K

TP z T T
z z

T T T T

where:

2 2

2 2 2 1

n s

n s n s

T
K

T T

Note that the DC gain of this digital implementation of the overall filter (value with z = 1) is 1.0.

First, compute the following intermediate value:

2 2 2 1n s n sT T

Then compute coefficient values:

 2 2
[]. . 1

n sT
Motor x Servo Ke

1
[]. . 2Motor x Servo Ke

The DC gain of the 1/P(z) denominator filter itself can be calculated by setting z to 1.

2 2 2 2

2 2

2 2 2 2 2 2

2 2

2 2

1 1

2 21 1
1

2 1 2 1

1

2 1 2 2 1

2 1 2 1 2 1

2 1

n s

n s n s n s n s

n s n s n s

n s n s n s n s n s n s

n s n s

n s

DCgain
TP

T T T T

T T T

T T T T T T

T T

T

This gain value is offset by the K value we pulled out of the equation, which is the reciprocal of

this value. If you want the overall servo loop gain to be unchanged when you add this filter, you

must change the in-line gain term, such as Motor[x].Servo.Kvfb, by the inverse factor to

compensate.

2 2

2 2
[]. . []. . *

2 1

n s
new old

n s n s

T
Motor x Servo Kvfb Motor x Servo Kvfb

T T

Power PMAC User’s Manual

Setting Up the Servo Loop 332

Example: To implement a second-order low-pass filter in the velocity feedback path with a cutoff

frequency of 60 Hz and a damping ratio of 0.707 on a Power PMAC with a servo update time of

250 μsec and a velocity feedback gain Kvfb of 400, we compute the following:

0942.0000250.0*60**2 snT

146.10942.00942.0*707.0*21 2

 2*0.707 *0.0942 2
[]. . 1 1.861

1.146
Motor x Servo Ke

1
[]. . 2 0.873

1.146
Motor x Servo Ke

20.0942
[]. . []. . 400*0.00774 3.096

1.146
new oldMotor x Servo Kvfb Motor x Servo Kvfb

Integration Modes

The standard servo algorithm has two control bits that affect how the integral gain term

Motor[x].Servo.Ki operates. These permit the user to optimize performance for the particular

application.

When Integration Active

If bit 0 (value 1) of Motor[x].Servo.SwZvInt (SwitchZeroVelocityIntegrator) is set to its default

value of 0, the integrator is active both when motor desired velocity is zero and when it is not

(that is, at all times except when the servo output is saturated). If this bit of

Motor[x].Servo.SwZvInt is set to 1, the integrator is active only when motor desired velocity is

zero (status bit Motor[x].DesVelZero is 1). When desired velocity is not zero, the input to the

integrator is turned off, so the output value of the integrator that is added to the servo command

value is constant.

Having the integrator active only when the desired velocity is zero is the traditional choice, made

because of concern that the integrator would “charge up” during the move as actual position fell

behind command position, and then need to “discharge” at the end, causing overshoot at the

destination of the move. However, if feedforward terms are used well to minimize tracking errors

during moves, this effect is minimal, and it can be beneficial to have the integrator active during

moves.

Note that it is desirable to have the integrator off during moves when tuning the feedforward

gains, so that the effect of the feedforward gains during commanded moves can be seen clearly.

Even if it is then desired to have the integrator active at all times, bit 0 of

Motor[x].Servo.SwZvInt should be set to 1 when doing the feedforward tuning.

Endpoint Clearing of Integrator

In many move-and-settle applications, a non-zero value in the integrator at the end of the

commanded move, while initially helpful in moving the actual position toward the commanded

position, will often cause significant overshoot because it still is commanding the motor further in

the direction of the move even when the command position has been reached.

Power PMAC User’s Manual

Setting Up the Servo Loop 333

In the default integration mode, overshoot is necessary to “discharge” the integrator with the

instantaneous following error having the opposite sign from the integrated error causing the

integrator value to reduce in magnitude.

However, if bit 1 (value 2) of Motor[x].Servo.SwZvInt is set to 1, then at the end of a

commanded move (Motor[x].DesVelZero = 1) if the actual position passes the commanded

position so that the sign of the following error is opposite that of the servo-loop integrator, the

value in the integrator will immediately be cleared. This action minimizes the overshoot, as the

integral action is no longer trying to drive the motor in the same direction.

This clearing mode can be useful in move-and-settle applications that do not have significant net

biases such as gravity loads or analog offsets. If the application does have large biases, this mode

may not be appropriate, as a significant non-zero integrator value may be required to minimize

error at the endpoint.

Friction Feedforward

Motor[x].Servo.Kfff is a non-linear “friction feedforward” gain term. It is multiplied by the sign

(-1, 0, or 1) of the net desired velocity. If control bit Motor[x].Servo.SwFffInt is set to its default

value of 0, the resulting product is added directly to the servo command output. If

Motor[x].Servo.SwFffInt is set to 1, the resulting product is added to the input of the position-

error integrator instead.

This term is meant to compensate for the effects of dry (Coulomb) friction, which creates a force

opposing the direction of motion, but whose magnitude is independent of the magnitude of the

velocity.

Kfff

Ksff

-Kfff

-Ksff

Dry friction
force

Velocity

Dry Friction Feedforward Terms

Power PMAC User’s Manual

Setting Up the Servo Loop 334

Static Friction Feedforward

In addition to running dry (Coulomb) friction, most mechanical systems exhibit a higher static

dry friction (stiction). Motor[x].Servo.Ksff is a feedforward term intended to compensate for this

static friction component.

For the first several servo cycles in which the net desired velocity for the motor has a new non-

zero sign – positive or negative – the value of Motor[x].Servo.Ksff is added to the value of the

(running) friction feedforward term Motor[x].Servo.Kfff. The sum is included in the feedforward

component, added to the command output if Motor[x].Servo.SwFffInt is set to the default of 0

or to the input of the integrator if SwFffInt is set to 1.

The number of servo cycles this added component from Ksff is used is determined by the

magnitude of Motor[x].Servo.SffCycles. The cycle count starts when the sign of the net desired

velocity changes from zero to either non-zero value, or when it changes directly from one non-

zero value to the opposite.

If SffCycles is a positive value, this component is always added for the specified number of servo

cycles. If SffCycles is a negative value, it specifies the maximum number of servo cycles this

component will be added, but if the sign of the actual velocity becomes the same as the sign of

desired velocity before this, this component will no longer be added.

Acceleration Feedback

Motor[x].Servo.Kafb is an acceleration feedback term that subtracts an amount from the servo

effort proportional to the actual acceleration detected. This can provide an “electronic flywheel”

effect. However, because the derivation of acceleration values from position feedback can be

noisy, it is strongly recommended to use the “E” polynomial that acts on the inner-loop feedback

as a low-pass filter to reduce this noise if you want to use acceleration feedback.

Input Deadband Compensation

The input deadband compensation filter acts on the outer-loop position-error term (“following

error”). It can be used to create a control deadband or to compensate for a physical deadband

effect. It does this by proportionally modifying the following error value inside a zone of

following error centered around zero, and therefore effectively modifying the servo gain in and

around that zone.

Power PMAC User’s Manual

Setting Up the Servo Loop 335

BreakPosErr

Kbreak

=2

=1

=0

FEout

FEin

Kbreak

=2

=1

=0 FEin

Gain

Kp

Input Deadband Compensation Functionality

This filter has two terms represented by saved setup elements. Motor[x].Servo.BreakPosErr

specifies the size of the zone (“one-sided”), in motor units, of the proportionally modified

following error. A setting of 0.0 disables this feature. Motor[x].Servo.Kbreak specifies the

proportional modification factor inside this zone. It can be thought of as a relative gain

(referenced to the Motor[x].Servo.Kp proportional gain term). Inside this zone, the net gain is

the product of the Kp and Kbreak terms. Outside this zone, the net gain asymptotically

approaches the value of Kp.

If Motor[x].Servo.Kbreak is set to 0.0, a full control deadband is created within the defined

zone, with no dynamic servo effort created from the Kp or Ki terms based on the position error.

Such a deadband can be desirable if the user wants to be still with a small error rather than “hunt”

trying to eliminate the error. Many users will want to create ½ or 1 “count” of control deadband if

it is possible that the desired end position of a move can have a fractional count component. Note

that this input deadband has no effect on the operation of the inner velocity loop, so there can still

be servo output as a result of non-zero actual velocity within the deadband.

Values of Motor[x].Servo.Kbreak between 0.0 and 1.0 provide a lower (but non-zero) control

gain within the defined zone. Settings in this range are not commonly used. A value of 1.0

provides a gain inside the zone equal to that outside of it, effectively disabling the feature.

Values of Motor[x].Servo.Kbreak greater than 1.0 provide a higher control gain within the

defined zone. This is commonly used if the physical system has a deadband or reduced gain near

zero command values. For example, proportional hydraulic valves have a low gain near their zero

Power PMAC User’s Manual

Setting Up the Servo Loop 336

crossing, so increased gain from the controller can compensate for this. Other users prefer a

higher gain in a small zone for high stiffness – but keeping the high gain outside the small zone

would result in instability. Very high gains in a very small (<< 1 feedback count) error band can

provide very tight control in the presence of friction.

Output Hysteretic Deadband

The output deadband can create zero servo output when the following error is smaller than a

defined limit, no matter what the other servo gain terms command in either the outer or inner

loops. It is only active when the desired velocity for the motor is exactly zero

(Motor[x].DesVelZero status bit = 1).

OutDbOff

OutDbOn

FE

Servo

Out

OutDbSeed

Kp

Output Hysteretic Deadband Functionality

When the desired velocity is zero and the magnitude of the following error is less than

Motor[x].OutDbOn, the servo command output value is forced to zero. In this state, status bit

Motor[x].Servo.Status is set to 1. The servo output will stay at zero as long as the following

error is less than Motor[x].Servo.OutDbOff, which should be greater than or equal to

OutDbOn.

When the motor exits the deadband, the value in the position-error integrator element

Motor[x].Servo.Integrator is “seeded” with the value in saved setup element

Motor[x].Servo.OutDbSeed. This value is added to the existing integrator value, giving the

servo a “kick” to push the motor back towards zero error. As this happens, status bit

Motor[x].Servo.Status is set to 0. The proportional gain effect here is just as if there were no

deadband.

The algorithm can be initialized in one of three ways at the end of a commanded move. When

Motor[x].DesVelZero changes from 0 to 1 at the end of the commanded move, if the magnitude

of the following error is greater than Motor[x].Servo.OutDbOff, the value of

Motor[x].Servo.OutDbSeed is added to the integrator with all other servo terms remaining

active. If the magnitude of the following error at this time is less than

Motor[x].Servo.OutDbOff, but greater than Motor[x].Servo.OutDbOn, then the servo terms

Power PMAC User’s Manual

Setting Up the Servo Loop 337

remain active, but there is no seeding offset to the integrator. If the magnitude of the following

error is less than Motor[x].Servo.OutDbOn, the servo output is forced to zero.

The initial seeding of the integrator is very useful for improving the settling time at the

destination position when there is substantial mechanical friction, particularly when the static

friction is higher than the running friction.

If Motor[x].Servo.OutDbOff is larger than Motor[x].Servo.OutDbOn, this causes a

“hysteresis” in turning the deadband off and on. This feature is most commonly desired by users

of specialty motors such as piezo-electric motors. Many users will want to set these two elements

to the same value, eliminating the hysteresis.

“Legacy” Servo Algorithm

If Motor[x].Ctrl is set to Sys.LegacyCtrl, Power PMAC uses a “legacy” servo algorithm for the

motor. This algorithm has all of the same components as the default servo algorithm selected by

Sys.ServoCtrl, but with a few of the components in different order in the algorithm.

The legacy servo control algorithm is designed to make the conversion of Turbo PMAC servo-

loop settings to Power PMAC as simple as possible by duplicating the topology of the Turbo

PMAC servo algorithm. This algorithm is new in V2.0 firmware, released 1st quarter 2015.

Algorithm Structure

The following block diagram shows the structure of the LegacyCtrl algorithm:

Kp

Ki

1-z
-1

Kviff1-z
-1

1

F(z)

Kaff

Kvff

Kvifb Kvfb

1

E(z)

MaxPos

Err

MaxInt

MaxDac

++

+

+
-

+

+
-

+

-
DesPos Servo

Out

ActPos

ActPos2

DesVel

ActVel

Kbreak

A(z)

+

Kfff

+

1-z
-1

Kafb

-

1-z
-1

C(z)

D(z)

OutDb

1-z
-1

SwFffInt

B(z)

Sys.LegacyCtrl

Servo Algorithm

Iq

Cmd

Power PMAC “Legacy” Servo Algorithm

The key difference in this algorithm from the default ServoCtrl algorithm is the location of the

“C” and “D” polynomial filters. In the ServoCtrl algorithm, they are further to the left, right after

the Kp proportional gain term and before the velocity-loop summing node. In that algorithm,

these filters act on the (scaled) position error term.

Power PMAC User’s Manual

Setting Up the Servo Loop 338

Polynomial Filters

In the LegacyCtrl algorithm, the “C” and “D” polynomial filters are located after the torque-

command summing node, just as the Turbo PMAC “notch” filter is. The first two gain terms of

the “C” polynomial (Kc1 and Kc2) match the Ixx36 and Ixx37 numerator terms of the Turbo

PMAC notch filter; the first two gain terms of the “D” polynomial (Kd1 and Kd2) match the

Ixx38 and Ixx39 denominator terms. The same numerical values for these terms used in Turbo

PMAC can be used in the Power PMAC for the same servo update rate.

Note

The location of the C and D filters in the Sys.LegacyCtrl

algorithm is better for low-pass filters compensating for

feedback measurement and quantization noise. The location of

the C and D polynomial filters in Sys.ServoCtrl is better for

notch filters compensating for system resonances.

The “A”, “B”, “E”, and “F” polynomial filters in the LegacyCtrl algorithm are identical in

function and location to the standard ServoCtrl algorithm. The SwPoly7 control bit determining

whether the “A”, “B”, “C”, and “D” polynomials are limited to 2nd order or expanded to 7th order

is identical in function to the ServoCtrl algorithm. Refer to the above section Standard Servo

Algorithm for details.

(Remember that if any of the “A”, “B”, “E”, or “F” polynomial filters is used, or if more than the

first two terms of the “C” and “D” polynomial filters are used, it is no longer a direct port from

the Turbo PMAC servo algorithm. In this case, it is recommended that the default ServoCtrl

algorithm be used instead, with optimized tuning performed for that algorithm.)

Conversion Details

The selection of several feedback and feedforward terms to use in the LegacyCtrl algorithm for

maximum compatibility of operation depends on the setting of Turbo PMAC’s Ixx96 bit 1 (value

2). That control bit determines whether several feedback and feedforward terms are used after the

integrator or before.

If this bit is set to the default of 0 in Turbo PMAC, which is the most common case, the Kvfb

velocity feedback gain term and the Kvff velocity feedforward gain term should be used to mimic

the effects of Ixx31 and Ixx32 in the Turbo PMAC. The SwFffInt switch control bit should be set

to the default value of 0 so that the friction feedforward gain term Kfff mimics the effect of Ixx68

in the Turbo PMAC. In this case, the outputs from these gain terms are added into the torque

summing node, after the integrator.

However, if Ixx96 bit 1 is set to 1 (so Ixx96 = 2 or 3) in the Turbo PMAC, the Kvifb velocity

feedback gain term and the Kviff velocity feedforward gain term should be used to mimic the

effects of Ixx31 and Ixx32 in the Turbo PMAC. The SwFffInt switch control bit should be set to

1 so that the friction feedforward gain term Kfff mimics the effect of Ixx68 in the Turbo PMAC.

In this case, the outputs from these gain terms are added into the velocity summing node, before

the integrator.

If SwFffInt is set to 0, the output friction feedforward gain term is added to the input of the “C”

and “D” polynomial filters, whereas in Turbo PMAC it is added to the output of the “notch”

filter. This means that in Power PMAC, it is effectively multiplied by the DC gain of this pair of

Power PMAC User’s Manual

Setting Up the Servo Loop 339

polynomial filters. To get the identical effect in Power PMAC, the value of Kfff should be

divided by the DC gain of these filters:

37361

39381
*68.].[

IxxIxx

IxxIxx
IxxKfffServoxMotor

To compute the specific numerical values of Power PMAC gain terms to match Turbo PMAC

gain terms, refer to the Software Reference Manual chapter Power PMAC Turbo I-Variable

Equivalents for the appropriate formulas.

Power PMAC User’s Manual

Setting Up the Servo Loop 340

Adaptive Servo Control

Power PMAC can provide sophisticated adaptive control servo capabilities that permit real-time

identification of inertia changes in a system driven by a Power PMAC motor, and automatic

compensation in the servo loop gain. The result is a consistent, and near constant, performance of

the closed-loop system even in the face of significant inertia changes.

The adaptive control algorithm continually computes the “plant gain” of the system that is driven

by the Power PMAC in a recursive algorithm, compares this to a preset “reference gain” for the

plant, and adjusts the servo loop gain for the motor so that the overall loop gain stays constant,

maintaining the overall performance of the motor.

Kp

Ki

1-z
-1

Kviff1-z
-1

1

F(z)

Kaff

Kvff

Kvifb

Kvfb

1

E(z)

MaxPos

Err

MaxInt

MaxDac

++

+

+
-

+

+
-

+

-
DesPos Servo

Out

ActPos

ActPos2

DesVel

ActVel

Kbreak

A(z)

+

Kfff

+

1-z
-1

Kafb

-

1-z
-1

C(z)

D(z)

OutDb

1-z
-1

SwFffInt

B(z)

Sys.AdaptiveCtrl

Servo Algorithm

Inertia

Estimator

MinGainFactor

MaxGainFactor

1

J

SGF

Adaptive Servo Control Algorithm Block Diagram

The output of the servo loop must be a torque command, which means that the Power PMAC

must be closing the velocity loop as well as the position loop for the motor. It does not matter

whether the motor phase commutation is performed by the Power PMAC, by the amplifier, or in

the motor itself.

In this case, the “plant gain” includes everything between the numerical command output of the

servo loop and the resulting physical acceleration as derived from the feedback position sensor.

This includes any output-signal gain, amplifier gain, motor torque constant, combined motor and

(reflected) load inertia gain, sensor resolution gain, and motor unit scaling gain.

In a typical system, the only gain component with significant variation will be the inertia gain

term (and the “inertia gain” is inversely proportional to the inertia). Note that this section uses the

term “inertia” to represent either the inertial mass of a linear system, or the mass moment of

inertia in a rotary system. The overall plant gain will vary in direct proportion to the inertia gain.

Selecting the Adaptive Control Algorithm

The adaptive control algorithm is selected for a motor by setting saved setup element

Motor[x].Ctrl to Sys.AdaptiveCtrl, the address of the start of the algorithm. This algorithm uses

Power PMAC User’s Manual

Setting Up the Servo Loop 341

all of the same terms as the standard servo algorithm that is selected by setting Motor[x].Ctrl to

the default value of Sys.ServoCtrl, but adds several estimation and adaptation terms that are

discussed below.

Establishing the Reference System

The first step in implementing the adaptive control algorithm is to tune the servo loop for the

nominal (reference) inertia. This reference inertia can be anywhere within the range of inertias

expected in the system, but it is usually preferable to select a “standard” configuration for the

system, such as an unloaded arm, or a retracted mechanism. It should be easy to perform tuning

moves in this configuration.

In this (fixed) configuration, tune the servo loop as you would for a non-adaptive system. Either

the interactive tuning or the automatic tuning tools of the IDE program can be used, or both. Even

if you choose not to use the automatic tuning to set your servo loop gains, execute the excitation

pattern of the automatic tuning. The IDE will report the overall plant gain value that it measures

as a result of the excitation as the “Estimated Gain”. Set saved setup parameter

Motor[x].Servo.NominalGain to the reported value.

Software Setup for Adaptive Control

Once the reference system has been established, the estimation and adaptation parameters can be

set. The first parameter to set, Motor[x].Servo.EstTime, establishes the “speed” of the

estimation. It specifies the minimum number of servo cycles of data that will be used for plant

gain estimation in a recursive algorithm before this estimation is used to change the servo loop

gains to compensate. The algorithm must see this many consecutive servo cycles where the

following conditions are met for valid plant gain estimation before actual servo loop adaptation

will occur:

1. The desired acceleration value for the motor must be non-zero.

2. The magnitude of the command output from the servo loop must be greater than

Motor[x].Servo.EstMinDac.

These conditions are intended to ensure that the plant is being excited vigorously enough that a

reasonable estimation of the inertial response of the plant can be made.

Motor[x].Servo.EstMinDac is usually set to a value equal to a few percent of the maximum

servo output magnitude that is set by Motor[x].MaxDac.

The setting of Motor[x].Servo.EstTime is a tradeoff between the ability to respond quickly to

changes in plant inertia and the necessity of taking enough measurements to get a valid estimation

in the presence of noise and disturbances. Typically it is set to a value of 100 to 500 servo cycles.

Setting this parameter to 0 disables the estimation and adaptation algorithm.

Once enough consecutive servo cycles with valid measurements have been made, the estimated

plant gain value in Motor[x].Servo.EstGain is used to calculate the servo-loop gain adjustment

term Motor[x].Servo.GainFactor, which is inversely proportional to the estimated plant gain.

The amount of variation of Motor[x].Servo.GainFactor, which is set to 1.0 when the estimated

plant gain is equal to the nominal plant gain, can be limited by the settings of

Motor[x].MinGainFactor and Motor[x].MaxGainFactor. These should be set to cover the

greatest expected variations in plant inertia, so as not to permit further compensation outside of

this range.

Power PMAC User’s Manual

Setting Up the Servo Loop 342

Gain Scheduled Adaptive Control

The standard adaptive control routine attempts to maintain the same closed-loop natural

frequency (ω) and damping ratio (ζ) across the entire adaptive range as was present at the

nominal (reference) inertia. However, in some cases, this may not be the best strategy, as

attempting to keep the same natural frequency and damping ratio at high inertias may require

servo gains so high as to be problematic, causing saturation or limit cycling effects. Alternatively,

the system may not be as responsive as it could be at lower inertias.

It is possible to specify how the closed-loop natural frequency and damping ratio should vary

across the range of system inertias. Generally, it will be desired to permit natural frequency to

decline somewhat as inertia increases. Sometimes, the same is true of damping ratio. Four new

saved setup elements are used to specify this variation.

Motor[x].Servo.MinW specifies the desired closed-loop natural frequency at the maximum

system inertia (minimum plant gain) of the adaptive range, in radians per second. The natural

frequency can be considered as essentially identical to the system’s closed-loop bandwidth,

although bandwidth is usually expressed in Hertz (cycles per second), so the numerical value of

MinW in radians per second would be 2π times this number.

Motor[x].Servo.MaxW specifies the desired closed-loop natural frequency at the minimum

system inertia (maximum plant gain) of the adaptive range, in radians per second. The desired

closed-loop natural frequency in between these extremes is varied linearly as a function of plant

gain.

Without any adaptation, the closed-loop natural frequency varies inversely with the square root of

the system inertia, so if the system inertia increased by a factor of 4, the natural frequency would

be reduced by a factor of 2. Standard adaptation attempts to keep natural frequency constant over

the range of inertias. MinW and MaxW are usually chosen to obtain a variation in natural

frequency in between these two cases.

Motor[x].Servo.MinDR specifies the desired closed-loop damping ratio (a unitless number) at

the maximum system inertia (minimum plant gain) of the adaptive range. Typically values in the

range of 0.7 to 1.0 are used here, possibly to the lower end of the range at this extreme.

Motor[x].Servo.MaxDR specifies the desired closed-loop damping ratio at the minimum system

inertia (maximum plant gain) of the adaptive range. Often, values at the higher end of the

common 0.7 to 1.0 range are used at this extreme.

Motor[x].Servo.MinW and Motor[x].Servo.MinDR must both be set greater than their default

values of 0.0 to enable the gain scheduling feature of the adaptive servo algorithm. When

enabled, it is essential that Motor[x].Servo.MaxW and Motor[x].Servo.MaxDR not be left at

their default values of 0.0, as these settings could lead to unsafe control conditions.

Executing the Adaptive Control Algorithm

Once the algorithm has been set up according to the above instructions, it will execute

automatically and invisibly to the user. In testing the operation of the algorithm, the values of

Motor[x].Servo.EstGain and Motor[x].Servo.GainFactor can be monitored, such as with the

Watch Window in the IDE.

Power PMAC User’s Manual

Setting Up the Servo Loop 343

The following plots show the action of the adaptive filter. The first plot shows the response of the

system to a parabolic-profile commanded move with low inertia (“unloaded”). Position errors are

mostly within +/-10 counts of the encoder.

The next plot shows the response to the same commanded move when the system has much

higher inertia (“loaded”), with the same gains as for the unloaded system (no adaptation). Position

errors grow to over +/-500 counts.

Power PMAC User’s Manual

Setting Up the Servo Loop 344

The next plot shows the response of the same “loaded” system whose saved gains produced the

“unloaded” response shown in the first plot, but with the adaptation turned on. After an initial

perturbation from the sudden change in load, it quickly settles down to a position error range of

about +/-5 counts.

Power PMAC User’s Manual

Setting Up the Servo Loop 345

Cross-Coupled Gantry Control

Power PMAC can provide the ability to “cross-couple” the servo control of two parallel gantry

motors. In addition to having each motor compute its feedforward and feedback components

based on its own position, it also computes components for each motor based on the difference in

position (following) error between the motors. This cross-coupling control between the two

motors helps to provide the tightest physical coordination between the motors.

This block diagram shows how the cross-coupled control operates. The blocks ServoCtrlα and

ServoCtrlβ are the feedback/feedforward algorithms for the individual motors, operating on their

own command trajectories (which are generally identical, but are not required to be so) and

measured feedback positions (which can and do differ). The blocks Xctrlα and Xctrlβ are the

cross-coupled terms, which operate on the difference between the errors of the two motors.

AdaptiveCtrlα
Gantry

Motor α

Xctrlα

Xctrlβ

AdaptiveCtrlβ
Gantry

Motor β

DesPosα

DesPosβ

ActPosα

ActPosβ

+

-

+

-

+

+

+

-

+
-

PosErrorα

PosErrorβ

Cross-Coupled Gantry Servo Algorithm Block Diagram

Note

The choice of the use of this type of servo control is

independent of the choice of the method of commanding the

two gantry motors. The “leader/follower” method, in which

only one motor (the “leader”) actually computes the

commanded trajectory, and the other motor (the “follower”)

uses the leader-motor trajectory, is strongly recommended, but

not required, for these systems.

Note

While the leader/follower trajectory-generation method can be

used with more than two motors in a gantry, the cross-coupling

algorithm can only be used with two motors.

Power PMAC User’s Manual

Setting Up the Servo Loop 346

Note

As a multi-motor servo algorithm, this cross-coupled gantry

algorithm cannot be used when the servo loop is executed

under the phase interrupt (“servo in phase”).

The output of the servo loops should be torque commands, which means that the Power PMAC

must be closing the velocity loop as well as the position loop for the motors. It does not matter

whether the motor phase commutation is performed by the Power PMAC, by the amplifier, or in

the motor itself.

Selecting the Cross-Coupled Control Algorithm

The cross-coupled control algorithm is selected for a dual-motor pair by setting saved setup

element Motor[x].Ctrl for the lower-numbered motor to Sys.GantryXCtrl, the address of the

start of the algorithm. The second motor in the pair must be assigned to the next higher-numbered

motor in Power PMAC. Motor[x].ExtraMotors for the lower-numbered motor must be set to 1

to tell the Power PMAC task scheduler that this servo algorithm will be performing the servo loop

closure for a second motor as well, and that the next higher-numbered motor will not be closing

its own servo loop. It does not matter how Motor[x].Ctrl is set for the higher-numbered motor,

as this value is not used. (You may want to set it to Sys.GantryXCtrl to make it obvious to

someone reviewing the settings how the motor is controlled, but this is not required.)

The cross-coupled algorithm uses all of the same terms for each motor as the standard servo

algorithm that would be selected by setting Motor[x].Ctrl to the default value of Sys.ServoCtrl,

but adds several cross-coupling terms that are discussed below. Each motor can use all of the

terms of the adaptive control algorithm, which would be selected by setting Motor[x].Ctrl to

Sys.AdaptiveCtrl, and is a superset of the standard servo algorithm. This permits each motor’s

own gains to change as the cross axis moves, transferring inertia from the motor on one side to

the motor on the other.

Enabling the Gantry with Cross-Coupling

Because the cross-coupled servo algorithm controls two motors (that are usually mechanically

coupled) at once, special care must be taken in enabling the control of these motors, especially

during initial configuration. It is possible for the two motors to be in different states (enabled

closed-loop, enabled open-loop, disabled), but before attempting any positioning move

commands, both motors should be in the enabled closed-loop state.

The leader/follower configuration is almost always used with the cross-coupled servo, so it is

important to understand the special actions of that configuration. Before a motor is put into

follower mode (Motor[x].ServoCtrl=8), the motor should be in the disabled state and

Motor[x].CmdMotor should be set to the number of the leader motor. Otherwise, unintended

and possibly dangerous motion could occur.

If either the leader motor or the follower motor has a killing (disabling) fault, the other motor will

automatically be disabled as well. If the leader motor is disabled by command, the follower motor

will automatically be disabled too. Both motors must be re-enabled with the loops closed before

issuing any positioning move commands to the leader motor.

When the motors are disabled, it is possible for the two motors to become skewed even if the

skew had been removed on homing. If both motors have previously been homed with any skew

Power PMAC User’s Manual

Setting Up the Servo Loop 347

removed, then on the re-enabling of both motors, the skew will automatically be removed at the

rate set by Motor[x].GantrySlewRate, with status bit Motor[x].GantryHomed getting set back

to 1 when the skew removal is complete.

Tuning the Non-Coupled Terms

It is best to first tune each motor’s individual servo terms, which are the same as those for the

default servo algorithm. This can be done with Motor[x].Ctrl set to the default value of

Sys.ServoCtrl for both motors and Motor[x].ExtraMotors set to 0 for the first motor (the

default settings), or it can be done with Motor[x].ServoCtrl set to Sys.GantryXCtrl and

Motor[x].ExtraMotors set to 1 for the lower-numbered motor, and all of the cross-coupling

gains set to 0 for both motors.

This tuning is best done with the lower-numbered motor as the leader motor (standard setting of

Motor[x].ServoCtrl = 1), and the higher-numbered motor as the follower motor

(Motor[x].ServoCtrl = 8). The tuning control of the IDE software will automatically recognize

this configuration as a leader/follower pair when you specify either interactive or automatic

tuning for the leader motor. Any tuning move or excitation that can be done for a single motor

can now be done for the motor pair.

Whatever combination of automatic and interactive tuning steps is desired can be used to

optimize the performance with the non-coupled terms. The performance of profiled moves similar

to what will be used in the application should be evaluated.

Note

If satisfactory performance is obtained at this step of tuning the

motors individually, it may not be necessary to implement the

cross-coupling terms.

Tuning the Cross-Coupled Terms

When the servo control using just the standard non-coupled terms for both motors is optimized as

much as is feasible, if further performance improvements are desired, the cross-coupling terms

should be engaged. If not done so already, set Motor[x].Ctrl for the lower-numbered motor to

Sys.GantryXCtrl and Motor[x].ExtraMotors for the lower-numbered motor to 1.

The tuning control window in the IDE should recognize this configuration and show an option for

cross-coupled tuning. If it does not, change the selected motor up and back, or right-click and

select Refresh. In auto-tuning, there will be a check box marked “Use Cross-Coupled Gantry

Control”. In interactive tuning, there will be a button marked “Set Cross-Coupling Gains”.

Usually, the auto-tuning will be attempted first, as it should produce gain settings that are at least

close to optimum. Some users will attempt to improve on the auto-tuned settings through

subsequent interactive tuning procedures.

There are three cross-coupled terms for each motor in the gantry pair. All three operate on the

difference in the position errors of the two motors each servo cycle. The gains for a given motor

contribute to the servo command output for that motor in the direction sense to attempt to drive

the difference in errors between the two motors toward zero.

Power PMAC User’s Manual

Setting Up the Servo Loop 348

The three terms are the proportional, integral, and derivative (P, I, and D) gains.

Motor[x].Servo.Kxpg is the proportional gain term operating directly on the difference in errors.

Motor[x].Servo.Kxig is the integral gain term operating on the accumulated difference in errors.

Motor[x].Servo.Kxvg is the derivative gain term operating on the rate of change in the difference

in errors. Generally, these terms will be identical, or very similar, for both motors.

The transfer function for each cross-coupling control block, from the difference-of-errors input to

the output contribution to the servo command, is:

 1

1
1

1
1

 zK

z

K
KzK xvg

xig

xpgx

Custom User Servo Algorithms

Power PMAC facilitates the implementation of custom servo algorithms by the user. These

algorithms are written in C, and can be designed in a graphical environment like MathWorks’

MatlabTM/SimulinkTM, which can generate the C code automatically. For more details on

implementing custom servo algorithms in C, refer to the Writing C Functions and Programs in

Power PMAC chapter of the User’s Manual.

Power PMAC User’s Manual

Setting Up the Servo Loop 349

Tuning the Servo Loop in the IDE

The Integrated Development Environment (IDE) software on the PC provides powerful and easy-

to-use tools for tuning the servo loop for optimal performance. It features both “auto-tuning” and

“interactive tuning” screens. The user can utilize either tool or both. It is common to start with

auto-tuning to achieve reasonable performance levels, then proceed to interactive tuning to

optimize performance.

To use the IDE’s tuning features, click on “Tools” in the top menu bar, then select “Tune” from

the pull-down menu. You will see a screen that looks something like this:

IDE Interactive Tuning Window

The buttons on the left allow you to select from the possible tuning options, both interactive and

automatic. If the button is “grayed out”, your setup for the motor does not support that

functionality. (The motor in this example does not have the adaptive control algorithm or digital

current loop enabled, so the buttons selecting tuning options for those features are disabled.)

Issues of tuning the digital current loop are only relevant if commutation and current-loop closure

are enabled for the motor. These issues are covered in the Setting Up Power PMAC-Based

Commutation and/or Current Loop chapter of the User’s Manual.

Note the motor-select control in the lower left corner, and the “Kill” button below that can be

used to disable the motor immediately if something goes wrong.

Power PMAC User’s Manual

Setting Up the Servo Loop 350

Automatic Tuning

Most users will start the tuning process for a motor with automatic tuning by the IDE. This

procedure is selected by clicking on the “Position Loop Auto Tune” button on the left side of the

screen. You will then see a screen that looks like this:

IDE Basic Automatic Tuning Window

This is the “Basic Auto Tune” screen, which permits a very simple interface for obtaining

reasonable servo tuning functionality.

In Step 1, select the command output mode of the servo loop. Choose “Velocity Mode” for

analog velocity-mode servo drives, “pulse and direction” drives, and hydraulic valve controls.

Choose “Torque Mode” for analog torque (current) mode servo drives, “sinewave-input” servo

amplifiers, and “power-block” amplifiers.

In Step 2, select a location for the slider with the pointing device. The further to the right the

slider is moved, the stiffer the servo loop the IDE will create for the motor, resulting in more

responsive action, but increasing the possibility of vibration and instability due to overtuning. The

user should either select or de-select the “Feedforward” check box. Most users will want this box

selected, so that the IDE’s auto-tuning calculations implement the feedforward gains to optimize

trajectory tracking.

Power PMAC User’s Manual

Setting Up the Servo Loop 351

Clicking on “Auto Tune Motor” will cause Power PMAC to command an excitation sequence on

the motor, measure the response, and recommend gain settings. You will see a screen with

recommended settings such as the following:

IDE Automatic Tuning Results Window

To use the recommended gains, click on the “Implement” button.

Power PMAC User’s Manual

Setting Up the Servo Loop 352

In the “Basic Auto Tune” screen, you can click on the “Advanced Auto Tune” check box to get a

screen that gives you some more control over the excitation and auto-tuning process. You will see

a screen like this:

IDE Advanced Automatic Tuning Window

In Step 2, you can specify your desired results more directly. In Step 3, you can specify the

parameters for the excitation move.

Sample Interactive Tuning Process

Interactive tuning of the position/velocity servo is performed from the screen selected by the

“Position Loop Interactive Tuning” button. This is the first screen shown in this section.

In this screen, you must select one of the radio buttons under “Trajectory Selection”. Typically,

the first trajectory selected in the interactive tuning process is “Position Step”. This creates an

instantaneous step in the commanded position of the motor, holds it for a time, and then steps

back to the original position. The user can select the size of the step and the duration of the hold

from the right side of the screen. Clicking on “Do a Step Move” causes Power PMAC to execute

the step.

Power PMAC User’s Manual

Setting Up the Servo Loop 353

You will then see a plot of the step response in a screen like the following:

You can change gains and repeat the step move until you get the response you desire:

Power PMAC User’s Manual

Setting Up the Servo Loop 354

Next, many users will select the “Parabolic Velocity” trajectory to optimize trajectory tracking

with feedforward gains. This should be an aggressive move, especially to see the acceleration

effects. There should be no integral action during the move, so these should be done either with

the Ki gain set to 0, or preferably with SwZvInt set to 1 so the integrator is automatically turned

back on between moves so there is no significant error at the start of a move.

Here is a typical response with no feedforward gains:

Note that the following error curve has the same shape as the commanded velocity curve.

Mathematically speaking, the two curves are highly correlated. The screen reports that the

correlation is virtually perfect, with a value of 1.000. Note also that the peak magnitude of the

following error is about 200 motor units.

First, eliminate the following error component that is proportional to the commanded velocity

using the velocity feedforward term:

Power PMAC User’s Manual

Setting Up the Servo Loop 355

Here, we see a very different error profile, and one with a maximum magnitude of about 10

counts. One aspect of the profile is V-shaped, related to the V-shaped acceleration profile. We

will tackle this now by eliminating the error proportional to acceleration with the acceleration

feedforward term.

Power PMAC User’s Manual

Setting Up the Servo Loop 356

The remaining error is of roughly constant magnitude during each half of the move, with the

same sign as the velocity. This is due to Coulomb (dry) friction. We can eliminate this with the

friction feedforward term:

Finally, enable the integrator during the move by setting the SwZvInt integration mode parameter

to 0:

Power PMAC User’s Manual

Setting Up the Servo Loop 357

Cascading Servo Loops

The open structure of Power PMAC’s servo loops and the ability to specify which registers are

used for its inputs and outputs provides the user with powerful capabilities such as the ability to

“cascade” servo loops. In this technique, the output of one servo loop (one Power PMAC

“motor”) is used as an input to another servo loop, bringing the capabilities of both loops to bear

on a single actuator. The outer loop does not directly drive an actuator; instead, it dynamically

modifies the set point of the inner loop in an effort to drive its own error to zero.

This technique has many possible uses; the most common is to be able to close an auxiliary loop

around a standard position loop. The auxiliary loop controls some quantity affected by the

position loop’s motion, such as torque or force applied, or distance from a surface. The coupling

of the loops can be turned on and off, permitting easy switching between control modes.

Common uses of this technique include:

 Web tensioning

 Torque-limited screwdriving

 Metal bending

 Controlled-force part insertion

 Height control over uneven surface (e.g. for auto-focus)

The inner loop in these applications is typically a standard position loop driving a real actuator

with a standard position feedback device such as an encoder or resolver. The first step in setting

up such an application is to get this loop working in standard positioning mode (running at

continuous velocity if appropriate).

The outer loop in these applications uses a feedback sensor measuring whatever quantity the outer

loop is to be controlled. Often these force or torque transducers such as strain gages or tensioning

dancer arms, or distance (“gap”) transducers employing capacitive or ultrasonic mechanisms.

By engaging and disengaging the outer loop, the user can switch between standard position

control using just the inner loop, as when not meeting the resistance of a surface, and control of

the auxiliary function, as when pushing with controlled force against a surface. The transition is

simple to perform, and smooth in operation.

In some cases, the outer-loop “motor” is also a position loop, with its feedback being a position

sensor on the load. In this scenario, the inner-loop “motor” closes its position and velocity loops

using the sensor on the back of the motor. The outer-loop motor is used to issue corrections to the

inner-loop motor based on the load feedback. This technique is typically used when there is a

huge amount of backlash due to multiple-stage gearing, as when driving multi-ton loads. In these

cases, it is more effective than simply using the motor sensor for the velocity-loop feedback, and

the load sensor for the position-loop feedback, of a single Power PMAC “motor”.

Strategies for Coupling the Loops

There are three basic strategies for coupling the outer loop to the inner loop. In the first strategy,

the command output of the outer-loop motor is processed through an entry in the encoder

conversion table, and the result is used as the source for the “master position” for the inner-loop

motor. This method is very flexible, with its performance not dependent on the numbering of the

Power PMAC motors used for the two loops, but there is always a one-servo-cycle delay between

Power PMAC User’s Manual

Setting Up the Servo Loop 358

the outer-loop closure and the inner-loop closure. This has the potential to limit performance of

the outer loop in very high-bandwidth applications.

The second strategy uses a special “zero-dimensional” (0D) compensation table to transfer the

outer loop’s command output to the inner loop. This 0D table has a single data point that takes the

command value from the outer loop each servo cycle and transfers it to a position offset register

for the inner loop. It is possible to do this without a servo-cycle delay, but the outer-loop motor

must be of a lower number than the inner-loop motor.

In addition, the compensation tables must be set to execute in between the servo-loop closure of

the outer-loop motor and that of the inner-loop motor by setting saved setup element

Sys.CompMotor to a value greater than the number of the inner-loop motor, but not greater than

that of the outer-loop motor. If you are also using compensation tables for other purposes, all

motors using these tables should be numbered greater than or equal to the value of

Sys.CompMotor.

The third strategy is a direct coupling of the loops using Motor[x].pCascadeCmd of the outer-

loop motor. This can be used to write the output command of the outer-loop motor directly to one

of the offset registers for the inner loop, without any intermediate steps. This method is new in

V2.1 firmware, released 1st quarter 2016.

To Integrate Outer Loop Command or Not

In any of the coupling strategies, a decision must be made whether the servo-output command

from the outer loop should be numerically integrated over time or not. If it is not integrated, the

command acts as a position offset to the inner loop. If it is integrated, the command acts as a

velocity offset to the inner loop.

In general, if the maximum total position offset required by the inner loop to keep the outer-loop

error at or near zero is within the range of the output value of the outer control loop, this value

does not need to be integrated before it is used by the inner loop. This is typically the case in

applications where the outer loop is only applying small corrections to the inner-loop, as in laser

auto-focus corrections or flying height gauge corrections. In these cases, the “steady-state”

condition is usually at zero velocity.

However, if the maximum total position offset required by the inner loop can get very large, and

potentially be unbounded, then the output value of the outer control loop must be integrated

before it is used as a position offset into the inner loop. This act of integration makes the output of

the outer loop effectively a velocity correction to the inner loop. Tensioning control of a

constantly moving web is a typical application of this type. In these cases, the “steady-state”

condition is usually at a non-zero velocity.

The method used to determine whether this command is integrated or not is different for each of

the strategies for coupling the loops together. The particular method for each strategy is explained

in the section for that strategy.

Note that when the output command from the outer loop is integrated, the gains of the outer servo

loop should be extremely small. Generally, the proportional gain term of the outer-loop motor,

Motor[β].Servo.Kp, will be much less than 1.0.

Power PMAC User’s Manual

Setting Up the Servo Loop 359

Inner Loop General Setup

In hybrid control applications, first set up the inner loop as a standard positioning motor, get it

well tuned and operating as you wish it to when controlling this actuator in its standard

position/velocity mode. For the alternate control mode, we will simply add a command from the

outer loop through the master position or compensation position input; otherwise, operation of

this inner loop remains the same.

Outer Loop General Setup

Set up the outer-loop motor to use the alternate sensor, processed through an encoder conversion

table entry, for both its “position” loop and its “velocity” loop, by setting Motor[β].pEnc and

Motor[β].pEnc2 to the address of the ECT entry EncTable[ε].a that processes this feedback.

Often, the control quantity of this loop will not actually be a position value, but since all Power

PMAC terminology is in terms of position, you should be aware of possible confusion.

Typically, the feedback from the ECT entry will be scaled in units of least-significant bits (LSBs)

of the sensor. With the default motor feedback scale factor values of 1.0 for Motor[β].PosSf and

Motor[β].Pos2Sf, the motor will use these same units. It is possible to scale the motor into

engineering units (e.g. Newtons for force) with different values of PosSf and Pos2Sf; it is also

possible to perform the scaling into engineering units for the axis assigned to this motor with the

scaling coefficient of the axis definition statement.

You will not be able to tune the outer loop until you have linked it with the inner loop. The next

two sections describe the steps in the two methods of linking the loops.

Joining the Loops through Position Following Function

After you have the inner loop working properly, and have done the basic setup of the outer loop,

you are ready to join the loops together. This section explains how to link the loops using Power

PMAC’s position following function. Remember that in this technique, it does not matter what

motor number is used for the inner loop and what motor number is used for the outer loop, but

there will always be a one-servo-cycle delay in using the outer-loop command for the inner loop.

Power PMAC User’s Manual

Setting Up the Servo Loop 360

M

E

S

Output

Device
Amp

ECT Entry

for Position

Sensor

Position

Servo

Filter

ECT Entry

for Aux

Sensor

ECT Entry

for Aux

Command

Auxiliary

Servo

Filter

Motor

Position

Sensor

Auxiliary

Sensor

Commanded

Position

Trajectory

Commanded

Auxiliary

Trajectory

Motor[α].

MasterCtrl

Motor[α].

pMasterEnc

Motor[α].

pEnc

Motor[β].

pEnc

Motor[α].

pDac

EncTable[ε].

pEnc

EncTable[δ].

pEnc

EncTable[ζ].

pEnc

Virtual

Power PMAC

Motor

Power PMAC

Motor for

Physical Actuator

Auxiliary

Servo Loop

Position/Velocity

Servo Loop

+

+

+

-

-

Actual

PositionActual

Auxiliary

Value

Master

Position

Cascaded Servo Loops Using Position Following Function

Processing the Outer-Loop Command

The servo command output for the outer-loop “motor” is found in status element

Motor[β].IqCmd. This is a 32-bit floating-point element in units of a 16-bit output (range of

±32,768). An entry in the encoder conversion table (ECT) can read this floating-point register

directly to process it for use by the inner-loop motor’s position-following function.

Note that using this internal memory register means that it does not matter where the outer-loop

motor writes its servo command with Motor[β].pDac. It also does not matter if the register

specified by pDac is overwritten by another motor (as would be the case if multiple motors wrote

to the register at the address of Sys.pushm).

EncTable[ζ].type should be set to 11 to specify read of a floating-point register.

EncTable[ζ].pEnc should be set to Motor[β].IqCmd.a, where x is the number of the outer-loop

motor, to specify the address of this command register.

In most cases, EncTable[ζ].index1, index2, index3, and index5 will be left at their default

values of 0. Non-zero values for these elements can be used for scaling and change-limiting

functions, but these will rarely be used in this type of application.

If the outer-loop command will not be integrated before use in the inner loop (i.e. it represents a

position offset), then EncTable[ζ].index4 should be set to its default value of 0. If the outer-loop

command will be integrated once before use in the inner loop (i.e. it represents a velocity offset),

then EncTable[ζ].index4 should be set to 1. While it is possible to integrate twice, this has not

been found to be useful in cascading servo loops.

Power PMAC User’s Manual

Setting Up the Servo Loop 361

EncTable[ζ].ScaleFactor allows you to scale the intermediate value for output. If you set it to

1/256 (with no pre-scaling or shifting), the result will be in the same units as the source register,

with a range of ±32,768. Of course, other scale factors can be used, but it is very important to

remember that this element acts as a gain term in the outer servo loop, so changing it changes the

outer loop’s overall gain.

Note that it is also possible to use the value in the output register specified for the outer-loop

motor with Motor[β].pDac. (In firmware versions older than V1.5, released 3rd quarter 2012, this

is required, because the ECT method for using floating-point values did not exist yet.) In this

case, pDac must contain the address of a valid register that can hold this value, and nothing can

overwrite this value before it is used in the next servo cycle. In this case, EncTable[ζ].type = 1

(single-register read), EncTable[ζ].pEnc contains the address of the same register as

Motor[β].pDac, EncTable[ζ].index4 is set to 0 for no integration, or 1 for single integration, and

EncTable[ζ].ScaleFactor is set to 1/65,536 to provide an output range of ±32,768, with other

setup elements typically left at their default values of 0.

Using the Outer-Loop Command as Inner-Loop Master Position

Motor[α].pMasterEnc for the inner-loop motor should be set to EncTable[ζ].a to specify the

address of the entry that has processed the outer loop command for the inner loop’s position

following function. Note that specifying this address does not, by itself, enable the following.

Inner-Loop Master Position Scale Factor

Motor[α].MasterPosSf for the inner-loop motor specifies the “gear ratio” of the position

following function for the motor, in motor units per unit of the selected master position. In

cascaded servo loops, this floating-point element is usually left at the default value of 1.0. This

can be changed, but it is very import to remember that this element acts as a gain term in the outer

servo loop, so changing it changes the outer loop’s overall gain.

Inner-Loop Following Enable and Mode

Motor[α].MasterCtrl for the inner-loop motor controls whether the following function for the

motor is enabled or not, and what mode it is in. When bit 0 of MasterCtrl is set to 0, the master

following function is disabled, so the outer loop is not engaged with the inner loop. When bit 0

(value 1) is set to 1, the master following function is enabled, engaging the outer loop with the

inner loop, and its output will command a modification to the total commanded position of the

inner loop.

Motor[α].MasterCtrl for the inner-loop motor also controls how the outer loop’s corrections

interact with trajectory commanded positions for the inner loop. When bit 1 of MasterCtrl is set

to 0, the inner-loop motor’s trajectory commanded positions are relative to a fixed origin, and

these commanded moves effectively cancel out whatever corrections have come in through the

master position port. When bit 1 (value 2) is set to 1, the following is in “offset mode”, the

corrections that come in through the master position port effectively offset the origin for

programmed commanded moves, permitting commanded moves and master corrections to be

superimposed. This distinction in mode is true even when following is disabled.

Note that when the following is in offset mode, when the position for the motor is reported, the

following component of this position is subtracted out, so the reported value is what the position

would be without the following offset. To see the following component, you must query the value

of the element containing it directly: Motor[α].ActiveMasterPos.

Power PMAC User’s Manual

Setting Up the Servo Loop 362

When the outer loop is engaged (bit 0 =1), the following almost always must be in offset mode

(bit 1 = 1), making the required value of Motor[α].MasterCtrl be 3 for this operation. Even if

there are not explicit commands in the motion program for the axis assigned to the inner loop’s

motor at this time, any motion command for the coordinate system containing this motor

implicitly commands that motor to its previous commanded position. If the following is not in

offset mode, this will take out the corrections that have come in since the last programmed move

or move segment.

When the following is disabled (bit 0 = 0), if you wish to command the inner loop’s motor to a

definite physical position, you must put the following in “normal mode” (bit 1 = 0), making the

required value of Motor[α].MasterCtrl be 0 for this operation.

Note that whenever the mode bit (bit 1) of Motor[α].MasterCtrl is changed, whether or not

following is enabled, the programming origin for the motor is changed, which changes the

relationship between motor and axis positions. This means that the “pmatch” position matching

function must be executed before the next programmed axis move. This function is automatically

implemented at the start of motion program execution, but if the mode change is made in the

middle of execution of a motion program, or the next programmed axis move is executed in a

PLC program, the function must be implemented through an explicit pmatch command (on-line

or buffered program).

Joining the Loops through Compensation Table

This section describes the steps for linking the outer and inner loops through a “zero-

dimensional” (0D) compensation table. The advantage of this method is that the linking can occur

without a servo-cycle delay, which can be advantageous if a high bandwidth is required of the

outer loop.

M

E

S

Output

Device
Amp

ECT Entry

for Position

Sensor

Position

Servo

Filter

ECT Entry

for Aux

Sensor

“0-D”

Comp

Table

Auxiliary

Servo

Filter

Motor

Position

Sensor

Auxiliary

Sensor

Commanded

Position

Trajectory

Commanded

Auxiliary

Trajectory

Sys.

CompEnable

CompTable[ζ].

Target[q]

Motor[α].

pEnc

Motor[β].

pEnc

Motor[α].

pDac

EncTable[ε].

pEnc

EncTable[δ].

pEnc

CompTable[ζ].

Source[0]

Virtual

Power PMAC

Motor

Power PMAC

Motor for

Physical Actuator

Auxiliary

Servo Loop

Position/Velocity

Servo Loop

+

+

+

-

-

Actual

PositionActual

Auxiliary

Value

Compensation

Desired Position

Cascaded Servo Loops Using Compensation Table Function

Power PMAC User’s Manual

Setting Up the Servo Loop 363

Motor Numbering Considerations

In order to eliminate the servo-cycle delay between outer and inner loop, the number of the outer-

loop motor must be less than the number of the inner-loop motor. In addition, the compensation

table must be updated between the servo-loop closure of the outer-loop motor and the servo-loop

closure of the inner-loop motor. To do this, saved setup element Sys.CompMotor must be set to

a value greater than the number of the outer-loop motor, but not greater than the number of the

inner-loop motor.

All compensation tables are updated immediately before the servo-loop closure of the motor

whose number is specified by Sys.CompMotor. When compensation tables are used for

measurement corrections, it is best to have them updated before the servo-loop closure of the

motor. Therefore, all motors using compensation tables for measurement corrections should have

numbers equal to or higher than the value of Sys.CompMotor.

If the application only uses a single cascaded servo loop, it is often easiest to utilize Motor 0 as

the virtual motor for the outer loop. On re-initialization, Motor 0 is left as a “dummy motor”, with

auto-identified hardware channels assigned to motors starting with Motor 1. Because the setup of

the outer loop will not be able to rely on the auto-assignments in almost all cases, it will make

sense to set up Motor 0 manually to implement the outer loop, set Sys.CompMotor to 1, and

utilize the automatic setup as much as possible for the physical motors starting at Motor 1.

Setting Up the Compensation Table

The compensation table used for joining the outer and inner servo loops has a special “0D”

configuration. (Tables used for true error compensation are 1D, 2D, or 3D.) This table

configuration, which is declared to have zero data “zones” in each of the three possible

dimensions, has a single data point. This data point will hold the correction from the outer loop

each cycle.

CompTable[ζ].Source[0] for this table must be set to the number of the Power PMAC motor that

is executing the outer servo loop.

CompTable[ζ].Ctrl for this table must be set to 3 to instruct the table to automatically pick up

the servo command from this motor every servo cycle from its IqCmd register.

CompTable[ζ].Nx[0], Nx[1], and Nx[2] must all be set to 0 to specify zero data zones in each of

the three potential dimensions for the table, making this a “0D” table.

CompTable[ζ].OutCtrl should be set to 0 if the outer-loop command is not to be integrated

before use in the inner loop, or to 1 if this command is to be integrated first.

CompTable[ζ].Sf[0] is typically set to 1.0 so that no rescaling of the command is done before it

is used in the inner loop. Rescaling is possible, but it is important to remember that this scale

factor acts as a gain term in the outer servo loop, and changing its value changes the loop gain.

CompTable[ζ].Target[0] should be set to Motor[α].CompDesPos.a so the table writes its

output to the compensation register for the net desired position node for the inner-loop motor,

where it is automatically added to the trajectory commanded position for the motor.

Sys.CompEnable must be to a value at least one greater than the index value ζ of the table in

order for the table to be active. Note that this activates all compensation tables with index values

from 0 to one less than the value of Sys.CompEnable.

Power PMAC User’s Manual

Setting Up the Servo Loop 364

If you want to be able to effectively disable this table alone, you can set the value of

CompTable[ζ].Sf[0] to 0, which forces the correction to 0.0. Alternately, you can redirect the

output of the table to an unused register by setting CompTable[ζ].Target[0] to something like

Motor[255].CompDesPos.a, which leaves the last correction in place for the inner-loop motor.

(This correction could then be overwritten manually.)

When the position for the target motor is reported, the compensation component of this position is

subtracted out, so the reported value is what the position would be without the compensation

offset. To see the compensation component, you must query the value of the element containing it

directly: Motor[α].CompDesPos.

Joining the Loops Directly

This section describes the steps for the technique of linking the outer and inner loops directly.

This method is new in V2.1 firmware, released 1st quarter 2016. This method has no intermediate

holding register or processing, as the outer loop’s servo command is written directly to an offset

register for the inner loop.

In this method, the linkage is accomplished through the use of Motor[x].pCascadeCmd for the

outer-loop motor, which allows the servo command value for the motor to be written to one of

several offset registers for the inner-loop motor. (The standard Motor[x].pDac, which is typically

used for actual output of the servo command value, cannot be used for this purpose, because it

must point to an integer register, and these offset registers are double-precision floating-point.)

Motor[x].pCascadeCmd can be set to Motor[y].MasterPos.a to write the command value to the

position-following offset register for the net desired position of inner-loop motor y. This is the

most common setting, as it provides the greatest flexibility in implementation, especially for

switching modes of operation. The inner-loop motor can be in “offset following” mode when the

loops are linked, allowing superposition, then in “normal” mode when not linked, allowing for

absolute positioning of the inner loop. It can also be set to Motor[y].ActiveMasterPos.a, but this

does not permit rate-limiting during switching with Motor[y].MasterMaxSpeed and

Motor[y].MasterMaxAccel, and this has the possibility of other tasks overwriting the cascaded

command value.

Motor[x].pCascadeCmd can also be set to Motor[y].CompDesPos.a to write the command

value to the compensation-table offset register for the net desired position of inner-loop motor y.

This can be used if position following is also used for the inner-loop motor. However, when using

this register, the effect is always in “offset” mode; this cannot be changed as when using the

master position register.

Starting in V2.7 firmware, released 2nd quarter 2022, Motor[x].pCascadeCmd can also be set to

Motor[y].CompPos.a to write the command value to the compensation-table offset register for

the net actual position of inner-loop motor y. This has the advantage of eliminating a servo cycle

delay in the cascading process (as long as motor y has a higher number). Note that the direction

sense of this offset is opposite that of that using the other registers.

Finally, Motor[x].pCascadeCmd can be set to Motor[y].CompDac.a to write the command

value to the torque-compensation offset register of inner-loop motor y. In this case, the two loops

are not really cascaded; instead they operate in parallel, with a single output that is the sum of the

two.

Power PMAC User’s Manual

Setting Up the Servo Loop 365

This block diagram shows the principle of cascaded servo loops with direct linkage.

M

E

S

Output

Device
Amp

ECT Entry

for Position

Sensor

Position

Servo

Filter

ECT Entry

for Aux

Sensor

Auxiliary

Servo

Filter

Motor

Position

Sensor

Auxiliary

Sensor

Commanded

Position

Trajectory

Commanded

Auxiliary

Trajectory

Motor[α].

pEnc

Motor[β].

pEnc

Motor[α].

pDac

EncTable[ε].

pEnc

EncTable[δ].

pEnc

Motor[β].

pCascadeCmd

Virtual

Power PMAC

Motor

Power PMAC

Motor for

Physical Actuator

Auxiliary

Servo Loop

Position/Velocity

Servo Loop

+

+

+

-

-

Actual

PositionActual

Auxiliary

Value

Master Position

or

Compensation

Desired Position

Cascaded Servo Loops Using Direct Linkage

If you want to integrate the outer-loop command before writing it to the inner-loop offset register,

set Motor[x].CascadeMode for the outer-loop motor to 1. If you do not want to integrate the

command, set CascadeMode to its default value of 0.

Tuning the Outer Loop

In most cases of cascaded control, you will be able to establish basic control of the outer loop

using only the proportional gain term Motor[β].Servo.Kp for the outer loop. Many applications

will also utilize the integral gain term Motor[β].Servo.Ki to eliminate steady state errors. Most

applications will not need any derivative (velocity feedback) gain terms, so

Motor[β].Servo.Kvfb and Motor[β].Servo.Kvifb are typically set to 0.0. Because in most

applications the outer loop is just trying to maintain a constant command value, the feedforward

terms Motor[β].Servo.Kaff, Kvff, and Kviff are usually not important.

If you are integrating the outer loop’s command value before using it in the inner loop, your

proportional gain term will be extremely low. Start with values for Motor[β].Servo.Kp of 0.01 or

so.

It is possible to use the IDE’s standard tuning tools to tune the outer loop just as you would for a

standard position loop.

Power PMAC User’s Manual

Setting Up the Servo Loop 366

Programming the Outer-Loop Motor

With the outer loop engaged, commanding the “position” of the outer-loop motor will cause the

outer loop’s feedback loop to calculate offsets into the inner loop command in an attempt to drive

the outer-loop’s feedback device reading to the command value. This outer-loop command can be

a motor jog command, or it can be a programmed axis command. If a program axis command, the

axis to which the outer-loop motor is assigned can be in the same coordinate system as the inner-

loop motor, or in a different coordinate system.

Most commonly, the outer-loop motor will be assigned to an axis in the same coordinate system

as the inner-loop motor, and commanded in the same motion program for the coordinate system.

Axis-naming conventions and standards (e.g. RS/EIA-267) consider these as “secondary axes”

and suggest the name of U when matched with an X axis, V when matched with Y, and W when

matched with Z.

Setup Examples

In these examples, Motors 1, 2, and 3 are the X, Y, and Z-axes, respectively, in Coordinate

System 1 of a Cartesian stage. Each uses quadrature feedback with 0.1-micron resolution, and is

programmed in millimeters. These are set up as for a standard positioning application.

Motor 0 (which is not used in most applications) is used as a virtual motor to control the gap

height of the vertical tool over the surface. It uses a capacitive gap sensor through an ACC-28E

16-bit A/D converter, with the LSB of the ADC measuring 0.25 microns. It is assigned to the W-

axis in the same coordinate system, also programmed in millimeters (of gap). If we use the

position-following technique to couple the loops, we could use Motor 4 instead for this, but if we

use the compensation-table technique to couple the loops to eliminate the servo-cycle delay, we

must use a lower-numbered motor for this outer-loop motor than for the inner-loop motor (#3).

Conversion Table Processing of Analog Feedback

We will use ECT entry 0 (which is typically not used) to process the analog feedback for Motor

0. The entry will be set up something like this:

EncTable[0].type=1 // Single-register read

EncTable[0].pEnc=Acc28E[0].AdcSdata[0].a // Source data address

EncTable[0].index1=0 // No left shift

EncTable[0].index2=16 // Right shift 16 bits

EncTable[0].ScaleFactor=1.0 // Result units are LSBs

Outer-Loop Motor Setup

The outer-loop motor must be activated, and use the processed analog feedback:

Motor[0].ServoCtrl=1 // Activate motor

Motor[0].PhaseCtrl=0 // No commutation by PMAC

Motor[0].pEnc=EncTable[0].a // Use result of ECT entry 0

Motor[0].pEnc2=EncTable[0].a // Use result of ECT entry 0

Motor[0].pLimits=0 // No hardware position limits

Motor[0].pAmpFault=0 // No amplifier fault input

It does not matter where the servo output is written, for either method of coupling.

Motor[0].pDac can be left at its default value of Sys.pushm, so the output is written to the first

register of the user shared memory buffer.

Power PMAC User’s Manual

Setting Up the Servo Loop 367

Coordinate System Setup

To assign all of the motors to axes in C.S. 1, with units of millimeters, the following definitions

can be used.

&1 // Address C.S. 1

#1->10000X // X-axis positioning in millimeters

#2->10000Y // Y-axis positioning in millimeters

#3->10000Z // Z-axis positioning in millimeters

#0->4000W // Vertical gap (W) in millimeters

Coupling the Loops with Position Following

To couple the outer and inner loops using the position-following technique, the outer loop’s servo

command value must first be processed through the encoder conversion table. Because this

application has a limited movement of the inner loop from the outer-loop command, the value

will not be integrated. The ECT entry will look something like this:

EncTable[4].type = 11 // Floating-point read

EncTable[4].pEnc = Motor[0].IqCmd.a // #0 servo cmd as source

EncTable[4].index1 = 0 // No left shift

EncTable[4].index2 = 0 // No right shift

EncTable[4].index3 = 0 // No limiting

EncTable[4].index4 = 0 // No integration

EncTable[4].index5 = 0 // No pre-scaling

EncTable[4].ScaleFactor = 1/256 // Scale to +/-32K range

To be able to use the processed result of this entry as the master for the Z-axis motor (#3), the

following setting should be made:

Motor[3].pMasterEnc=EncTable[4].a // Use ECT entry 4 result

The actual following will be controlled with Motor[3].MasterCtrl.

Coupling the Loops with Compensation Table

To couple the outer and inner loops using the compensation-table technique, a 1-point “0D” table

must be set up. The table setup would look like this:

CompTable[0].Source[0]=0 // Use Motor 0 data for source

CompTable[0].Ctrl=3 // Use source motor’s servo command

CompTable[0].Nx[0]=0 // No data zones in 1st dimension

CompTable[0].Nx[1]=0 // No data zones in 2nd dimension

CompTable[0].Nx[2]=0 // No data zones in 3rd dimension

CompTable[0].Data[0]=0 // Initialize single data point

CompTable[0].OutCtrl=0 // No integration of result

CompTable[0].Target[0]=Motor[3].CompDesPos.a // #3 desired pos

CompTable[0].Sf[0]=1.0 // Unity scale factor (when active)

Coupling the Loops Directly

To couple the outer and inner loops directly, the following setting should be made:

Motor[0].pCascadeCmd = Motor[3].ActiveMasterPos.a

By writing directly to this register, the position-following function for Motor 3 does not need to

be enabled, so bit 0 (value 1) of Motor[3].MasterCtrl should be left at its default value of 0.

Power PMAC User’s Manual

Setting Up the Servo Loop 368

However, to be able to superimpose this outer-loop command and an inner-loop trajectory value,

bit 1 (value 2) of Motor[3].MasterCtrl should be set, so the resulting value of

Motor[3].MasterCtrl in this mode should be 2.

To integrate the outer-loop command value before writing it to the inner-loop offset register, as

for the tensioning of a continuously moving web, Motor[0].CascadeMode should be set to 1. To

write without integrating, CascadeMode should be set to 0.

Changing the Operational Mode of Control

In most of these applications, there will be times where the inner-loop motor will be operated as a

normal positioning motor, commanded to specific positions relative to a fixed reference, and

other times where it will effectively be commanded to whatever position is necessary to minimize

the error in the outer loop. The transitions between these two modes must be handled properly for

a successful application.

Changing Operational Mode Using Position Following

When using position following to couple the outer and inner loops, the value of

Motor[x].MasterCtrl for the inner-loop motor determines which mode of control is used.

Typically, only two of the four possible settings for MasterCtrl will be used. It is set to 0

(following disabled, offset mode disabled) when the inner-loop motor is to be controlled by itself,

relative to a fixed origin. It is set to 3 (following enabled, offset mode enabled) when it is to be

controlled by the outer-loop motor.

Enabling or disabling the following offset mode (whether the following function is enabled or

not) changes the relationship between the motor position and its related axis position. When this

relationship is changed, the “pmatch” position-matching function must be executed before the

next programmed axis move. While this function is automatically executed when a “run” or

“step” command is given to start a motion program, if the mode is changed in the middle of a

motion program, it must be explicitly commanded with the pmatch command.

The following motion program segment shows how the transition to engaging the outer loop can

be accomplished in our example system.

Z10 // Pure position move on inner loop motor

dwell0 // Stop pre-calculation of moves

Motor[3].MasterCtrl=3 // Engage following, put in offset mode

pmatch // Re-align motor and axis position

W5 // Outer loop command

The following motion program segment shows how the transition to disengaging the outer loop

can be accomplished in our example system.

W8 // Outer loop command

dwell0 // Stop pre-calculation of moves

Motor[3].MasterCtrl=0 // Disengage following, put in normal mode

pmatch // Re-align motor and axis position

Z0 // Pure position move on inner loop motor

Changing Operational Mode Using Compensation Table

When using a compensation table to couple the outer and inner loops, changing the value of the

table output scale factor CompTable[ζ].Sf[0] is usually the best way of changing the mode of

Power PMAC User’s Manual

Setting Up the Servo Loop 369

operation. It is set to 0.0 (table output always equal to 0) when the inner-loop motor is to be

controlled by itself, relative to a fixed origin. It is set to 1.0 (table output equal to outer-loop servo

command) when it is to be controlled by the outer-loop motor.

It is not advised to change this scale factor instantly between 0.0 and 1.0, as this could cause a

sudden jump in the position of the inner-loop motor. It is easy to change it gradually in a loop.

The following motion program segment shows how the transition to engaging the outer loop can

be accomplished in our example system.

Z10 // Pure position move on inner loop motor

dwell0 // Stop pre-calculation of moves

while (CompTable[0].Sf[0] <= 1.0) { // Loop until = 1.0

 CompTable[0].Sf[0] += 0.01 // Small increase in scale factor

 dwell5 // Delay to limit speed of increase

}

W5 // Outer loop command

The following motion program segment shows how the transition to disengaging the outer loop

can be accomplished in our example system.

W8 // Outer loop command

dwell0 // Stop pre-calculation of moves

while (CompTable[0].Sf[0] >= 0.0) { // Loop until = 0.0

 CompTable[0].Sf[0] -= 0.01 // Small decrease in scale factor

 dwell5 // Delay to limit speed of decrease

}

Z0 // Pure position move on inner loop motor

Changing Operational Mode Using Direct Linkage

When directly coupling the outer and inner loops, changing the value of

Motor[x].pCascadeCmd for the outer-loop motor is usually the best way of changing the mode

of operation. If it is set to 0, the two loops are unlinked, and the inner loop operates as a normal

position loop. If it is set to the address of an inner-loop offset register (e.g. to

Motor[y].ActiveMasterPos.a), the two loops are linked, and the outer loop effectively

commands the inner loop.

When the value of Motor[x].pCascadeCmd is changed from the address of the target register to

0, unlinking the loops, the last value written to the target register remains there, keeping its

offsetting effect on the inner loop.

If it is desired to be able to command the inner loop directly to an absolute position, the motor

should be taken out of “offset following” mode by setting Motor[y].MasterCtrl to 0. This does

not cause motion of the motor, but allows the next programmed move for the axis assigned to the

motor to remove the offset.

When the value of Motor[x].pCascadeCmd is changed from 0 to the address of the target

register, linking the loops, the outer loop will write its command value to the target register on the

very next servo cycle. Care should be taken so that this will not create a significant jump in the

position of the inner loop.

Power PMAC User’s Manual

Setting Up the Servo Loop 370

Switching between offset and normal mode using Motor[y].MasterCtrl, even if the following

function itself is not enabled, changes the relationship between motor position and related axis

position. When this relationship is changed, the “pmatch” position-matching function must be

executed before the next programmed axis move. While this function is automatically executed

when a “run” or “step” command is given to start a motion program, if the mode is changed in the

middle of a motion program, it must be explicitly commanded with the pmatch command.

The following motion program segment shows how the transition to engaging the outer loop can

be accomplished in our example system.

Z10 // Pure position move on inner loop motor

dwell0 // Stop pre-calculation of moves

Motor[0].pCascadeCmd=Motor[3].ActiveMasterPos.a // Link loops

Motor[3].MasterCtrl=2 // Offset mode, following disabled

pmatch // Re-align motor and axis position

W5 // Outer loop command

The following motion program segment shows how the transition to disengaging the outer loop

can be accomplished in our example system.

W8 // Outer loop command

dwell0 // Stop pre-calculation of moves

Motor[0].pCascadeCmd=0 // Unlink loops

Motor[3].MasterCtrl=0 // Normal mode, following disabled

pmatch // Re-align motor and axis position

Z0 // Pure position move on inner loop motor

Power PMAC User’s Manual

Setting Up the Servo Loop 371

Trajectory Pre-Filter

The motor’s trajectory pre-filter, while technically not part of the servo loop, is often treated as

such. It acts on the motor’s net desired position, including the mathematically computed

trajectory from programmed axis moves or independent motor moves such as jog moves, master

following positions. and compensation positions. The resulting output of the filter is sent to the

servo loop as a potentially modified net desired position.

Typical Uses of the Pre-Filter

There are several common uses for this polynomial pre-filter:

1. Removal of a frequency or frequencies in the commanded trajectory signal that

correspond to the resonant frequency of frequencies of the machine. This type of “band-

reject” filter on the commanded trajectory dramatically lessens oscillations at these

frequencies by not exciting these frequencies. It is typically used to lessen the overall

move-and-settle time for point-to-point moves. Note that this technique is somewhat

different from the use of a “notch filter” inside the servo loop, which acts to quiet

oscillations that have already occurred.

2. Reducing the roughness in commanded paths with insufficient resolution. It is common in

CNC-style applications to have an old part program where the programmed coordinates

in each commanded move of a complex contour have a limited number of digits. On

older machines with slow execution and a heavily filtered servo loop, execution would be

smooth enough. However, trying to execute the same program on Power PMAC with fast

execution and no tracking error in the servo loop can result in significant “quantization

noise” from the limited resolution of the commanded points. Using the pre-filter to create

a short low-pass filter can significantly reduce this roughness without significant effect

on path accuracy.

3. Mimicking the acceleration control of traditional CNC controllers. Traditional CNC

controllers often use a polynomial low-pass filter on their commanded velocity profiles to

effect acceleration control. While Power PMAC’s acceleration-control algorithms are

generally superior, especially in holding tightly to the commanded path, a few users will

want to implement acceleration control in the typical manner, and the trajectory pre-filter

can be used to create this mode of operation.

4. Implementing a “machine lock” (dry run) mode. Particularly in CNC-style applications,

it is often desired to execute a motion program to evaluate the commanded trajectories

without actually commanding motion of the motors, and to maintain control at the present

position. The pre-filter can be used to “swallow” any changes in the commanded

position, permitting this mode of operation. (Coefficient Pn0 is set to 1.0, Pd1 is set to

-1.0, all other coefficients to 0.0, to implement this.)

5. Implementing a pure “time delay” filter. In some applications, particularly those in which

there is a time delay in transferring commanded positions to externally controlled axes

for some PMAC motors, it is desirable to add a pure time delay to internally controlled

axes. This can be done with the trajectory pre-filter. (For an added delay of x cycles of

the filter, set Pn0 to 1.0, Pnx to -1.0, Pd1 to -1.0, and all others to 0.0. Remember that

just setting Pn0 to 1.0, and all others to 0.0 creates a single-cycle delay.)

Power PMAC User’s Manual

Setting Up the Servo Loop 372

Overview

The trajectory pre-filter is a sampled digital filter with 4th-order polynomials in the numerator and

denominator. The sampling occurs every n servo cycles, where n is a positive integer. The input

to the overall filter is the net command position, which is the sum of trajectory command

position, master following position, and desired compensation position.

The input to the core polynomial section of the filter is the difference between the present

sample’s net command position and the previous sample’s net command position. (It operates on

the difference so that no numerical resolution of the floating-point values is lost when the

magnitude of the command position values gets very large.)

The block diagram format of the filter is shown in the following diagram:

Spliner

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

10

1
'

zPdzPdzPdzPd

zPnzPnzPnzPnPn
zP

11 z

+

-

Ppos DesPos
Ts Ts

Trajectory

Before

Filter

To

Servo

Motor Trajectory Pre-Filter Block Diagram

The overall transfer function of the pre-filter can be expressed by the equation:

 zPzzP 111

The actual difference equation implemented each cycle k inside the P'(z) block itself is:

44332211443322110

kkkkkkkkkk rPdrPdrPdrPdrPnrPnrPnrPnrPnr

where the r values are the inputs to the filter block and the r' values are the outputs from the filter

block.

Saved Setup Elements

The trajectory pre-filter for a motor is configured by several saved setup elements.

Enabling and Sample Period

Motor[x].PreFilterEna controls whether the filter is enabled or not and what the sampling

period is. If it is set to its default value of 0, the filter is disabled. If it is set to a positive value, the

filter is enabled with its value specifying the sampling period in servo cycles. Note that if the

filter is intended to compensate for very low frequency dynamics, such as a few Hertz, when the

servo update frequency is much higher (several kilohertz), the filter will operate better when its

sample period is multiple servo update cycles. If the sample period is greater than 1 servo cycle,

the commanded trajectory is reconstructed at the servo update rate with a cubic B-spline

algorithm interpolating between filter output points.

Power PMAC User’s Manual

Setting Up the Servo Loop 373

If the motor servo loop is opened, either in the enabled or disabled (killed) state, Power PMAC

will automatically set Motor[x].PreFilterEna to the negative of the closed-loop value (e.g. to -5

when it is 5 when closed-loop). This permits the filter to be properly re-initialized when the loop

is next closed. These transitions require no user intervention.

Filter Coefficients

Motor[x].Pn0, Pn1, Pn2, Pn3, and Pn4 are the “numerator” coefficients of the core filter box,

with Pni multiplying the input value from i sample cycles previous. These coefficients are

double-precision (64-bit) floating-point values.

Motor[x].Pd1, Pd2, Pd3, and Pd4 are the “denominator” coefficients of the core filter box, with

Pdi multiplying the output value from i sample cycles previous. These coefficients are double-

precision (64-bit) floating-point values.

Filter DC Gain

In almost all standard uses of the trajectory pre-filter, the filter should not add any scaling to the

trajectory – that is, its “DC gain” should be exactly equal to 1.0, so that when the input is constant

(DC), the value of the output equals the value of the input. The DC gain of a digital filter can be

evaluated by calculating the value of the transfer function with the operator z value set to 1.

Because of the topology of Power PMAC’s trajectory pre-filter, with the key filter block

operating on the difference of the input, it is virtually guaranteed that the DC gain of the overall

filter P(z) will be exactly equal to 1.0. This is due to the (1 – z-1) differencing term in front of the

key filter block, which evaluates as exactly 0.0 when z is 1. So the DC gain of the total filter

evaluates as:

 101111
1

zPzP
z

(The exception to this rule occurs when the denominator of the P'(z) filter block has a factor of (1

– z-1) in it, which cancels out this differencing term. This is the case for the “machine lock” filter,

which has an overall DC gain of 0, preventing movement.)

Spliner Reconstruction

If Motor[x].PreFilterEna is set to a value n greater than 1, the filter itself is only sampling the

trajectory every n servo interrupts, and producing a new output every n servo interrupts. In this

case, the filtered output must be interpolated to provide a new set point for the servo loop every

servo interrupt.

This interpolation is done by the “spliner”, which interpolates between consecutive filter outputs

using a cubic B-spline technique that guarantees that velocity and acceleration of the

reconstructed trajectory are always continuous, even as the filter output points are passed. Not

that this reconstruction delays the output by 2 periods of the filter.

Automated Filter Setup

The Integrated Development Environment (IDE) software for the PC permits easy interactive

setup of the trajectory pre-filter. This functionality is selected from the IDE’s tuning control by

clicking on the “Trajectory Prefilter Setup” button on the left side of the window.

Power PMAC User’s Manual

Setting Up the Servo Loop 374

The IDE software allows you to directly specify the performance attributes you want from the

filter. From your specification, it will calculate the required coefficients for you. You do not need

to understand digital filtering theory in order to use this feature.

IDE Trajectory Pre-Filter Setup Window

Manual Filter Calculations

Some users will want to calculate their pre-filter parameters themselves, without the use of the

IDE’s tools. This section provides guidelines for those users. Of course, basic familiarity with

digital design theory is required.

WARNING

Improper filter design can lead to unstable filter output

values, which are position commands for the motor. This

can result in dangerous motion commands leading to

equipment damage and/or personal injury. Confirm all

filter designs in a situation that is well protected against

damage and injury.

Converting In-Line Filters to Difference Path

Beyond standard filter design theory, the most important thing to realize is the fact that the

trajectory filter lies in the “difference path” for numerical reasons. This is shown in the block

Power PMAC User’s Manual

Setting Up the Servo Loop 375

diagram above. Most analytic presentations of filter analysis deal with “in-line” filters, so the

results of these standard analyses must be converted to Power PMAC’s “difference path” format.

If the overall filter transfer function is P(z) and the Power PMAC difference-path filter transfer

function is P’(z), the two can be related by the following equations. With the overall transfer

function expressed as a function of the difference-path filter by:

 zPzzP 111

The difference-path filter can then be expressed as a function of the overall filter as:

11

1

z

zP
zP

This equation permits you to compute the Power PMAC filter block required to implement a filter

designed in the standard analytic format.

For example, consider a second-order in-line filter with the following transfer function:

2

2

1

1

2

2

1

10

1

zDzD

zNzNN
zP

This can be converted to Power PMAC’s difference-path filter as follows:

 2

2

1

1

1

2

2

1

10

2

2

1

1

1 11

1

1

1

zDzDz

zNzNNzDzD

z

zP
zP

 3

2

2

12

1

1

2

22

1

110

11

1

zDzDDzD

zNDzNDN
zL

Note that the equivalent difference-path filter has an additional term in the denominator. This

means that for an in-line filter to have a direct equivalent in the difference path, it is limited to

third-order in the denominator.

To implement this filter design, the following settings would be used:

Motor[x].Pn0 = 1 – N0

Motor[x].Pn1 = D1 – N1

Motor[x].Pn2 = D2 – N2

Motor[x].Pn3 = 0

Motor[x].Pn4 = 0

Motor[x].Pd1 = D1 – 1

Motor[x].Pd2 = D2 – D1

Motor[x].Pd3 = -D2

Motor[x].Pd4 = 0

Power PMAC User’s Manual

Setting Up the Servo Loop 376

Sample Filter Design: Butterworth Filter

A Butterworth filter is a common form of low-pass filter. A 2nd-order analog Butterworth filter

has a transfer function:

22

2

2 nn

n

ss
sL

where n is the natural frequency (in radians per second), and is the damping ratio (unitless).

To implement this as a trajectory pre-filter, we must first convert it to digital form, then from the

in-line path to the difference path. We will examine both the “backward-difference” and “bi-

linear” (Tustin) conversions to digital format.

Backward-Difference Digital Conversion

Converting to digital form using the backward-difference transform
sT

z
s

11
 , where Ts is the

filter sample time in seconds. Note that here, Ts is the product of the Power PMAC servo update

time and the filter period as set by Motor[x].PreFilterEna.

 22121

22

2
1

2
1

2

12211
2

1 snsn

sn

n

s

n

s

n

TzTzz

T

T

z

T

z
zL

 2122

22

2212

zzTTT

T
zL

snsnsn

sn

2

22

1

22

22

22

12

1

12

22
1

12

z
TT

z
TT

T

TT

T

zL

snsnsnsn

sn

snsn

sn

Bi-Linear Digital Conversion

Alternately, converting to digital form using the bi-linear (Tustin) transform:
1

1

1

12

z

z

T
s

s

2

1

1
2

1

1

2

1

12
2

1

12
n

s

n

s

n

z

z

Tz

z

T

zL

Power PMAC User’s Manual

Setting Up the Servo Loop 377

 21
22

221

21
22

21
4

1
2

21

21
4

zz
T

z
T

zz

zz
T

zL
snsn

sn

2

22
1

2222

2
22

1
2222

1
24

2
2

1
24

424

z
TT

z
TTT

z
T

z
TT

zL
snsnsnsnsn

snsnsn

2

22

22

1

22

22

2

22

22

1

22

22

22

22

1
24

1
24

1
24

2
21

1
24

41
24

21
24

4

z
TT

TT

z
TT

T

z
TT

T
z

TT

T

TT

T

zL

snsn

snsn

snsn

sn

snsn

sn

snsn

sn

snsn

sn

Conversion to Difference-Path Format

In both digital conversions of the analog filter, we obtained expressions for the digital coefficients

of an in-line filter that were labeled N0, N1, N2, D1, and D2 in the above section. These can be

converted to difference-path coefficients according the equations given in that section.

Power PMAC User’s Manual

Setting Up Compensation Tables 378

SETTING UP COMPENSATION TABLES

Power PMAC provides very powerful and flexible generalized table-based compensation

algorithms for functions such as “leadscrew compensation” and torque-ripple correction. The

tables can be one-, two-, or three-dimensional, based on the desired positions of motors, and a

variety of targets to be compensated – usually motor measured positions or motor commanded

torque.

Power PMAC can hold up to 256 compensation tables. Each table is individually controllable as

to its source(s), target(s), dimensionality, size, spans, and activation control. Once entered, the

tables operate transparently to the user.

Important features of Power PMAC compensation tables include:

 Compensation of position (inner and/or outer loop), backlash, or torque

 1D, 2D, or 3D tables (linear, planar, or volumetric)

 1st-order or 3rd-order interpolation between table entries in each dimension

 Ability to perform “cross-axis” compensation (different source and target motors)

 Ability to write to multiple “targets” from a single table

 Ability to use multiple tables additively on a single “target” register

 Ability to define the start point and span of the table arbitrarily in each dimension

 Ability to repeat the span of the table indefinitely in “rollover” or “mirror” mode

Table Data Structure

Each compensation table is represented internally by the CompTable[m] data structure, where m

is an integer value (represented by a constant or a local variable) from 0 to 255. Each table’s data

structure has the following saved setup elements (summarized here, explained in more detail

below):

 Source[n]: The number(s) of the (up to) 3 source motors, whose desired position is read

each servo cycle to determine the location in the table, where n is the “dimension index”

 SourceCtrl: a 3-bit control value for the table, with each bit n specifying whether the

desired position or the actual position of the source motor of dimension index n is used to

calculate the compensation value.

 Nx[n]: The number of data zones in each of the (up to) 3 dimensions

 X0[n]: The starting location of the (up to) 3 sources; that is, the value of the source

motor’s desired position that coincides with the first table entry in each dimension

 Dx[n]: The span of the (up to) 3 sources; that is, the difference between the starting

location and the ending values of the source register in each dimension

Power PMAC User’s Manual

Setting Up Compensation Tables 379

 Ctrl: A control byte for the table specifying the interpolation order and boundary mode in

each dimension

 Target[q]: The address(es) of the (up to) 8 target registers, where the table correction is

written each servo cycle

 Sf[q]: The output scale factor for the (up to) 8 target registers, by which the table’s

correction is multiplied before being written to that target register.

 OutCtrl: An 8-bit control value for the table, with each bit q specifying whether the

result replaces the existing value in the Target[q] register, or is added to the existing

value in the register.

 Data[i]: The correction entries in a table with one active dimension, where i is the

“location index” in this dimension

 Data[j][i]: The correction entries in a table with two active dimensions, where i is the

“location index” for the 1st dimension (“dimension index” n = 0) and j is the “location

index” for the 2nd dimension (“dimension index” n = 1).

 Data[k][j][i]: The correction entries in a table with three active dimensions, where i is the

“location index” for the 1st dimension (“dimension index” n = 0), j is the “location index”

for the 2nd dimension (“dimension index” n = 1), and k is the “location index” for the 3rd

dimension (“dimension index” n = 2).

Reserving Memory for the Tables

The data entries for the compensation tables are stored in a specially defined buffer area of Power

PMAC’s active memory, along with the data entries for cam tables. (The “header” entries for the

tables, which define the structure of each table, are stored in fixed pre-defined areas of memory.)

There must be sufficient memory reserved in this buffer for all of the tables used. Each data point

in a compensation table is a single-precision floating-point value, using 4 bytes of memory. The

memory required for the data entries of a table can be calculated as:

Memory (bytes) = 4 * (Nx[0] + 1) (Nx[1] + 1) (Nx[2] + 1)

where Nx[i] is the table header element (CompTable[m].Nx[i]) specifying the number of zones

of the table in that dimension.

Defining the Data Buffer Size

The amount of RAM reserved for the data entries of the compensation and cam tables together is

determined by a setting in the project file pp_proj.ini. The default setting is for 1 megabyte

(1,048,576 bytes). Few applications will require changing this default memory allocation, either

to reduce the amount of memory reserved to free it for other uses, or to increase it to support very

large tables.

The best way of changing this memory allocation is through the “Project Properties” control in

the Integrated Development Environment (IDE) PC software, which allows you to set the “Table

Buffer” size in megabytes. In the Power PMAC, the buffer memory allocation is set only at

power-on/reset, so to change the allocation, you must change the setting the IDE project control,

Power PMAC User’s Manual

Setting Up Compensation Tables 380

download the project to the Power PMAC, issue the save command to store this value to flash

memory, then reset the Power PMAC.

Dynamic Allocation of Buffer Memory to Tables

At power-on/reset, the table-buffer memory space is cleared completely, and the table memory

pointers are all cleared. Then as the table information is loaded, whether from the saved project in

flash memory, or from the host computer, Power PMAC allocates memory in the buffer for the

individual compensation and cam tables.

The memory for the entire table is allocated when the first data entry value is set in a Script

command (e.g. CompTable[5].Data[0][0] = 3.5). The starting location is the first word past the

last table already defined, and a memory space is allocated to the table according to the above

equation. This means that the size of the table must be defined before any data points are entered.

If all of the tables are defined just one time after power-on/reset, whether from flash memory or

from project download, memory space is allocated to tables in the order they are defined, from

the start of the buffer toward the end. As long as there is sufficient buffer space for all tables, this

goes smoothly, with the details hidden from the user.

However, if the user wishes to redefine the size of an already loaded table, the ramifications for

memory allocation must be understood. Any time Power PMAC executes a Script command that

changes the value of an existing table dimension CompTable[m].Nx[i], the pointer to the table

data entries in the buffer is cleared.

The pointer to the start of table data entries is not set again until the first Script command that sets

a data entry value. At that time, the pointer is set to the address of the register in the buffer

immediately following the last existing table. This means that if the table whose dimensions were

changed was not the last table in the buffer, the memory that was allocated for the table data is

lost until the next power-on/reset.

Note that it is possible to set table dimension and table data values in C, but doing so does not

trigger any of the memory management functions that the Script commands do. If defining or

redefining tables in C, the commands to set the dimension values and the first data value should

still be done with Script commands. This can be done from a C routine using the command""

function to execute the Script command within the quotes. Then the subsequent entry of data

points, including possibly overwriting the first data point, can be done with much faster C

commands.

Power PMAC User’s Manual

Setting Up Compensation Tables 381

Defining the Table Structure

Before the correction values can be entered into the table, the structure of the table must be

defined. This involves setting several elements for the table.

Dimension Indices

Each Power PMAC compensation table has the potential for using three dimensions. For the table

definition elements Source[n], Nx[n], X0[n], and Dx[n], the dimension index n can take a value

of 0, 1, or 2 for the 1st, 2nd, and 3rd dimensions, respectively.

For the table data points, the index values for each point specify the location of the point along a

dimension. For a 1D table, the value of the location index i for the point Data[i] indicates the

location of the point along the 1st dimension (corresponding to dimension index n = 0).

For a 2D table, the value of the location index i for the point Data[j][i] indicates the location of

the point along the 1st dimension (corresponding to dimension index n = 0), and the value of the

location index j indicates the location of the point along the 2nd dimension (corresponding to

dimension index n = 1).

For a 3D table, the value of the location index i for the point Data[k][j][i] indicates the location

of the point along the 1st dimension (corresponding to dimension index n = 0), the value of the

location index j indicates the location of the point along the 2nd dimension (corresponding to

dimension index n = 1), and the value of the location index k indicates the location of the point

along the 3rd dimension (corresponding to dimension index n = 2).

Number of Active Dimensions: Nx[n] > 0

Each table can have up to 3 active dimensions. The number of active dimensions used is specified

by the number of table dimensions that have a number of data zones defined as being greater than

zero. For each potential dimension, the number of data zones is defined by

CompTable[m].Nx[n]. A zone is the space between two table entries in that dimension.

One-Dimensional Tables

To specify one active dimension (a “1D” table), CompTable[m].Nx[0] should be set greater than

0, but CompTable[m].Nx[1] and CompTable[m].Nx[2] should be set to 0 to keep the 2nd and 3rd

dimensions inactive.

The most common type of 1D table corrects a motor’s position as a function of that same motor’s

position (i.e. the “source” and “target” motors are the same). This type of table is commonly

known as a “leadscrew compensation table”, as it is often used to correct for mechanical errors in

the screw that converts rotary motor motion to linear travel. The concept of this type of table is

shown in the following figure:

Standard 1D Leadscrew Compensation Table

ME

xxxxx

Power PMAC User’s Manual

Setting Up Compensation Tables 382

If the source and target motors are different, a “cross-axis” table can be created. This type of table

can be used to correct for “straightness errors”, as shown conceptually in the following figure:

1D “Cross-Axis” Compensation Table

y yyyyy
M

E

While the spatial effect of such a table can be multi-dimensional, the mathematical structure of

the table is still “1D”.

Two-Dimensional Tables

To specify two active dimensions (a “2D”, or “planar”, table), CompTable[m].Nx[0] and

CompTable[m].Nx[1] should be set greater than 0, but CompTable[m].Nx[2] should be set to 0

to keep the 3rd dimension inactive.

The entries of a 2D table form a rectangular grid in a Cartesian space, as shown in the following

figure:

2D “Planar” Compensation Table

The figure shows the target motor as being a separate motor from either of the two sources, but it

is common for the target motor to be the same as one of the source motors.

Three-Dimensional Tables

To specify three active dimensions (a “3D”, or “volumetric”, table), CompTable[m].Nx[0],

CompTable[m].Nx[1], and CompTable[m].Nx[2] should all be set greater than 0 to activate all

3 dimensions.

Power PMAC User’s Manual

Setting Up Compensation Tables 383

“Zero-Dimensional” Tables

If Nx[0], Nx[1], and Nx[2] are all set to 0, the table still has a single entry (Data[0]), and the

value of this entry can be written to target registers. This “0D” table can have some interesting

uses, as explained below.

Source Motors for Each Dimension: Source[n]

The source motor for each active dimension is specified by setting CompTable[m].Source[n] for

that dimension to the number of the motor to be used as the source motor for that dimension. For

example, if Table 9 is a 2D table using Motor 5 as the source for its 1st dimension, and Motor 6 as

the source for its 2nd dimension, CompTable[9].Source[0] should be set to 5, and

CompTable[9].Source[1] should be set to 6.

If a dimension is inactive (Nx[n] =0), it does not matter what the setting of Source[n] in that

dimension is. Even if the specified source motor for an inactive dimension moves, it will not

affect the calculations of the table. Typically, Source[n] is set to 0 for an inactive axis.

Source Position Used for Each Dimension: SourceCtrl

For each dimension, the user can choose between using the (net) desired position for the source

motor, or the (raw) actual position, as the source position for the compensation calculations.

Three-bit element CompTable[m].SourceCtrl controls this selection. If bit n is set to the default

value of 0, the desired position of the source motor for dimension n of the table is used; if the bit

is set to 1, the actual position is used. If a dimension is inactive (Nx[n] =0), it does not matter

what the setting of SourceCtrl for that dimension is.

The key advantage of using desired position, particularly when the target motor is the same as the

source motor, is that there is not interaction of the compensations with the servo loop dynamics.

In addition, there is much less quantization noise, and no measurement noise, in the desired

position value, minimizing the numeric noise introduced into the target motor servo loop.

However, the use of desired position means that if there is following error, the calculated

compensation is not correct for the present physical position; the compensation in general

converges toward the correct value over multiple servo cycles. Use of actual position can yield

superior results when quantization noise is low (i.e. measurement resolution is high),

measurement noise is low, and correction values are small.

Number of Data Zones in Each Active Dimension: Nx[n]

As noted above, if CompTable[m].Nx[n] is set to a value greater than 0 for a dimension of the

table, that dimension will be active for the table. The value of Nx[n] specifies how many data

“zones” there are for the table in that dimension. A “zone” is the space between two data points

of the table in that dimension. Corrections in this zone will be interpolated using the values of

these two data points.

The first zone is the space between the data point with a location index of 0 in that dimension and

the data point with a location index of 1 in that dimension. The second zone is the space between

the data points with location indices of 1 and 2 in that dimension, and so on.

The operation of the last zone in this dimension is dependent on the “boundary mode” for the

dimension. The boundary mode, explained in detail below, determines what happens when the

position of the source motor goes past the declared boundaries. If the boundary mode for the

Power PMAC User’s Manual

Setting Up Compensation Tables 384

dimension is “maintain last position” or “mirror”, then this last zone “p” (Nx[n] = p) is defined as

the space between the data points with location indices of p-1 and p in that dimension.

However, if the boundary mode for the dimension is “rollover”, then this last zone “p” is defined

as the space between the data points with location indices of p-1 and 0. A data point with a

location index of and p in that dimension may be entered, but it will not be used.

So if the dimension has “rollover” boundary mode and Nx[n] = p, then p data points should be

entered for each “line” in that dimension, with indices of 0 to p-1 for the dimension. If the

dimension has “maintain-last-position” or “mirror” boundary mode and Nx[n] = p, then p+1 data

points should be entered for each “line” in that dimension, with indices of 0 to p for the

dimension.

The following diagram illustrates how the zones relate to the data points both with rollover and

without:

Zone 1 Zone 3Zone 2 Zone 4 Zone 5

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

Nx[n] = 5, no rollover

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5(Zone 5) (Zone 1)

Nx[n] = 5, with rollover

Data[0] Data[1] Data[2] Data[3] Data[4] Data[0]

No rollover

Rollover

X0+Dx/NxX0 X0+2Dx/Nx X0+3Dx/Nx X0+4Dx/Nx X0+Dx

Corr

Data[1]Data[4]

X0-Dx/Nx

Source Pos

Zone Definition for Compensation Tables, With and Without Rollover

Starting Source Location for Each Active Dimension: X0[n]

CompTable[m].X0[n] contains the “starting” location of the table for the specified dimension,

expressed in the units of the source motor for that dimension. It is only used if the dimension is

active for the table. This value is the smallest (most negative) position of the source motor for

which the table is defined. It corresponds to data points with a location index of 0 for that

dimension.

Source Span for Each Active Dimension: Dx[n]

CompTable[m].Dx[n] contains the “span” of the table for the specified dimension, expressed in

the units of the source motor for that dimension. It is only used if the dimension is active for the

table. The table is defined in that dimension for source-motor positions from X0[n] to (X0[n] +

Dx[n]).

The spacing between table points in that dimension can be calculated as Dx[n] / Nx[n].

Power PMAC User’s Manual

Setting Up Compensation Tables 385

Example

For a dimension n, if X0[n] = -20000, Dx[n] = 180000, and Nx[n] = 36, then this dimension of

the table starts at -20,000 units of the source motor specified by Source[n], and ends at -20,000

+180,000 = +160,000 units of the this motor. The spacing between points is 180,000 / 36 = 5,000

units of the source motor.

The data point with location index 0 in this dimension is at -20,000 units of the source motor; the

point with index 1 is at -15,000 units; the point with index 2 is at -10,000 units, and so on. The

point with location index 34 in this dimension is at +150,000 units of the source motor, and the

point with index 35 is at +155,000 units. If the boundary mode for this dimension is “maintain

last correction”, a point with location index 36 in this dimension should be entered to specify the

correction at +160,000 units of the source motor.

Interpolation-Order and Boundary-Mode Control: Ctrl

CompTable[m].Ctrl specifies how the table calculates its corrections. It is an 8-bit value

comprised of four 2-bit components. The components determine the order of interpolation

between points in each dimension, and the boundary mode in each dimension.

Interpolation Order

The table can use either 1st-order (linear) or 3rd-order (cubic) interpolation between data points,

with somewhat independent specification by dimension. Of course, the interpolation order

specified for an inactive dimension is not used.

In 1st-order interpolation, Power PMAC computes a linear fit for the correction between adjacent

data points in the dimension, using just one point on each side of the present location in the

dimension. The correction is continuous as it passes a data point, but its derivative, in general, is

not. The correction computed at a data point is exactly equal to the table entry at that point.

In 3rd-order interpolation, Power PMAC computes a cubic fit for the correction between adjacent

data points in the dimension, using two points on each side of the present location in that

dimension. Both the correction and its derivative are continuous as it passes a data point. The

correction computed at a data point is exactly equal to the table entry at that point.

3rd-order interpolation therefore produces a smoother correction, but at the cost of increased

calculation time. For most applications, the increased calculation time is not significant, so users

are encouraged to select 3rd-order interpolation unless the application risks overloading the

processor.

Boundary Mode

The “boundary mode” controls how corrections are calculated when the position of the source

motor passes the defined ends of the table. The boundary mode is individually selectable by

dimension. Three different boundary modes have been implemented: “maintain last correction”,

“rollover”, and “mirror”.

Maintain-Last-Correction Mode

In “maintain-last-correction” mode, if the position of the source motor for the dimension passes a

defined end for the table, the correction calculated is simply the value of the last table point

passed. That is, for a dimension n of the table with Nx[n] = p, if the source motor position is less

than X0[n], the correction will simply be the value of the data point with location index 0 for that

Power PMAC User’s Manual

Setting Up Compensation Tables 386

dimension, and if the source motor position is greater than (X0[n] + Dx[n]), the correction will

simply be the value of the data point with location index p for that dimension.

Rollover Mode

In “rollover” mode, the table can be considered to repeat indefinitely in that dimension on both

sides of the defined span for the table. If the source motor position goes outside the defined span

of the table, its position is “rolled over” to within the defined span of the table before the

correction is calculated. This mode is very useful for corrections that repeat periodically, such as

sensor imperfections on a rotary motor which repeat every revolution of the motor, or even those

that repeat for each line of a sinusoidal encoder.

For example, if the span of the table is defined as being from -10,000 to +90,000 units of the

source motor (a span of 100,000 units), the correction at +120,000 units will be the same as the

correction at +20,000 units; the correction at -75,000 units will be the same as the correction at

+25,000 units; the correction at +517,432 units will be the same as the correction at +17,432

units, and so on.

Mirror Mode

In “mirror” mode, the table can be considered to repeat indefinitely in that dimension on both

sides of the defined span for the table, but it is “flipped” each time it repeats. This mode can be

useful for mirror-symmetrical corrections, so the size of the table can be kept small. An example

of this type of application involves the use of two rotating mirrors to direct a laser beam around a

target plane. Due to the geometry, the location of the beam on the axes of the plane is not quite

proportional to the angles of the mirrors, and the difference is often corrected for with

compensation tables. The corrections are mirror-symmetrical about both the X=0 and Y=0 lines.

The mirror boundary mode permits the tables to be defined for only half (for a 1D table) or a

quarter (for a 2D table) of the work area, saving considerable memory.

For example, if the span of the table is defined as being from 0 to +100,000 units of the source

motor, the correct at -15,000 units will be the same as the correction at +15,000 units; the

correction at +125,000 units will be the same as the correction at +75,000 units, and so on.

Assembling the Value of the Ctrl Element

Bits 0 and 1 of Ctrl determine the order of interpolation in each dimension. This 2-bit component

has four possible values:

 0 (002): 1st-order interpolation in all dimensions

 1 (012): 3rd-order interpolation in dimension 0 (n = 0); 1st-order in others

 2 (102): 3rd-order interpolation in dimensions 0 & 1 (n = 0 & 1); 1st-order for n = 2

 3 (112): 3rd-order interpolation in all dimensions

Of course, settings for inactive dimensions do not matter. Most users should set this component to

3 to select 3rd-order interpolation.

Bits 2 and 3 of Ctrl determine the boundary mode for the dimension with index n = 0 (which uses

the motor specified by Source[0]). This 2-bit component has four possible values:

 0 (002): Rollover mode in this dimension

 1 (012): Maintain-last-correction mode in this dimension

 2 (102): Mirror mode in this dimension

Power PMAC User’s Manual

Setting Up Compensation Tables 387

 3 (112): (Reserved for future use)

Bits 4 and 5 of Ctrl determine the boundary mode for the dimension with index n = 1 (which uses

the motor specified by Source[1]). This 2-bit component has the possible values as for dimension

n = 0.

Bits 6 and 7 of Ctrl determine the boundary mode for the dimension with index n = 2 (which uses

the motor specified by Source[2]). This 2-bit component has the possible values as for dimension

n = 0.

Examples

For a 3D table with 3rd-order interpolation in all dimensions, and maintain-last-correction

boundary mode in all dimensions, Ctrl should be set to 01010111 binary, which is $57

hexadecimal, or 87 decimal. The value can be entered in decimal or hexadecimal form. It will be

reported in decimal form.

For a 1D table with 3rd-order interpolation and rollover boundary mode, Ctrl should be set to

xxxx0001 binary, where x represents a “don’t-care” bit. Generally the don’t-care bits are set to 0,

so the value is $01 hexadecimal, or 1 decimal.

For a 2D table with 1st-order interpolation in both dimensions, and mirror boundary mode, Ctrl

should be set to xx101000 binary. where x represents a “don’t-care” bit. Generally the don’t-care

bits are set to 0, so the value is $28 hexadecimal, or 40 decimal.

Target Register Addresses: Target[q]

CompTable[m].Target[q] contains the address to which the correction computed by the table

will be written. The target index q can take a value from 0 to 7, so a single table can have up to 8

target registers. If the Target[q] element has a value of 0 (the default), no value will be written

for that index.

If all the Target[q] elements for a table have a value of 0, the table will have no effect, even if

enabled (although processor time will still be devoted to the computation of corrections.) Setting

these elements to 0 can be a simple way of temporarily disabling an individual table. However, in

doing this, the last computed correction(s) will be left in the target register(s); it may be desirable

to then set the register value to 0 by writing directly to the register.

The target registers can be actual or command position-compensation, torque-compensation, or

backlash-compensation registers for motors. The “target” motor or motors do not need to be the

same motor(s) as the “source” motors, permitting “cross-axis” compensation for uses such as

straightness correction. Other registers are not permitted as targets for compensation tables.

Note that Turbo PMAC has separate classes of tables for position compensation, backlash

compensation, and torque compensation. In Power PMAC, every table can provide each of these

types of compensation, depending on which target register is specified.

Power PMAC User’s Manual

Setting Up Compensation Tables 388

The following diagram shows how the different target registers are used by the target motor:

PI

FF

D

Des

Pos

CompPos2

CompPos Pos

Pos2
ActPos2

ActPos

CompDac

BlCompSize

-

+ +
+

-

+
+

+

+
+

+ +

IqCmd
Pos

Error

Comp

Des

Pos

+

+

Servo

Out

Compensation Table Target Registers

Position-Correction Compensation Tables

For position-compensation tables that are used to correct for measurement errors, the target

registers are Motor[x].CompPos for the outer (position) loop and Motor[x].CompPos2 for the

inner (velocity) loop. The outer-loop compensation is necessary for position accuracy; the inner-

loop compensation can often be important for velocity smoothness, particularly for high-precision

applications. Usually, both of these registers are used as targets for a position-compensation table.

Note that the corrections are added to actual position values, not to command position values (as

they were in Turbo PMAC). This means that the corrections do not affect the feedforward into the

servo loop. (However, if Power PMAC is not actually closing the servo loop and instead is

outputting command position with Motor[x].Ctrl set to Sys.PosCtrl, as for networked

positioning drives, the position compensation values are subtracted from the command position

value, and the difference is output.) The corrections do affect the reference position for software

overtravel limits and compensation tables.

Typical commands for this type of table are:

CompTable[1].Target[0] = Motor[1].CompPos.a

CompTable[1].Target[1] = Motor[1].CompPos2.a

Cam-Command Compensation Tables

When it is desired to command real motion from the table rather than just to correct for

measurement errors, the target registers are Motor[x].CompDesPos. The value in this register for

a motor is added to the trajectory command value and the master following command value to

obtain the net motor command position Motor[x].DesPos.

Power PMAC User’s Manual

Setting Up Compensation Tables 389

However, Power PMAC also has dedicated “cam” tables for this functionality. These dedicated

cam tables have several features optimized for commanding true motion, such as slewing into

synchronization with the master at a controlled rate on enabling, and the ability to have the final

position in a cycle different from the starting position. Refer to the User’s Manual chapter on cam

tables for details.

When Motor[x].CompDesPos is the target register, the corrections do affect the feedforward into

the servo loop. The corrections do not affect the reference position for software overtravel limits

or position-correction compensation tables. The command values from cam command tables are

superimposed on top of programmed calculated trajectory motion for the target motor. Note that

the addition of this register into the net commanded position is done before the trajectory pre-

filter, so the filter acts on this component as well.

Note that the direction of motion caused in the target motor for a table value of a given sign is the

opposite of that for a position correction table.

A typical command for this type of table is:

CompTable[3].Target[0] = Motor[2].CompDesPos.a

Torque Compensation Tables

For torque-compensation tables, the target registers are Motor[x].CompDac. This value is added

to the servo-loop command output-value before it is sent to an output register or used as the

“quadrature current” command input to the commutation algorithm.

Torque-compensation tables are most commonly used to correct for “cogging”, or reluctance-

torque variations in motors. They virtually always have the same source and target motors, and

use “rollover” boundary mode, so they only have to be defined for a single revolution or electrical

cycle of the motor.

Correction values for torque-compensation tables can easily be determined by moving the

unloaded motor to each point in the table, waiting for it to settle into position (with integral gain

active) and reading the servo torque command required to hold position against the cogging

torque. This value can then be put into the table entry for that point.

A typical command for this type of table is:

CompTable[5].Target[0] = Motor[1].CompDac.a

Backlash Compensation Tables

For backlash-compensation tables, the target registers are Motor[x].BlCompSize. This value is

combined with the value of the setup element Motor[x].BlSize, which does not vary with motor

position, and the sum is subtracted from the measured actual position when the motor is moving

in the negative direction.

Backlash-compensation tables are most often used to create bi-directional position compensation,

when different corrections are required for positive and negative-going motion. Corrections for

moving in the positive direction are contained in a standard position compensation table; the

backlash-compensation table contains the difference between positive-going and negative-going

corrections over the travel of the motor.

Power PMAC User’s Manual

Setting Up Compensation Tables 390

A typical command for this type of table is:

CompTable[8].Target[0] = Motor[1].BlCompSize.a

Target Output Scale Factors: Sf[q]

Before the calculated table correction is written to the target register whose address is specified

by Target[q], it is multiplied by a scale factor for that target Sf[q]. Different target registers can

have different scale factors. Most commonly, the scale factor is simply set to 1.0, so the units of

the table correction are simply those of the target register.

This is true for both position compensation tables, for which a scale factor of 1.0 means the table

entries are in the defined position units of the target motor, and for torque compensation tables,

for which a scale factor of 1.0 means the table entries are in units of a signed 16-bit output device,

the same scaling as the setup units for the servo output command setup elements.

Overwriting vs. Additive Outputs: OutCtrl

CompTable[m].OutCtrl determines whether the output of the table for each target register

overwrites the pre-existing value in that target register or adds to it. It is an 8-bit value, with each

bit q (q = 0 to 7) controlling the output for the register specified in Target[q]. If the bit value is

set to 0, the table will overwrite the existing value; if it is set to 1, the table will add to the value

in the target register.

If the table is the only table writing to the Target[q] register, bit q of OutCtrl must be set to 0, so

a new value is written to this register every servo cycle. If multiple tables write to the same target

register (as with coarse and fine corrections), the lowest-numbered table (which executes first

each servo cycle) writing to the Target[q] register must use bit q of OutCtrl = 0 to overwrite the

previous cycle’s value, and any higher-numbered tables writing to this register must use bit q of

OutCtrl = 1 so their corrections for this servo cycle are added to the first table’s correction.

WARNING

It is essential that a table set up to add its value to the target

register be preceded each cycle by another table that

overwrites the existing value (from the previous servo

cycle). Otherwise, the adding table acts as a numerical

integrator, potentially creating a dangerous runaway

condition by continually incrementing the value of the

target register in the same direction.

Power PMAC User’s Manual

Setting Up Compensation Tables 391

Entering the Table Data Points

Once the structure of the table – number of active dimensions and number of data zones in each

dimension – has been defined, the actual data points can be entered for the table. Each entry in the

table is a data structure element, and the element can be set to a numerical constant or

mathematical expression. The general form of this assignment is:

CompTable[m].Data[i] = {expression} // 1D table entry

CompTable[m].Data[j][i] = {expression} // 2D table entry

CompTable[m].Data[k][j][i] = {expression} // 3D table entry

Note carefully that for a multi-dimensional table, the last location index, denoted by [i] here, is

for the first dimension of the table, the one using the position of the motor specified by

Source[0].

It is also possible to enter multiple consecutive points in a single command, with the last location

index i incrementing for each value entered. For example, the command:

CompTable[3].Data[4][0] = 17.2, 8.6, -3.9

sets CompTable[3].Data[4][0] to 17.2, CompTable[3].Data[4][1] to 8.6, and

CompTable[3].Data[4][2] to -3.9.

If there is more than one active dimension, only the last location index i corresponding to

dimension index n = 0 can be incremented in a single command. But it is possible to enter an

entire “row” of the table in a single command. This can make the text file for the table compact

and relatively easy to read.

In a 1D table, constant values for the data-point index i can range from 0 to 16,777,215, and any

L-variable can be used for the index.

In a 2D table, constant values for the data-point indices i and j can range from 0 to 65,533. Only

variable L0 can be used for the index i, and only L0 and L1 can be used for the index j.

In a 3D table, constant values for the data-point index i can range from 0 to 65,533, and indices j

and k can range from 0 to 252. Only variable L0 can be used for the index i, only L0 and L1 can

be used for the index j, and only L0, L1, and L2 can be used for the index k.

When using an L-variable for an index, the value of the variable can exceed the highest constant

value permitted for that index. Whether a constant or a variable is used for the index, it is not

possible to set a value for a data point outside the number of zones defined for the table.

Note

It is possible to use the data points of a compensation table

simply to store points in an indexed array structure. This is

particularly useful if 2D or 3D arrays are desired. The table

does not need to be enabled (and probably should not be) in

order to use a table structure in this manner. However, the

table’s “form” does need to be defined with appropriate values

of Nx[n] for each dimension.

Power PMAC User’s Manual

Setting Up Compensation Tables 392

Entering Table Data Points in C

Some users may want to enter table data points from a C program, rather than with Script

commands. This is much faster, particularly for very large tables. The table structure variables,

especially those setting dimensions, should still be entered with Script commands. If any of the

dimensions has been changed, the first data point should be entered with a Script command, as

this reserves the buffer space for all the data points. (You can then overwrite this point in C if you

like.)

The table data points are accessed with a pointer variable that can be declared something like:

float *CompDataPtr;

This pointer can be set to the start of the data points for table m with a program line like:

CompDataPtr = pshm->CompTable[m].Data + OffsetTblSHM;

(The OffsetTblSHM term is not needed if executing from a user servo or user phase, but those

tasks are not recommended for writing to table points.)

In a 1D table, the data point CompTable[m].Data[i] can be assigned with:

*(CompDataPtr + i) = MyVal;

In a 2D table, the data point CompTable[m].Data[j][i] can be accessed with:

MaxI = pshm->CompTable[m].Nx[0] + 1;

*(CompDataPtr + j*MaxI + i) = MyVal;

In a 3D table, the data point CompTable[m].Data[k][j][[i] can be accessed with:

MaxI = pshm->CompTable[m].Nx[0] + 1;

MaxJ = pshm->CompTable[m].Nx[1] + 1;

*(CompDataPtr + k*j*MaxJ*MaxI + j*MaxI + i) = MyVal;

Enabling Compensation Tables

The global data structure element Sys.CompEnable specifies how many compensation tables are

enabled on the Power PMAC. It can take a value from 0 (no tables enabled) to 256 (all possible

tables enabled). For a given value of Sys.CompEnable, compensation tables CompTable[m], m

= 0 to Sys.CompEnable - 1 are enabled.

If the user wants to effectively disable a table in the enabled range of tables, there are a couple of

options. The first is to set CompTable[m].Sf[q] to 0.0, which forces the correction to 0.0. If it is

desired to reduce the correction gradually, the value of this element can be ramped down in a

timed loop (and ramped back up to re-enable the table).

The second method is to set CompTable[m].Target[q] to 0. This leaves the most recent

correction in the target register. However, because this register is no longer being written to

automatically, the user can overwrite this value manually to clear the correction.

Power PMAC User’s Manual

Setting Up Compensation Tables 393

Action of the Compensation Tables

Once the specified compensation tables are enabled, their action is automatic and virtually

invisible to the user. The correction for each enabled table is calculated every servo cycle based

on the commanded position(s) of the source motor(s) for each active dimension. For each

specified target register, this correction is multiplied by the scale factor for that target, and the

result is written to the target register.

To compute the correction, Power PMAC uses the table entries on both sides of the present

desired position of the source motor in each active dimension of the table to calculate a weighted

average of the entries. If 1st-order interpolation is selected in the dimension, just the single entry

on each side of the present desired position is used. If 3rd-order interpolation is selected in the

dimension, two entries on each side of the present desired position are used.

In multi-dimensional tables, the entries used can be thought of a comprising a 2D or 3D “box”

around the present desired position. For a 2D table with 1st-order interpolation in both

dimensions, 4 entries (2 x 2) will be used in the calculations. For a 3D table with 3rd-order

interpolation in all dimensions 64 entries (4 x 4 x 4) will be used in the calculations.

When motor actual position, or the matching axis actual position, is queried with the p command,

Power PMAC reports the corrected, not raw, position. The raw measured motor position can be

read in the element Motor[x].Pos; the corrected motor position can be read in the element

Motor[x].ActPos. The correction from the table can be monitored at any time by querying the

value of the target register (e.g. Motor[x].CompPos).

Note

If the target register is the compensation position register for

the same motor that is used as a source motor for the table, the

compensation value at a corrected position p' will not in

general be the same as the compensation value specified for

raw position p.

All of the compensation-table calculations are performed after the commanded trajectories for

that servo cycle are updated to get the new net commanded position for the cycle. (This

eliminates a servo cycle delay that was present in older controllers.) The calculations are

performed immediately before the servo-loop closure for the motor whose number is contained in

the saved setup element Sys.CompMotor, so after the servo-loop closure for any lower-

numbered motors.

Unless a 0D compensation table is used to cascade servo loops, as explained in the next section,

Sys.CompMotor should be left at the default value of 0, so all tables work without a cycle’s

delay.

Use of “0D” Compensation Tables

A compensation table for which the number of zones Nx[n] in all three possible dimensions is set

to 0 still contains a single data point Data[0]. The value in this data point can be written to any or

all of the target registers for the table as specified by the Target[q] addresses. The value can be

scaled as necessary for each target using the Sf[q] factors, and can either overwrite or add to the

value in the target registers as specified by OutCtrl.

Power PMAC User’s Manual

Setting Up Compensation Tables 394

One use of this feature is to inject calculated offsets and/or corrections into multiple registers,

providing an algorithmic, rather than table-based, compensation.

Another use of this feature is to “cascade” multiple servo loops, writing the output of one loop

into an input of another loop. This is commonly employed to close a “force loop” or “gap loop”

around a standard position loop to provide multi-mode control. See the section on cascading

servo loops in the Setting Up Servo Loops chapter of the User’s Manual for details.

In a 0D table, if bits 0 and 1 of the Ctrl element are greater than 0, then the value of the servo-

loop output from the motor specified by Source[0] for the table is automatically used to write to

the specified target registers, usually the CompDesPos register for the inner-loop motor. In this

mode, the Data[0] value is not used, but this element must still contain a valid numerical value. It

is suggested to set it to 0 in the configuration of the table.

If the OutCtrl bit for the table is set to 0, the table overwrites the value of the target register each

servo cycle. For cascaded loops, this is desirable when the modification of the inner loop is

limited, as in gap-control applications. However, if OutCtrl is set to 1, the table adds to the

existing value in the target register each servo cycle, performing a numerical integration. This is

useful when the modification of the inner loop can be effectively unlimited, as in web-tensioning

applications. Note, however, that this integration makes a runaway condition possible, so it is

essential to get the outer loop tuning correct.

For the highest performance in cascaded servo loops, the inner loop should use the command

from the outer loop that was calculated in the same servo cycle. For this to occur, two things must

be true. First, the outer loop must be closed in a motor whose number is less than that of the inner

loop.

Second, the transfer performed by the compensation table must occur between the inner-loop

closure and the outer-loop closure of the same servo cycle. The timing of the compensation table

calculations is controlled by saved setup element Sys.CompMotor, which specifies the number

of the motor before whose servo loop closure all active compensation tables are updated. The

default value for Sys.CompMotor is 0, which means the tables are updated before any motor

servo loops are closed (but after the command trajectories for all motors are updated).

Unless compensation tables are used for cascading servo loops, this value will probably be left at

0. However, to optimize the performance of a cascaded servo loop, Sys.CompMotor should be

set to a value higher than the number of the motor used for the outer loop, but not higher than that

of the number of the motor used for the inner loop.

Note that it is possible to cascade servo loops without a 0D compensation table, but with other

techniques, there will always be a servo-cycle delay in the cascading process.

Iterative Learning Control for Torque Compensation Tables

Power PMAC can employ sophisticated “iterative learning control” (ILC) algorithms to reduce

repetitive position errors of the target motor using a torque compensation table in all zones of the

table. As the table executes over multiple cycles, the pattern of position errors in each zone of the

table is noted. Based on the pattern of errors in the zone, the table entry CompTable[m].Data[i]

for the zone is automatically adjusted to try to reduce this error.

ILC algorithms for compensation tables are new in V2.1 firmware, released 1st quarter 2016.

Power PMAC User’s Manual

Setting Up Compensation Tables 395

These algorithms can provide a quick and easy method to set the values for a torque

compensation table when the resulting position errors are largely repeatable.

The ILC algorithm for a table is only active if CompTable[m].DacEnable is set to a value

greater than 0. In this case, the value of DacEnable specifies the number of the target motor

whose servo loop output (“torque”) is corrected and whose position error values are evaluated.

The number of the target motor does not have to be the same as that of the source motor

(specified by CompTable[m].Source) for the table – the motor whose position values are used to

determine what zone of the table is used for the correction. When the table is used to reduce

errors from cogging torque in the motor, source and target motor will be the same. When the table

is used to reduce errors in one motor from action/reaction effects from the imbalance of another

motor, the source and target motors will be different.

When CompTable[m].DacEnable is set to a value greater than 0, the table is always treated as a

one-dimensional (1D) torque-compensation table. The correction from the table is always written

only to the Motor[x].CompDac register for the motor specified by DacEnable, where it is added

to the torque command from the servo algorithm for the motor. The scaling of the correction is

specified by CompTable[m].Sf[0]. The table should be defined as a 1D table, with

CompTable[m].Nx[1] and CompTable[m].Nx[2] both set to 0.

The user must set three saved setup elements to specify how the ILC algorithm will work.

CompTable[m].DacGain specifies how aggressively Power PMAC will change the correction

for a given position error value. If it is set too low, corrections may take many cycles to reduce

the error significantly. If it is set too high, overcorrection and limit-cycling about the ideal

correction can occur. DacGain must be set greater than 0.0 in order for the ILC calculations to

have any effect. Changing the value back to 0.0 can “freeze” the values currently in the table.

CompTable[m].MaxDac specifies the magnitude of the maximum torque correction the ILC will

use in any zone of the table. Even if the algorithm computes a larger value based on the detected

position errors and the value of DacGain, no value with a larger magnitude than MaxDac will be

written to any CompTable[m].Data[i] table point.

CompTable[m].MinPosError specifies the magnitude of the position error for any table zone

below which Power PMAC will not attempt to reduce further by adjustments to Data[i] for the

element.

Sample Compensation Tables

Here we present some simple examples of compensation tables in Power PMAC to illustrate how

they can be defined and entered.

1D “Leadscrew Compensation” Table

One-dimensional position compensation tables that have the same source and target motors (i.e.

which correct a motor’s position based on that motor’s raw position) are the most commonly used

type of compensation table. Often these are called “leadscrew compensation” tables because

leadscrew imperfections can be a dominant source of error in many applications.

This simple example seeks to accomplish the following:

 Correct Motor 1’s position based on Motor 1’s raw position value

Power PMAC User’s Manual

Setting Up Compensation Tables 396

 Cover the span of -10,000 to +100,000 units of Motor 1, no rollover

 Have a table entry every 10,000 units of Motor 1, with cubic interpolation in between

This table can be defined with the following commands:

CompTable[0].Source[0] = 1 // Use Motor 1 as 1st dim source

CompTable[0].Nx[0] = 11 // 11 data zones in 1st dim

CompTable[0].Nx[1] = 0 // No 2nd dimension

CompTable[0].Nx[2] = 0 // No 3rd dimension

CompTable[0].X0[0] = -10000 // Start at -10K units

CompTable[0].Dx[0] = 110000 // Span of 110K units (to +100K)

// Compensate both position and velocity loops

CompTable[0].Target[0] = Motor[1].CompPos.a

CompTable[0].Target[1] = Motor[1].CompPos2.a

CompTable[0].Sf[0] = 1.0 // Unity scale factor for pos loop

CompTable[0].Sf[1] = 1.0 // Unity scale factor for vel loop

CompTable[0].Ctrl = 7 // No rollover, cubic interpolation

CompTable[0].OutCtrl = 0 // Overwrite targets each cycle

// Enter table correction data points 0 to 5

CompTable[0].Data[0] = 0.0, 25.2, 12.1, -7.3, 8.1, -1.9

// Enter table correction data points 6 to 11

CompTable[0].Data[6] = 6.5, 13.4, -3.6, 2.9, -11.8, 4.7

This table will be enabled if Sys.CompEnable is set greater than or equal to 1.

2D “Planar” Position Compensation Table

Two-dimensional position compensation tables are increasingly popular for precision Cartesian

stages. In this example, a third motor’s position is compensated as a function of the position in

the plane of two motors, but often the target motor is one of the two motors in the plane. This

example seeks to accomplish the following:

 Correct Motor 3’s position based on the positions of Motors 1 and 2

 Cover the span of 0 to 40,000 units of Motor 1

 Cover the span of 0 to 30,000 units of Motor 2

 Have a table entry every 10,000 units of both source motors

This table can be defined with the following commands:

CompTable[1].Source[0] = 1 // Use Motor 1 as 1st dim source

CompTable[1].Source[1] = 2 // Use Motor 2 as 2nd dim source

CompTable[1].Nx[0] = 4 // 4 data zones in 1st dim

CompTable[1].Nx[1] = 3 // 3 data zones in 2nd dim

CompTable[1].Nx[2] = 0 // No 3rd dimension

CompTable[1].X0[0] = 0 // Start at 0 units of 1st source

CompTable[1].X0[1] = 0 // Start at 0 units of 2nd source

CompTable[1].Dx[0] = 40000 // Span of 40K units of 1st source

CompTable[1].Dx[0] = 30000 // Span of 30K units of 2nd source

// Compensate both position and velocity loops of Motor 3

CompTable[1].Target[0] = Motor[3].CompPos.a

CompTable[1].Target[1] = Motor[3].CompPos2.a

CompTable[1].Sf[0] = 1.0 // Unity scale factor for pos loop

CompTable[1].Sf[1] = 1.0 // Unity scale factor for vel loop

CompTable[1].Ctrl = $17 // No rollover, cubic interpolation

CompTable[1].OutCtrl = 0 // Overwrite targets each cycle

Power PMAC User’s Manual

Setting Up Compensation Tables 397

// Enter table correction data points for Motor 2 pos = 0

CompTable[1].Data[0][0] = 0.0, 10.0, 20.0, 30.0, 40.0

// Enter table correction data points for Motor 2 pos = 10,000

CompTable[1].Data[1][0] = 11.0, 21.0, 31.0, 41.0, 51.0

// Enter table correction data points for Motor 2 pos = 20,000

CompTable[1].Data[2][0] = 22.0, 32.0, 42.0, 52.0, 62.0

// Enter table correction data points for Motor 2 pos = 30,000

CompTable[1].Data[3][0] = 33.0, 43.0, 53.0, 63.0, 73.0

This table will be enabled if Sys.CompEnable is set greater than or equal to 2.

Power PMAC User’s Manual

Setting up Electric Cam Tables 398

SETTING UP ELECTRONIC CAM TABLES

Power PMAC provides sophisticated capabilities for table-based “electronic cams”. These permit

customized cyclic motion of a motor as a function of another motor’s position (whether that

motor is real or virtual). The tables are of a user-specified size, with virtually no limit on size.

The resulting commanded position is computed every servo cycle, using a third-order

interpolation between table points.

In addition, a torque offset to the output of the target motor’s servo loop can be specified for each

point in the table, with the commanded offset computed every servo cycle, also using a third-

order interpolation between table points. A set of digital outputs can be specified for each zone in

the table as well.

Note that Power PMAC compensation tables can be used for rudimentary electronic cam

positioning capabilities, but the dedicated electronic cam tables are much more full-featured for

this purpose.

Uses of Electronic Cam Tables

Electronic cam tables are typically used to specify cyclic motion of a motor as a function of

another position, as by analogy with a mechanical cam.

Position Commands

The most common use of an electronic cam table is to specify the commanded position of a motor

as a function of another position. Power PMAC’s cam tables can compute these commanded

positions every servo cycle to create a rapid but smooth response to the “source” motor position.

These table-based command positions can be superimposed on directly commanded (trajectory)

motor positions from jogging moves and programmed axis moves; the directly commanded

positions are often used to provide a reference (base) position for the table.

Torque Offset Commands

In many applications of electronic cam tables, the cammed motor is working against external load

forces and torques that vary throughout the cycle but are highly repeatable at the same point in

each cycle. If only positions are commanded from the table, the feedback of the servo loop must

respond to the resulting errors to try to reduce these errors after some time. However, Power

PMAC’s electronic cam tables can also compute offsets directly to the output of the motor’s

servo loop, typically acting as torque/force offsets, with the aim of preventing these repeatable

errors before they occur.

Often these offsets are determined through techniques such as “iterative learning control”, which

monitor the errors and resulting servo commands and converge on offsets that minimize the

errors. Less formal methods can also be used.

Direct Output Commands

In many electronic-cam applications, it is desired that general-purpose outputs be controlled

synchronously with the cam motion. Power PMAC’s electronic cam tables support this

functionality with an output “word” that can be programmed for each zone (i.e. between each two

points) of the cam table. Most commonly, this word will command a set of discrete digital

outputs, but it can also be used to command a single continuously variable output such as a

digital-to-analog converter (DAC), a pulse-width-modulated (PWM) output, or a pulse-

Power PMAC User’s Manual

Setting up Electric Cam Tables 399

frequency-modulated (PFM) output. Any number of consecutive bits in a single 32-bit register

can be commanded from a table in this way.

Comparison to External Time Base Techniques

Some Power PMAC users employ the “external time base” feature to obtain electronic cam

functionality by executing looping motion programs synchronized to an external encoder (real or

virtual). The techniques of external time base and electronic cam tables each have their strengths

and weaknesses; a careful evaluation of these techniques for your desired functionality is

essential to choosing the best approach.

 In external time base, the master position must be fundamentally uni-directional –

increasing in value over time. (It is OK to have the master position oscillate slightly when

stopped – the slave position will track it exactly – but the master has limited ability to

move in the negative direction.) With electronic cam tables, the master position can be

fully bi-directional, moving indefinitely in either direction.

 In external time base, the motion of multiple motors relative to a single master can be

described in a single structure by commanding multiple axes within the same motion

program running in a coordinate system. With electronic cam tables, a separate table is

required for each slave motor, but it is easy to keep these motors fully synchronized.

 In external time base, the specified (programmed) points do not need to be evenly spaced,

and several modes of interpolation between points are possible, with the interpolation

function in most modes not passing exactly through the specified points. With electronic

cam tables, the specified points must be evenly spaced, and there is always a cubic

interpolation between the points, with the interpolation function passing exactly through

the specified points.

 It is easier to compute and re-compute point values in a motion program running under

external time base than in a cam table, especially if values in the program use variables.

A separate task must be used to re-compute point values in a cam table.

 The electronic cam tables provide a “direct output” word that can be different for each

small zone of the table, and that execute in a fully reversible manner.

 The electronic cam tables provide a torque-offset value for each zone of the table that can

directly compensate for repeatable angle-specific error-causing loads, executing in a fully

reversible manner.

In applications where both techniques are possible, many people will decide which approach to

use based on a personal preference as to whether they prefer a program-based technique or a

table-based technique.

Power PMAC User’s Manual

Setting up Electric Cam Tables 400

Table Design Techniques

Delta Tau provides a “Cam Sculptor” software tool for Windows PCs to provide interactive

graphical design capabilities for creating electronic cam tables in Power PMAC. While this

software greatly facilitates the creation and optimization of tables for most applications, it is not

necessary to use this for the creation of cam tables in the Power PMAC. Some users may simply

use a spreadsheet or similar computational tool to compute the points in the table.

Here we see a sample screen shot of the Cam Sculptor software being used to design a cam table

for the Power PMAC.

Delta Tau “Cam Sculptor” Sample Design Session

Power PMAC User’s Manual

Setting up Electric Cam Tables 401

Table Data Structure

Each electronic cam table is represented internally by the CamTable[m] data structure, where m

is an integer value in the range 0 through 255. Each table’s data structure has the following saved

setup elements (summarized here, explained in more detail below):

 Source: The number of the “source motor”, whose desired position is read each servo

cycle to determine the location in the table

 Nx: The number of data zones in the table.

 X0: The desired starting position of the source motor for the table.

 SlewX0: The rate of change (per servo cycle) of the starting position of the source motor

for the table, if the desired starting position X0 is different from the present starting

position. This permits controlled changes in the “phase” of the table.

 Dx: The span of the table in units of the source motor. The spacing between points in the

table is Dx/Nx. (It is doubtful that there would be a need for slew control on changes to

this value.)

 Target: The number of the “target motor”, where the table position and torque results are

applied each servo cycle (to the CompDesPos and CompDac registers, respectively).

 PosSf: The desired output scale factor for the position command, multiplying the

calculated interpolated position value from the table.

 PosBias: The user-set target motor position offset value that is added to the value

calculated from the table itself and the value in non-saved setup element PosOffset.

 SlewPosOffset: The rate of change (per servo cycle) of the output position offset for the

table, which is used to bring the target motor into synchronization with the source motor

on enabling of the table.

 DacEnable: On/off control for the torque offset value for the table.

 DacSf: The desired output scale factor for the torque command, multiplying the

calculated interpolated torque value from the table.

 pOut: The address of the register, if any, for the digital output word from the table.

 pOutBuf: The address of the register for a buffered digital output word from the table. If

the values written to the actual output register cannot be read back, a buffered register

where the values can be read back should be used as well.

 OutLeftShift: The number of bits the output data value is shifted left before being

written to the specified register. Equal to the lowest bit number in the output register this

table will control.

 OutBits: The number of (consecutive) bits in the output word this table will control

Power PMAC User’s Manual

Setting up Electric Cam Tables 402

 DacGain: For automatic adjustment of torque offset in iterative learning control, the gain

factor used to try to reduce repeating following errors in each sector of the table by

adjusting DacData[i] for the sector.

 MaxDac: The magnitude of the maximum adjustment of torque offset that will be made

in iterative learning control

 MinPosError: The smallest magnitude of following error for which the iterative learning

control algorithm will attempt to reduce further through automatic torque adjustment.

 PosData[i]: The “ith” position data point for the table

 DacData[i]: The “ith” torque data point for the table

 OutData[i]: The “ith” digital output data point for the table

Each table has the following non-saved setup elements:

 Enable: Control for activation/de-activation of table operation. (This element is not

saved, and is always set to 0 on power-on/reset of the Power PMAC.)

 PosOffset: The value of this element is added to the interpolated result from the table. It

is automatically set by Power PMAC on enabling of the table to the (signed) difference

between the present location of the slaved motor and where the motor would be to be

properly synchronized to the defined table. It is then incremented by SlewPosOffset each

servo cycle until synchronized. The user can subsequently adjust this value to adjust the

results of the entire table.

Reserving Memory for the Tables

The data entries for the cam tables are stored in a specially defined buffer area of Power PMAC’s

active memory, along with the data entries for compensation tables. (The “header” entries for the

tables, which define the structure of each table, are stored in fixed pre-defined areas of memory.)

There must be sufficient memory reserved in this buffer for all of the tables used. Each location

index for the table requires the storage of 3 32-bit values (2 single-precision floating-point and 1

integer), which occupies a total of 12 bytes of memory. The memory required for the data entries

of a table can be calculated as:

Memory (bytes) = 12 * (Nx + 1)

where Nx is the table header element (CamTable[m].Nx) specifying the number of zones of the

table.

Defining the Data Buffer Size

The amount of RAM reserved for the data entries of the compensation and cam tables together is

determined by a setting in the project file pp_proj.ini. The default setting is for 1 megabyte

(1,048,576 bytes). Few applications will require changing this default memory allocation, either

to reduce the amount of memory reserved to free it for other uses, or to increase it to support very

large tables.

Power PMAC User’s Manual

Setting up Electric Cam Tables 403

The best way of changing this memory allocation is through the “Project Properties” control in

the Integrated Development Environment (IDE) PC software, which allows you to set the “Table

Buffer” size in megabytes. In the Power PMAC, the buffer memory allocation is set only at

power-on/reset, so to change the allocation, you must change the setting the IDE project control,

download the project to the Power PMAC, issue the save command to store this value to flash

memory, then reset the Power PMAC.

Dynamic Allocation of Buffer Memory to Tables

At power-on/reset, the table-buffer memory space is cleared completely, and the table memory

pointers are all cleared. Then as the table information is loaded, whether from the saved project in

flash memory, or from the host computer, Power PMAC allocates memory in the buffer for the

individual compensation and cam tables.

The memory for the entire table is allocated when the first data entry value is set in a Script

command (e.g. CamTable[3].PosData[0] = -7.3). The starting location is the first word past the

last table already defined, and a memory space is allocated to the table according to the above

equation. This means that the size of the table must be defined before any data points are entered.

If all of the tables are defined just one time after power-on/reset, whether from flash memory or

from project download, memory space is allocated to tables in the order they are defined, from

the start of the buffer toward the end. As long as there is sufficient buffer space for all tables, this

goes smoothly, with the details hidden from the user.

However, if the user wishes to redefine the size of an already loaded table, the ramifications for

memory allocation must be understood. Any time Power PMAC executes a Script command that

changes the value of an existing table dimension CamTable[m].Nx, the pointer to the table data

entries in the buffer is cleared.

The pointer to the start of table data entries is not set again until the first Script command that sets

a data entry value. At that time, the pointer is set to the address of the register in the buffer

immediately following the last existing table. This means that if the table whose dimensions were

changed was not the last table in the buffer, the memory that was allocated for the table data is

lost until the next power-on/reset.

Note that it is possible to set table dimension and table data values in C, but doing so does not

trigger any of the memory management functions that the Script commands do. If defining or

redefining tables in C, the commands to set the dimension values and the first data value should

still be done with Script commands. This can be done from a C routine using the command""

function to execute the Script command within the quotes. Then the subsequent entry of data

points, including possibly overwriting the first data point, can be done with much faster C

commands.

Defining the Table Structure

Before the actual cam data points can be entered into the table, the structure of the table must be

defined. This involves setting several saved data structure elements for the table.

Source Motor Number: Source

Unlike compensation tables, which can be 1D, 2D, or 3D, electronic cam tables are always one-

dimensional. That is, the table outputs are a function of the net desired position of a single

Power PMAC User’s Manual

Setting up Electric Cam Tables 404

“source” motor alone. This source motor is specified by setting CamTable[m].Source to the

number of the motor that is to be used as the source for the table.

This “source motor” can be a physical motor that is under the control of the Power PMAC, or it

can be a Power PMAC “virtual motor” that is reading the position sensor that is the master

driving the table. This virtual motor should be activated (Motor[x].ServoCtrl = 1) so it is

monitoring its actual position source, but not enabled, so it is not trying to compute its own

desired position values, instead just copying its actual position values into the desired position

registers.

Alternatively, it can be a completely virtual motor with no actual feedback sensor that is

generating its own positions mathematically. It is best to make sure that a virtual motor, whether

with a real or synthesized position sensor, is not in a coordinate system with any physical motors,

so the enabling, disabling, and faulting of the real motors does not affect the behavior of the

virtual motor.

In many applications, a virtual motor, whether with a physical sensor or mathematically

generated position, can use Power PMAC Motor 0 in Coordinate System 0. By default, Motor 0 is

assigned to Coordinate System 0 with the “null” axis definition.

Number of Data Zones: Nx

CamTable[m].Nx specifies the number of data “zones” in the table. A zone is the space between

two data points of the table, as a function of the source motor position. Each zone in a table

covers the same distance of the source motor. Position commands and torque offsets (if any) in

this zone will be interpolated using the values of the data points on both sides of the zone.

The first zone is the space between the data point with a location index of 0 and the data point

with a location index of 1. The second zone is the space between the data points with location

indices of 1 and 2, and so on.

The discrete outputs for a zone use the output words with a location index matching the position

and torque values on the negative end of the zone. That is, the first zone uses the output word

with location index 0, the second zone uses the output word with location index 1, and so on.

Power PMAC’s CamTable structure supports up to 16,777,216 (224) zones in a table, provided

sufficient memory is reserved for the table. A typical table will have several hundred to several

thousand zones.

Note that cam tables are often designed with a tool such as Delta Tau’s “Cam Sculptor” that

breaks the full cam into several “sections”, each with its own equation. These sections do not

have to be evenly spaced, and a typical cam will have 6 to 20 sections. To implement the table in

Power PMAC from the design, the section equations are solved at even intervals to compute the

position data points that will be entered into the table.

The choice of number of zones is usually determined by assigning a tolerance for the cubic

interpolation’s approximation of the desired cam function and spacing the table points close

enough together that the error in the approximation from the cubic interpolation between points is

always less than the required tolerance.

Power PMAC User’s Manual

Setting up Electric Cam Tables 405

Starting Source Location: X0, SlewX0

CamTable[m].X0 specifies the desired “starting”, or reference, location of the table, expressed in

the units of the source motor. This value is the smallest (most negative) position of the source

motor for which the table is directly defined. It corresponds to data points with a location index of

0.

This reference location can easily be changed in a controlled fashion. Saved setup element

CamTable[m].SlewX0 specifies the rate at which the actual reference location used for table

computations, CamTable[m].ActiveX0, changes when the user sets a new value for

CamTable[m].X0. This permits smooth phase adjustments of the table operation.

Source Span: Dx

CamTable[m].Dx specifies the “span” of the table, expressed in units of the source motor. The

table is directly defined for source-motor positions from X0 to (X0 + Dx). The spacing between

adjacent table points can be calculated as (Dx / Nx).

Target Motor Number: Target

CamTable[m].Target specifies the number of the motor that is the “target” of the table, whose

motion is controlled by the action of the table. Position commands from the table will be written

to Motor[x].CompDesPos for the specified target motor, and torque offsets (if any) will be

written to Motor[x].CompDac for this motor. Note that the CompDesPos value is added into the

net desired position before the trajectory pre-filter, so is acted on by this filter.

Target Position Scale Factor: PosSf

Before the interpolated table position value calculated from table position entries is written to the

CompDesPos element of the target motor, it is multiplied by a scale factor. CamTable[m].PosSf

specifies the desired position scale factor for the table. Most commonly, it is set to 1.0, so the

units of the table correction are simply those of the target register, which are the motor position

units for the target motor.

Target Position Offset Slew: SlewPosOffset

The “offset” in the target position – the value that is added to the interpolated value from the table

entries before it is written to the target motor’s CompDesPos register – can be changed in a

continuous fashion, at a rate set by CamTable[m].SlewPosOffset. This is mainly used when the

table is enabled, to bring the target motor into synchronization with the source motor position at a

controlled speed. It is also possible for the user to change the desired offset value

CamTable[m].PosOffset while the table is enabled, and this element controls the rate of change

in that case as well.

Target Torque Offset Enable Control: DacEnable

Many cam table applications will not use table-based torque offsets. If CamTable[m].DacEnable

is set to the default value of 0, Power PMAC will not calculated a torque offset value from the

table, saving processor time, and it will not write to the CompDac register of the target motor,

permitting that motor to use a torque compensation table instead. If DacEnable is set to 1, the

torque offset value is calculated and written each servo cycle. In this case, the target motor should

not be executing a torque compensation table as well.

Power PMAC User’s Manual

Setting up Electric Cam Tables 406

Target Torque Scale Factor: DacSf

Before the interpolated table torque offset value calculated from table torque entries is written to

the CompDac element of the target motor, it is multiplied by a scale factor. CamTable[m].DacSf

specifies the desired torque scale factor for the table. Most commonly, it is set to 1.0, so the table

entries can be in units of a 16-bit output, just as the servo-loop outputs are.

Output Address: pOut

CamTable[m].pOut specifies the address of the register to which the table’s present output word

is written. It is most commonly set to the address of a digital output card register (e.g.

GateIo[i].DataReg[j].a) so a whole set of discrete outputs can be commanded at once. It can also

be set to the address of an analog output register (e.g. Gate3[i].Chan[j].Dac[k].a) so a single

analog output can be commanded. Alternatively, it can be set to the address of a holding register

in memory (e.g. Sys.Udata[i].a) where further operations can be done on the output word by

another software task. If CamTable[m].pOut is set to its default value of 0, no direct outputs are

set by the table, regardless of the direct output table values.

Buffered Output Address: pOutBuf

If it is not possible in the actual output register addressed by pOut to read back the values written

to the register (and the table is only using part of the register), it will be necessary to use a

buffering register, usually in RAM, where the written value can be read back. This is done by

setting CamTable[m].pOutBuf to the address of this buffering register. If

CamTable[m].pOutBuf is set to its default value of 0, there is no buffering register, and the cam

table will write directly to the register specified by CamTable[m].pOut, using a

read/modify/write operation to set its specified part of the word.

The most common output registers where the written registers cannot necessarily be read back are

the general-purpose I/O registers of the DSPGATE3 IC (Gate3[i].GpioData[j]) or the MACRO-

ring output registers of the DSPGATE2 IC (Gate3[i].Macro[j][k]). It is also possible to set up a

register of an IOGATE IC (GateIo[i].DatReg[j]) so that written values cannot be read back, but

by default they can.

The buffered output register is treated as a 32-bit integer. It is almost always a memory register.

When used, this buffered register is changed by the table using a read/modify/write sequence, and

then the entire 32-bit value is copied to the register specified by CamTable[m].pOut each servo

cycle. This means that no other task, whether another cam table or PLC program, should be

writing directly to the output register.

Output Shifting:OutLeftShift

CamTable[m].OutLeftShift specifies how many bits the masked output data is shifted left

before being written to the specified register. This permits the user to specify the output word for

each zone of the table starting in bit 0, regardless of where on the 32-bit bus these outputs are

actually written.

Output Masking: OutBits

CamTable[m].OutBits specifies the number of (consecutive) bits in the specified output word

this table will control. These bits will start at the bit number (on the full 32-bit data bus) specified

by OutLeftShift.

Power PMAC User’s Manual

Setting up Electric Cam Tables 407

Entering the Table Data Points

Once the structure of the table – especially the number of data zones – has been defined, the

actual data points can be entered for the table. Each entry in the table is a data structure element,

and the element can be set to a numerical constant or mathematical expression. The general form

of these assignments is:

CamTable[m].PosData[i] = {expression} // Position data entry

CamTable[m].DacData[i] = {expression} // Torque data entry

CamTable[m].OutData[i] = {expression} // Output data entry

Valid location index values i are integers ranging from 0 to Nx, inclusive. Commands to set

points out of this range will be rejected with an error. Multiple consecutive data points of a

particular type with increasing location indices may be entered in a single command.

With Nx zones defined for a table, there are (Nx + 1) data points of each type. PosData[Nx] is

used by the table, through its difference from PosData[0], to define the target motor offset, if any,

from cycle to cycle, determining whether it is a “returning” or “non-returning” table (see next

section). DacData[Nx] and OutData[Nx], while they can be set by the user without error, are not

used in the operation of the table.

PosData[i] and DacData[i] values are stored as single-precision (32-bit) floating-point values.

OutData[i] values are stored as 32-bit integers and reported back in unsigned format (although

they can be used to output signed values).

The default value for all data points of all types is 0. If you want to leave the points at zero, it is

not necessary to command values for those points. For example, if you only want to use the

position function of a cam table, there is no need to set every DacData[i] and OutData[i] value

to 0.

Returning vs. Non-Returning Position Tables

Power PMAC cam tables support both “returning” position outputs and “non-returning” position

outputs. With returning position outputs, each cycle of the table commands the same range of

positions. This is typically used for linear motion, providing reciprocating action. With non-

returning position outputs, each cycle of the table commands a range of positions offset from the

previous cycle. This is typically used for rotary motion, with each cycle of the table providing one

revolution of the motion.

Torque offset commands are always “returning” commands, repeating each table cycle without

offset. Data outputs are also “returning”, with no offsets between cycles.

Returning Position Tables

To define returning position outputs, table entry CamTable[m].PosData[Nx] must be set to

exactly the same value as CamTable[m].PosData[0]. In this case, the position of the target motor

repeats every cycle, as shown in the following diagram.

Power PMAC User’s Manual

Setting up Electric Cam Tables 408

Position

at Enable

Slewed

Offset

to Table

Directly

Defined

Table

X0 X0+Dx
Source

Motor

Postion

Target Motor

Cam Position

PosData[Nx]

=PosData[0]

X0+2Dx

Returning Cam Table Position Operation

Non-Returning Position Tables

To define non-returning position outputs, CamTable[m].PosData[Nx] must be set to a different

value from CamTable[m].PosData[0], with the difference being the offset between adjacent

cycles. In this case, for each cycle of the cam, the target motor position is offset from the adjacent

cycle of the table, as shown in the following diagram.

X0 X0+Dx X0+2Dx X0+3Dx X0+4Dx

PosData[0]

PosData[Nx] Directly

Defined

Table

Position

at Enable

Source

Motor

Postion

Target Motor

Cam Position

Slewed Offset

to Table

2PosData[Nx]

-PosData[0]

3PosData[Nx]

-PosData[0]

4PosData[Nx]

-PosData[0]

Non-Returning Cam Table Position Operation

Power PMAC User’s Manual

Setting up Electric Cam Tables 409

Note that, unlike the returning cam, there are many possible “instances” of the cam profile, all in

parallel with each other. The “reference” profile is the one that includes the cycle of the directly

defined table. Each other instance of the profile is offset from the reference profile by a multiple

of (PosData[Nx] - PosData[0]). The actual profile used will be one of the two on either side of

the position at the enabling of the table. (Which of these two is selected is dependent on the

enabling mode.)

Enabling the Cam Tables

Action of cam tables is only permitted if global saved setup element Sys.CamEnable is set to a

value greater than 0. If it is greater than zero, then every servo cycle Power PMAC will check

tables with indices from 0 through (Sys.CamEnable - 1). If CamTable[m].Enable for that table

is set by the user to a value greater than 0, Power PMAC will compute and apply the results of

that table. All CamTable[m].Enable elements are non-saved setup elements with a default at

power-up/reset of 0. This means that any cam table must be explicitly enabled after power-

up/reset.

When a table is enabled, the target motor position will, in general, not be in the position specified

by the table for the present source motor position. Power PMAC will bring the motor into the

proper position at a controlled rate specified by the saved setup element

CamTable[m].SlewPosOffset. This slewing into synchronization can be accomplished while the

master motor is in motion.

If the table is “non-returning”, the user has the choice as to which “instance” of the table (see

diagram above) to approach on enabling by the setting of CamTable[m].Enable. A value of 1

always moves in the positive direction to the next instance; a value of 2 always moves in the

negative direction to the next instance; a value of 3 moves in the direction of the closest instance.

Any torque-offset or output-word values from the table are applied immediately upon enabling,

without any slew control.

Action of the Cam Tables

Once the specified cam tables are enabled, their action is automatic and virtually invisible to the

user. The position, torque, and output values for each enabled table are calculated every servo

cycle based on the commanded position of the source motor. Torque values are only computed if

CamTable[m].DacEnable is set to 1.

In the servo cycle, the cam table updates are calculated after the new desired positions for all of

the motors have been calculated, and if Sys.CompMotor is set to its default value of 0, before

any of the servo loops have been closed. (If Sys.CompMotor is set to a value greater than 0, the

tables will update immediately before the servo loop of that motor number is closed.) Cam tables

are updated each servo cycle before compensation tables are updated.

To compute the position and torque output values, Power PMAC uses the two table entries on

each side of the present zone of the source motor to compute the values using 3rd-order

interpolation. For example, if the source motor is in the 7th zone of the table, the PosData[i] and

DacData[i] entries with location indices 5, 6, 7, and 8 will be used. The 3rd-order interpolation

ensures that both the commanded values and their rate of change are always continuous, even as

table points are passed, changing into different zones of the table.

Power PMAC User’s Manual

Setting up Electric Cam Tables 410

For the direct output values, Power PMAC simply selects the output word matching the present

zone of operation. For example, if the source motor is in the 7th zone of the table, the OutData[6]

entry will be used. Only the first (lowest) N bits of this word (where N is equal to

CamTable[m].OutBits) are used. These bits are shifted left by CamTable[m].OutLeftShift bits

before being applied to the output register whose address is specified by CamTable[m].pOut. If

pOut is set to the default value of 0, no direct outputs are written.

If CamTable[m].pOutBuf is set to the address of a buffered holding register, the specified bits

are set and cleared within this holding register, and the resulting full-word value is copied to the

output register specified by CamTable[m].pOut. This two-stage process should be used when it

is not possible to read back the value written to the actual output register.

If CamTable[m].pOutBuf is set to the default value of 0, there is no holding register, and the

specified bits are set and cleared within the output register itself in a single-stage process.

The values for position, torque, and direct output always overwrite the existing values in their

target registers. There is not an option to add to the existing value as compensation tables can do.

The position and torque values are written to motor registers that can also be written to by

compensation tables. It is the user’s responsibility to avoid conflicts when using both types of

tables.

Adjusting of the Table Action

It is possible to adjust the action of a cam table either along the source-motor axis or the target

motor axis in a controlled fashion while the table is enabled. This permits the use of some

information that was not available before the table was enabled to refine or correct the action of

the table. This adjustment can come from sensor-based algorithms, either in the Power PMAC or

from another device in communication with the Power PMAC, or from interactive adjustment

commands from the operator.

Adjusting on Source Motor Position

Adjusting the cam table action along the source-motor axis is accomplished by changing the

value of CamTable[m].X0, the source motor reference position for the table. This has the effect

of changing the “phase” of the cam table cycle with respect to the master. When this X0 element

is changed, the actual reference position used each servo cycle in table operation

CamTable[m].ActiveX0 is changed by the amount set in saved setup element

CamTable[m].SlewX0. This permits the phase to be changed in a controlled fashion.

Adjusting on Target Motor Position

Adjusting the cam table action along the target-motor axis can be done either outside of the cam

table function or within it. Since the cam table position command is superimposed on trajectory

position commands, this adjustment can be accomplished by commanding an incremental motor

trajectory move, either a jog move for the motor itself, or a programmed axis move for the axis

assigned to the motor.

It is also possible to adjust the cam table action along the target-motor axis by changing the value

of CamTable[m].PosBias. When this PosBias element is changed, the actual offset added to the

value interpolated from table points each servo cycle CamTable[m].ActivePosOffset is changed

by the amount set in saved setup element CamTable[m].SlewPosOffset. This permits the offset

to be changed in a controlled fashion.

Power PMAC User’s Manual

Setting up Electric Cam Tables 411

A similar element CamTable[m].PosOffset is automatically set by Power PMAC in the servo

cycle when the table is enabled – to 0 in the case of a returning table, or to a multiple of the

length of the table in the case of a non-returning table. ActivePosOffset is automatically set in the

same servo cycle based on the present position of the motor, then slewed at the rate set by

SlewPosOffset until the value of the sum of PosOffset and PosBias is reached.

In the case of a returning position cam table, adjusting the target motor reference position has a

fundamentally different effect from adjusting the source motor reference position. However, in

the case of a non-returning cam table, adjustments to the target motor reference position and

source motor reference position ultimately have the same type of effect.

Phasing the Cam Cycle on a Source Motor Trigger

In many applications, users will want to adjust the “phasing” of the cam cycle based on the

position of the source motor at a trigger event. In some applications, this will just be done once at

the start of the cam functionality; in others, it may be done every cycle of the cam to eliminate

errors due to effects like slippage and drift.

Using the Position Capture Monitoring Function

Power PMAC’s monitored position capture function makes it easy to implement this capability.

Setting source motor non-saved setup element Motor[x].CapturePos to 1 tells Power PMAC to

look for a capture trigger event on the motor. When it sees the event, it will read the captured

sensor position and convert it to motor position, storing this calculated value in status element

Motor[x].CapturedPos.

The user can then calculate where this value is within the cam cycle and compare it to where it

should ideally be. The source motor desired reference position CamTable[m].X0 can then be

adjusted by this difference. The rate of change in the actual reference position used each servo

cycle Motor[x].ActiveX0 is set by saved setup element Motor[x].SlewX0, permitting a smooth

adjustment.

The method of position capture for this monitoring function is the same as for triggered moves

such as homing-search moves. A variety of different methods can be used. Note, however, that

unlike in triggered moves, the monitoring function has no effect on the motion of the motor. This

means it can even be used when the motor is simply a Power PMAC software construct used to

process the sensor position, as is often the case with a cam table master “source motor”.

The position-capture monitoring function is discussed in more detail in the User’s Manual chapter

Synchronizing Power PMAC to External Events, in the section on position capture. The various

methods of setting up position capture for a motor are described in the User’s Manual chapter

Basic Motor Moves, in the section on triggered moves. Both sections will refer to specific data

structure elements described in detail in the Software Reference Manual.

Power PMAC User’s Manual

Setting up Electric Cam Tables 412

Sample Phase Adjustment Algorithm

In an application, the phase adjustment will most likely be implemented in a PLC program. The

key part of the program will look something like this:

 Motor[x].CapturePos = 1; // Enable capture monitoring

 while (Motor[x].CapturePos == 1) {} // Wait for trigger

 TrigPhase = Motor[x].CapturedPos – CamTable[m].X0;

 PhaseError = DesTrigPhase – TrigPhase; // Error before rollover

 PhaseError -= rint(PhaseError / Dx) * Dx; // Subtract rollover cycles

 CamTable[m].X0 -= PhaseError; // Adjust table phase

In this example, Motor “x” is the source motor for cam table “m”, which has a span of Dx units of

the source motor. The user variable DesTrigPhase contains the location in the span where the

trigger would ideally occur (0 <= DesTrigPhase < Dx). We calculate the actual location in user

variable TrigPhase by subtracting the present source motor reference X0.

We next compute user variable PhaseError by first taking the difference between desired and

actual and then reducing this difference to with one cycle by dividing by the cycle span Dx,

rounding to the nearest integer number of cycles with the rint function, and multiplying again by

Dx to return to motor units. Once the error is processed this way, we change the value of X0 by

this amount. Note that we change X0 in the negative direction for a positive phase error (desired

minus actual).

By using the rint (round to nearest integer) function, we ensured that the correction would be in

the “shortest” direction, always less than one-half cycle in length. If we instead used the floor

(round negative) or ceil (round positive) function, we would always correct in the same direction,

with a correction up to a full cycle in length.

Alternative Strategies for Non-Returning Cams

If the cam table is “non-returning”, we can also adjust the phase by offsetting the target motor

position. To do this, we need to calculate the average “slope” of the table using the starting and

ending positions of the target motor and the starting and ending positions of the source motor:

DxmCamTable

PosDatamCamTableNxPosDatamCamTable
Slope

].[

]0[].[][].[

The adjustment to the target motor offset for a value of PhaseError would be Slope *

PhaseError. This adjustment could be performed in two ways. First, it can be done by changing

the value of CamTable[m].PosOffset by this amount:

 CamTable[m].PosOffset += Slope * PhaseError;

(This program line would simply replace the last line in the above example.) Note that we change

the target position offset in the positive direction for a positive phase error (desired minus actual).

The rate of change of this adjustment is controlled by CamTable[m].SlewPosOffset, so this is a

constant-velocity adjustment (without acceleration control) superimposed on whatever motion is

commanded by the cam.

Power PMAC User’s Manual

Setting up Electric Cam Tables 413

In a second method, a trajectory commanded move could be superimposed on top of the cam

motion. For this adjustment, an incremental jog command is appropriate. It could be commanded

out of the PLC program with a command like:

 jog6:(Slope * PhaseError);

(Once again, this program line would replace the last line in the above example.) The advantage

of using a jog command like this is that it would have controlled acceleration and jerk as well as

controlled velocity, so it would be a very smooth adjustment.

Rollover of the Table

All cam tables in Power PMAC are capable of cyclic operation, and so “roll over” when the

position of the source motor goes beyond the defined range of the table in either direction. The

table is directly defined in the domain of source-motor positions from ActiveX0 to (ActiveX0 +

Dx). But operation of the table will be the same in the domain (ActiveX0 + Dx) to (ActiveX0 +

2*Dx), in the domain (ActiveX0 – Dx) to ActiveX0, and so on.

Position Output at Rollover

Near the ends of the defined table, table points from both ends of the table (e.g. PosData[Nx-1],

PosData[Nx], PosData[0], and PosData[1]) will be used in the interpolation function to create

the position command. If the position table is a returning table (PosData[Nx] = PosData[0]),

each cycle of the table is identical to the adjacent cycle. If the position table is a non-returning

table (PosData[Nx] ≠ PosData[0]), each cycle of the table is offset from the adjacent cycle by

the difference between these defined endpoints.

Torque Offset Output at Rollover

The torque offset outputs from a cam table are always “returning”, so the torque offset command

from the table is the same at identical points in each cycle of the table. Table entry

CamTable[m].DacData[Nx] is not used, even if entered, although it is advised to assign it the

same value as CamTable[m].DacData[0] to prevent confusion. Entries

CamTable[m].DacData[0] through CamTable[m].PosData[Nx-1] are used in the computation

of torque offsets from the table.

General Purpose Outputs at Rollover

Table entries CamTable[m].OutData[0] through CamTable[m].OutData[Nx-1] specify the

general-purpose output words for the Nx zones of the table. (CamTable[m].OutData[Nx] is not

used.) When the source motor is in the “last” zone of the table, OutData[Nx-1] is used to

generate the outputs. When the source motor position rolls over into the “first” zone of the table,

OutData[0] is used to generate the outputs.

Iterative Learning Control

Power PMAC can employ sophisticated “iterative learning control” (ILC) algorithms to reduce

repetitive errors in any section of the table. As the table executes over multiple cycles, the pattern

of position errors in each zone of the table is noted. Based on the pattern of errors in the zone, the

torque offset parameter DacData[i] for the zone is automatically adjusted to try to reduce this

error.

The user must set three saved setup elements for the table to activate this feature.

CamTable[m].DacGain specifies how aggressively Power PMAC will change the offset for a

Power PMAC User’s Manual

Setting up Electric Cam Tables 414

given position error value. If it is set too low, corrections take many cycles to reduce the error

significantly. If it is set too high, overcorrection and limit-cycling about the ideal correction can

occur. DacGain must be set greater than 0.0 for the ILC calculations to be active. (In addition,

the table itself must be activated and the torque offsets activated with CamTable[m].DacEnable

= 1.)

CamTable[m].MaxDac specifies the magnitude of the maximum torque offset the ILC will use

in any zone of the table. Even if the algorithm computes a larger value based on the detected

position errors and the value of DacGain, no value with a larger magnitude than MaxDac will be

written to DacData[i].

CamTable[m].MinPosError specifies the magnitude of the position error for any table zone

below which Power PMAC will not attempt to reduce further by adjustments to DacData[i] for

the zone.

Combining Cam Motion with Other Motion

The motion of the target motor from a cam table is superimposed on top of trajectory motion

from commanded motor and axis moves, and slave motion from position following. While it is

possible to use two, or even all three of these sources of commanded motion simultaneously, it is

rarely done.

However, it is very common to use trajectory motion or position following to put the motor in a

reference position for the operation of the cam table. Commanded positions from the cam table

are added on top of this reference position. For example, if the motor is jogged to a position of

1200, and the cam table commands 250 units of the target motor, the net position command for

this motor will be 1450, not 250.

It is possible to alter the trajectory command position or the master following position while the

cam table is enabled, even when the cam table source motor is in motion. This provides the

capability for the operator to adjust the “location” of the target motor interactively. (This is

usually a better technique than adjusting CamTable[m].PosOffset while the table is enabled.)

Reporting Motor Position with Cam Table Motion

Because the cam table position commands are added onto the trajectory position commands in

“offset mode”, so they are capable of being superimposed, care must be taken in understanding

how the motor position is reported.

If saved setup element Motor[x].PosReportMode is set to its default value of 0, the component

of motion from the cam table is not reported when motor position is queried with an on-line p or

d command or a buffered pread or dread command. Continuing the above example where the

motor is jogged to 1200 units before the cam table is enabled, a d command would always return

a value of 1200, no matter how much added motion the cam table was commanding. This value is

important if you want to know the distance another trajectory command would cause.

If Motor[x].PosReportMode is set to 1, the component of motion from the cam table is reported

when motor position is queried. If the motor had been jogged to 1200 units and the cam table

were commanding a further 250 units, the desired position would report as 1450 units. This value

is important to if you want to know the net physical position of the motor.

Power PMAC User’s Manual

Setting up Electric Cam Tables 415

If the target motor is assigned to an axis, and the axis position is queried, the component of

motion from the cam table is never reported in response to the query, regardless of the setting of

Motor[x].PosReportMode.

Disabling the Cam Tables

If an enabled cam table is disabled by setting CamTable[m].Enable to 0, all outputs of the table

– position, torque, and general-purpose outputs – are left in their state from the final servo cycle

the table was enabled. The net commanded position of the target motor does not change, so no

motion is commanded.

However, if an enabled cam table is disabled by setting CamTable[m].Disable to a value greater

than 0, the magnitude of the position output from the table (in Motor[x].CompDesPos for the

target motor) is reduced by the amount of CamTable[m].SlewPosOffset each servo cycle until it

reaches 0.0. This commands actual motion of the target motor.

After this table position output reaches 0.0, the value of CamTable[m].Disable is decremented

by 1 each servo cycle until it reaches 0. At this point, CamTable[m].Enable is automatically set

to 0. The intent of this second stage is to allow time for the motor to settle at this new position

before it is commanded to take some other action.

In both disabling methods, the table’s torque output and general-purpose outputs are left in their

final state from before the disabling process started. If it is desired to change these, the user must

write to the target registers for these values directly.

Switching Between Cam Tables

As one of the important advantages of electronic cam functionality is the ability to change the

cam function programmatically, it is common to select different cam tables for a target motor at

different times in an application. This should be accomplished by first disabling the previously

selected cam table, then enabling the newly selected table.

In most of these applications, multiple tables will be pre-loaded into Power PMAC memory, then

at most one per motor enabled at any given time. Note that if more than one table is enabled with

the same target motor, only the higher-numbered table will have any effect, as it will overwrite

the results of any lower-numbered table.

While it is possible to change the values in table data points at any time, it is not recommended to

do so when the table is enabled.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 416

MAKING YOUR POWER PMAC APPLICATION SAFE

This chapter describes the built-in safety features provided with Power PMAC controllers. Proper

setup of these features is extremely important in the creation of a safe machine system.

WARNING

Delta Tau Data Systems has provided many safety features

on the Power PMAC controller, and invested many

resources to make Power PMAC a safe product. However,

the ultimate responsibility for the safety of a control

system using Power PMAC must lie with the system

designer, utilizing the safety features on Power PMAC and

in other parts of the system.

Watchdog Timer

Power PMAC systems provide “watchdog timer” functionality to verify fundamental operation of

hardware and software. If the timer’s monitoring does not verify that this operation is occurring,

it will shut down the operation in a fail-safe manner. There are both “software” and “hardware”

watchdog timers.

All Power PMACs have the software watchdog timer functionality. Power PMACs with local

interface circuitry have on-board hardware watchdog timer circuitry. The EtherCAT-only Power

PMAC configurations (e.g. µPowerPMAC [CK3E] and IPC) do not provide a hardware watchdog

timer, but the EtherCAT network provides similar automatic shutdown capabilities.

The hardware watchdog timer provides a fail-safe shutdown to guard against many types of

software and hardware malfunction. To keep it from tripping, the hardware circuit for the

watchdog timer requires that two base conditions be met. First, the nominal 5-volt DC power

supply must be greater than approximately 4.75V. If the supply voltage is below this value, the

circuit will trip and the Power PMAC system will go into a “hard” watchdog failure. This feature

is intended to prevent corruption of registers due to insufficient supply voltage.

The second necessary condition is that the timer must see a square-wave input (provided by the

Power PMAC software) of a frequency greater than approximately 20 Hz, which means the

digital signal must be toggled more than 40 times per second. In the foreground, the real-time

interrupt routine decrements a counter (as long as the counter value is greater than zero), causing

the least significant bit of the timer to toggle. This bit is fed to the timer itself.

At the end of each background cycle, after one scan of one active background Script PLC

program and one scan of all active background C PLC programs, the background software resets

the counter to the value specified by saved setup element Sys.WDTReset. (If this is set to a value

less than 100, the counter is reset to 5000 each background cycle.)

Soft Watchdog Trips

If the processor is able to detect certain failures of the routines that support the watchdog timer, it

will execute a “soft” watchdog trip. In a soft watchdog trip, all programmed motions are aborted,

all motors are killed, and all interface hardware is locked into its reset state, which forces discrete

outputs to their “off” state and continuous outputs (e.g. DAC, PWM, PFM) to their zero state.

However, the processor continues to operate, and it can still communicate with a host computer.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 417

The hardware of the watchdog timer circuit is disabled so it cannot shut down the processor

completely. A $$$ reset command or $$$*** re-initialization command must be given, or the

electrical power to the system must be removed and re-applied, in order to (try to) clear a soft

watchdog trip.

The purpose of a soft watchdog trip is to detect certain conditions that would likely lead to a hard

watchdog trip and provide a safe shutdown of the system while keeping the processor alive so it

is easier to figure out what the underlying problem is and to fix it. Soft watchdog trips are usually

caused by user configurations that do not permit all tasks to execute in a timely fashion.

Soft Trip from Background Failure

The first condition that causes the execution of a soft watchdog trip occurs if the processor sees

that the counter decremented by the real-time interrupt routine has reached a value of zero. In this

case, it will set global status element Sys.WDTFault to 1. A failure of this type typically means

that there is inadequate processor time remaining for background tasks, so the time between

background cycles is too large. The threshold time for this type of failure can be adjusted by

changing the setting of Sys.WDTReset.

This diagram shows a sample soft watchdog timer trip due to a failure of background tasks to

reset the watchdog timer value before it reaches zero.

RTI

Background

Cycle
(Failure of

Background

Cycle)

Sys.

WDTReset

Sys.

WdTimer

time

Soft

Watchdog Trip

(Sys.WDTFault=1)

Timer

Input

Signal

0

Soft Watchdog Timer Trip from Background Failure

Soft Trip from Foreground Failure

The second condition that causes the execution of a soft watchdog trip occurs if several

consecutive background cycles execute without a real-time interrupt occurring in between to

decrement the counter value. In this case, it will set global status element Sys.WDTFault to 2. A

failure of this type typically means that the interrupts have failed or been set with too large a

period (too low a frequency). Saved setup element Sys.BgWDTReset specifies the number of

background cycles that can execute without an intervening real-time interrupt before a trip. Note

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 418

that if it is set too large, it may not be able to detect this type of condition before a hard trip

occurs.

This diagram shows a sample soft watchdog timer trip due to a failure of foreground tasks to

decrement the watchdog timer value through several background cycles.

RTI

Background

Cycle

Sys.

WDTReset

Sys.

WdTimer

time

Soft

Watchdog Trip

(Sys.WDTFault=2)

Timer

Input

Signal

(Interrupt

Failure)

Sys.BgWDTReset

0

Soft Watchdog Timer Trip from Foreground Failure

Note that if no phase or servo clock interrupt signals are detected by the processor during power-

up/reset, Power PMAC goes into a special “stay alive” mode executing background software

only. In this case, global status bit Sys.NoClocks is set to 1. This mode is similar to, but distinct

from, a soft watchdog trip. No motors may be enabled in this mode, but the interface hardware is

still active, permitting the user to configure the clock signal sources correctly. However, if the

clock signal interrupts were present at power-up/reset and subsequently lost, a soft watchdog trip

would occur because no real-time interrupt algorithms would execute to decrement the counter.

Hard Watchdog Trips

If the hardware watchdog timer circuit detects either an under-voltage or an under-frequency

condition (which means that the software algorithms could not anticipate the condition and cause

a soft trip), a “hard” watchdog trip will occur. In a hard watchdog trip, all interface hardware is

locked in its reset state, which forces discrete outputs to their “off” state and continuous outputs

(e.g. DAC, PWM, and PFM) to their zero state. In addition, the processor itself is completely shut

down, so no communications is possible.

The industrial PC (IPC) configurations of Power PMAC do not have a hardware watchdog timer

circuit. They can provide a software watchdog timer trip.

In the event of a hard watchdog trip, the solid-state watchdog relay on the Power PMAC CPU

board toggles. The “normally open” contact opens (as it does when no power is present) and the

“normally closed” contact closes (again, as it does when no power is present). The system

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 419

designer can make use of this relay output as part of a “safety string” to make sure output devices

are properly disabled on a watchdog trip.

The CK3E configurations of the Power PMAC do not have a watchdog relay output. They do

have a hardware watchdog timer circuit that can provide a full shutdown, and can have a soft

watchdog trip.

A hard watchdog trip is usually caused by a fundamental hardware problem that permits neither

foreground (interrupt) nor background tasks to operate properly, so a soft trip is not possible. The

electrical power to the system must be removed and re-applied in order to (try to) clear a hard

watchdog trip.

Global Abort-All Input

Power PMAC permits the user to specify an “abort-all” input, which when triggered will cause all

axes on the Power PMAC to be commanded to a controlled stop, with all motion program

execution stopped.

The Power Brick has a fail-safe input intended for this purpose. When a Power Brick is re-

initialized, the software is automatically configured to use this input. If 24-volt DC power is not

supplied to this input, it will trip, and with the software left in its default configuration, a global

abort will be issued to the Power PMAC.

Software Setup

Sys.pAbortAll is set to the address of the register containing the “global abort” input. For the

Power Brick’s dedicated input, the setting is Gate3[i].GpioData[0].a. If Sys.pAbortAll is set to

0 (which is the default for Power PMAC configurations other than the Brick), this functionality is

not enabled.

Sys.AbortAllBit specifies the bit number on the 32-bit bus will be used for the input. For the

Power Brick’s dedicated input, the setting is 31. Sys.AbortAllLimit specifies the maximum

number of accumulated scans the Power PMAC can find this input in the abort state before

commanding the global abort. Power PMAC will check the input every real-time interrupt (RTI)

period. Values greater than 0 permit protection against false trips due to electrical noise.

There is no software polarity control of the input. A value of “1” in the bit is always considered a

fault. With common circuitry, including the dedicated circuitry in the Power Brick, a circuit

failure will almost certainly leave the bit in a “1” state, so this is the failsafe polarity.

Action on Trip

When the specified bit is found in the “1” state for the required cumulative number of scans, each

coordinate system reacts as determined by the setting of saved setup element

Coord[x].AbortAllMode.

If Coord[x].AbortAllMode is set to the default value of 0, all motors in the coordinate system

are immediately commanded to come to a controlled stop as if an abort command had been

issued, with deceleration profiles determined by Motor[x].AbortTa and Motor[x].AbortTs.

This provides a “Category 2” controlled safe stop under the IEC-61800-5-2 machine safety

standard.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 420

If Coord[x].AbortAllMode is set to 1, all motors in the coordinate system are immediately

“killed” (open-loop, zero output command, amplifier disabled) as if a disable command had

been issued. There is no delay for brake engagement, even if Motor[x].BrakeOnDelay is greater

than 0.

If Coord[x].AbortAllMode is set to 2, all motors in the coordinate system are first commanded

to come to a controlled stop as if an abort command had been issued, then as each motor

reaches its “desired-velocity-zero” state, a “delayed kill” is commanded for the motor ” (open-

loop, zero output command, amplifier disabled) as if a ddisable command had been issued,

with a delay for brake engagement if Motor[x].BrakeOnDelay is greater than 0.

The action in this mode is similar to that of a “Category 1” safe stop under the IEC-61800-5-2

machine safety standard, with a controlled stop followed by disabling of the motor. However, that

standard requires that power be removed from the motor or circuits necessary to drive the motor.

To be compliant with this standard, the same action that toggles this input should also start a

qualified time-delay relay which will then drop out power from a key circuit (usually either bus

power or gate-driver power).

If Coord[x].AbortAllMode is set to 3, the coordinate system does not react to the “abort all”

input.

Note

This “global abort” function is not suitable by itself in cases

where power must be removed from the motor (such as

Category 0 or 1 under the IEC-61800-5-2 machine safety

standard) is required. However, it may be used in conjunction

with circuits that do remove power in conformance with the

standard.

Voltage Interlock Circuits

Many Power PMAC circuits that provide analog voltage servo command outputs, such as the

UMAC ACC-24E2A analog axis-interface module and the analog output option of the ACC-

24E3 axis-interface module, provide a “voltage interlock” circuit as a protective mechanism. This

circuit must detect the presence of both the positive and negative analog supply voltages. These

voltages are supposed to be at +/-12V or +/-15V levels. If either supply drops below a magnitude

of 10.8V (12V - 10%), the interlock circuit will remove power from the analog outputs and the

amplifier-enable signals. Without this circuit, the loss of one of the supplies would cause the

analog outputs to pull to the level of the other supply, potentially causing a dangerous runaway

condition.

In addition, the interlock circuit must detect the presence of the high-frequency “DAC clock”

signal coming from the digital circuitry. If this signal is not present, whether due to loss of digital

power, having the ASIC channel configured for PWM instead of DAC outputs, or hardware

malfunction, the interlock circuit will remove power from the analog outputs and the amplifier-

enable signals. This will keep the analog circuitry from creating spurious output voltages from

erroneous or missing signals.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 421

Following Error Limits

“Following error” is simply the difference between a motor’s net commanded position and its net

actual position at any given time. All applications will have non-zero following error on their

motors some (or most) of the time. The purpose of the servo loop is to try to drive this error to

zero, but it will not succeed perfectly.

While some following error is always to be expected in an application, sufficiently large

following errors can be indicative of serious, and often very dangerous problems, such as loss of

feedback, reversed feedback, or mechanical failure.

Fatal Following Error Limit

If the magnitude of a motor’s following error exceeds the limit set by Motor[x].FatalFeLimit,

Power PMAC will automatically “kill” that motor. When a motor is “killed”, its servo loop is

opened, the servo output is forced to zero, and the amplifier is disabled. The status bit

Motor[x].FeFatal is set to 1 on this event; this bit is not cleared until the motor is disabled.

On detecting a fatal following-error condition, if bit 0 of Motor[x].FaultMode is set to the

default value of 0, other motors in the coordinate system (even if they just have the “null”

definition – #x->0 – in that coordinate system) are automatically “aborted” (controlled

deceleration to enabled, closed-loop stop). If bit 0 of Motor[x].FaultMode is set to 1, other

motors in the coordinate system are automatically “killed” as well.

The coordinate system status bit Coord[x].FeFatal is set to 1 if the comparable motor status bit is

set to 1 for any motor in the coordinate system. Motors in other coordinate systems are not

affected.

If the coordinate system was executing a motion program at the time, the program execution

would be aborted as well. Aborting a motion program stops program calculations, resets the

program counter to the beginning, and discards any already computed motion equations from the

queue. Execution cannot simply be resumed at the aborted point (this point in the program can be

determined by use of the list apc on-line query command).

Motor[x].FatalFeLimit is expressed in the user’s motor units. The magnitude of these units is

determined by the feedback resolution, the encoder table entry’s scaling factor

EncTable[i].ScaleFactor, and the motor’s position-loop scaling factor Motor[x].PosSf. Most

users will scale the motor to units of “counts” or “LSBs” of the feedback sensor. However, others

may wish to use (much larger) engineering units such as millimeters, inches, or degrees. If the

user changes the definition of the motor units, the physical size of the fatal following error limit is

automatically changed. When changing from small to large motor units, the limit may be

increased so much as to be ineffective.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 422

WARNING

The fatal following error limit may be disabled by setting

Motor[x].FatalFeLimit to zero, or effectively disabled by

setting it very large, but this is strongly discouraged in any

application that has the potential to kill or injure people, or

even to cause property damage. Disabling the fatal limit

removes an important protection against serious fault

conditions that can cause runaway situations, bringing the

system to full power output faster than anybody could

react.

It is particularly important to have this limit set when the

machine is still in development, as this is often the most

dangerous state for the machine. Moving parts are often not

protected, people are working on many parts of the machine,

and mistakes are being made.

Good tuning of your motor’s servo loop is important for safety reasons as well as performance

reasons. The smaller you can make your true following errors during proper operation, the tighter

you can set your fatal following error limits without getting nuisance trips. Particularly important

in this regard are the feedforward terms that can dramatically reduce the errors at high speeds and

accelerations. It is common practice to set this limit to about twice the maximum error expected

in normal operation.

Warning Following Error Limit

If the magnitude of a motor’s following error exceeds the limit set by Motor[x].WarnFeLimit,

Power PMAC will automatically set the motor status bit Motor[x].FeWarn and the coordinate-

system status bit Coord[x].FeWarn. These are “transparent” status bits; as soon as the magnitude

of the motor’s following error falls below the limit, the motor status bit is cleared. (The

coordinate system status bit is simply the logical “or” of all of the motor status bits in the

coordinate system.) Power PMAC takes no automatic safety action when one of these status bits

is set, but the user application may take note of this condition and take appropriate action. It is

common practice to set this limit to a value just slightly larger than the maximum error expected

in normal operation.

If Motor[x].CaptureMode is set to 2, the status bit Motor[x].FeWarn will be used as the trigger

flag for Power PMAC’s automatic triggered moves (homing-search moves, jog-until-trigger,

programmed rapid-mode move-until-trigger) instead of the default input trigger. This permits

easy implementation of tasks such as homing into a hard stop, torque-limited screwdriving, etc.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 423

Position (Overtravel) Limits

Power PMAC has both software and hardware “overtravel” position limit features. These are

intended to prevent motion accidentally commanded out of the legal range of positions.

Software Overtravel Limit Parameters

Power PMAC has positive and negative software limit parameters for each motor. These can be

used to complement or replace the hardware limits. Saved setup elements Motor[x].MaxPos and

Motor[x].MinPos define the positive and negative software position limits, respectively, in

motor units, for each motor. These limits are referenced to the motor’s zero (home) position, and

do not change if the programming origin for the associated axis is offset.

Caution

The value of Motor[x].MaxPos must be greater than that of

Motor[x].MinPos for these software limits to be active. By

default, both are set to 0.0, disabling them.

When the software limits are active, Power PMAC uses these limits at both move calculation time

and move execution time. The checks at move calculation time are made directly against the

limits at Motor[x].MaxPos and Motor[x].MinPos. The ongoing checks made at move execution

time can be made against positions offset from these, using saved setup element

Motor[x].SoftLimitOffset. Checks at the positive end of travel are made against

(Motor[x].MaxPos + Motor[x].SoftLimitOffset). Checks at the negative end of travel are made

against (Motor[x].MinPos - Motor[x].SoftLimitOffset).

Checks at Move Calculation Time

When the software limits are active for a motor, as Power PMAC calculates a commanded move

for the motor, it compares the move destination position against Motor[x].MaxPos and

Motor[x].MinPos. If the destination position for the move is past the limit, the action taken

depends on the move type and the setting of Coord[x].SoftLimitStopDis.

Jogging Moves

For jog moves, if the commanded destination position is past the software limit in the direction of

motion, the destination position is changed to that software limit position. Note that the

“destination” position of an indefinite jog command (j+ or j-) is always past the software limit

in that direction, so this command is changed to a definite jog to a software limit. Note that this

checking at move calculation time permits the motor to come to a controlled stop at the software

limit, not begin to decelerate as the motor passes the limit. The Motor[x].SoftLimit status bit is

set to 1 at the beginning of a jog move whose destination has been altered due to a software limit.

Other status bits can be set when and if the limit is actually reached – see below.

Homing Search Moves

For homing-search moves, the software limit is disabled while the motor is searching for the

trigger. The destination of the post-trigger move is checked against the software limits and can be

modified to end at the software limit if past a limit. Note that this endpoint modification does not

change where the motor zero position is considered to be. (Most post-trigger moves involve a

reversal, and it is possible that some point in the middle of the post-trigger move exceeds a limit

even if the destination does not; this would be caught at move execution time.)

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 424

Motion Program Moves: Stop or Saturate

Moves commanded of the motor from a motion program are checked against active software

limits at calculation time. The action taken if a destination is found to exceed a software limit

depends on the setting of Coord[x].SoftLimitStopDis. If Coord[x].SoftLimitStopDis is set to

its default value of 0, execution of the motion program is stopped when this is detected. The

move that would pass the limit is not executed at all, so the stop can be well before the limit

position.

When the program is stopped because a move would have exceeded a software limit,

Coord[x].SoftLimit is set to 1 (Coord[x].ErrorStatus = 32).

However, if Coord[x].SoftLimitStopDis is set to 1, the software limit simply acts as a

“saturation point” for the motor. Motion program execution continues without error. As long as

the commanded position for the motor is past the software limit, it will stay at the software limit.

Other motors in the coordinate system not at their software limits will continue to move. When

the commanded position of the motor is no longer past the software limit, its motion will resume.

Non-Segmented Program Moves

Programmed moves that are not segmented – rapid and spline mode moves always, plus

linear and pvt mode moves when Coord[x].SegMoveTime = 0 – are checked against the

software limits when the move itself is calculated. With Coord[x].SoftLimitStopDis at 0, if the

destination position for a motor in the move is past the software limit, the move will not be

executed at all, and the motion program will stop operation. With Coord[x].SoftLimitStopDis at

1, the destination position of any offending motor will be changed to the motor’s software limit,

the move will execute, and the program will proceed. Note that in a multi-axis move, the path

from start to end of the move can change due to this endpoint limiting.

Segmented Program Moves

Programmed moves that are segmented – linear, circle, and pvt mode moves when

Coord[x].SegMoveTime > 0 – are checked against the software limits as each segment derived

from the programmed move is calculated. With Coord[x].SoftLimitStopDis at 0, if the

segment’s destination position for a motor in the move is past the software limit, all motors in the

coordinate system are aborted at this time, and brought to a controlled stop according to the

settings of Motor[x].AbortTa and Motor[x].AbortTs. With Coord[x].SoftLimitStopDis at 1, if

the segment’s destination position for a motor in the move is past the software limit, that position

is changed to equal the software limit position, motion will continue, and the program will

proceed. Note that in a multi-axis move, the path from the start of the move until a motor reaches

its limit is unchanged. When a motor reaches its limit, it stays at that limit while other motors

continue to move, until its programmed position is no longer outside the software limit.

With the special lookahead buffer active (lookahead buffer defined, Coord[x].LHDistance > 0),

then for segmented moves in the coordinate system, these checks of segment destination positions

can be performed well in advance of the segment actually executing. With

Coord[x].SoftLimitStopDis at 0, the stop can occur well within the software limit. With

Coord[x].SoftLimitStopDis at 1, this advance calculation provides time to compute a controlled

deceleration to a stop at the limit for the offending motor.

Checks at Move Execution Time

When the software limits are active for a motor, Power PMAC also checks the instantaneous net

desired position of the motor against the execution-time software limits every real-time interrupt.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 425

When the motor is in closed-loop mode, the net desired position is the sum of the trajectory

command position, the master following position, and the table-based desired position (from an

“electronic cam” table). When the motor is in open-loop mode, the net desired position is simply

copied from the actual position for the motor.

Position Following (Electronic Gearing)

If the position-following function for a motor is enabled (Motor[x].MasterCtrl bit 0 [value 1] =

1) while the motor is in a software limit, Power PMAC will not permit any following in the

direction that would take it further into the limit. It will permit following in the direction that

would take it out of the limit.

Gantry Leader/Follower Operation

If the motor is enabled as a gantry-follower motor (Motor[x].ServoCtrl = 8), it does not generate

its own trajectory, so it is important to understand how the soft limit functionality works in this

case. If the gantry follower motor’s net desired position exceeds either execution-time software

limit position, this triggers an “abort” action for all standard motors (Motor[x].ServoCtrl = 1) in

the coordinate system (even if none of them have exceeded their own limits), causing them all to

decelerate to a controlled stop. The gantry follower motor will also stop by tracking its leader

motor’s deceleration.

However, subsequently if the leader motor has still not exceeded its own software limit position,

it can be commanded further in the same direction, and the gantry follower will attempt to track

the leader, even if it is still past its own software limit. Note that this configuration is not an

intended use of the gantry leader/follower functionality. In the intended use, both leader and

follower motors will have very similar ranges of travel, and so would exceed any software

overtravel limits at approximately the same time.

Difference Between Calculation and Execution Limits

If Motor[x].SoftLimitOffset is set to zero or a positive value, making the execution-time limit

outside the calculation-time limit, if the net desired position of a closed-loop motor is outside the

execution-time software limit, all motors in the coordinate system are aborted, brought to a stop

according to the settings of Motor[x].AbortTa and Motor[x].AbortTs. This would be a rare

occurrence, because calculation-time checks will generally prevent the instantaneous desired

position from exceeding this limit.

If Motor[x].SoftLimitOffset is set to a negative value, making the execution-time limit inside

the calculation-time limit, if the net desired position of a closed-loop motor is outside the

execution-time software limit, no modification of the motion for any motor in the coordinate

system is made. However, the status bit Motor[x].SoftPlusLimit or Motor[x].SoftMinusLimit

is set while the motor is in this state. Typically, this motor will stop at the calculation-time limit

as already calculated. Many users will want to set Motor[x].SoftLimitOffset to a very small

negative value (around -1 feedback count) to be able to see the appropriate status bit set.

The following diagram shows typical relative positions of software limits at calculation time,

software limits at execution time, and hardware limits.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 426

MinPos MaxPos

MLIM PLIM

+-
0

Soft

Limit

Offset

Soft

Limit

Offset

Range at Move Calculation Time

Range at Move Execution Time

Motor Position

Range for Physical Motion

SoftMinusLimit = 1 SoftPlusLimit = 1

MinusLimit = 1 PlusLimit = 1

Power PMAC Overtravel Limits with Status Bits

Open-Loop Move Action

During an open-loop move, if the position of the motor exceeds the legal range set by the

execution-time limits, the action is dependent on the setting of saved setup element

Motor[x].FaultMode. If bit 1 (value 2) is set to the default value of 0, Power PMAC “aborts” the

motor and all other motors in the coordinate system. This closes the servo loop with the initial

commanded velocity being equal to the present actual velocity, and causes a controlled

deceleration to a stop, just as if the loop were closed when the limit switch was encountered.

However, if bit 1 of Motor[x].FaultMode is set to 1 when the motor passes a software limit in

open-loop mode, Power PMAC “kills” (disables) the motor. This immediately causes a zero

output command and disables the amplifier. Other motors in the coordinate system are not

affected in this mode.

Hardware Overtravel Limit Switches

The axis-interface circuitry associated with each servo interface channel in a Power PMAC

system has positive and negative hardware overtravel limit switch inputs. The exact nature of this

input circuitry and instructions for connecting the limit switches are described in the Hardware

Reference manual for each Power PMAC and axis-interface accessory.

Limit Switch Interface Circuitry

Generally, these inputs are optically isolated, with a failsafe circuit design. The limit switches

must be “normally closed”, conducting current through the opto-isolator when the axis is not in

the limit. (Usually these are “AC optos” that can conduct current in either direction, permitting

sinking or sourcing limit switches.) This conducting condition produces a “zero” state in the flag

register for the channel in the Servo IC; the processor must read this zero to permit motion in that

direction. To ensure failsafe operation, this polarity cannot be changed by the user.

Anything that stops current from flowing through the opto-isolator, whether from actually hitting

the limit, from cable disconnection, or from loss of power supply for the limit circuit, produces a

“1” state in the Servo IC. When the processor sees this, it will not permit motion in that direction.

Specifying the Limit Inputs

Saved setup element Motor[x].pLimits for the motor must contain the address of the flag register

for the channel into which these limit switches are wired (usually Gaten[i].Chan[j].Status.a). If

Motor[x].pLimits is set to 0, the hardware overtravel limit function for the motor is disabled.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 427

Some users will want to do this permanently, as for a continuously rotating rotary axis; others

will want to do this temporarily, as when homing into a limit switch.

Standard PMAC Configuration

Saved setup element Motor[x].LimitBits specifies which bit(s) of the 32-bit register are read for

the status of the limit inputs. In the standard range of 0 to 30, its value specifies the bit number of

the positive limit input, with the negative limit input mapped into the next higher bit. This range

should be appropriate for all standard Delta Tau hardware interfaces.

Motor[x].LimitBits should be set to 24 when using a PMAC2-style “DSPGATE1” IC, as on an

ACC-24E2x UMAC board, or to 25 when using the standard MACRO-ring protocol. It should be

set to 9 when using a PMAC3-style “DSPGATE3” IC, as on an ACC-24E3 UMAC board, a

Power Clipper board, or a Power Brick system.

Single Limit Input Configuration

If Motor[x].LimitBits is in the range of 32 to 63, (LimitBits – 32) specifies the bit number of the

single input that is triggered by either the positive or negative limit switch. This configuration is

not recommended, but occasionally must be used, particularly on retrofit systems. Note that with

this setting, it is not possible to command a move out of either limit without first disabling the

limit functionality by setting Motor[x].pLimits to 0.

Reverse-Order Limit Input Configuration

If Motor[x].LimitBits is in the range of 64 to 94, (LimitBits – 64) specifies the bit number of the

negative limit input, with the positive limit input mapped into the next higher bit. This setting can

be useful for some networked drives with the limit switches wired into the drives.

Limit Inputs in Separate Registers Configuration

If Motor[x].LimitBits is in the range of 96 to 127, (LimitBits – 96) specifies the bit number of

the positive limit in the register specified by Motor[x].pLimits. In this case,

Motor[x].pAuxFault specifies the register for the negative limit input, with

Motor[x].AuxFaultBit setting the bit number for that input in the register. This range permits the

use of separate registers, or non-adjacent bits in the same register, for the two limit input bits,

particularly valuable when the limits are wired into general-purpose I/O points on a fieldbus or

network.

Alternate Polarity of Limit Inputs

If bit 7 (value 128) of Motor[x].LimitBits is also set, a value of “0” in a specified limit input bit

signifies that the motor is into that limit, rather than a “1” if this control bit is not set. The use of

normally closed limit switches is strongly recommended, and usually these report a “1” when

open (on the limit), so this control bit is rarely set. However, some devices, particularly when

using a fieldbus or network, will have the opposite polarity, requiring the use of the control bit to

configure the system.

Settings of 32 or greater for Motor[x].LimitBits are new in V2.1 firmware, released 1st quarter

2016.

Optional Software Filtering of Inputs

In some applications, it will be desirable to require multiple scans in which the specified input bit

reports that it is into the limit before it will trip the motor. This can prevent brief noise spikes

from causing an undesired trip.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 428

Saved setup element Motor[x].LimitLimit specifies how many accumulated scans are required

before a limit fault is declared, tripping the motor. Each real-time input scan, Power PMAC

checks the specified input bits. If a bit is in the fault state, Motor[x].LimitPlusCount or

Motor[x].LimitMinusCount is incremented by 1. If it is not in its fault state, the count element

is decremented by 1 (but will never go below 0).

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only

true for very high block rate applications), this check for the motor will not occur every RTI, but

rather every few RTI periods; this could possibly alter the optimal value for

Motor[x].LimitLimit.

If the value of Motor[x].LimitPlusCount or Motor[x].LimitMinusCount ever exceeds that of

Motor[x].LimitLimit, a transparent hardware limit fault will be generated, setting status bit

Motor[x].PlusLimit or Motor[x].MinusLimit to 1. With Motor[x].LimitLimit at its default

value of 0, a single detection of the limit state will cause a trip. (Motor[x].LimitLimit is new in

V2.4 firmware, released 1st quarter 2018. At its default value of 0, operation is compatible with

older firmware versions.)

Action on Closed-Loop Trip

The limit input signals are direction sensitive for closed-loop moves: the positive-end limit pin

only stops positive direction moves (those coming at it from the negative side), and the negative-

end limit pin only stops negative direction moves (those coming at it from the positive side). This

makes it possible to command a move out of the limit that you have run into. However, this also

makes it essential to have your limit switches wired into the proper inputs, or they will be useless.

The Motor[x].MinusLimit and Motor[x].PlusLimit software status bits reflect the present state

of the specified limit hardware inputs (0 is not into limit; 1 is into limit). The

Motor[x].LimitStop software status bit indicates that motion has stopped due to a limit (even if

the motor is not presently in the limit.

Controlled Stop

When a motor hits a limit when the servo loop is closed, the action is dependent on the setting of

bit 2 (value 4) of Motor[x].FaultMode. If this bit is set to its default value of 0, Power PMAC

automatically “aborts” the motor. Aborting a motor causes a controlled deceleration to a closed-

loop zero-velocity state, using the saved setup elements Motor[x].AbortTa and

Motor[x].AbortTs. If these values are positive, they represent the overall deceleration time and

the S-curve time, respectively, in milliseconds. If these values are negative they represent the

inverse of the deceleration rate (in msec2 / motor unit) and inverse of the S-curve jerk rate (in

msec3 / motor unit).

If the motor hit the limit during a motor move such as a jog move, the other motors in the

coordinate system are not affected. However, if the motor hit the limit during a motion program

commanded move, the motion program is stopped and all of the motors in the coordinate are

aborted as well. Note that if the coordinate system has been executing a path move, this

deceleration will not necessarily be along that path. Motors in other coordinate systems are not

affected in either case.

Disabled Stop

However, if bit 2 (value 4) of Motor[x].FaultMode is set to 1, then this motor is “killed” (open-

loop, zero command output, amplifier disabled) on hitting a hardware limit. (Note, however, that

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 429

if the motor is already in an “abort” deceleration from exceeding a software overtravel limit, no

further action will be taken when the hardware limit is hit.) Other motors are affected just as for

an “abort” stop of this motor.

The behavior of this mode of operation is based on the idea that the software limits should be

used to catch controlled excursions out of the intended range of operation, as when too large a

position is commanded. In this case, a controlled stop is quicker, covers a shorter distance, and is

easier to recover from. The hardware limit switches, which should be set just outside the software

limit positions, are used to catch uncontrolled excursions out of the intended range of operation,

when there is a problem with feedback so the software limits do not work.

Action on Open-Loop Trip

The limit input signals are still direction sensitive for open-loop moves: hitting the positive limit

switch only causes a limit fault for a positive open-loop command, and hitting the negative limit

switch only causes a limit fault for a negative open-loop command.

Controlled Stop

The user has a choice for what happens when a motor hits a limit switch when the servo loop is

open. If bit 1 (value 2) of saved setup element Motor[x].FaultMode is set to the default value of

0, Power PMAC “aborts” the motor. This closes the servo loop with the initial commanded

velocity being equal to the present actual velocity, and causes a controlled deceleration to a stop,

just as if the loop were closed when the limit switch was encountered.

Disabled Stop

However, if bit 1 (value 2) of Motor[x].FaultMode is set to 1 when the motor hits a limit switch

in open-loop mode, Power PMAC “kills” (disables) the motor. This immediately causes a zero

output command and disables the amplifier.

In either case, other motors, whether in the same coordinate system or in a different coordinate

system, are not affected.

Software Motor Interlocks

In some applications, it is desirable to be able to “lock out” motion of a particular motor or

motors, while permitting motion of other motors. In Power PMAC, this can be done through the

non-saved setup elements Motor[x].MinusInterlock and Motor[x].PlusInterlock.

If Motor[x].MinusInterlock is set to 1, negative-direction moves for the motor are prevented,

whether commanded directly as motor moves (jogging or homing) or from related axis moves in

a motion program. Similarly, if Motor[x].PlusInterlock is set to 1, positive-direction moves for

the motor are prevented.

If a move for the motor has been prevented by either interlock bit, the status bit

Motor[x].InterlockStop is set to 1. If this bit is set for any motor in a coordinate system, the

status bit Coord[x].InterlockStop is set to 1.

If the move that has been prevented comes from a motion program move command, the program

is aborted, stopping all motors in the coordinate system. In this case, Coord[x].ErrorStatus is set

to 23, a value unique to this failure mode.

Software motor interlocks are new in V2.5 firmware, released 3rd quarter 2018.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 430

Encoder Loss Detection

Loss of the feedback sensor signal is potentially a very dangerous condition in closed-loop

control, because the servo loop no longer has any idea what the true physical position of the

system is – usually it thinks it is “stuck” – and it can react wildly, often causing a runaway

condition. Many of the safety checks performed, such as fatal following error limits, integrated

current limits, overtravel limit switches, and amplifier fault signals, may be ineffective in this

type of situation, reacting too late, or not at all. For this reason, many people want the capability

to directly monitor the presence of the feedback signal.

Many of Power PMAC’s servo interfaces have circuitry dedicated to monitoring the presence of a

proper feedback signal. In addition, Power PMAC can automatically check these circuits for loss

of sensor signal and take appropriate shutdown action.

Signal Loss Detection Circuits

Different types of feedback sensors require different circuits to monitor for loss of the signal, or

at least loss of a valid signal. Power PMAC interfaces provide circuits for several of the most

common types of feedback sensors.

Digital Quadrature Encoders

Digital quadrature encoders are one of the most common types of feedback sensors used in

motion control systems. Almost always, the individual channel signals are differential pairs at 5V

levels. Most Power PMAC interfaces for these encoders have circuitry that checks for the

presence of a proper differential signal pair on each signal channel, utilizing “exclusive-OR”

(XOR) logic gates, which output a high level for a proper differential signal, when the two inputs

to the gate are at different logical levels.

This diagram shows the XOR encoder-loss circuitry for a phase of a quadrature encoder.

A+

A-

R aR

+

-

bR

A

A?

+5V

1

2

3

Digital Quadrature Encoder Input Circuitry with Loss Detection

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 431

When there is no longer a proper signal driving the inputs on the interface, both lines are pulled to

a high logical level internally (with proper configuration of the particular interface circuitry), so

the XOR gate outputs a low level indicating encoder loss. These gate outputs from the A and B

encoder channels are logically combined to create a single present/lost signal for the encoder (if

either channel is invalid, it will indicate “lost”).

For interfaces using the PMAC2-style DSPGATE1 ASIC, such as the ACC-24E2x UMAC axis-

interface boards, this flag is found in the low-true element Gate1[i].Chan[j].EncLossN. For

interfaces using the PMAC3-style DSPGATE3 ASIC, such as the ACC-24E3 UMAC axis-

interface boards and the Power Brick products, this flag is found in the high-true element

Gate3[i].Chan[j].LossStatus.

In the DSPGATE3 ASIC, the initially detected loss signal is passed through a multi-stage digital

delay filter driven by a special “filter clock” before it reaches the register. This clock signal is

divided down from the encoder sampling clock (SCLK) as specified by saved setup element

Gate3[i].FiltClockDiv. Lowering the frequency of the filter clock can help prevent spurious

faults due to noise or other anomalies.

The DSPGATE3 ASIC also a status bit Gate3[i].Chan[j].LossCapt, which latches at a value of 1

if the transparent LossStatus bit ever goes to 1. This bit can be useful in setting up the system to

identify potential signal problems.

Analog Sinusoidal Encoders and Resolvers

Analog sinusoidal encoders and resolvers provide simultaneous “sine” and “cosine” signals into

the analog-to-digital converters of the Power PMAC interface circuitry for these devices. In

proper operation, the sum of the squares of the converted values for these two signals should be

roughly constant, and significantly different from zero. The PMAC3-style DSPGATE3 ASIC

used on the ACC-24E3 UMAC axis-interface board and in the Power Brick products

automatically computes this sum-of-squares value every sample cycle. The latest value is always

available in the 16-bit element Gate3[i].Chan[j].SumOfSquares. In addition, if all of the highest

3 active bits of this element are zero, so the value is less than 1/8 of full range (so the signal

magnitude is less than 1/√8, or about 40%, of maximum), the status bit

Gate3[i].Chan[j].SosError is automatically set to 1.

If a different threshold is desired, the encoder-loss check can be configured to look for the state

where all of the high “n” bits of SumOfSquares are zero, as is explained below.

This diagram shows the “Lissajous pattern” for a sinusoidal sensor, plotting the sine signal

against the cosine signal. The radius from the center is the overall magnitude of the sensor

signals, the square root of the sum of the squares of the individual signal magnitudes. When this

gets too small, the signal can be considered to be lost.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 432

B(cos)

A(sin)

θsig

Rsig

Rmax

Rmin

Sinusoidal Sensor Lissajous Plot

Serial Encoders

Power PMAC provides interfaces for many of the most popular serial encoder protocols. For

most of these interfaces, the receiving logic can detect that no data has been received in response

to the cycle’s “position request” output, and set a “timeout error” flag that can be read by the

processor. This flag bit can be used to detect encoder loss. Note that the SSI and SPI protocols

cannot provide this detection.

If the serial-encoder interface of the PMAC3-style DSPGATE3 ASIC used on the ACC-24E3

UMAC axis-interface board and in the Power Brick products is used, this “timeout error” flag is

bit 31 of the element Gate3[i].Chan[j].SerialEncDataB. If the FPGA-based ACC-84E UMAC

serial-encoder-interface board is used, this flag is bit 31 of the element

Acc84E[i].Chan[j].SerialEncDataB.

It is also possible to utilize an error-checking mechanism in the data such as parity or cyclic

redundancy check (CRC) bits. The Power PMAC interfaces for serial encoders can evaluate these

mechanisms and determine whether the data set was valid or not. This is particularly

recommended for the SSI and SPI protocols, where the data patterns cannot be used to detect a

timeout error. Typically, multiple consecutive cycles with an error should be required in this case

to create a fault; this is done by setting a relatively high value of Motor[x].EncLossCount (see

below).

For the SSI protocol, the parity error flag is bit 31 of Gate3[i].Chan[j].SerialEncDataB or

Acc84E[i].Chan[j].SerialEncDataB. For the SPI protocol, any error reporting is vendor specific,

but would be found (if it exists) in a high bit of one of these registers.

Software Setup for Loss Detection

Power PMAC permits automatic checking for sensor loss on each motor, and if loss is detected,

an immediate shutdown action. There are four saved setup elements for each motor to configure

this functionality:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 433

 Motor[x].pEncLoss Address of register with sensor loss flag

 Motor[x].EncLossBit Bit number of sensor-loss bit in pEncLoss register

 Motor[x].EncLossLevel Sensor-loss logical state

 Motor[x].EncLossLimit Sensor-loss maximum number of fault detections

Note that if Motor[x].pEncLoss is set to its default value of 0, loss detection is disabled for the

motor. Therefore, there is no automatic sensor-loss detection by default. The user must explicitly

configure it in an application.

It is recommended to set Motor[x].EncLossLimit to a value greater than 0, so multiple

accumulated scans in the fault state are required to confirm a loss, so a momentary transient will

not cause a nuisance trip.

Typical settings of these elements for the common types of feedbacks are discussed below.

Digital Quadrature Encoders

For digital quadrature encoders connected to an ACC-24E2x UMAC axis-interface board with a

PMAC2-style DSPGATE1 ASIC, the following settings should be used.

Motor[x].pEncLoss = Gate1[i].Chan[j].EncLossN.a // Encoder-loss register

Motor[x].EncLossBit = 13 // Loss bit number

Motor[x].EncLossLevel = 0 // Low-true fault

Note that instead of the Gate1[i] structure name, it is also possible to use the alias name for the

particular board: Acc24E2[i], Acc24E2A[i], or ACC24E2S[i]. Socketed resistor packs on the

circuit boards must be reversed from their default orientation to enable the creation of the loss

signal in the accessory. Consult the Hardware Reference Manual for the accessory for details.

For digital quadrature encoders connected to an ACC-24E3 UMAC axis-interface board with a

PMAC3-style DSPGATE3 ASIC, or to a Power Brick control board, the following settings

should be used:

Motor[x].pEncLoss = Gate3[i].Chan[j].LossStatus.a // Encoder-loss register

Motor[x].EncLossBit = 28 // “Transparent” loss bit number

Motor[x].EncLossLevel = 1 // High-true fault

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the

particular board: Acc24E3[i] or PowerBrick[i].

Analog Sinusoidal Encoders and Resolvers

For analog sinusoidal encoders and resolvers connected to an ACC-24E3 UMAC axis-interface

board with a PMAC3-style DSPGATE3 ASIC, or to a Power Brick control board, the following

settings should be used:

Motor[x].pEncLoss = Gate3[i].Chan[j].SosError.a // Sum-of-squares error register

Motor[x].EncLossBit = 31 // Sum-of-squares error bit number

Motor[x].EncLossLevel = 1 // High-true fault

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the

particular board: Acc24E3[i] or PowerBrick[i].

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 434

The magnitude threshold at which the channel’s SosError bit is automatically set to 1 by the

ASIC is suitable for many applications, eliminating both false positives and false negatives.

However, in some cases it may not be appropriate, particularly if the signal magnitude decreases

significantly at higher frequencies. In these cases, a user PLC program should directly monitor

the value of Gate3[i].Chan[j].SumOfSquares and kill the motor if it falls below a different

(usually lower) threshold.

It is also possible to look at the register containing the sum-of-squares magnitude to see if it has

fallen below a certain threshold. The register addressed by Motor[x].pEncLoss can either be the

hardware register in the DSPGATE3 ASIC – Gate3[i].Chan[j].SumOfSquares – if the

interpolation was performed in the ASIC, or the software register in the encoder conversion table

– EncTable[n].SumOfSqr – if the interpolation was performed in software (EncTable[n].type =

4, 6, or 7).

If Motor[x].EncLossBit is set to n = 224 to 255, then the values of the high (256 – n) bits of the

32-bit register are all evaluated instead of just that of a single bit. This setting is appropriate for

evaluating the EncTable[n].SumOfSqr magnitude. This capability is new in V2.4 firmware,

released 1st quarter 2018.

If Motor[x].EncLossBit is set to n = 208 to 223, (new in V2.6 firmware, released 3rd quarter

2020) then the values of the high (224 – n) bits of the low 16-bit field of the 32-bit register are all

evaluated instead of just that of a single bit. This setting is appropriate for evaluating the

Gate3[i].Chan[j].SumOfSquares magnitude.

If Motor[x].EncLossLevel is set to 0, then if all n high bits of the source register are 0, the

encoder will be considered “lost” for that scan. This permits the user to determine what

magnitude of signal will be the threshold for “loss”, particularly allowing more flexibility for

encoders whose signal magnitudes decrease significantly at high frequencies.

When the analog signals into the interpolator just reach their maximum voltage (+/-1.2Vpp for

most Delta Tau interpolators), the digital signal values will have a range of +/-215 (+/-32,768). In

this case, the sum-of-squares magnitude will be 230, and the high 2 bits of the 32-bit register will

always be zero.

If the signal magnitude is half of the maximum range for the ADCs, the digital signal values will

have a range of +/-214, the sum-of-squares magnitude will be 228, and the high 4 bits of the 32-bit

register will always be 0.

If the signal magnitude is one-quarter of the maximum range for the ADCs, the digital signal

values will have a range of +/-213, the sum-of-squares magnitude will be 226, and the high 6 bits of

the 32-bit register will always be 0.

To set up the motor to trip on encoder loss when all 6 of the high bits of the 16-bit hardware

magnitude element in the DSPGATE3 are 0, the following settings should be used:

Motor[x].pEncLoss = Gate3[i].Chan[j].SumOfSquares.a // Hardware magnitude register

Motor[x].EncLossBit = 218 // Look at 224 – 218 = 6 highest bits

Motor[x].EncLossLevel = 0 // Loss state is all 6 bits = 0

To set up the motor to trip on encoder loss when all 8 of the high bits of the software magnitude

register in the ECT entry are 0, the following settings should be used:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 435

Motor[x].pEncLoss = EncTable[n]. SumOfSqr.a // Software magnitude register

Motor[x].EncLossBit = 248 // Look at 256-248=8 highest bits

Motor[x].EncLossLevel = 0 // Loss state is all 8 bits = 0

Serial Encoders

For serial encoders connected to an ACC-24E3 UMAC axis-interface board or to a Power Brick

control board with a PMAC3-style DSPGATE3 ASIC, the following settings should be used for

encoder protocols with a “timeout error” flag (EnDat, Hiperface, Sigma I, Sigma II/III/V,

Tamagawa, Panasonic, Mitutoyo, and Kawasaki):

Motor[x].pEncLoss = Gate3[i].Chan[j].SerialEncDataB.a // Status & error register

Motor[x].EncLossBit = 31 // Timeout error bit number

Motor[x].EncLossLevel = 1 // High-true fault

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the

particular board: Acc24E3[i] or PowerBrick[i].

The same settings are valid for an SSI encoder with parity checking to use the parity-error bit.

For serial encoders connected to an ACC-84E UMAC FPGA-based serial-encoder interface

board, the following settings should be used for encoder protocols with a “timeout error” flag

(presently implemented protocols are EnDat, Hiperface, Sigma I, Sigma II/III/V, Tamagawa,

Panasonic, and BiSS):

Motor[x].pEncLoss = Acc84E[i].Chan[j].SerialEncDataB.a // Status & error register

Motor[x].EncLossBit = 31 // Timeout error bit number

Motor[x].EncLossLevel = 1 // High-true fault

It is also possible to consider the high n bits of an encoder status word collectively, and if any of

them is set to 1, consider this a loss state. This capability is new in V2.4 firmware, released 1st

quarter 2018.

If Motor[x].EncLossBit is set to n = 224 to 255, then the values of the high (256 – n) bits of the

32-bit register are all evaluated instead of just that of a single bit. Note that it is possible to

command the setting of EncLossBit to a negative number (n), but the value will be stored and

reported as (256 – n).

If Motor[x].EncLossLevel is set to 1, then if any of the (256 – n) high bits of the source register

is 1, the encoder will be considered “lost” for that scan. This permits the user to look at multiple

error bits collectively and consider any of them to indicate “loss” of proper feedback.

To set up the motor to trip on encoder loss when any of the 3 high bits of the serial encoder status

register in the DSPGATE3 is 1, the following settings should be used:

Motor[x].pEncLoss = Gate3[i].Chan[j].SerialEncDataB.a // Encoder status register

Motor[x].EncLossBit = 253 // Look at 256 - 253 = 3 highest bits

Motor[x].EncLossLevel = 1 // Loss state is any of 3 bits = 1

To set up the motor to trip on encoder loss when any of the 4 high bits of the serial encoder status

register in an ACC-84x is 1, the following settings should be used:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 436

Motor[x].pEncLoss = Acc84E[i].Chan[j].SerialEncDataB.a // Encoder status register

Motor[x].EncLossBit = 252 // Look at 256 – 252 = 4 highest bits

Motor[x].EncLossLevel = 1 // Loss state is any of 4 bits = 1

Setting the Encoder Loss Limit Value

It is possible with these loss-detection circuits that a brief transient electrical condition can

momentarily cause the circuit to indicate a sensor loss when none has actually occurred. For this

reason, Power PMAC permits you to specify the number of occurrences of the loss detection

before tripping on an error condition. This is done with saved setup element

Motor[x].EncLossLimit.

Each real-time interrupt (RTI) period, Power PMAC will check for encoder loss on each motor

with this functionality enabled. If the specified bit is in its “loss” state, Power PMAC will

increment the status element Motor[x].EncLossCount by 1. If the specified bit is not in its “loss”

state, Power PMAC will decrement this element by 1 (but never take it below 0).

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only

true for very high block rate applications), this check for the motor will not occur every RTI, but

rather every few RTI periods; this could possibly alter the optimal value for

Motor[x].EncLossLimit.

If the value of Motor[x].EncLossCount ever exceeds that of Motor[x].EncLossLimit, an

encoder-loss error will be generated. With Motor[x].EncLossLimit at its default value of 0, a

single detection of the loss state will cause a trip.

The optimal setting of Motor[x].EncLossLimit must balance quick response to a true error while

robustly avoiding any nuisance trips. Typically a setting of 3 or 4 will provide this balance.

Action on Encoder-Loss Error

When Motor[x].EncLossCount becomes greater than Motor[x].EncLossLimit and Power

PMAC generates an “encoder-loss” error, it automatically “kills” the motor, putting it in open-

loop mode with zero command output and amplifier disabled. It also aborts any motion program

presently running in the motor’s coordinate system. The status bit Motor[x].EncLoss is set to 1

to indicate this error.

If bit 0 (value 1) of Motor[x].FaultMode is set to its default value of 0, any other motors in the

coordinate system will be “aborted” (decelerated to a closed-loop enabled stop according to

Motor[x].AbortTa and Motor[x].AbortTs). If this bit is set to 1, any other motors in the

coordinate system are also “killed”. Motors in other coordinate systems are not affected in either

case. Note that the action on an encoder-loss fault is identical to that for a fatal following error

fault, amplifier fault, or I2T fault.

Auxiliary Fault Detection

Each motor has a secondary fault detection capability that works in the same manner as the

encoder loss detection. This can be used to detect the loss of a second position sensor, if dual

feedback is used, for motor thermal fault detection using the Power Brick’s dedicated circuitry, or

some other user-specified fault bit.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 437

Software Setup for Auxiliary Fault Detection

There are four saved setup elements for each motor to configure this functionality:

 Motor[x].pAuxFault Address of register with auxiliary fault flag

 Motor[x].AuxFaultBit Bit number of sensor-loss bit in pAuxFault register

 Motor[x].AuxFaultLevel Fault logical state

 Motor[x].AuxFaultLimit Maximum number of fault detections

Note that if Motor[x].pAuxFault is set to its default value of 0, this fault detection is disabled for

the motor. Therefore, there is no automatic auxiliary-fault detection by default. The user must

explicitly configure it in an application.

Most commonly, the auxiliary-fault detection function looks at a single bit in the specified

register. This is the case if Motor[x].AuxFaultBit is set in the range 0 – 31. If the value of this

bit matches the value of Motor[x].AuxFaultLevel, it is considered to be in the fault state.

However, if Motor[x].AuxFaultBit is in the range 224 – 255 (new in V2.4 firmware, released 1st

quarter 2018), the detection function looks at the high (256 – AuxFaultBit) bits of the register. If

Motor[x].AuxFaultLevel is 0, then if all of these bits are 0, this is the fault state. If

Motor[x].AuxFaultLevel is 1, then if any of these bits is 1, this is the fault state. These two

configurations are commonly used for sinusoidal encoder signal loss and serial encoder

transmission errors, respectively. More details can be found in the description of encoder-loss

detection, above.

If Motor[x].AuxFaultBit is set to n = 208 to 223, (new in V2.6 firmware, released 3rd quarter

2020) then the values of the high (224 – n) bits of the low 16-bit field of the 32-bit register are all

evaluated instead of just that of a single bit. If Motor[x].AuxFaultLevel is 1, then if any of these

bits is 1, this is the fault state.

Secondary Encoder Loss Detection

If the auxiliary fault function is used to detect the loss of a secondary encoder for a motor, the

software setup is exactly as for the main encoder loss detection, described in the previous section.

Motor Thermal Fault Detection (Power Brick)

The Power Brick family of controllers has circuitry for each channel designed to interface to

standard motor thermal sensors. When the motor temperature exceeds its safe limits, this circuitry

will provide a fault bit that can be used to provide a quick shutdown to protect the motor.

To use this circuitry, set Motor[x].pAuxFault to Gate3[i].Chan[j].Status.a to specify the IC’s

input status register, Motor[x].AuxFaultBit to 15 to specify the T flag input bit, and

Motor[x].AuxFaultLevel to 1 to specify a high-true fault condition.

Setting the Auxiliary Fault Limit Value

It is possible with these fault circuits that a brief transient electrical condition can momentarily

cause the circuit to indicate a fault when none has actually occurred. For this reason, Power

PMAC permits you to specify the number of occurrences of the fault state before tripping on an

error condition. This is done with saved setup element Motor[x].AuxFaultLimit.

Each real-time interrupt (RTI) period, Power PMAC will check for auxiliary on each motor with

this functionality enabled. If the specified bit is in its “loss” state, Power PMAC will increment

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 438

the status element Motor[x].AuxFaultCount by 1. If the specified bit is not in its “loss” state,

Power PMAC will decrement this element by 1 (but never take it below 0).

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only

true for very high block rate applications), this check for the motor will not occur every RTI, but

rather every few RTI periods; this could possibly alter the optimal value for

Motor[x].AuxFaultLimit.

If the value of Motor[x].AuxFaultCount ever exceeds that of Motor[x].AuxFaultLimit, an

auxiliary-fault error will be generated. With Motor[x].AuxFaultLimit at its default value of 0, a

single detection of the loss state will cause a trip.

The optimal setting of Motor[x].AuxFaultLimit must balance quick response to a true error

while robustly avoiding any nuisance trips. Typically a setting of 3 or 4 will provide this balance.

Action on Auxiliary-Fault Error

When Motor[x].AuxFaultCount becomes greater than Motor[x].AuxFaultLimit and Power

PMAC generates an “auxiliary fault” error, it automatically “kills” the motor, putting it in open-

loop mode with zero command output and amplifier disabled. It also aborts any motion program

presently running in the motor’s coordinate system. The status bit Motor[x].AuxFault is set to 1

to indicate this error.

If bit 0 (value 1) of Motor[x].FaultMode is set to its default value of 0, any other motors in the

coordinate system will be “aborted” (decelerated to a closed-loop enabled stop according to

Motor[x].AbortTa and Motor[x].AbortTs). If this bit is set to 1, any other motors in the

coordinate system are also “killed”. Motors in other coordinate systems are not affected in either

case. Note that the action on an auxiliary-fault error is identical to that for a fatal following error

fault, encoder-loss fault, amplifier fault, or I2T fault.

Separate Negative Position Limit Detection

If Motor[x].LimitBits is in the range of 96 to 127 or 224 to 255, then the register specified by

Motor[x].pLimits is only used for the positive position limit input. In this case,

Motor[x].pAuxFault specifies the register for the negative position limit input, and

Motor[x].AuxFaultBit specifies the bit number for this input.

In this mode of operation, Motor[x].AuxFaultLevel and Motor[x].AuxFaultLimit are not used.

The level of the limit fault is specified by bit 7 (value 128) of Motor[x].LimitBits, and a single

scan in the fault state will always trigger the fault. The action on a fault is treated as an overtravel

limit fault, not as an auxiliary fault.

This capability is new in V2.1 firmware (released 1st quarter 2016).

Automatic Brake Control

Power PMAC provides the capability for automatic brake control on the motors it controls. The

user can specify a digital output to be used to enable and disable a brake on the motor with

configurable timing on the release and engagement of the brake as the motor is enabled and

disabled. This is particularly useful for motors with a net load offset such as a gravity load on a

vertical axis. Only a few saved setup elements must be configured to enable this functionality; no

user algorithm is required.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 439

Specifying the Brake Control Output

The brake control functionality is enabled by setting Motor[x].pBrakeOut to the address of the

register containing the output bit. If this register (or the bit in the register) has an element name,

the address can be specified using the “.a” suffix on the element name. For example:

Motor[4].pBrakeOut = Acc24E3[1].Chan[0].OutFlagB.a

Motor[5].pBrakeOut = Acc68E[0].DataReg[5].a

If there is no element name for the register, as with an ACC-11E UMAC I/O board, the address

can be specified directly. For example:

Motor[6].pBrakeOut = Sys.piom + $A0000C

If Motor[x].pBrakeOut is left at its default value of 0, the automatic brake-control functionality

for the motor is disabled.

Motor[x].BrakeOutBit specifies which bit in this 32-bit register is to be used for the output

control. It is the location on the 32-bit data bus, not necessarily the offset from the lowest bit with

an output. For example, I/O boards using the IOGATE IC have outputs only in bits 8 – 15 of the

32-bit bus, so a value from 8 to 15 should be used to specify one of these outputs.

Note that there is no software polarity control of the brake output bit. The bit is always set to 0 to

engage the brake, and to 1 to release the brake. This is to encourage “fail-safe” implementations

of the brake control, because a 0 typically sets a non-conducting output state, and most failure

modes are non-conducting. In additions, output bits are forced to zero on controller reset

(including watchdog timer trip) or shutdown.

Specifying the Brake Timing

Two saved setup elements control the timing for releasing and engaging the brake on the enabling

and disabling of the motor. Motor[x].BrakeOffDelay specifies the delay in milliseconds from

the time the motor is enabled (open-loop or closed-loop) and the specified brake-control output is

set to 1 to release the brake. The purpose of the delay is to give the system enough time to ensure

that proper control is established before brake release.

Motor[x].BrakeOnDelay specifies the delay in milliseconds from the time the specified brake-

control output is set to 0 to engage the brake to the time the motor is disabled on a controlled

(delayed) disabling. The purpose of the delay is to provide enough time for the brake to engage

fully before servo control is removed. Delayed disabling is performed using the motor dkill

command or the coordinate-system ddisable command; both of these can be given as on-line

commands or buffered program commands.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 440

Amp

Enable

Servo

Command

Brake

Control

Output

0

1

0

1

0

+

-
BrakeOff

Delay

BrakeOn

Delay

Enable

Command

Delayed

Disable

Command

time

Brake Control Timing Diagram

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only

true for very high block rate applications), this check for the motor will not occur every RTI, but

rather every few RTI periods; this will alter the scaling of these delay parameters.

There is no delay if standard disabling commands (k, kill, disable) are used, or if the motor

is disabled due to a fault condition (fatal following error, amplifier fault, encoder loss). In these

cases, the motor is killed at the same time the brake engagement is commanded.

Amplifier Enable and Fault Lines

The use of the amplifier-enable (AENAn) output and the amplifier-fault (FAULTn) input lines

for each motor are important for safe operation. Without the use of the enable line, disabling the

amplifier relies on precise zero offsets in Power PMAC’s outputs and the amplifier’s inputs.

Amplifier Enable Output Configuration

The amplifier-enable line used for the motor is specified by the address in saved setup element

Motor[x].pAmpEnable (usually Gate1[i].Chan[j].Ctrl.a or Gate3[i].Chan[j].OutCtrl.a). It is

usually part of the same ASIC channel as the other flags used for the motor.

Saved setup element Motor[x].AmpEnableBit specifies which bit of the 32-bit register specified

is written to for the control of the amplifier-enable output. This should be set to 22 when using a

PMAC2-style “DSPGATE2” IC, as on an ACC-24E2x UMAC board, or when using the standard

MACRO-ring protocol. It should be set to 8 when using a PMAC3-style “DSPGATE3” IC, as on

an ACC-24E3 UMAC board.

The enable/disable polarity of the amplifier-enable line cannot be changed in software. From the

software viewpoint, a 0 in the bit controlling the line means “disable”, and a 1 means “enable”.

Failures such as watchdog-timer trips use hardware circuits to force the output to a “disable” (0)

state (which is why software polarity control is not permitted).

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 441

Amplifier Fault Input Configuration

Without the use of the fault line, Power PMAC may not know when an amplifier has shut down

and may not take appropriate action. The amplifier-fault line used for the motor is specified by

the address in Motor[x].pAmpFault (usually Gaten[i].Chan[j].Status.a). This is usually part of

the same ASIC channel as the other flags used for the motor.

Saved setup element Motor[x].AmpFaultBit specifies which bit of the 32-bit register specified is

read for the status of the amplifier-fault input. This should be set to 23 when using a PMAC2-

style “DSPGATE1” IC, as on an ACC-24E2x UMAC board, or when using the standard

MACRO-ring protocol. It should be set to 7 when using a PMAC3-style “DSPGATE3” IC, as on

an ACC-24E3 UMAC board.

Polarity Control

The fault/no-fault polarity of the amplifier-fault input is determined by bit 0 (value 1) of saved

setup element Motor[x].AmpFaultLevel. If set to the default value of 1, the input state that

produces a 1 in the bit read by the processor is viewed as a fault condition. If set to 0, the input

state that produces a 0 in the bit read by the processor is viewed as a fault condition.

Optional Specification of Multiple Scans for Fault

In some applications, it will be desirable to require multiple scans in which the specified input bit

reports that it is in the fault state before it will trip the motor. This can prevent brief noise spikes

or delay in clearing a previous from causing an undesired trip.

If bit 1 (value 2) of Motor[x].AmpFaultLevel is set to 1, two consecutive scans in the fault state

are required to cause an amplifier fault trip.

If more scans are desired before a trip, saved setup element Motor[x].AmpFaultLimit can be set

greater than 0, specifying how many accumulated scans are required before an amplifier fault is

declared, tripping the motor. Each real-time input scan, Power PMAC checks the specified input

bit. If the bit is in the fault state, Motor[x].AmpFaultCount is incremented by 1. If it is not in its

fault state, the count element is decremented by 1 (but will never go below 0).

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only

true for very high block rate applications), this check for the motor will not occur every RTI, but

rather every few RTI periods; this could possibly alter the optimal value for

Motor[x].AmpFaultLimit.

If the value of Motor[x].AmpFaultCount ever exceeds that of Motor[x].AmpFaultLimit, an

amplifier fault will be generated. With Motor[x].AmpFaultLimit at its default value of 0, then

one or two detections of the fault state will cause a trip. (Motor[x].AmpFaultLimit is new in

V2.4 firmware, released 1st quarter 2018. At its default value of 0, operation is compatible with

older firmware versions.)

Action on Fault

On detecting an amplifier fault condition, the motor is automatically “killed” (open-loop, zero-

output, amplifier disabled). If bit 0 (value 1) of Motor[x].FaultMode is set to the default value of

0, other motors in the coordinate system (even if they just have the “null” definition – #x->0 –

in that coordinate system) are automatically “aborted” (controlled deceleration to enabled, closed-

loop stop). If bit 0 (value 1) of Motor[x].FaultMode is set to 1, other motors in the coordinate

system are automatically “killed” as well.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 442

Current Limits

Power PMAC provides the capability for checking for both intermittent and time-integrated

current limits in the most common control modes to protect the motor and/or the amplifier.

However, if Power PMAC is outputting either position or velocity commands from the servo

algorithm, it has no access to either commanded or measured current values, and so cannot

provide any current protection.

Intermittent Current Limits

Both amplifiers and motors will have an “intermittent” (a.k.a. “instantaneous) current limit rating,

which, if exceeded even for a small fraction of a second, could cause permanent damage.

Amplifiers with commanded-current inputs, either torque-mode or sinewave-mode, are typically

designed so they can use the maximum input command magnitude properly for at least a few

seconds, so do not need special protection for this. Most of these amplifiers will monitor actual

current levels as well and shut themselves down immediately if the detected current level is too

high.

Direct-PWM “power block” amplifiers accept phase voltage commands, so only have access to

measured current values. Most of these do have the capability to shut down immediately if the

measured current exceeds its intermittent threshold, but this should be confirmed with the

amplifier manual.

Servo motors have an intermittent current limit rating as well. If the current exceeds this limit

even for a few milliseconds, the permanent magnets can suffer a permanent reduction in strength.

Winding wire insulation could also be damaged. Since motors cannot protect themselves, this

protection must be done in the amplifier or controller. Sometimes, particularly with a matched

amplifier/motor pair, this protection comes automatically in the amplifier. Other times, amplifier

limits can be set lower as needed to protect a lower-rated motor. Many users will want to put this

protection in the controller, either because the amplifier cannot do it, or as redundant protection.

Saved setup element Motor[x].MaxDac sets the maximum “torque” (quadrature) current

magnitude value that the Power PMAC can command for the motor (or sometimes the amplifier).

It is scaled in the internal units of the Power PMAC, with a maximum possible range of ±32,768.

The method for converting these units to physical current units is dependent on the mode of

operation and is covered separately for each mode in the following sections.

Setting MaxDac to a value less than 32,768 limits the command output range further. If the

position/velocity servo loop computes a command value of a magnitude greater than MaxDac for

the servo cycle, the command magnitude is reduced to that of MaxDac. When MaxDac is set for

protective purposes, it is set to the lesser value of the motor’s intermittent limit or the amplifier’s.

In a servo cycle where the command magnitude has been limited by MaxDac, the error integrator

from the integral gain term Motor[x].Servo.Ki in the servo loop is not active. This functionality,

known as “anti-windup” protection, keeps the integrator value from increasing too much while

the servo is saturated, for the purpose of preventing instability when the servo comes out of

saturation.

When Power PMAC is performing commutation for a motor in either sinewave or direct-PWM

output mode, it also commands the “field” (direct) current magnitude for the motor with the value

of Motor[x].IdCmd. While this element is almost always set to 0 for brushless servo motor

control, it must be set greater than 0 for induction motor control.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 443

This current component is orthogonal to the “torque” (quadrature) current component output from

the servo loop. The total current magnitude is the vector sum of these two components. As such,

the more general constraint for MaxDac is given by the equation:

768,3222 IdCmdMaxDac

In terms of MaxDac, this becomes:

22768,32 IdCmdMaxDac

Note

MaxDac is always a limit on commanded current in all modes

of operation. It is up to the operation of the current-loop

closure, whether done in the amplifier or the controller, to keep

the actual current levels close to the commanded current

levels.

Time-Integrated Current Limits

Both amplifiers and motors also have a (lower) continuous current limit. This is the maximum

current magnitude that can be used on an indefinite basis without overheating. In other words, the

device can dissipate the generated heat fast enough at this current level to maintain an acceptably

low temperature.

When implementing time-integrated current limiting, saved setup element Motor[x].I2tSet

should be set to this continuous current limit, the lesser value of the motor’s continuous limit or

the amplifier’s. As with Motor[x].MaxDac, it is scaled in the internal units of the Power PMAC,

with a maximum possible range of ±32,768, and the method for converting these units to physical

current units is dependent on the mode of operation.

Both amplifiers and motors can operate at levels above this continuous limit for short periods of

time without excessive heating. In a typical application, this capability will be used, notably for

accelerations and decelerations. The greater the level above the continuous limit, the shorter the

time permitted. Proper thermal protection requires evaluating both the levels and times of currents

on an ongoing basis.

Power PMAC implements the most common type of this protection, called “I2T” (Eye-Squared-

Tee). It uses the square of the current value, because resistive heat generation is proportional to

the square of current. Each cycle, the algorithm squares the present current value, subtracts from

this the square of the continuous current limit Motor[x].I2tSet, and adds the difference (which

could be negative) multiplied by the cycle time to the previous cycle’s integrated value. It then

compares this integrated sum to the integrated limit value you have set in the saved setup element

Motor[x].I2tTrip, and if the sum, found in status element Motor[x].I2tSum, is greater than this

limit, the motor is disabled with a fault.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 444

Note

I2T protection uses a simple and approximate thermal model of

heat dissipation. It is not optimized for any individual

application, each of which will have unique aspects of heat

dissipation. However, it is an approach that has stood the test

of time well for providing reasonable protection without

requiring complex and time-consuming analysis and

implementation. Settings should be verified experimentally in

any application by running close to expected limits and

checking that temperatures remain in a valid range.

In torque mode and sinewave mode, Power PMAC performs these calculations based on

commanded current levels, as it does not have access to the measured actual current levels. In

direct-PWM mode, Power PMAC performs these calculations based on measured current levels.

The following diagram shows this process graphically:

2

32768

 MaxDac

20.1

2

32768

2

 tSetI

232768

2MaxDac

22tSetI

2I
2

normI

Saturation

Integrator

Charge-Up

Integrator

Discharge

(sec)time

I2t Fault

I2T Protection Sample Operation

When the current level is above the continuous limit, the integrated value “charges up”, and when

it is below the continuous limit, the integrated value “discharges”. The integrated value is

represented in this diagram by the net area above the continuous limit minus the net area below.

Under I2T protection, when the level of squared current above the continuous level is doubled

(the current itself is increased by a factor of sqrt(2), or about 1.4), the time permitted at this level

is halved. In other words, the square of the current level above continuous and the time permitted

at that level are inversely proportional. The following diagram shows this relationship for a

sample case where the motor is specified for peak current operation for 2 seconds:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 445

2

32768

 MaxDac

20.1

2

32768

2

 tSetI

232768

2MaxDac

22tSetI

2I
2

normI

(sec)time

2 4 6 8 10 12 14 16

Sample Current Level Permitted vs. Time at Level

The integrated current limit Motor[x].I2tTrip is expressed in units of the square of current

multiplied by time. The current is expressed in the same internal PMAC units that have a full

range of ±32,768, and time is expressed in seconds (not in servo cycles, as in Power PMAC).

Proper calculation of the integrated current values depends on a correct setting of saved setup

element Sys.ServoPeriod, which specifies the time per servo cycle.

The most common way that users specify the value of I2tTrip is to use the data sheet value for

the motor or amplifier being protected for time permitted at the maximum momentary current

value. In many cases, this value will be 2 or 3 seconds. This value can be used along with the

values for MaxDac and I2tSet to compute the value of I2tTrip according to the following

equation:

 (sec)*22 22 tedTimePermittSetIMaxDactTripI

If Motor[x].IdCmd is set greater than zero, as for Power PMAC computation of induction

motors, the above equation becomes:

 (sec)*22 222 tedTimePermittSetIIdCmdMaxDactTripI

Note

Power PMAC’s I2T calculations use the value of

Sys.ServoPeriod to compute the time in seconds that has

elapsed each servo cycle. Therefore, the value of

Sys.ServoPeriod must correctly match the physical time

elapsed in a servo cycle for the I2T calculations to be accurate.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 446

Special Case: Extending the Monitoring Interval

If saved setup element Sys.MotorsPerRtInt is set to a non-zero number so that individual motor

status updates are not performed every real-time interrupt, the scaling of Motor[x].I2tTrip is

different from when it is set to the default value of zero, or from older firmware versions for

which there was no parameter Sys.MotorsPerRtInt.

The time extension factor N required to modify Motor[x].I2tTrip if Sys.MotorsPerRtInt > 0 is

given by the equation:

tIntMotorsPerRSys

sServoMotorSys
ceilN

.

1.

where “ceil” is the “ceiling” function, indicating a rounding up to the next integer (if necessary)

and status element Sys.ServoMotors is the highest-numbered active motor. The value of

Motor[x].I2tTrip should be divided by N compared to cases where motor status updates are

performed every real-time interrupt.

Comparison to Older PMAC Scaling

In the older PMAC and Turbo PMAC controllers, the equivalent parameter to Power PMAC’s

Motor[x].I2tTrip is Ixx58. The scaling of both the current values and the time in Ixx58 is

different from I2tTrip. The equation for setting Ixx58 in these older controllers is:

 cyclesservotedTimePermit
IxxIxxIxx

Ixx *
768,32

57

768,32

77

768,32

69
58

222

where Ixx69 is the equivalent of MaxDac, Ixx77 is the equivalent of IdCmd, and Ixx57 is the

equivalent of I2tSet, all with the same units in both controllers.

If you have a setting of Ixx58 in an older PMAC controller and you want to set I2tTrip in Power

PMAC for the same functionality, use the following equation to determine I2tTrip:

1000

.
*768,32*582 2 dServoPerioSys

IxxtTripI

RMS Current Calculations

The magnitude of AC electrical waveforms is often described in terms of the RMS value. RMS,

which stands for (square) Root of the Mean of the Squares of the quantity (current or voltage) is

very useful for power calculations, because multiplying the RMS current magnitude of an AC

waveform by the RMS voltage magnitude gives the power in that waveform, the same as DC

current and voltage values of the same numerical magnitudes. It is important to understand the

relationship between the peak value of a waveform and its RMS value.

AC Waveform RMS Calculations

Consider a sinusoidal current waveform with the equation:

 tIti peak sin*

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 447

The square can be computed as:

 t
II

tIti
peakpeak

peak 2cos*
22

sin*

22

222

Taking the mean value of this signal over one or more full cycles simply leaves the first term of

the expression:

2

2

2 peakI
i

Next, taking the square root of this mean gives us:

peakrms II
2

1

So the RMS magnitude of a sinusoidal waveform is 0.707 times the peak magnitude. Conversely,

the peak magnitude can be calculated as 1.414 times the RMS magnitude. So if a motor is rated as

having a 10Arms continuous current capability, the peak current value of each AC waveform can

be just above 14A.

Motion Profile RMS Calculations

The current requirements for motion profiles are also often calculated using RMS values, and this

can lead to confusion for the user who does not distinguish these calculations from AC waveform

RMS calculations. While motion profile RMS calculations are not directly used in setting Power

PMAC, they are often important in sizing a motor and amplifier for a particular application by

determining the needed continuous current rating.

In a simple example, our application motion profile consists of indefinite repetitions of the

following sequence of a trapezoidal move and dwell:

 Acceleration at 20A for 0.5 seconds

 Constant velocity at 2A for 5 seconds

 Deceleration at 16A for 0.5 seconds

 Dwell at ~0A for 2 seconds

The “average” current for this profile is computed using the root of the mean of the squares of the

sections:

A

AAAA
I avg 6.6

8

012820200

25.055.0

02165.025205.0
2222

The motor and amplifier selected for this application must each have a continuous current rating

of at least 6.6A.

The following diagram shows this application motion profile, required current levels, square of

current levels, and the resulting average squared-current value with the associated RMS current

level.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 448

2

4

6

8

10

12

14

16

18

20

-2

-4

-6

-8

-10

-12

-14

-16

100

200

300

400

I (A) I2 (A2)

Mean(I2)

RMS(I)

21 3 4 5 7
time (sec)

Velocity vs Time Move Profile

0

Sample Application Move Profile and Resulting RMS Current

The potential confusion comes from the fact that for brushless motors, the individual current

requirements for each section of the profile are themselves RMS values of the AC waveforms

during that section. So these calculations can be computing RMS values of RMS values!

It is very important for the user to distinguish between the two types of RMS calculations. The

terminology used by different suppliers is not always consistent, so the context must always be

taken into account. This chapter uses “intermittent” to describe short-term sections of motion

profiles, such as high-current accelerations and decelerations. The Motor[x].MaxDac

“intermittent current limit” must be high enough to cover these. “Instantaneous” in this chapter

refers to the individual current samples taken at high frequencies, such as the phase current

readings, and “peak” is the maximum instantaneous reading of a waveform.

Reference Frame Conversions

When working with control of AC motors, including brushless servo motors and AC induction

motors, two frames of reference are useful, and control algorithms often must convert between

them. One reference frame is the “phase” frame, which is tied to the physical phases on the stator.

The other reference frame is the “field” frame, which is tied to the magnetic field on the rotor. In

brushless servo motors, this frame is fixed with respect to the mechanical structure of the rotor

and the permanent magnets in it. In AC induction motors, this frame “slips” with regard to the

mechanical structure of the motor by an amount proportional to the torque producing current.

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 449

Field-Frame Current Commands

Power PMAC always initially computes its current commands in the field frame. There are two

components to the net current value in the field frame. The quadrature, or torque-producing,

current component is the component perpendicular to the rotor magnetic field. The output of

Power PMAC’s position-velocity servo loop is the commanded quadrature current. If Power

PMAC is in torque-control mode, this value is sent directly to the amplifier, which performs any

reference-frame conversions itself.

If Power PMAC is performing commutation for the motor, the quadrature-current command from

the servo loop is one of two current-command inputs to the commutation algorithm. The other is

the direct, or field-producing, component. In Power PMAC, the direct current command input to

the commutation algorithm is the value of saved setup element Motor[x].IdCmd. For brushless

servo motors, IdCmd is almost always set to 0. For AC induction motors, IdCmd must be set to

a value greater than 0 to induce a magnetic field in the rotor. Common values of IdCmd for

induction motors are around 3,000.

Sinewave Mode Current Output Conversion

In Power PMAC’s sinewave output mode, the quadrature and direct current command values are

converted to two phase current command values, and these phase current commands are sent to

the amplifier, usually as analog voltages. Analytically, this conversion is known as the “inverse

Park-Clarke transformation”. In amplifiers of this class, the current loops are closed in the phase

frame directly from phase current measurements.

Because all of the limits discussed in this note use commanded current values in the field frame,

the user does not need to consider the reference frame conversion in this mode.

Direct PWM Mode Current Input Conversion

In Power PMAC’s direct-PWM output mode, the two phase current measurement values are

converted from the phase frame to the field frame before they are compared to the commanded

field-frame current values to close the current loops. Analytically, this conversion is known as the

“Park-Clarke transformation”. For 3-phase motors, this transformation starts with phase values

separated by 120° and produces field values separated by 90°.

In standard “academic” presentations of this transformation for 3-phase systems, the overall

vector magnitude of the combined values is conserved during the transformation, but this requires

additional multiplications to achieve. Since Power PMAC is performing this transformation

10,000 or more times per second, in order to save computation time, these scaling multiplications

are not used, and the magnitude of the transformed quantity is somewhat reduced

In Power PMAC, the resulting magnitude in field coordinates has a magnitude of cos(120°-90°) =

0.866 times that of the peak values in the phase current coordinates. For example, if the phase

current measurements were sine waves with peak values of the full range ±32,768, the resulting

magnitude of the field-frame current values would be 32,768*cos(30°) = 28,377. Note that while

these phase-frame measurements are AC waveforms in the steady state, the conversion to field-

frame coordinates create DC values. Phase-current sine waves with peak measurements of

±32,768 would convert to constant DC field-frame current values of 28,377.

Remember that the peak values of the phase current measurements are sqrt(2) = 1.414 times the

RMS values of the sine waves. Phase-current sine waves with peak measurements of ±32,768

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 450

would have RMS current magnitudes of 32,768 / 1.414 = 23,174 in the same converter units. This

is what would result from current commands with a magnitude in the field frame of 28,377.

Note that for 2-phase motors, as with most stepper motors, the magnitude of the current after the

transformation is the same as before, because cos(90°-90°) = 1.0.

Torque Control Mode

In torque control mode, the result of the position-velocity servo loop in Power PMAC is output to

the amplifier, typically through a D/A converter circuit with an output range of ±10V,

corresponding to the full numeric range of ±32,768. The output circuitry can therefore be

considered to have a “gain” of 10 / 32,768 (Volts / LSB).

Intermittent Current Limit

Motor[x].MaxDac can be used to limit the torque command outputs to a smaller range. The

output voltage range is given as:

768,32
*10max

MaxDac
V

At the default value for MaxDac of 20,480, the output range is limited to ±6.25V.

Note that these calculations refer to the voltage of the DAC+ output relative to the reference

voltage signal AGND (0V). If you are using the DAC+ and DAC- outputs, the output range is

±20V, and the effective gain of the output circuitry is 20 / 32,768 (Volts / LSB). If the amplifier

can only tolerate ±10V, the value of MaxDac should not be greater than 16,384.

A torque-mode amplifier with an analog input has a “transconductance gain” expressed in

amperes per volt. For a DC brush-motor amplifier, the amperes in this term are DC values. For a

brushless-motor amplifier, the amperes in this term a usually, but not always, expressed as the

RMS value of the AC current. In either type of amplifier, the data sheet may not provide a gain

value, but simply a maximum intermittent current value. For an amplifier with a ±10V input,

simply divide this value by 10 to get the amperes per volt. For example, if the amplifier lists a

25A maximum intermittent current, the amplifier’s gain is 2.5A/V.

Motor[x].MaxDac can be set to limit the intermittent current output magnitude to protect either

the amplifier or the motor. Note, however, that virtually all amplifiers of this type can safely take

the full-range command of ±10V for at least a few seconds, so there is almost never a need to

reduce the value of MaxDac for amplifier protection. (There can be reasons other than motor or

amplifier protection to reduce the value of MaxDac.)

It is quite common that the motor will have a lower intermittent current rating than the amplifier.

In this case, MaxDac should be set to a value lower than its largest possible value. The equation

for MaxDac can be given as:

ImaxAmp

ItopMtr
MaxDac *768,32

This equation assumes that the intermittent current rating for the motor (ItopMtr) is expressed in

the same type of units as the maximum intermittent current value for the amplifier (ImaxAmp).

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 451

For brushless motors and amplifiers, these are typically both expressed as RMS quantities. If you

are limiting the intermittent current command output from the Power PMAC for reasons other

than motor protection, simply substitute your current limit in place of ItopMtr in the above

equation.

For example, if the brushless-motor amplifier has a 25Arms maximum intermittent current

capability (i.e. a ±10V input commands a ±25Arms current), but the brushless motor itself has a

20Arms intermittent current limit, MaxDac is calculated as:

214,26
25

20
*768,32

rms

rms

A

A
MaxDac

Continuous Current Limit

When implementing I2T thermal protection, Motor[x].I2tSet specifies the continuous current

limit, the highest current level the device can use on an ongoing basis without overheating. It is

expressed in the same units as Motor[x].MaxDac, and so can be calculated with the same type of

equation.

Continuing our example, if the brushless motor has a 10Arms continuous current rating, and is

used with an amplifier that has a peak current capability of 25Arms, I2tSet is calculated as:

107,13
25

10
*768,322

rms

rms

A

A
tSetI

Integrated Current Limit

Most commonly, the I2T shutdown threshold is set by using the maximum time permitted at the

intermittent current limit. In our example of a brushless motor with a 10Arms continuous limit and

a 20Arms intermittent limit used with an amplifier that has a peak current capability of 25Arms, if

the maximum time permitted for 20Arms operation is 2 seconds, Motor[x].I2tTrip can be

calculated as:

 922 1003.12*107,13214,262 tTripI

In torque output mode, it is important that Motor[x].IdCmd be set to its default value of 0 so

proper I2T calculations will be done. A non-zero value would not affect the control calculations,

but it would be used as a real commanded current value in the I2T calculations.

Sinewave Output Mode

In sinewave-output control mode, the result of the position-velocity servo loop in Power PMAC,

with a possible numerical range of ±32,768, is used as the “torque” (quadrature) current input to

Power PMAC’s commutation algorithm. Based on the rotor angle θ as detected by the rotor

position feedback sensor, Power PMAC computes two phase current commands for the motor,

multiplying the servo command value by sin(θ) and sin(θ-φ), where φ is the angle difference

between phases as set by Motor[x].PhaseOffset.

Each phase command value is then multiplied by Motor[x].PwmSf / 32,768, and the results are

written to two D/A converters, each with an output range of ±10V, corresponding to the full

numeric range of ±32,768. (The default value of PwmSf is +32,767, making this second scaling

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 452

effectively equal to 1.0. The magnitude of PwmSf is seldom changed from the default in this

mode, but changing the sign has the same effect as swapping two motor leads.) The output

circuitry can therefore be considered to have a “gain” of 10 / 32,768 (Volts / LSB).

When used to control a 3-phase motor – the most common configuration – the amplifier controls

the third phase with a “balance loop”, commanding it so its current will be equal to the negative

of the sum of the two phases commanded from the Power PMAC.

Intermittent Current Limit

Motor[x].MaxDac, by limiting the range of the servo-loop output, can be used to limit the

outputs to a smaller range. The output voltage range is given as:

768,32
*

768,32
*10max

PwmSfMaxDac
V

At the default value for MaxDac of 20,480 and for PwmSf of 32,767, the output range is limited

to ±6.25V for each DAC.

Note that these calculations refer to the voltage of the DAC+ output relative to the reference

voltage signal AGND (0V). If you are using the DAC+ and DAC- outputs, the output range is

±20V, and the effective gain of the output circuitry is 20 / 32,768 (Volts / LSB). If the amplifier

can only tolerate ±10V, the value of MaxDac should not be greater than 16,384.

A sinewave-input amplifier with two analog inputs has a “transconductance gain” expressed in

amperes per volt. Since this style of amplifier simply produces an instantaneous phase current

that is proportional to the instantaneous voltage of the phase command signal, this gain can be

thought of either in terms of instantaneous or RMS current. In terms of peak current for a phase:

768,32

*
768,32

*10*max

PwmSfMaxDac

V

A
KAI amp

However, if the motor ratings are in terms of RMS currents, as they usually are for electronically

commutated brushless motors, the conversion from instantaneous current values in Power PMAC

to RMS motor current values must be performed at some point. For RMS current:

768,32

*
768,32

*10**
2

1
max

PwmSfMaxDac

V

A
KAI amprms

Solving for MaxDac:

 rms

amp

AI
KPwmSf

MaxDac max*
2

*
768,32

*
10

768,32

For example, a sine-wave input amplifier with a transconductance gain for each phase of 4

amps/volt could produce a current output of 40A (peak) on each phase from a full-range (±10V)

sinewave command from a Power PMAC with PwmSf at the default setting of 32,767. This

corresponds to an RMS magnitude of 40/sqrt(2) = 28.3Arms. If the motor has an intermittent

current limit of 20Arms, MaxDac can be set by the following equation:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 453

170,2320*
4

2
*

767,32

768,32
*

10

768,32
MaxDac

For the case of an AC induction motor driven by this sinewave amplifier (not common!) with a

20Arms intermittent current limit and a value of Motor[x].IdCmd of 3,000, the calculation

becomes:

170,2320*
4

2
*

767,32

768,32
*

10

768,3222 IdCmdMaxDac

975,22000,3170,23170,23 2222 IdCmdMaxDac

Continuous Current Limit

As in other modes, Motor[x].I2tSet can be used to specify the continuous current limit in

sinewave output mode, specifying the highest current level the device can use on an ongoing

basis without overheating. It is expressed in the same units as Motor[x].MaxDac, and so can be

calculated with the same type of equation.

Continuing our above example, if the brushless motor has a continuous current limit of 10Arms,

I2tSet is calculated as:

585,1110*
4

2
*

767,32

768,32
*

10

768,32
2 tSetI

If the AC induction motor operated with a value of 3,000 for IdCmd has a continuous current

limit of 10Arms, I2Set is calculated as:

585,1110*
4

2
*

767,32

768,32
*

10

768,32
2 22 IdCmdtSetI

190,11000,3585,11585,112 2222 IdCmdtSetI

Integrated Current Limit

Typically, the integrated current limit is set by using the maximum time permitted at the

intermittent current limit. In our present example of a brushless motor with a 10Arms continuous

current limit and a 20Arms intermittent current limit used with a sinewave amplifier that has a gain

of 4A/V, if the maximum time permitted at the intermittent limit is 3 seconds, Motor[x].I2tTrip

can be calculated as:

 922 1021.13*585,11170,232 tTripI

The calculations for the AC induction motor with the same current ratings come out the same.

Direct PWM Output Mode

In direct-PWM output control mode, the result of the position-velocity servo loop in Power

PMAC, with a possible numerical range of ±32,768, is used as the “torque” current command to

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 454

Power PMAC’s commutation algorithm. Instantaneous readings of two phase-current A/D

converters (ADCs), each treated as having a possible numerical range of ±32,768 (regardless of

the actual resolution of the ADCs), are used as the actual current measurements to close the

current loops with respect to the command.

The “gain” of the ADCs, in LSBs/Ampere, is the factor that ties the numerical current values in

the Power PMAC to physical current units. Each direct-PWM “power block” amplifier provides

this value, either directly as a gain term, or as a full-range current value representing a

measurement of 32,768 LSBs. Typically, this full-range measured current value is somewhat

greater than the true maximum current (even at the peak of the largest intermittent-duty sinewave)

ever expected in normal operation, to aid in the detection of overcurrent fault conditions.

The full-range measurements of instantaneous phase currents (and the associated ADC “gains”)

in several Delta Tau power-block amplifiers are listed below:

 Geo Brick AC 5Armscont/10Armsint: 15.62A (Kadc = 32,768 LSBs / 15.62A)

 Geo Brick AC 8Armscont/16Armsint: 25.00A (Kadc = 32,768 LSBs / 25.00A)

 Geo Brick AC 15Armscont/30Armsint: 46.88A (Kadc = 32,768 LSBs / 46.88A)

 Geo Brick LV 0.25Armscont/0.75Armsint: 1.692A (Kadc = 32,768 LSBs / 1.692A)

 Geo Brick LV 1Armscont/3Armsint: 6.770A (Kadc = 32,768 LSBs / 6.770A)

 Geo Brick LV 5Armscont/15Armsint: 33.85A (Kadc = 32,768 LSBs / 33.85A)

 Geo Book 1.5Armscont/4.5Armsint: 8.00A (Kadc = 32,768 LSBs / 8.00A)

 Geo Book 3Armscont/9Armsint: 14.6A (Kadc = 32,768 LSBs / 14.6A)

 Geo Book 5Armscont/10Armsint: 16.2A (Kadc = 32,768 LSBs / 16.2A)

 Geo Book 10Armscont/20Armsint: 32.5A (Kadc = 32,768 LSBs / 32.5A)

 Geo Book 15Armscont/30Armsint: 48.8A (Kadc = 32,768 LSBs / 48.8A)

 Geo Book 20Armscont/40Armsint: 65.0A (Kadc = 32,768 LSBs / 65.0A)

 Geo Book 30Armscont/60Armsint: 97.6A (Kadc = 32,768 LSBs / 97.6A)

 Geo 3U 4Armscont/8Armsint: 13.01A (Kadc =32,768 LSBs / 13.01A)

The Geo Book amplifiers listed include both the Geo PWM amplifiers and the Geo MACRO

amplifiers.

In Power PMAC’s direct-PWM mode, the phase current numbers produced by the ADCs are

converted to field-frame current values. The resulting vector magnitude of the field-frame (direct

and quadrature) current values includes a multiplication by cos(φ-90°), where φ is the electrical

angle between phases, as set by Motor[x].PhaseOffset. For 3-phase motors, where PhaseOffset

is set to ±683 (out of a cycle of 2048), φ is 120°, and cos(φ-90°) is 0.866.

DC brush motors can be controlled by Power PMAC in direct-PWM output mode by forcing the

commutation angle to 0 at all times. In this case, there is no need for conversion between RMS

and peak values, or between phase and field reference frames.

Intermittent Current Limit

Motor[x].MaxDac sets the magnitude of the maximum quadrature (torque) current command

that can be issued from the position-velocity servo loop. The maximum magnitude of the net

current command into the commutation algorithm is the vector sum of MaxDac and IdCmd:

22
max IdCmdMaxDacI dq

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 455

For brushless servo motors, IdCmd is virtually always set to 0, so MaxDac itself sets the

maximum net current command magnitude for these motors.

Several stages of calculation must be used to convert the intermittent current limit of a motor,

usually given in RMS amperes, to the units of MaxDac.

 The RMS value must be multiplied by sqrt(2) to convert to a peak current value in

amperes.

 The peak value must be multiplied by the “gain” of the ADC (Kadc) for the amplifier to

convert into (16-bit) LSBs of the ADC.

 The ADC value must be converted to field-coordinate magnitude by multiplying by

cos(φ-90°).

When IdCmd is set to 0, the equation for MaxDac becomes:

 90cos**2*max adcrms KIMaxDac

For a 3-phase brushless servo motor with an 8Arms intermittent current limit controlled by a Geo

Brick AC 5A/10A amplifier, MaxDac can be computed as:

 553,2030cos*
62.15

768,32
*2*8 MaxDac

For a 2-phase stepper motor with a 2.5Arms intermittent current limit controlled by a Geo Brick

LV 1A/3A amplifier, MaxDac can be computed as:

 112,170cos*
770.6

768,32
*2*5.2 MaxDac

For a 3-phase induction motor with a 25Arms intermittent current limit controlled by a Geo Book

15A/30A amplifier, with IdCmd set to 2,800, MaxDac can be computed as:

 558,2030cos*
8.48

768,32
*2*2522 IdCmdMaxDac

366,20800,2558,20558,20 2222 IdCmdMaxDac

For a DC brush motor with a 2.75A intermittent current limit controlled by a Geo Brick LV

1A/3A amplifier, no RMS or frame conversions are required, so MaxDac can be computed as:

310,13
770.6

768,32
*75.2 MaxDac

Continuous Current Limit

As in other modes, Motor[x].I2tSet can be used to specify the continuous current limit in direct-

PWM output mode, specifying the highest current level the device can use on an ongoing basis

without overheating. It is calculated with the same type of equation. With IdCmd equal to 0, the

equation becomes:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 456

 90cos**2*2 adcrmscont KItSetI

Continuing with our above examples:

For a 3-phase brushless servo motor with a 4Arms continuous current limit controlled by a Geo

Brick AC 5A/10A amplifier, I2tSet can be computed as:

 277,1030cos*
62.15

768,32
*2*42 tSetI

For a 2-phase brushless motor with a 1.0Arms continuous current limit controlled by a Geo Brick

LV 1A/3A amplifier, I2tSet can be computed as:

 845,60cos*
770.6

768,32
*2*0.12 tSetI

Note that if this motor is driven as an open-loop stepper in “direct microstepping” mode, where

the motor current comes from IdCmd, this equation determines the maximum magnitude of

IdCmd that should be used.

For a 3-phase induction motor with a 10Arms continuous current limit controlled by a Geo Book

15A/30A amplifier, with IdCmd set to 2,800, I2tSet can be computed as:

 223,830cos*
8.48

768,32
*2*102 22 IdCmdtSetI

732,7800,2223,8223,82 2222 IdCmdtSetI

For a DC brush motor with a 1.25A continuous current limit controlled by a Geo Brick LV

1A/3A amplifier, no RMS or frame conversions are required, so I2tSet can be computed as:

050,6
770.6

768,32
*25.12 tSetI

Integrated Current Limit

As in the other modes, the integrated current limit is usually set by using the specified maximum

time permitted at the intermittent current limit. Once values for MaxDac, IdCmd, and I2tSet

have been determined, the value of the integrated current limit element Motor[x].I2tTrip is

straightforward to compute, as all unit conversions have already been done. The same equation as

in other modes can be used:

 (sec)*22 222 tedTimePermittSetIIdCmdMaxDactTripI

Continuing with the above examples:

For a 3-phase brushless servo motor with a 4Arms continuous current limit and an 8Arms

intermittent current limit for 3 seconds controlled by a Geo Brick AC 5A/10A amplifier, I2tTrip

can be computed as:

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 457

 8222 1050.93*277,100553,202 tTripI

For a 2-phase brushless motor with a 1.0Arms continuous current limit and a 2.5Arms intermittent

current limit for 2 seconds controlled by a Geo Brick LV 1A/3A amplifier, I2tTrip can be

computed as:

 8222 1092.42*845,60112,172 tTripI

For a 3-phase induction motor with a 10Arms continuous current limit and a 25Arms intermittent

current limit for 5 seconds controlled by a Geo Book 15A/30A amplifier, with IdCmd set to

2,800, I2tTrip can be computed as:

 9222 1081.15*732,7800,2366,202 tTripI

For a DC brush motor with a 1.25A continuous current limit and a 2.75A intermittent current

limit for 2 seconds controlled by a Geo Brick LV 1A/3A amplifier, I2tTrip can be computed as:

 8222 1081.25*050,60310,132 tTripI

Velocity Limits

Power PMAC provides several limits on the velocities that can be commanded of axes and

motors.

Programmed Vector Velocity Limit

Each coordinate system has a vector velocity limit in Coord[x].MaxFeedrate, expressed in axis

units per time unit. (The time unit is set by Coord[x].FeedTime, in milliseconds.) If a move is

specified by vector velocity (linear or circle mode move specified with F instead of tm), the

specified vector velocity (feedrate) is compared to this parameter. If the value is greater than the

limit, the limit value is used for the move instead.

Programmed Motor Velocity Limit

Each motor has a programmable velocity limit in Motor[x].MaxSpeed, expressed in motor units

per millisecond. This limit has several functions. First, it serves as the commanded velocity for

the motor in rapid-mode moves if the Motor[x].RapidSpeedSel is set to the default value of 0.

Second, for linear-mode moves (with or without move segmentation enabled),

Motor[x].MaxSpeed serves as the maximum velocity permitted, calculated on a move-by-move

basis. If the commanded velocity requested of a motor for a move exceeds the limit for the motor,

the move is slowed so that the velocity limit is not exceeded. In a multi-axis programmed move,

all axes in the coordinate system are slowed proportionally so that no change in path occurs and

coordination is maintained.

In addition, for linear, circle and PVT-mode moves executed with segmentation enabled

(Coord[x].SegMoveTime > 0) and the special lookahead buffer active (lookahead buffer defined,

Coord[x].LHDistance > 0), it serves as the maximum velocity for each segment of the motion.

This can be particularly valuable for non-Cartesian coordinate systems defined with Power

PMAC’s kinematic equations; very high motor velocities can inadvertently be commanded near

“singularities”. The lookahead algorithm can detect these problems beforehand, and slow the

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 458

motion down along the path into the problem point, observing the Motor[x].InvAmax motor

acceleration limits for all axes in the coordinate system.

Velocities are compared to these limits assuming the % value for the coordinate system is 100

(real time), as the % value is used after this limit check. This means that other % values will

result in different effective limits. However, for segmented moves, this limit check occurs after

the segmentation override value Coord[x].SegOverride is used, so the effective limit remains the

same regardless of what segmentation override value is used.

Position-Following Velocity Limit

Each motor can specify the maximum velocity magnitude that can result from the position-

following function. If Motor[x].MasterMaxSpeed is greater than zero, it specifies this limit in

motor units per servo cycle. If the speed of the master and the following ratio in

Motor[x].MasterPosSf request a higher speed in any servo cycle, the resulting speed will be

limited to this magnitude. Note that if this following is superimposed on programmed moves,

only the component of speed from the following is limited by this parameter; total speed could be

greater. For more detail on this feature, refer to position-following section of the chapter

Synchronizing Power PMAC to External Events.

Acceleration Limits

Power PMAC provides several limits on the accelerations that can be commanded of axes and

motors.

Programmed Vector Acceleration Limits

Each coordinate system has two vector acceleration limits that act at move computation time.

They are intended for path-based applications, and are calculated in the plane in XYZ Cartesian

space that is defined by the normal command. By default, the XY-plane is used.

Coord[x].MaxCirAccel limits the V2/R centripetal acceleration from a programmed circle-mode

move. If the programmed velocity would produce a centripetal acceleration higher than this limit,

the velocity is automatically slowed at the move computation time so that this limit is not

violated. This is done independently of any motor acceleration limiting.

Coord[x].CornerAccel specifies the acceleration in blending between any two linear and/or

circle-mode moves, calculated based on the corner angle in the specified plane and the

programmed speed of the moves. It calculates the blending time necessary to achieve this

acceleration without exceeding it, ignoring the value in Coord[x].Ta, but will not use a time less

than Coord[x].Td.

Programmed Motor Acceleration Limits

Each motor has a programmable acceleration limit set by Motor[x].InvAmax, expressed in

milliseconds2 per motor unit. As the name implies, this is the inverse of the maximum rate of

acceleration. This limit has multiple functions.

First, for simple linear-mode moves with move segmentation disabled (Coord[x].SegMoveTime

= 0), Motor[x].InvAmax specifies the magnitude of the maximum acceleration permitted,

calculated on a move-by-move basis. If the commanded acceleration requested of a motor for a

move by the change in velocity and the acceleration times exceeds the limit for the motor, the

acceleration times are extended so that the acceleration limit is not exceeded. In a multi-axis

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 459

programmed move, the times for all axes in the coordinate system are identically extended so that

full coordination is maintained.

Motor[x].InvDmax specifies the magnitude of the maximum final deceleration permitted for a

linear move sequence. Motor[x].InvAmax specifies the maximum magnitude for all blending

between moves in a sequence, regardless of whether this blending causes an acceleration or

deceleration.

Note

The linear-mode move must have a non-zero acceleration time

(Ta, Td, or Ts > 0.0) for this check to be made at move

calculation time, as it is the acceleration section that is checked

against the limit.

Note that in blending linear-mode moves, the acceleration time occurs half in the incoming move

and half in the outgoing move. Extending the acceleration time of a blend therefore causes the

blend to occupy more time in both the incoming and outgoing moves. It is not possible to extend

the acceleration time past the start of the constant-speed portion of the incoming move. In this

mode of operation, if observing the acceleration limit requires that the blend time be extended

past this point, the blend time will only be extended to this point, and the acceleration limit will

be violated. (If your application requires more sophisticated acceleration limiting than this, you

will need to use the special buffered lookahead function that can spread acceleration over

multiple moves. This is discussed below.)

Second, for linear, circle, and PVT-mode moves executed with segmentation enabled

(Coord[x].SegMoveTime > 0) and the special lookahead buffer active (lookahead buffer defined,

Coord[x].LHDistance > 0), it serves as the maximum acceleration for each segment of the

motion. The lookahead algorithm can detect these problems beforehand, and slow the motion

down along the path into the problem point, observing the Motor[x].InvAmax motor

acceleration limits for all axes in the coordinate system.

Accelerations are compared to these limits assuming the % value for the coordinate system is 100

(real time), as the % value is used after this limit check. This means that other % values will

result in different effective limits. However, for segmented moves, this limit check occurs after

the segmentation override value Coord[x].SegOverride is used, so the effective limit remains the

same regardless of what segmentation override value is used.

Motor Move Acceleration Command

In motor jogging and homing-search moves, it is possible to command the acceleration value

directly in order to limit the rate of change of velocity. If Motor[x].JogTa is set to a negative

value, its magnitude expresses the inverse of the magnitude of the acceleration rate used in

computing the motor trajectory, expressed in milliseconds2 per motor unit.

Position-Following Acceleration Limit

Each motor can specify the maximum acceleration magnitude that can result from the position-

following function. If Motor[x].MasterMaxAccel is greater than zero, it specifies this limit in

motor units per servo cycle per servo cycle. If the motion of the master and the following ratio in

Motor[x].MasterPosSf request a higher acceleration magnitude in any servo cycle, the resulting

acceleration will be limited to this magnitude. Note that if this following is superimposed on

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 460

programmed moves, only the component of acceleration from the following is limited by this

parameter; total acceleration could be greater. For more detail on this feature, refer to position-

following section of the chapter Synchronizing Power PMAC to External Events.

Jerk Limits

Power PMAC provides a limit on the commanded “jerk” (rate of change of acceleration) that can

be commanded of axes and motors in some classes of moves. The jerk level can be commanded

or limited in the “S-curve” acceleration sections of moves that start or stop at zero acceleration.

Note that there is no jerk limiting in the buffered lookahead function.

Programmed Motor Jerk Limit

Each motor has a programmable jerk limit set by Motor[x].InvJmax, expressed in milliseconds3

per motor unit. As the name implies, this is the inverse of the maximum rate of jerk. For simple

linear-mode moves with move segmentation disabled (Coord[x].SegMoveTime = 0),

Motor[x].InvAmax specifies as the maximum acceleration permitted, calculated on a move-by-

move basis. If the commanded acceleration requested of a motor for a move by the change in

velocity and the acceleration times exceeds the limit for the motor, the acceleration times are

extended so that the acceleration limit is not exceeded. In a multi-axis programmed move, the

times for all axes in the coordinate system are identically extended so that full coordination is

maintained.

Note

The linear-mode move must have a non-zero “S-curve” time

(Ts > 0.0) for this check to be made at move calculation time,

as it is the S-curve section that is checked against the limit.

Motor Move Jerk Command

In motor jogging and homing-search moves, it is possible to command the jerk value directly in

order to limit the rate of change of acceleration. If Motor[x].JogTs is set to a negative value, its

magnitude expresses the inverse of the magnitude of the jerk rate used in computing the motor

trajectory, expressed in milliseconds3 per motor unit.

Commanded Safety Stops

Power PMAC has many commands that stop commanded motion in some manner. These are all

covered in the chapter Writing and Executing Script Programs under the heading “Stopping

Script Motion Program Execution”. Most of these commands permit interactive stopping and

restarting of motion programs and moves that are not necessarily for safety reasons.

In this section, we cover the stopping commands and modes that are usually used for safety

reasons, considered “emergency” stops. It is not possible simply to resume a motion program

after issuing one of these commands.

Abort: Controlled Stop

The coordinate-system “abort” command (a or abort on-line, abort programmed) causes the

Power PMAC to break into the present trajectory of each motor in the coordinate system and

immediately begin a commanded deceleration to a controlled stop according to the values of that

Power PMAC User’s Manual

Making Your Power PMAC Application Safe 461

motor’s Motor[x].AbortTa and Motor[x].AbortTs saved setup elements. These elements can

specify deceleration and S-curve times, or more commonly, deceleration and jerk rates.

This type of commanded stop qualifies as a “Category 2” safe stop under the IEC-61800-5-2

machine safety standard. Since it does rely on the servo loop to keep the motor’s actual position

close to the commanded deceleration profile, it should only be used as a safety stop in those cases

where reasonable servo control is present.

Disable: Uncontrolled Stop

The coordinate-system “disable” command (disable on-line, disable programmed) causes

the Power PMAC to immediately “kill” every motor in the coordinate system, which consists of

opening the servo loop, zeroing the servo output command, and disabling the amplifier for each

motor. If there is a brake output specified for the motor (Motor[x].pBrakeOut > 0), the brake is

engaged starting immediately, but the disabling of motors is not delayed until the brake has

finished engaging.

This type of commanded stop is similar in action to a “Category 0” safe stop under the IEC-

61800-5-2 machine safety standard. However, under the standard, there must be an actual

removal of power from the motor or a circuit needed to drive the motor, usually either bus power

or gate-driver power. This command is still useful for this category of safe stop because it puts

the Power PMAC in a state consistent with the removal of power. Many users will have the same

signal that causes the removal of power also to issue this command.

The similar coordinate-system “delayed disable” command (ddisable on-line, ddisable

programmed) immediately starts brake engagement, but delays the actual motor disabling for

Motor[x].BrakeOnDelay milliseconds. This command is appropriate for a standard shut down,

but the delay means that it is usually not appropriate for an emergency stop.

The motor “kill” command (k on-line, kill programmed) performs the same action for each

commanded motor, but it cannot be used if the motor is in a coordinate system that is executing a

motion program.

Hybrid Abort/Disable

The coordinate-system “abort/disable” command (adisable on-line, adisable programmed)

causes the Power PMAC to break into the present trajectory of each motor in the coordinate

system and immediately begin a commanded deceleration to a controlled stop, just as it would for

an “abort” command. However, as each motor reaches its “desired velocity zero” state, it

automatically executes a “delayed kill” command, where brake engagement is started

immediately, and the motor is killed (open-loop, zero-output, amplifier-enable) after a delay of

Motor[x].BrakeOnDelay milliseconds.

This type of commanded stop is similar in action to a “Category 1” safe stop under the IEC-

61800-5-2 machine safety standard. However, under the standard, there must be an actual

removal of power from the motor or a circuit needed to drive the motor, usually either bus power

or gate-driver power, after the controlled stop is complete. This command is still useful for this

category of safe stop because it puts the Power PMAC in a state consistent with the removal of

power. Many users will have the same signal that issues this command also to cause the removal

of power using a time-delay relay.

Power PMAC User’s Manual

Executing Individual Motor Moves 462

EXECUTING INDIVIDUAL MOTOR MOVES

Once you have your motor defined and basically working with reasonable gains, you will want to

command some basic moves for the motor. Jogging commands allow you to make simple moves

for the motor, independent of other motors, without writing a motion program. You might just use

these moves for development, diagnostics, and debugging, but you may also use them in your

actual application.

Another type of simple motor move is the homing-search move. This is basically a “jog-until-

trigger” type of move, where Power PMAC commands the motor to move until it sees a pre-

defined trigger. It then brings the motor to a stop and returns to the trigger position (possibly with

an offset), and sets the motor position to zero.

A homing-search move should be performed when you do not know where home position is. If

you have an incremental position sensor, you do not know where you are on power-up; therefore,

the homing search move is typically the first move done in this type of system. However, if you

already know where the home position is, but just wish to return to that position, there is no need

to do a homing search move; simply command a move to the zero position (e.g. J=0 or X0).

The trajectories for jogging and homing moves are essentially the same as for rapid-mode

program moves. However, these moves are specified directly to the motor, specified by number,

rather than the axis, specified by letter. The moves are described in basic motor units, not axis

units.

Jogging Move Control

The characteristics of jogging moves are specified by a small number of saved setup data-

structure elements for each motor, described below. When a jog command is issued, Power

PMAC uses the present values of these elements to compute the desired trajectory for the jog

move specified by the command. The value of one of these elements can be changed at any time,

but the new value is not used until the next jog command is executed.

Jog Speed Control

Motor[x].JogSpeed specifies the magnitude of the maximum velocity for jog moves, in motor

units per millisecond. The sign (direction) of the velocity is dependent on the jog command used.

This speed is only attained if the move distance is great enough, given the acceleration-profile

parameters, to reach this peak velocity.

For example, to command a jog speed of 30 meters per minute with motor units of 5 microns,

calculate:

msec

unitsmotor

m

unitmotor

min

sec

sec

min

min

m
JogSpeedxMotor 100

10*5
*

10
*

60
*

30
].[

6

3

Jog Acceleration Control

The acceleration and deceleration characteristics of jog moves are determined by saved setup

elements Motor[x].JogTa and Motor[x].JogTs. These can be set up to specify the acceleration

profiles by time or rate, as explained below. Both should be set either to specify times or rates.

Power PMAC User’s Manual

Executing Individual Motor Moves 463

Acceleration Time Control

If Motor[x].JogTa is greater than zero, it specifies the jog acceleration time in milliseconds. This

time is used regardless of the change in speed due to a jog command, so the rate of acceleration

will be different for different changes in speed.

If Motor[x].JogTs is greater than zero, it specifies the jog “S-curve” time (the time in each half

of the “S”) in milliseconds. During the “S-curve” portion of the profile, the acceleration is

increasing or decreasing at a constant rate (so these sections of the profile have a constant “jerk”).

This time is used regardless of the value of the peak acceleration, so the rate of jerk will be

different for different peak accelerations. If it is set to 0, there are no S-curve sections in the

acceleration profiles.

If Motor[x].JogTa is greater than Motor[x].JogTs, the total acceleration time is JogTa + JogTs.

(Note that this is different from PMAC and Turbo PMAC.) If Motor[x].JogTa is less than

Motor[x].JogTs, the total acceleration time is 2 * JogTs, and JogTa is not used. The profiles for

both cases are shown in the figure below.

JogTs JogTs

JogTa

ΔV/JogTa

JogSpeed

Vel Acc

JogTs JogTs

JogTs

V0

JogSpeed

ΔV/JogTs

AccVel

V0

Jog Move Acceleration Profiles, Time Specification

Power PMAC User’s Manual

Executing Individual Motor Moves 464

Acceleration Rate Control

Most users will want to specify their acceleration profiles by rate rather than time, and this is

easily supported in Power PMAC. Specifying the profile by rate permits shorter-time moves

when the distances are too short to reach maximum velocity, and it permits more seamless

blending into a newly commanded jog move if the new command occurs while the present move

is accelerating or decelerating.

These parameters are specified as inverse rates, which permits Power PMAC to use them in its

move calculations by multiplication instead of division. This provides significant improvements

in computational efficiency.

If Motor[x].JogTa is less than zero, it specifies the inverse of the peak acceleration magnitude, in

msec2 / motor unit. This rate is used regardless of the change in speed due to a jog command, so

the acceleration time will be different for different changes in speed. Note that, depending on the

speed and jerk values specified, this acceleration value may not be reached.

For example, to set a maximum acceleration of 5 m/s2 (~0.5g) with motor units of 10 μm,

calculate:

unitmotor

ms

unitmotor

m

s

ms

m

s
JogTaxMotor

25

2

262

0.2
10

*
10

*
5

].[

If Motor[x].JogTs is less than zero, it specifies the inverse of the jerk (rate of change of

acceleration) magnitude during each half of the “S-curve” portion of the acceleration profile, in

msec3 / motor unit. This rate is used regardless of the value of the peak acceleration, so the S-

curve time will be different for different peak accelerations. If it is set to 0, there are no S-curve

sections in the acceleration profiles. Note that if JogTs is less than 0, JogTa must also be set less

than 0.

For example, to reach the peak acceleration of 5 m/s2 in 50 msec (but lower peak accelerations in

proportionally less time), calculate:

unitmotor

ms

unitmotor

m

s

ms

sm

ms
JogTsxMotor

35

2

26

2
100

10
*

10
*

5

50
].[

Power PMAC User’s Manual

Executing Individual Motor Moves 465

The following figure shows the acceleration profiles for these rate specifications of acceleration

and jerk, both for the case where the specified maximum acceleration is reached, and where this

acceleration is not reached before it must start returning to 0.

JogTs

JogTa

JogTs

JogTa

ΔV*JogTa

-1

JogTa

JogSpeed

Vel Acc

√-ΔV*JogTs √-ΔV*JogTs

√-ΔV*JogTs

V0

JogSpeed

√-ΔV/JogTs

AccVel

-1

JogTa

V0

Jog Move Acceleration Profiles, Rate Specification

Power PMAC User’s Manual

Executing Individual Motor Moves 466

Example Jog Move Profile

This plot shows the commanded velocity and acceleration move profiles for a simple jog move.

Velocity and Acceleration Profiles of a Simple Jog Move

Jog Commands

Jog moves can be commanded using either on-line commands or buffered program direct

commands. In this section, the on-line commands will be shown first, followed by the equivalent

buffered program direct commands in square brackets.

Generally, the buffered program commands will be issued from PLC programs. A motion

program should not attempt to jog a motor that is assigned to the coordinate system running the

program.

When a jog command is issued to a motor, if the motor is not enabled and in closed-loop mode, it

will be put in enabled and closed-loop mode at the start of the action from the command. The

starting speed for the jog move will be the actual velocity at the time of the command (which will

usually, but not always, be zero).

Indefinite Jog Commands

The jog commands j+ [jog+] and j- [jog-] cause “indefinite” motion in the positive or

negative directions, respectively, if the software overtravel limits for the motor are disabled

(Motor[x].MaxPos <= Motor[x].MinPos). Jogging motion will continue until another motor

motion command is given or an error condition occurs.

However, if the software overtravel limits for the motor are enabled (Motor[x].MaxPos >

Motor[x].MinPos), these commands are executed as “definite” jogs to the software limit

position: a j+ [jog+] command is executed as a jog to Motor[x].MaxPos; a j- [jog-]

command is executed as a jog to Motor[x].MinPos. Note that these moves will stop at the

overtravel limit position, not just begin to decelerate as the overtravel limit position is passed.

Power PMAC User’s Manual

Executing Individual Motor Moves 467

The on-line jog command (no program command equivalent) will take a motor that is open-loop

and close the loop using a command velocity for an indefinite jog move that is equal to the actual

velocity at the time of the command.

The j/ [jog/] jog stop command brings the motor to a closed-loop zero-velocity state. If the

motor was executing a motor move (jog or homing-search) at the time of the command, it will use

the instantaneous desired velocity and acceleration values at the time of the command as the

starting states and compute a deceleration to a stop based on the values of Motor[x].JogTa and

Motor[x].JogTs. If the motor was open loop at the time of the command, it will use the

instantaneous actual velocity (often zero) and zero acceleration as the starting states and compute

a deceleration to a stop based on the values of these parameters.

Note

If saved setup element Sys.NoShortCmds is set to 1, then on-

line jog commands cannot use just the letter “j”; instead they

must use the full word “jog” (e.g. jog+, jog-, jog/), as the

buffered program jog commands always must do. This mode

of operation is intended to prevent the accidental entry of

action commands.

Definite Jog Commands

Power PMAC provides multiple “definite” jog commands that permit jogging to a specified

position or a specified distance. In the on-line commands, the position or distance can either be

specified by a constant (e.g. j=2500), or written to Motor[x].ProgJogPos and specified by an

asterisk (*) character (e.g. Motor[x].ProgJogPos = P1 + 500; j:*). In the program

commands the position or distance can be specified by a constant without parentheses (e.g.

jog=2500) or by a mathematical expression in parentheses (e.g. jog(p1+500)).

Absolute Jog Commands

The on-line commands for an “absolute” jog to position are j={constant} and j=*. The

destination position is specified by the numerical constant in the command in the first case (e.g.

j=-7632), and the present value of Motor[x].ProgJogPos in the second case, both in motor

units relative to the motor zero (home) position. The direct program command equivalent for both

cases is jog={data} , where {data} can be a constant without parentheses (e.g.

jog=97431) or a mathematical expression in parentheses (e.g. jog=(1000*cosd(P10))).

If a double equals sign is used in the above commands (j=={constant} , j==*), the move

executes exactly the same as with the single equals sign, but the motor’s “pre-jog” position (for

j= [jogret] commands) is set to the endpoint of the move.

Relative (Incremental) Jog Commands

The on-line commands for a “relative” jog from the present desired position are

j:{constant} and j:*. The destination distance is specified by the numerical constant in the

command in the first case (e.g. j:-92.35), and the present value of Motor[x].ProgJogPos in

the second case, both in motor units relative to the present motor desired position. The direct

program command equivalent for both cases is jog:{data}, where {data} can be a constant

without parentheses (e.g. jog:25400) or a mathematical expression in parentheses (e.g.

jog:(500*sind(P10))).

Power PMAC User’s Manual

Executing Individual Motor Moves 468

The on-line commands for a “relative” jog from the present actual position are j^{constant}

and j^*. The destination distance is specified by the numerical constant in the command in the

first case (e.g. j:-4300), and the present value of Motor[x].ProgJogPos in the second case,

both in motor units relative to the present motor actual position. The direct program command

equivalent for both cases is jog^{data}, where {data} can be a constant without parentheses

(e.g. jog^-2.75) or a mathematical expression in parentheses (e.g.

jog^(125*tand(P10))). Note that because these commands are relative to the actual

position, their destination position is dependent on the value of the following error at the instant

of the command.

Return Jog Command

The j= [jogret] command causes a jog move to the most recent programmed position for the

motor. This command is particularly useful during pauses in machining applications, after the

tool has been jogged away from the paused program point to check the material. In order to

resume, all motors must be returned to the programmed point, and this command provides an

easy way of doing that.

Triggered Jog Commands

Power PMAC provides multiple “triggered” jog commands that cause compound moves with a

pre-trigger and a post-trigger section blended together automatically. These commands are

discussed in the next section, under “Triggered Motor Moves”.

Jog Command Processing

When Power PMAC receives a jog command, it processes it in the next servo cycle, computing

the desired motor trajectory as specified by the command and the jog parameters. It is possible for

the Power PMAC to process a new jog command for a motor up to every servo cycle. (Note that

this is a significant improvement over the capabilities of PMAC and Turbo PMAC.)

If the motor is closed loop when the jog command is received, Power PMAC uses the present

commanded position, velocity, acceleration, and jerk of the motor trajectory as the starting state

for its trajectory calculations resulting from the command. This can produce seamless blending

into the new move, particularly when the acceleration profile is specified by rate and not time.

If the motor is open loop when the jog command is received, Power PMAC uses the present

actual position and velocity of the motor (and assumes zero acceleration and jerk) as the starting

state for its (closed loop) trajectory calculations resulting from the command.

Power PMAC User’s Manual

Executing Individual Motor Moves 469

Triggered Motor Moves

“Triggered moves” in Power PMAC are compound moves, with a pre-trigger portion and a post-

trigger portion. Upon the trigger event, Power PMAC will break into the trajectory of the pre-

trigger move and calculate a post-trigger move ending at a pre-specified distance from the

position captured at the trigger.

Types of Triggered Moves

Power PMAC has three types of triggered motor moves:

1. Homing-search moves

2. Jog-until-trigger moves

3. Program rapid-mode move-until trigger

These three types of moves all work in basically the same manner, but in different contexts.

Triggering and position-capture functions are the same in all three move types. Each will be

described in detail below.

Trigger Conditions

There are fundamentally two types of triggers for these triggered moves: input triggers and

following-error triggers. If Motor[x].CaptureMode is set to 0, 1, or 3, input triggering is used. If

Motor[x].CaptureMode is set to 2, following-error triggering is used.

Input Triggering

If Motor[x].CaptureMode is set to 0 or 1, Power PMAC will look for an individual trigger bit in

the register whose address is specified in Motor[x].pCaptFlag at the bit number specified by

Motor[x].CaptFlagBit. When this bit value becomes 1 during the pre-trigger move, Power

PMAC knows that the trigger has occurred, and it will read and process the captured position so it

can compute the trajectory for the post-trigger move.

Most commonly, this specified trigger bit is the “position captured” bit in the flag status register

for a servo channel of a Servo IC, or in the input flag register of a MACRO node. The value of

this bit is typically from a user-specified input choice of signal(s) and edge(s), permitting great

flexibility in the choice of trigger condition.

PMAC2-Style Interface

In a PMAC2-style “DSPGATE1” Servo IC, as used in the ACC-24E2x and ACC-51E UMAC

accessories, the position-captured trigger bit is found in bit 19 of the channel status register, so

Motor[x].pCaptFlag = Gate1[i].Chan[j].Status.a and Motor[x].CaptFlagBit = 19.

The element Gate1[i].Chan[j].CaptCtrl specifies whether the trigger bit uses a channel input

flag or not, the encoder index channel or not, and which edge of the selected signal(s) create the

trigger. Gate1[i].Chan[j].CaptFlagSel determines which of the four input flags for the channel

(HOME, PLIM, MLIM, USER) is selected if flag use is specified by CaptCtrl.

Power PMAC User’s Manual

Executing Individual Motor Moves 470

The following diagram shows the trigger signals selected by the CaptCtrl element for the

PMAC2-style ICs. For the PMAC3-style ICs, the settings for 3 and 15 are reversed, as are the

settings for 7 and 11.

= 1 or 9

= 5 or 13

= 2 or 6

= 10 or 14

= 3

= 7

= 11

=15

(1) C

(2) C

(3) FLAG

(4) FLAG

(1) & (3)

(2)/ & (3)

(1) & (4)/

(2)/ & (4)/

Gaten[i].Chan[j].CaptCtrl

Trigger Signal Selection by Gaten[i].Chan[j].CaptCtrl

If the encoder index pulse is used, a further refinement is possible. Typically the index pulse is a

full encoder line wide, spanning 4 quadrature counts. It is possible to “gate” this logically to a

single quadrature state width before its use in the trigger signal by setting

Gate1[i].Chan[j].GatedIndexSel to 1. This quadrature state will be the “high-high” state (A = 1

B = 1) if Gate1[i].Chan[j].IndexGateState is 1; it will be the “low-low” state (A = 0 B = 0) if

Gate1[i].Chan[j].IndexGateState is 0. Gating the index pulse makes the count at the trigger

edge more repeatable and ensures that the captured count is the same in both directions.

Power PMAC User’s Manual

Executing Individual Motor Moves 471

The following diagram shows how this “gating” process works for the “high-high” state.

A

B

C

(Index)

Gated

Index

“Gating” of the Encoder Index Pulse for Capture Trigger

The position capture in a PMAC2-style IC is level-triggered. For most purposes, the difference

between level-triggered and edge-triggered captures is not important. However, there are a couple

of issues that could be important. First, if a triggered move is started when the inputs are already

in the trigger-causing state, the trigger will occur before the move even starts, and there will be no

actual move commanded, with the move considered to have completed successfully. Second, if

the inputs are still in the trigger-causing state when the Power PMAC reads the captured position

(which re-arms the trigger), there will be an immediate re-trigger and a new captured position.

This will not affect the functionality of the triggered move, but if another software task reads the

captured-position register, it may get the position at the re-trigger.

PMAC3-Style Interface

In a PMAC3-style “DSPGATE3” IC, as used in the ACC-24E3 UMAC accessory family, the

Power Clipper, and the Power Brick, the position-captured trigger bit is found in bit 20 of the

channel status register, so Motor[x].pCaptFlag = Gate3[i].Chan[j].Status.a and

Motor[x].CaptFlagBit = 20.

Note

The saved setup elements for the DSPGATE3 IC described in

this section require the proper “write protect key” be set in

order to change their values. Before attempting to change the

values of these elements, set Sys.WpKey to $AAAAAAAA to

enable changes.

The element Gate3[i].Chan[j].CaptCtrl specifies whether the trigger bit uses a channel input

flag or not, the encoder index channel or not, and which edge of the selected signal(s) create the

trigger. Gate3[i].Chan[j].CaptFlagChan specifies which of the four servo channels on the IC

the flag used (if used) will come from. Gate3[i].Chan[j].CaptFlagSel determines which of the

four input flags (HOME, PLIM, MLIM, USER) for the specified channel is selected if flag use is

specified by CaptCtrl.

If the encoder index pulse is used, a further refinement is possible. Typically the index pulse is a

full encoder line wide, spanning 4 quadrature counts. It is possible to “gate” this logically to a

Power PMAC User’s Manual

Executing Individual Motor Moves 472

single quadrature state width before its use in the trigger signal by setting

Gate3[i].Chan[j].GatedIndexSel to 1. This quadrature state will be the “high-high” state (A = 1

B = 1) if Gate3[i].Chan[j].IndexGateState is 1; it will be the “low-low” state (A = 0 B = 0) if

Gate3[i].Chan[j].IndexGateState is 0. Gating the index pulse makes the count at the trigger

edge more repeatable and ensures that the captured count is the same in both directions.

The position capture in a PMAC3-style IC is edge-triggered. For most purposes, the difference

between edge-triggered and level-triggered captures is not important. However, there are issues

that could be important. First, if a triggered move is started when the inputs are already in the

trigger-causing state, there will be no edge to cause the trigger, and the move will likely fail, and

possibly not end until a fault condition such as an overtravel limit is reached. For this reason, it is

important to check to see if the inputs could be in the trigger-causing state before a triggered

move is commanded.

MACRO Interface

In a MACRO interface, the position-captured trigger bit is found in bit 19 of Register 3 for the

node, so Motor[x].pCaptFlag = Gate2[i].Macro[j][3].a for a PMAC2-style “DSPGATE2” IC,

as on the ACC-5E, or Gate3[i].MacroIn[j][3].a for a PMAC3-style “DSPGATE3” IC, as on the

ACC-5E3 or the Power PMAC Brick MACRO option. Motor[x].CaptFlagBit should be set to

19 in both cases.

It is also necessary in a MACRO interface to set Motor[x].pEncCtrl to the address of the

“control flag” register for the MACRO node. This register is used to perform the necessary

handshaking across the ring to set up the capture process. For a PMAC2-style MACRO IC, it

should be set to Gate2[i].Macro[j][3].a; for a PMAC3-style IC, it should be set to

Gate3[i].MacroOutα[j][3].a.

Following-Error Triggering

Sometimes it is desired that a trigger occur when an obstruction such as a hard stop is

encountered, as when using an end stop for the homing reference. To support this type of

functionality, Power PMAC permits triggering on a warning-following-error condition instead of

an input flag. This is sometimes called “torque-mode” triggering, because it effectively triggers

on a torque level (except for velocity-mode amplifiers), as output torque command is generally

proportional to following error. It is also called a “torque-limited” mode, because it provides an

easy way to create moves that are limited in torque, and that stop when the torque limit is reached

(as in torque-limited screw driving).

To enable this torque-mode triggering for a motor, set Motor[x].CaptureMode to 2, specifying

both following-error trigger and software capture (there is no hardware signal to trigger the

hardware capture). In this mode, the trigger for a move-until-trigger is a true state of the warning

following-error status bit for the motor. Motor[x].WarnFeLimit sets the warning following-error

threshold for the motor, in motor units. When Power PMAC detects that the magnitude of the

following error has exceeded this value, it will read the present servo-feedback position as the

trigger position, then move relative to this position.

When using torque-mode triggering, it is a good idea to set the integral gain term

Motor[x].Servo.Ki to 0 to prevent a large “charge-up” of the integrator when it hits the hard

stop. It may also be desirable to set the Motor[x].MaxDac output limit lower to limit the possible

torque directly when the obstruction is reached.

Power PMAC User’s Manual

Executing Individual Motor Moves 473

Note that if the warning following error status bit is true at the start of the move, the trigger will

occur almost immediately.

Capturing the Position at Trigger

Because the post-trigger move ends at a commanded position expressed relative to the position at

the time of the trigger, it is necessary for Power PMAC to “capture” the position at the time of the

trigger. Fundamentally, there are two ways of doing this: hardware capture and software capture.

Hardware Capture

The Servo ICs of a Power PMAC have dedicated registers to latch the encoder counter instantly

upon receipt of the pre-specified input trigger state. The latching action occurs entirely in the IC

hardware, requiring no software action, so the captured position is accurate to the exact count

regardless of motor speed. This means that there is no need to slow down the move to get an

accurate capture.

Hardware capture is selected for the motor’s triggered moves by setting Motor[x].CaptureMode

to the default value of 0, specifying both hardware capture and input triggering. If hardware

capture is selected, the position-loop servo feedback as selected by Motor[x].pEnc must come

through the encoder counter of a Servo IC. It must use the same hardware channel as the flag set

selected by Motor[x].pCaptFlag. This means that if you are using dual feedback on the motor,

the flag set specified by Motor[x].pCaptFlag should be the same channel as your position-loop

feedback, not your velocity-loop feedback.

When hardware capture is selected, the hardware register where the captured position is to be

found must be specified by Motor[x].pCaptPos, which should contain the address of the register

in the Servo IC where the position at the time of the trigger was latched.

PMAC2-Style Interface

In a PMAC2-style “DSPGATE1” Servo IC, as used in the ACC-24E2x and ACC-51E UMAC

accessories, the trigger-captured position is found in the “home capture” register for the channel

of the IC used for the encoder interface, so Motor[x].pCaptPos should be set to

Gate1[i].Chan[j].HomeCapt.a. This must be the same channel of the IC as for the trigger input.

PMAC3-Style Interface

In a PMAC3-style “DSPGATE3” IC, as used in the ACC-24E3 UMAC accessory family, the

Power Clipper, and the Power Brick, the trigger-captured position can be found in the “home

capture” register of the IC used for the encoder interface, and if saved setup variable for the

channel Gate3[i].Chan[j].TimerMode is set to its default value of 0, it can also be found in the

“timer B” register for the channel.

To use the “home capture” register, which has whole-count data in the high 24 bits and fractional-

count data in the low 8 bits (so units of 1/256 of a count), Motor[x].pCaptPos should be set to

Gate3[i].Chan[j].HomeCapt.a. If TimerMode for the channel is set to 0, timer-based fractional

count estimation is present in the low 8 bits. If TimerMode is greater than 0, the fractional count

value is always ½ of a count. The resolution of this register matches that of the servo-captured

register for digital quadrature feedback, so its value will not have to be adjusted through shift

operations to create the match (see Processing the Hardware-Captured Position, below).

To use the “timer B” register, which has whole-count data in the high 20 bits and fractional-count

data in the low 12 bits (so units of 1/4096 of a count), Motor[x].pCaptPos should be set to

Power PMAC User’s Manual

Executing Individual Motor Moves 474

Gate3[i].Chan[j].TimerB.a. Saved setup element TimerMode for the channel must be set to the

default value of 0 for this register to contain the trigger-captured position for the channel. The

resolution of this register matches that of the servo-captured register for sinusoidal feedback

processed with Gate3[i].Chan[j].AtanEna set to 1, so its value will not have to be adjusted

through shift operations to create the match (see Processing the Hardware-Captured Position,

below).

With AtanEna set to 1, the 12 bits of fractional count data in the servo-captured position comes

from the arctangent of the “sine” and “cosine” ADCs. The 12 bits of fractional count data in the

trigger-captured position comes from the timers for the channel.

Software Capture

The use of hardware capture requires that the position-loop servo feedback be processed through

the counter circuitry of an IC channel, because it is the counter value at the instant of the trigger

that the hardware “captures” (latches). If this is not the case, as with serial encoders, parallel

encoders, directly-converted resolvers, LVDTs, MLDTs, etc., then hardware capture cannot be

used, and software capture must be used instead.

Software capture is specified for a motor by setting Motor[x].CaptureMode to 1 (with input

trigger) or 2 (error trigger). If software capture has been selected, Power PMAC software uses the

most recent servo cycle’s motor actual position as the trigger position, regardless of the source,

when the software notices that the trigger has occurred.

When software capture is used, there is a potential delay between the actual trigger and Power

PMAC’s position capture of one real-time interrupt (Sys.RtIntPeriod + 1 servo interrupts). This

delay can lead to inaccuracies in the captured position; the speed of the motor at the time of the

trigger must be kept low enough to achieve an accurate enough capture. For homing, a two-step

procedure can often be used: a fast, inaccurate capture followed by a slow, accurate capture.

The following diagram shows a sample trajectory for triggered moves such as homing search

moves, and highlights the difference in captured position accuracy between hardware and

software capture techniques.

Trigger Occurs

Hardware Capture Occurs

Software Capture Occurs

Post-Trigger Move Starts

Vel

Time

HomeComplete = 1

HomeInProgress = 0

(TriggerMove = 0)

Net Distance from

Trigger Position

HomeOffset

(Post-Trigger Dist)

DesVelZero = 1

(InPos = 1 when

FE <= InPosBand)

Uncertainty in

Software-Captured

Position

HomeComplete = 0

HomeInProgress = 1

(TriggerMove = 1)

DesVelZero = 0

Gaten[i].Chan[j].PosCapt = 1

Triggered Move Trajectory with Hardware and Software Position Capture

Power PMAC User’s Manual

Executing Individual Motor Moves 475

Timer-Assisted Software Capture

With the PMAC3-style DSPGATE3 interface ASIC used on the ACC-24E3 UMAC axis-

interface board, the Power Clipper, and the Power Brick control board, it is possible to use the

ASIC timer circuits for significant improvement of the capture accuracy when software position

capture is used. This technique provides accuracy close to that of the hardware capture of the

encoder counter, even for feedback types not processed through an encoder counter.

Specifying This Capture Mode

This timer-assisted software capture technique is selected for triggered motor moves when

Motor[x].CaptureMode is set to 3. With this setting, Power PMAC will use the recent history of

the motor servo actual position values, whatever their source, to compute the captured position,

with the ASIC timer value latched by the trigger used to interpolate between values latched on

each servo cycle.

Setting Up the ASIC Hardware

This technique uses the ASIC channel’s pulse-frequency-modulation (PFM) circuitry to drive the

timer circuits with a known fixed frequency. The circuitry must be set up to generate 16 pulses

per servo cycle. It generates pulses at a frequency proportional to the 32-bit command value in

Gate3[i].Chan[j].Pfm by adding this command value to an internal accumulator in hardware

every cycle of the high-frequency PFMCLK clock signal. Every time the accumulator rolls over,

it generates a pulse. The pulse frequency can be calculated from the following equation:

PFMCLKPFM f
PfmjChaniGate

f
322

].[].[3

The frequency of the PFMCLK clock signal is determined by saved setup element

Gate3[i].PfmClockDiv. The default value of 5 for this element, which specifies a frequency of

3.125 MHz (3125 kHz), should always be satisfactory for this use.

Rearranging this equation to solve for the value of the Pfm element in order to generate a pulse

frequency 16 times the servo frequency, we get:

PFMCLK

Servo

PFMCLK

Servo

f

f

f

f
PfmjChaniGate

 3632 2

16
2].[].[3

With the default servo frequency of 2.259 kHz, and the default PFMCLK frequency of 3125 kHz

(it is important to use consistent units!) we calculate:

935,675,49
3125

259.2
2].[].[3 36 PfmjChaniGate

This value can be saved into non-volatile flash memory so it is automatically loaded into the

active register on power-up/reset.

To feed this pulse signal into the channel’s encoder counter, saved setup element

Gate3[i].Chan[j].EncCtrl is set to 8, which causes a connection inside the ASIC. No external

wiring is required, and it does not matter what is connected to the channel’s encoder inputs. Also,

it does not matter what mode the channel’s Phase D output signal is configured for, so this will

work regardless of the setting of Gate3[i].Chan[j].OutputMode.

Power PMAC User’s Manual

Executing Individual Motor Moves 476

However, it is necessary that the Phase D command register for the Pfm element be accessed

individually, in “unpacked” mode, so Gate3[i].Chan[j].PackOutData be set to 0. If this ASIC

channel is used for direct-PWM control, the commutation I/O must be done in this “unpacked”

mode, so Motor[x].PhaseCtrl must be set to 4 instead of 1, and Gate3[i].Chan[j].PackInData

must also be set to 0.

Gate3[i].Chan[j].TimerMode must be set to the default value of 0 to enable the timer-based

extension of the counter values latched on the trigger and the servo interrupt. This is essential to

get the best possible resolution in the estimation of the trigger position.

The ASIC channel’s trigger condition is set up as for any other trigger capture mode, with saved

setup elements Gate3[i].Chan[j].CaptCtrl, Gate3[i].CaptFlagSel, and

Gate3[i].Chan[j].CaptFlagChan specifying the signals and edges used for the capture.

Motor Setup

For the motor to use the channel’s trigger flag, Motor[x].pCaptFlag must be set to

Gate3[i].Chan[j].Status.a and Motor[x].CaptFlagBit must be set to 21. These will probably be

the default settings from the auto-configuration process done on system re-initialization.

Motor[x].pCaptPos must be set to Gate3[i].Chan[j].HomeCapt.a to use the trigger-captured

timer value from the channel’s encoder counter. This value is used to determine when during the

servo interrupt period the trigger occurred, so a properly weighted interpolation between the servo

positions before and after can be performed to estimate the position at the time of the trigger

accurately.

For proper interpolation, Power PMAC needs to know when during the servo interrupt period the

servo position sensor is sampled (e.g. latched or strobed). Ideally, the sensor would be sampled

right at the servo interrupt for minimum servo delay, but often this is not possible, as there can be

conversion and transport delays, particularly for the serial data transfers common with absolute

encoders and analog-to-digital converters.

Motor[x].ServoCaptTimeOffset tells this algorithm what the delay is from the time the sensor is

sampled for servo feedback and the following servo algorithm. It is scaled in units of 1/65,536 of

a servo cycle. For example, if the delay is ¼ of a servo cycle (that is, it is sampled ¾ of the way

through the cycle), this element should be set to 65,536/4, or 16,384.

Commonly, analog-to-digital converter interfaces for Power PMAC are strobed on the rising edge

of the phase clock signal so the data can be transferred by the falling edge interrupt. With this

type of interface, the delay is ½ of a phase cycle, and since the phase frequency is n times the

servo frequency, Motor[x].ServoCaptTimeOffset would be set to 65,536 / (2*n).

Serial encoder interfaces for Power PMAC can be strobed on the rising or falling edge of either

the phase clock or the servo clock. Generally, the clock edge that produces the minimum delay to

the start of the servo interrupt is chosen, given the servo frequency and the required response

time.

Power PMAC User’s Manual

Executing Individual Motor Moves 477

The figure below shows how Power PMAC performs the timer-based interpolation for this

capture mode.

Servo

Interrupt

Servo

Interrupt

Capture

Trigger

Servo

Latch

Servo

Latch

ServoCapt

TimeOffset

ServoCapt

TimeOffset

Time to

Trigger

ServoPos0

ServoPos1

CaptPos

Servo

Period

time

Position

Timer-Assisted Software Capture

Processing the Hardware-Captured Position

The hardware-captured position value in the counter register must in general be processed to

ensure that any unwanted bits read over the 32-bit data bus are eliminated and that the final result

is scaled the same as the position-loop servo feedback. The default setup on a $$$*** re-

initialization automatically sets up the proper processing for “whole-count” hardware capture

with servo feedback of 1/T extension from quadrature encoders. Also, setting the value of

Motor[x].EncType through the Script environment (but not from internal C programs)

automatically sets up the proper processing for interpolated sine encoders, quadrature encoders,

and capture over the MACRO ring.

Potential mismatch in scaling comes about because the servo-loop feedback position may have

sub-count resolution due to 1/T extension of quadrature encoders or arctangent extension of

sinusoidal encoders, and the hardware-captured position does not. Alternatively, the servo-loop

feedback position may use a high-resolution arctangent extension (12 fractional bits per count)

but the hardware-captured position uses a lower-resolution extension (8 fractional bits per count).

There are other possibilities as well.

Note that software capture always uses already-scaled motor position values, so none of these

processing steps is necessary when software capture is used. The settings of the processing-

control elements are not used in that case.

Power PMAC User’s Manual

Executing Individual Motor Moves 478

Processing Steps

Power PMAC employs three discrete processing steps after it reads the hardware-captured

counter position over the 32-bit bus and before it uses it as the motor’s position at the trigger for

the purposes of computing the post-trigger offset move.

Right-Shift Operation

First, it takes the 32-bit read value and shifts it right (toward the least significant end) by the

number of bits specified in Motor[x].CaptPosRightShift. This is done to eliminate any

unwanted bits at the low end of the 32-bit value read, either because the bits did not come from

real hardware (as in the case of the 24-bit PMAC2-style ICs) or because the captured data

included sub-count estimated data that we do not wish to use, or both.

Left-Shift Operation

Next, it takes the right-shifted result and shifts it left (toward the most significant end) by the

number of bits specified in Motor[x].CaptPosLeftShift. This is done to make the resulting value

have the same scaling as the position-loop feedback value.

Half-Count-Offset Operation

Finally, it can optionally offset the captured position one-half count to match the servo feedback,

if necessary. When Power PMAC performs sub-count extension of position data, either through

the “1/T” timer data, or from arctangent calculations of sine/cosine readings, it offsets the

position data by a half count to put the integer count value halfway in between the whole-count

edges, eliminating offset between directions. Simple whole-count data from the hardware counter

does not have this offset, so to match the two data types properly, it can be necessary to offset the

captured data by half a count.

So if the position-loop servo feedback utilizes sub-count extension, whether done in hardware or

software, and the hardware-captured position does not (or, in theory, vice versa), the captured

position value should be offset a half count before being used as motor trigger position. If

Motor[x].CaptPosRound is set to 1, Power PMAC will provide this offset. If it is set to 0, no

offset will be performed.

PMAC2-Style Interface for Quadrature Encoders

When a PMAC2-style interface with the “DSPGATE1” IC is used to process digital quadrature

encoders, as with the ACC-24E2, ACC-24E2A, and ACC-24E2S UMAC boards, the servo-loop

feedback usually uses a position value with 1/T sub-count extension computed in the encoder

conversion table (conversion method Type = 3). This conversion provides 9 bits of sub-count

extension.

The hardware-captured position register of the IC (Gate1[i].Chan[j].HomeCapt) has 24 bits,

present in the high 24 bits of the 32-bit Power PMAC data bus. With

Motor[x].CaptPosRightShift = 8, the captured position value is shifted right so that a “count” is

moved from bit 8 to bit 0, and all of the bits of indeterminate value are eliminated. Then, with

Motor[x].CaptPosLeftShift = 9, the intermediate value is shifted left 9 bits so that a “count”

matches the scaling of the 1/T-extended position-loop servo feedback, with zeros in the low 9

bits. Finally, with Motor[x].CaptPosRound = 1, this value is offset by one-half count (by setting

the “half-count” bit to 1) to match the offset of the extended position-loop feedback.

Power PMAC User’s Manual

Executing Individual Motor Moves 479

The following diagram shows how this process is done for this setup:

- - - - - - - -24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)23 bits captured counter data

0

0

0

7831

232431

931

1

78

-

8

9

Captured Position Processing for Quadrature Encoder into PMAC2 IC

With Servo Using Software 1/T Extension

However, if this IC type is used for quadrature feedback when the servo loop is closed in the

phase interrupt, only the whole-count position value in Gate1[i].Chan[j].PhaseCapt is used for

servo-loop feedback. This is a 24-bit value, present in the high 24 bits of the 32-bit Power PMAC

bus, just as for the hardware captured position. In this case Motor[x].CaptPosRightShift should

be set to 8 to eliminate the indeterminate low 8 bits, Motor[x].CaptPosLeftShift should be set to

8 to match the resolution of the servo-loop feedback, and Motor[x].CaptPosRound should be set

to 0, because no half-count offset is needed.

The following diagram shows how this process is done for this setup:

8 bits fraction24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)24 bits captured counter data

0

0

0

7831

232431

731 8

8

8

Captured Position Processing for Quadrature Encoder into PMAC2 IC

With Servo Using No Extension

PMAC2-Style Interface for Sinusoidal Encoders

When a PMAC2-style interface with the “DSPGATE1” IC is used to process sinusoidal encoders,

as with the ACC-51E UMAC board, the servo-loop feedback usually uses a position value with

arctangent sub-count extension computed in the encoder conversion table (conversion method

Power PMAC User’s Manual

Executing Individual Motor Moves 480

Type = 4). This conversion provides 10 bits of sub-count extension (12 bits per cycle, for 4096x

interpolation).

The hardware-captured position register of the IC (Gate1[i].Chan[j].HomeCapt) has 24 bits,

present in the high 24 bits of the 32-bit Power PMAC data bus. With

Motor[x].CaptPosRightShift = 8, the captured position value is shifted right so that a “count” is

moved from bit 8 to bit 0, and all of the bits of indeterminate value are eliminated. Then, with

Motor[x].CaptPosLeftShift = 10, the intermediate value is shifted left 10 bits so that a “count”

matches the scaling of the 1/T-extended position-loop servo feedback, with zeros in the low 10

bits. Finally, with Motor[x].CaptPosRound = 1, this value is offset by one-half count to match

the offset of the extended position-loop feedback.

The following diagram shows how this process is done for this setup:

- - - - - - - -24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)22 bits captured counter data

0

0

0

7831

232431

931

1

10 8

--

8

10

Captured Position Processing for Sinusoidal Encoder into PMAC2 IC

With Servo Using Software Arctangent Extension

PMAC3-Style Interface for Quadrature Encoders

When a PMAC3-style interface with the “DSPGATE3” IC is used to process digital quadrature

encoders, as with the ACC-24E3 UMAC board and its digital-feedback mezzanine board, the

servo-loop feedback usually uses a position value with 1/T sub-count extension computed directly

in the IC, found in Gate3[i].Chan[j].ServoCapt (or PhaseCapt if the servo loop is closed in the

phase interrupt). This processing, enabled if Gate3[i].Chan[j].TimerMode = 0 (the default)

provides 8 bits of sub-count extension.

The hardware-captured position register of the IC (Gate3[i].Chan[j].HomeCapt) has the same

format as the servo-loop position, 32 bits, with the low 8 bits being 1/T sub-count extension when

Gate3[i].Chan[j].TimerMode = 0. The user must decide whether he wants to use the captured

sub-count value or not.

Not Using Sub-Count Captured Data

Most users will not want to use the sub-count estimation for homing-search moves, as they will

want their position reference to be on an exact count. These users should set

Motor[x].CaptPosRightShift to 8 to eliminate the sub-count bits, Motor[x].CaptPosLeftShift

to 8 to return the value to the same scaling as the servo-loop position (but with all the sub-count

bits set to 0), and Motor[x].CaptPosRound to 1, because the right shift of the captured position

eliminated its half-count offset, and it must be put back here.

Power PMAC User’s Manual

Executing Individual Motor Moves 481

The following diagram shows how this process is done for this case, where the fractional-count

value is not used, even if captured:

8 bits fraction24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)24 bits captured counter data

0

0

0

7831

232431

731

1

68

8

8

Captured Position Processing for Quadrature Encoder into PMAC3 IC

Whole Count Only, With Servo Using Hardware 1/T Extension

Using Sub-Count Captured Data

Some users will want to use the captured sub-count value on other triggered moves to obtain

more resolution in the captured position, as in probing and registration moves. These users should

set Motor[x].CaptPosRightShift and Motor[x].CaptPosLeftShift to 0, because no shift

processing is required, and Motor[x].CaptPosRound to 0, because both servo and captured

position already have the same offset.

The following diagram shows how the process is done for this case, where the fractional-count

value is used. In this case, there is no net processing of the captured data.

8 bits fraction24 bits captured counter data

24 bits captured counter data

0

0

0

7831

31

731 8

24 bits captured counter data 8 bits fraction

8 bits fraction

0

0

Captured Position Processing for Quadrature Encoder into PMAC3 IC

Whole and Fractional Count, With Servo Using Hardware 1/T Extension

PMAC3-Style Interface for Sinusoidal Encoders

When a PMAC3-style interface with the “DSPGATE3” IC is used to process sinusoidal encoders,

as with the ACC-24E3 UMAC board and its analog-feedback mezzanine board, the servo-loop

feedback usually uses a position value with arctangent sub-count extension computed directly in

Power PMAC User’s Manual

Executing Individual Motor Moves 482

the IC, found in Gate3[i].Chan[j].ServoCapt (or PhaseCapt if the servo loop is closed in the

phase interrupt). This processing, enabled if Gate3[i].Chan[j].TimerMode = 0 (the default)

provides 12 bits of sub-count extension (14 bits per cycle, for 16,384x interpolation).

In this case, the hardware-captured position register of the IC (Gate3[i].Chan[j].HomeCapt) has

different resolution from the servo-loop position, 32 bits, with the low 8 bits being 1/T sub-count

extension if Gate3[i].Chan[j].TimerMode = 0 (the default). The user must decide whether he

wants to use the captured sub-count value or not.

Using Sub-Count Captured Data

Most users will want to use the captured sub-count value on triggered moves to obtain more

resolution in the captured position, as in probing and registration moves. These users should set

Motor[x].CaptPosRightShift to 0 to keep all of the sub-count extension bits,

Motor[x].CaptPosLeftShift to 4 to match the resolution of the servo-loop position, and

Motor[x].CaptPosRound to 0, because both servo and captured position already have the same

offset.

The following diagram shows how the process is done for this case:

8 bits fraction24 bits captured counter data

20 bits captured counter data

0

0

0

7831

31

1131 12

24 bits captured counter data 8 bits fraction

8 bits fraction- - - - (zeros)

4 3

0

4

Captured Position Processing for Sinusoidal Encoder into PMAC3 IC

Whole and Fractional Count, With Servo Using Hardware Arctangent Extension

If the extended arctangent interpolation conversion is used for servo feedback (EncTable[n].type

= 7), as is appropriate with the Auto-Correcting Interpolator, this conversion provides 14 bits of

sub-count interpolation (16 bits per cycle, for 65,536x interpolation), then

Motor[x].CaptPosLeftShift should be set to 6 instead of 4 here to account for the extra two bits

of interpolation. The same is true if the software extension (EncTable[n].type = 4) is used with a

PMAC3-style IC, which also provides 14 bits of sub-count interpolation.

Power PMAC User’s Manual

Executing Individual Motor Moves 483

The following diagram shows how the process is done for this case:

8 bits fraction24 bits captured counter data

18 bits captured counter data

0

0

0

7831

31

1331 14

24 bits captured counter data 8 bits fraction

8 bits fraction- - - - - - (zeros)

6 5

0

6

Captured Position Processing for Sinusoidal Encoder into PMAC3 IC

Whole and Fractional Count, With Servo Using Extended Arctangent Interpolation

Not Using Sub-Count Captured Data

Some users will not want to use the sub-count estimation for homing-search moves, as they will

want their position reference to be on an exact count (the zero crossing of the sine or cosine

signal). These users should set Motor[x].CaptPosRightShift to 8 to eliminate the sub-count bits,

Motor[x].CaptPosLeftShift to 12 to make the value the same scaling as the servo-loop position

(but with all the sub-count bits set to 0), and Motor[x].CaptPosRound to 1, because eliminating

the fractional bits in the captured position removed its offset, so it must be put back in here.

The following diagram shows how this process is done for this case, where the fractional-count

value is not used, even if captured:

8 bits fraction24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)20 bits captured counter data

0

0

0

7831

232431

1131

1

12

- - - -

8

12

Captured Position Processing for Sinusoidal Encoder into PMAC3 IC

Whole Count Only, With Servo Using Hardware Arctangent Extension

If the extended arctangent interpolation conversion is used for servo feedback (EncTable[n].type

= 7), as is appropriate with the Auto-Correcting Interpolator, this conversion provides 14 bits of

sub-count interpolation (16 bits per cycle, for 65,536x interpolation), then

Motor[x].CaptPosLeftShift should be set to 14 instead of 12 here to account for the extra two

Power PMAC User’s Manual

Executing Individual Motor Moves 484

bits of interpolation. The same is true if the software extension (EncTable[n].type = 4) is used

with a PMAC3-style IC, which also provides 14 bits of sub-count interpolation.

The following diagram shows how the process is done for this case:

8 bits fraction24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)18 bits captured counter data

0

0

0

7831

232431

1331

1

14

- - - - - -

8

14

Captured Position Processing for Sinusoidal Encoder into PMAC3 IC

Whole Count Only, With Servo Using Extended Arctangent Interpolation

MACRO Interface with Quadrature Encoders

When the motor’s servo interface is through the MACRO ring, digital quadrature feedback data

appears in the MACRO node’s Register 0, a 24-bit register in the high 24 bits of Power PMAC’s

32-bit data bus. The hardware-captured position is acquired through a special software request

over the ring. The resulting value is in whole counts, with a single count residing in bit 0 of the

32-bit word.

Extended Servo Feedback

Typically with Delta Tau MACRO hardware, the 24-bit servo feedback value already has 5 bits

of 1/T sub-count extension performed at the remote MACRO station, so a whole count is found in

bit 13 of the 32-bit word. In this case, users should set Motor[x].CaptPosRightShift to 0 to keep

all of the whole-count information, Motor[x].CaptPosLeftShift to 13 to match the resolution of

the servo-loop position, and Motor[x].CaptPosRound to 1 to match the half-count offset of the

interpolated servo-loop position.

Power PMAC User’s Manual

Executing Individual Motor Moves 485

The following diagram shows how the process is done for this case:

(sign extend) 24 bits captured counter data

19 bits captured counter data

0

0

0

232431

31

1131 12

24 bits captured counter data(sign extend)

1- - - - - - - - - - - - - (zeros)

13

0

13

Captured Position Processing for Quadrature Encoder into Remote MACRO Node

Whole Count Only, With Servo Using 5-Bit Software 1/T Extension

Non-Extended Servo Feedback

With most third-party MACRO hardware, no sub-count interpolation is performed. In these cases,

the feedback data appearing in the MACRO node’s Register 0 in the high 24 bits of the Power

PMAC’s 32-bit bus is in units of whole counts, so a whole count is found in bit 8 of the 32-bit

word. . In this case, users should set Motor[x].CaptPosRightShift to 0 to keep all of the whole-

count information, Motor[x].CaptPosLeftShift to 8 to match the resolution of the servo-loop

position, and Motor[x].CaptPosRound to 0 because there is no offsetting in either servo or

The following diagram shows how the process is done for this case:

(sign extend) 24 bits captured counter data

24 bits captured counter data

0

0

0

232431

31

731

24 bits captured counter data(sign extend)

(zeros)

8

0

8

Captured Position Processing for Quadrature Encoder into Remote MACRO Node

Whole Count Only, With Servo Using No Extension

MACRO Interface with Sinusoidal Encoders

When the motor’s servo interface is through the MACRO ring, sinusoidal feedback data appears

in the MACRO node’s Register 0, a 24-bit register in the high 24 bits of Power PMAC’s 32-bit

data bus. Typically, this 24-bit value already has 10 bits of arctangent sub-count extension

performed at the remote MACRO station, so a whole count is found in bit 18 of the 32 bit word.

Power PMAC User’s Manual

Executing Individual Motor Moves 486

In this case, the hardware-captured position is acquired through a special software request over

the ring. The resulting value is in whole counts, with a single count residing in bit 0 of the 32-bit

word. In this case, users should set Motor[x].CaptPosRightShift to 0 to keep all of the whole-

count information, Motor[x].CaptPosLeftShift to 18 to match the resolution of the servo-loop

position, and Motor[x].CaptPosRound to 1 to match the half-count offset of the interpolated

servo feedback.

The following diagram shows how the process is done for this case:

(sign extend) 24 bits captured counter data

14 bits captured count

0

0

0

232431

31

1631 17

24 bits captured counter data(sign extend)

1- - - - - - - - - - - - - - - - - - (zeros)

18

0

18

Captured Position Processing for Quadrature Encoder into Remote MACRO Node

Whole Count Only, With Servo Using 10-Bit Software Arctangent Extension

Processing the Software-Captured Position

If software-captured position is used, the most recent servo-feedback position for the motor is

used as the trigger position. This has already been processed into the units of the motor, so no

further processing is required.

In the case of timer-assisted software capture, Power PMAC automatically interpolates between

two recent servo-feedback positions for the motor based on the trigger-captured time stamp. Since

these positions have already been processed into the units of the motor, there is nothing for the

user to specify on this processing.

Post-Trigger Move

Once the trigger position has been found and processed into a motor position, Power PMAC can

compute the post-trigger move. The post-trigger move ends at a commanded position that is a pre-

specified distance from the actual position captured at the trigger. This signed distance value is

specified by a saved setup element in the case of homing-search moves, and by the last value in

the command in the case of triggered jog moves and programmed trigger moves.

The post-trigger move, including the blending from the pre-trigger move, is governed by the same

velocity and acceleration parameters as the pre-trigger move. Usually, the post-trigger move will

involve a reversal from the pre-trigger move, but this is not necessarily the case.

Homing-Search Moves

The purpose of a homing-search move is to establish an absolute position reference when an

incremental position feedback sensor is used. The “move until trigger” construct is ideal for

finding the sensor that establishes the home position and automatically returning to this position.

Power PMAC User’s Manual

Executing Individual Motor Moves 487

Note the important distinction between a homing-search move, in which the home location is not

known at the start of the move, and a move to the already-known home position, which can be

accomplished with a motor command such as j=0 or an axis command such as X0.

Home Commands

A homing-search move can be executed either from an on-line hm command (e.g. #5hm,

#6..8hm), or from a buffered program home command (e.g. home5, home6..8). The

buffered program command can be used in either a motion or a PLC program.

When commanding homing-search moves from an on-line command or a PLC program, the

command simply starts the homing-search move, and other action must be taken to monitor for

the end of the move and possible error conditions.

When commanding a homing-search move from a motion program, program execution is

suspended until all motors in the command successfully complete their homing-search moves,

including the post-trigger move section. If a motor’s move ends in a fault condition, motion

program execution is aborted. Note that for homing multiple motors from a motion program,

unless the motors are commanded to start their homing-search moves simultaneously in a single

command, it is necessary to wait for one motor’s homing-search move to finish before another

motor’s can be started.

Note

If saved setup element Sys.NoShortCmds is set to 1, then on-

line homing commands cannot use just the letters “hm”;

instead they must use the full word “home”, as the buffered

program homing commands always must do. This mode of

operation is intended to prevent the accidental entry of action

commands.

Homing Speed Control

Motor[x].HomeVel specifies both the direction and magnitude of the top velocity for homing-

search moves, in motor units / msec. If it is greater than zero, the pre-trigger move will be in the

positive direction. If it is less than zero, the pre-trigger move will be in the negative direction. The

magnitude of Motor[x].HomeVel controls the top speed of both the pre-trigger and post-trigger

moves (should they be long enough to get to this speed).

Homing Acceleration Control

The acceleration and deceleration characteristics of homing-search moves are determined by

saved setup elements Motor[x].JogTa and Motor[x].JogTs. These can be set up to specify the

acceleration profiles by time or rate. Both should be set either to specify times or rates. These

elements are discussed in detail in the Jog Acceleration Control section, above.

Home Trigger Condition

The trigger condition for homing-search moves, as for other triggered moves, is specified by

several motor and IC saved setup elements, as described above in detail. If no trigger is found, the

pre-trigger move will continue indefinitely, or until stopped by an error condition such as hitting

overtravel limits.

Power PMAC User’s Manual

Executing Individual Motor Moves 488

In homing-search moves, it is common practice to use a combination of a homing switch and the

index channel as the home trigger condition. The index channel of an encoder, while precise and

repeatable, is not unique in most applications, because the motor can travel more than one

revolution. The homing switch, while unique, is typically not extremely precise or repeatable. By

using a logical combination of the two, you can get uniqueness from the switch, and precision and

repeatability from the index channel. The IC setup element Gaten[i].Chan[j].CaptCtrl can set

up the trigger circuitry to perform this logical combination automatically in the IC hardware. In

this scheme, the homing switch is effectively used to select which index channel pulse is used as

the home trigger.

Although the homing switch does not need to be placed extremely accurately in this type of

application, it is important that its triggering edge remain safely between the same two index

channel pulses. Also, the homing switch pulse must be wide enough to always contain at least one

index channel pulse.

Post-Trigger Move

Motor[x].HomeOffset specifies the (signed) distance from the trigger-captured position to the

end of the post-trigger move, in motor units. The endpoint of the commanded post-trigger move

is the new motor position zero (the motor’s “home” position). The change of the motor’s reported

position reference occurs at the beginning of the post-trigger move. As soon as this is done,

reported positions are referenced to this new zero position. Also at this point, the motor’s “home

search in progress” status bit is cleared, and the “home complete” status bit is set.

If the post-trigger move fails with an error condition, it is not necessary to re-home the motor, as

the home position is already known. A command such as j=0 can move the motor to the home

position once the source of the problem has been cleared up.

If software overtravel limits are used (Motor[x].MaxPos > Motor[x].MinPos), they are re-

enabled at the beginning of the pre-trigger move after having been automatically disabled during

the search for the trigger. The trajectory to this new zero position is then calculated, including

deceleration and reversal if necessary. Note that if a software limit is too close to zero, the motor

may not be able to stop and reverse before it hits the limit. In normal termination, the motor will

stop under position control with its commanded position equal to the home position. If there is a

following error, the actual position will be different by the amount of the following error.

Power PMAC User’s Manual

Executing Individual Motor Moves 489

Example Homing Search Plot

This plot shows the commanded velocity and acceleration move profiles for a simple homing

search move.

Velocity and Acceleration Profiles of a Typical Homing Search Move

Failure to Find Trigger

The pre-trigger move of a homing search will continue indefinitely if it fails to find the trigger

condition it is looking for. Typically, it will be stopped by an overtravel position limit switch or

fatal following error limit at the end of travel in this case. If you want a programmed limit to the

length of the pre-trigger move, you should use an incremental jog-until-trigger command or

programmed move-until-trigger, with the first value specifying the distance to move in the

absence of a trigger, and the second the distance from the trigger to the end of the post-trigger

move (replacing Motor[x].HomeOffset). Once the post-trigger move is finished, a hmz [homez]

command (see below) can be used to set this position to be the motor zero position.

Monitoring the Move

If you are monitoring the motor from the host or from a PLC program to see if it has finished the

homing-search move, it is best to look at the Motor[x].HomeInProgress and the

Motor[x].DesVelZero status bits. The “home in progress” bit is set to 1 at the beginning of a

homing search move, and then to 0 as soon as the trigger is found in a homing-search move,

before the motor has come to a stop. So to check for the end of the post-trigger move, the

“desired velocity zero” bit should be monitored to see when the commanded motion ends.

The following code section shows a simple example of commanding a homing-search move from

a PLC program and monitoring for proper finish:

home3; // Start homing move for Motor 3

while (Motor[3].HomeInProgress == 0) { } // Wait for start

while (Motor[3].DesVelZero == 0) { } // Wait for end

Power PMAC User’s Manual

Executing Individual Motor Moves 490

A robust monitoring algorithm will also look for the possibility that the homing search move

could end in an error condition. Often this is just part of the general error monitoring that is done

at all times, looking for overtravel limits, fatal following errors, and amplifier faults. If an error

does occur during the homing move, it is important to distinguish between one that occurs before

the trigger has been found, and one that occurs after. If the error occurs after, Power PMAC

knows where the home position is, and the homing search does not need to be repeated. Once the

error cause has been fixed, the motor can simply be moved to the home position with a command

such as j=0.

Homing Gantry Leader/Follower Motors

Power PMAC has special functionality for homing search moves with gantry leader/follower

motor sets. This functionality makes it very easy to perform this operation with multiple motors,

automatically removing any power-on skew between the motors in the process.

In this gantry leader/follower mode, the leader motor is set up as a “normal” motor, with

Motor[x].ServoCtrl set to 1, so it generates its own commanded position trajectory, as well as

performing its own servo-loop closure, and commutation if specified. One or more “follower”

motors are set up with Motor[x].ServoCtrl set to 8, so they do not generate their own

commanded position trajectories (but still perform their own servo-loop closure, and

commutation if specified). Instead, they use the commanded trajectory of the motor specified by

Motor[x].CmdMotor, which is set to the number of the “leader” motor.

To perform a homing search move sequence for this set of motors, all of the motors in the set

should be commanded to perform a homing search move simultaneously. For example, if Motor 5

is the leader motor, and Motor 6 is the follower motor, an on-line #5..6hm or a program

home5..6 command could be used.

Leader Motor

Follower Motor

Power-On

Skew

Skew

Removed

On

Homing

Gantry Leader/Follower Motor System Skew Removal on Homing

During the pre-trigger portion of the move, any follower motors will simply track the trajectory of

the leader motor, so the power-on skew will remain during this part of the sequence. But as soon

as the home triggers have been found for both leader and follower motors, the difference between

Power PMAC User’s Manual

Executing Individual Motor Moves 491

the trigger positions and therefore the skew will be calculated, and the process of removing it will

be started.

It does not matter which trigger is found first, and while it is strongly recommended that the

deceleration distance for the leader motor after its own trigger is found be long enough that it will

always cause the follower motor trigger to be hit, it is possible to find the follower motor trigger

even after the leader’s post-trigger move is finished if some other move is then commanded.

Once both triggers have been found, the skew of a follower motor is removed at a rate set by

saved setup element Motor[x].GantrySlewRate in motor units per servo cycle. Note that the

factory default value for this element is 0.0, which does not permit the skew to be removed. The

skew removal offset is written into Motor[x].MasterPos for the follower motor, accumulating at

this slew rate until it compensated for the power-on skew. At this time, status bit

Motor[x].GantryHomed for the follower motor is set to 1.

The skew is determined by the difference in the captured positions for the two motors and by the

difference in the saved setup elements Motor[x].HomeOffset for the motors. The user can

calibrate the difference in physical location between the home triggers for the motor by setting

different values for these elements – the difference between the two values should correspond to

the physical difference.

Jog-Until-Trigger Moves

The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by

a move relative to the position at the time of the trigger. It is very similar to a homing search

move, except that the motor zero position is not altered, and there is a specific destination in the

absence of a trigger.

Jog-Until-Trigger Commands

The “jog-until-trigger” function for a motor is specified by adding a ^{constant} or ^*

specifier to the end of a regular on-line “definite” jog command for the motor, or a ^{data}

specifier to the end of a regular program “definite” jog command for the motor. In all three cases,

this added syntax specifies the signed distance from the actual position captured at the trigger to

the desired position at the end of the programmed move, in motor units.

In the case of the on-line command with ^{constant}, it must be a numerical constant value.

In the case of the on-line command with ^*, the post-trigger distance comes from the value of

Motor[x].JogOffset. In the case of the program command with ^{data}, this distance can be a

numerical constant without parentheses, or a mathematical expression in parentheses.

The jog-until-trigger function cannot be used with the j+ and j- indefinite jog commands.

Trigger Condition

The trigger condition for the motor is set up just as for homing search moves, explained above.

Position Capture Method

The method for capturing position – hardware or software – and any subsequent processing of

hardware-capture position is set up just as for homing search moves, explained above.

Power PMAC User’s Manual

Executing Individual Motor Moves 492

Acceleration and Speed Control

Power PMAC will use the jog acceleration and velocity parameters in force at the time of the

command for the pre-trigger move, and the values of these parameters in force at the time of the

trigger for the post-trigger move.

Monitoring the Move

If the pre-trigger move ends without seeing the trigger condition, the

Motor[x].TriggerNotFound status bit is set to 1 at the end of the move (when

Motor[x].DesVelZero becomes 1). This bit can be used to decide the appropriate action at this

point.

Program Move-Until-Trigger

The move-until-trigger construct can be used from within a motion program. In this version it is a

variant of the rapid move mode, commanding motors through the axes they are assigned to.

These moves execute exactly like on-line jog-until-trigger moves, but they are described a little

differently.

A program move-until trigger is commanded with the {axis}{data}^{data} syntax. Basic

examples are X50^-2 and Y(P1)^(P2). The first value is the destination of the axis if no

trigger is found, expressed in the engineering units for the axis. This value can be a position or a

distance, depending on whether the axis is in absolute or incremental mode, respectively. The

second value is the distance from the trigger-captured position to the end of the post-trigger

move, expressed in the engineering units for the axis. The coordinate system must be in rapid

mode for the triggering to operate; otherwise just the pre-trigger move will be executed to the

specified endpoint.

The commanded acceleration for the move is specified by Motor[x].JogTa and Motor[x].JogTs,

as for other trigger moves. The magnitude of the peak velocity for the move is specified by

Motor[x].MaxSpeed if Motor[x].RapidSpeedSel is at the default value of 0, or by

Motor[x].JogSpeed if Motor[x].RapidSpeedSel is set to 1. The trigger conditions and capture

methods are specified as for other triggered moves, as described above. Status bits are set as for

on-line jog-until-trigger moves.

Note

Program move-until-trigger commands cannot be used in a

coordinate system for which the motor/axis relationship is

defined with kinematic subroutines instead of axis definition

statements.

Power PMAC User’s Manual

Executing Individual Motor Moves 493

Open-Loop Moves

The on-line motor command out{constant} and the program direct motor command

cout:{data} specify “open-loop moves” for the motor. The position/velocity servo loop is

opened, and a fixed value is placed in the servo loop output. The signed numerical value at the

end of the command specifies this output value as a percentage of Motor[x].MaxDac, the largest

permitted magnitude for the servo loop output. If Power PMAC does not commutate the motor,

this command creates a constant signal on the single output for the motor. If Power PMAC does

commutate the motor, this command sets the sign and magnitude of the torque (quadrature)

command input to the commutation algorithm for the motor.

In the on-line command, the output value must be specified as a numerical constant (e.g. out-

50, #2out75.3) in the +/-100 range. In the program command, it may be specified as a

numerical constant without parentheses (e.g. cout:-50, cout2:75.3), or as a mathematical

expression in parentheses (e.g. cout:(P1), cout5,6:(sind(Q700)).

These commands are typically used for diagnostic purposes, but they can also be used in the

actual applications.

If a motor is assigned to a positioning or follower axis in a coordinate system that is executing a

motion program, it may not be commanded to do an open-loop move.

If the Sys.PosCtrl position-output servo algorithm is selected for the motor, the position loop is

not closed in the PMAC, so there is no open-versus-closed-loop distinction. The open-loop output

command is not appropriate in this case. It can enable a disabled motor, but the output magnitude

is not used, and it does not change the open/closed-loop mode of the drive.

Power PMAC User’s Manual

Setting Up Coordinate Systems 494

SETTING UP COORDINATE SYSTEMS

Once you have set up your motors, gotten them well tuned, and doing controlled jogging and

homing search moves, you will want to assemble one or more coordinate systems from the

motors so that you can run motion programs.

What is a Coordinate System?

A coordinate system in Power PMAC is a grouping of one or more motors for the purpose of

synchronizing movements. A coordinate system (even with only one motor) can run a motion

program; a motor by itself cannot.

Number of Coordinate Systems

Power PMAC can have multiple coordinate systems, up to 128. The user can set the largest

number of potentially active coordinate systems with the global saved setup element

Sys.MaxCoords. A coordinate system is not actually “active” until one or more motors has been

assigned to it.

The coordinate systems, which take numbers from 0 to (Sys.MaxCoords – 1), can be addressed

in on-line commands with the &x command, where x is the number of the coordinate system.

Each coordinate system has its own independent data structure Coord[x] with control and status

variables for that coordinate system, with x again being the number of the coordinate system.

It is expected that most Power PMAC users will not have an active C.S. 0 (&0), with motors

assigned to axes in that coordinate system. Motors that have not been assigned to an axis in any

coordinate system automatically use the “time base” (% override value) of C.S. 0. At power-

on/reset, Power PMAC is automatically addressing C.S. 0, and an explicit &x command is

required to address another coordinate system in any communications thread.

Strategy for Assigning Coordinate Systems

In general, if you want certain motors to move in a coordinated fashion – starting, stopping and

changing speeds at the same time – put them in the same coordinate system. If you want them to

move independently of each other, put them in separate coordinate systems. Different coordinate

systems can run separate programs at different times (including overlapping times), or even run

the same program at different (or overlapping) times.

It is possible to put all of your active motors in a single coordinate system for completely

coordinated action; it is also possible to put each motor in a separate coordinate system (up to the

limit of the number of possible coordinate systems) for completely independent action.

A coordinate system must first be established by assigning motors to axes in that coordinate

system. For simple relationships between motors (actuators) and axes (tool coordinates), this is

done with on-line commands called “axis-definition statements” (see below). For more complex

relationships, this is done by writing special “kinematic subroutines” that describe the

relationship (covered in a following section).

If a coordinate system has no motors assigned to axes in it, it can only execute motion programs

in a fast “simulation” mode. In this mode, the moves take no time, and the program is executed as

fast as Power PMAC can perform the calculations. This can be useful for certain “dry run”

capabilities to evaluate a program.

Power PMAC User’s Manual

Setting Up Coordinate Systems 495

When a program is written for a coordinate system, if simultaneous motions are desired of

multiple motors, their move commands are simply put on the same line, and the moves will be

coordinated.

Fault Sharing

All of the motors in a coordinate system react to an automatic fault of any motor in the coordinate

system during a program move, including fatal following error, amplifier fault, integrated current

limit, hardware or software overtravel limit, and encoder loss fault. This is true for motors

assigned to position axes, spindle axes, or even the “null definition”. The specific reaction –

enabled stop or disabled state – for various types of faults is determined by the value of saved

setup element Motor[x].FaultMode for each motor.

However,, if a motor in a coordinate system faults during an independent motor move (e.g. jog,

home, open-loop) instead of coordinated program move, other motors in the coordinate system

will not react.

Motors do not automatically react to faults of motors in other coordinate systems. If you wish

motors to react to these faults, you must implement this feature in your own routine, probably in a

PLC program.

What is an Axis?

An axis is an element of a coordinate system. It can be thought of as one of the coordinates of the

tool, or of the mechanics relative to the tool. An axis in Power PMAC is often similar to a motor,

but not the same thing. An axis is referred to by letter. There can be up to 32 independent axes in

a coordinate system, selected from the X, Y, Z, A, B, C, U, V, and W single letters, plus the AA

through HH, and LL through ZZ double letters.

Axes, and their relationships to motors, are established either through on-line “axis-definition”

commands, which set up a mathematically linear relationship between axis positions and motor

positions, or through “kinematic subroutines” which permit these relationships to be defined

algorithmically, with extensive math and logic. Both methods are covered below.

Single-Motor Axes

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes.

That is, a single motor is assigned to a single axis in a coordinate system. Even when this is the

case, however, the matching motor and axis are not completely synonymous. The axis is scaled

into engineering units, and deals only with commanded positions. Except for the pmatch

function and axis query commands, calculations go only from axis commanded positions to motor

commanded positions, not the other way around.

Multiple-Motor Axes

More than one motor may be assigned to the same axis in a coordinate system. This is common in

gantry systems, where motors on opposite ends of the cross-piece are always trying to do the

same movement. By assigning multiple motors to the same axis (e.g. #1->X, #2->X), a single

programmed axis move in a program causes identical commanded moves in multiple motors. This

is commonly done with two motors, but it is possible to assign even more motors to a single axis

in Power PMAC. Remember that the motors still have independent servo loops, and that the

actual motor positions will not necessarily be exactly the same.

Power PMAC User’s Manual

Setting Up Coordinate Systems 496

Coordinating parallel gantry motors in this fashion is in general superior to using a master/slave

technique (which can be done on Power PMAC with the “position following” feature). In the

master/slave technique, the actual trajectory of the master as measured at the encoder, with all of

the disturbances and quantization errors, becomes the commanded trajectory for the slave, whose

actual trajectory will have even more errors. The roughness in the slave motor’s commanded

trajectory makes it difficult or impossible to use feedforward properly, which introduces a lag.

True, if the master gets a disturbance, the slave will see it and attempt to match it, but if the slave

gets a disturbance, the master will not see it.

Special Gantry Leader/Follower Mode

Note that Power PMAC also has a new technique for implementing gantry systems called

“leader/follower”. In this technique, one motor is designated the “leader”. This motor is activated

normally (Motor[x].ServoCtrl is set to 1) and assigned to the axis in the coordinate system so it

will use axis trajectories directly.

Other motor(s) mechanically linked to this motor are designated “follower” motors. These motors

are activated in a special follower mode by setting Motor[x].ServoCtrl to 8. In this mode, the

motors close their own servo loops, but do not calculate their own trajectories. Instead, they use

the trajectory calculated by the motor whose number is specified in Motor[x].CmdMotor, which

should be that of the gantry leader motor.

These follower motors are then assigned to the “null” definition (#x->0) in the same coordinate

system as the leader motor, which is assigned to the desired axis. Note that by default, all motors

have the null definition in Coordinate System 0. It is important that the follower motors be moved

the working coordinate system, even though they are not directly assigned to an axis in that

coordinate system.

This mode of operation provides fundamentally equivalent motion to the technique of assigning

multiple motors to the same axis, in that the motors use the same commanded trajectory, but close

servo loops individually. However, it provides several important advantages. First, calculation

time is reduced, because only one motor needs to calculate the commanded trajectory. Second, it

makes it possible to move the motors together interactively just by jogging the leader motor.

Finally, it makes the initial homing and “de-skewing” easier, because the follower motors can

find their home triggers when the leader motor is homed, and have the skew (difference in

position of their home trigger from the leader motor’s home trigger) automatically removed at the

programmed rate set by Motor[x].GantrySlewRate.

Phantom Axes

An axis in a coordinate system can have no motors attached to it (a “phantom” axis), in which

case programmed moves for that axis cause no movement, although the fact that a move was

programmed for that axis can affect the moves of other axes and motors. For instance, if

sinusoidal profiles are desired on a single axis, the easiest way to do this is to have a second,

“phantom” axis and program circularly interpolated moves.

Axis Definition Statements

Most commonly, a coordinate system is established by using on-line axis definition statements.

An axis is defined by matching a motor (which is numbered) to one or more axes (which are

specified by letter).

Power PMAC User’s Manual

Setting Up Coordinate Systems 497

Matching Motor to Axis

The simplest axis definition statement is something like #1->X. This simply assigns motor #1 to

the X-axis of the currently addressed coordinate system, with the axis units equal to the motor

units. When an X-axis move is executed in this coordinate system, motor #1 will make the move.

Scaling and Offset

The axis definition statement also defines the scaling of the axis’ user units. For instance, the

definition #1->10000X also matches Motor #1 to the X axis, but this statement sets 10,000

motor units (typically encoder counts) to one X-axis user unit (e.g. millimeters, inches, or

degrees). This scaling feature is almost universally used. Once the scaling has been defined in this

statement, the user can program the axis in engineering units without ever needing to deal with

the scaling again. If no scale factor is used in the statement, a value of 1.0 is used.

Note: Some users will set the motor units to a value other than the basic “counts” or “LSBs” of

the feedback device by setting Motor[x].PosSf to a value other than its default value of 1.0. This

is typically done to make the motor units as common engineering units. In most cases where this

is done, the scale factor in the axis definition statement will be 1.0, so the motor and the axis have

the same units.

In addition the axis definition statement can provide for a fixed offset between the motor zero

position (the “home position”) and the axis zero position. The statement #1->10000X+20000

also sets the axis zero at 20,000-count (2-axis-unit) distance from the motor zero (home position).

This offset is rarely used, as most people who desire offsets will want to change them

dynamically, which can be done with the axis matrix transformations (see below).

The Null Definition

A motor can be given the “null” definition in a coordinate system with the axis definition

statement #x->0. With this definition, the motor does not directly respond to any axis move

commands (although it can indirectly respond as a “follower” in a gantry system as explained

above). However, it does use the coordinate system’s “time base” override value, even for its own

motor moves (jogging and homing), and shares fault response with other motors in the coordinate

system.

In addition, a motor with a null definition in one coordinate system can be redefined to another

coordinate system, whereas a motor with a true axis definition cannot. Therefore, the null

definition is used as an intermediate step in the process of transferring a motor to a different

coordinate system.

For example, if Motor 4 were assigned to the C-axis in C.S. 1, and it was desired to re-assign it to

the C-axis in C.S. 2, the following commands would be used:

&1 #4->0

&2 #4->C

Defining a Motor to Multiple Axes

A single motor may be defined to multiple axes in a single axis-definition statement. In these

cases the statements will be of the type:

Power PMAC User’s Manual

Setting Up Coordinate Systems 498

#1->8660.25X-5000Y

#2->5000X+8660.25Y

Mathematically speaking, this makes the motor’s axis definition a linear combination of the

multiple axes. It is even possible to make the motor’s axis definition a combination of all 32

possible axes, although it will be very rare that there will be a combination of more than 3 axes.

There are two common uses of these linear axis combinations. One is to create a rotation of the

axis coordinates in a Cartesian reference frame relative to the underlying motors. The above

example provides a 30° rotation from the motors to the axes. The second, and more common, use

is to create a correction for a physical squareness error. Examples of both of these cases are

shown in the following diagram, along with a more standard definition.

Power PMAC User’s Manual

Setting Up Coordinate Systems 499

Technically, the relationship between motors and axes in a coordinate system is defined in a giant

matrix, as shown below.

nZZnLLnHHnAAnZnYnXnWnVnUnCnBnAn

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

ZZLLHHAAZYXWVUCBA

d

d

d

d

d

d

d

d

d

d

d

ZZ

LL

HH

AA

Z

Y

X

W

V

U

C

B

A

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

kkkkkkkkkkkkk

n

...

...

...

...

...

...

......

...

...

...

...

......

......

......

......

......

......

......

......

......

......

#

...

...

...

...

9#

8#

7#

6#

5#

4#

3#

2#

1#

0#

9

8

7

6

5

4

3

2

1

0

9999999999999

8888888888888

7777777777777

6666666666666

5555555555555

4444444444444

3333333333333

2222222222222

1111111111111

0000000000000

iZZiAAiZiBiAi dZkAAkZkBkAki #

AikCoordSfiMotor]0[].[

ZZikCoordSfiMotor]31[].[

idCoordSfiMotor]32[].[

The data structure elements Motor[i].CoordSf[j] contain the axis definition scale factors for

Motor i with regard to the “jth” axis. “j” is 0 for the A-axis, 1 for the B-axis, and so on.

Motor[i].CoordSf[32] is the offset term for the motor’s axis definition. For example, the axis-

definition statement #3->5000Z-2000 will set Motor[3].CoordSf[8] to 5000,

Motor[3].CoordSf[32] to -2000, and all other Motor[3].CoordSf[j] to 0. In almost all

applications, the vast majority of these elements will be equal to zero.

Cartesian Axis Sets

Each Power PMAC coordinate system has two 3-D Cartesian axis sets: the X, Y, and Z primary

Cartesian axis set and the XX, YY, and ZZ secondary Cartesian axis set. Axes in a Cartesian set

have two capabilities that other axes do not. First, they can be used in circular interpolation.

Second, they can be involved in tool (cutter) radius compensation (X/Y/Z set only).

Each Cartesian axis set has three vector components associated with it. For the X/Y/Z set, the

vector components are I, J, and K. For the XX/YY/ZZ set, the vector components are II, JJ, and

KK.

Circular interpolation and 2D cutter radius compensation can be performed on any plane within

the 3-D Cartesian space (and not just the three primary planes). The plane for both functions is

Power PMAC User’s Manual

Setting Up Coordinate Systems 500

defined by the buffered program normal command. The I, J, and K components, or the II, JJ,

and KK components, declared in the command define the vector perpendicular to the plane, and

therefore the orientation of the plane.

The plane defined by the normal command for the X/Y/Z Cartesian axis set is also used when

calculating corner angles for decisions on blending, dwell addition, and 2D cutter radius

compensation outside corner arc addition. It is the angle of the corner projected into this plane

that is calculated for the purposes of making these decisions.

In a move command in circular interpolation mode, the I, J, and K components, or the II, JJ, and

KK components declared in the command define the vector from the starting point of the move to

the center of the circular arc, and therefore the location of the center.

Rotary Axes with Rollover Capability

Each Power PMAC coordinate system has six axes that support rotary axis rollover capabilities:

the A, B, C, AA, BB, and CC axes. This capability permits ease of programming for continuously

rotatable axes.

Each of these axes has a saved setup element Coord[x].PosRollover[i] (i = 0 to 5 for the A, B, C,

AA, BB, CC axis, respectively) that specifies its rollover behavior. If this element for the axis is

set to its default value of 0.0, the axis has no rollover capability and is commanded just as for a

linear axis.

However, if Coord[x].PosRollover[i] is set to a non-zero value, rollover is enabled for the axis,

with the magnitude specifying the rollover range. This magnitude is almost always set to 360,

specifying a full rotation for an axis programmed in degrees. Rollover affects how abs mode

moves for the axis are processed. It does not affect inc mode moves.

If Coord[x].PosRollover[i] is set to a value greater than zero (usually +360), the “short-

direction” rollover mode is enabled. In this mode, Power PMAC computes the shortest distance to

the specified destination angle, so no abs mode move is longer than ½-cycle in length.

If Coord[x].PosRollover[i] is set to a value less than zero (usually -360), the “sign-is-direction”

rollover mode is enabled. In this mode, the sign of the abs mode move destination value is the

direction taken in the move.

If saved setup element Coord[x].SignIsDirType (new in V2.6 firmware, released 3rd quarter

2020) is set to its default value of 0, or for earlier versions without this element, the sign in the

command is also the sign of the destination angle. For example, the abs mode move command

B-25 causes a move in the negative direction to -25, which is equal to +335 for a 360-unit cycle.

If Coord[x].SignIsDirType is set to 1, the destination angle is always considered positive, even

if the sign in the command is negative. In this case, the abs mode move command B-25 causes

a move in the negative direction to +25.

In both types, a positive value in the move command causes a move in the positive direction to a

destination specified as a positive value. The abs mode move command B25 causes a move in

the positive direction to +25.

Power PMAC User’s Manual

Setting Up Coordinate Systems 501

In the older PMAC and Turbo PMAC controllers, rollover was handled by the motor assigned to

the rotary axis. The Power PMAC method of processing rollover on the programmed axis

provides more flexibility, permitting rollover capability when motors are assigned to axes through

kinematic subroutines.

The following diagram illustrates how the rollover modes work for zero values of

Coord[x].PosRollover[i], positive values, and negative values with Coord[x].SignIsDirType =

1:

315o 45o

0o

2

1

 (Starting point in program)
ABS // Absolute mode

A315 // Previous move

 Coord[x].PosRollover[0]=0.0
(rollover disabled)
A45 // Takes Path 1

 Coord[x].PosRollover[0]=360.0
(short-direction rollover enabled)
A45 // Takes Path 2

 Coord[x].PosRollover[0]=-360
(sign-is-direction rollover enabled)
A45 // Takes Path 2

 Coord[x].PosRollover[0]=-360
(sign-is-direction rollover enabled)
A-45 // Takes Path 1

Rotary Axis Rollover Mode Examples

The Spindle Axis Definition

It is possible to assign a motor as a “spindle” axis in a coordinate system. This definition is

similar to a null definition in that the motor does not respond directly to any axis move

commands. However, a “slot” is still reserved for this motor in the coordinate system’s

“lookahead buffer”, so that the definition of this motor can be changed to a positioning axis

without having to delete and redefine the lookahead buffer. This facilitates CNC-style

applications where a rotary axis is sometimes used in velocity mode (as a “spindle”) and other

times as a positioning axis.

Note

If a motor will always be used as a non-positioning spindle in

an application, it is not necessary to define it as a spindle axis,

and doing so will waste memory by reserving a slot for it in the

coordinate system’s lookahead buffer that is never used.

There are three forms of the spindle axis definition, each with its own rule for the motor’s “time

base”. With a definition of the form #x->S, the motor uses the time-base value of the coordinate

system it is defined in, so it speeds up and slows down along with the positioning axes of the

coordinate system. (It does not obey the segmentation override value in this or any of the other

spindle modes.)

Power PMAC User’s Manual

Setting Up Coordinate Systems 502

With a definition of the form #x->S0, the motor uses the time-base value of Coordinate System

0 instead of the coordinate system it is defined in. This mode provides independent override

control for the spindle.

With a definition of the form #x->S1, the motor uses a fixed 100% time-base value, so it is not

affected by the time-base value of any coordinate system.

Note

The buffered move data in a lookahead buffer must be fully

used or purged (using the lhpurge program command)

before changing a motor’s definition between a position and

spindle axis. Otherwise, unintended motion could occur.

Conversion from Axis to Motor Position

Technically, the conversion from axis (tool-tip) positions to motor (joint, or actuator) positions is

known as the “inverse-kinematic” conversion. Power PMAC automatically converts from the

programmed axis positions (in axis user units) to motor positions (in motor units) every

programmed move, or in the case of “segmented moves”, every segment of the move.

In the case of axes defined with axis-definition statements, Power PMAC simply “plugs” the axis

values into the equation of the definition statement, and computes the resulting motor position.

(The axis-definition statement is therefore an inverse-kinematic equation.) In the case of axes

defined using kinematic subroutines, Power PMAC executes the user-written inverse-kinematic

subroutine to compute these (see the next section of the manual).

Axis Definition

Statements

Inverse Kinematic

Subroutine

Automatically Inverted

Axis Definitions

Forward Kinematic

Subroutine

Axis Positions Motor Positions

Calculate resulting motor positions

from each programmed move/segment

Calculate starting axis positions,

report axis position data

Conversion Between Axis and Motor Positions in a Coordinate System

Power PMAC User’s Manual

Setting Up Coordinate Systems 503

Conversion from Motor to Axis Positions

Technically, the conversion from motor (joint, or actuator) positions to axis (tool-tip) positions is

known as the “forward-kinematic” conversion. Power PMAC automatically performs these

forward-kinematic calculations is in the pmatch (position-match) function, which converts from

commanded motor positions to commanded axis positions. This is needed in only a few cases.

First, when a motion program is started with an r (run) or s (step) command, Power PMAC

automatically executes a pmatch command internally to compute the starting axis position(s) for

the first move calculations. Within a motion program, it normally assumes that the endpoint of

the previous move is the starting point for the subsequent move, and so does not do these

calculations each move. However, when a program is started, it does these calculations because

there is a good chance that motors may have been moved independently (e.g. jog moves, open-

loop moves, stopping on an error condition); in other words, the axes do not know where the

motors have gone and motor and axis positions may not match properly.

Second, if you do anything to change the relationship between motor and axis positions inside a

motion program (e.g. changing position-following offset mode, directly writing to the position-

bias or axis scaling registers), you must explicitly issue a pmatch command before the next

programmed move. Otherwise, the next move will not execute properly.

For axes defined with a simple definition statement, the pmatch function effectively inverts the

equations contained in the axis-definition statements for the coordinate system, using motor

commanded positions, and solves for axis commanded positions. If there is a one-to-one

assignment of motors to axes, each axis definition statement can be inverted individually. If there

is a cross-coupling of motors and axes through longer axis definitions, a matrix inversion must be

performed for these calculations.

If a proper matrix inversion cannot be done, Power PMAC cannot compute the starting axis

positions, and it will not permit programmed moves in the coordinate system. The coordinate

system Boolean data structure status element Coord[x].Csolve indicates whether a valid solution

can be found for the coordinate system when set up by axis definitions and not kinematic

subroutines. If it is 1, the starting axis positions can be computed, and motion programs can

execute.

If more than one motor is assigned to the same axis (e.g. #1->10000X, #2->10000X), the

commanded position of the lower-numbered motor is used in the pmatch calculations. The

motor Boolean data structure status element Motor[x].Csolve indicates whether that motor is

used in these calculations (yes if 1).

For axes in a coordinate system with a user-written forward-kinematic subroutine (see below),

this subroutine is automatically executed for the pmatch function.

The pmatch function assumes that the position referencing – either a homing search move or an

absolute position-sensor read – has been done for each motor in the coordinate system. Each

motor has a “home complete” status bit that is set true if either has been done, but if the user

wants to check for this, this must be done at the application level.

The same motor-to-axis conversion is automatically performed (if possible) when the positions,

velocities, or following errors of the axes are queried with the on-line coordinate-system

Power PMAC User’s Manual

Setting Up Coordinate Systems 504

commands &xp (actual position query), &xd (desired position query), &xv (actual velocity

query), or &xf (following-error query).

Power PMAC User’s Manual

Setting Up Coordinate Systems 505

Coordinate-System Kinematic Subroutines

Power PMAC provides software structures to enable the user to easily implement and execute

complex kinematic calculations. Kinematic calculations are required when there is a non-linear

mathematical relationship between the tool-tip coordinates and the matching positions of the

actuators (joints) of the mechanism, typical in non-Cartesian geometries. They are most

commonly used in robotic applications, but can be used with other types of actuators that are not

considered “robotic”. For example, in 4-axis or 5-axis machine tools with one or two rotary axes,

it is desirable to program the cutter-tip path and let the controller compute the necessary motor

positions.

This capability permits the motion for the machine to be programmed in the natural coordinates

of the tool-tip, usually Cartesian coordinates, whatever the underlying geometry of the machine.

The kinematic routines are embedded in the controller by the integrator, and operate invisibly to

the people programming paths and the machine operators. These routines can be unchanging for

the machines, but with parameterization and/or logic, they can adapt to normal changes such as

tool lengths and different end-effectors.

In Power PMAC terminology, the tool-tip coordinates are for “axes”, which are specified by

letter, and have user-specified engineering units. The joint coordinates are for “motors”, which

are specified by numbers, and may have the raw units of “counts”.

Note

Power PMAC’s standard “axis-definition” statements handle

linear mathematical relationships between joint “motors” and

tool-tip “axes”. This section pertains to the more difficult case

of the non-linear relationships.

The “forward-kinematic” calculations use the joint positions as input, and convert them to tool-tip

coordinates. These calculations are required at the beginning of a sequence of moves programmed

in tool-tip coordinates to establish the starting coordinates for the first programmed move. The

same calculations can also be used to report the actual position, velocity, and following error of

the actuator in tool-tip coordinates, converting from the sensor positions on the joints.

The “inverse-kinematic” calculations use the tool-tip positions as input, and convert them to joint

coordinates. These calculations are required for the end-point of every move that is programmed

in tool-tip coordinates, and if the path to the end-point is important, they must be done at periodic

intervals during the move as well.

Power PMAC User’s Manual

Setting Up Coordinate Systems 506

Note

Formal robotic analysis makes a distinction between “joint”

position, and the “actuator” position(s) required for that “joint”

position. While the two positions are usually the same, there are

cases, such as when two motors drive a joint differentially, where

there is an important difference. If your system has a distinction

between joint and actuator positions, your kinematic calculations

must include this distinction, to go all the way between “actuator”

positions and “tool-tip” positions, with “joint” positions as an

intermediate step. This documentation will just refer to “joint”

positions, although this could technically refer to “actuator”

positions in some applications.

Creating the Kinematic Program Buffers

Power PMAC implements the execution of kinematic calculations through special forward-

kinematic and inverse-kinematic Script program buffers. Each coordinate system can have one of

each of these program buffers, and the algorithms in them can be executed automatically at the

required times, called automatically as subroutines from the motion-program execution engine or

the on-line command execution engine.

Creating the Forward-Kinematic Program

The on-line open forward command opens the forward-kinematic buffer for the addressed

coordinate system for entry and clears any existing contents. Buffered program commands

implementing the forward-kinematic transformation can then be entered into this open buffer.

The on-line close command stops entry into the buffer.

Kinematic Motor and Axis Position Variables

Before any execution of the forward-kinematic program, Power PMAC will automatically place

the present commanded motor positions for each Motor x in the coordinate system into local

variable Lx for the coordinate system or communications thread. These are floating-point values,

in motor units. The program can then use these variables as the “inputs” to the calculations.

After any execution of the forward-kinematic program, Power PMAC will take the values in local

variables C0 – C31 for the coordinate system or communications thread (which are the same as

L(MAX_MOTORS) to L(MAX_MOTORS+31) for the C.S. or thread, where

MAX_MOTORS is the largest permitted value for Sys.MaxMotors in the Power PMAC,

usually 256), as masked by 32 bits of local variable D0 (bit i of D0 set to 1 tells Power PMAC to

use Ci), and use them as the resulting axis positions in the user’s engineering units. For the

pmatch function, it will copy the specified values into the axis target position registers to be

used as starting positions for the next programmed move. For on-line query commands, it will use

the values for the specified axes in its response to the query.

When working in the Integrated Development Environment (IDE) on the PC, the

editor/downloader of the Project Manager automatically provides user names for these variables:

KinPosMotorx for Lx, KinPosAxisα for the α-axis variable Ci, and KinAxisUsed for the axis-

mask output variable D0. This permits the programmer to use meaningful names for the

kinematic motor and axis position variables.

Power PMAC User’s Manual

Setting Up Coordinate Systems 507

The following table shows for each axis name the variable where the position is expected to be

found and the value of the D0 bit that tells Power PMAC to use the axis position value.

Axis

Name

Var. IDE Var. Name D0 Bit

Value

Axis

Name

Var. IDE Var. Name D0 Bit

Value

A C0 KinPosAxisA $1 HH C16 KinPosAxisHH $10000

B C1 KinPosAxisB $2 LL C17 KinPosAxisLL $20000

C C2 KinPosAxisC $4 MM C18 KinPosAxisMM $40000

U C3 KinPosAxisU $8 NN C19 KinPosAxisNN $80000

V C4 KinPosAxisV $10 OO C20 KinPosAxisOO $100000

W C5 KinPosAxisW $20 PP C21 KinPosAxisPP $200000

X C6 KinPosAxisX $40 QQ C22 KinPosAxisQQ $400000

Y C7 KinPosAxisY $80 RR C23 KinPosAxisRR $800000

Z C8 KinPosAxisZ $100 SS C24 KinPosAxisSS $1000000

AA C9 KinPosAxisAA $200 TT C25 KinPosAxisTT $2000000

BB C10 KinPosAxisBB $400 UU C26 KinPosAxisUU $4000000

CC C11 KinPosAxisCC $800 VV C27 KinPosAxisVV $8000000

DD C12 KinPosAxisDD $1000 WW C28 KinPosAxisWW $10000000

EE C13 KinPosAxisEE $2000 XX C29 KinPosAxisXX $20000000

FF C14 KinPosAxisFF $4000 YY C30 KinPosAxisYY $40000000

GG C15 KinPosAxisGG $8000 ZZ C31 KinPosAxisZZ $80000000

For example, if the X, Y, Z, and C-axis values were calculated and placed in C6, C7, C8, and C2,

respectively, D0 should be set to $40 + $80 + $100 + $4 = $1C4.

It is the responsibility of the user writing the forward kinematic program to place the calculated

axis values in the proper variables and ensure that the proper bits of D0 are set before exiting the

program.

Note

If the appropriate bits of D0 are not set when the forward

kinematic routine finishes, Power PMAC will not use the axis

position values, even if they have been calculated and placed in

the proper variables.

The basic purpose of the forward-kinematic program, then, is to take the joint-position values

found in Lx for the motors used in the coordinate system, compute the matching tip-coordinate

values, and place them in variables in the C0 – C31 range.

Double-Pass Option

If the forward-kinematic routine is to be used for computing axis velocities using the &xv

command or axis following errors using the &xf command, it is necessary to permit a second

pass through the computations using a callsub statement. On calling this routine, the Power

PMAC will automatically set the local variable D0 (used as an input) greater than 0 in these

cases, so the callsub statement is contingent on this condition. Note that D0 is also used as an

output to specify which axis positions have been calculated, so it must be set explicitly in the

routine every time. In the IDE, the declared name KinVelEna can be used for D0 here.

The recommended program structure is:

Power PMAC User’s Manual

Setting Up Coordinate Systems 508

open forward

if (KinVelEna > 0) callsub 100;

KinAxisUsed = {axis mask}

n100:

{kinematic calculations}

return;

close

Distinguishing Motion-Program Calls from Query-Command Calls

The forward-kinematic routine can be called both from a motion program (to compute starting

axis positions) and from a query command (to compute reported positions, velocities, or

following errors). For some purposes, it may be necessary to know which task is calling the

subroutine.

If the routine has been called from a motion program, bit 6 (value $40) of the local data element

Ldata.Status will be set to 1. If the routine has been called from a query command, this bit will

be zero. So the routine can use the following logic:

if (Ldata.Status & $40) {

 {tasks when called from motion program}

}

else {

 {tasks when called from query command}

}

Stopping Program Execution from a Kinematic Routine

Sometimes a kinematic subroutine will detect a condition that should not permit further program

execution. A forward-kinematic subroutine may find that one or more of the motors in the

coordinate system have not yet established a position reference, either by a homing search more

or an absolute position read. An inverse-kinematic subroutine may be given a position that is not

in the workspace of the mechanism.

In this type of case, the subroutine should prevent further motion program execution. It can do

this by issuing a program-direct abort command, or preferably by setting

Coord[x].ErrorStatus to 255, a value reserved for errors detected by the user’s application, not

the automatic firmware.

Since the forward-kinematic subroutine can also be called by axis query commands, this aborting

action should only be taken when the routine is called from a motion program. When called from

an axis query command, it is recommended that some illegal value be returned. For example:

if (Ldata.Status & $40) { // Called from motion program

 Coord[1].ErrorStatus = 255;

}

else { // Called from query command

 KinPosAxisX = sqrt(-1); // Return "not-a-number"

 KinPosAxisY = sqrt(-1); // Return "not-a-number"

}

Power PMAC User’s Manual

Setting Up Coordinate Systems 509

Example

(X,Y)
Y

X

B

A

L1

L2

Take the example of a 2-axis “shoulder-elbow” robot, with an upper-arm length (L1) of 400mm,

and a lower-arm length (L2) of 300mm. Both the shoulder joint (A) and the elbow joint (B) have

resolutions of 1000 counts per degree. When both joints are at their zero-degree positions, the two

links are both extended along the X-axis. The forward-kinematic equations are:

)cos()cos(21 BALALX

)sin()sin(21 BALALY

To implement these equations in a Power PMAC forward-kinematic program for Coordinate

System 1 that converts the shoulder angle in Motor 1 and the elbow angle in Motor 2 (offset by

90°) to the X and Y tip coordinates in millimeters, the following setup and program could be

used:

// Setup for program

// Auto-assigned variable declarations

csglobal Len1, Len2; // Link length variables

csglobal CtsPerDeg; // Resolution of both joints

csglobal FwdKinErr; // Error flag for routine

&1

Len1 = 400 // Upper-arm link of 400mm

Len2 = 300 // Lower-arm link of 300mm

CtsPerDeg = 1000 // Counts per degree for A and B

// Variable name substitutions (automatically made by IDE)

//#define KinPosMotor1 L1

//#define KinPosMotor2 L2

//#define KinPosAxisX C6

//#define KinPosAxisY C7

//#define KinAxisUsed D0

// Forward-kinematic program buffer for repeated execution

&1

open forward

if (KinVelEna) callsub 100;

Power PMAC User’s Manual

Setting Up Coordinate Systems 510

KinAxisUsed = $C0 // X and Y axis results

N100: if (Coord[1].HomeComplete) { // OK?

 KinPosAxisX = Len1 * cosd(KinPosMotor1 / CtsPerDeg) +

 Len2 * cosd((KinPosMotor1 + KinPosMotor2) / CtsPerDeg - 90);

 KinPosAxisY = Len1 * sind(KinPosMotor1 / CtsPerDeg)+

 Len2 * sind((KinPosMotor1 + KinPosMotor2) / CtsPerDeg - 90);

}

else { // Not valid; halt operation

 if (Ldata.Status & 40) { // Called from motion program?

 Coord[1].ErrorStatus = 255; // User-set aborting error

 }

 else { // Called from axis query

 KinPosAxisX = sqrt(-1); // Return "not-a-number"

 KinPosAxisY = sqrt(-1); // Return "not-a-number"

 }

}

return;

close

This example explicitly checks to see that all motors in the coordinate system have performed a

position referencing (homing search or absolute position read) by looking at the

Coord[x].HomeComplete status bit. If this bit is not set, the routine sets an error flag and aborts

the program.

Setting saved setup element Coord[x].HomeRequired to 1 can perform this functionality

automatically when the routine is used to start a program. However, if the routine is also used for

axis data reporting, the user may still want logic in the routine to note that the transformation is

not valid because position references have not yet been established.

The forward-kinematic program must calculate the axis positions for all of the axes in the

coordinate system whether or not all of the motor positions are calculated in the inverse-

kinematic program (see below). For instance, if this arm had a perpendicular vertical axis at the

tip with a normal axis definition statement in C.S. 1 of #3->100Z (100 counts per millimeter – a

linear relationship between motor and axis, independent of other positions), the above program

would still need to perform the forward-kinematic calculation for this motor/axis with a line such

as KinPosAxisZ = KinPosMotor3 / 100.

!
Caution

If the forward-kinematic algorithm is not correct, and does not

yield a true mathematical inverse of the inverse-kinematic

algorithm, there will be a sudden and potentially dangerous

jump at the beginning of the first move executed after the

forward kinematic algorithm is executed. Make sure early in

development that you have your fatal following error limits set

as tight as possible to ensure that any large errors will cause a

quick trip and not result in violent motion.

Iterative Solutions

Some systems, particularly parallel-link mechanisms such as Stewart platforms (“hexapods”), do

not have reasonable closed-form solutions for the forward-kinematic equations, and require

iterative numerical solutions. These cases are typically handled by a looping do…while

Power PMAC User’s Manual

Setting Up Coordinate Systems 511

construct in the forward-kinematic program. The user should not permit indefinite looping – if the

solution does not converge in the expected number of cycles, the program should be stopped (see

the inverse-kinematic equations, below, for examples of how to stop the program).

The number of loops (“jumps back”) in the forward-kinematic subroutine that can be executed

before automatically creating an automatic abort on an error condition is set by the local variable

Ldata.GoBack. This is not a saved element, and it has a default value of 10. If you wish to use a

different value, it should be set explicitly at the top of the subroutine. It is strongly recommended

that you explicitly trap a convergence failure in your own code before the automatic limit is

tripped.

Creating the Inverse-Kinematic Program

The on-line open inverse command opens the inverse-kinematic buffer for the addressed

coordinate system for entry and clears any existing contents. Buffered program commands

implementing the inverse-kinematic transformation can then be entered into this open buffer. The

on-line close command stops entry into the buffer.

Before any execution of the inverse-kinematic program, Power PMAC will automatically place

the present axis target positions for each axis in the coordinate system into local variables C0 –

C31 for the coordinate system. For PVT-mode moves, it will also automatically place the present

commanded axis velocities for each axis in the coordinate system into local variables C32 – C63

(numbered 32 greater than the position variable for the same axis) for the coordinate system.

These are floating-point values, in engineering units. The program can then use these variables as

the “inputs” to the calculations. The table in the forward-kinematic section above shows the

position variables for each axis.

After any execution of the inverse-kinematic program, Power PMAC will take the values in those

variables Lx that correspond to Motors x in the coordinate system with axis-definition statements

of #x->I. These are floating-point values, and Power PMAC expects to find them in the motor

units. Power PMAC will automatically use these values as the target position values for the next

segment or move for these motors.

There can be other motors in the coordinate system that are not defined as inverse-kinematic

axes; these motors get their position values directly from the axis-definition statement and are not

affected by the inverse-kinematic program. (This is generally not recommended, as it makes it

hard for others to understand the complete transformation.)

The basic purpose of the inverse-kinematic program, then, is to take the tip-position values found

in C0 – C31 for the axes used in the coordinate system, compute the matching joint-coordinate

values, and place them in variables Lx for the Motors x defined to inverse-kinematic axes in the

coordinate system.

(Do not assume that L-variable values computed in the previous cycle of the I.K. subroutine will

still be valid on entering a new cycle. Other tasks, particularly query commands that use the F.K.

subroutine, could have overwritten these values. Any values to be retained should use user-

declared variables.

Power PMAC User’s Manual

Setting Up Coordinate Systems 512

Example

Continuing with our example of the two-axis “shoulder-elbow” robot, and for simplicity’s sake

limiting ourselves to positive values of elbow angle B (the “right-armed” case), we can write our

inverse-kinematic equations as follows:

(X,Y)
Y

X

B

A
L1

L2

C

22 YX

21

2

2

2

1

22
1

2
cos

LL

LLYX
B

 XY,atan2CA

22

1

2

2

2

1

22
1

2
cos

YXL

LLYX
C

 ACAA

To implement these equations in a Power PMAC inverse-kinematic program for Coordinate

System 1 that converts the X and Y tip coordinates in millimeters to the shoulder angle in Motor

1 and the elbow angle in Motor 2, the following program could be used. The kinematic motor and

axis position variables are the same as those used for the forward kinematic routine above.

// Setup for program

&1 // Address CS1 for axis definitions

#1->I // Motor 1 assigned to inverse kinematic axis in CS 1

#2->I // Motor 2 assigned to inverse kinematic axis in CS 1

// Auto-assigned variable declarations

// (Also uses variables declared in forward-kinematic example)

csglobal SumLenSqrd // Len1^2 + Len2^2

csglobal ProdOfLens // 2*Len1*Len2

csglobal DifLenSqrd // Len1^2 – Len2^2

csglobal InvKinErr // Error flag for routine

// Pre-compute additional system constants

&1

SumLenSqrd = Len1 * Len1 + Len2 * Len2

ProdOfLens = 2 * Len1 * Len2

DifLenSqrd = Len1 * Len1 - Len2 * Len2

// Inverse-kinematic algorithm to be executed repeatedly

&1

open inverse // Open buffer, clear contents

// Declare local variables for routine

local X2Y2 // X^2 + Y^2

local Bcos // cos(Elbow)

local Bangle // Elbow angle (deg)

local AplusC // Sum of A and C angles (deg)

local Cangle // Angle C in triangle (deg)

local Aangle // Shoulder angle (deg)

Power PMAC User’s Manual

Setting Up Coordinate Systems 513

X2Y2 = KinPosAxisX * KinPosAxisX + KinPosAxisY * KinPosAxisY;

Bcos = (X2Y2 - SumLenSqrd) / ProdOfLens;

If (abs(Bcos) < 0.9998) { // Valid solution w/ 1 deg margin?

 Bangle = acosd(Bcos);

 AplusC = atan2d(KinPosAxisY, KinPosAxisX);

 Cangle = acosd((X2Y2 + DifLenSqrd) / (2 * Len1 * sqrt(X2Y2)));

 Aangle = AplusC - Cangle;

 KinPosMotor1 = Aangle * CtsPerDeg;

 KinPosMotor2 = (Bangle + 90) * CtsPerDeg;

 InvKinErr = 0;

}

else { // Not valid, halt operation

 InvKinErr = 1; // Set flag for external use

 Coord[1].ErrorStatus = 255; // Stop execution

}

close

Notes on the example:

 By choosing the positive arc-cosine solutions, we are automatically selecting the “right-

armed” case. In a more general solution, we would have to choose whether the positive or

negative solution is used, based on some criterion.

 Increased computational efficiency could be obtained by combining more operations into

single assignment statements. Calculations were split out here for clarity’s sake.

 This example stops the program for cases where no inverse kinematic solution is possible. It

does this by setting Coord[x].ErrorStatus to 255. Other strategies may be used to cope with

this problem.

 The “additional system constants” (SumLenSqrd, ProdOfLens, DifLenSqrd) that are

derived from the basic constants Len1 and Len2 can be computed in a variety of places.

They can be set to constant values just as Len1 and Len2 are, but any change to Len1 or

Len2 is not automatically passed through to these variables. They can be computed from

Len1 and Len2 in “power-on PLC”, but the Power PMAC must be reset to effect a change.

Computing them in the inverse-kinematic routine is robust, but adds calculation time to every

segment. Some users prefer to compute them in the forward-kinematic routine, which

guarantees they will be correct for the inverse-kinematic routine where they are used, but

without as much computational overhead.

If this robot had a vertical axis at the tip, the relationship between motor and axis could be

defined with a normal linear axis-definition statement (e.g. #3->100Z for 100 counts per

millimeter), and the motor position would be calculated without the special inverse-kinematic

program. Alternately, the motor could be defined as an inverse-kinematic axis (#3->I) and the

motor position could be calculated in the inverse-kinematic program (e.g.

KinPosMotor3=KinPosAxisZ*100 to set Motor 3 position from the Z-axis with 100

counts per unit).

Rotary Axis Rollover

Position rollover of a programmed rotary axis (A, B, C, AA, BB, or CC) can be handled

automatically when using kinematics subroutines, just as it can when axis-definition statements

Power PMAC User’s Manual

Setting Up Coordinate Systems 514

are used. (This is unlike Turbo PMAC, where it had to be handled “manually” when kinematics

subroutines were used.) Coord[x].PosRollOver[i] for the axis must be set (usually to 360) to

enable the rollover capability for the specific rotary axis.

It is important to understand how and when the rotary axis rollover works in conjunction with

inverse kinematics. The axis rollover calculations are performed and the appropriate axis overall

move trajectory is calculated before any inverse-kinematic calculations are made for the move.

For example, if the C-axis position at the start of the move were 350 degrees and the commanded

move destination were 10 degrees, then with the “short move” rollover mode, Power PMAC

would calculate an axis move to 370 degrees, a 20-degree move in the positive direction. Multiple

move segments with C-axis intermediate positions increasing from 350 to 370 degrees would be

passed to the inverse-kinematic subroutine as the move is executed.

Inverse-Kinematic Program for PVT Mode, No Segmentation

The Power PMAC can also support the conversion of velocities from tip space to joint space in

the inverse-kinematic program to enable the direct use of PVT mode with kinematic calculations.

Note

If the coordinate system is in “segmentation mode”

(Coord[x].SegMoveTime > 0), the inverse-kinematic routine

operates on segment positions (but not velocities) derived from

the programmed PVT moves, not from the programmed moves

themselves.

With PVT-mode moves sent directly to the inverse-kinematic routine (no segmentation), the

position calculations are done just as for any other move mode. An additional set of velocity-

conversion calculations must also be done.

When executing PVT-mode moves with inverse-kinematic axes (#x->I) and no segmentation

(Coord[x].SegMoveTime = 0), Power PMAC will automatically place the commanded axis

velocity values from the PVT statements into local variables C32 – C63 (numbered 32 greater

than the corresponding C-variable for position) for the coordinate system before each execution

of the inverse-kinematic program. These are signed floating-point values in the engineering

velocity units defined by the engineering length/angle units and the coordinate system’s

Coord[x].FeedTime time units (e.g. mm/min or deg/sec). The following table shows the variable

used for each axis:

Axis Vel. Var. Axis Vel. Var. Axis Vel. Var. Axis Vel. Var.

A C32 Z C40 HH C48 SS C56

B C33 AA C41 LL C49 TT C57

C C34 BB C42 MM C50 UU C58

U C35 CC C43 NN C51 VV C59

V C36 DD C44 OO C52 WW C60

W C37 EE C45 PP C53 XX C61

X C38 FF C46 QQ C54 YY C62

Y C39 GG C47 RR C55 ZZ C63

The IDE program permits you to use the variable name KinVelAxisα for the α-axis velocity

variable to make the code more understandable.

Power PMAC User’s Manual

Setting Up Coordinate Systems 515

Power PMAC will also set coordinate system local variable D0 (which can be substituted in the

IDE with KinVelEna) to 1 in this mode as a flag to the inverse-kinematic program that it should

use these axis (tip) velocity values to compute motor (joint) velocity values.

In this mode, after any execution of the inverse-kinematic program, Power PMAC will read the

values in those variables Rx for each Motor x (which can be substituted in the IDE with

KinVelMotorx) in the coordinate system defined as an inverse-kinematic axis. These are

floating-point values, and Power PMAC expects to find them scaled in motor units of counts per

(Coord[x].FeedTime milliseconds). Power PMAC will use them as motor (joint) velocity values

along with the position values in Lx to create a PVT move for the motor.

For PVT moves, then, the inverse-kinematic program must not only take the axis (tip) position

values in C0 – C31 and convert them to motor (joint) position values in Lx; it must also take the

axis (tip) velocity values in C32 – C63 and convert them to motor (joint) velocity values in Rx.

Technically, the velocity conversion consists of the solution of the “inverse Jacobian matrix” for

the mechanism.

Example

Continuing with the “shoulder-elbow” robot of the above examples, the equations for joint

velocities as a function of tip velocities are:

The angles A and B have been computed in the position portion of the inverse-kinematic

program. Note that the velocities become infinite as the angle B approaches 0 degrees or 180

degrees. Since in our example we are limiting ourselves to positive values for B, we will trap any

solution with a value of B less than 1° or greater than 179° (sin B < 0.0175) as an error.

// Variable name substitutions (automatically assigned by IDE)

//#define KinVelAxisX C38

//#define KinVelAxisY C39

//#define KinVelMotor1 R1

//#define KinVelMotor2 R2

&1

open inverse

// Auto-assigned variable declarations (in addition to above)

local Bsin; // Sine of elbow angle

local LenBsin; // L1*L2*sinB

local ABcos; // cos(A+B)

local ABsin; // sin(A+B)

local Avel; // dA/dt

local Bvel; // dB/dt

//{Position calculations from above}

if (KinVelEna && !(InvKinErr)) { // PVT mode, valid position?

BLL

YYXX

BLL

YBALALXBALAL
B

BLL

YBALXBAL
A

sinsin

)sin(sin)cos(cos

sin

)sin()cos(

2121

2121

21

22

Power PMAC User’s Manual

Setting Up Coordinate Systems 516

 Bsin = sind(Bangle); // sin(B)

 if (Bsin > 0.0175) { // Not near singularity?

 LenBsin = Len1 * Len2 * Bsin; // L1*L2*sinB

 ABcos = cosd(Aangle + Bangle); // cos(A+B)

 ABsin = sind(Aangle + Bangle); // sin(A+B)

 Avel = Len2 * (ABCos*KinVelAxisX + ABsin*KinVelAxisY) / LenBsin;

 Bvel = -(KinPosAxisX*KinVelAxisX+KinPosAxisY*KinVelAxisY)/LenBsin;

 KinVelMotor1 = Avel * CtsPerDeg; // #1 speed in user units

 KinVelMotor2 = Bvel * CtsPerDeg; // #2 speed in user units

 }

 else { // Near singularity

 Coord[1].ErrorStatus = 255 // Stop program and motion

 }

}

close

Note that in this case the check to see if B is near 0° or 180° is redundant because we have

already done this check in the position portion of the inverse-kinematic algorithm. This check is

shown here to illustrate the principle of the method. In this example, the program is aborted if too

near a singularity; other strategies are possible.

Iterative Solutions

Some systems do not have reasonable closed-form solutions for the inverse-kinematic equations,

and require iterative numerical solutions. These cases are typically handled by a looping

do…while construct in the inverse-kinematic program. The user should not permit indefinite

looping – if the solution does not converge in the expected number of cycles, the program should

be stopped.

The number of loops (“jumps back”) in the inverse-kinematic subroutine that can be executed

before automatically creating an error condition is set by the local variable Ldata.GoBack. This

is not a saved element, and it has a default value of 10. If you wish to use a different value, it

should be set explicitly at the top of the subroutine. . It is strongly recommended that you

explicitly trap a convergence failure in your own code before the automatic limit is tripped.

Implementing Kinematic Calculations in C

A few users with very intensive kinematic calculations may want to implement most or all of

those calculations in compiled C code, which can execute over 10 times faster than comparable

interpreted Script code. This can be done using the special “CfromScript” subroutine, called

from the Script forward and/or inverse kinematic subroutines. Power PMAC still calls these

Script routines automatically at the appropriate times, but the ability to call a C function from

these Script programs permits most or all of the computation to be done in C.

The Script call of this C function is of the form:

MyVar = CfromScript(Arg1,Arg2,Arg3,Arg4,Arg5,Arg6,Arg7);

The CfromScript subroutine is discussed in detail in the User’s Manual chapter “Writing C

Functions and Programs in Power PMAC”.

Generalizing the Routines to Multiple Coordinate Systems

Some users will want kinematics subroutines for multiple coordinate systems that are identical

except for the motors used in each coordinate system. For these users, while it is necessary to

Power PMAC User’s Manual

Setting Up Coordinate Systems 517

have separate forward and inverse kinematic subroutines for each coordinate system, it is possible

to make these “instances” of the routines identical for each coordinate system.

This can be implemented by using a subroutine called by the kinematics routines that returns the

motor numbers used in that coordinate system. An example subroutine (with IDE substitutions)

for a system with three coordinate systems of two motors each could be:

open subprog GetMotorNums (CSNum, &FirstMotor, &SecondMotor)

switch (CSNum)

{

case 1:

 FirstMotor = 1;

 SecondMotor = 2;

 break;

 case 2:

 FirstMotor = 3;

 SecondMotor = 4;

 break;

 case 3:

 FirstMotor = 5;

 SecondMotor = 6;

 break;

}

return;

close

To use these values in the kinematics routines, it is useful to provide meaningful names for the

variables that will be used:

#define KinPos1stMotor Ldata.L[FirstMotorNum]

#define KinPos2ndMotor Ldata.L[SecondMotorNum]

Then the kinematics routines can use this information with the proper local variable definitions.

This example is for the same serial-link two-joint arm as above.

open forward (1) // Repeated for each CS#

local FirstMotorNum;

local SecondMotorNum;

call GetMotorNums (Ldata.Coord, &FirstMotorNum, &SecondMotorNum);

KinPosAxisX = Len1 * cosd(KinPos1stMotor / CtsPerDeg) +

 Len2 * cosd((KinPos1stMotor + KinPos2ndMotor) / CtsPerDeg – 90);

KinPosAxisY = Len1 * sind(KinPos1stMotor / CtsPerDeg) +

 Len2 * sind((KinPos1stMotor + KinPos2ndMotor) / CtsPerDeg – 90);

…

close

open inverse (1) // Repeated for each CS#

local FirstMotorNum;

local SecondMotorNum;

local ThisCs;

…

call GetMotorNums (Ldata.Coord, &FirstMotorNum, &SecondMotorNum);

Power PMAC User’s Manual

Setting Up Coordinate Systems 518

ThisCs = Ldata.Coord;

X2Y2 = KinPosAxisX * KinPosAxisX + KinPosAxisY * KinPosAxisY;

Bcos = (X2Y2 - SumLenSqrd) / ProdOfLens;

if (abs(Bcos) < 0.9998) { // Valid solution w/ 1 deg margin?

 Bangle = acosd(Bcos);

 AplusC = atan2d(KinPosAxisY, KinPosAxisX);

 Cangle = acosd((X2Y2 + DifLenSqrd) / (2 * Len1 * sqrt(X2Y2)));

 Aangle = AplusC - Cangle;

 KinPosMotor1 = Aangle * CtsPerDeg;

 KinPosMotor2 = (Bangle + 90) * CtsPerDeg;

}

else { // Not valid, halt operation

 Coord[ThisCs].ErrorStatus = 255; // Stop execution

}

close

Power PMAC User’s Manual

Setting Up Coordinate Systems 519

Axis Transformation Matrices

Power PMAC provides the capability to perform matrix transformation operations on the axes of

a coordinate system. These operations provide much of the same mathematical functionality as

the matrix forms of the axis definition equations, but these can be changed in the middle of

programs as long as there is a momentary stop; the axis definition statements are usually fixed for

a given application.

For most axes, the matrix transformations permit only additional scaling and offset terms.

However for four 3-axis sets (X/Y/Z, U/V/W, XX/YY/ZZ, and UU/VV/WW), they also permit

transformations such as rotations, mirroring, and skewing by providing full 3-by-3 matrix terms.

The transformations can be visualized as a giant matrix, as shown below:

ZZ

YY

XX

WW

VV

UU

TT

AA

Z

Y

X

W

V

U

C

B

A

ZZZZYYZZXX

YYZZYYYYXX

XXZZXXYYXX

WWWWVVWWUU

VVWWVVVVUU

UUWWUUVVUU

TT

AA

ZZYZX

YZYYX

XZXYX

WWVWU

VWVVU

UWUVU

C

B

A

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

ZZ

YY

XX

WW

VV

UU

TT

AA

Z

Y

X

W

V

U

C

B

A

kkk

kkk

kkk

kkk

kkk

kkk

k

k

kkk

kkk

kkk

kkk

kkk

kkk

k

k

k

ZZ

YY

XX

WW

VV

UU

TT

AA

Z

Y

X

W

V

U

C

B

A

...

'

'

'

'

'

'

'

...

'

'

'

'

'

'

'

'

'

'

0...0

0...

000...

0000...

00...

00...

000...

..

...000

...00

...00

...0000

...0000

...00

...00

...0000

...00

0...0

...

ZZLBLALdmBiasiTdata
mL 3110 ,...,,,][].[

ZZLBLALkmDiagiTdata
mL 3110 ,...,,,][].[

WVSWUSVWSVUSUWSUVSkmUVWiTdata
mS 543210 ,,,,,,][].[

ZYSZXSYZSYXSXZSXYSkmXYZiTdata
mS 543210 ,,,,,,][].[

WWVVSWWUUSVVWWSVVUUSUUWWSUUVVSkmUUVVWWiTdata
mS 543210 ,,,,,,][].[

ZZYYSZZXXSYYZZSYYXXSXXZZSXXYYSkmXXYYZZiTdata
mS 543210 ,,,,,,][].[

The column vector of axes on the left contains the “base” axis coordinates (e.g. A) as established

by the axis-definition statements or the kinematic subroutines. The column vector of axes on the

right contains the “transformed” axis coordinates (e.g. A') that will be programmed.

This matrix is similar to the axis definition matrix shown earlier in the chapter, but there are some

important differences. First, while the axis definition matrix is “full”, with all of the off-diagonal

elements capable of being set to non-zero values, only a few off-diagonal elements can be set to

Power PMAC User’s Manual

Setting Up Coordinate Systems 520

non-zero values in the transformation matrix. Second, while the axis definition matrix relates

motors to axes, the transformation matrix relates the base axes to the transformed axes.

The following diagram shows how and when Power PMAC converts between transformed axes,

base axes, and motors:

Axis Definition

Statements

Inverse Kinematic

Subroutine

Automatically Inverted

Axis Definitions

Forward Kinematic

Subroutine

Base Axis

Positions
Motor Positions

Calculate resulting motor positions

from each programmed move/segment

Calculate starting axis positions,

report axis position data

Selected

Transformation Matrix

Automatically Inverted

Transformation Matrix

Transformed

Axis Positions

Conversion Between Transformed Axis, Base Axis, and Motor Positions

Transformation matrices can be used regardless of whether the underlying axes are established

with axis definition statements or with kinematic subroutines.

Transformation Matrix Data Structures

The axis transformation matrices are stored as data structures in Power PMAC. The base structure

name for a transformation matrix is Tdata[i], where i can take a value from 0 to 255. Each matrix

has 32 diagonal elements Tdata[i].Diag[j] (j = 0 to 31), where j is the axis index (0 for A, 1 for

B, 8 for Z, 9 for AA, and so on, to 31 for ZZ). The diagonal elements are primarily scale factors.

Each matrix has 32 offset elements Tdata[i].Bias[j] (j = 0 to 31), where j is the axis index. These

elements are primarily to create offsets between the base axis origin and the transformed axis

origin.

The four 3-axis sets that have off-diagonal terms permit other transformation operations besides

scaling and offsets. Rotations (about arbitrary points), mirrorings (about arbitrary lines), and

skewing are all possible.

Looking at the portion of an axis transformation matrix that operates on the X/Y/Z axis triplet, we

have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following elements:

Power PMAC User’s Manual

Setting Up Coordinate Systems 521

8

7

6

'

'

'

854

372

106

Bias

Bias

Bias

Z

Y

X

DiagXYZXYZ

XYZDiagXYZ

XYZXYZDiag

Z

Y

X

Looking at the portion of an axis transformation matrix that operates on the U/V/W axis triplet,

we have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following elements:

5

4

3

'

'

'

554

342

103

Bias

Bias

Bias

W

V

U

DiagUVWUVW

UVWDiagUVW

UVWUVWDiag

W

V

U

Looking at the portion of an axis transformation matrix that operates on the XX/YY/ZZ axis

triplet, we have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following

elements:

31

30

29

'

'

'

3154

3302

1029

Bias

Bias

Bias

ZZ

YY

XX

DiagXZYYZZXXYYZZ

XXYYZZDiagXXYYZZ

XXYYZZXXYYZZDiag

ZZ

YY

XX

Looking at the portion of an axis transformation matrix that operates on the UU/VV/WW axis

triplet, we have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following

elements:

28

27

26

'

'

'

2854

3272

1026

Bias

Bias

Bias

WW

VV

UU

DiagUUVVWWUUVVWW

UUVVWWDiagUUVVWW

UUVVWWUUVVWWDiag

WW

VV

UU

Using the Matrices

A given transformation matrix Tdata[i] is selected for the coordinate system with the program

command tseli. The command tsel-1 deselects all transformation matrices for the

coordinate system, and no transformation calculations are performed in that coordinate system.

The presently selected matrix for a coordinate system can be read at any time in the data structure

element Coord[x].Tsel. A value of -1 indicates that no matrix is selected. This is the power-up

default value.

Values can be assigned directly to any transformation matrix element, for a selected or unselected

matrix, with on-line or program assignment commands (e.g. Tdata[1].Diag[6]=25.4). In

addition there are two functions in the script language that act on an entire matrix.

Initializing a Transformation Matrix

The tinit function initializes a transformation matrix, setting all of the diagonal terms to 1.0,

and all of the off-diagonal and offset terms to 0.0. This makes the transformation matrix an

Power PMAC User’s Manual

Setting Up Coordinate Systems 522

“identity matrix, so all of the transformed axis positions using the matrix are equal to the

untransformed axis positions.

The tinit function returns the determinant of the resulting matrix. This, of course, should be

1.0 for a valid initialization. It will return 0.0 for an invalid initialization (e.g. an illegal matrix

number). A typical use of this function will be:

Tdet = tinit(2);

where Tdet has been declared as a local or global variable. It is possible to check Tdet to

ensure that a valid initialization has been performed.

Propagating Transformations

The tprop function permits the “propagation” of one matrix transformation by another. In this

propagation, the square rotation matrix of the first transformation is multiplied by the square

rotation matrix of the second transformation, yielding the square rotation matrix of the resulting

transformation. The square rotation matrix of the first transformation matrix is then multiplied by

the column offset vector of the second transformation matrix, and the resulting column matrix is

added to the first transformation’s column offset vector, yielding the column offset vector of the

resulting transformation matrix. The returned value of the function is the determinant of the

resulting transformation’s rotation matrix. It will be 0.0 for an invalid operation.

A typical use of this function will be:

Tdet = tprop(1,3,4);

where Tdata[3] is the first transformation, Tdata[4] is the second transformation, Tdata[1] is the

resulting transformation. Tdet has been declared as a local or global variable. It is possible to

check Tdet to ensure that a valid operation has been performed.

Re-Establishing Motor/Axis Relationships

When the active transformation is changed, either by selecting a new matrix (or deselecting all),

or by changing values in the selected matrix, the relationship between programmed axis values

and underlying motor values has been changed as well. This means that the starting axis values

for the present motor positions must be re-computed with the “position-match” function before

the next commanded axis move is performed. This is done automatically if an r (run) or s (step)

command is given to cause the next move(s) to executed. However, if the change is done during

the execution of a motion program, a pmatch command must be executed explicitly before the

next move command in the program.

Examples

Often the second transformation is used as an “operator” to modify the first transformation. The

resulting transformation can be the same as one of the first two transformations. The following

section of code shows the simple example of using this principle to perform an incremental

rotation in the XY plane about the origin on top of an existing transformation.

tsel1; // Transform 1 selected as active

Tdet = tinit(2); // Initialize Transform 2

Tdata[2].Diag[6] = cosd(DTheta); // Set X diagonal term

Tdata[2].XYZ[0] = -sind(DTheta); // Set XY off-diagonal term

Tdata[2].XYZ[2] = sind(DTheta); // Set YX off-diagonal term

Power PMAC User’s Manual

Setting Up Coordinate Systems 523

Tdata[2].Diag[7] = cosd(DTheta); // Set Y diagonal term

Tdet = tprop(1,1,2); // Rotate Xform 1 using Xform 2

pmatch; // Re-compute axis positions

The next section of code rescales the XYZ space whose axis definitions have specified

millimeters to inches.

tsel1; // Transform 1 selected as active

Tdet = tinit(2); // Initialize Transform 2

Tdata[2].Diag[6] = 25.4; // Set X diagonal term

Tdata[2].Diag[7] = 25.4; // Set Y diagonal term

Tdata[2].Diag[8] = 25.4; // Set Z diagonal term

Tdet = tprop(1,1,2); // Scale Xform 1 using Xform 2

pmatch; // Re-compute axis positions

The next section of code offsets the XYZ space incrementally by 3 user-specified variable values.

tsel1; // Transform 1 selected as active

Tdet = tinit(2); // Initialize Transform 2

Tdata[2].Bias[6] = XdOffset; // Set X offset term

Tdata[2].Bias[7] = YdOffset; // Set Y offset term

Tdata[2].Bias[8] = ZdOffset; // Set Z offset term

Tdet = tprop(1,1,2); // Offset Xform 1 using Xform 2

pmatch; // Re-compute axis positions

Rescaling Feedrate and Tool Radius

If a transformation matrix is used to rescale the XYZ Cartesian space, then by default the vector

feedrate and 2D tool-radius compensation offset values are rescaled by the same amount. For

example, if the XYZ space is scaled up by a factor of 2, so that 1 mm programmed is 2 mm in

action, then a programmed vector feedrate of 500 mm/min would result in a physical vector

feedrate of 1000 mm/min, and a programmed tool-radius offset of 8 mm would result in a

physical tool-radius offset of 16 mm.

However, starting in V1.6 firmware, released 1st quarter 2014, it is possible to compensate for the

scaling of the XYZ space by the value of status element Coord[x].TxyzScale. When it is changed

from its power-on default value of 0.0, the programmed vector feedrate and tool-radius offset

values are divided by the value of TxyzScale. (Of course, a value of 1.0 means no change.)

Continuing the above example, with the XYZ space scaled up by a fact of 2, a value of 2.0 for

TxyzScale would rescale the vector feedrate and tool-radius offset back to the physical units for

the axes, even though all moves would be twice as long.

Coord[x].TxyzScale cannot be written to directly in the Script environment, but it can be

changed using the buffered program command txyzscale{data} , where {data} is a

constant without parentheses (e.g. txyzscale2.0) or an expression in parentheses (e.g.

txyzscale(D16)).

It is also possible to have this rescaling done automatically. If saved setup element

Coord[x].AutoTxyzScale is set to 1, then Coord[x].TxyzScale is calculated automatically to

compensate for the scaling of XYZ space done by the selected transformation matrix for the

coordinate system when the buffered program command tsel{data} is executed. Technically,

TxyzScale is computed as the cube root of the determinant of the 3x3 XYZ portion of the

transformation matrix. Note that all 3 axes must be scaled to the same extent for this to be useful.

Power PMAC User’s Manual

Setting Up Coordinate Systems 524

Segmentation Mode

Each coordinate system can be put into “segmentation mode” or not. If the coordinate system is

in segmentation mode, most programmed path-based motion trajectories are computed using a

two-stage interpolation process. In the first stage, the equations of motion that were derived from

the programmed move command are solved at a coarse-interpolation (segmentation) interval.

Then a fine-interpolation stage executing at the servo update rate computes intermediate points

between the coarsely interpolated points using the computationally efficient cubic B-spline

algorithm (employing the same equations as the programmed spline move mode).

The reason for this two-stage process is that there are many types of calculations that need to be

done more than once per programmed move, but doing them at the servo update rate would

overload the processor without performing much better than at a somewhat slower update rate. In

Power PMAC, the segmentation interval specifies the intermediate rate at which these

calculations are done.

Segmentation mode in a coordinate system is enabled by setting saved setup element

Coord[x].SegMoveTime to a value greater than its default of 0.0. The non-zero value specifies

the segmentation interval in milliseconds. The following calculations are done at the

segmentation rate:

 Exact circular interpolation calculations: The time-intensive trigonometric calculations

for circular interpolation mode are done once per segmentation interval, with a simpler

fine interpolation algorithm updating the commanded position each servo cycle. This

includes added-arc moves in cutter-radius compensation mode, so the coordinate system

must be in segmentation mode for this compensation to be active.

 Inverse-kinematic calculations: In order to get an accurate path in a non-Cartesian

geometry, the inverse-kinematic transformation from tool-tip (axis) positions to

underlying joint (motor) positions must be done at many points along the path, not just at

the programmed move endpoints. These calculations can be very time intensive, and

executing them at the servo rate would be prohibitive, so these are done at the

segmentation rate as well.

 Special lookahead for dynamic limiting: The lookahead algorithm scans ahead in the

planned trajectory looking for possible violations of dynamic limits. In order to optimize

the resulting trajectories properly, this needs to be done more than once per programmed

move, but doing this at the servo rate would probably overload the processor. So these

calculations are done segment by segment, checking each for position, velocity, and

acceleration violations.

 Segmentation override: Performing “feedrate override” calculations at the segmentation

stage, before lookahead acceleration limiting, permits the override to affect velocities

without affecting accelerations, unlike override at the servo update rate. However,

changes in override still take effect quickly, unlike override performed at the

programmed move calculation time.

There is a trade-off between the computational load of a small segmentation time (high

segmentation frequency) and greater resulting path errors of a large segmentation time (low

segmentation frequency). The path error in a Cartesian space resulting from the cubic B-spline

fine-interpolation algorithm approximating the true path can be expressed as:

Power PMAC User’s Manual

Setting Up Coordinate Systems 525

R

TV
E

6

22

where E is the (perpendicular) path error, V is the path velocity, T is the segmentation time, and R

is the local radius of curvature of the path. In virtually all applications, a satisfactory compromise

between computational load and path accuracy can be achieved easily. In most applications, the

segmentation time will be set to a value equivalent to 10 to 20 servo cycles.

Segmentation mode must be enabled to execute circle mode moves, cutter radius compensation,

inverse kinematics, and the mode where programmed linear moves are executed as PVT moves.

Standard linear and PVT mode moves can be executed as segmented moves or not. Rapid and

spline mode programmed moves, and jogging and homing-search motor moves, are never

segmented, even if segmentation mode is enabled for the coordinate system.

Time-Base Control and Override Techniques

Power PMAC provides several methods for executing moves for the axes and motors in a

coordinate system at other than the programmed speeds, without modification to the programs or

move parameters. These methods are often called “override” techniques, because they allow the

programmed speeds to be overridden. The methods work by changing the numerical value for

time used in interpolation so it no longer represents the true physical time elapsed during the

interpolation interval.

Time-Base Control

Fundamentally, time-base control works by varying the numerical value for the time elapsed in a

single servo cycle by the “fine interpolation” algorithms that generate a new commanded

trajectory position for input to the servo loop each servo cycle. Note that the physical time

between servo cycles remains constant, so servo-loop dynamics are not affected.

The fundamental interpolation equation solved every servo cycle is:

nnnn tCVCPCP *1

CPn is the commanded position for the present servo cycle n, CPn-1 is the commanded position for

the previous servo cycle, CVn is the commanded velocity for the present servo cycle, and Δtn is

the numerical value for time elapsed in the present servo cycle.

The global saved setup element Sys.ServoPeriod should contain the true time elapsed in one

servo cycle, expressed in milliseconds. If the Δtn value used in the fine-interpolation equation

deviates from this value, the move will execute at other than the programmed speed. For example,

if Δtn is only half of the true value, the move will execute at half of the programmed speed.

Each coordinate system has a saved setup element Coord[x].pDesTimeBase (pointer to desired

time base) that contains the address of the register that Power PMAC reads for the coordinate

system’s desired Δtn value each servo cycle. It expects to find a double-precision floating-point

value at this register, with units of milliseconds. Depending on what register this is, various

interesting effects can be produced.

The actual Δtn value used each servo cycle in the fine-interpolation equations is found in the data

structure element Coord[x].TimeBase, also a double-precision floating-point value with units of

Power PMAC User’s Manual

Setting Up Coordinate Systems 526

milliseconds. This value tracks the desired value in the register specified by

Coord[x].pDesTimeBase, but its rate of change is limited by the saved setup element

Coord[x].TimeBaseSlew, which specifies how much the actual Δtn value can change each servo

cycle.

“%” Override Commands

If Coord[x].pDesTimeBase is set to the default value of Coord[x].DesTimeBase.a (the address

of the command desired time base register), then the coordinate system will get its Δtn value from

a register that responds to on-line %{constant} commands. A %{constant} command

causes the value in Coord[x].DesTimeBase to be set to Sys.ServoPeriod*{constant}/100. The

actual time-base value used tracks this command value in a slew-rate limited fashion, as

explained above. Because instantaneous steps can (and will) be commanded here, and these steps

can lead to corresponding steps in the true commanded velocity, it is important to set

Coord[x].TimeBaseSlew low enough to get a properly controlled rate of change.

This functionality makes it easy to override the programmed speeds without changing the

programmed motion parameters or sequences. Many people will use this command to try out

motion sequences slowly at first to examine their safety and effectiveness. Some will also use it

to implement “feedrate override” in CNC-style applications, although the “segmentation

override” technique explained below is probably better for that application.

Effect on Speed and Acceleration

Move speeds will be proportional to the % value used (move times and acceleration times will be

inversely proportional). Acceleration rates will be proportional to the square of the % value used

– at a 50% override, the acceleration rate will be one-quarter of what it would be at 100%.

Commanding from within a Program

To get the equivalent effect from within a Power PMAC motion or PLC program, a value can be

directly assigned to the element Coord[x].DesTimeBase. For example:

Coord[1].DesTimeBase = Sys.ServoPeriod * 0.5;

External Time Base Control

The time-base value for a coordinate system can be set up to be proportional the frequency of an

input signal each servo cycle. When this frequency comes from the position sensor on a master

axis, this provides a powerful master/slave technique that creates “electronic cam” functionality.

By making the coordinate system’s numerical Δtn value for the servo cycle proportional to the

change in master position ΔMPn in the servo cycle, the programmed trajectory becomes a

function of master position instead of time.

This technique is described in detail in the User’s Manual chapter Synchronizing Power PMAC to

External Events.

Negative Time Base Values

It is possible for the Power PMAC interpolation to use negative values of Δt in its interpolation

equation, so that “time goes backwards”. This can happen from a commanded “internal” time

base, or from an “external” time base with the master reversed. (In external time base, this

functionality can be important to stay “locked” to the master encoder if it stops and oscillates

about a position.) However, there are several important issues raised by this capability.

Power PMAC User’s Manual

Setting Up Coordinate Systems 527

Within a motion section or segment with a given (cubic) equation of motion, it is just as easy to

interpolate in the negative direction as in the positive direction. However, if the accumulated

negative time increment causes the motion to go back past the beginning of this section or

segment in the negative direction, then things get more complicated.

Reversal through Motor Trace Buffers

Power PMAC has the capability to store equations for already-executed sections or segments in a

“trace buffer” for each motor. If Motor[x].TraceSize is set to a value greater than zero, the

equations for up to this number of previously executed motion sections or segments can be stored

in the buffer.

If this buffer exists for a motor, if a negatively incrementing time base for the motor’s coordinate

system causes the time value to pass the beginning of the presently executing section or segment,

the equations for the previous section or segment are loaded from the trace buffer, enabling

motion to continue properly in the reverse direction.

Of course, for proper extended reversal of coordinated motion, all motors in the coordinate

system should have equivalently sized trace buffers defined. With these buffers, fully coordinated

motion along a path can proceed as well in the reverse direction as in the forward direction.

Comparison to Lookahead Buffer Reversal

Trajectory reversal by negative time base can be used whether or not the dynamic lookahead

buffer was used to originally compute the trajectories. Note that negative time base reversal

through motor trace buffers is distinct from reversal through an oversized lookahead buffer (and

the two should not be used simultaneously, as the results could be unpredictable).

Reversal of trajectory through the lookahead buffer using the on-line < command or buffered

lh< command is appropriate for modal state changes, as when an operator presses a “retrace”

button. Reversal of the trajectory through the trace buffer using negative time base values is

appropriate for continuously variable changes, uniting both speed and direction on a continuum.

Preventing Unintended Extended Negative Time Base

Alternately, if it is desired to protect against the possibility of extended reverse operation due to

negative time base, new saved setup element Sys.MaxTimedUnderflow can be used. With no

trace buffer defined for a motor, if Sys.MaxTimedUnderflow is set to a value greater than 0.0, if

a negative time base causes the time value to go past the beginning of the present section or

segment by more than this number of milliseconds, motion will be aborted automatically in an

error condition.

Acceleration Limiting with Changing Time Base

Because changing the time base value by itself can cause acceleration or deceleration of a motor,

it is possible that changing time base while the motor is executing acceleration or deceleration

from its equations of motion for a fixed time base can cause excessive resulting physical

accelerations or decelerations.

Many users will simply keep the rate of time base change small by setting low values of

Coord[x].TimeBaseSlew and Coord[x].FeedHoldSlew, so that any increase in acceleration or

deceleration due to time base changes will be negligible. However, this can lead to sluggish

response to desired time base changes.

Power PMAC User’s Manual

Setting Up Coordinate Systems 528

It is possible to set Coord[x].TimeBaseSlew and Coord[x].FeedHoldSlew to negative values.

When negative, the magnitude has the same fundamental meaning as when positive, but if

changing the time base value at this magnitude would cause any motor in the coordinate system

to accelerate or decelerate in that servo cycle at a magnitude greater than the limit set by

Motor[x].InvAmax, the rate of time base change for that servo cycle will be reduced so that the

limit is not violated.

If the commanded motion was computed so that this acceleration limit was not violated at

standard time base (%100), and the time base values are changed within the +/-%100 range, this

algorithm will ensure that acceleration limits are not violated due to time base changes. This can

permit higher magnitudes of the set slew rates, providing quicker response in most cases, while

guaranteeing that excessive acceleration magnitudes will not be commanded.

!
Caution

If the trajectory was originally computed so that motor

acceleration limits as set by Motor[x].InvAmax were not

observed, or the magnitude of the time base value exceeds

±100%, use of negative values for these slew rate parameters

could mean that no time base changes will occur at all in some

sections of the move.

Segmentation Override

A newer technique for overriding the programmed speed, called “segmentation override”,

overcomes limitations of older methods such as PMAC’s time base control and the traditional

CNC method of generating acceleration profiles with low-pass filters after override. In

conjunction with Power PMAC’s trajectory profiles and segmented lookahead buffer,

segmentation override permits the rate of acceleration to be maintained over the entire range of

override values, while still maintaining the path precisely.

Segmentation Process

For several move modes (linear, circle, and pvt), Power PMAC can perform a two-stage

interpolation process. At the first, coarse, interpolation stage, called segmentation, the complex

calculations such as the circle trigonometric calculations, inverse-kinematic transformations, and

lookahead acceleration-control calculations are performed. Then a simple fine-interpolation

algorithm (using a cubic B-spline for smoothness) is performed at the servo-cycle rate to generate

the instantaneous commanded positions for each servo update.

The segmentation period for these moves is set by the saved data structure element

Coord[x].SegMoveTime, expressed in milliseconds. That is, every SegMoveTime milliseconds

(without override), Power PMAC will perform coarse interpolation calculations to compute an

intermediate segment point for each axis in the coordinate system, advancing SegMoveTime

milliseconds in the move equations.

With override control at the segmentation stage, the numerical value of the time update, does not

have to match the physical time elapsed per segment. For example, if SegMoveTime were set to

5 to define a physical segment time of 5 milliseconds, but a value of 3 milliseconds were used for

the time-update calculations in the segmentation algorithms, an override of 60% would be

produced.

Power PMAC User’s Manual

Setting Up Coordinate Systems 529

Effect on Acceleration

Because this override function is performed before the acceleration-control function of the special

lookahead buffer, the combination of segmentation override and lookahead acceleration control

yields an override capability that controls velocity but maintains acceleration. For this reason, this

technique is generally used for “feedrate override” functionality in CNC-style applications.

Segmentation override control occurs after acceleration profiles determined by Coord[x].Ta and

Coord[x].Ts times are created in the generation of the basic move equations. Therefore, these

acceleration times vary inversely with the override (and the acceleration rates they produce vary

inversely with the square of the override). However, in applications utilizing segmentation

override and lookahead override control, these times are usually set very small (because the

lookahead is used to control rates of acceleration), and used mainly to define the size of corner

blends in the path. Significantly, the operation of the segmentation override and lookahead

acceleration control functions do not change the size or shape of these corner blends.

Specifying the Override

Data structure element Coord[x].SegOverride determines the commanded segmentation override

for the coordinate system. It is a “normalized” value, not a percentage. A value of 1.0 produces

“real-time” motion. On power-up/reset, it is initialized to 1.0; a different value cannot be saved to

flash memory. Saved data structure element Coord[x].SegOverrideSlew controls the rate of

change of the internal value Coord[x].ActSegOverride by limiting how much it can change each

segmentation period.

Optimizing the Response to Changes

Because segmentation override affects the speed of segments going into the lookahead buffer, the

effect of changes to the override value is delayed by the number of segments pending in the

buffer. To get maximum responsiveness, this number should be no bigger than is necessary to

ensure proper acceleration limiting at the maximum speed.

The number of pending segments is determined by the saved setup element

Coord[x].LHDistance. In many applications, this value is left at a single value. However, if

quick responsiveness to changes in override is desired, this value should be changed as the

override value is changed, in proportion to the override value.

The section on buffered lookahead in the User’s Manual chapter “Power PMAC Move Mode

Trajectories” provides details on calculating the value of Coord[x].LHDistance (at 100%

override). Fundamentally, the equation for the optimal lookahead distance is:

eSegMoveTimA

V
segmentsLHDist

*3

2
)(

max

max

As the top velocity changes with override, this optimal lookahead distance should change as well.

This can be incorporated easily into the algorithm that sets the override value.

Power PMAC User’s Manual

Setting Up Coordinate Systems 530

Examples

The plot below shows a simple move position and velocity profiles executed at 100% and 50%

using time-base control in Power PMAC. At 50% override, the acceleration takes twice the time

to achieve half the speed, so the rate of acceleration is 25% of what it is without override.

Point-to-Point Move at 50% and 100% Time-Base Override

The next plot shows the same simple move position and velocity profiles executed at 100% and

50% using segmentation override. Note that the rate of acceleration is the same at both override

values, so that acceleration at 50% override occurs in half the time as the 100% case.

Point-to-Point Move at 50% and 100% Segmentation Override

Power PMAC User’s Manual

Setting Up Coordinate Systems 531

The following plot shows the velocity profiles for one axis at 100% and 50% for a three move

sequence, with a linear move blending smoothly into a semi-circle move, blending smoothly into

another linear move. (The path including a second axis is that of the letter “U”.) Note that the

rates of initial acceleration and final deceleration are the same in both cases.

At 50% override, the centripetal acceleration of the semi-circle move does not violate

acceleration constraints and so can execute at the programmed speed multiplied by the override

percentage. However, at 100% override, the semi-circle move cannot move at the programmed

speed without violating acceleration limits, so the lookahead algorithm slows the arc down. It also

decelerates the end of the incoming linear move and accelerates the beginning of the outgoing

linear move so the transition can be made within constraints. In this way, the segmentation

override technique combined with lookahead acceleration control produces the minimum-time

profile for any override value that stays within machine constraints.

Line/Arc/Line Axis Velocity Profile at 50% and 100% Segmentation Override

Axis Target Position and Distance-to-Go Reporting

In many applications, particularly those providing a CNC-style operator interface, it is desirable

to display the programmed “target” (move-end) positions for the axes, and/or the “distance to go”

(target minus present position) for the axes in the presently executing move. However, if features

like move blending and splining, dynamic buffered lookahead, and cutter radius compensation are

enabled, the axis target positions are calculated well ahead of the presently executing move, so

these positions must be buffered from the move calculation time until the move execution time.

Setting Up the Target Position Buffer

To enable this reporting for a coordinate system in Power PMAC, a target-position buffer must be

established for the coordinate system. This is done by setting saved setup element

Coord[x].TPSize to a value greater than zero. The value specifies the number of moves whose

target positions can be buffered at any given time. It must be large enough to cover the largest

“gap” possible in the application between move calculation and move execution. Basic blending

Power PMAC User’s Manual

Setting Up Coordinate Systems 532

and splining require move calculations 2 moves ahead of the presently executing move, so

Coord[x].TPSize must be set at least to 3 to cover this simple case.

If special lookahead control for acceleration, velocity, and position limiting is enabled by

defining a lookahead buffer and setting Coord[x].LHDistance greater than 0, the “gap” between

calculation and execution can be much larger. The lookahead distance is specified in terms of

intermediate segments each of Coord[x].SegMoveTime milliseconds, not of programmed moves,

so the number of extra moves whose target positions need to be buffered must be calculated by

dividing the number of segments of lookahead by the minimum number of segments per

programmed move.

If move reversal/retrace using the lookahead buffer is utilized, then the target position buffer must

be sized large enough to cover the largest possible “gap” between the calculated move and the

furthest extent of reversal. In this case, the number of extra moves whose target position need to

be buffered must be calculated by dividing the number of segments defined for the lookahead

buffer, not the number of segments in Coord[x].LHDistance, by the minimum number of

segments per programmed move.

If 2D cutter radius compensation is enabled, this will require additional moves to be buffered

from calculation to execution time. The most basic compensation requires the buffering of one

additional move because the direction of that move must be known to calculate the compensated

end position of the previous move. Additional moves must be pre-computed if interference

checking is desired, and/or if there could be any moves with zero distance in the plane of

compensation. The user specifies how many moves can be buffered for 2D compensation in the

saved setup element Coord[x].CCSize. This value should be added to the value of

Coord[x].TPSize.

Querying the Target Position Data

There are several methods of querying the information from the target position buffer. The

method chosen will probably depend on where and how the data is to be used.

For querying the target positions themselves, the user must specify which axes’ positions will be

reported. This is done by setting the value of saved setup element Coord[x].TPCoords. This is a

32-bit “mask” element, with one bit per axis. If a bit is set to 1, that axis’ target position will be

reported; if it is set to 0, the target position will not be reported. Bit 0 (value 1) is for the A-axis;

bit 1 (value 2) is for the B-axis, and so on. The following table shows the complete list of bits i

and the axes they control:

Axis i Axis i Axis i Axis i Axis i Axis i Axis i Axis i

A 0 V 4 Z 8 DD 12 HH 16 OO 20 SS 24 WW 28

B 1 W 5 AA 9 EE 13 LL 17 PP 21 TT 25 XX 29

C 2 X 6 BB 10 FF 14 MM 18 QQ 22 UU 26 YY 30

U 3 Y 7 CC 11 GG 15 NN 19 RR 23 VV 27 ZZ 31

Each bit i that is set to 1 adds a value of 2i to Coord[x].TPCoords. This element is usually

specified as a hexadecimal value so it is easy to see which bits are set.

Note that values for “distance to go” are reported for all defined axes in the coordinate system,

regardless of the setting of Coord[x].TPCoords.

Power PMAC User’s Manual

Setting Up Coordinate Systems 533

On-Line Query Commands

There are two on-line commands that can be used to query data from the buffered target position

data for the presently executing move. The t command causes Power PMAC to report the target

positions for axes specified by Coord[x].TPCoords in the addressed coordinate system. The g

command causes Power PMAC to report the distances to go from the present desired positions to

the target positions for all defined axes in the addressed coordinate system.

Both commands report data in text form back over the communications port to the computer

issuing the query command. This is probably the most efficient way to get data to the host

computer for display purposes. For each of the specified axes, the axis letter name is returned,

followed by the queried value for the axes (e.g. X37.5 Y-21.23).

In the target position reporting, if cutter compensation is enabled for the move, a double value

will be reported for the X, Y, and Z axes if the compensated target position for the axis differs

from the programmed target position. First the programmed target position is reported, then a

colon character followed by the signed offset distance from compensation for that axis (e.g.

X21.2:-0.047 Y-17.45:0.139). If compensation is enabled, but the axis does not have an

offset due to compensation at the move end, no second value is reported.

In the distance-to-go reporting, Power PMAC computes the present desired axis positions from

the present desired motor positions, using the coordinate system definition information. Either the

equations in the axis definition statements are automatically inverted to do this, or if a forward

kinematic subroutine exists for the coordinate system, this subroutine is called to compute these

positions. In either case, the calculations are the same as if the d desired-position query command

were used for the coordinate system. These desired position values are then subtracted from the

target position values for the axes, and the differences are reported.

The distance values reported as signed quantities; if only magnitudes of distances are desired,

absolute values should be taken. If cutter compensation is active, the compensated target

positions for the X, Y, and Z axes are used in these calculations. The distances reported are

simple differences between present and target positions; in a Cartesian geometry, their vector sum

reflects the linear distance between the present desired point and the move target point, even if

the path to the target point is not a straight line, as with a circle mode move.

For blended moves, as soon as blending from one move to the next begins, the target positions

used are those of the new moves. Because the blending starts before the programmed target

position is reached, this means that the reported distance to go will in general not go all the way

to zero in any move that is blended into another move.

If reverse execution is performed using the “retrace” feature of the special lookahead buffer, the

target positions reported, and used for distance-to-go calculations, are those of the end of the

furthest “forward” move so far executed, even if reverse execution has transitioned into a

previous move. This remains true for all reverse execution and for subsequent forward “recovery”

motion of already executed trajectory.

Buffered Query Commands

There are two buffered program commands that can be used to query data from the buffered

target position data for the presently executing move. The tread command causes Power

PMAC to report the target positions for axes specified by Coord[x].TPCoords in the addressed

coordinate system. The dtgread command causes Power PMAC to report the distances to go

Power PMAC User’s Manual

Setting Up Coordinate Systems 534

from the present desired positions to the target positions for all defined axes in the addressed

coordinate system. These commands are generally used by PLC programs; they are not very

useful in motion programs because of the lookahead and calculation sequencing of the motion

programs. The commands query the values of the coordinate system selected by the value of

Ldata.Coord for the program.

Both commands cause Power PMAC to place the queried values into local D-variables in the D0

– D31 range for the program using the query command. The D-variable used to report an axis

value has a number equivalent to the bit number of Coord[x].TPCoords that specified reporting

for that axis: D0 for the A-axis, D1 for the B-axis, and so on. In addition, local variable D32 is

used to report which axes’ values have been calculated. It is a 32-bit mask word, with the bit

matching the bit of Coord[x].TPCoords set to 1 when that axis’ value is calculated.

The values returned into these D-variables should immediately be used for any subsequent

calculations, as the values in these local variables can be lost if the program context changes, or if

another function that utilizes these variables is called.

The calculations to produce these values are identical to those used for the comparable on-line

query commands discussed above. That section describes details of these calculations.

Note that the similar buffered program querying commands dread (for desired position),

pread (for actual position), vread (for actual velocity) and fread (for following error) do not

require buffering of the axis target positions. However, they do also return their values into the

same local D-variables for the program.

Data Structure Elements

Target position values for the presently executing move can be found directly in special data

structure elements for the coordinate system. The elements Coord[x].TPExec.Pos[i] with index i

(0 to 31) matching the bits of Coord[x].TPCoords that are set to 1 contain the programmed

target position values for the presently executing move. The elements

Coord[x].TPExec.XYZPos[i] (i = 0 to 2) contain the compensated target position values for the

X, Y, and Z axes, respectively, if cutter compensation is active for the move.

There are no comparable elements for the immediate (servo cycle by servo cycle) axis desired

positions. Immediate motor desired position values are calculated every servo cycle, and can be

found in Motor[x].DesPos. In some cases, especially with simple axis definitions, it is easy to

convert the motor values to matching axis values, but this is not done automatically.

Power PMAC User’s Manual

Setting Up Coordinate Systems 535

Path Vector Speed and Angle Reporting

Power PMAC can automatically compute the instantaneous 2D or 3D vector speed and distance,

and 2D or 3D directed angles for the path, in a Cartesian coordinate system. These values can be

utilized by user applications for purposes such as modulating laser intensity as a function of speed

along the path, or orienting a cutter tangent to the path. When this functionality is enabled, these

values are calculated every servo cycle.

Enabling the Path Calculations

These calculations are only performed if saved setup element Coord[x].PathCalcEna is set to a

value greater than 0. A setting of 1 enables 2D calculations, usually involving the “XY” plane of

a machine. A setting of 2 or 3 also enables 3D calculations, typically an “XYZ” Cartesian space.

Configuring the 2D Path Calculations

The user must specify the numbers of the two motors to be used in the 2D calculations with saved

setup elements Coord[x].CosMotor and Coord[x].SinMotor. The instantaneous commanded

velocities for these motors are used in the vector sum calculations for the speed along the path in

this plane. The resulting vector speed is stored in Coord[x].PathSpeed, and the accumulated

vector distance is stored in Coord[x].PathDistance.

This instantaneous commanded vector speed can differ from the programmed speed (“feedrate”)

due to acceleration, deceleration, or blending profiles, feedrate override, lookahead limiting, or

other factors. Note that this value is the commanded speed at move execution time, not at the

earlier move calculation time.

These commanded motor velocities are also used as the “cosine” and “sine” terms, respectively,

for the arctangent function that computes the path angle in the plane they define. The vector path

angle calculations in a cycle are only performed if the vector speed for the cycle is greater than

saved setup element Coord[x].MinAtanSpeed, with the value stored in Coord[x].PathAngleC.

(Typically, a machine’s “C” axis is used for orientation in this plane.)

CosMotor Pos

SinMotor
Pos

vCosMotor

vSinMotor

PathSpeed

PathAngleC

Command
Path

2D Path Speed and Angle Calculations

If MinAtanSpeed is set to 0.0, the angle is calculated for any non-zero speed, no matter how

small. If the vector speed for the cycle is not greater than this threshold, the previous cycle’s

angle value is retained, and Coord[x].ValidAngle bit 0 is set to 0 to indicate this situation.

Power PMAC User’s Manual

Setting Up Coordinate Systems 536

Note that at the end of a programmed move sequence, there can be a tiny adjustment for a single

servo cycle to make the ending commanded motor positions exactly correct. This adjustment can

be in the opposite direction from the programmed direction of the move. The non-zero default

value of Coord[x].MinAtanSpeed should be large enough to prevent this adjustment from

yielding a reversal in the calculated direction.

The reported speed value in Coord[x].PathSpeed and the threshold value in

Coord[x].MinAtanSpeed are scaled in position by Coord[x].PathPosSf (in reporting units per

motor unit). They are scaled in time by Coord[x].PathReportTime (= 1000 to specify per

second, or 60,000 to specify per minute).

The reported distance value in Coord[x].PathDistance is scaled by Coord[x].PathPosSf.

The reported angle value in Coord[x].PathAngleC is scaled in degrees. It is always in the range

of -180 to +180. If a rotary axis is commanded to use this as a destination position,

Coord[x].PosRollover[i] should be set to 360 so it can handle the +/- transition properly.

However, Coord[x].ExtPathAngleC extends the reported angle past a single rotation, handling

the +/- transition itself. (Typically, a machine’s “C” axis is used for orientation in this plane.)

Additionally Configuring the 3D Path Calculations

If 3D vector speed and distance calculations are also enabled by setting Coord[x].PathCalcEna

to 2 or 3, Coord[x].NormMotor must specify the number of the motor perpendicular to the plane

specified by Coord[x].CosMotor and Coord[x].SinMotor. In this case, Coord[x].PathSpeed

and Coord[x].PathDistance also include the component from the motor specified by

Coord[x].NormMotor.

If 3D vector angle calculations are also enabled by setting Coord[x].PathCalcEna to 3, the path

angle in the plane defined by Coord[x].NormMotor and Coord[x].CosMotor (commonly the

“ZX” plane) is calculated and stored in Coord[x].PathAngleB, with the multi-turn value stored

in Coord[x].ExtPathAngleB. (Typically, a machine’s “B” axis is used for orientation in this

plane.)

In addition, the path angle in the plane defined by Coord[x].SinMotor and

Coord[x].NormMotor (commonly the “YZ” plane) is calculated and stored in

Coord[x].PathAngleA, with the multi-turn value stored in Coord[x].ExtPathAngleA.

(Typically, a machine’s “A” axis is used for orientation in this plane.)

Power PMAC User’s Manual

Setting Up Coordinate Systems 537

CosMotor
+Pos

SinMotor
+Pos

NormMotor
+Pos

PathAngleC

PathAngleB

PathAngleA

3D Path Angle Calculations

Using With Non-Cartesian Systems

These vector path calculations are only meaningful if the motors used create motion in directions

perpendicular to each other. If the system does not have this physical configuration, as is common

with complex kinematic mechanisms, the kinematic subroutines in Power PMAC can be

expanded to include virtual motors that simulate perpendicular axes, in addition to the non-

Cartesian physical motors. These virtual motors can then be used for this functionality.

Using the Reported Results

Activating this functionality simply provides values in status elements that are available for use in

the application. There are many ways the values can be used. Note that even though Power

PMAC updates these values every servo cycle, there is no requirement that the application use

every cycle’s values. This section explains some of the common application uses.

In almost all cases, the intent is to permit standard programming of the Cartesian mechanism

itself, without it needing to consider the control of actions dependent on vector path speed and/or

direction. This allows the use of commercially available CAM programs to generate the Cartesian

path programs. All of the actions depending on vector path characteristics can be written in the

Power PMAC independently of the part program.

Using the Vector Path Speed

There are many applications, particularly for various forms of machining, where some variable

(e.g. spindle speed, laser intensity) needs to be controlled as a function of instantaneous speed

along the path. Typically, a user’s PLC program (Script or C) reads the value of

Coord[x].PathSpeed each scan and computes the control variable value as a function of this

speed.

Using the Vector Path Distance

In a common class of applications, the accumulated distance along a multi-dimensional path is an

important variable for some processes. For example, a sewing machine may want to start a stitch

every “X” millimeters. The value in Coord[x].PathDistance is very useful in these applications.

Power PMAC User’s Manual

Setting Up Coordinate Systems 538

Transferring Through the Encoder Table

It is possible to use Coord[x].PathDistance as the master position for a real or virtual motor.

First, it must be processed through an Encoder Conversion Table entry (EncTable[n].type = 11

to specify a floating-point source, EncTable[n].index6 = 1 to specify a double-precision source,

and EncTable[n].pEnc = Coord[x].PathDistance.a to specify the source itself).

This motor then specifies the ECT entry result as its master position by setting

Motor[x].pMasterEnc = EncTable[n].a and enables the following of this master by setting

Motor[x].MasterCtrl = 1. If Motor[x].MasterPosSf is set to its default value of 1.0, the units of

this motor will be the same as those of the Cartesian motors.

Note that this motor should not be assigned to an axis in the same coordinate system as the

physical motors whose path it tracks. It should either be given the null definition (#x->0) in this

coordinate system, which allows for automatic fault sharing, or defined in a different coordinate

system.

At this point, the motor commanded position tracks the value in Coord[x].PathDistance,

automatically updated every servo cycle. There are many possible ways to use this. In one use, a

virtual motor position could, in turn, be used as the master for a cyclic cam table whose operation

repeats along the path at even intervals.

In another use, a virtual motor could be used with a Gate1 or Gate3 ASIC hardware channel, set

up as if to command an external pulse-and-direction open-loop stepper drive with simulated

feedback. This simulated feedback can be used like real encoder feedback with the ASIC’s

encoder hardware capture and compare circuitry. The compare circuitry with its auto-increment

functionality can generate precise output pulses at even intervals along the path.

Transferring Directly to Target Motor

It is also possible (starting in V2.7 firmware, released 2nd quarter 2022), to use the value of

Coord[x].PathDistance to write directly to the Motor[x].MasterPos register of a specified

motor, bypassing the encoder conversion table processing and the standard master position

following mode. This functionality is enabled if Coord[x].PathDistMotor is set to a value

greater than 0, with the value specifying the number of the target motor.

Most commonly, the target motor is a virtual motor. Often this virtual motor is configured as if to

command a pulse-and-direction stepper drive, with the pulse train internally wrapped back into

the ASIC channel’s encoder interface circuitry. This permits the ASIC’s hardware capture and

compare circuits to be used as a function of the position along the path.

However, the target motor can also be a physical motor whose travel distance needs to match the

vector path distance, as in automated sewing applications.

When this function is enabled, then each servo cycle, Power PMAC computes the change in

Coord[x].PathDistance in user motor units, multiplies it by Motor[x].MasterPosSf for the

target motor, and increments the value of Motor[x].MasterPos by the result. This incremental

approach permits the function to be enabled and disabled as needed without causing sudden

jumps in the position of the tracking motor.

It is possible to limit the dynamics of the tracking motor with Motor[x].MasterMaxSpeed and

Motor[x].MasterMaxAccel, but the user must carefully evaluate the resulting loss of

synchronicity, temporary and possibly lasting.

Power PMAC User’s Manual

Setting Up Coordinate Systems 539

Using the Vector Path Angle(s)

Many applications require a tool to be kept at a constant, or at least known, angle with respect to

the path angle. (Most commonly, the requirement is to keep it tangent to the path.) The most

usual method for accomplishing this is to command the rotary axis for the tool in a separate

coordinate system from the Cartesian axes.

This coordinate system executes a motion program whose core functionality loops rapidly with a

single programmed move inside the loop commanding the rotary axis to an angle equal to, or at

least a function of, the value in Coord[x].PathAngleC. Generally, this rotary axis should be

programmed to handle rollover by setting Coord[y].PosRollover[i] for the axis in its own

coordinate system (“y”) to 360.

Transferring Through the Encoder Conversion Table

It is also possible to use the path angle value as the master position for a virtual motor. In this

case, the extended value in Coord[x].ExtPathAngleC should be used to handle possible rollover

issues. The method for using this value as a virtual motor master are the same as for using

Coord[x].PathDistance this way, as explained above.

A few applications can make use of the path angle values in the “secondary planes” that are

perpendicular to the “primary plane” used for Coord[x].PathAngleC. The values in

Coord[x].PathAngleA and Coord[x].PathAngleB, and their extended versions, can be used in

the same manner as for Coord[x].PathAngleC.

Transferring Directly to Target Motor

It is also possible (starting in V2.7 firmware, released 2nd quarter 2022), to use the value of

Coord[x].ExtPathAngleC to write directly to the Motor[x].MasterPos register of a specified

motor, bypassing the encoder conversion table processing and the standard master position

following mode. This functionality is enabled if Coord[x].PathAngleCMotor is set to a value

greater than 0, with the value specifying the number of the target motor.

Often, the target motor is a physical motor that keeps the tool at a known angle to the path (e.g.

tangent to the path). For this to be useful in most cases, the motor must be capable of an indefinite

number of revolutions. In applications where this is not the case, a more programmatic approach

will be needed to command this motor.

When this function is enabled, then each servo cycle, Power PMAC computes the change in

Coord[x].ExtPathAngleC in degrees, multiplies it by Motor[x].MasterPosSf for the target

motor, and increments the value of Motor[x].MasterPos by the result. This incremental approach

permits the function to be enabled and disabled as needed without causing sudden jumps in the

position of the tracking motor.

It is possible to limit the dynamics of the tracking motor with Motor[x].MasterMaxSpeed and

Motor[x].MasterMaxAccel, but the user must carefully evaluate the resulting loss of

synchronicity, temporary and possibly lasting.

Pre-Orienting the Tangent Tool

In some applications, it is useful to orient the tangent cutter at the start of a move before the move

actually begins, as at the beginning of a move sequence or at a sharp corner. In this situation, a

tiny override percentage can be given (e.g. %0.001) to the Cartesian coordinate system so that

Power PMAC User’s Manual

Setting Up Coordinate Systems 540

the move has technically begun, but the distance from the start is a fraction of a feedback count

for several seconds.

Even in this state, the Coord[x].PathAngleC value computed here is an accurate representation

of the starting angle of motion. (Coord[x].MinAtanSpeed should be set to a value small enough

to permit angle calculations at this point in this type of application.) This provides time for the

cutter to be oriented in the new direction of motion, possibly including a full lift/turn/lower

sequence. The Cartesian coordinate system can then be commanded to standard override

percentage.

Commonly, there will be a dwell at the corner, often automatically added due to the setting of

Coord[x].CornerBlendBp and Coord[x].CornerDwellBp, with a time specified by

Coord[x],AddedDwellTime. The program that determines the action of the tangent cutter can

detect the Coord[x].SharpCornerStop status bit set to 1 (during the incoming move) and the

Coord[x].DesVelZero status bits set to 1 (when the corner is reached), then set a very small

override value (e.g. Coord[x].DesTimeBase=Sys.ServoPeriod*0.00001). Since the dwell itself

always executes at 100%, the dwell will complete normally, and the new move will technically

begin, but without real movement.

All of this can be done with a standard part program, often generated automatically by CAM

software, that just commands the Cartesian axes. This part program does not need to do anything

special to allow the vector path functionality to be implemented by other routines in the Power

PMAC.

Power PMAC User’s Manual

Power PMAC Computational Features 541

POWER PMAC COMPUTATIONAL FEATURES

Power PMAC provides many advanced computation features, both in built-in algorithms and for

user application code. These permit many operations that formerly had to be done off-line or in a

host computer to be done in the controller, often in real-time.

Computational Priorities

As a multitasking, real-time computer, Power PMAC has an elaborate prioritization scheme to

ensure that vital tasks get accomplished when needed, and that all tasks get executed reasonably

quickly. The scheme was designed to hide its complexity from the user as much as possible, but

also to give the user some flexibility in optimizing the controller for his particular needs. The

tasks at the different priority levels are:

Phase (Commutation) Update

The phase, or commutation, update is the highest priority in most Power PMAC applications.

Every cycle of the system phase clock, the processor will compute the “phase tasks” for each

motor configured to do so (Motor[x].PhaseCtrl > 0). The phase tasks can include commutation

of multi-phase motors, current-loop closure, and for motors specially configured to do so, a

special fast servo update (this is intended for very high-response actuators such as “fast-tool”

servos and galvanometers).

If the system phase clock comes from a PMAC2-style “DSPGATE1” Servo IC, the phase clock

frequency is determined by the settings of Gate1[i].PwmPeriod and Gate1[i].PhaseClockDiv.

If the system phase clock comes from a PMAC2-style “DSPGATE2” MACRO IC, the phase

clock frequency is determined by the settings of Gate2[i].PwmPeriod and

Gate2[i].PhaseClockDiv.

If the system phase clock comes from a PMAC3-style “DSPGATE3” machine-interface IC, the

phase-clock frequency is determined by the setting of Gate3[i].PhaseFreq.

If there are no ICs providing system clocks, as with CKE3 and IPC configurations, no phase tasks

are performed.

Servo Update

The servo update is the next highest priority after the phase update. Every cycle of the system

servo clock, the processor will compute the “servo tasks”. First it processes each active entry of

the “encoder conversion table” to prepare feedback and master data for use in subsequent servo

tasks. Then it computes the servo update calculations for each active motor (Motor[x].ServoCtrl

> 0). This update consists of the interpolation calculations to compute the next instantaneous

commanded position, and the servo-loop closure calculations that use this value, the actual

position value, and the servo gain terms to compute the commanded output. (The servo-loop

closure algorithms for a motor can skip cycles if Motor[x].Stime > 0.)

If the system phase clock comes from a PMAC2-style “DSPGATE1” Servo IC, the servo-clock

frequency is determined by the phase-clock frequency and the setting of Gate1[i].ServoClockDiv

for the same IC.

Power PMAC User’s Manual

Power PMAC Computational Features 542

If the system phase clock comes from a PMAC2-style “DSPGATE2” MACRO IC, the servo-

clock frequency is determined by the phase-clock frequency and the setting of

Gate2[i].ServoClockDiv for the same IC.

If the system phase clock comes from a PMAC3-style “DSPGATE3” machine-interface IC, the

servo-clock frequency is determined by the phase-clock frequency and the setting of

Gate3[i].ServoClockDiv.

If there are no ICs providing system clocks, as with CKE3 and IPC configurations, the servo-

clock frequency is determined by the setting of Sys.ServoPeriod.

Real-Time Interrupt Tasks

The real-time interrupt (RTI) tasks are the next highest priority after the servo update. They occur

immediately after the servo tasks every Sys.RtIntPeriod + 1 servo-clock cycles. The two most

significant tasks that occur at this priority level are motion program move planning and the

“foreground PLC” programs.

Motion Program Move Planning

Motion program move planning consists of working through the lines of a motion program until

the next move or dwell command is encountered, and computing the equations of motion for this

next part of the move sequence. Every time Power PMAC starts executing a new programmed

move or move segment derived from the programmed move, it sets an internal flag indicating that

it is time to plan the next move or derived move segment in the program. This planning occurs at

the next RTI.

Foreground PLC Programs

Of the 32 Script PLC programs that can be resident in Power PMAC, 1 to 4 of them can be

executed under the real-time interrupt. Setup data-structure element Sys.MaxRtPlc, which can

take a value from 0 to 3, specifies the highest-numbered Script PLC program that will be

executed in the RTI. For example, if it is set to 1, PLC programs 0 and 1 will be executed in the

RTI, and PLC programs 2 – 31 will be executed in background.

In addition, a single compiled C PLC program can be scheduled to run in the real-time interrupt.

Background Tasks

In the time not taken by any of the higher-priority tasks, Power PMAC will be executing

background tasks. These include the Script PLC programs numbered higher than Sys.MaxRtPlc,

background C PLCs, plus C applications executing under the general-purpose operating system

(GPOS).

Monitoring Processing Time

Power PMAC’s Integrated Development Environment (IDE) software for the PC has a window

that displays the times and percentages of time spent at each priority level. It can be selected by

clicking on “Tools” on the top menu bar, then on “Task Manager” from the pull-down menu.

When the resulting window appears, select the “Tasks” tab. You will see a display like the

following:

Power PMAC User’s Manual

Power PMAC Computational Features 543

Power PMAC IDE Task Manager CPU Task Time Display

Numerical Values

Power PMAC can receive, send, store, and process numerical values in many forms, with both

fixed-point and floating-point values. The Power PMAC’s CPU is a floating-point processor with

built-in 32-bit and 64-bit arithmetic capability.

Internal Formats

Power PMAC uses standard formats to store and process numerical values internally, both

floating-point and fixed-point (integer).

Double-Precision Floating-Point Values

Power PMAC can use the 64-bit double-precision floating-point format defined in the IEEE-754

standard. Most general-purpose user variables, including P, Q, L, R, and D variables are of this

format. It is the “intermediate working format” that is used to process mathematical expressions

in the Power PMAC script language, regardless of the format of the variables used in the

expressions.

The Power PMAC processor contains a hardware engine for processing this data format very

efficiently. The format is organized in this fashion:

Double-Precision Floating-Point Format

http://en.wikipedia.org/wiki/Image:General_double_precision_float.PNG

Power PMAC User’s Manual

Power PMAC Computational Features 544

The smallest magnitude values that can be represented are +2-1074 ≈ +5 x 10-324. This requires

“denormalization” of the mantissa, which uses less than the full range of the mantissa. Without

denormalization, the smallest-magnitude numbers that can be represented are +2-1022 ≈ +2.22 x

10-308.

The largest (finite) magnitude numbers that can be represented are +21024 ≈ +1.80 x 10308.

Single-Precision Floating-Point Values

Power PMAC can also use the 32-bit single-precision floating-point format defined in the IEEE-

754 standard. Very few of the built-in algorithms such as servo and phase use the single-precision

format. User C functions and applications can use this format by declaring float variables.

The single-precision format has a 23-bit fractional mantissa (the most significant bit is not

stored), an 8-bit exponent, and a sign bit.

The smallest magnitude values that can be represented are +2-149 ≈ +1.4 x 10-45. This requires

“denormalization” of the mantissa, which uses less than the full range of the mantissa. Without

denormalization, the smallest-magnitude numbers that can be represented are +2-128 ≈ +1.22 x

10-38.

The largest (finite) magnitude numbers that can be represented are +2128 ≈ +3.4 x 1038.

Special Floating-Point Representations

Power PMAC supports several special floating-point representations that deserve special

consideration. These representations are part of the IEEE-754 standard.

Plus/Minus Zero: There are separate representations for “+0” and “-0”. In general, the only

operations that produce “-0” involve underflow or modulo of a negative value. Mathematically,

“+0” and “-0” behave identically. In the evaluation of any conditional comparison, “+0” is equal

to “-0”. Note, however, that 1/0 equals “plus infinity”, and 1/-0 equals “minus infinity” (see

below), so this operation could be used to distinguish between the two cases.

Plus/Minus Infinity: Power PMAC’s industry-standard floating-point format has special

representations for “plus infinity” (∞) and “minus infinity” (-∞). These values typically result

from a division by 0, with the sign of the division process retained. Plus infinity reports as “inf”;

minus infinity reports as “-inf”. Subsequent mathematical operations on a value of plus or minus

infinity will yield unpredictable results.

It is possible to set a variable directly equal to +infinity, and to compare it directly to +infinity in

a condition. In a conditional comparison, plus infinity evaluates as equal to plus infinity and as

greater than any true numerical value or minus infinity; minus infinity evaluates as equal to minus

infinity, and as less than any true numerical value or plus infinity.

However, it is better programming practice to check for the conditions that could create an “inf”

result before the calculation is performed in the first place.

Not-A-Number: Power PMAC’s industry-standard floating-point format has a special

representation for “not-a-number”. This “value” is typically obtained when there is a “domain

error” for a mathematical function, such as taking the square root of a negative number. “Not-a-

number” reports as “nan”. Subsequent mathematical operations on a variable with a “not-a-

number” representation will yield unpredictable results.

Power PMAC User’s Manual

Power PMAC Computational Features 545

Power PMAC also uses the “not-a-number” representation when the value of a hardware element

that is not present in the system is read, as in a query command. For example:

Gate3[14].Chan[0].ServoCapt

nan

It is not possible to set a variable directly equal to “not-a-number”. In a conditional comparison,

“not-a-number” will never evaluate as equal to anything, including another “not-a-number”. Note

that “not-a-number” will not evaluate as less than infinity or greater than -infinity; this fact can be

used to test whether a variable is “not-a-number”. For example:

if (!(Var < inf)) abort1; // Bad calculation, stop program

Another method of checking involves the Boolean isnan (is not-a-number) function in the

Power PMAC script language. For example:

if (isnan(Var)) abort1; // Bad calculation, stop program

However, it is better programming practice to check for the conditions that could create a “nan”

result before the calculation is performed in the first place.

Integer Values

Most input-output registers are encoded as integer values of varying widths, up to 32 bits. (There

is no 64-bit integer format in the Power PMAC script environment.) Some internal memory

registers (e.g. control and status words) are also encoded as integers. These are accessed with

either pre-defined data structures or user-defined pointer variables. It is also possible to define

general-purpose pointer variables as integers.

Receiving Numerical Values

Constant values sent from the host as part of command lines are sent as ASCII text, either as

decimal values or hexadecimal values. Hexadecimal values must be preceded by a $ character;

they must be unsigned (non-negative), and they cannot include fractional values.

Decimal values can be positive or negative, and can include fractional values. The Power PMAC

value interpreter can accept both standard decimal notation and exponential notation. In

exponential notation, the mantissa must immediately be followed (no spaces) by the letter “E”

(upper or lower case), with the power of 10 immediately following the “E”. The mantissa does

not need to be normalized. The exponent value must be an integer constant. If it has a decimal

point, it will be treated as an E-axis command.

Power PMAC can accept numerical values to the full range of what can be stored in a particular

variable type. For floating-point variables, values of too great a magnitude result in the variable

taking a value of +infinity; values of too small a magnitude result in the variable taking a value of

+zero.

Examples

1234

3

03 (leading zeros OK)

-27.656

0.001

.001 (integer zero not required)

Power PMAC User’s Manual

Power PMAC Computational Features 546

$ff00 (interpreted as hex, equal to 65280)

3.456E5 (value of 345600)

-7.26e-7 (value of -0.000000726)

256e3 (value of 256000)

Reporting Numerical Values

Power PMAC reports numerical values to the host computer as part of response lines in decimal

ASCII text form. It can report values to the full numerical range of what can be stored. Many

fractional values do not have an exact floating-point binary representation, so a value assigned to

a floating-point variable may report back slightly differently than it was assigned. For example,

P1=1.1

P1

1.10000000000000009

If it is desired to display reported values to a fixed number of decimal digits, user software will

need to perform the required formatting, potentially rounding or truncating the reported value.

Pre-Defined Data Structures

Power PMAC controllers permit user access to virtually all memory and I/O registers through

pre-defined data structures – the same structures that are used in its embedded firmware. This

gives the user easy access to most of the hardware and software registers he will need to use, and

without the need to define the assignments himself.

Data-structure elements include both “control” and “status” registers. Many of the control register

values – those considered part of the basic system setup – are retained in non-volatile flash

memory on a save command, and copied back into the active element registers on the next

power-up/reset.

The elements of these data structures are defined in detail in the Software Reference manual. This

section gives a quick overview.

The most important structures a user will access are:

 Sys. System global data structure

 Motor[x]. Indexed motor data structure

 Motor[x].Servo. Servo algorithm data structure for indexed motor

 Coord[x]. Indexed coordinate system data structure

 Gate1[i]. Indexed DSPGATE1 Servo ASIC data structure

 Gate2[i]. Indexed DSPGATE2 MACRO ASIC data structure

 Gate3[i]. Indexed DSPGATE3 all-purpose ASIC data structure

 Gather. Data gathering function data structure

 CompTable[m]. Indexed compensation table data structure

 CamTable[m]. Indexed cam table data structure

 EncTable[n]. Indexed encoder conversion table data structure

Note that the index numbers start a 0 for each indexable structure.

Individual elements within these structures can be used as variables in user commands and

programs. The elements are of different formats, integer and floating-point, and of varying sizes.

Power PMAC User’s Manual

Power PMAC Computational Features 547

Because the Power PMAC script language performs automatic type matching when accessing

these elements, the formatting is not a serious issue in the script environment. However, when

structure elements are accessed in user C programs through the provided header file, the

programmer must be aware of the data type of each element.

Specifying Data Structure Indices

The index values are inside square brackets (not parentheses). In the Script environment, the

index value must be specified as a non-negative integer constant or as a local variable for the

program or communications thread. No fractional values are permitted if a constant is used. If the

value of a local variable is not exactly equal to an integer, it will be rounded down to the next (not

necessarily nearest) integer.

If a local variable is used to specify the index, it must be used by itself. No mathematical

expressions are permitted in the index specifier. The value of the local variable must be set prior

to its use as a data structure index. A typical example is:

L0 = Ldata.Motor + 1;

Motor[L0].JogSpeed = 100;

Of course, under the IDE project manager, declared or defined user names for the local variables

may be used.

In any indexed structure, the valid index values start at 0 and go to a value one less than the

possible numbers of that structure. The index ranges for the most commonly used structures are

shown here:

 Motor[x] x = 0 to 255 // Motor[x] for #x motor

 Coord[x] x = 0 to 127 // Coord[x] for &x coordinate system

 EncTable[n] n = 0 to 767

 CompTable[m] m = 0 to 255

 CamTable[m] m = 0 to 255

 Gate1[i].Chan[j] i = 0 to 19, j = 0 to 3 // Chan[j] for hardware channel j+1

 Gate2[i].Chan[j] i = 0 to 15, j = 0 to 3 // Chan[j] for hardware channel j+1

 Gate3[i].Chan[j] i = 0 to 15, j = 0 to 3 // Chan[j] for hardware channel j+1

 GateIo[i] i = 0 to 15

When local variables are used to specify an index value, only the variables in the range L0 to

L(1022 – MaxConstantIndex) can be used. For example, for motors, L0 to L767 (1022 – 255 =

767) can be used.

In many applications, some of the data structures with index value of 0 will not be used. Servo

hardware interface channels are auto-assigned to motors and encoder conversion table entries

starting with index values of 1. Coordinate System 0 is typically used just to “park” motors that

have not been assigned to axes in active coordinate system.

Power PMAC User’s Manual

Power PMAC Computational Features 548

User Variables

The Power PMAC script environment provides programmers with large numbers of user

variables of several types with multiple methods of access, providing both flexibility and ease of

use. These variables are held in shared memory in the Power PMAC, providing access from both

tasks running under the real-time kernel and the general-purpose operating system, and both

Power PMAC script programs and compiled C programs.

The variable types are:

 System global (“P”) variables: user variables accessible to any task in Power PMAC

 Coordinate-system global (“Q”) variables: user variables accessible to multiple tasks

operating in the same coordinate system

 Pointer (“M”) variables: global variables that have been assigned by the user to specific

addresses or data structure elements

 Legacy setup (“I”) variables: global variables that have been pre-assigned to specific data

structure elements that are useful for system setup and are stored to flash memory.

Intended as a shortcut for experienced Turbo PMAC users.

 Local (“L”) stack variables: user variables local to a given program or “command

processor” (communications stream)

 Stack/return (“R”) variables: local user variables for passing and returning arguments to

subroutines and subprograms; equivalent to differently numbered L-variables

 Coordinate-system axis (“C”) variables: local user variables for passing axis positions

and velocities to or from kinematic subroutines; equivalent to differently numbered L-

variables

 Non-stack local (“D”) variables: local user variables for creating subroutine arguments

from the letter/number format of the RS-274 “G-code” syntax, for kinematic routine

flags, for axis data queries.

 User shared memory buffer (“Sys.Xdata”) variables: global user array variables in a user-

defined buffer space; several variable formats can be used.

Each variable type is documented in more detail below. There is a fixed number of each of these

variables, documented under the specific variable type, with reserved memory locations for each;

there is no dynamic memory allocation.

Direct Access to User Variables

A variable can be accessed directly by specifying the letter that denotes the variable type

followed by the number of the variable of that type. The number can be expressed as an integer

constant immediately following the letter type – e.g. P100 and L55 – or as a mathematical

expression in parentheses – e.g. Q(L1) and R(P5+P6-2). The range of number values for each

variable type is from 0 to the maximum index value for that type (the number of variables of that

type minus 1).

Power PMAC User’s Manual

Power PMAC Computational Features 549

If the constant specifier of the variable number is not in the valid range (or not an integer), the

statement using this variable specification will be rejected with an error when it is sent to Power

PMAC. If the expression specifying the variable number evaluates to an out-of-range number at

run time, the results will be unpredictable, but no error will be generated. It is the programmer’s

responsibility to ensure that such an expression always evaluates in the proper range. If the

expression does not evaluate exactly to an integer value, it is rounded down to the next integer

(not necessarily the closest integer: 27.9999999 is rounded to 27). If the calculations only involve

integers in the range of possible variable numbers, this is not a concern, but if any floating-point

operations are used to calculate the variable number, the user should force a proper rounding to

the nearest integer before using the resulting value to specify a variable number.

Array Function Access

Note that using a mathematical expression to specify the variable number technically implements

a function call to evaluate the expression and calculate the appropriate variable number, so the

expression is placed inside parentheses, not square brackets. While this capability can be used to

implement array-type functionality, these should strictly be thought of as “array functions”, not

actual arrays. This is in contrast to the indexing of elements in the pre-defined data structures,

which are true arrays and use square brackets to contain the array index value.

User-Specified Variable Names Through IDE

When setting up a Power PMAC project through the Integrated Development Environment (IDE)

on a PC, the user has the capability to assign his own names to user variables. This is strongly

encouraged, as it permits the use of meaningful names, generating easy-to-understand programs.

Automatically Assigned Declared Variables

The programmer establishes user names for variables with “variable declaration statements”, as in

virtually any high-level programming language. The declaration statement starts with the variable

type, followed by a list of one or more of the user names for variables of this type. For pointer

variables, in addition to the name of the variable, the definition of the register(s) to which the

variable points is included (see the section on pointer variables below).

The IDE will then automatically assign the user name to a particular variable in the Power

PMAC. In normal use, it is not necessary for the user to know which variable the name has been

assigned to. The IDE and the Power PMAC keep coordinated and synchronized “symbol tables”

containing the full mapping of user names to Power PMAC variables.

For example, with the declaration

global CycleCount;

the IDE will reserve a system global (“P”) variable for the user’s CycleCount variable. In

subsequent use of the variable in user programs, the IDE will replace the user’s variable name

with the reserved internal variable name. If the IDE reserved variable P517 for CycleCount, it

would replace CycleCount with P517 every time it was used in the entire project.

The IDE will start assigning the underlying variables of each type to user-specified names at the

variable number determined by the xVARSTART directive in the automatically generated

pp_proj.ini file, where “x” is the letter representing the variable type, and the following

number represents the starting variable number used for automatic assignments. Variables with

numbers below this value are safe for “direct” usage. For example, with the PVARSTART 256

Power PMAC User’s Manual

Power PMAC Computational Features 550

directive, system global variables P0 – P255 can be used directly or with manually defined

variable names; P256 and up will be allocated to user-specified variable names.

The default values of the xVARSTART directives in the pp_proj.ini file are:

PVARSTART=8192

QVARSTART=1024

MVARSTART=8192

These can be changed in the “Project Properties” window of the IDE’s project manager.

Through use of the symbol tables, the user can utilize the custom variable names in all windows

of the IDE – the editor, the terminal window, the “watch” window, and more.

User-Specified Array Names

Working in the IDE, the user can also assign an array name and size. The IDE will automatically

assign a consecutively numbered group of variables of the type declared to the array. For

example, with the declaration

global IncrementDist(512);

the IDE will reserve 512 consecutive system global (“P”) variables for the IncrementDist

array. In subsequent use of the array in user programs, the IDE will add the “base number” of the

array to the user’s specified array index. For example, if the IDE assigned variables starting at

P860 to this array, if the program used IncrementDist(CycleNum) in the program, the IDE

would replace this with P(860+CycleNum).

!
Caution

It is the programmer’s responsibility to ensure that index

numbers used for these arrays do not go out of the declared

range. Power PMAC provides no range-checking functionality.

With a declared array name, the name can be used in vector or matrix function calls that require

the starting variable number as an argument. With the above declaration, the following could be

used:

MyTotalDist = sum(&IncrementDist(0), 512, 1)

instead of:

MyTotalDist = sum(860, 512, 1)

to calculate the sum of all values in the array. This means the programmer does not need to know

which numbered variables are assigned to the array.

Power PMAC User’s Manual

Power PMAC Computational Features 551

Note

Arrays with user variables are fundamentally one-dimensional

(although they can be used in 2D matrix functions). Users who

want 2D or 3D arrays can use the data points for 2D or 3D

compensation tables (CompTable[m].Data[j][i] or

CompTable[m].Data[k][j][i]). The table does not have to be

enabled, and probably should not be, but its structure must be

defined, for this use.

Manually Defined Variable Names

It is also possible to assign user names directly to specific Power PMAC variables in the IDE

through the #define directive. This is most commonly used when converting projects from

Turbo PMAC environment, which did not have the capability for automatically assigned

(declared) variable names, but which did permit these manually assigned names. Sample

assignments include:

#define TargetPressure P100

#define CornerRadius Q53

#define SolenoidOn M233

It is strongly recommended that any of these manual definitions be assigned to variables with

numbers below the start of the automatically assigned (declared) definitions. If this practice is

maintained, it will not be possible for “declared” variable names to use the same underlying

variable numbers as “defined” variable names.

Accessing User Variable Names

When communicating to the Power PMAC controller through the on-board “gpascii”

communications application, user variable names, declared or defined, can be used instead of the

underlying numbered variable names provided the application is started with the “-2” argument –

that is, the application is run with the command gpascii -2.

When this is done, the communications application will check command lines against the

automatically generated “symbol table” for variable names and substitute the underlying

numbered variable name. This process is invisible to the user. It does add some computational

overhead to communications, but in most applications, this is not noticeable.

System Global (“P”) Variables

Power PMAC has a large set of system global “P” variables. These variables can be accessed by

any task on the Power PMAC, so they are ideal for sharing data between tasks. These system

global variables are 64-bit floating-point values, but can also be used for integer-type

calculations. Power PMAC provides 65,536 of these system global variables (P0 – P65535).

In most applications, use of these variables will be managed through the IDE. In the IDE, the user

will declare a variable as “global”, followed by the user’s name for the variable. As a global

variable, the declaration must be outside of any program in the project. Sample declarations

include:

global RunLength, CycleCount;

global LineSpeed;

global PartWidth(1000);

Power PMAC User’s Manual

Power PMAC Computational Features 552

The IDE will automatically assign a unique system global variable (or consecutive set of

variables in the case of an array declaration) to that user name, and no programmer or operator

will need to know which internal variable register is used for that name.

It is also possible to access these variables directly. With direct access, these are known as “P”

variables, and an individual variable is specified by the letter “P” followed by a numerical value.

The numerical value can either be specified as an integer constant immediately following the

letter “P”, or as a mathematical expression in parentheses. Examples include:

P17=3.14159;

P200=P100+1;

P(P1)=7;

P2=L(Q13+Q14-1);

It is also possible in the Script environment to access numbered P-variables through the

corresponding data structure elements: Sys.P[i] for variable Pi. In the C environment, these can

be accessed through the pointer to shared memory: pshm->P[i] for variable Pi.

Coordinate System Global (“Q”) Variables

Power PMAC has a large set of coordinate-system-specific global variables. These variables can

be shared between multiple tasks working in the same coordinate system on the Power PMAC,

but they are unique to each coordinate system. Since a motion program can be executed by

multiple coordinate systems, these variables permit independent operation of the program in each

coordinate system.

These system global variables are 64-bit floating-point values, but can also be used for integer-

type calculations. Power PMAC provides 8,192 of these coordinate-system-specific global

variables per coordinate system, without any overlap (so all 8,192 are available for every

coordinate system, no matter how many coordinate systems are active).

In most applications, use of these variables will be managed through the Integrated Development

Environment (IDE). In the IDE, the user will declare a variable as “csglobal”, followed by the

user’s name for the variable. As a global variable, the declaration must be outside of any program

in the project. Sample declarations include:

csglobal RunLength, CycleCount;

csglobal LineSpeed;

The IDE will automatically assign a set of unique coordinate-system-specific global variables –

one for each coordinate system – to that user name, and no programmer or operator will need to

know which internal variable registers are used for that name.

It is also possible to access these variables directly. With direct access, these are known as “Q”

variables, and an individual variable is specified by the letter “Q” followed by a numerical value.

The numerical value can either be specified as an integer constant immediately following the

letter “Q”, or as a mathematical expression in parentheses. Examples include:

Q17=3.14159;

Q200=Q100+1;

Q(Q1)=7;

Q2=P(L13+L14-1);

Power PMAC User’s Manual

Power PMAC Computational Features 553

In an on-line command, the presently addressed coordinate system (from the most recent &n

command) determines which set of Q-variables the command accesses. In a motion program, the

number of the coordinate system running the program determines which set of Q-variables the

command accesses. In a PLC program, the coordinate system specified by the data structure

element Ldata.Coord determines which set of Q-variables the command accesses.

It is also possible in the Script environment to access numbered Q-variables through the

corresponding data structure elements: Coord[x].Q[i] for variable Qi in Coordinate System x. In

the C environment, these can be accessed through the pointer to shared memory:

pshm->Coord[x].Q[i] for variable Qi in Coordinate System x.

User Pointer (“M”) Variables

While the pre-defined data structures of the Power PMAC eliminate much of the need in earlier

PMAC controllers for user-assigned pointer variables, these variables are still available and will

provide good functionality for many users. These system global pointer variables can be assigned

to data structure elements, user memory locations, user I/O locations, or “self-defined” to part of

their own definition word. Power PMAC provides 16,384 M-variables (M0 – M16383).

In most applications, use of these variables will be managed through the IDE. In the IDE, the user

will declare a variable as “ptr”, followed by the user’s name for the variable, the “->” pointing

symbol, and the assignment of the pointer. As a global variable, the declaration must be outside

of any program in the project. Sample declarations include:

ptr LaserOn->u.io.$A00000.8.1

ptr LaserMag->Gate1[4].Chan[3].Dac[1]

It is also possible in the Script environment to access numbered M-variables through the

corresponding data structure elements: Sys.M[i] for variable Mi. It is not possible to access M-

variables (which are actually functions) directly in the C environment. They must be accessed

instead through API function calls.

Pre-Defined Setup Pointer (“I”) Variables

Users of PMAC and Turbo PMAC systems will remember that numbered “I” variables are used

in those controllers to customize the setup for a particular application. While these have been

superseded in Power PMAC by the saved control elements of pre-defined data structures, those

control elements that match a Turbo PMAC I-variable can also be accessed by the same

numbered I-variable as used on the Turbo PMAC. This is intended as a convenient shortcut for

those users who have experience with Turbo PMAC.

For example, the Power PMAC structure element Motor[x].HomeVel sets the commanded

velocity of a homing search move for the specified motor. This same function was accomplished

by variable Ixx23 in Turbo PMAC. So Motor[1].HomeVel (for Motor 1 in Power PMAC) can

alternately be accessed as I123.

To see which structure element is addressed by a given I-variable, the Power PMAC can be

queried with the I{data}-> on-line command. For example, the command

I123->

causes Power PMAC to return:

Power PMAC User’s Manual

Power PMAC Computational Features 554

Motor[1].HomeVel

Similarly, for coordinate systems, structure elements whose functions are the same as for Turbo

PMAC controllers can also be accessed through those I-variable names. The command:

I5198->

causes Power PMAC to return:

Coord[1].MaxFeedRate

Note that Power PMAC motor and coordinate-system numbering start with zero, although Motor

0 and C.S. 0 are seldom used. I0 – I99 are reserved for the setup variables of Motor 0; I5000 –

I5099 are reserved for the setup variables of C.S. 0. For example I23 is the homing velocity for

Motor 0; I5098 is the maximum feedrate for C.S. 0.

Existing global setup variable numbers have been moved to the I8000 – I8099 range For example,

the old I10 is now I8010, and the command:

I8010->

causes Power PMAC to return:

Sys.ServoPeriod

Saved control elements for newly added functions or for additional items (e.g. increased numbers

of motors and coordinate systems) do not have I-variables assigned to them. However, they

function exactly the same as those that do have I-variables assigned to them.

I-variables that are not assigned to a Power PMAC data structure element (their assignment is

reported as “*”) can be used as general-purpose double-precision floating-point variables. All I-

variables from I8192 through I16383 can be used this way.

Local (“L”) Variables

In addition to global variables that can be shared between programs, the Power PMAC script

language provides a large set of variables that are local to a specific program or task set. Each

top-level program and each communications thread has its own independent set of these

variables.

These local variables are 64-bit floating-point values, but can also be used for integer-type

calculations. The standard software configuration of the Power PMAC provides 8192 of these

local variables per top-level program or communications thread, but alternate configurations may

provide a different number of these.

In most applications, use of these variables will be managed through the Integrated Development

Environment (IDE). In the IDE, the user will declare a variable as “local”, followed by the user’s

name for the variable. As a local variable, the declaration must be inside of any program in the

project. Sample declarations include:

local RunLength, CycleCount;

local LineSpeed;

Power PMAC User’s Manual

Power PMAC Computational Features 555

The IDE will automatically assign a unique local variable to that user name, and no programmer

or operator will need to know which internal variable registers are used for that name.

It is also possible to access these variables directly. With direct access, these are known as “L”

variables, and an individual variable is specified by the letter “L” followed by a numerical value.

The numerical value can either be specified as an integer constant immediately following the

letter “L”, or as a mathematical expression in parentheses. Examples include:

L17=3.14159;

L200=L100+1;

L(L1)=7;

L2=L(P13+P14-1);

In a subprogram called with a call statement, or a subroutine in the same program called with a

callsub statement, variable L0 of the called subprogram/subroutine is the same variable as R0

in the calling program/routine, L1 in the called is the same as R1 in the calling, and so on. This

permits true argument passing and returning in subprograms and subroutines.

Variable R0 in the calling program/routine is the same as L(StackOffset) in the same

program/routine, where StackOffset is declared for the program in the open command that

precedes the downloading of program text. If no value is explicitly declared, Power PMAC sets

StackOffset to 256. If the program is downloaded through the IDE project manager, the IDE

automatically calculates and declares the smallest value of StackOffset needed to support the

number of local variables used in that program.

The following diagram shows the relationships between local variables in the calling and called

routines for the default stack offset.

Top Level Sub 1 Sub 2

L0

L255

R0/L256

R255/L511

L0

L255

R0/L256

R255/L511

L0

L255

R0/L256

R255/L511

Local Variable Subroutine Stack Example

Power PMAC User’s Manual

Power PMAC Computational Features 556

It is possible to access these local L-variables from outside the routine, a capability that is mainly

used for debugging purposes. Status elements Coord[x].Ldata.Lindex or Plc[i].Ldata.Lindex

contain the number of L0 for the presently executing (or suspended) routine relative to the “base”

L0 for the coordinate system or PLC program. Coord[x].Ldata.L[n] or Plc[i].Ldata.L[n]

contain the value of Ln for the presently executing (or suspended) routine.

Return/Stack (“R”) Variables

To facilitate argument passing and returning with subprograms and subroutines, Power PMAC

supports a stack structure of local variables and an alternate naming of local variables on the stack

with “R-variable” names.

Variable Ri of a calling program or routine is the same as variable Li in the called subprogram or

subroutine. Within the calling program or routine, Ri is the same as L(StackOffset+i), where

StackOffset is declared for the program in the open command that precedes the downloading of

program text. If no value is explicitly declared, Power PMAC sets StackOffset to 256. If the

program is downloaded through the IDE project manager, the IDE automatically calculates and

declares the smallest value of StackOffset needed to support the number of local variables used in

that program.

This scheme permits the use of generic subprograms that can be called from many different

higher-level programs with true independent argument passing and returning. As a simple

example, we will look at a subprogram that uses the Pythagorean Theorem to compute and return

a “diagonal” value from two “perpendicular values passed to it. In “raw” Power PMAC code,

without variable declarations and substitutions, the code for this subprogram could be:

open subprog 100

L2=sqrt(L0*L0+L1*L1);

close

This subprogram could then be invoked with Power PMAC code (again without variable

declarations and substitutions) like:

R0=3; R1=4;

call 100;

// Returned result is available in R2

The IDE project manager supports user names for the variables and subprogram/subroutine

names, so the subprogram could be written in the IDE as:

open subprog Pythag (Run, Rise, &Hypot)

Hypot=sqrt(Run*Run+Rise*Rise);

close

This would result in actual Power PMAC code like that shown above.

In the IDE, this subprogram would be invoked with a program statement like:

call Pythag (Xvelocity, Yvelocity, &VectorVel);

This would result in actual Power PMAC code like:

R0=P8207; R1=P8208; call 100; P8215=R2;

Power PMAC User’s Manual

Power PMAC Computational Features 557

where P8207, P8208, and P8215 are the auto-assigned (global) variables for Xvelocity,

Yvelocity, and VectorVel, respectively.

It is possible to access these local R-variables from outside the routine, a capability that is mainly

used for debugging purposes. Coord[x].Ldata.R[n] or Plc[i].Ldata.R[n] contain the value of Rn

for the presently executing (or suspended) routine for the coordinate system or PLC program.

Coordinate System Kinematic Axis (“C”) Variables

When using forward and inverse kinematic subroutines to convert between motor (“joint”) and

axis (“tool-tip”) coordinates for complex geometries, the subroutines use local variables for the

kinematic motor and axis values. Motor positions use variables L0 to L(Sys.MaxMotors - 1) for

Motor 0 to Motor (Sys.MaxMotors - 1), respectively. Axis positions use variables C0 to C31 for

the 32 potential axis positions for the coordinate system. Axis velocities use variables C32 to C63

for the 32 potential axis velocities (needed only for PVT-mode velocity calculations).

C-variables are simply renamed L-variables for the coordinate system. C0 is the same as

L(MAX_MOTORS), C1 is the same as L(MAX_MOTORS + 1), and so on, where

MAX_MOTORS is the largest permitted value for Sys.MaxMotors (256 in most Power PMAC

implementations).

The IDE project manager automatically provides user names for these C-variables: KinPosAxisA

for C0, KinPosAxisB for C1, and so on. For more details on C-variables, refer to the section on

kinematic subroutines in the Coordinate System chapter of the User’s Manual.

It is possible to access these local C-variables from outside the routine, a capability that is mainly

used for debugging purposes. Coord[x].Ldata.C[n] or Plc[i].Ldata.C[n] contain the value of Cn

for the presently executing (or suspended) routine for the coordinate system or PLC program.

Non-Stack Local (“D”) Variables

Local D-variables for a coordinate system, PLC program, or communications thread are used for

some specific passing of data. These variables are not on a stack, so repeated use of them can

cause overwriting of existing values.

If a subroutine or a subprogram executes a read command, the values associated with the

specified single or double letters are automatically assigned to D-variables for the coordinate

system executing the motion program, or the top-level PLC program. The main purpose of this

functionality is to provide arguments for subroutines while keeping the top-level program in the

traditional letter/number format of RS-274 “G-codes”.

Values associated with single letters A – Z are assigned to D1 – D26, respectively. Values

associated with double letters AA – ZZ are assigned to D27 – D52, respectively. Bit n-1 of D0 is

set to 1 if the most recent read command assigned a value to Dn; it is 0 otherwise.

D-variables are also used to hold the responses to axis query commands, including the buffered

program commands dread, dtogread, fread, pread, tread, and vread, plus the on-line

commands (when immediately preceded by an &x coordinate-system specifier) d, f, g, p, t, and

v. In this case, D0 – D31 are used for the values for the A – ZZ axes, respectively.

Power PMAC User’s Manual

Power PMAC Computational Features 558

Variable D0 for a coordinate system has several uses with the kinematic subroutines. Power

PMAC will automatically set D0 on the entry to the forward-kinematic routine to denote whether

it wants one or two passes through the routine (two passes are needed to compute velocities and

following errors.) The user’s forward kinematic code must set D0 on exiting the routine to tell

Power PMAC which axis values have been computed, with bits 0 – 31 used for the A – ZZ axes,

respectively.

Power PMAC will automatically set D0 on the entry to the inverse-kinematic routine to denote

whether it wants to compute motor velocities from axis velocities (as well as motor positions

from axis positions) or not. Velocity calculations are only used for PVT-mode moves when the

coordinate system is not in segmentation mode.

It is possible to access these local D-variables from outside the routine. Coord[x].Ldata.D[n] or

Plc[i].Ldata.D[n] contain the value of Dn for the presently executing (or suspended) routine for

the coordinate system or PLC program.

User Shared Memory Buffer Variables

Power PMAC has a “user shared memory” (ushm) buffer that can be used to store and share large

numbers of variable values, accessible by all programs and communications threads in a variety

of different ways. This buffer is particularly useful if there are not enough provided global

variables for the application.

By default, Power PMAC reserves 1 Mbyte of memory for the user shared memory buffer. This

can be changed by the user as part of his project management. In the IDE’s Project Manager

“Properties” control window, the “User Buffer” size can be defined (in Mbytes). The resulting

size is stored in the “ppproj.ini” project configuration file.

The base address of this buffer can be found in the global status element Sys.pushm. It is seldom

needed to know the numerical value of this address, but this element can be useful to derive the

address of specific registers without the need to specify the absolute address of a register.

Buffer Data Structure Elements

Registers in the user shared memory buffer can be accessed using data structure elements,

interpreting the register contents in a variety of different ways. The possible data structure

elements are:

 Sys.Ddata[i] Double-precision (64-bit, 8-byte) floating-point format

 Sys.Fdata[i] Single-precision (32-bit, 4-byte) floating-point format

 Sys.Idata[i] Signed integer (32-bit, 4-byte) format

 Sys.Udata[i] Unsigned integer (32-bit, 4-byte) format

 Sys.Cdata[i] Character (8-bit, 1-byte) format

The index value i for the element can be an integer constant (e.g. Sys.Ddata[3975]) or a local

variable (e.g. Sys.Udata[L43]). Expressions cannot be used directly for the index number;

instead, their value must first be assigned to a local variable (e.g. L43=P92*P93-1).

It is important to note that all of these data structures access the same registers in the buffer. If the

user wishes to employ multiple formats in the buffer, it is his responsibility to make sure there are

no conflicts.

Power PMAC User’s Manual

Power PMAC Computational Features 559

The following table shows how the first 16 bytes of the buffer can be accessed in the different

formats:

Sys.pushm + Ddata Fdata Idata Udata Cdata

 [0]

0 [0] [0] [0] [1]

 [2]

 [0] [3]

 [4]

4 [1] [1] [1] [5]

 [6]

 [7]

 [8]

8 [2] [2] [2] [9]

 [10]

 [1] [11]

 [12]

12 [3] [3] [3] [13]

 [14]

 [15]

User Shared Memory Buffer Data Structure Organization

Note

It is not recommended to use the 8 bytes starting at Sys.pushm

for application purposes. At re-initialization, Power PMAC

motors that do not have any interface hardware assigned to

them have their output pointers assigned to Sys.pushm. If any

of these motors is activated before the pointers are changed,

any values in these bytes will be overwritten.

M-Variable Access

In some applications, it may be useful to access user shared memory buffer registers through

Power PMAC’s M-variable pointers. This is particularly valuable in conjunction with the IDE

Project Manager’s facility for declared variable names. For example, the declaration:

ptr LineSpeed->Sys.Fdata[4096];

permits the use of the declared variable name in programs and commands.

The M-variable can also declared with a local variable for the index in brackets, permitting access

to an entire array with a declared variable name. For example, with the declaration:

ptr CycleTime->Sys.Fdata[L100];

the following code is possible:

TotalTime = 0.0;

L100=5000;

while (L100 < 10000) TotalTime += CycleTime; L100++;

Power PMAC User’s Manual

Power PMAC Computational Features 560

Alternatively, an M-variable can be declared to an element or part of an element by offset from

the base address using the syntax:

Mn->{format}.user:{byte offset}.[{bit offset}.{width}]

For example:

ptr InsertionComplete->u.user:$3000.7.1

Access from C Routines

Elements in the user shared memory buffer can be accessed from C routines using pointer

variables. For example, with the variable declarations:

int *MyUshmIntVar;

double *MyUshmDarray;

the pointers can be assigned with commands such as:

MyUshmIntVar = (int *) pushm + 9; // Sys.Idata[9]

MyUshmDarray = (double *) pushm + 8192 // Sys.Ddata[8192]

Operators

Power PMAC Script operators work like those in any computer language: they combine values to

produce new values. Detailed descriptions of the operators are given in the Software Reference

manual; overviews are given here.

Arithmetic Operators

Power PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic

precedence rules are used: multiply and divide are executed before add and subtract, operations of

equal precedence are executed left to right, and operations inside parentheses are executed first.

Modulo Operator

Power PMAC Script also has the % modulo operator, which produces the resulting remainder

when the value in front of the operator is divided by the value after the operator. Values may be

integer or floating-point. This operator is particularly useful for dealing with counters and timers

that roll over. The modulo operation has equal precedence with multiplication and division

operations.

When the modulo operation is done by a positive value x, the results can range from 0 to x (not

including x itself). When the modulo operation is done by a negative value x, the results can range

from -x to 0 (not including -x itself). Note that operation with a negative divisor works differently

from in PMAC and Turbo PMAC, but is consistent with the C standard. The “rem” remainder

function can be used to obtain results like those with the negative modulo divisor in PMAC and

Turbo PMAC.

Bit-Wise Operators

Power PMAC Script has three logical operators that do bit-by-bit operations: & (bit-by-bit AND),

| (bit-by-bit OR), and ^ (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the

operation works on the fractional as well as the integer bits. & has the same precedence as * and

Power PMAC User’s Manual

Power PMAC Computational Features 561

/; | and ^ have the same precedence as + and -. Use of parentheses can override these default

precedence levels.

Power PMAC also provides the << “shift-left” operator, where the value preceding the operator is

shifted left by the number of bits specified by the value to the right of the operator, and the >>

“shift-right” operator, where the value preceding the operator is shifted right by the number of

bits specified by the value to the right of the operator.

In addition, Power PMAC provides the unary ~ “complement” operator, which logically inverts

the bits of the value following it.

Standard Assignment Operators

Power PMAC has a significant set of assignment operators, which cause the Power PMAC to

write a value into the variable(s) immediately preceding it in the command. Many of the

assignment operators combine a mathematical or logical operation with the assignment,

permitting compact and efficient code.

Only the basic “=” assignment operator can be used in on-line commands. All of the compound

operators can only be used in motion and PLC program commands.

This set of assignment operators is “standard” in that the value is written to the variable(s) as

soon as it is computed in the normal program flow. This is different from the “synchronous”

assignment operators, for which the actual value assignment is delayed until the start of actual

execution of the next programmed move.

The standard assignment operators provided are: =, +=, -=, *=, /=, %=, &=, |=, ^=, >>=, <<=,

++, and --.

Synchronous Assignment Operators

Power PMAC has a matching set of “synchronous” assignment operators comparable to the

standard operators. The synchronous assignment operator adds an additional “=” character to the

comparable standard assignment operator.

These can only be used in buffered program commands, not in on-line commands. With a

synchronous assignment operator, the actual assignment to the variable is delayed until the start

of actual execution of the next commanded move in the program.

The basic synchronous operator is ==. It can be used to assign a value to either an integer or a

floating-point variable.

The arithmetic synchronous operators are +==, -==, *==, /==, %==, ++=, and --=. The *==,

/==, and %== can only be used to assign values to floating-point variables.

The logical synchronous operators are &==, |==, and ^==. They can only assign values to

integer variables.

For more details on the use of these operators, refer to Synchronous Variable Value Assignment,

below.

Power PMAC User’s Manual

Power PMAC Computational Features 562

Functions

Power PMAC provides a full set of mathematical functions operating on scalar, vector, and

matrix operands. These make sophisticated mathematical operations simple, compact, and

efficient.

Scalar Functions

The Power PMAC script language provides an extensive set of “scalar” functions, which return a

single numeric value. Each function is documented in detail in the Software Reference Manual.

 Trigonometric functions (using radians): sin, cos, tan, sincos

 Inverse trigonometric functions (using radians): asin, acos, atan, atan2

 Trigonometric functions (using degrees): sind, cosd, tand, sincosd

 Inverse trigonometric functions (using degrees): asind, acosd, atand, atan2d

 Hyperbolic functions: sinh, cosh, tanh

 Inverse hyperbolic functions: asinh, acosh, atanh

 Log/exponent functions: log (or ln), log2, log10, exp, exp2, exp10, pow

 Root functions: sqrt, cbrt, qrrt, qnrt

 Random number generation: rnd, randx, seed

 General functions: abs, sgn, rem, isnan, madd (combined multiply and add)

Note

Trigonometric functions in PMAC and Turbo PMAC could use

radians or degrees as determined by setup variable I15. In

Power PMAC, the distinction is made by the function used

(e.g. sin uses radians, sind uses degrees).

Vector Functions

The Power PMAC script language provides several functions that operate on entire vectors,

where a set of continuously numbered system global (“P”) variables or local (“L”) variables is

treated as a vector. Since a 2D matrix is also formed by a set of continuously numbered system

global variables, these operations can also be used on matrices.

If it is desired to use P-variables in the vectors, non-saved setup element Ldata.Control for the

program or thread should be set to its power-on default value of 0. If it is desired to use L-

variables in the vectors, Ldata.Control should be set to 1. If it is desired to use Sys.Ddata[i]

elements in the vectors, Ldata.Control should be set to 2.

Power PMAC User’s Manual

Power PMAC Computational Features 563

Functions that produce new vectors (the returned value is a Boolean flag indicating whether the

function operated successfully; lack of “success” would usually be to an out-of-range argument,

such as a negative number of elements) are:

 vadd: Adds two vectors/matrices together to produce a third vector/matrix.

 vcopy: Copies the contents of one vector/matrix into a second vector/matrix.

 vscale: Multiplies each element of the vector/matrix by a common factor, putting the

results into a second vector/matrix.

Functions that produce scalar quantities (as the returned value) only are:

 sum: Adds a number of evenly spaced elements of the vector/matrix together, returns the

sum. Useful for calculating trace of a matrix.

 sumprod: Multiplies pairs of elements of two vectors/matrices together, with

independently specified spacing in each vector matrix. Adds the products together,

returns the sum. Useful for calculating dot products.

These functions require as an argument the variable number to be used as the start of a vector. If

the vector has been declared in the IDE project manager as an array with a user variable name,

then the user variable name, preceded by the “&” character, can be used instead of the variable

number. For example, with the following declarations:

global SurfaceNormal(3);

global ToolNormal(3);

the following command could be used:

AngleCosine = sumprod(&SurfaceNormal, &ToolNormal, 3, 1, 1)

This will take the dot product of these two vectors without needing to know what the underlying

variable numbers are.

Matrix Functions

The Power PMAC script language provides multiple matrix functions. These operate on entire 2D

matrices, where a set of continuously numbered system global (“P”) variables or local (“L”)

variables is treated as a matrix organized into rows and columns.

If it is desired to use P-variables in the matrices, non-saved setup element Ldata.Control for the

program or thread should be set to its power-on default value of 0. If it is desired to use L-

variables in the matrices, Ldata.Control should be set to 1. If it is desired to use Sys.Ddata[i]

elements in the matrices, Ldata.Control should be set to 2 (new in V1.5 firmware, released 2nd

quarter 2012).

Functions that produce new matrices (the returned value is either a Boolean flag indicating

whether the function operated successfully; lack of “success” would usually be to an out-of-range

argument, such as a negative number of elements, or the determinant of an input matrix to the

function; in either case, a returned value of 0 means the operation did not produce a valid result)

are:

Power PMAC User’s Manual

Power PMAC Computational Features 564

 mmul: Multiplies two matrices together to create a third matrix

 mmadd: Multiplies two matrices together and adds the product matrix to a third matrix

 minv: Inverts a square matrix to create a second matrix

 mtrans: Transposes a matrix to create a second matrix

 msolve: Solves the simultaneous set(s) of equations represented by a square

(coefficient) matrix and a second (constant) vector/matrix, overwriting this second

vector/matrix with the solutions

Functions that produce scalar quantities (as the returned value) only are:

 mdet: Calculates the determinant of a square matrix

 mminor: Calculates the minor determinant of a square matrix with the specified row and

column removed

These functions require as an argument the variable number to be used as the start of a matrix. If

the matrix has been declared in the IDE project manager as an array with a user variable name,

then the user variable name, preceded by the “&” character, can be used instead of the variable

number. For example, with the following declarations:

global RotationA(9);

global RotationB(9);

global NetRotation(9);

global NetRotDet;

the following command could be used:

NetRotDet = mmul(&NetRotation, &RotationA, &RotationB, 3, 3, 3)

This will multiply these two 3x3 matrices without needing to know what the underlying variable

numbers are.

Expressions

A Power PMAC script-language expression is a mathematical construct consisting of constants,

variables, and functions, connected by operators. Expressions can be used to assign a value to a

variable, to determine a motion-program parameter, or as part of a condition. A constant alone

can be an expression, so if the syntax calls for {expression}, a constant may be used as well

as a more complicated expression. In this case, no extra parentheses are required for more

complicated expressions, unlike the case where the {data} syntax is specified (see below).

Examples of Power PMAC expressions (using unsubstituted variable names) are:

512

P1

P1+512

1000*cosd(Q25*3.14159/180)

I100*abs(M347)/atand(P(Q3+1)/6.28)+5

Power PMAC User’s Manual

Power PMAC Computational Features 565

The {data} Syntax

For Power PMAC script language purposes, if the command syntax calls for {data}, the user

can utilize either a constant that is not surrounded by parentheses, or an expression that is

surrounded by parentheses. (Since a constant alone is a valid expression, it is legal to put a

constant in parentheses in these cases, but this takes more calculation time and storage.)

For example, if the listed command syntax is R{data}, it is legal to use R100,

R(P1+250*P2), or R(100) (which is legal but inefficient).

Standard Variable Value Assignment

The standard variable assignment statement calculates and assigns a value to a variable. The

“standard” assignment (as opposed to delayed “synchronous” assignment covered in the next

section) with the basic “=” assignment operator can be used either as an on-line command or a

buffered program command (in a motion program or PLC program). The compound standard

assignment operators can only be used in buffered program commands.

The standard assignment syntax is:

{variable} {standard assignment operator} {expression}

where {variable} specifies which variable is to be given a value, {standard

assignment operator} specifies how the expression value is to be used in the assignment,

and {expression} represents the value to be used in the assignment to the variable.

In program execution, the expression value is calculated and used in the assignment to the

variable, immediately as the statement is encountered in the program flow. This can occur

significantly before the actual execution of moves commanded from the program immediately

following in the program flow, as the move execution can be delayed for various reasons.

The standard assignment operators are:

 = (value of expression assigned to variable)

 += (value of expression added to variable value)

 -= (value of expression subtracted from variable value)

 *= (value of expression multiplied with variable value)

 /= (value of expression divided into variable value)

 %= (value of expression divided into variable value for remainder)

 |= (value of expression bit-by-bit ORed with variable value)

 &= (value of expression bit-by-bit ANDed with variable value)

 ^= (value of expression bit-by-bit XORed with variable value)

 >>= (variable value shifted right by value of expression)

 <<= (variable value shifted left by value of expression)

 ++ (increment variable value by 1)

 -- (decrement variable value by 1)

Power PMAC User’s Manual

Power PMAC Computational Features 566

Synchronous Variable Value Assignment

The synchronous variable assignment statement calculates an expression value and uses it to

assign a value to a variable, but delays the assignment until the start of actual execution of the

next move commanded from the program. This type of statement can only be used in a motion or

PLC program; it cannot be used in an on-line command.

The synchronous assignment syntax is:

{variable} {synchronous assignment operator} {expression}

where {variable} specifies which variable is to be given a value, {synchronous

assignment operator} specifies how the expression value is to be used in the assignment,

and {expression} represents the value to be used in the assignment to the variable.

When this type of statement is encountered during program execution flow, the value of the

expression is evaluated immediately. Then this value and the assignment operator are placed in a

dedicated assignment queue. When the next move commanded from the program actually

commences execution, the value and assignment operator are pulled from the queue and used for

the actual assignment to the specified variable. This assignment is done at the real-time interrupt

(RTI) priority level.

For segmented moves (linear, circle, or pvt with Coord[x].SegMoveTime > 0), the assignment is

done at the beginning of the first segment to start within the new programmed move.

Note carefully that for synchronous assignments other than the == direct assignment, the value of

the target variable is read at the delayed “synchronous” time and combined with the value of the

expression that was evaluated at the earlier “lookahead” time.

The synchronous assignment operators are:

 == (value of expression assigned to variable)

 +== (value of expression added to variable value)

 -== (value of expression subtracted from variable value)

 *== (value of expression multiplied with variable value)

 /== (value of expression divided into variable value)

 |== (value of expression bit-by-bit ORed with variable value)

 &== (value of expression bit-by-bit ANDed with variable value)

 ^== (value of expression bit-by-bit XORed with variable value)

 ++= (increment variable value by 1)

 --= (decrement variable value by 1)

Variables That Can Be Assigned Synchronously

Most variable types can have a value synchronously assigned to them through this feature. (This

is unlike the older PMAC and Turbo PMAC controllers, where only the M-variable pointers

could have values synchronously assigned.) However, local variables (L, R, C, and D) cannot

have values synchronously assigned, as the “context” in which that variable was used could

change between calculation and assignment.

Also, “self-defined” M-variables, which use part of their definition to store a value, cannot have

values synchronously assigned. In older PMACs, synchronous assignment to self-defined M-

Power PMAC User’s Manual

Power PMAC Computational Features 567

variables was a way of using the functionality for effective general-purpose variables. In Power

PMAC, the assignment can be made directly to general-purpose user variables.

The multiplication and division synchronous assignments *== and /== can only be made to

floating-point variables. The logical AND, OR, and XOR synchronous assignments &==, |==,

and ^== can only be made to integer variables.

Why Needed in Motion Programs

In a motion program, when Power PMAC is blending or splining moves together, it must be

calculating in the program ahead of the actual point of movement. This is necessary in order to be

able to blend moves together at all, and also to be able to do reasonable velocity and acceleration

limiting. Depending on the mode of movement, calculations while blending may occur one, two,

or more moves ahead of the actual movement.

When assigning values to variables is part of the program calculation, the variables will get their

new values ahead of their place in the program when looking at actual move execution. For many

internal variables, this is generally not a problem, because they exist only to aid further motion

calculations. However, for some variables, particularly those representing physical outputs, this

can be a problem, because with a normal variable value assignment statement, the action will take

place sooner than is expected, looking at the statement’s place in the program.

Consider the motion program segment:

X10; // Move X-axis to 10

X20; // Move X-axis to 20

Q1 = 30; // Set Q1 to 30

M1 = 1; // Turn on Output 1

M2 == 1; // Turn on Output 2

X(Q1); // Move X-axis to Q1

Assume that the motion program is calculating

one move ahead of the resulting move execution

to permit blending, but other advanced functions

such as the lookahead buffer are not enabled.

Power PMAC will calculate the moves specified

by X10 and X20, including the blending

between them, and start executing the move to

X10. When the move execution progresses into

the blend to the X20 move, Power PMAC will

resume motion program calculations to be able

to blend the X20 move into the next move (if

any).

The command Q1=30 is a standard assignment,

and so executed immediately. This is

appropriate, because this value will be needed to

calculate the next move in the program.

The command M1=1, which turns on Output 1, is also a standard assignment that is executed

immediately. Even though this assignment occurs after the X20 move command in the program,

P
o

s

time

M
1

time

t1 t2 t3

10

20

30

t1 t2 t3

1

0

M
2

time
t1 t2 t3

1

0

Power PMAC User’s Manual

Power PMAC Computational Features 568

it will be executed before the execution of this move. Generally, this is not the desired behavior

for setting outputs during motion.

The command M2==1, which turns on Output 2, is a synchronous assignment. When it is

encountered in the program, the value (1) and the assignment operator (==) are put in the

assignment queue, but the actual assignment to M2 is not made yet. Next, the move command

X(Q1) is evaluated, and the resulting equations of commanded motion are placed in the motion

queue. Later, when the execution of this move begins, and these equations are pulled from the

motion queue for execution, the pending assignment of M2 to 1 is pulled from the assignment

queue and executed. This means that the setting of M2 occurs at the beginning of the actual

execution of the following move commanded from the program, which is typically the desired

behavior for setting outputs during motion.

Why Needed in PLC Programs

Synchronous assignments are also useful in PLC programs, but for a different reason. Unlike

motion programs, the execution of a PLC program is not suspended after it commands a move.

Therefore, if the user wants to check to see when the commanded move is finished, he must do

this explicitly in the program – there is no “sequencer” working underneath as in motion

programs.

Conceptually, the following logic is often desired:

X10; // Move X-axis to 10

while (Motor[1].DesVel != 0) {} // Wait for move over

M3 = 1; // Turn on Output 3 at destination

However, if the PLC code were implemented like this, there is a good chance that the condition

would be evaluated before the move execution actually started, because that move execution

could not begin until the next servo cycle at the earliest. This means that the output could get set

at the beginning, not the end of the move.

In addition, in many applications of this type, there is a possibility that the commanded move

could be of zero distance, and therefore never create any actual motion. In these cases, it can be

very difficult to create general logic to cover both zero and non-zero-distance moves.

Synchronous assignments permit a good general solution. The following PLC code is robust for

starting a move and waiting until it is finished.

Ldata.Coord = 1; // Use CS1’s sync buffer

MyMoveStarted = 0; // Clear flag immediately

MyMoveStarted == 1; // Set flag on move execution start

X10; // Command X-axis to 10

while (MyMoveStarted == 0 || Motor[1].DesVel != 0) {}

 // Wait for move started and over

M3 = 1; // Turn on Output 3 at destination

Note that synchronous assignment buffers are a coordinate-system function. The PLC program

must be addressing the same coordinate system as the motor executing the move with which the

output is to be synchronous, whether an axis move or a motor move (e.g. jog or home).

Power PMAC User’s Manual

Power PMAC Computational Features 569

The Synchronous Assignment Buffer

The queue of pending synchronous assignments is held in a dedicated buffer for the coordinate

system. The number of assignments that can be stored at any given time (between calculation and

execution) is set by the saved setup element Coord[x].SyncOps. The default value of 8192 of

this element for each coordinate system is large enough for almost all conceivable applications.

Most applications will only need a handful of synchronous assignments buffered at any given

time. However, if a motion program is looking many moves ahead using dynamic lookahead, and

many assignments can be made each move, the required buffer size can be quite large.

To change the buffer size for a coordinate system, it is necessary to change the value of

Coord[x].SyncOps, issue a save command, and reset the Power PMAC. Only on power-

up/reset does Power PMAC re-organize the synchronous assignment buffers.

Execution Details

With linear and circle-mode blended moves, the actual synchronous assignment is performed

where the blending to the new move begins, which is generally ahead of the programmed point.

This blending occurs V*Ta/2 distance ahead of the specified intermediate point, where V is the

commanded velocity of the axis, and Ta is the acceleration (blending) time.

Also, note that the assignment is synchronous with the commanded position, not necessarily the

actual position. It is the responsibility of the servo loop to make the commanded and actual

positions match closely. (The hardware position-compare function can be used to set outputs on

actual position values.)

In applications where Power PMAC is executing segmented moves (Coord[x].SegMoveTime >

0), the synchronous variable assignments are executed at the start of the first segment after the

start of blending into the programmed move.

Power PMAC checks to see whether it is time to pull synchronous assignments out of the queue

and execute them every real-time interrupt (every Sys.RtIntPeriod + 1 servo cycles). The smaller

Sys.RtIntPeriod is, and the smaller the servo cycle time is, the tighter the timing control of the

synchronous outputs is.

Synchronous assignments after the last move or dwell in the program do not execute when the

program ends or temporarily stops. Use a dwell as the last statement of the program to execute

these statements.

Comparators

A comparator evaluates the relationship between two values (constants or expressions). It is used

to determine the truth of a condition in a motion or PLC program. The valid comparators for

Power PMAC are:

 == (equal to)

 != (not equal to)

 > (greater than)

 >= (greater than or equal to)

 < (less than)

 <= (less than or equal to)

 ~ (approximately equal to -- within one)

 !~ (not approximately equal to -- at least one apart)

Power PMAC User’s Manual

Power PMAC Computational Features 570

Note that the single equals sign = is not a valid comparator in Power PMAC, although it was in

PMAC and Turbo PMAC. Outside of a condition, the double equals sign == is the synchronous

assignment operator.

Power PMAC can accept three alternate comparators, but these are stored and reported back in

standard form. The comparator <> will be stored and reported as !=; !< will be stored and

reported as >=; !> will be stored and reported as <=.

These are described in detail in the Software Reference manual under Mathematical Features.

Conditions

Power PMAC conditional statements (if branching statements or while looping statements)

can use either explicit comparisons or mathematical expressions. If just a mathematical

expression is used, it must evaluate exactly to 0.0 (with full floating-point resolution) to be

“false” – a value of 0.0000000000001 evaluates as “true”.

Explicit Comparisons

An explicit comparison consists of three parts:

 {expression} {comparator} {expression}

If the relationship between the two expressions defined by the comparator is valid, then the

condition is true; otherwise, the condition is false. Examples of simple conditions in commands

are:

while (1 < 2) // (always true)

if (P1 > 5000)

while (sind(P2-P1) <= P300/1000)

Note that parentheses are required around the condition itself.

Explicit comparisons may not be used outside of conditional parentheses (e.g. P3=P2>1 is not

legal syntax). Comparisons result in a logical value (true or false), distinct from a numerical

value.

Compound Conditions

A compound condition is a series of simple conditions connected by the logical combinatorial

operators && and ||. The compound condition is evaluated from the values of the simple

conditions by the rules of Boolean algebra. In the Power PMAC, && (AND) has execution

precedence over || (OR); that is, ORs operate on blocks of ANDed simple conditions. Power

PMAC will stop evaluating compound AND conditions once one false simple condition has been

found. Examples of compound conditions in command lines are:

if (P1 > -20 && P1 < 20)

while (P80 == 0 || I120 > 300 && I120 < 400)

Power PMAC User’s Manual

Power PMAC Computational Features 571

if (Q16 >= Q17 && Q16 <= Q18 || M136 < 256 && M137 < 256)

Unlike the older PMAC and Turbo PMAC, Power PMAC does not permit compound conditions

across multiple program lines (but individual program lines can be very long).

Condition Negation

The ! conditional negation operator can be useful in conditions. It logically negates the explicit

comparison or mathematical value inside the parentheses immediately following. If the

comparison yields a true condition, the negation results in a false condition; if the comparison

yields a false condition, the negation results in a true condition. If the mathematical value has any

non-zero value, the negation yields a false condition; if the mathematical value is exactly equal to

0.0, the negation yields a true condition.

Examples:

while (!(Coord[1].InPos)) {} // Wait for CS1 in position

if (!(Motor[3].SoftLimit)) // True if not in software limit

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 572

USING GENERAL PURPOSE DIGITAL I/O WITH POWER
PMAC

Virtually all Power PMAC applications will employ “general-purpose” inputs and outputs in

addition to the I/O dedicated to motion. These inputs and outputs can be both analog and digital.

This chapter summarizes the general-purpose digital I/O capabilities of the Power PMAC family.

Another chapter does the same for general-purpose analog I/O. More details can be found in the

manuals for specific controllers and I/O accessories. The chapter is organized as follows:

 I/O Hardware and Configuration

 Software Configuration for Use

 Accessing I/O Points in the Script Environment

 Accessing I/O Points in the C Environment

Note on Using “Dedicated” I/O for General Purpose Use

In Power PMAC systems, it is possible (and quite common) to use digital I/O points that are

primarily intended for dedicated use in motor servo functions as general-purpose I/O. The process

for configuration and access is similar to that described in this chapter for I/O points that are

primarily intended for general-purpose use.

Refer to the manual for the particular hardware configuration to see how to set up and access

these dedicated I/O points. Remember that no active motor should be using any of these dedicated

outputs, or servo tasks could overwrite the general-purpose use of these points. It is generally

recommended that even the inputs should not be accessed by any active motor, because the

automatic motor status and safety checks could lead to unintended consequences.

Digital I/O Hardware and Configuration

Power PMAC provides a broad variety of digital I/O ports and accessories. The most common

ones are described here. For each of these, and others, more detailed descriptions can be found in

the particular manuals for the hardware.

UMAC Digital I/O Boards

The Power UMAC modular rack-mounted controller has a family of digital I/O boards that are

commonly used for general-purpose I/O. These include:

 ACC-14E: 48 I/O points at 5V TTL levels, direction user-selectable by byte

 ACC-65E: 24 inputs, sinking/sourcing at 12-24V, 24 sourcing outputs at 5-24V

 ACC-66E: 48 inputs, sinking/sourcing at 12-24V

 ACC-67E: 48 sourcing outputs at 5-24V

 ACC-68E: 24 inputs, sinking/sourcing at 12-24V, 24 sinking outputs at 5-24V

On all of these boards except the ACC-14E, the inputs and outputs are optically isolated from the

core UMAC digital circuitry.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 573

Note

While older UMAC digital I/O boards, such as the ACC-11E,

can be used with the Power PMAC, they cannot use the data

structure elements covered in this section without special

“manual” identification of the board in the system (a feature

new in V2.0 firmware, released 4th quarter 2014).

These boards are mapped as “I/O” boards on the UMAC backplane. They share an addressing

space with other UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E), ACC-28E ADC

boards, ACC-36E and ACC-59E boards, and serial-encoder interface boards such as ACC-84E.

Each board in this class has a 4-point DIP switch SW1 that sets its address location in this space

and its IC index i. No two boards in this class can have the same setting, or there will be an

addressing conflict.

The following table shows the IC index numbers and base address offset (from the start of I/O

space at Sys.piom) of the board for UMAC I/O-type boards for all of the SW1 switch settings:

SW1-1

(CS10 /

12)

SW1-2

(CS10 /

14)

SW1-3

(Address

bit 15)

SW1-4

(Address

bit 16)

Power

PMAC

“GateIO

” Index #

Power

PMAC I/O

Base

Address

Offset

ON (0) ON(0) ON(0) ON(0) 0 $A00000

OFF(1) ON(0) ON(0) ON(0) 1 $B00000

ON (0) OFF(1) ON(0) ON(0) 2 $C00000

OFF(1) OFF(1) ON(0) ON(0) 3 $D00000

ON (0) ON(0) OFF(1) ON(0) 4 $A08000

OFF(1) ON(0) OFF(1) ON(0) 5 $B08000

ON (0) OFF(1) OFF(1) ON(0) 6 $C08000

OFF(1) OFF(1) OFF(1) ON(0) 7 $D08000

ON (0) ON(0) ON(0) OFF(1) 8 $A10000

OFF(1) ON(0) ON(0) OFF(1) 9 $B10000

ON (0) OFF(1) ON(0) OFF(1) 10 $C10000

OFF(1) OFF(1) ON(0) OFF(1) 11 $D10000

ON (0) ON(0) OFF(1) OFF(1) 12 $A18000

OFF(1) ON(0) OFF(1) OFF(1) 13 $B18000

ON (0) OFF(1) OFF(1) OFF(1) 14 $C18000

OFF(1) OFF(1) OFF(1) OFF(1) 15 $D18000

Note: ON = Closed, OFF = Open.

Power PMAC UMAC I/O Board Indices and Addresses

Compact UMAC ACC-11C Digital I/O

The Compact UMAC ACC-11C digital I/O board provides 24 inputs at 12 – 24V levels, sinking

or sourcing by user connection, and 24 outputs at 5 – 24V levels, sinking or sourcing by factory

configuration. Optionally, a mezzanine board with 24 additional inputs and 24 additional outputs

of the same type can be added.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 574

Addressing

These boards are mapped as “I/O” boards on the Compact UMAC backplane. They share an

addressing space with other Compact UMAC ACC-11C digital I/O boards, and ACC-84C serial-

encoder interface boards. Each board in this class has a 4-point DIP switch SW1 that sets its

address location in this space and its IC index i. No two boards in this class can have the same

setting, or there will be an addressing conflict.

Refer to the table “Power PMAC UMAC I/O Board Indices and Addresses” in the section

above on UMAC I/O boards to see how the switch settings correspond to IC index numbers and

I/O address offsets.

UMAC ACC-5E Digital I/O

The UMAC ACC-5E, which is often used for its MACRO ring interface, provides 48 general-

purpose I/O points at 5V CMOS levels, with direction user-selectable by byte in software. They

are not optically isolated. Commonly, two bytes of the I/O are used to interface to the external

multiplexed I/O of ACC-34 family boards.

Addressing

These boards are mapped as “MACRO” boards on the UMAC backplane. Each board in this class

has a 4-point DIP switch SW1 that sets its address location in this space. No two boards in this

class can have the same setting, or there will be an addressing conflict.

On re-initialization, Power PMAC automatically maps the “DSPGATE2” ICs on the detected

ACC-5E boards based on the order of SW1 settings for the boards. The first IC on the ACC-5E

with the lowest SW1 setting is assigned to Acc5E[0]. If the optional second IC is present on this

board, it is assigned to Acc5E[1]. Note that the digital I/O on an ACC-5E only uses the first IC.

If there are additional ACC-5E boards detected, the ICs on these boards are assigned Acc5E[i]

index values in consecutive order, whether one or two ICs are present per board.

UMAC ACC-5E3 Digital I/O

The UMAC ACC-5E3, which is primarily used for its MACRO ring interface, provides 16

general-purpose I/O points at 5V CMOS levels, with direction user-selectable by byte. They are

not optically isolated. Commonly, these I/O points are used to interface to the external

multiplexed I/O of ACC-34 I/O points.

Direction Selection

On the ACC-5E3, if jumper E1 connects pins 1 and 2, the buffer IC is configured so that GPIO00

– GPIO07 can be used as outputs. If E1 connects pins 2 and 3, the buffer IC is configured so that

GPIO00 – GPIO07 can be used as inputs.

If jumper E2 connects pins 1 and 2, the buffer IC is configured so that GPIO08 – GPIO15 can be

used as outputs. If E2 connects pins 2 and 3, the buffer IC is configured so that GPIO08 –

GPIO15 can be used as inputs. (Software configuration for direction control in the ASIC is

required as well. This is covered in the next section.)

Addressing

The UMAC ACC-5E3 board is mapped as a “PMAC3” board on the UMAC backplane. It shares

an addressing space with other ACC-5E3 boards, ACC-24E3 servo interface boards and ACC-

59E3 ADC/DAC boards. Each board in this class has a 4-point DIP switch SW1 that sets its

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 575

address location in this space and its IC index i. No two boards in this class can have the same

setting, or there will be an addressing conflict.

The following table lists the possible switch settings for UMAC boards based on the PMAC3-

style “DSPGATE3” ASIC such as the ACC-5E3, along with the IC index numbers and base

address offsets (from the start of I/O space) they select. The ON/OFF polarity of the switches for

index number selection is the opposite of older boards.

SW1-1
(Address

bit 11)

SW1-2
(Address

bit 12)

SW1-3
(Address

bit 13)

SW1-4
(Address

bit 14)

Power

PMAC

“Gate3”

Index #

Power

PMAC I/O

Base

Address

Offset
OFF(0) OFF(0) OFF(0) OFF(0) 0 $900000
ON(1) OFF(0) OFF(0) OFF(0) 1 $904000
OFF(0) ON(1) OFF(0) OFF(0) 2 $908000
ON(1) ON(1) OFF(0) OFF(0) 3 $90C000
OFF(0) OFF(0) ON(1) OFF(0) 4 $910000
ON(1) OFF(0) ON(1) OFF(0) 5 $914000
OFF(0) ON(1) ON(1) OFF(0) 6 $918000
ON(1) ON(1) ON(1) OFF(0) 7 $91C000
OFF(0) OFF(0) OFF(0) ON(1) 8 $920000
ON(1) OFF(0) OFF(0) ON(1) 9 $924000
OFF(0) ON(1) OFF(0) ON(1) 10 $928000
ON(1) ON(1) OFF(0) ON(1) 11 $92C000
OFF(0) OFF(0) ON(1) ON(1) 12 $930000
ON(1) OFF(0) ON(1) ON(1) 13 $934000
OFF(0) ON(1) ON(1) ON(1) 14 $938000
ON(1) ON(1) ON(1) ON(1) 15 $93C000

Note: ON = Closed, OFF = Open.

Power PMAC UMAC “Gate3” Board Indices and Addresses

Power Brick Digital I/O

The Power Brick family of controllers and amplifiers provides a set of 16 inputs and 8 outputs in

the basic 4-axis configuration, or 2 sets each with 16 inputs and 8 outputs in the 6- and 8-axis

configuration. Both the inputs and the outputs can be used as sinking or sourcing by user

connection choice, and are rated to 24V levels. All of these I/O points are optically isolated from

the core digital circuitry.

The element indices and addresses of the I/O points are fixed on the Power Brick. No hardware

addressing setup is required.

Power Clipper Digital I/O

Each Power Clipper board, base (with CPU) or optional piggyback board (without CPU),

provides 32 general-purpose digital I/O points at 5V CMOS levels, direction selectable by byte.

They are not optically isolated on the Clipper board. Commonly, two bytes of the I/O (on the

JTHW port) are used to interface to the external multiplexed I/O of ACC-34 family boards.

Jumpers E14 – E17 on the Power Clipper specify the direction of the 4 byte-wide buffers. If the

jumper is ON, the buffer is configured for inputs; if it is OFF, the buffer is configured for outputs.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 576

In addition, there is software setup of the ASIC required as well to set the directions at the ASIC.

(This is explained in the next section.) The jumpers and the I/O points they affect are:

 E14: DAT0 – DAT7 (Default ON for inputs)

 E15: SEL0 – SEL7 (Default OFF for outputs)

 E16: MO1 – MO8 (Default OFF for outputs)

 E17: MI1 – MI8 (Default ON for inputs)

If Delta Tau’s Clipper Interface board is used, these 32 I/O points can be used as 16 inputs and 16

outputs, all isolated, all sinking or sourcing by user connection choice. The E14 – E17 jumpers

must be in their default settings in this case.

The element indices and addresses of the I/O points are fixed on the Power Clipper, with separate

indices and addresses for the base and piggyback boards.

ACC-34 Family Multiplexed Digital I/O

The ACC-34 family of I/O boards provides 32 inputs and 32 outputs per board. The ACC-34AA

provides 32 inputs at 12 – 24V levels, sinking or sourcing by user connection, and 32 outputs at 5

– 24V levels, sinking or sourcing by factory configuration. The ACC-34B provides 32 inputs and

32 outputs at 5V CMOS levels. It is meant to connect to Opto-22TM, GrayhillTM, or similar I/O

modules.

The ACC-34 boards connect to the Power PMAC system through an 8-input/8-output 5V

CMOS/TTL-level I/O port, with the I/O points on the ACC-34(s) accessed in a serial multiplexed

fashion. Up to 32 ACC-34 boards can be daisychain-connected on a single Power PMAC port.

Each board on a chain must have a separate address on that chain as set by the 5-point DIP-

switch, which specifies the board’s multiplexing index n, where n = 0 to 31.

ACC-34 boards are accessed serially through a background software task. They should not be

used for any I/O that requires a quick (low-latency) response time.

Note

The addressing of ACC-34 and comparable boards on the

multiplexer port described here is distinct from the addressing

of the multiplexer port in Power PMAC’s I/O space.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 577

The following table shows how SW1 on the ACC-34x should be set for one or more ACC-34x

boards connected to the same PMAC.

SW1-5 SW1-4 SW1-3 SW1-2 SW1-1 Board Index n

ON(0) ON(0) ON(0) ON(0) ON(0) 0

ON(0) ON(0) ON(0) ON(0) OFF(1) 1

ON(0) ON(0) ON(0) OFF(1) ON(0) 2

ON(0) ON(0) ON(0) OFF(1) OFF(1) 3

ON(0) ON(0) OFF(1) ON(0) ON(0) 4

ON(0) ON(0) OFF(1) ON(0) OFF(1) 5

ON(0) ON(0) OFF(1) OFF(1) ON(0) 6

ON(0) ON(0) OFF(1) OFF(1) OFF(1) 7

ON(0) OFF(1) ON(0) ON(0) ON(0) 8

ON(0) OFF(1) ON(0) ON(0) OFF(1) 9

ON(0) OFF(1) ON(0) OFF(1) ON(0) 10

ON(0) OFF(1) ON(0) OFF(1) OFF(1) 11

ON(0) OFF(1) OFF(1) ON(0) ON(0) 12

ON(0) OFF(1) OFF(1) ON(0) OFF(1) 13

ON(0) OFF(1) OFF(1) OFF(1) ON(0) 14

ON(0) OFF(1) OFF(1) OFF(1) OFF(1) 15

OFF(1) ON(0) ON(0) ON(0) ON(0) 16

OFF(1) ON(0) ON(0) ON(0) OFF(1) 17

OFF(1) ON(0) ON(0) OFF(1) ON(0) 18

OFF(1) ON(0) ON(0) OFF(1) OFF(1) 19

OFF(1) ON(0) OFF(1) ON(0) ON(0) 20

OFF(1) ON(0) OFF(1) ON(0) OFF(1) 21

OFF(1) ON(0) OFF(1) OFF(1) ON(0) 22

OFF(1) ON(0) OFF(1) OFF(1) OFF(1) 23

OFF(1) OFF(1) ON(0) ON(0) ON(0) 24

OFF(1) OFF(1) ON(0) ON(0) OFF(1) 25

OFF(1) OFF(1) ON(0) OFF(1) ON(0) 26

OFF(1) OFF(1) ON(0) OFF(1) OFF(1) 27

OFF(1) OFF(1) OFF(1) ON(0) ON(0) 28

OFF(1) OFF(1) OFF(1) ON(0) OFF(1) 29

OFF(1) OFF(1) OFF(1) OFF(1) ON(0) 30

OFF(1) OFF(1) OFF(1) OFF(1) OFF(1) 31

Note: ON = Closed, OFF = Open.

ACC-34 Board Multiplexer Port Addressing

The JTHW ports on the UMAC ACC-5E board and on the Power Clipper boards can be used

with a direct flat-cable connection to an ACC-34 board. Other ports can be used as well with

custom cabling.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 578

Software Configuration for Digital I/O Use

Many of the general-purpose digital I/O ports require some software configuration before they

can be used in an application. This section describes the configuration process.

UMAC Digital I/O Boards

The “IOGATE” ASIC used in the UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E)

is software-configurable for a variety of I/O functionality. While the initialization values set by

the auto-detection function will usually set the board up properly for an application, the user

should check these values to ensure proper configuration of the card for the particular purpose.

These boards have 48 I/O points organized as two hardware ports (A and B) and 6 byte-wide

software data registers (indices j = 0 to 5). Port A, brought out on the top edge of the card, uses

data registers with indices 0 to 2. Port B, brought out on the bottom edge of the card, uses data

registers with indices 3 to 5.

Each UMAC I/O board has a saved initialization sub-structure GateIo[i].Init (or AccxxE[i].Init).

The values in this sub-structure are automatically copied to the active control registers in the

ASIC on power-on/reset. If the value of an element in this sub-structure is changed, save and

reset operations must be performed before the value takes effect in the active registers.

The following are the suggested settings for the UMAC general-purpose I/O boards.

Direction Control

GateIo[i].Init.CtrlReg should be set to $3F to disable outputs on all 6 byte-wide registers (both

Ports A and B) for the ACC-66E 48-input board, and for an ACC-14E being used for all inputs.

This is the re-initialization default value for the ACC66E and ACC-14E. (It is not absolutely

necessary to disable outputs on pins used for inputs, but if the outputs are not disabled, a write

operation that turns on an output will “override” the input value on that pin.)

GateIo[i].Init.CtrlReg should be set to $07 to disable outputs the first three byte-wide registers

(just Port A) for the ACC-65E and ACC-68E 24-input/24-output boards, and for an ACC-14E

being used for inputs on Port A and outputs on Port B. This is the re-initialization default value

for the ACC-65E and ACC-68E, but not for the ACC-14E.

GateIo[i].Init.CtrlReg should be set to $00 to enable outputs on all 6 byte-wide registers (both

Ports A and B) for the ACC-67E 48-output board, and for an ACC-14E being used for all outputs.

This is the re-initialization default value for the ACC-67E, but not for the ACC-14E.

Initial Output Values

GateIo[i].Init.DataReg0[j] (j = 0 to 5) sets the power-on/reset output value for byte-wide register

GateIo[i].DataReg[j], effective if outputs are enabled for that register. It is recommended that

this value be $00 so that the outputs are off at power-on/reset and would require an explicit

command to turn on.

Inversion Control

GateIo[i].Init.DataReg64[j] (j = 0 to 5) sets the inversion-control value for each bit of the byte-

wide register GateIo[i].DataReg[j], whether the I/O point is used as an input or an output. The

default value of 0 in the control bit sets the I/O point as “inverting” into or out of the ASIC itself.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 579

In this setting, if the input to the IC is pulled low, the processor will read a 1 in the input bit. If the

open-collector output on the line is commanded by a value of 1, it will turn on and pull low.

On the ACC-65E, 66E, 67E, and 68E, where there is isolation and buffering between the IC and

the outside world, the “inverting” setting means that a 0 represents a non-conducting state on the

input or output, and a 1 represents a conducting state. That is, writing a 1 to an output bit causes

the output transistor, whether sinking or sourcing, to turn on and conduct. Similarly, when a

circuit driving an input causes current to conduct in the opto-isolator in either direction, the

processor will read a 1 in the input bit.

This “inverting” setting is strongly recommended for these I/O cards, both because it matches the

intuitive sense of most users that a logical “1” means “ON” – that is, conducting, and because it is

more fail-safe, in that a failure of the Power PMAC such as a watchdog timer trip will turn

outputs off. For this setting, GateIo[i].Init.DataReg64[j] (j = 0 to 5) should be set to $00.

On the ACC-14E, the I/O points of the IOGATE ASIC are directly exposed to the outside world,

each with a 3.3-kohm pull-up resistor to +5V. In the “inverting” setting, the input must actively

be pulled low for the processor to read a 1; if it is not, the pull-up resistor will bring the input to a

high state and the processor will read a 0. A command value of 1 will turn on the open-collector

output, pulling the output voltage low; a command value of 0 will turn off the open-collector

output, allowing the pull-up resistor to bring the output to a high state.

On the ACC-14E, this default “inverting” setting is strongly recommended if the accessory is

used with Opto-22, Grayhill, or similar I/O modules.

(When using the ACC-14E for direct interface to TTL logic, as with parallel-data servo feedback,

often the non-inverting setting will be used. For the non-inverting setting,

GateIo[i].Init.DataReg64[j] (j = 0 to 5) should be set to $FF for the byte.)

Read Control

GateIo[i].Init.DataReg128[j] (j = 0 to 5) determines what state is reported for each bit when the

byte-wide register is read by the processor. Its action is dependent on the setting of the matching

bit in GateIo[i].Init.DataReg192[j] (see below).

If the matching bit of DataReg192[j] is 0 (no latching), as is typical for general-purpose I/O use,

when the bit of DataReg128[j] is set to 0, the state reported comes from the voltage of the pin at

that moment. This is the setting that should be used for any general-purpose input point. For a

general-purpose output point, this setting allows the user to confirm whether the commanded

output level has actually occurred.

If the matching bit of DataReg192[j] is 0, when the bit of DataReg128[j] is set to 1, the state

reported comes from the last value written to the bit. This is not desirable for an input point, but

for an output point, it allows the user to confirm what the last software action was.

If the matching bit of DataReg192[j] is 1 (latched inputs), when the bit of DataReg128[j] is set

to 0, the state reported is that of the input at the most recent falling edge of the selected clock

(phase or servo). If you want to read latched inputs for general-purpose I/O, you should use this

setting.

If the matching bit of DataReg192[j] is 1, when the bit of DataReg128[j] is set to 1, the state

reported is that derived from the input word at the most recent falling edge of the selected clock

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 580

(phase or servo as selected by jumper E2 on the board), passed through a Gray-code-to-binary

conversion. This is extremely rare for general-purpose inputs.

Latch Control

GateIo[i].Init.DataReg192[j] (j = 0 to 5) determines what value is reported for each bit when the

byte-wide register is read by the processor. If the bit is set to 0, the “transparent” value at the

moment of the read operation is reported. If the bit is set to 1, the value latched at the most recent

falling edge of the selected clock (phase or servo as selected by jumper E2 on the board) is read.

For each setting of DataReg192[j], the setting of DataReg128[j] determines which transparent or

latched value is read, as described in the preceding section.

Compact UMAC ACC-11C Digital I/O

The configuration of the Compact UMAC ACC-11C board is the same as for the UMAC ACC-

65E or 68E I/O boards documented in the above section. The generic GateIo[i].Init data structure

can be used, or the Acc11C[i].Init alias. The recommended settings are:

Acc11C[i].Init.CtrlReg = $07

Acc11C[i].Init.DataReg0 = $00

Acc11C[i].Init.DataReg64 = $00

Acc11C[i].Init.DataReg128 = $00

Acc11C[i].Init.DataReg192 = $00

UMAC ACC-5E Digital I/O

The “DSPGATE2” ASIC used in the UMAC ACC-5E is software-configurable for a variety of

I/O functionality. Each byte of I/O also has a buffer IC whose direction is set by a control bit.

General-Purpose I/O Use

Most of the general-purpose digital I/O pins on the DSPGATE2 ASIC can also be used for

dedicated servo purposes. There are saved setup elements in the Gate2[i] (or its alias Acc5E[i])

to control the mode of use of these pins. To select for general-purpose I/O use, the following

settings should be made:

Acc5E[i].LowIoMode=$FFFFFF // I/O00–23 as GP I/O

Acc5E[i].HighIoMode=$FF // I/O24–31 as GP I/O

Acc5E[i].MuxMode=$FFFF // DAT0–7, SEL0–7 as GP I/O

Acc5E[i].DispMode=$FF // DISP0–7 as GP I/O

The I/O24 – I/O31 and DISP0 – DISP7 lines are always configured as general-purpose outputs,

so the settings for these groups are not actually necessary.

Buffer Direction Control

The buffer direction-control bits are found in an auxiliary identification IC on the ACC-5E, not in

the main ASIC. The registers for these bits can be accessed through the Cid[j].PartCtrl[0],

Cid[j].PartData[0] and Cid[j].PartData[1] non-saved data structure elements. They must be

configured after each power-up/reset. If the control bit is set to 0, the buffer is configured for

input; if it is set to 1, the buffer is configured for output.

The index j for the Cid[j] data structure can be found in the “UMAC Addressing Summary” table

in the “Power PMAC I/O Address Offsets” chapter of the Software Reference Manual.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 581

For Acc5E[0], by far the most common setting used, Cid[4] is used. For Acc5E[1], Cid[20] is

used. For Acc5E[2], Cid[36] is used. For Acc5E[3], Cid[52] is used.

The buffer direction-control bits are found in these elements as follows:

 Cid[j].PartCtrl[0] bit 7 (value $80): For I/O00 – I/O07

 Cid[j].PartData[0] bit 0 (value $1): For I/O07 – I/O15

 Cid[j].PartData[0] bit 1 (value $2): For I/O16 – I/O23

 Cid[j].PartData[0] bit 2 (value $4): For I/O24 – I/O31

 Cid[j].PartData[0] bit 3 (value $8): For DAT0 – DAT7

 Cid[j].PartData[1] bit 0 (value $1): For SEL0 – SEL7

 Cid[j].PartData[1] bit 1 (value $2): For DISP0 – DISP7

For example, on Acc5E[0], to set I/O00 – I/O15 buffers for inputs, I/O16 – I/O31 buffers for

outputs, DAT0 – DAT7 buffer for inputs, SEL0 – SEL7 buffer for outputs, and DISP0 – DISP7

for outputs, the following command lines could be used (on-line or Script program):

Cid[4].PartCtrl[0]=0 // I/O00–07 inputs (low 7 bits read-only)

Cid[4].PartData[0]=6 // Binary 0110

Cid[4].PartData[1]=3 // Binary 0011

I/O Point Direction Control

Each I/O point in the DSPGATE2 ASIC can be set individually for input or output. But because

of the byte-wide buffers on the ACC-5E, directions must be set in groups of 8. There are saved

setup elements in the Gate2[i] (or its alias Acc5E[i]) to control the directions of the I/O points.

 Acc5E[i].LowIoDir bits 0 to 23: For I/O00 – 23

 Acc5E[i].HighIoDir bits 0 to 7: For I/O24 – 31

 Acc5E[i].MuxDir bits 0 to 15: For DAT0 – 7, SEL0 – 7

 Acc5E[i].DispDir bits 0 to 7: For DISP0 – 7

A value of 0 in the bit sets the point for input; a value of 1 in the bit sets the point for output.

To continue the above example, on Acc5E[0], to set I/O00 – I/O15 as inputs, I/O16 – I/O31 as

outputs, DAT0 – DAT7 as inputs, SEL0 – SEL7 as outputs, and DISP0 – DISP7 as outputs, the

following settings should be made:

Acc5E[0].LowIoDir=$FF0000

Acc5E[0].HighIoDir=$FF

Acc5E[0].MuxDir=$FF00

Acc5E[0].DispDir=$FF

To use the JTHW port with DAT0 – DAT7 and SEL0 – SEL7 to interface to one or more ACC-

34 family boards through a standard flat cable, Acc5E[0].MuxDir should be set to $FF00 as in

this example.

I/O Point Polarity Control

Each I/O point in the DSPGATE2 ASIC can be set individually for inverting or non-inverting,

whether it is used as an input or an output. There are saved setup elements in the Gate2[i] (or its

alias Acc5E[i]) to control the polarities of the I/O points.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 582

 Acc5E[i].LowIoPol bits 0 to 23: For I/O00 – 23

 Acc5E[i].HighIoPol bits 0 to 7: For I/O24 – 31

 Acc5E[i].MuxPol bits 0 to 15: For DAT0 – 7, SEL0 – 7

 Acc5E[i].DispPol bits 0 to 7: For DISP0 – 7

If the control bit is 0, the point is non-inverting, and a value of 1 corresponds to a high voltage at

the I/O point on the ASIC. If the control bit is 1, the point is inverting and a value of 1

corresponds to a low voltage at the I/O point on the ASIC.

To set I/O00 – I/O31 as inverting, DAT0 – DAT7 and SEL0 – SEL7 as non-inverting, and DISP0

– DISP7 as inverting, the following settings should be made:

Acc5E[0].LowIoPol=$FFFFFF

Acc5E[0].HighIoPol=$FF

Acc5E[0].MuxPol=$0000

Acc5E[0].DispPol=$FF

To use the JTHW port with DAT0 – DAT7 and SEL0 – SEL7 to interface to one or more ACC-

34 family boards through a standard flat cable, Acc5E[0].MuxPol should be set to $0000 as in

this example.

UMAC ACC-5E3 Digital I/O

The DSPGATE3 ASIC used in the UMAC ACC-5E3 has configurable 32-bit “banks” of digital

I/O. The ACC-5E3 uses the low 16 bits of Bank 0, which has signal pins dedicated to general-

purpose I/O. These can be configured through saved setup elements in the Gate3[i] data structure,

or its alias of Acc5E3[i]. These elements are write-protected; to change their values with Script

commands, Sys.WpKey should first be set to $AAAAAAAA.

Direction Control

Bit n of Acc5E3[i].GpioDir[0] sets the direction of I/O point GPIOn at the ASIC. Although each

I/O point in the ASIC is individually selectable as to direction, because the buffer ICs are jumper-

selectable as to direction, the direction of ASIC I/O points must be specified in groups of 8. The

directions are set with Acc5E3[i].GpioDir[0]. The useful settings are:

 Acc5E3[i].GpioDir[0] = $0000 (GPIO00 – 15 all inputs)

 Acc5E3[i].GpioDir[0] = $00FF (GPIO00 – 07 inputs, GPIO08 – 15 outputs)

 Acc5E3[i].GpioDir[0] = $FF00 (GPIO00 – 07 outputs, GPIO08 – 15 inputs)

 Acc5E3[i].GpioDir[0] = $FFFF (GPIO00 – 15 all outputs)

The setting of $FF00 permits this I/O port to be used to interface to one or more ACC-34

multiplexed I/O boards. The setting of the high 16 bits of this 32-bit element does not matter here.

Polarity Control

Bit n of Acc5E3[i].GpioPol[0] sets the polarity of I/O point GPIOn, whether it is used as an input

or an output. If the bit is 0, non-inverting I/O is selected, so that a 0 value corresponds to a low

voltage at the port, and a 1 value corresponds to a high voltage. If the bit is 1, inverting I/O is

selected, so that a 0 value corresponds to a high voltage at the port, and a 1 value corresponds to a

low voltage.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 583

To use this port to interface to ACC-34 multiplexed I/O port, all input and output points should be

non-inverting, so Acc5E3[i].GpioPol[0] should be set to $0000.

Power Brick Digital I/O

The DSPGATE3 ASIC used in the Power Brick controllers and amplifiers has configurable

“banks” of digital I/O. The Power Brick products use Bank 0, which has signal pins dedicated to

general-purpose I/O. The first set of 16 inputs and 8 outputs uses Bank 0 of Gate3[0]. The second

set of 16 inputs and 8 outputs uses Bank 0 of Gate3[1], which comes with the 8-axis

configuration. The PowerBrick[0] and PowerBrick[1] aliases can be used for these structures.

The I/O bank is configured with several saved setup elements for the ASIC. These elements are

write-protected; to change their values with Script commands, Sys.WpKey should first be set to

$AAAAAAAA.

Direction Control

For each set of I/O, PowerBrick[i].GpioDir[0] must be set to $00FF0000 to set the low 16 bits

of the associated data word as inputs and the next 8 bits as outputs. (The highest 8 bits of the 32-

bit bank are set as inputs for other purposes.) This is the default value set at re-initialization.

Polarity Control

For each set of I/O, PowerBrick[i].GpioPol[0] should be set to $00000000 to select non-

inverting I/O so that a 0 value represents an OFF (non-conducting) state, and a 1 represents an

ON (conducting) state, whether the I/O point is used in a sinking or sourcing mode. In the non-

inverting mode, the outputs will automatically be turned off if the controller goes into a reset or

watchdog state. This is the default value set at re-initialization.

Input Mode Control

For the inputs, PowerBrick[i].GpioCtrl is usually set to $00000000 to specify transparent (as

opposed to latched), unfiltered, and unconverted (not converted Gray code) inputs. Other settings

are possible; refer to the detailed description of this setup element for details.

(PowerBrick[i].GpioCtrl is saved and restored through its alternate name of

PowerBrick[i].GpioMode[0].) This is the default value set at re-initialization.

Power Clipper Digital I/O

The DSPGATE3 ASIC used in the Power Clipper has configurable “banks” of digital I/O. The

Power Clipper uses Bank 0, which has signal pins dedicated to general-purpose I/O. All 32 bits of

Bank 0 are used as general-purpose digital I/O points on the Power Clipper, 16 for the JTHW

multiplexer port and 16 for the JOPT I/O port. The I/O points on the base Clipper board use Bank

0 of Gate3[0]. The I/O points on the optional expansion board use Bank 0 of Gate3[1]. The

Clipper[0] and Clipper[1] aliases can be used for these structures.

The I/O bank is configured with several saved setup elements for the ASIC. These elements are

write-protected; to change their values with Script commands, Sys.WpKey should first be set to

$AAAAAAAA.

Direction Control

While the direction of the I/O points is selectable by bit from the ASIC itself, the direction of the

buffer ICs is only selectable in byte-wide sections using jumpers E14 – E17 (ON for inputs, OFF

for outputs). If Delta Tau’s Clipper breakout board is used, two of these byte-wide sections must

be used as inputs and two as outputs.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 584

The 32-bit saved setup element Clipper[i].GpioDir[0] sets the direction of the 32 general

purpose I/O points. The element is organized as follows:

 Clipper[i].GpioDir[0] bits 0 – 7: For DAT0 – DAT7 (E14)

 Clipper[i].GpioDir[0] bits 8 – 15: For SEL0 – SEL7 (E15)

 Clipper[i].GpioDir[0] bits 16 – 23: For MO1 – MO8 (E16)

 Clipper[i].GpioDir[0] bits 24 – 31: For MI1 – MI8 (E17)

For the case where Delta Tau’s Clipper Breakout board is used, Clipper[i].GpioDir[0] must be

set to $00FFFF00. The last two hex digits at $00 set the DAT0 – DAT7 lines as inputs. The

preceding two hex digits at $FF set the SEL0 – SEL7 lines as outputs. The earlier two hex digits

at $FF set the MO1 – MO8 lines as outputs. The first two hex digits at $00 set the MI1 – MI8

lines as inputs.

Polarity Control

The 32-bit saved setup element Clipper[i].GpioPol[0] sets the polarity of the 32 general-purpose

I/O points, whether they are used as inputs or outputs. The bits of the element are organized in the

same way as the direction control documented immediately above. If the bit is 0, non-inverting

I/O is selected, so that a 0 value corresponds to a low voltage at the port of the Clipper, and a 1

value corresponds to a high voltage. If the bit is 1, inverting I/O is selected, so that a 0 value

corresponds to a high voltage at the port of the Clipper, and a 1 value corresponds to a low

voltage.

For the case where Delta Tau’s Clipper Breakout board is used, Clipper[i].GpioPol[0] should be

set to $00000000 to select non-inverting I/O, whether the I/O point is used in a sinking or

sourcing mode. This means that a 0 corresponds to a non-conducting state, and a 1 corresponds to

a conducting state. In the non-inverting mode, the outputs will automatically be turned off if the

controller goes into a reset or watchdog state.

Input Mode Control

For the inputs, Clipper[i].GpioCtrl is usually set to $00000000 to specify transparent (as

opposed to latched), unfiltered, and unconverted (not converted Gray code) inputs. Other settings

are possible; refer to the detailed description of this setup element for details.

(Clipper[i].GpioCtrl is saved and restored through its alternate name of

Clipper[i].GpioMode[0].)

ACC-34 Family Multiplexed Digital I/O

The interface to one or more ACC-34 family boards is configured through the saved setup

elements of the MuxIo data structure. These elements specify the Power PMAC I/O port(s) to use

for the interface, the time periods for the interface, the ACC-34 ports to use, their directions, and

whether automatic parity checking is performed.

Power PMAC Interface Port Specification

The address of the byte-wide Power PMAC port to use for outputs to ACC-34 boards is specified

by MuxIo.pOut. The starting bit of this byte on the 32-bit data bus is specified by

MuxIo.OutBit. This Power PMAC port must be set up for non-inverting outputs.

The address of the Power PMAC port to use for inputs from ACC-34 boards is specified by

MuxIo.pIn. The bit of this register on the 32-bit data bus on which the input data is transferred

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 585

serially is specified by MuxIo.InBit. This Power PMAC port must be set up for non-inverting

inputs.

UMAC ACC-5E JTHW Port

To use the JTHW port on the UMAC ACC-5E for ACC-34 interface, with SEL0 – SEL7 for the

output signals to the ACC-34(s), and DAT0 for the input signals from ACC-34(s), the following

settings would be made:

MuxIo.pOut = Acc5E[i].MuxData.a // Register w/ SEL lines

MuxIo.OutBit = 16 // Use SEL0 line

MuxIo.pIn = Acc5E[i].MuxData.a // Register w/ DAT lines

MuxIo.InBit = 8 // Use DAT0 line

Acc5E[i].MuxMode = $FFFF // GPIO mode for these lines

Acc5E[i].MuxDir = $FF00 // DATn inputs, SELn outputs

Acc5E[i].MuxPol = $0000 // All non-inverting I/O

If ACC-34AA boards are (all) jumpered to use DAT7 for transferring input data to the controller

(which reduces crosstalk with the clock on the flat cable), MuxIo.InBit should be set to 15

instead. This hardware and software configuration can only be used if there are only ACC-34AA

boards on the port.

UMAC ACC-5E3 JIO Port

To use the JIO port on the on the UMAC ACC-5E3 for ACC-34 interface, with GPIO08 –

GPIO15 for the output signals to the ACC-34(s) and GPIO00 for the input signals from the ACC-

34(s), the following settings would be made:

MuxIo.pOut = Acc5E3[i].GpioData[0].a // Register w/ GPIO lines

MuxIo.OutBit = 8 // Use GPIO08 line

MuxIo.pIn = Acc5E3[i].GpioData[0].a // Register w/ GPIO lines

MuxIo.InBit = 0 // Use GPIO00 line

Acc5E3[i].GpioDir[0] = $FF00 // 0-7 inputs, 8-15 outputs

Acc5E3[i].GpioPol[0] = $0000 // All non-inverting I/O

If ACC-34AA boards are (all) jumpered to use DAT7 for transferring input data to the controller,

MuxIo.InBit should be set to 7 instead. This hardware and software configuration can only be

used if there are only ACC-34AA boards on the port.

Power Clipper JTHW Port

To use the JTHW port on the Power Clipper for ACC-34 interface, with SEL0 – SEL7 for the

output signals to the ACC-34(s), and DAT0 for the input signals from ACC-34(s), the following

settings would be made:

MuxIo.pOut = Clipper[i].GpioData[0].a // Register w/ SEL lines

MuxIo.OutBit = 8 // Use SEL0 line

MuxIo.pIn = Clipper[i].GpioData[0].a // Register w/ DAT lines

MuxIo.InBit = 0 // Use DAT0 line

Clipper[i].GpioDir[0] = $FF00 // DATn inputs, SELn outputs

Clipper[i].GpioPol[0] = $0000 // All non-inverting I/O

If ACC-34AA boards are (all) jumpered to use DAT7 for transferring input data to the controller

(which reduces crosstalk with the clock on the flat cable), MuxIo.InBit should be set to 7 instead.

This hardware and software configuration can only be used if there are only ACC-34AA boards

on the port.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 586

ACC-34 Port Enabling and Direction Control

For each ACC-34 board connected to this Power PMAC port, the Power PMAC must be told to

enable both the board’s “Port A” and “Port B” and the direction, input or output, of each 32-bit

port.

Port A on an ACC-34 is enabled by setting MuxIo.PortA[n].Enable, where n (= 0 to 31) is

specified by the 5-point DIP-switch on the ACC-34, to 1. Port B on the board is enabled by

setting MuxIo.PortB[n].Enable to 1.

Port A on an ACC-34 board is specified as an input port by setting MuxIo.PortA[n].Dir to 0. On

all Delta Tau ACC-34 boards, Port A must be used as an input port. Port B on an ACC-34 board

is specified as an output port by setting MuxIo.PortB[n].Dir to 1. On all Delta Tau ACC-34

boards, Port B must be used as an output port.

ACC-34 Input Port Parity Check Control

For each input port on an ACC-34 board, it is possible to enable automatic parity checking on

input data transfers from the port. This function is enabled by setting

MuxIo.PortA[n].AutoParityCheck to 1. (If a 3rd-party device that provides inputs on Port B is

used, the same can be done for Port B.)

If the parity checking is enabled and a parity error is detected in a transfer, the 32-bit input value

received is not copied into its image word in Power PMAC memory (MuxIo.PortA[n].Data),

and the last scan’s value will remain in the image word. Whether or not this software function is

enabled, the hardware parity check is performed, and the result of the check can be found in

status bit MuxIo.PortA[n].ParityStatus, where 0 indicates a parity error.

On the Delta Tau ACC-34 boards, hardware parity checking is automatically performed on the

enabled output ports, and the 32-bit output value received by the board is not latched into the

actual output circuits if a parity error is detected. No special software setup is required for this.

Status bit MuxIo.PortB[n].ParityStatus is 0 if a parity error has been detected on the most

recent transfer.

ACC-34 Port Timing

The bit clock rate for the serial transfers between Power PMAC and ACC-34 boards can be

controlled using saved setup element MuxIo.ClockPeriod. If it is left at its default value of 0, the

bit clock frequency is not specially limited, and can be as high as 1/800 of the CPU clock

frequency (e.g. 1.25 MHz for a 1 GHz CPU). This setting is typically fine for short (less than 1

meter) cables to only a few ACC-34 boards in a low-noise environment.

If MuxIo.ClockPeriod is set to a value greater than 0, it specifies the minimum period, in

microseconds, between consecutive bit-clock cycles. For example, if it is set to 4, the maximum

bit clock frequency will be 250 kHz.

Saved setup element MuxIo.UpdatePeriod specifies how often Power PMAC communicates

with enabled ACC-34 ports. If it is set to 0, communications is in “one-shot” mode. In this mode,

after communicating with each enabled port, the Enable element for that port is automatically

cleared to 0.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 587

Note

Delta Tau ACC-34 boards have on-board watchdog timer

circuits that will automatically turn off all outputs if no

communications has been received for 1.5 seconds.

If MuxIo.UpdatePeriod is set to a value greater than 0, communications is in cyclic mode, with

this element specifying the time between consecutive scans, in milliseconds. In this mode, the

Enable elements for the ports are not automatically cleared after communications with that port.

If MuxIo.UpdatePeriod is set to a value too small to be possible given the specified

MuxIo.ClockPeriod value, Power PMAC will automatically increase the value of

MuxIo.UpdatePeriod to a possible value.

ACC-34 Communications Enabling

Saved setup element MuxIo.Enable specifies whether the multiplexed communications with

ACC-34 boards as configured according to the above instructions will be active or not. If it is set

to 0, no multiplexed communications will occur, and none of the configuration variables are used.

If it is set to 1, the multiplexed communications will occur as specified by the configuration

elements explained above.

The overall activation element MuxIo.Enable should not be confused with the individual board

port activation elements MuxIo.PortA[n].Enable and MuxIo.PortB[n].Enable.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 588

Accessing Digital I/O Points in the Script Environment

In Power PMAC’s Script environment, the digital I/O points can be accessed either using the pre-

defined data structure element names, or with user-defined “pointer” (M) variables. There are two

advantages to using the user-defined pointer variables. First, they can access just the relevant part

of the element if the entire element is not of use. Second, they can be assigned an application-

specific name using the IDE’s project manager.

Accessing Output Points at Different Priority Levels

Great care must be taken if it is desired to access output points in the same register from multiple

priority levels. Whenever it is desired to change only part of an output register (or a holding

register for that output register), the processor must perform a non-atomic “read/modify/write”

operation.

If a lower-priority task has started this multi-step operation, but is interrupted by a higher-priority

task that executes this multi-step operation on the same register, when the lower-priority task

resumes, it will undo the changes made by the higher-priority task. The chances of this occurring

on any given interrupt are small, but given the thousands of interrupts occurring per second, the

chances of this happening eventually (if not protected against) are very large, and the intermittent

nature of the problem can make it very hard to track down.

In the Script environment, whenever a “partial-word” element or variable is written to, the Script

execution engine automatically performs this read/modify/write sequence invisibly to the user. In

the C environment, the user code must perform this sequence explicitly.

Power PMAC Priority Levels

The priority levels, from lowest to highest, and the tasks at each level that might write to general-

purpose digital outputs, are listed below. At an individual priority level, there is no danger of this

type of conflict.

 Background: background Script PLCs, background C PLCs, independent C applications

 Real-time interrupt: RTI Script PLCs, RTI C PLC, motion programs, synchronous

variable assignments

 Servo interrupt: custom servo algorithms

 Phase interrupt: custom phase algorithms

 Capture/compare interrupt: Capture/compare ISRs

Different tasks operating at the same priority level cannot interrupt each other, and so do not

present this problem.

If the application needs to write to outputs at multiple priority levels, the best solution is to use

different output registers for different priority levels. This will avoid the problem altogether. If

this is not feasible, the user application must protect against this problem explicitly.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 589

Process-Locking Mechanism

The Power PMAC Script environment has a special process-locking mechanism for this purpose.

It supports 32 separate processes, permitting the user application to transfer control of each

process robustly between tasks at different priority levels.

When a Script command reads the Boolean element Sys.Lock[i] (i = 0 to 31), if it reads a 1 value,

it knows that the process is “locked” by another task. If it reads a 0, it knows that the process is

not locked, and so is available to it. But the very act of reading the element this way and seeing a

0 value also sets the bit to 1 in an uninterruptible “atomic” operation, automatically giving this

routine control of the process.

One common way this can be used is shown in the following Script code example:

while (Sys.Lock[7] == 1) {} // Wait until process 7 free

GateIo[0].DataReg[4].3 = 1; // Set output bit

Sys.Lock[7] = 0; // Release process 7 control

It is possible to monitor the status of a process without the possibility of taking control of it by

reading 32-bit status element Sys.Lock and evaluating the state of bit i for process i.

UMAC Digital I/O Boards

For the UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E), the byte-wide data

registers can be accessed for either read or write purposes with the data structure elements

GateIo[i].DataReg[j] (j = 0 to 5). Individual I/O points can be accessed with

GateIo[i].DataReg[j].k (k = 0 to 7). Of course, in place of the generic GateIo[i] structure name,

the alias name for the particular card (e.g. Acc68E[i]) can be used.

The following table shows how each 8-bit element corresponds to the signal pins on each of the

UMAC digital I/O boards:

Element Address

Offset

ACC-14E ACC-65E

ACC-68E

ACC-66E ACC-67E

GateIo[i].DataReg[0] $000 I/O00 – 07 IN00 – 07 IN00 – 07 OUT00 – 07

GateIo[i].DataReg[1] $004 I/O08 – 15 IN08 – 15 IN08 – 15 OUT08 – 15

GateIo[i].DataReg[2] $008 I/O16 – 23 IN16 – 23 IN16 – 23 OUT16 – 23

GateIo[i].DataReg[3] $00C I/O24 – 31 OUT00 – 07 IN24 – 31 OUT24 – 31

GateIo[i].DataReg[4] $010 I/O32 – 39 OUT08 – 15 IN32 – 39 OUT32 – 39

GateIo[i].DataReg[5] $014 I/O40 – 47 OUT16 – 23 IN40 – 47 OUT40 – 47

An M-variable can be assigned to an individual bit of an element, to a consecutive set of bits, or

to the full byte. When the assignment is made through the IDE, an application-specific name can

be given to the variable. For example:

ptr ClampSolenoidOn->Acc68E[2].DataReg[5].4 // 1-bit value

ptr PartTypeCode->GateIo[0].DataReg[1].1.3 // 3-bit value

ptr LightCurtainArray->Acc66E[1].DataReg[2] // 8-bit value

Once the assignment is made, the application can use the declared variable name in the

application.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 590

It is also possible to assign an M-variable to a bit or bits of the 32-bit register using the address of

the register rather than the element name. For the standard digital I/O boards, this does not

provide additional capabilities, but for older I/O boards such as the ACC-11E, this is the only way

of accessing the registers in the board. The byte-wide data registers are found in bits 8 – 15 of the

32-bit bus.

To replicate the above definitions in this method, the assignments would be:

ptr ClampSolenoidOn->u.io:$C00014.12 // 1-bit value

ptr PartTypeCode->u.io:$A00004.9.3 // 3-bit value

ptr LightCurtainArray->u.io:$B00014.8.8 // 8-bit value

These declare that the variable is an unsigned integer (u) in I/O (io) space. In this assignment,

the six-digit hexadecimal value is the offset of the register address from the start of I/O. (It is not

necessary to know the starting I/O address, but it can be found at Sys.piom.) This offset can be

computed using the values found in the Software Reference chapter “Power PMAC I/O Address

Offsets”.

The first three hex digits, $C00 in the first example, are dependent on the accessory index alone,

as the base address offset of the I/O IC with index 2 is $C00000. The last three hex digits are

dependent on the offset of the register from the IC base index ($014 for DataReg[5]).

The first digit after the address is the starting bit number of the variable on the 32-bit bus. Note

that this value is 8 greater than the value of the starting bit in the pre-defined data structure

element, because the element itself starts at bit 8 on the 32-bit bus.

The second digit after the address specifies the number of bits to use in the variable. If there is no

second digit, the declaration is for a 1-bit variable.

Compact UMAC ACC-11C Digital I/O

For the Compact UMAC ACC-11C digital I/O board, the byte-wide data registers can be

accessed with the data structure elements Acc11C[i].DataReg[j] (j = 0 to 5). Individual I/O

points can be accessed with Acc11C[i].DataReg[j].k (k = 0 to 7). In place of the Acc11C[i]

structure name, the generic GateIo[i] structure name can be used instead.

Refer to the above section on UMAC digital I/O boards to see how each 8-bit element

corresponds to the signal pins on the ACC-11C. The Compact UMAC ACC-11C correspondence

is the same as the ACC-65E and 68E UMAC boards.

UMAC ACC-5E Digital I/O

For the UMAC ACC-5E board, the data on the JTHW multiplexer port can be accessed through

the 16-bit Acc5E[i].MuxData element. Individual bits on the port can be accessed with

Acc5E[i].MuxData.k (k = 0 to 15). Bits 0 to 7 correspond to DAT0 – DAT7 lines, respectively.

Bits 8 to 15 correspond to SEL0 – SEL7 lines, respectively.

Note

When accessing external multiplexed I/O on a port such as the

JTHW port with the MuxIo data structure, do not write

directly to the port or bits on the port. The multiplexing

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 591

algorithm will automatically be writing to the port on a regular

basis.

On the JIO port, the 24 lines I/O00 – I/O23 can be accessed through the Acc5E[i].LowIoData

element. Individual bits on the port can be accessed with Acc5E[i].LowIoData.k (k = 0 to 23).

Bits 0 to 23 correspond to I/O00 – I/O23 lines, respectively.

Also on the JIO port, the 8 lines I/O24 – I/O31 can be accessed through the

Acc5E[i].HighIoData element. Individual bits on the port can be accessed with

Acc5E[i].HighIoData.k (k = 0 to 7). Bits 0 to 7 correspond to I/O24 – I/O31 lines, respectively.

On the JDISP port, the 8 lines DISP0 – DISP7 can be accessed through the Acc5E[i].DispData

element. Individual bits on the port can be accessed with Acc5E[i].DispData.k (k = 0 to 7). Bits 0

to 7 correspond to DISP0 – DISP7 lines, respectively.

An M-variable can be assigned to an element, an individual bit of an element, or to a consecutive

set of bits. When the assignment is made through the IDE, an application-specific name can be

given to the variable. For example:

ptr ProductCode->Acc5E[0].MuxData // 16-bit element

ptr CoolantOn->Acc5E[0].HighIoData.2 // 1-bit value

ptr ProcessState->Acc5E[0].LowIoData.4.4 // 4-bit value

Once the assignment is made, the application can use the declared variable name in the

application.

UMAC ACC-5E3 Digital I/O

For the UMAC ACC-5E3 board, the data on the 16-bit JIO port can be accessed through the low

16 bits of the 32-bit Acc5E3[i].GpioData[0] element. Individual bits on the port can be accessed

with Acc5E3[i].GpioData[0].k (k = 0 to 15). Bits 0 to 15 correspond to I/O00 – I/O15 lines,

respectively.

Note

When accessing external multiplexed I/O on a port such as the

JTHW port with the MuxIo data structure, do not write

directly to the port or bits on the port. The multiplexing

algorithm will automatically be writing to the port on a regular

basis.

An M-variable can be assigned to an element, an individual bit of an element, or to a consecutive

set of bits. When the assignment is made through the IDE, an application-specific name can be

given to the variable. For example:

ptr ProductCode->Acc5E3[0].GpioData[0] // 32-bit element

ptr CoolantOn->Acc5E3[0].GpioData[0].2 // 1-bit value

ptr ProcessState->Acc5E3[0].GpioData[0].8.4 // 4-bit value

Once the assignment is made, the application can use the declared variable name in the

application.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 592

Power Brick Digital I/O

For the Power Brick, the set of 16 general-purpose digital inputs and 8 general-purpose digital

outputs that comes with each set of 4 axes can be accessed through the 32-bit

Gate3[i].GpioData[0] data structure element. Individual I/O points can be accessed with

Gate3[i].GpioData[0].k. Of course, in place of the generic Gate3[i] structure name, the alias

name PowerBrick[i] can be used.

The IC index i is 0 for the first set of I/O points, which comes with the first four axes. It is 1 for

the second set of I/O points, which comes with the second four axes. The bit index k is 0 to 15 for

the 16 inputs, and 16 to 23 for the 8 outputs, of a set.

So for the first set of I/O points, inputs GPIN01 to GPIN16 correspond to

PowerBrick[0].GpioData[0].0 to .15, respectively. (Note that the bit number is one less than the

hardware channel number.) In this set, GPOUT01 to GPOUT08 correspond to

PowerBrick[0].GpioData[0].16 to .23, respectively.

For the second set of I/O points, inputs GPIN17 to GPIN32 correspond to

PowerBrick[1].GpioData[0].0 to .15, respectively. In this set, GPOUT09 to GPOUT16

correspond to PowerBrick[1].GpioData[0].16 to .23, respectively.

An M-variable can be assigned to an individual bit of an element, or to a consecutive set of bits.

(The high 8 bits of the 32-bit element are used for internal functions, so it is generally not

appropriate to write to the entire 32-bit element.) When the assignment is made through the IDE,

an application-specific name can be given to the variable. For example:

ptr LaserOn->PowerBrick[0].GpioData[0].21 // 1-bit value

ptr OverrideKnob->PowerBrick[1].GpioData[0].8.4 // 4-bit value

Once the assignment is made, the application can use the declared variable name in the

application.

Power Clipper Digital I/O

For the Power Clipper, the set of 32 general-purpose digital inputs outputs that comes with each

4-axis board can be accessed through the 32-bit Gate3[i].GpioData[0] data structure element.

Individual I/O points can be accessed with Gate3[i].GpioData[0].k. Of course, in place of the

generic Gate3[i] structure name, the alias name Clipper[i] can be used.

The IC index i is 0 for the set of I/O points on the base board. It is 1 for the set of I/O points on

the piggyback board.

The bit index k is 0 to 7 for the DAT0 – DAT7 lines, respectively. It is 8 to 15 for the SEL0 –

SEL7 lines, respectively. It is 16 to 23 for the MO1 – MO8 lines, respectively. It is 24 to 31 for

the MI1 – MI8 lines, respectively.

Note

When accessing external multiplexed I/O on a port such as the

JTHW port with the MuxIo data structure, do not write

directly to the port or bits on the port. The multiplexing

algorithm will automatically be writing to the port on a regular

basis.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 593

An M-variable can be assigned to an individual bit of an element, or to a consecutive set of bits.

When the assignment is made through the IDE, an application-specific name can be given to the

variable. For example:

ptr LaserOn->Clipper[0].GpioData[0].21 // 1-bit value

ptr OverrideKnob->Clipper[1].GpioData[0].8.4 // 4-bit value

Once the assignment is made, the application can use the declared variable name in the

application.

ACC-34 Family Multiplexed Digital I/O

For the multiplexed digital I/O on ACC-34 boards, the application will access the I/O points

through their image words in Power PMAC memory. The values in the image words for output

ports are automatically copied to the actual outputs on the ACC-34 boards, and the values in the

image words for input ports are automatically copied from the actual inputs on the ACC-34

boards.

The data structure elements for these image words are MuxIo.PortA[n].Data and

MuxIo.PortB[n].Data, where n (= 0 to 31) is the index for the board as set by the DIP switches

on the board. With standard ACC-34 boards, Port A is always an input port and Port B is always

an output port, but it is possible to use boards where this is not the case.

These elements are 32-bit unsigned integers, with their bits 0 to 31 corresponding to I/O points 0

to 31 on the matching hardware point. Individual bits of the element, and so matching individual

I/O points, can be accessed with MuxIo.PortA[n].Data.k and MuxIo.PortB[n].Data.k, where k

is the bit number. Consecutive sets of bits can be accessed with MuxIo.PortA[n].Data.k.l and

MuxIo.PortB[n].Data.k.l, where k is the starting bit number and l is the number of bits to access.

An M-variable can be assigned to the entire element, an individual bit of the element, or to a

consecutive set of bits. When the assignment is made through the IDE, an application-specific

name can be given to the variable. For example:

ptr PartClamp->MuxIo.PortB[1].Data.17 // 1-bit value

ptr LocatorArray->MuxIo.PortA[0].Data.8.12 // 12-bit value

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 594

Using Cyclic Scanned Buffered Inputs and Outputs

Power PMAC supports the use of “PLC-style” buffered inputs and outputs that are automatically

scanned on a cyclic basis. This is particularly convenient for those users who are accustomed to

dealing with I/O as traditional PLCs access them.

The user is not required to use this functionality to work with inputs and outputs. It is possible to

access the actual input and output registers directly at any time, which can be done instead of this

buffered process, or in addition to it.

With this functionality, up to 64 user-specified input registers can be read at the beginning of

each scan and copied into input holding registers. Input bits can be digitally filtered for

“debouncing” purposes, so that multiple consecutive scans in the new state are required before

the corresponding bit in the holding register changes.

When the bit in the holding register does change in a scan, a corresponding bit in a “rise” or “fall”

register is automatically set to make it easy for user algorithms to act on the edge. Bit values in

the input register can be overridden by values in “forcing” registers, allowing for easy simulation

and debugging.

Up to 64 user-specified output registers can be written to at the end of each scan, copied from

output holding registers.

I/O can be scanned each real-time interrupt (RTI) cycle for use in foreground Script PLC

programs, or each background cycle for use in background Script PLC programs. It is possible to

scan some I/O in the RTI and some in background. The timing of this I/O scanning may not be

useful for C PLC programs, either foreground or background, particularly with regard to the

rising and falling edge detection.

This diagram shows a block diagram for the process of using buffered I/O in the Power PMAC:

In
p

u
t
R

e
g

is
te

r BufIo[i].

pIn

BufIo[i].

ForceInOn.j

BufIo[i].

ForceInOff.j

0

0

0

0

1

1

1

2

2 3

BufIo[i].

InScans

BufIo[i].

In.j

RiseIn.j

RiseInLatch.j

FallIn.j

FallInLatch.j

User Script

PLC

Programs

O
u

tp
u

t
R

e
g

is
te

r
BufIo[i].

pOut

BufIo[i].

ForceOutOff.j

BufIo[i].

ForceOutOn.j

BufIo[i].

Out.j

0

j

31 31

j

0

Cyclic Scanned Buffered I/O Process

This buffered I/O functionality is new in V2.1 firmware, released 1st quarter 2016.

Enabling Cyclic Scanned I/O

This scanned I/O functionality is enabled by setting saved setup element Sys.BufIoEnable to 1. If

it is set to its default value of 0, this functionality is not enabled.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 595

Specifying Scanned Input Registers

The input registers to be read are specified by the settings of saved setup elements BufIo[i].pIn.

Index values i can range from 0 to 63. Elements with index values less than Sys.MaxRtBufIn can

be read each RTI scan. These are intended for use in Script PLCs numbered from 0 to

Sys.MaxRtPlc. Elements with index values greater or equal to than Sys.MaxRtBufIn can be

read each background scan. These are intended for use in Script PLCs numbered from

(Sys.MaxRtPlc + 1) to 31.

If an element BufIo[i].pIn is set to its default value of 0, no input register is read for that index

value. Furthermore, no input register is read for any higher index value for that scan. Note,

however, that a value of 0 for a BufIo[i].pIn in the RTI scan range (i < Sys.MaxRtBufIn) does

not inhibit the use of elements with higher index values in the background scan range (i >=

Sys.MaxRtBufIn).

To specify the read of an input register, BufIo[i].pIn is set to the address of that register. This is

usually done by specifying the name of that element, followed by the “.a” (address of) suffix. For

example:

BufIo[1].pIn = Acc65E[2].Data[1].a

With an address specified and the function enabled, Power PMAC will copy the 32-bit value read

at this address into memory for further processing, with the end result in holding register

BufIo[i].In. This is a full 32-bit operation, even if there is not “real” data in all 32 bits. In the

above example, there is only input data in bits 8 to 15 of the ACC-65E data register, so there will

only be real data in bits 8 to 15 of the 32-bit holding register.

As an example, consider the following configuration:

Sys.BufIoEnable = 1 // Enable cyclic buffered I/O transfers

Sys.MaxRtBufIn = 6 // Index values 0 to 5 can be RTI transfers

BufIo[0].pIn = Acc65E[0].Data[0].a

BufIo[1].pIn = Acc65E[0].Data[1].a

BufIo[2].pIn = Acc65E[0].Data[2].a

BufIo[3].pIn = 0 // Stop RTI reads here

BufIo[4].pIn = ECAT[0].IO[20].Data.a // Not used

BufIo[5].pIn = ECAT[0].IO[21].Data.a // Not used

BufIo[6].pIn = MuxIo.PortA[8].Data.a // Start background reads here

BufIo[7].pIn = MuxIo.PortA[16].Data.a

BufIo[8].pIn = 0 // Stop background reads here

BufIo[9].pIn = ECAT[0].LPIO[40].Data.a // Not used

...

With this configuration, the registers specified by BufIo[0].pIn, BufIo[1].pIn, and BufIo[2].pIn

would be read at the start of each RTI scan. Since BufIo[3].pIn is set to 0, the RTI scan inputs

stop here. BufIo[4].pIn and BufIo[5].pIn are not used, even though Sys.MaxRtBufIn is set to 6.

With Sys.MaxRtBufIn set to 6, background scan inputs start with index value 6. So the registers

specified by BufIo[6].pIn and BufIo[7].pIn are read at the start of each background scan. Since

BufIo[8].pIn is set to 0, the background scan inputs stop here. BufIo[9].pIn and higher are not

used, even if set to non-zero values.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 596

Most commonly, the input registers specified are those of actual hardware inputs. However, it is

also possible to specify a few classes of memory registers: motor, coordinate-system, and global

status registers, or mapped network input registers, such as EtherCAT data registers and MuxIo

data registers.

Note that all enabled input registers are read every scan, regardless of whether the PLC programs

use any data in those registers. If these are hardware registers, which have a much longer access

time than memory registers, it is possible that unneeded reads can add significant computational

time. However, using a single read of the entire hardware input register, followed by multiple

reads of the holding register in memory to access individual bits, can provide a significant time

savings.

Override “Forcing” of Inputs

It is possible to override the bit values of the specified input registers with user-set 32-bit

elements BufIo[i].ForceInOn and BufIo[i].ForceInOff. If a bit of BufIo[i].ForceInOn is set to

1, the value of the corresponding bit in the holding register BufIo[i].In will be 1 regardless of the

state of the bit in the actual input register. If a bit of BufIo[i].ForceInOff is set to 1, the value of

the corresponding bit in the holding register BufIo[i].In will be 0 regardless of the state of the bit

in the actual input register.

This forcing capability is useful for simulation, testing, and debugging purposes. It will not often

be used in the actual application execution.

Because leaving an input forced to an “on” or “off” state at the end of a debugging session can

prevent proper normal operation of a machine, Power PMAC provides special status words that

permit a quick and easy check to see if any input bits remain forced. Sys.FgForceInOr contains

the logical OR of all of the forcing words for the buffered inputs scanned each foreground cycle.

Sys.BgForceInOr contains the logical OR of all of the forcing words for the buffered inputs

scanned each background cycle. If either of these is non-zero, one or more input bits is being

forced.

Sys.ForceOr contains the logical OR of all of the forcing words for both inputs and outputs,

whether scanned in foreground or background. In normal operation, this should generally be zero.

The on-line command bufioforceclear clears all forcing bits for both buffered inputs and

outputs. Its use is strongly recommended after a debugging session to return to normal operation.

Resetting the Power PMAC also clears all forcing bits.

Filtering of Inputs

Sometimes electrical noise or pushbutton “bounce” creates a false edge, and it can be difficult for

users to distinguish these false transitions from real ones. Power PMAC’s scanned cyclic input

function provides an automatic function that makes it easy to filter out most of these false

transitions.

If BufIo[i].InScans is set to a value greater than 0, then a bit in the input register specified by

BufIo[i].pIn must be in its new state for multiple (InScans + 1) scans before that change is

reflected in the corresponding bit of resulting holding register BufIo[i].In. If BufIo[i].InScans is

set to it maximum value of 4, 5 consecutive scans of the new state are required.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 597

This filtering function does not require any additional code in the application algorithms that use

the resulting bit value in BufIo[i].In. They do let the user have much greater confidence that their

algorithm is reacting to a real transition in the input instead of a spurious one. The user must be

aware of the delay in responding to a real transition that this filtering introduces, but in most

cases, this delay is not significant to the application.

All 32 bits in a single input word will have the same delay from the requirement for multiple

scans of this filtering function, but separate input words can have differing delays.

Resulting Registers

The 32-bit value at the address specified by BufIo[i].pIn will be transferred, possibly with

filtering, and possibly with some bits “forced”, into the shared memory holding register

BufIo[i].In. Bits of BufIo[i].In can be used directly in user Script PLC programs.

In addition to the “state” input bits in BufIo[i].In, Power PMAC automatically computes “edge”

bits for each input state bit, both transparent and latched. These bits make it easier to take action

on a transition of an input bit. Some users will prefer the transparent bits; others the latched bits.

If a bit of BufIo[i].In has changed from 0 to 1 in the most recent scan, Power PMAC will

automatically set the corresponding bit of transparent edge element BufIo[i].RiseIn to 1 for the

scan. If a bit of BufIo[i].In has changed from 1 to 0 in the most recent scan, Power PMAC will

automatically set the corresponding bit of BufIo[i].FallIn to 1 for the scan. Note that bits in these

elements are only true for a single scan, so the user algorithms must be checking these elements

every scan to be able to detect the edges.

The bits in latched edge elements BufIo[i].RiseInLatch and BufIo[i].FallInLatch are

automatically set to 1 on the appropriate edge of the input, but they will remain at 1 until cleared

by user commands. These bits do not need to be checked every scan, but the application code

may need to clear the bit before it starts looking for the edge, after the edge is found, or both.

Using the Resulting Values

Most commonly, the user will access the resulting values in BufIo[i].In, BufIo[i].RiseIn,

BufIo[i].RiseInLatch, BufIo[i].FallIn, and BufIo[i].FallInLatch with user pointer (M)

variables. These variables can access the entire 32-bit element, but more commonly will access a

single bit, or possibly a consecutive set of bits.

When the assignment is made through the IDE, an application-specific name can be given to the

variable. For example:

ptr HoldButtonState->BufIo[2].In.9 // Single-bit state

ptr HoldButtonPressed->BufIo[2].FallIn.9 // Just pressed

ptr HoldButtonReleased->BufIo[2].RiseIn.9 // Just released

Writing to Outputs Using Holding Registers

In this scheme, the user’s PLC programs will write to bits of the output holding registers

BufIo[i].Out, not the actual output registers. This is usually done with user pointer (M) variables.

These variables can access the entire 32-bit element, but more commonly will access a single bit,

or possibly a consecutive set of bits.

When the assignment is made through the IDE, an application-specific name can be given to the

variable. For example:

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 598

ptr ClampSolenoidOn->BufIo[4].Out.14 // Single-bit state

ptr BlowerSpeedSelect->BufIo[6].Out.8.3 // 8 possible states

Override “Forcing” of Outputs

It is possible to override the computed bit values for the specified output registers with user-set

32-bit elements BufIo[i].ForceOutOn and BufIo[i].ForceOutOff. If a bit of

BufIo[i].ForceOutOn is set to 1, the value of the corresponding bit in the actual output register

addressed by BufIo[i].pOut will be 1 regardless of the state of the bit in the computed output

holding register BufIo[i].Out. If a bit of BufIo[i].ForceOutOff is set to 1, the value of the

corresponding bit in the actual output register addressed by BufIo[i].pOut will be 0 regardless of

the state of the bit in the computed output holding register BufIo[i].Out.

This forcing capability is useful for simulation, testing, and debugging purposes. It will not often

be used in the actual application execution.

Because leaving an output forced to an “on” or “off” state at the end of a debugging session can

prevent proper normal operation of a machine, Power PMAC provides special status words that

permit a quick and easy check to see if any output bits remain forced. Sys.FgForceOutOr

contains the logical OR of all of the forcing words for the buffered outputs scanned each

foreground cycle. Sys.BgForceOutOr contains the logical OR of all of the forcing words for the

buffered outputs scanned each background cycle. If either of these is non-zero, one or more

output bits is being forced.

Sys.ForceOr contains the logical OR of all of the forcing words for both inputs and outputs,

whether scanned in foreground or background. In normal operation, this should generally be zero.

The on-line command bufioforceclear clears all forcing bits for both buffered inputs and

outputs. Its use is strongly recommended after a debugging session to return to normal operation.

Resetting the Power PMAC also clears all forcing bits.

Specifying Scanned Output Registers

The output registers to be written to are specified by the settings of saved setup elements

BufIo[i].pOut. Index values i can range from 0 to 63. Elements with index values less than

Sys.MaxRtBufOut can be written to each RTI scan. These are intended for use in Script PLCs

numbered from 0 to Sys.MaxRtPlc. Elements with index values greater than or equal to

Sys.MaxRtBufOut can be written to each background scan. These are intended for use in Script

PLCs numbered from (Sys.MaxRtPlc + 1) to 31.

If an element BufIo[i].pOut is set to its default value of 0, no output register is written to for that

index value. Furthermore, no output register is written to for any higher index value for that scan.

Note, however, that a value of 0 for a BufIo[i].pOut in the RTI scan range (i <

Sys.MaxRtBufOut) does not inhibit the use of elements with higher index values in the

background scan range (i >= Sys.MaxRtBufOut).

To specify the writing of an output register, BufIo[i].pOut is set to the address of that register.

This is usually done by specifying the name of that element, followed by the “.a” (address of)

suffix. For example:

BufIo[i].pOut = Acc68E[1].Data[5].a

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 599

With an address specified and the function enabled, Power PMAC will copy the 32-bit value

result in holding register BufIo[i].Out to the register specified at this address at the end of each

scan. This is a full 32-bit operation, even if there is not “real” data in all 32 bits. In the above

example, there is only output circuitry in bits 8 to 15 of the ACC-68E data register, so there will

only be useful data in bits 8 to 15 of the 32-bit holding register.

Note

The entire target register specified by BufIo[i].pOut is written

to each scan that there is a change in the holding register. This

will overwrite anything another task has written to the target

register.

As an example, consider the following configuration:

Sys.BufIoEnable = 1 // Enable cyclic buffered I/O transfers

Sys.MaxRtBufOut = 6 // Index values 0 to 5 can be RTI transfers

BufIo[0].pOut = Acc65E[0].Data[3].a

BufIo[1].pOut = Acc65E[0].Data[4].a

BufIo[2].pOut = Acc65E[0].Data[5].a

BufIo[3].pOut = 0 // Stop RTI writes here

BufIo[4].pOut = ECAT[0].IO[60].Data.a // Not used

BufIo[5].pOut = ECAT[0].IO[61].Data.a // Not used

BufIo[6].pOut = MuxIo.PortB[12].Data.a // Start background writes here

BufIo[7].pOut = MuxIo.PortB[20].Data.a

BufIo[8].pOut = 0 // Stop background writes here

BufIo[9].pOut = ECAT[0].LPIO[80].Data.a // Not used

...

With this configuration, the registers specified by BufIo[0].pOut, BufIo[1].pOut, and

BufIo[2].pOut would be written to at the end of each RTI scan. Since BufIo[3].pOut is set to 0,

the RTI scan outputs stop here. BufIo[4].pOut and BufIo[5].pOut are not used, even though

Sys.MaxRtBufOut is set to 6.

With Sys.MaxRtBufOut set to 6, background scan outputs start with index value 6. So the

registers specified by BufIo[6].pOut and BufIo[7].pOut are written to at the end of each

background scan. Since BufIo[8].pOut is set to 0, the background scan outputs stop here.

BufIo[9].pOut and higher are not used, even if set to non-zero values.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 600

Accessing Digital I/O Points in the C Environment

General-purpose I/O points can be accessed in C functions and applications running in the Power

PMAC. However, I/O read and write operations in C can only access full 32-bit registers. In order

to isolate parts of the register, such as individual digital I/O points or DAC and ADC values, the

C code must explicitly perform the required masking and shifting operations. (In the Script

environment, these operations are performed automatically by the Script execution engine.)

Accessing Output Points at Different Priority Levels

If you wish to set individual output points in the same register from multiple tasks at different

priority levels, you will have the potential for one task to undo what another task has just done.

This issue is covered under this same heading in the above section “Accessing Digital I/O Points

in the Script Environment”. Note, however, that C code cannot employ the same process locking

mechanism that the Script environment uses, so it is strongly recommended not to write to

outputs in the same output register from multiple priority levels.

Volatile Variable Declarations

It is best to declare the C variables that access the actual I/O registers as “volatile” variables,

particularly for input registers. This tells the compiler that each reference to the variable requires

an actual read of the register, instead of permitting it to use a “remembered” value from a

previous access.

If you need to access the same input word multiple times for different tasks and need to make

sure the same word value is used each time, you should read the actual input register only once,

copying it to an image in a software variable, then access this software variable multiple times.

This is both more robust and faster to execute.

Using Data Structures

The most common method of access to digital I/O registers in C is to use Power PMAC’s pre-

defined data structures. This provides an approach that is similar to that used in Script programs.

In this approach, structure variables are declared for each IC using the references in RtGpShm.h

and then mapped to particular ICs with function calls from RtPmacApi.h.

The variable declarations for general-purpose digital I/O will look like:

volatile GateArray2 *MyFirstGate2IC; // ACC-5E

volatile GateArray3 *MySecondGate3IC; // ACC-5E3, 59E3

volatile GateIOStruct *MyFourthIOIC; // ACC-65E, 68E, 11C, etc.

These declared variables can then be assigned to particular ICs with function calls in program

statements like the following. These must be executed every time the Power PMAC is started up.

MyFirstGate2IC = GetGate2MemPtr(0); // For Gate2[0]

MySecondGate3IC = GetGate3MemPtr(1); // For Gate3[1]

MyFourthIOIC = GetGateIOMemPtr(3); // For GateIo[3]

The returned value of the function is the base address of the IC (whose numerical value does not

usually need to be known by the user). If the IC is not found, a NULL value is returned.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 601

Using Direct Pointer Variables

It is also possible to use pointer variables assigned directly to the ASIC registers by address,

without using the pre-defined structures and elements. This is a little more efficient, but also more

difficult to use and document.

Using this technique, the variable declarations for the base IC pointers will look like:

int MyFirstGate2Adr;

int MySecondGate3Adr;

int MyFourthIOICAdr;

The variable declarations for individual registers will look like:

volatile int *MyGate2MuxDataReg;

volatile int *MyGate3GpioReg;

volatile int *MyFourthIODataReg3;

The base IC pointer variables are then assigned to the ICs using Power PMAC’s address auto-

detection elements. This can be done with program statements like the following. For global

variables, these must be executed once each time the Power PMAC is started up. For local

variables, these must be executed every time the routine is entered.

MyFirstGate2Adr = pshm->OffsetGate2[0]; // Gate2[0]

MySecondGate3Adr = pshm->OffsetGate3[1]; // Gate3[1]

MyFourthIOICAdr = pshm->OffsetCardIO[3]; // GateIo[3]

These variables will contain the non-zero base address offset of the IC if it has been detected.

They will contain a zero value if it has not been detected.

Next, the address of each individual register must be computed as the sum of the pointer to I/O

memory (piom), the base address offset of the IC computed above, and the offset of the register

in the IC from its base. These offsets are given for all ICs in the Software Reference Manual

chapter “Power PMAC ASIC Register Element Addresses”. Register offsets for specific general

purpose I/O are given in sections below.

The register pointer variables can be computed with program statements like the following. For

global variables, these must be executed once each time the Power PMAC is started up. For local

variables, these must be executed each time the routine is entered.

MyGate2MuxDataReg = (int *) piom + ((MyFirstGate2Adr + 0x08) >> 2);

MyGate3GpioReg = (int *) piom + (MySecondGate3Adr + 0x250) >> 2);

MyFourthIODataReg3 = (int *) piom + ((MyFourthIOICAdr + 0x0C) >> 2);

The “shift-right 2” (>> 2) operation converts the “byte addressing” of the offset values into the

“word addressing” that the program requires. This effective division by 4 reflects the fact that

there are 4 bytes per 32-bit word.

Once these pointer variables are properly assigned to addresses, the values in them can be

accessed.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 602

UMAC Digital I/O Boards

For the UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E), the data registers can be

accessed either with data structures or with direct pointer variables. The actual data is found in

bits 8 – 15 of the 32-bit bus.

Data Structure Method

Using the data structures as shown above, once the structure variable has been initialized with the

GetGateIOMemPtr(i) API function, individual elements of the structure can be directly

accessed. Remember that in C, these are 32-bit elements, not 8-bit elements as in the Script

environment.

So a data structure to the I/O card can be defined as shown above:

volatile GateIOStruct *MyFourthIOIC;

...

MyFourthIOIC = GetGateIoMemPtr(3);

To copy the 3 8-bit input values from the first three data registers of the I/O card defined above

into the low 24 bits of a 32-bit integer software variable, the following code could be used.

My24BitInputBank = MyFourthIOIC->DataReg[0] & 0xff00 >> 8;

My24BitInputBank |= MyFourthIOIC->DataReg[1] & 0xff00;

My24BitInputBank |= MyFourthIOIC->DataReg[2] & 0xff00 << 8;

To copy the low 24 bits of a 32-bit integer software variable into 3 8-bit output values of the last

three data registers of the I/O card defined above, the following code could be used.

MyFourthIOIC->DataReg[3] = My24BitOutputBank & 0x0000ff << 8;

MyFourthIOIC->DataReg[4] = My24BitOutputBank & 0x00ff00;

MyFourthIOIC->DataReg[5] = My24BitOutputBank & 0xff0000 >> 8;

Direct Pointer Method

In the direct pointer variable, typically a separate pointer variable is defined for each of the 6 data

registers, although it is also possible to redefine a single pointer variable as needed.

The following table shows the byte address offset of each data register in the UMAC I/O boards.

Port A Register Byte Offset Port B Register Byte Offset

DataReg[0] 0x00 DataReg[3] 0x0C

DataReg[1] 0x04 DataReg[4] 0x10

DataReg[2] 0x08 DataReg[5] 0x14

So pointers to the 6 data registers of a single UMAC card could be defined as follows:

int MyFourthIOICAdr;

volatile int *MyFourthIODataReg0;

volatile int *MyFourthIODataReg1;

volatile int *MyFourthIODataReg2;

volatile int *MyFourthIODataReg3;

volatile int *MyFourthIODataReg4;

volatile int *MyFourthIODataReg5;

...

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 603

MyFourthIOICAdr = pshm->OffsetCardIO[3]; // GateIo[3]

MyFourthIODataReg0 = (int *) piom + (MyFourthIOICAdr >> 2);

MyFourthIODataReg1 = (int *) piom + ((MyFourthIOICAdr + 0x04) >> 2);

MyFourthIODataReg2 = (int *) piom + ((MyFourthIOICAdr + 0x08) >> 2);

MyFourthIODataReg3 = (int *) piom + ((MyFourthIOICAdr + 0x0C) >> 2);

MyFourthIODataReg4 = (int *) piom + ((MyFourthIOICAdr + 0x10) >> 2);

MyFourthIODataReg5 = (int *) piom + ((MyFourthIOICAdr + 0x14) >> 2);

To copy the 3 8-bit input values from the first three data registers of the I/O card defined above

into the low 24 bits of a 32-bit integer software variable, the following code could be used.

My24BitInputBank = *MyFourthIODataReg0 & 0xff00 >> 8;

My24BitInputBank |= *MyFourthIODataReg1 & 0xff00;

My24BitInputBank |= *MyFourthIODataReg2 & 0xff00 << 8;

To copy the low 24 bits of a 32-bit integer software variable into 3 8-bit output values of the last

three data registers of the I/O card defined above, the following code could be used.

MyFourthIODataReg3 = My24BitOutputBank & 0x0000ff << 8;

MyFourthIODataReg4 = My24BitOutputBank & 0x00ff00;

MyFourthIODataReg5 = My24BitOutputBank & 0xff0000 >> 8;

Compact UMAC ACC-11C Digital I/O

Accessing the I/O in a Compact UMAC ACC-11C board is exactly the same as in a UMAC

digital I/O board. Refer to the above section for details.

UMAC ACC-5E Digital I/O

The UMAC ACC-5E board has digital I/O points in four registers. They can be accessed either

with data structures or with direct pointer variables.

Data Structure Method

Using the data structures as shown above, once the structure variable has been initialized with the

GetGate2MemPtr(i) API function, individual elements of the structure can be directly

accessed.

So a data structure to the I/O card can be defined as shown above:

volatile GateArray2 *MyFirstGate2IC;

...

MyFirstGate2IC = GetGate2MemPtr(3);

The element MyFirstGate2IC->LowIoData has real data in bits 08 – 31 of the 32-bit bus,

corresponding to signals I/O00 – I/O23, respectively.

To isolate the value of the bit corresponding to signal I/O02 (bit 10) in the LowIoData register

into a software variable, the following code could be used:

Io02Value = (MyFirstGate2IC->LowIoData & 0x0400) >> 10;

The element MyFirstGate2IC->HighIoData has real data in bits 08 – 15 of the 32-bit bus,

corresponding to signals I/O24 – I/O31, respectively.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 604

To set the bit of the HighIoData register corresponding to signal I/O30 (bit 14), the following

code could be used:

MyFirstGate2IC->HighIoData |= 0x4000;

The element MyFirstGate2IC->MuxData has real data in bits 8 – 23 of the 32-bit bus,

corresponding to signals DAT0 – DAT7 and SEL0 – SEL7, respectively.

To copy the value of a Boolean variable into the bit of the MuxData register corresponding to

signal SEL1 (bit 17), the following code could be used:

Temp = MyFirstGate2IC->MuxData | (0x020000 & (MyBool << 17));

MyFirstGate2IC->MuxData = Temp & (0xFDFFFF | (MyBool << 17));

The element MyFirstGate2IC->DispData has real data in bits 08 – 15 of the 32-bit bus,

corresponding to signals DISP0 – DISP7, respectively.

To copy the value of a full byte to the bits of the DispData register corresponding to signals

DISP0 – DISP7 (bits 8 – 15), the following code could be used:

MyFirstGate2IC->DispData = MyChar << 8;

Direct Pointer Method

In the direct pointer method, typically a separate pointer variable is defined for each of the 4 data

registers, although it is also possible to redefine a single pointer variable as needed.

The following table shows the byte address offset of each data register in the ACC-5E.

Register Byte Offset Register Byte Offset

LowIoData 0x00 MuxData 0x08

HighIoData 0x04 DispData 0x0C

So pointers to the 4 data registers of a single ACC-5E card could be defined as follows:

int MyFirstGate2Adr;

volatile int *MyFirst5ELowIoData;

volatile int *MyFirst5EHighIoData;

volatile int *MyFirst5EMuxData;

volatile int *MyFirst5EDispData;

...

MyFirstGate2Adr = pshm->OffsetGate2[0]; // Gate2[0]

MyFirst5ELowIoData = (int *) piom + (MyFirstGate2Adr >> 2);

MyFirst5EHighIoData = (int *) piom + ((MyFirstGate2Adr + 0x04) >> 2);

MyFirst5EMuxData = (int *) piom + ((MyFirstGate2Adr + 0x08) >> 2);

MyFirst5EDispData = (int *) piom + ((MyFirstGate2Adr + 0x0C) >> 2);

To isolate the value of the bit corresponding to signal I/O02 (bit 10) in the LowIoData register

into a software variable, the following code could be used:

Io02Value = *MyFirst5ELowIoData & 0x400 >> 10;

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 605

To set the bit of the HighIoData register corresponding to signal I/O30 (bit 14), the following

code could be used:

*MyFirst5EHighIoData |= 0x4000;

To copy the value of a Boolean variable into the bit of the MuxData register corresponding to

signal SEL1 (bit 17), the following code could be used:

Temp = *MyFirst5EMuxData | (MyBool << 17);

*MyFirst5EMuxData = Temp & (0xFFFFFF ^ ((MyBool ^ 1) << 17));

To copy the value of a full byte to the bits of the DispData register corresponding to signals

DISP0 – DISP7 (bits 8 – 15), the following code could be used:

*MyFirst5EDispData = MyChar << 8;

UMAC ACC-5E3 Digital I/O

The UMAC ACC-5E3 board has a 16-bit general-purpose digital I/O port mapped into the low 16

bits (bits 0 – 15) of the Gate3[i].GpioData[0] element of the first IC on the board, corresponding

to signals I/O00 – I/O15, respectively.

For I/O points in this hardware element set up as outputs, it is not possible to read back the values

that have been written to the element. For this reason, there is a matching software element

Gate3PartData[i].GpioOutData[0] (Gate3[i].GpioOutData[0] in the Script environment) that

can contain an image of the outputs in the hardware element. Because values written to this

element can be read back, it can be used for manipulation of individual output points through

read/modify/write operations, with the entire element value then copied to the hardware element.

(This does not affect the reported value of inputs in the hardware register.) The Script

environment does this automatically; it can be done through explicit program statements in C.

Data Structure Method

Using the data structures as shown above, once the structure variable has been initialized with the

GetGate3MemPtr(i) API function, individual elements of the structure can be directly

accessed.

So a data structure to the ACC-5E3 card can be defined as shown above:

volatile GateArray3 *MySecondGate3IC;

...

MySecondGate3IC = GetGate3MemPtr(1);

The element MySecondGate3IC->GpioData[0] has real data for the ACC-5E3 JIO port in

bits 0 – 15 of the 32-bit bus.

To set the bit in the GpioData[0] register corresponding to I/O12 (bit 12), the following code

could be used:

pshm->Gate3PartData[1].GpioOutData[0] |= 0x1000; // Modify SW image

MySecondGate3IC->GpioData[0] = pshm->Gate3PartData[1].GpioOutData[0];

To isolate the value of the bit corresponding to signal I/O05 (bit 5) in the GpioData[0] register

into a software variable, the following code could be used:

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 606

Io05Value = (MySecondGate3IC->GpioData[0] & 0x20) >> 5;

Direct Pointer Method

In the direct pointer method, a pointer variable is defined to the IC’s GpioData[0] register. The

byte offset of this register is 0x250.

So pointers to the I/O data register of an ACC-5E3 card could be defined as follows:

int MySecondGate3Adr;

volatile int *MySecond5E3GpioData;

...

MySecondGate3Adr = pshm->OffsetGate3[1]; // Gate3[1]

MySecond5E3GpioData = (int *) piom + ((MySecondGate3Adr + 0x250) >> 2);

To clear the bits in the GpioData[0] register corresponding to I/O08 and I/O09 (bits 8 and 9), the

following code could be used:

pshm->Gate3PartData[1].GpioOutData[0] &= 0xFCFF; // Modify SW image

*MySecond5E3GpioData = pshm->Gate3PartData[1].GpioOutData[0];

To isolate the value of the bit corresponding to signal I/O03 (bit 3) in the GpioData[0] register

into a software variable, the following code could be used:

Io05Value = (*MySecond5E3GpioData & 0x08) >> 3;

Power Brick Digital I/O

The 4-axis Power Brick has a 24-bit general-purpose digital I/O port that is mapped into the

Gate3[0].GpioData[0] element. The 16 inputs, GPIN01 – GPIN16 for the first IC, and GPIN17 –

GPIN32 for the second IC, are mapped into the low 16 bits (00 – 15) of the element; the 8

outputs, GPOUT01 – GPOUT08 for the first IC, and GPOUT09 – GPOUT16 for the second IC,

are mapped into the next 8 bits (16 – 23) of the element.

The 8-axis Power Brick has a second 24-bit general-purpose digital I/O port that is mapped into

the Gate3[1].GpioData[0] element. The 16 inputs are mapped into the low 16 bits (00 – 15) of

the element; the 8 outputs are mapped into the next 8 bits (16 – 23).

Note

Bits 24 – 31 of the 32-bit elements Gate3[i].GpioData[0] in

the Power Brick are used for other purposes. Access to the low

24 bits of these elements for general-purpose I/O should not

change the values of those high 8 bits.

For I/O points in this hardware element set up as outputs, it is not possible to read back the values

that have been written to the element. For this reason, there is a matching software element

Gate3PartData[i].GpioOutData[0] (Gate3[i].GpioOutData[0] in the Script environment) that

can contain an image of the outputs in the hardware element. Because values written to this

element can be read back, it can be used for manipulation of individual output points through

read/modify/write operations, with the entire element value then copied to the hardware element.

(This does not affect the reported value of inputs in the hardware register.) The Script

environment does this automatically; it can be done through explicit program statements in C.

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 607

Data Structure Method

Using the data structures as shown above, once the structure variable has been initialized with the

GetGate3MemPtr(i) API function, individual elements of the structure can be directly

accessed.

So data structures for the ICs in an 8-axis Power Brick can be defined as shown above:

volatile GateArray3 *MyFirstBrickIC, *MySecondBrickIC;

...

MyFirstBrickIC = GetGate3MemPtr(0);

MySecondBrickIC = GetGate3MemPtr(1);

The hardware elements MyFirstBrickIC->GpioData[0] and

MySecondBrickIC->GpioData[0]each have real data for a 24-bit I/O port with inputs in

bits 00 – 15 and outputs in bits 16 – 23 of the 32-bit bus.

To set the bit in the first IC’s GpioData[0] register corresponding to GPOUT07 (bit 22), the

following code could be used:

pshm->Gate3PartData[0].GpioOutData[0] |= 0x400000; // Modify SW image

MyFirstBrickIC->GpioData[0] = pshm->Gate3PartData[0].GpioOutData[0];

To isolate the value of the bit corresponding to signal GPIN27 (bit 10) in the second IC into a

software variable, the following code could be used:

Gpin27Value = (MySecondBrickIC->GpioData[0] & 0x000400) >> 10;

Direct Pointer Method

In the direct pointer method, a pointer variable is defined to the IC’s GpioData[0] register. The

byte offset of this register is 0x250.

So pointers to the I/O data register of Power Brick ICs could be defined as follows:

int MyFirstICAdr, MySecondICAdr;

volatile int *MyFirstICGpioData, *MySecondICGpioData;

...

MyFirstICAdr = pshm->OffsetGate3[0]; // Gate3[0]

MyFirstICGpioData = (int *) piom + ((MyFirstICAdr + 0x250) >> 2);

MySecondICAdr = pshm->OffsetGate3[1]; // Gate3[1]

MySecondICGpioData = (int *) piom + ((MySecondICAdr + 0x250) >> 2);

To clear the bits in the GpioData[0] register corresponding to GPOUT02 and GPOUT03 (bits 17

and 18) in the first IC, the following code could be used:

pshm->Gate3PartData[0].GpioOutData[0] &= 0xF9FFFF; // Modify SW image

*MyFirstICGpioData = pshm->Gate3PartData[0].GpioOutData[0];

To isolate the value of the bit corresponding to signal GPIN28 (bit 11) in the second IC into a

software variable, the following code could be used:

Gpin28Value = (*MySecondICGpioData & 0x800) >> 11;

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 608

Power Clipper Digital I/O

The 4-axis Power Clipper base board has two 16-bit general-purpose digital I/O ports that are

mapped into the 32-bit Gate3[0].GpioData[0] element. On the JTHW port, the DAT0 – DAT7

lines are mapped into bits 0 – 7 of the element, and the SEL0 – SEL7 lines are mapped into bits 8

– 15 of the element. On the JIO port, the MO1 – MO8 lines are mapped into bits 16 – 23 of the

element, and the MI1 – MI8 lines are mapped into bits 24 – 31 of the element.

The optional 4-axis Power Clipper piggyback board has identical mapping of general-purpose

digital I/O ports and lines into the 32-bit Gate3[1].GpioData[0] element.

For I/O points in this hardware element set up as outputs, it is not possible to read back the values

that have been written to the element. For this reason, there is a matching software element

Gate3PartData[i].GpioOutData[0] (Gate3[i].GpioOutData[0] in the Script environment) that

can contain an image of the outputs in the hardware element. Because values written to this

element can be read back, it can be used for manipulation of individual output points through

read/modify/write operations, with the entire element value then copied to the hardware element.

(This does not affect the reported value of inputs in the hardware register.) The Script

environment does this automatically; it can be done through explicit program statements in C.

Data Structure Method

Using the data structures as shown above, once the structure variable has been initialized with the

GetGate3MemPtr(i) API function, individual elements of the structure can be directly

accessed.

So data structures to the ICs in an 8-axis Power Clipper stack can be defined as shown above:

volatile GateArray3 *MyBaseClipperIC, *MyOptClipperIC;

...

MyBaseClipperIC = GetGate3MemPtr(0);

MyOptClipperIC = GetGate3MemPtr(1);

The hardware elements MyBaseClipperIC->GpioData[0] and

MyOptClipperIC->GpioData[0]each have real data for two 16-bit I/O ports on the 32-bit

bus, with the direction user-selectable by byte as described in an above section.

To set the bit in the first IC’s GpioData[0] register corresponding to SEL1 (bit 9) used as an

output, the following code could be used:

pshm->Gate3PartData[0].GpioOutData[0] |= 0x0200; // Modify SW image

MyBaseClipperIC->GpioData[0] = pshm->Gate3PartData[0].GpioOutData[0];

To isolate the value of the bit corresponding to signal MI3 (bit 26) in the second IC into a

software variable, the following code could be used:

MI3Value = (MyOptClipperIC->GpioData[0] & 0x04000000) >> 26;

Direct Pointer Method

In the direct pointer method, a pointer variable is defined to the IC’s GpioData[0] register. The

byte offset of this register is 0x250.

So pointers to the I/O data register of Power Clipper ICs could be defined as follows:

Power PMAC User’s Manual

Using General Purpose Digital I/O with Power PMAC 609

int MyFirstICAdr, MySecondICAdr;

volatile int *MyFirstICGpioData, *MySecondICGpioData;

...

MyFirstICAdr = pshm->OffsetGate3[0]; // Gate3[0]

MyFirstICGpioData = (int *) piom + ((MyFirstICAdr + 0x250) >> 2);

MySecondICAdr = pshm->OffsetGate3[1]; // Gate3[1]

MySecondICGpioData = (int *) piom + ((MySecondICAdr + 0x250) >> 2);

To clear the bits in the GpioData[0] register corresponding to MO05 and MO06 (bits 20 and 21)

in the IC on the base Clipper board, the following code could be used:

pshm->Gate3PartData[0].GpioOutData[0] &= 0xCFFFFF; // Modify SW image

*MyFirstICGpioData = pshm->Gate3PartData[0].GpioOutData[0];

To isolate the value of the bit corresponding to signal MI2 (bit 25) in the piggyback Clipper board

into a software variable, the following code could be used:

MI2Value = (*MySecondICGpioData & 0x02000000) >> 25;

ACC-34 Family Multiplexed Digital I/O

For the multiplexed digital I/O on ACC-34 boards, the application will access the I/O points

through their image words in Power PMAC memory. The values in the image words for output

ports are automatically copied to the actual outputs on the ACC-34 boards, and the values in the

image words for input ports are automatically copied from the actual inputs on the ACC-34

boards.

In C, these are best accessed through their data structure element names:

pshm->MuxIo.PortA[n].Data and pshm->MuxIo.PortB[n].Data, where n (= 0 to

31) is the index for the board as set by the DIP switches on the board. With standard ACC-34

boards, Port A is always an input port and Port B is always an output port, but it is possible to use

boards where this is not the case. These elements are 32-bit unsigned integers, with their bits 0 to

31 corresponding to I/O points 0 to 31 on the matching hardware point.

To isolate the value of the bit corresponding to IN19 (bit 19) in the PortA[1].Data element into a

separate variable, the following code could be used:

MyIn19Value = pshm->MuxIo.PortB[1].Data & 0x00080000 >> 19;

To set the bit of the PortB[0].Data element corresponding to signal OUT10 (bit 10), the

following code could be used:

pshm->MuxIo.PortB[1].Data |= 0x00000400;

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 610

WRITING AND EXECUTING SCRIPT PROGRAMS IN THE
POWER PMAC

The Script programming language of the Power PMAC provides an easy-to-use, yet powerful and

flexible software environment to implement motion and other machine control tasks. While this

interpreted language does not execute as quickly as compiled C code, and does not have all the

general-purpose programming features of a language like C, it makes the programming of many

machine-control tasks substantially easier, especially for users who are not experienced in

advanced programming techniques.

Classes of Script Programs

There are five separate classes of Script programs in the Power PMAC: (fixed) motion programs,

“rotary” motion programs, “PLC” programs, subprograms, and kinematic subroutines. All share

the same Script language, but each executes the language according to different rules. Each class

of program is explained below.

Motion Programs

Power PMAC motion programs allow for the automatic sequenced execution of axis moves, with

associated input/ output operations and mathematical/logical calculations. While a motion

program is executed by a coordinate system, it does not “belong” to a coordinate system. Any

active coordinate system can execute any motion program, and multiple coordinate systems can

execute the same motion program at the same time.

Power PMAC can have up to 1023 of these “fixed” motion programs at any one time, each taking

a number from 1 to 4,294,967,295 (232-1). There is no need for the numbers to be consecutive, or

to have any pattern. There is no execution priority for lower or higher-numbered programs. The

program numbers simply act as numeric identifying labels.

Rotary Motion Programs

Unlike “fixed” motion programs (prog), commands in “rotary” motion programs can be

downloaded to the Power PMAC while the program is executing. This permits extremely large

programs – programs too big to be stored in Power PMAC memory in their entirety – to be

executed continuously, and it permits the contents of motion programs to be generated “on the

fly” while earlier parts of the program are executing.

Each coordinate system in Power PMAC can have one (and only one) rotary program buffer. The

rotary program buffer is automatically motion program 0 for the coordinate system.

PLC Programs

Power PMAC “PLC” programs, while commonly used for the type of logical response and

input/output control of traditional Programmable Logic Controllers, are capable of managing

many other tasks. Unlike motion programs, they are not sequenced by the programmed move, so

they can be used for many tasks that are asynchronous to the programmed motion.

The Script PLC programs provide a general computing capability, executing much more like

traditional high-level programming languages than the motion programs do. (For this reason,

many users will find it better to implement this type of functionality in “CPLCs”, using the C

programming language.)

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 611

Power PMAC can have up to 32 Script PLC programs, numbered 0 to 31. Up to 4 of these can

execute in foreground, under the real-time interrupt; the remainder will execute in “round robin”

fashion as background tasks. At a given priority level, lower-numbered PLC programs execute

before higher-numbered PLC programs.

Subprograms

Power PMAC Script subprograms are not executed directly; instead they are called from other

Script programs. A subprogram can be called from a “fixed” motion program, a rotary motion

program, a PLC program, or a subprogram.

Power PMAC can have up to 1023 of these subprograms at any one time, each taking a number

from 1 to 4,294,967,295 (232-1). There is no need for the numbers to be consecutive, or to have

any pattern. The program numbers simply act as numeric identifying labels.

Kinematic Subroutines

Each coordinate system in Power PMAC can have a forward-kinematic subroutine (forward)

and an inverse-kinematic subroutine (inverse), defining the relationship between motor

coordinates and axis coordinates. These subroutines permit more complex relationships between

motors and axes than the mathematically linear relationships defined by the more common (and

simpler) axis-definition statements.

The forward-kinematic subroutine, which converts motor coordinates to axis coordinates, is

automatically called at the start of execution of a motion program (no calling command is

required) to compute the starting positions of the axes for the first programmed move. It is also

called by a pmatch command, either on-line or program, by the on-line axis-query commands

&xp, &xd, &xv, &xf, and &xg, and by the program axis-query commands pread, dread,

vread, fread, and dtogread, to compute the present axis coordinates for the query response.

The inverse-kinematic subroutine, which converts axis coordinates to motor coordinates, is

automatically called (with no calling command required) once per programmed move for non-

segmented moves, and once per move segment for segmented moves, to compute the commanded

motor positions required to implement the programmed axis positions for the move or segment of

a move.

Implementation of the kinematic subroutines is discussed in detail in the Setting Up a Coordinate

System chapter of the User’s Manual.

Script Language Syntax Features

The Power PMAC Script language provides a powerful and flexible, but easy-to-use syntax

structure that facilitates straightforward implementation of sophisticated programming constructs.

Mathematical Capabilities

The Power PMAC Script language provides a full set of mathematical capabilities, with

constants, variables, operators, and functions. These are explained in detail in the Power PMAC

Computation Features chapter of the User’s Manual, and in the Power PMAC Script

Mathematical Feature Specification chapter of the Software Reference Manual.

A very important feature of the Script language is its automatic “type matching” of different

variable formats. The user can mix and match different formats together in any mathematical

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 612

expression, fixed-point and floating-point, from Boolean to 64-bit width, without any explicit

type conversions. This makes working with the multiple data types present in a system,

particularly when dealing with input and output registers, very simple.

Program Flow Control

The Power PMAC Script language provides multiple means of controlling program flow,

including branching structures, looping structures, and subroutine/subprogram calls.

Branching Structures

The Script language provides several branching structures for conditional execution of certain

program commands or sections.

“If/Else” Branching

In the if({condition}) structure, when the condition evaluates as “true”, the command(s)

immediately following are executed. If this structure is not immediately followed by a “left curly

bracket” (“{”), only the single command following is conditionally executed in this way. If this

structure is immediately followed by a “left curly bracket” (“{”), all the commands up to the next

“right curly bracket” (“}”) are conditionally executed in this way.

If the command or bracketed set of commands immediately after the if({condition})

command is followed by an else command, the command or bracketed set of commands

immediately after the else command will be conditionally executed when the condition in the if

command evaluates as “false”. An else branch is not required.

In a rotary motion program, all actions to be executed on a true “if” condition must be on the

same line as the condition, and no “else” branch is permitted.

“Switch/Case” Branching

In the switch({expression}) structure, the expression value is evaluated (and truncated to

an integer value if necessary). Program execution is transferred to the case command below that

specifies the matching integer value, if such a case command exists. Execution continues from

this command until a break command is encountered, even if this continues execution into a

subsequent case branch. When the break command is encountered, execution jumps to the

program command immediately following the end of the entire switch structure.

If no break command is encountered after starting a case branch, execution continues to the end

of the entire switch structure, then on to the commands following. If no case command

matching the evaluated switch expression value exists, program execution will jump to the

default branch, if it exists, or to the program command immediately following the entire

switch structure if a default branch is not present.

In a rotary motion program, no switch/case structures are permitted.

Conditional Execution Branching

Power PMAC provides two single-line conditional execution structures. If a program line begins

with cexecn, the rest of the program line is only executed if bit n of 32-bit element

Coord[x].Cflags is set to 1. If a program line begins with cskipn, the rest of the program line is

only executed if bit n of Coord[x].Cflags is set to 0. Individual bits of Coord[x].Cflags can be

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 613

set with the program command csetn, and cleared with the buffered program command cclrn.

This element can also be manipulated directly (e.g. Coord[1].Cflags |= $40 performs the

same action as cset6, and more generally, Coord[1].Cflags |= exp2(BitNum) sets

the flag at the specified bit number) .

These structures are mainly intended to implement conditional execution functions in CNC-style

motion programs, especially those using the rotary motion program buffer, in which the single-

line nature of these functions is essential.

Looping Structures

Script programs in Power PMAC are capable of conditional looping structures, with the condition

evaluated either at the beginning or end of the loop.

In a rotary motion program, only single-line loops can be used.

“While” Loops

In the while({condition}) structure, when the condition evaluates as “true”, the

command(s) immediately following are executed. If this structure is not immediately followed by

a “left curly bracket” (“{”), only the single command following is conditionally executed in this

way. If this structure is immediately followed by a “left curly bracket” (“{”), all the commands

up to the next “right curly bracket” (“}”) are conditionally executed in this way. When the

command or bracketed command set is finished executing, program execution automatically

jumps back to the while command to complete the loop.

If the condition in the while command evaluates as “false”, the command or bracketed

command set immediately following the while command is skipped over, and program

execution jumps to the command immediately following.

“Do/While” Loops

In the do..while({condition}) structure, the command or bracketed command set

immediately following the do command is always executed once. If the condition in the while

command after this command or command set evaluates as true, program execution automatically

jumps back to the do command to complete the loop. If the condition evaluates as false, program

execution continues with the command immediately following.

Nesting of Loops

While and do/while loops can be nested within each other, and there is no inherent limit to the

“depth” of the nesting, as there is no stack that must be kept, so no potential for “stack overflow”.

“Continue” and “Break” Commands in Loops

If program execution encounters a continue command inside a loop, execution jumps

immediately to the while command, whether at the beginning or end of the loop, and evaluates

the condition in this command to determine its next action.

If program execution encounters a break command inside a loop, execution jumps immediately to

the command following the end of the loop (i.e. it exits the loop), and continues from there.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 614

Subroutine and Subprogram Calls

Script programs in Power PMAC are capable of subroutine and subprogram calls, permitting

common and repeated tasks to be embedded in these Script subroutines and subprograms,

enhancing programming style and saving memory. Note that rotary motion programs cannot use

the gosub and callsub commands to create subroutines within the program, but they can use

calls to subprograms.

Subroutine and subprogram calls in the Script environment can be nested 255 levels deep, as

there is a 256-level stack (including the top level). Indefinite recursion should not be used, as it

could overflow the stack. Attempting to go more than 255 levels deep will stop execution of the

program thread, and the low 4 bits of Coord[x].Ldata.Status (for a top-level motion program) or

Plc[i].Ldata.Status (for a top-level PLC program) will contain a value of 5 to indicate this error.

Power PMAC can have a single C function, called CfromScript, that can be called from any

of the Script programs in Power PMAC. This function and its uses are documented in the User’s

Manual chapter on C programs.

“Jump” Line Labels

If you want to be able to transfer execution unconditionally (“jump”) to a specific line of a

program, you must start that program line with a “jump label”. This consists of the letter “N”

followed by a non-negative constant integer value and a “:” colon character (e.g. N3270:).

Program execution can be transferred to a program line that begins with a jump label using the

buffered program commands goto, gosub, callsub, call, G, M, T, and D. Note that the

calling commands can use variables and expressions as well as constants, but the jump labels

must use constants.

These “jump labels” should not be confused with the similar “synchronizing labels”, which do

not end with a colon. Those labels simply cause Power PMAC to set the values of coordinate

system status elements as motion program execution encounters the program line and executes a

move resulting from that line. A program line can have either type of label, both, or neither.

By default, there is an implicit N0: at the beginning of each program buffer. However, if an

explicit N0: is used elsewhere in the buffer, this jump label will override the effect of the default

implicit label (this is not recommended).

Jump line labels cannot be used in a rotary motion program.

“Gosub” Commands

The gosub{data} command causes program execution to transfer to the program line in the

same program whose “jump label” number matches the value of {data}. On the next return

command encountered after this, program execution will transfer back to the command

immediately following the gosub command. This permits the creation of subroutines within the

same program. No argument passing using local stack variables is permitted with the gosub

command.

In a rotary motion program, gosub commands cannot be used.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 615

“Callsub” Commands

The callsub{data} command causes program execution to transfer to the program line in the

same program whose “jump label” number matches the value of {data}. On the next return

command encountered after this, program execution will transfer back to the command

immediately following the callsub command. Like the gosub command, this permits the

creation of subroutines within the same program. However, the callsub command permits the

use of argument passing to the subroutine using local stack variables.

In a rotary motion program, callsub commands cannot be used.

“Call” Commands

The call{data} command causes program execution to transfer to the subprogram whose

number matches the value of the integer part of {data}, and to the line within that program

whose “jump label” number matches the fractional part of {data} multiplied by 1,000,000. For

example, the command call123.456 causes program execution to transfer to subprog123

at jump label N456000:.

On the next return command encountered after this, program execution will transfer back to

the command immediately following the call command. The call command permits the use

of argument passing to the subprogram using local stack variables.

Note that call commands can be used in rotary motion programs, just as in other program types.

G, M, T, and D-Code Commands

In the RS-274 standard for programming that is widely used in the CNC and CAD/CAM worlds,

every component of the program is in letter/number format. This is a loose standard, with

hundreds of “dialects”, and thousands of machine-specific implementation issues, so an execution

implementation must be flexible enough to accept the particular dialect selected and execute it on

the particular hardware used.

To facilitate this implementation, Power PMAC treats several of the letter codes as specialized

subprogram call commands. The G, M, T, and D-codes provide a subprogram call as shown in the

following table.

Letter Code Type Subprogram # Called Jump Line Label Called

G Preparatory code Coord[x].Gprog
(1000 by default)

Code# * 1000

M Machine output code Coord[x].Mprog
(1001 by default)

Code# * 1000

T Tool select code Coord[x].Tprog
(1002 by default)

Code# * 1000

D Tool data code Coord[x].Dprog
(1003 by default)

Code# * 1000

With the default subprograms used, a G17 command is a call to subprog 1000 at line jump

label N17000:. An M125 command is a call to subprog 1001 at line jump label N125000:.

A T3 or T03 command is a call to subprogram 1002 at line jump label N3000:. A D7.25

command is a call to subprog 1003 at line jump label N7250:.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 616

For more details on the use of these codes, refer to the section Implementing an RS-274 Style

Motion Program, below.

“Return” Commands

When a return command is encountered in the execution of a program, execution is transferred

back to the calling routine or program, immediately after the calling command. If a return

command is encountered in a top-level program, execution is halted, but ready to resume at the

beginning of the program buffer. If the top-level program is a PLC program, execution will

automatically resume on the next scan. If the top-level program is a motion program (fixed or

rotary), a command is required to restart execution of the program.

There is an implicit return command at the end of every Script program buffer. If program

execution reaches the end of the buffer, the action taken is exactly as if there were an explicit

return command at the end. Adding an explicit return command at the end of a subprogram

does not change the execution, but may make its functionality more clear.

Conditional Subprogram Calls

Power PMAC provides a condition subprogram-call execution structure. In a program line, a

ccalln command executes the subprogram call (if any) specified in the most recent cdefn

command of the same n value. If no cdefn command has been executed since power-on/reset,

or a cundefn command has been executed since the most recent cdefn command, the

ccalln command is a “no-op”.

These commands are mainly intended to implement “implied” calls in CNC-style motion

programs for functions such as canned cycles. In common use, the canned-cycle G-code is only

explicitly invoked on the first line it is used. On following lines, only the parameters for the

canned cycle are typically used, not the G-code specifying the cycle itself.

Since Power PMAC executes G-codes as subprogram calls, it needs to implement a subprogram

call on each line of the motion program to execute the canned cycle for that program line. Simply

adding a ccalln command to the beginning of each line of the motion program as it is sent to

the Power PMAC can provide this functionality. (This can be easier than detecting when a

particular G-code call needs to be added to individual lines.)

Inside the canned-cycle G-code subroutine, the cdefn command can then be used to cause

subsequent lines of the motion program to call the subroutine again with the ccalln command.

For example, a G87 canned-cycle subroutine could use a cdef1 G87 command so the ccall1

command on the next line of the top-level motion program would call the same subroutine.

In this style of programming, another G-code is typically used to cancel the modal G-code. For

canned cycles in the G81 – G89 range, G80 is often used to cancel any of these cycles. So the

G80 subroutine could use a cundef1 command to “undefine” the subprogram call that was

being used.

Note that if the top-level motion program has a ccalln command before the G80 “cancel”

command, the previously selected canned-cycle subroutine will be called before the G80 cycle

cancel subroutine is called. However, the program line will have no parameters for the cycle, so if

the canned-cycle subroutine will bypass any action if no parameters are passed to it, this will not

be an issue.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 617

Jump commands

The goto{data} command causes program execution to transfer to the program line in the

same program whose “jump label” number matches the value of {data}. Unlike the

gosub{data} command, program execution will not transfer back on encountering a return

command or end of buffer. In general, modern views of good programming practice discourage

the use of goto commands.

Motion Specification

Commands for specifying motion in the Power PMAC Script language are of two types: the

actual move commands, and the modal commands that specify the rules according to which the

move commands are to be interpreted. When a move command is encountered during the

execution of the Script program, Power PMAC generates the equations of commanded motion

that are necessary to implement the move according the specified rules. The coefficients of these

equations are placed in a queue for subsequent execution by other automatic tasks in the Power

PMAC.

The end result of the programmed move specification is a series of commanded positions in a

trajectory for each motor assigned to the coordinate system executing the coordinate system. The

nature of that trajectory for each move mode is explained in detail in the User’s Manual chapter

Power PMAC Move Mode Trajectories. This section explains how the logic of the Script

language is used to command moves.

Modal Move Type and Parameter Specification

Commands that specify the rules for interpreting an actual move command are modal. That is,

they affect all subsequent move commands until another modal command overrides it. This way,

multiple moves can be commanded without the need for re-declaration before each move

command of the modes and parameters that govern the move generation.

Move Mode Declaration

Power PMAC has five fundamental move modes, each declared by a command invoking the

name of that mode. When that command is executed, the coordinate system is placed in that move

mode. In a motion program (or its subprograms), all subsequent moves are executed according to

the rules of this move mode until another move mode is declared.

In a PLC program (or its subprograms) the only type of move that can be commanded is a rapid-

mode move. Commanding the move itself automatically puts the addressed coordinate system in

rapid move mode, even if it has just declared a different mode. For example the program

commands linear X10, when executed in a PLC program or its subprograms, would both

execute a rapid-mode move and leave the addressed coordinate system in rapid move mode.

The move mode declarations commands are:

 rapid Rapid move mode; minimum-time point-to-point moves

 linear Linear move mode, straight-line path in Cartesian space

 circlen Circular move mode, arc path in Cartesian space

 spline{data} Spline move mode of specified time, cubic B-spline path

 pvt{data} Position/velocity/time mode of specified time, Hermite-spline

 path

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 618

Axis Mode Declaration

In any of the move modes, the axes can be specified to be in “absolute” or “incremental” mode.

The abs program command puts all axes in the coordinate system into absolute mode. In this

mode, the commanded destination for the axis for each move is specified as a position relative to

the present programming origin for that axis. The inc program command puts all axes in the

coordinate system into incremental mode. In this mode, the commanded destination for the axis

for each move is specified as a distance from the most recent commanded position for that axis.

At power-on/reset, all axes are in absolute mode.

It is possible, but less common, to have some axes in a coordinate system in absolute mode and

others in incremental mode. The abs and inc commands using axis lists change the mode of

only the specified axes, leaving all other axes in the coordinate system in their present mode. For

example, the command abs(x,y) changes the X and Y axes into absolute mode; other axes

could be left in incremental mode.

For linear and circle-mode moves specified by “feedrate” (F) instead of move time (tm), the user

must specify which axes are involved in the vector feedrate calculations. These axes are known as

the “feedrate axes”. For each move of this type, Power PMAC automatically computes the vector

distance as the vector sum (using the Pythagorean theorem) of the move distances for all of the

feedrate axes, and the move time as this vector distance divided by the feedrate. Any “non-

feedrate” axes complete the move in this same time.

At power-on/reset, the X, Y, and Z axes are the only feedrate axes. The program frax command

can be used to change this. The axes specified in the axis list for the command become feedrate

axes, all axes not in the list become non-feedrate axes. The command frax(XX,YY) makes the

XX and YY axes feedrate axes; all others, including the ZZ, X, Y, and Z axes, become non-

feedrate axes. The program nofrax command makes all of the axes non-feedrate axes.

For more detail on feedrate axes and vector feedrate calculations, refer to the Power PMAC Move

Mode Trajectories chapter of the User’s Manual.

Move Parameters

There are several numerical parameters that govern the moves in each move mode. This section

lists the parameters; details of what the parameters do are explained in the User’s Manual chapter

Power PMAC Move Mode Trajectories.

In the rapid move mode, the parameters are saved setup elements for the motors in the coordinate

system. These parameters are set by assigning values to the elements, often outside the program

itself. Acceleration and deceleration are governed by Motor[x].JogTa and Motor[x].JogTs. Top

speed is governed by Motor[x].MaxSpeed or Motor[x].JogSpeed, depending on the setting of

Motor[x].RapidSpeedSel. Coord[x].RapidVelCtrl governs whether all axes move at their

programmed speed, or only the axis with the greatest distance-to-speed ratio does, with the others

slowed to match this ratio (this gives a closer-to-straight-line path).

In the linear and circle move modes, the parameters are saved setup elements for the coordinate

system. These parameters can be set by assigning values directly to the elements, but they are

often set by matching program commands. The ta{data} program command sets the value of

Coord[x].Ta, specifying the acceleration time for these moves. The ts{data} program

command sets the value of Coord[x].Ts, specifying the “S-curve” portion of the acceleration

time for these moves. The tm{data} and F{data} commands set the value of Coord[x].Tm,

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 619

specifying the move time or vector “feedrate” (speed) for these moves. These two commands also

specify whether the moves are specified by time or speed.

In the spline move mode, the spline move times are determined by the value or values specified in

the spline mode command itself. There are no other modal parameters governing the moves. The

times are changed with another spline mode command.

In the PVT move mode, the move time is determined by the value specified in the PVT mode

command itself. There are no other modal parameters governing the moves. The time is changed

with another PVT mode command.

Move Commands

The actual move commands in the Script language simply specify the letter name of each axis to

be moved immediately followed by a quantity specifying the destination of that move. In some

modes, there can be a secondary quantity specified as well, as described below. If multiple axes

are specified on the same program line, these axes will move together in a coordinated fashion.

Moves resulting from commands on separate program lines are executed sequentially.

Basic Axis Move Command

The basic axis move command has the form:

{axis}{data}[{axis}{data}…]

Here, {axis} is the single-letter or double-letter name for the axis to be moved, and {data} is

the move-end position or distance for the axis, depending on whether the axis is in absolute or

incremental mode.

For example, the command X10 Y20 Z30 tells the X, Y, and Z axes in the coordinate system

running the motion program, or in the coordinate system addressed by the PLC program to start a

move simultaneously according to the modal move rules in place at the time the program line is

encountered.

This basic axis move command is used for standard rapid-mode moves, linear-mode moves, and

spline-mode moves.

Move-Until-Trigger Command

A program move-until-trigger is a variant of the rapid move mode. The move-until-trigger

command has the form:

{axis}{data}^{data}[{axis}{data}^{data}…]

The first {data} after the axis name is the move-end position or distance in the absence of a

trigger. The second {data} is the signed distance from the trigger position to the end of the

post-trigger move.

For example, the command A500^-50 tells the A-axis in the coordinate system to start

execution of a rapid-mode move to a destination of 500 axis units (if in ABS mode) or a length of

+500 axis units (if in INC mode), but if the specified trigger is found, change the destination to a

point a distance of -50 axis units from the position at the trigger.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 620

Circle-Mode Move Command

A circle-mode move command must provide information about the center of the arc for the move,

either specifying a vector from the start point to the center, or a radius magnitude. A command

with the vector has the form:

{axis}{data}[{axis}{data}…][{vector}{data}...]

Here, {vector} is the letter I, J, or K for the vector component along the X, Y, or Z axis,

respectively, or the double letter II, JJ, or KK for the vector component along the XX, YY, or ZZ

axis, respectively. For example, the command X2000 Y3000 Z1000 I500 J300 K500

specifies an arc move in the X/Y/Z Cartesian space.

A command with the radius magnitude has the form:

{axis}{data}[{axis}{data}…] R{data}

The value after the R specifies the radius magnitude. If it is a positive value, the arc move covers

an angle less than 180°; if it is a negative value, the arc move covers an angle greater than 180°.

This command form can only be used with the X/Y/Z axis set.

PVT Mode Move Command

A PVT-mode move command must specify the end velocity for each axis as well as the end

position/distance. Such a command has the form:

{axis}{data}:{data}[{axis}{data}:{data}…]

The first value following each axis name is the move-end position or distance for the axis. The

second value, following the colon is the move-end velocity for the axis. Note that this is a signed

velocity value, so if the move is to end going in the negative direction, this must be a negative

number.

Program Direct Commands

The “program direct commands” in the Power PMAC Script language permit Script programs to

issue commands that are the equivalent of on-line commands from the host computer, and to do

so without the need to assemble a text string that is passed through a separate background parser.

These are more commonly used in PLC programs, but can also be used in motion programs.

When used in motion programs, they generally should only command other coordinate systems

and motors assigned to other coordinate systems. Even when used from a motion program, none

of these commands causes program execution to suspend.

These commands are generally just longer versions of the equivalent on-line commands – e.g.

jog for j. They can act on the “listed” motor(s) or coordinate system(s) – e.g. jog+7,

abort1,2 – or if there is no motor or coordinate system list, on the modally addressed motor or

coordinate system, as determined by the present value of Ldata.motor or Ldata.coord.

Motor Program Direct Commands

The program direct commands for motors are:

cout{data} – Set open-loop command output of specified magnitude

dkill – Delayed kill (disable servo control), providing time for brakes to engage fully

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 621

home – Do homing-search move

homez – Do zero-move home, or read absolute position sensor to establish position reference

jog+ – Jog indefinitely in positive direction

jog- – Jog indefinitely in negative direction

jog/ – Stop jogging; or restore to closed-loop control

jogret – Jog to last programmed (pre-jog) position

jog={data} – Jog to specified position

jogret={data} – Jog to specified position, making that position the new “pre-jog” position

jog:{data} – Jog specified distance from present commanded position

jog^{data} – Jog specified distance from present actual position

jog={data}^{data} – Jog to specified position; if trigger occurs, jog instead to specified

distance from trigger position

jog:{data}^{data} – Jog specified distance from present commanded position; if trigger

occurs, jog instead to specified distance from trigger position

jog^{data}^{data} – Jog specified distance from present actual position; if trigger occurs,

jog instead to specified distance from trigger position

kill – Kill (disable servo control) immediately

Coordinate System Program Direct Commands

The program direct commands for coordinate systems are:

abort – Stop calculation of motion program from presently selected point, commencing

immediate deceleration of all axes in the coordinate system

begin[:{data}] – Point program counter to beginning of present [or specified] motion

program

ddisable – Delayed disable (kill) of servo control for all motors assigned to coordinate system,

providing time for brakes to engage fully

disable – Disable (kill) of servo control of all motors assigned to coordinate system

enable – Enable servo control of all motors assigned to coordinate system

hold – Execute feed hold by ramping coordinate system time base value to 0, ready to resume

on R or S command

lh\ – (Quick stop) Execute fastest stop in lookahead buffer that does not violate acceleration

constraints

lh< – (Reverse) Start reverse execution in lookahead buffer

lh> – (Forward) Resume forward execution in lookahead buffer

pause – Stop calculation of motion program[s] at presently selected point, ready to resume at

that point

resume – Restart continuous of motion program[s] from paused point

run – Begin continuous of motion program[s] in addressed [or listed] coordinate system[s] from

presently selected point

start[:{data}] – Start running present [or specified] motion program from beginning

step – Execute single command of motion program[s] from presently selected point

stop – Stop calculation of motion program[s] at presently selected point and make the selected

point the beginning of the present program

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 622

Downloading Rules for Script Programs

This section explains the rules for directly downloading the different types of Script programs to

the Power PMAC. The following section explains how the downloading is managed from the IDE

program’s Project Manager. Note that in many applications, all programs are downloaded at once

from the IDE. However, in some applications, particularly those with “part programs”, while a

significant fraction of the programs will be downloaded from the IDE and stay resident, other

programs will be downloaded during the application and then cleared.

Motion Programs

A new top-level motion program can be downloaded to the Power PMAC at any time, even while

other motion programs are executing. For a motion program buffer that is already present in

Power PMAC, the buffer can be opened for downloading new contents unless that program (or a

subprogram called from it) is presently executing, or suspended (e.g. with a hold, step, or quit

command) such that it is possible to resume execution at the suspended point. An abort (a)

command can be used to take a program out of either executing or suspended mode so that the

buffer can be opened to download new contents.

When the open prog n command is sent to prepare the motion program buffer for

downloading of new contents, all existing contents of that buffer are automatically erased. There

is no need to use a clear command to do this as in older types of PMAC controllers. As long as

the buffer is open, the motion program cannot be executed; a close command must be sent first.

If the open prog n command is immediately followed by a close command, with no

intervening buffered program commands, the program ceases to exist; it does not count against

the limit for the number of motion programs that can be stored in the Power PMAC at one time.

Rotary Motion Programs

The rules governing rotary motion program buffers are substantially different from those for the

other types of Script program buffers. A pre-determined amount of memory must be reserved for

a rotary buffer before any contents are downloaded. Program lines can be entered into the buffer

even while the program is executing. When the end of the buffer is reached, the storage of

subsequent program lines wraps around to the beginning of the buffer – hence the name “rotary”.

The define rotary command causes Power PMAC to reserve memory for a rotary motion

program buffer in the addressed coordinate system. The first argument of this command specifies

the number of bytes of memory to be reserved; it has a minimum value of 2048 bytes and is

usually much larger. It is recommended to size this buffer generously, as larger buffers make the

process of downloading contents during execution easier to manage for robust operation. The

optional second argument for this command specifies the size of the “line buffer” each program

line is momentarily held in before being copied to the rotary buffer itself. If no second argument

is specified, this line buffer is 1024 bytes, and this value is satisfactory for virtually all

applications.

The open rotary command causes Power PMAC to open the rotary motion program buffer

for the addressed coordinate system for entry. Unlike other types of buffers, this command does

not cause the existing contents of the buffer to be erased. Subsequent program lines are appended

to the end of the existing contents.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 623

Note that the open rotary command can be issued at any time, including while the rotary

motion program buffer (or a subprogram called from it) is executing or suspended. This

capability for the rotary motion program buffers gives them their unique flexibility to stream new

contents to the Power PMAC while existing contents are being executed.

If it is desired to erase the existing contents of the buffer, the coordinate-system-specific clear

rotary command must be used. This leaves the structure of the buffer itself intact. To erase the

rotary buffers themselves, the global clear all buffers command must be issued. If there

are multiple buffers, it is not possible to erase a single buffer structure.

PLC Programs

A new top-level PLC program can be downloaded to the Power PMAC at any time, even while

other PLC programs are executing. For a PLC program buffer that is already present in Power

PMAC, the buffer can be opened for downloading new contents unless that program (or a

subprogram called from it) is presently executing, or suspended (e.g. with a pause plc

command) such that it is possible to resume execution at the suspended point. A disable plc

command can be used to take a program out of either executing or suspended mode so that the

buffer can be opened to download new contents.

When the open plc n command is sent to prepare the PLC program buffer for downloading of

new contents, all existing contents of that buffer are automatically erased. There is no need to use

a clear command to do this as in older types of PMAC controllers. As long as the buffer is

open, the PLC program cannot be executed; a close command must be sent first.

If the open plc n command is immediately followed by a close command, with no

intervening buffered program commands, the program ceases to exist; it does not count against

the limit for the number of PLC programs that can be stored in the Power PMAC at one time.

Subprograms

A new subprogram can be downloaded to the Power PMAC at any time, even while other

programs are executing. For a subprogram buffer that is already present in Power PMAC, the

buffer can be opened for downloading new contents unless that program (or a subprogram called

from it) is presently executing, or suspended (e.g. with a hold, step, quit, or pause command) such

that it is possible to resume execution at the suspended point. An abort (a) command, if the top-

level program is a motion program, or a pause plc command, if the top-level program is a

PLC program can be used to take a program out of either executing or suspended mode so that the

buffer can be opened to download new contents.

When the open subprog n command is sent to prepare the subprogram buffer for

downloading of new contents, all existing contents of that buffer are automatically erased. There

is no need to use a clear command to do this as in older types of PMAC controllers. As long as

the buffer is open, the subprogram cannot be executed; a close command must be sent first. If

another program tries to call this subprogram while its buffer is open, that program will stop with

an error.

If the open subprog n command is immediately followed by a close command, with no

intervening buffered program commands, the program ceases to exist; it does not count against

the limit for the number of subprograms that can be stored in the Power PMAC at one time.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 624

Kinematic Subroutines

Forward and inverse kinematic subroutines cannot be downloaded for a coordinate system while

a motion program in that coordinate system or any PLC programs (or subprograms called from

them) are executing, as these programs could attempt to call the kinematic subroutines at any

time, leading to a potentially dangerous failure.

When the open forward or the open inverse command is sent to prepare the subroutine

buffer of the presently addressed coordinate system for downloading of new contents, all existing

contents of that buffer are automatically erased. There is no need to use a clear command to do

this as in older types of PMAC controllers. As long as the buffer is open, motion programs in the

coordinate system, or any PLC programs, cannot be executed; a close command must be sent

first.

If the open forward or the open inverse command is immediately followed by a close

command, with no intervening buffered program commands, the subroutine ceases to exist;

Power PMAC regards the coordinate system as not having the subroutine.

Implementing Script Programs in the IDE

In the vast majority of Power PMAC applications, most, if not all, of the Script programs will be

developed and downloaded using the Integrated Development Environment (IDE) software on a

PC. The IDE provides many facilities for enhancing the capabilities of the Script programs.

Organizing Your Program Files

The “Solution Explorer” control in the IDE provides a good mechanism for organizing your

Script program files. A “solution” can potentially comprise multiple Power PMACs, although

most solutions will only use a single Power PMAC. Each Power PMAC within a solution has a

“project”, and within that project are folders and sub-folders containing the files that make up the

project.

The “Power PMAC Script Language” top-level folder will contain all of the sub-folders and files

for the Script language programs. The sub-folders in this folder are:

 “Global Includes”: For files with definitions and variable declarations

 “Kinematics Routines”: For forward and inverse kinematic subroutines

 “Libraries”: For subprograms

 “Motion Programs”: For (fixed) motion programs

 “PLC Programs”: For foreground and background PLC programs

The following screen capture shows how the Script programs of a sample project are organized in

the Solution Explorer:

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 625

Sample Project Script Program Organization

To add a new file under a sub-folder, right-click on the name of the sub-folder, then click on

“Add” on the little sub-menu that comes up. To start a new file, next click on “New”; to import a

file, whether from another project or a separate source, click on “Existing”, then specify the path

and file to import.

Note that the IDE project manager does not support rotary motion programs, as these are

generally sent to the Power PMAC during the actual running of the application, outside of the

IDE project.

User Variable Names

The IDE permits the use of meaningful variable names by the user, making the programs much

more understandable. It provides two mechanisms for doing this, “auto assigning” and “manual

assigning”. Both of these mechanisms match the user variable name to an underlying enumerated

variable.

The use of the variables themselves is covered in more detail in the Power PMAC Computational

Features chapter of the User’s Manual.

Auto-Assigned User Variable Names

User variable names are automatically assigned to underlying enumerated variables through

variable declaration statements in a file in the IDE. The user almost never needs to know which

enumerated variable is matched to the user variable name.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 626

“Global” Variable Declaration

Declaring a “global” variable causes that user variable name to be automatically matched to one

of the 65,536 Power PMAC P-variables. These are double-precision (64-bit) floating-point

variables accessible from all programs and commonly accessible from all coordinate systems. A

sample declaration is:

global LineSpeed, CycleCount;

“Csglobal” Variable Declaration

Declaring a “csglobal” variable causes that user variable name to be automatically matched to one

of the 8,192 Power PMAC Q-variables for each coordinate system. These are double-precision

(64-bit) floating-point variables accessible from all programs, but with a different set for each

coordinate system. The name is associated with the same Q-variable for all coordinate systems. A

sample declaration is:

csglobal UnitLength, ErrorCode;

“Ptr” Variable Declaration

Declaring a “ptr” variable causes that user variable name to be automatically matched to one of

the 16,384 Power PMAC M-variables. These are “pointer” variables that can be assigned to

memory and I/O registers or portions of registers, are accessible from all programs, and are

commonly accessible from all coordinate systems. Sample declarations are:

ptr AirSupplyOn->Acc65E[0].DataReg[4].5;

ptr PressureIn->Clipper[0].GpioData[0].0.8;

Comments on “global”, “csglobal”, and “ptr” declarations

For all of these above types of declarations for variables that can be accessed from multiple

programs, the declarations must be outside of any program. It is suggested, but not required, that

these be put in the “global definitions.pmh” file in the “Global Includes” sub-folder of the

“PMAC Script Language” folder.

During the process of downloading the project, the IDE assigns each declared variable name to

one of the matching Power PMAC enumerated variables. For each variable type, a directive in the

project file “pp_proj.ini” specifies the starting variable number for each type to be used in these

auto-assignments. In the default file, these directives are:

PVARSTART=8192

QVARSTART=1024

MVARSTART=8192

With these directives, auto-assignment of “global” variables starts at P8192 and goes up (P0

through P8191 are not used for this); auto-assignment of “csglobal” variables starts at Q1024 and

goes up (Q0 through Q1023 are not used for this); auto-assignment of “ptr” variables starts at

M8192 and goes up (M0 through M8191 are not used for this). These settings will seldom need to

be changed.

Once the project with the declared and/or defined user variable names of these types has been

downloaded to the Power PMAC, these names become part of the project database, and the

names can be used in other parts of the IDE, notably the terminal and watch windows.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 627

“Local” Variable Declaration

Declaring a “local” variable causes that user variable name to be automatically attached to tone of

the L-variables for the program. These are double-precision (64-bit) floating-point variables only

directly accessible from within that program. They are part of an 8,192-variable stack for the top-

level program and its subprograms. A local variable declaration must be inside the program

(between open and close). A sample declaration is:

local LoopCounter, ReturnValue;

Note that it is not possible to view directly the values of local variables (with or without user

names) from outside the program.

Manually-Assigned User Variable Names

It is also possible to assign user variable names to specific variables using a “#define” directive in

an IDE project file. Generally, the variables used are lower numbered, below the starting point for

the auto-assigned declarations. Sample assignment directives are:

#define PartCount P50

#define CutLength Q100

#define CoolantOn M10

The “#define” directive creates an effective text substitution. It can also be used to substitute for

text other than variable names, especially for constants.

IDE Program Enhancements

When the IDE is used to develop and download Script programs, it can provide significant

effective enhancements to the Script syntax. The ability to provide user names for variables has

been noted above.

Subprograms

The IDE lets you declare subprograms with a list of arguments, making the declaration much like

those in standard high-level programming languages. If you declare a subprogram in the form:

open subprog MySubprogram (Arg1, Arg2, &Arg3, &Arg4)

the IDE will create code like the following from that:

#define MySubprogram 100000

…

open subprog 100000

#define Arg1 L0

#define Arg2 L1

#define Arg3 L2

#define Arg4 L3

Arguments declared in the list without a starting “&” character are intended for passing values to

the subprogram; these can be constants and expressions as well as variables. Arguments declared

in the list with a starting “&” character are intended for returning values to the calling program;

these must be variable names. If you want to use a single variable for both purposes, you must

declare it in both forms.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 628

Up to 16 arguments can be declared in this way. (It is not required to have any arguments.)

If you declare local variables inside the subprogram, these will be automatically assigned to L-

variables starting with the one numbered one greater than the highest number used for the

“argument” variables. These argument variables can be used within the program without any

further declaration or definition. To expand on this example with more meaningful names, if you

wrote the following code for the subprogram in the IDE:

open subprog XYtoRTheta (XVal, YVal, &RVal, &ThetaVal)

 RVal = sqrt(XVal*XVal + YVal*YVal);

 ThetaVal = atan2d(YVal, XVal);

return;

close

this would create code for the Power PMAC as:

#define XYtoRTheta 100000

open subprog 100000

#define XVal L0

#define YVal L1

#define RVal L2

#define ThetaVal L3

 L2 = sqrt(L0*L0 + L1*L1);

 L3 = atan2d(L1, L0);

return;

close

A call to this subprogram from a higher-level program could be written as:

call XYtoRTheta(ToolXPos, ToolYPos, &ToolRPos, &ToolCPos);

where the arguments are user-declared or defined variables. This would generate code for the

Power PMAC as:

R0=ToolXPos; R1=ToolYPos; call 100000; ToolRPos=R2; ToolCPos=R3;

Note that local stack variable Ri of the calling program is the same as Li of the called

subprogram. More detail of how these local stack variables work is given in the Power PMAC

Computational Features chapter of the User’s Manual.

Subroutines Within Programs

The IDE lets you declare subroutines with programs with user names and a list of arguments,

making the declaration much like those in standard high-level programming languages. If you

declare a subroutine in the form:

sub: MySubroutine (Arg1, Arg2, &Arg3, &Arg4)

the IDE will create code like the following from that:

#define MySubroutine 10000

…

#define Arg1 L0

#define Arg2 L1

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 629

#define Arg3 L2

#define Arg4 L3

n10000: …

Arguments declared in the list without a starting “&” character are intended for passing values to

the subroutine; these can be constants and expressions as well as variables. Arguments declared

in the list with a starting “&” character are intended for returning values to the calling routine;

these must be variable names. If you want to use a single variable for both purposes, you must

declare it in both forms.

Up to 16 arguments can be declared in this way. (It is not required to have any arguments.)

To expand on this example with more meaningful names, if you wrote the following code for the

subprogram in the IDE:

sub: MinMax (Val1, Val2, &MinVal, &MaxVal)

if (Val1 < Val2) {

 MinVal = Val1;

 MaxVal = Val2;

}

else {

 MinVal = Val2;

 MaxVal = Val1;

}

return;

this would create code for the Power PMAC as:

#define MinMax 10000

#define Val1 L0

#define Val2 L1

#define MinVal L2

#define MaxVal L3

…

N10000:

if (L0 < L1) {

 L2 = L0;

 L3 = L1;

}

else {

 L2 = L1;

 L3 = L0;

}

return;

close

A call to this subroutine from a higher-level routine in the same program could be written as:

callsub sub.MinMax(OldForce, NewForce, &MinForce, &MaxForce);

where the arguments are user-declared or defined variables. This would generate code for the

Power PMAC as:

R0=OldForce; R1=NewForce; callsub 10000; MinForce=R2; MaxForce=R3;

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 630

Note that local stack variable Ri of the calling program is the same as Li of the called

subprogram. More detail of how these local stack variables work is given in the Power PMAC

Computational Features chapter of the User’s Manual.

Subroutines Within Subprograms

The IDE lets you declare subroutines within subprograms with user names and a list of

arguments, making the declaration much like those in standard high-level programming

languages. If you declare a subprogram with subroutines in the form:

open subprog MySubprogram

sub: MySubroutine1 (Arg1, Arg2, &Arg3, &Arg4)

sub: MySubroutine2 (Arg1, Arg2, &Arg3)

the IDE will create code like the following from that:

#define MySubprogram 100000

open subprog 100000

#define MySubroutine1 10000

#define Arg1 L0

#define Arg2 L1

#define Arg3 L2

#define Arg4 L3

N10000:

#define MySubroutine2 10001

#define Arg1 L0

#define Arg2 L1

#define Arg3 L2

N10001:

Arguments declared in the list without a starting “&” character are intended for passing values to

the subroutine; these can be variable names, constants or expressions. Arguments declared in the

list with a starting “&” character are intended for returning values to the calling routine; these

must be variable names. Both forms must be declared to use a single variable for both purposes.

Up to 16 arguments can be declared in this way. (It is not required to have any arguments.)

To expand on this example with more meaningful names, if you wrote the following code for

subprogram subroutines in the IDE:

open subprog Calculations

sub: XYtoRTheta (XVal, YVal, &RVal, &ThetaVal)

RVal = sqrt(XVal*XVal + YVal*YVal);

ThetaVal = atan2d(YVal, XVal);

return;

sub: Pythag (Run, Rise, &Hypot)

Hypot=sqrt(Run*Run+Rise*Rise);

return;

close

the IDE would create code for the Power PMAC as:

#define Calculations 100000

open subprog 100000

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 631

#define XYtoRTheta 10000

#define XVal L0

#define YVal L1

#define RVal L2

#define ThetaVal L3

N10000:

L2=sqrt(L0*L0+L1*L1);

L3=atan2d(L1,L0);

return

#define Pythag 10001

#define Run L0

#define Rise L1

#define Hypot L2

N10001:

L2=sqrt(L0*L0+L1*L1);

return

close

Calls to these subroutines from a higher level program could be written as:

call Calculations.XYtoRTheta(ToolXPos, ToolYPos, &ToolRPos, &ToolCPos);

call Calculations.Pythag(Xvelocity, Yvelocity, &VectorVel);

where the arguments are user-declared or defined variables. The IDE would generate code for the

Power PMAC as:

R0=ToolXPos; R1=ToolYPos; call 100000.01; ToolRPos=R2; ToolCPos=R3;

R0=Xvelocity; R1=Yvelocity; call 100000.010001; VectorVel=R2;

Note that local stack variable Ri of the calling program is the same as Li of the called subroutine.

More detail of how these local stack variables work is given in the Power PMAC Computational

Features chapter of the User’s Manual.

Kinematic Subroutines

The IDE provides several features for making the creation of kinematic subroutines easier and

more understandable. You can declare the subroutines in a form like:

open forward (1)

where the number in parentheses is the number of coordinate system that the routine is assigned

to. This is sent to the Power PMAC in the form:

&1 open forward

Also, there is a large set of already-defined user variable names for the input and output local

variables for the routines. The user does not need to make these definitions explicitly. With

Sys.MaxMotors at its default value of 32, these include:

#define KinPosMotor0 L0

#define KinPosMotor1 L1

#define KinPosMotor2 L2

...

#define KinPosMotor31 L31 // Up to Sys.MaxMotors-1

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 632

#define KinPosAxisA C0

#define KinPosAxisB C1

...

#define KinPosAxisZ C8

#define KinPosAxisAA C9

...

#define KinPosAxisZZ C31

#define KinVelMotor0 R0

#define KinVelMotor1 R1

#define KinVelMotor2 R2

...

#define KinVelMotor31 R31 // Up to Sys.MaxMotors-1

#define KinVelAxisA C32

#define KinVelAxisB C33

...

#define KinVelAxisZ C40

#define KinVelAxisAA C41

...

#define KinVelAxisZZ C63

#define KinVelEna D0 // Passed to forward and inverse

#define KinAxisUsed D0 // Returned from forward

Note that the user will generally not need to know which variables are assigned to which user

name, and can just use the names freely.

More detail on writing forward and inverse kinematic subroutines is provided in the chapter

Setting Up a Coordinate System of the User’s Manual.

Execution Rules for Script Programs

While the Power PMAC script language syntax is the same for all types of programs, the rules for

execution differ based on the type of program. This section explains the execution rules for each

type of program.

Motion Programs

Power PMAC Script motion programs provide for automatic sequenced execution of commanded

moves and the calculations associated with them. Because many of its key actions – moves,

dwells, and delays – “take time”, a standard high-level programming language would require the

user to command the start of such an action and then explicitly monitor for the end.

In addition, if multiple moves need to be executed without an intervening stop, the motion

program must calculate one or more moves ahead to create the proper equations of motion to join

these moves together “on the fly”. Standard programming languages do not have good

mechanisms for allowing the user to program these types of motion sequences easily.

The execution rules for motion programs in the Power PMAC Script language are designed to

facilitate the programming of these types of tasks. Program calculations will automatically

proceed as far ahead as is necessary to ensure that the programmed move sequence can be

properly calculated. When this has happened, program calculations are automatically suspended

at this point. When the actual execution of the resulting commanded moves progresses to the

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 633

point where more program calculations are required to ensure that future commands in the

programmed move sequence can be calculated properly, motion program calculations resume

automatically, continue until that condition is met, and then suspend again. Note that the user’s

motion program does not have to contain any of this sequencing logic; the Power PMAC’s Script

execution engine handles this itself.

Starting a Set of Motion Program Calculations

Each real-time interrupt (RTI), Power PMAC checks each active coordinate system to see if

motion program calculations are required in that coordinate system. It does this by looking at the

internal “block-request” status flag for the coordinate system. This bit gets set in one of two ways.

First, a command to start motion program execution, such as r (run), or s (step) has been issued.

The immediate effect of such a command is just to set the block-request flag so that motion

program calculations start on the next RTI.

In the second way, each time the execution of commanded moves resulting from previous

calculations in the motion program advances into the next move in the queue, the execution

engine sets the block-request flag to indicate that it may be necessary to calculate more

programmed moves to keep the move-equation queue full enough.

Suspending Motion Program Calculations

Once motion program calculations are started, they generally continue until the equations of

motion for enough moves have been calculated and placed in the motion queue to satisfy the rules

for that mode of motion. It will simply continue through commands that do not create equations

of motion.

Note

For most purposes, the automatic sequencing of Power PMAC

script motion programs operates invisibly to the user.

However, it can be important to know how this sequencing

works, particularly when trying to synchronize motion with

other aspects of the machine control.

Filling the Motion Queue

The number of moves required for a “full” motion queue depends on the mode of motion. The

following list explains common cases.

 Simple point-to-point moves that cannot be blended, such as rapid-move moves, do not

require a pre-calculated queue. The move equations are calculated from the program

command, and the move immediately starts executing. Subsequent program calculations

do not start again until the move is finished. A dwell command in the program, even a

dwell 0, always stops blending and pre-calculation as well. The same is true if saved

setup element Coord[x].NoBlend is set to 1 even for blended and splined move types.

 Basic blending as in linear and circle-mode moves requires that one move ahead be

calculated. That is, move i+1 must be calculated before move i finishes (or even gets to

the point where the blend would need to start) so the blend between the two moves can be

calculated in time.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 634

 Basic acceleration constraints, such as simple acceleration limiting in linear-mode moves

without segmentation, and the acceleration continuity condition of spline-mode moves,

require that two moves ahead be calculated, because move i+2 can affect the whole of

move i+1 and the transition from move i.

 The buffered segmented lookahead function can require that many programmed moves

be pre-calculated. The saved setup element Coord[x].LHDistance specifies how many of

the coarse-interpolation “segments” derived from the programmed moves must be stored

in the lookahead buffer at any time. This forces the motion program to pre-calculate

enough programmed moves to keep the segment buffer full. In extreme cases, Power

PMAC may pre-calculate hundreds, or even thousands, of programmed moves ahead of

the execution point.

 If 2D tool radius compensation is enabled, additional moves must be pre-calculated to

compute the compensated move intersection points and to check for possible interference

and overcut. The saved setup element Coord[x].CCDistance specifies how many

additional compensated programmed moves are to be pre-calculated for this purpose.

Commonly, during a continuous sequence of programmed moves, each time move execution

transitions into a new move, one more move from the program is calculated. But as the sequence

starts, multiple moves may be calculated at once to get the queue full, and at the end of the

sequence, the queue will empty.

The following motion program example shows where calculations are suspended (at the

horizontal lines).

↓ X0 Y0; // Compute move, suspend

↓ Xpos = Rad * cos(Angle);

↓ Ypos = Rad * sin(Angle);

↓ X(Xpos) Y(Ypos); // Compute move, suspend

↓ ↑ while (Interlock == 0) // Continue, blend if loop ct ≤ GoBack+1

↓ ↑ {} // Suspend, no blend if loop ct > GoBack+1

↓ X(-Xpos) Y(-Ypos); // Compute move, suspend

↓ if (ExtendedPause == 1) {

↓ PauseTime = 100; }

↓ else {

↓ PauseTime = 50; }

↓ LaserOn = 1;

↓ dwell(PauseTime); // Compute “move”, suspend

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 635

The following diagram shows a sample time line for program move calculation and subsequent

move execution “n” move-ahead pre-calculation.

Motion Program Sample Calculation and Execution Sequencing

Note that these sequencing rules mean that motion program calculations only occur at move

boundaries. If there are calculations or actions that you wish to occur at other times, those should

be implemented in another type of program, whether a Script PLC program, a C PLC program, or

an independent C application.

Failure to Calculate Far Enough Ahead

One key intent of the sequencing rules and motion queue is to ensure that equations of motion are

ready in time for their use in the actual execution of the moves. If the equations are not ready in

time, a “run-time error” occurs. In this case, status bit Coord[x].RunTimeError is set to 1. This

is bit 4 of status byte Coord[x].ErrorStatus, so this byte is set to 16. When a run-time error

occurs, all motors in the coordinate system are brought to a controlled stop as if an “abort”

command had been issued, each decelerating as specified by its Motor[x].AbortTa and

Motor[x].AbortTs saved setup element values.

Special Considerations for Very High Move-Rate Applications

When the frequency of programmed moves in the motion program approaches the frequency of

Power PMAC’s real-time interrupt and/or servo interrupt – typically thousands of moves per

second, extra care must be taken in order to assure reliable execution of the program.

In these applications, saved setup element Sys.RtIntPeriod should typically be set to the default

value of 0 so that the real-time interrupt, where motion program calculations are performed,

executes every servo interrupt. This maximizes the chance that move calculations will always be

performed in time to have the equations of motion ready for execution.

In addition, some care may need to be taken with the setting of saved setup element Sys.PreCalc.

Technically, Power PMAC attempts to calculate enough moves ahead so that equations are ready

for at least (Sys.RtIntPeriod + 1) + Sys.PreCalc servo cycles ahead of the presently executing

point. For the large majority of Power PMAC applications, where the programmed move times

are not nearly as small as the servo update time, the default value of 1 for Sys.PreCalc can be

used reliably.

1 n+1

n+2

1

2 3 4

time

"R" Execute

Calculate

n

n+3 n+4

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 636

However, when the move times can be as small (or even smaller!) than the servo update time, the

value of Sys.PreCalc may need to be adjusted to optimize the balance between the possibilities of

“too much” pre-calculation, which can overflow a key buffer, and “too little” pre-calculation,

which can mean that equations will not be ready in time for execution, which would result in a

“run-time error”.

Each motor has a buffer of pending move equations in the sub-structures Motor[x].New[i] (i = 0

to 15) that is kept in fast “locked” cache memory for efficient use. This 16-equation buffer queue

should never be emptied during a continuous motion sequence, causing a run-time error, or

overflowed, causing a buffer error. If run-time errors are occurring (Coord[x].ErrorStatus = 16),

Sys.PreCalc should be increased. If buffer overflow errors are occurring (Coord[x].ErrorStatus

= 2), Sys.PreCalc should be decreased.

The status element Coord[x].BufferWarn can be used to optimize the setting of Sys.PreCalc

without actually creating errors. Sys.PreCalc should be set high enough that

Coord[x].BufferWarn is sometimes set to 1, meaning that another move block could not be

loaded into the equation buffer, but set low enough that BufferWarn does not get set to 2, which

would mean that a request for move calculations had to be delayed to keep from overflowing the

buffer.

Suspending Calculations Without a Full Motion Queue

There are some cases in which Power PMAC will suspend motion calculations without keeping

the motion queue as full as desired. This occurs when the program counter jumps back to an

earlier point in the program multiple times without finding a move or dwell. The jump back can

occur due to a while loop or a goto command to an earlier point.

The reason for this type of calculation suspension is concern for indefinite looping while

searching for the next move or equivalent command. Indefinite looping means that the processor

will not release to other tasks of the same or lower priorities as long as it is in the loop, unduly

delaying those tasks. In addition, if this occurs in the middle of a continuous sequence of moves,

the equations for the next move may not be computed by the time that move needs to start, with

the most recently calculated move ending at a non-zero velocity. When move equations are not

ready in time, a “run-time error” condition occurs, ending program execution and aborting the

resulting motion.

Saved setup element Coord[x].GoBack specifies how many “jumps back” can occur before

program calculations are suspended. If program calculations jump back (Coord[x].GoBack + 2)

times without finding a move or equivalent command, program calculations are suspended at that

point. If the most recently calculated move was set to blend or spline into the next move, a

deceleration to a stop is computed for that move instead. Program calculations will resume when

that deceleration is finished. If there are no moves in progress, program calculations will resume

on the next real-time interrupt.

In general, motion programs that permit indefinite looping without a move command inside the

loop should be avoided. This is especially true when PVT-mode moves, or linear and circle-mode

moves with cutter radius compensation active, are being executed, because the stopping of the

executing moves when calculations are suspended may not be graceful.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 637

Standard vs Synchronous Variable Assignments

When Power PMAC is calculating moves in advance of the beginning of execution of those

moves due to blending, acceleration limiting, cutter radius compensation, and/or buffered

lookahead, any “standard” variable value assignment commands in the program that are executed

before the move is calculated will occur well before the beginning of execution of that move as

well. For variables used internally, such as parameters to specify the next move, this is

appropriate.

However, when the standard variable assignment command is used for something like setting the

value of an external output (analog or digital), the actual output will be set well before the

beginning of execution of the next programmed move, something that many users will find

undesirable. Because it is a common desire to be able to set output values in a program to occur in

proper sequence with the accompanying move execution, Power PMAC has implemented

“synchronous” variable assignments. A synchronous assignment is denoted by using and addition

“=” character in the assignment operator (e.g. M1 == 1 instead of M1 = 1, or M2 +== 32

instead of M2 += 32).

When the program calculation executes a synchronous variable assignment command, it places

the operation in a special assignment queue that is “parallel” to the motion equation queue for the

programmed moves. The actual assignment is not made until the equations for the next

programmed move are pulled from the motion equation queue for execution. This puts the actual

assignment in proper sequence with the move execution.

For more details on synchronous variable assignments, see the section “Synchronous Variable

Value Assignment” in the User’s Manual chapter “Power PMAC Computational Features”.

Motion Error Response

If the motion commanded from a motion program results in an error condition such as an

overtravel limit trip, fatal following error, or amplifier fault that stops motion in either a killed or

aborted condition, motion program execution is automatically aborted as well. This means that a

motion program itself has no capability for trapping or responding to these types of errors; that

response should be in a PLC program or on a host computer.

Rotary Motion Programs

Fundamentally, rotary motion programs follow the same execution rules as the “fixed” motion

programs. Note that since rotary motion programs cannot jump to another line, forward or back,

the only indefinite looping that could trigger suspension of calculations is a “single-line” while

loop.

In addition, execution of a rotary motion program can reach the end of what has already been

downloaded in the Power PMAC. (This condition cannot occur in a fixed motion program.) If this

occurs, calculations are of course suspended at this point, and if the most recently calculated

move was set to blend or spline into the next move, a deceleration to a stop is computed for that

move instead. When additional program lines are downloaded into the Power PMAC, program

calculations will automatically resume.

PLC Programs

Power PMAC Script PLC programs execute much more like standard programming languages

than do motion programs. When a “scan” of a PLC program is started by the Power PMAC

scheduler, it executes until the end of the program, or until it reaches a “jump back” in the

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 638

program – the end of a while loop, or a goto command to an earlier line. If it reached the end

of the program, the next scan will start at the beginning of the program; if it stopped on a jump

back, the next scan will start at the point jumped back to.

Foreground PLC Scans

One or more of the Script PLC programs execute under the real-time interrupt (RTI). Saved setup

element Sys.MaxRtPlc, which has a range of 0 to 3, specifies the number of the highest PLC

program that will execute in foreground under the RTI. Each RTI, after any needed motion-

program calculations have been finished, a scan of each active foreground PLC program will be

executed, starting with PLC 0.

Background PLC Scans

PLC programs with numbers higher than Sys.MaxRtPlc execute in background, in the time

available when no interrupt tasks are executing. Each background cycle, one scan of each active

background script PLC is executed. In between each scan of each background script PLC

program, one scan of every active C PLC program is executed. After all of the background script

PLC programs have executed a scan, the processor releases to the general-purpose operating

system for independent applications to be able to execute for a period set by saved setup element

Sys.BgSleep.

Buffered I/O for PLC Programs

While it is possible for Script PLC programs to read inputs directly and write to outputs directly

in the middle of scans, many users will want to have the Power PMAC automatically read all

hardware inputs into buffered registers synchronously at the start of a scan, and write to all

hardware outputs from buffered registers at the end of a scan, as most traditional PLCs do. This

permits the user’s application-specific PLC code to access only the buffered input and output

registers in memory.

Power PMAC provides this capability with its buffered PLC-style I/O functionality. (This was

introduced in V2.1 firmware, released 2nd quarter 2016). With this functionality, multiple input

registers can be automatically copied into buffered input registers at the start of a Script PLC scan

cycle. The user can specify registers to be copied at the beginning of a background PLC scan

cycle, at the beginning of a foreground PLC scan cycle, or some of each.

The bits in each input register can be digitally filtered so that up to 4 consecutive scan cycles in

the new state are required before the buffered holding register accepts the change. This is very

useful for electrical noise mitigation and pushbutton debouncing. In addition, any buffered input

bit can be forced on or off, useful for developing and debugging an application.

Multiple output registers can be automatically copied from buffered output registers at the end of

a Script PLC scan cycle. The user can specify registers to be copied at the end of a background

PLC scan cycle, at the end of a foreground PLC scan cycle, or some of each. Any buffered output

bit can be forced on or off, useful for developing and debugging an application.

The buffered PLC-style I/O functionality is described in detail in the User’s Manual chapter

Using General-Purpose Digital I/O with Power PMAC.

Commanding Moves from PLC Programs

A key difference from motion program execution is that PLC program execution is not sequenced

by the move. If a PLC program executes a move command, program calculation does not suspend

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 639

at that point as in a motion program, but instead continues on. The move command is simply to

start the move.

This difference in execution rules between motion and PLC programs means that some tasks are

better performed in one type of program or another. For execution of a pre-determined sequence

of moves, it is usually better to use a motion program. (Remember also that PLC programs can

only command rapid-mode axis moves and motor moves such as jogging and homing, so if any

other move types are desired, these must be done from motion programs.)

However, if the application may require decisions after the move starts, for example to change the

destination or speed, or to deal with error conditions, a PLC program will be much better to use

because its calculations stay active after the move starts and even if the move results in an error.

Many applications will check the status of the move each scan until it either reaches the

destination position properly or ends in an error.

Note that a PLC program does not guarantee that the position-match function is executed before a

commanded axis move to ensure that the starting axis position matches the present motor

position. The program must explicitly execute a pmatch command to do this. (If the axis

position already matches the present motor position, the pmatch command will not do anything,

but it will not hurt and will only take a small amount of processor time.)

In a PLC program, it is easy to “break into” an executing axis or motor move with a new move

command. The new move will use the present instantaneous position, velocity, acceleration, and

jerk as its starting point, providing a seamless transition. If the new move command is an

incremental-mode axis move, the end point of this move will be specified distance from the end

point of the presently executing move unless the new move command is preceded by a pmatch

command, in which case the destination is calculated as the distance from the present

instantaneous position.

Delaying Action of a PLC Program

It is a common desire to delay action of a script PLC program for a fixed period of time. Unlike

in sequenced motion programs, dwell or delay commands cannot be used for this purpose.

One method for delaying the action of a PLC program is to use one of the built-in “time-elapsed”

status elements such as Sys.RunTime, which contains the time since power-up/reset completion

in seconds. Delaying code would look like:

MyEndTime = Sys.RunTime + MyDelayTime;

while (Sys.RunTime < MyEndTime) {}

In execution, each time the while loop is executed with the condition logically true, the PLC scan

ends, and other tasks at the same priority level (e.g. other PLC programs) will be executed before

the next scan of this PLC program, which will start at the beginning of the while loop again.

In addition, Power PMAC provides a set of automatic “countdown timers” that are useful to delay

actions of PLC programs for a specified time. (These timers are new in V2.2 firmware, released

3rd quarter 2016.) There are 256 of these timers.

Each timer has a non-saved setup data structure element Sys.CdTimer[i] (i = 0 to 255) that the

user can write to at any time. This is a non-negative floating-point value, scaled in milliseconds.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 640

The most common method of use is to write a value to a timer element, then have the PLC

program loop until the element value reaches 0.

For example, to delay with no action for a period of 750 milliseconds, the following PLC code

segment could be used:

Sys.CdTimer[5] = 750;

while (Sys.CdTimer[5] > 0) {}

In a Power PMAC project, the user can give a meaningful name to a timer with a #define

directive. Also, it is common to perform some action, often a monitoring action, while looping.

As an example, with the directive:

#define MeasurementTimer Sys.CdTimer[12]

the following code segment could be used to average measurements taken over a specified

number of seconds:

MeasurementTimer = MonitoringSeconds * 1000;

ScanNumber = 1;

InputSum = 0;

while (MeasurementTimer > 0) {

 InputSum += Acc59E3[4].Chan[0].AdcAmp[1];

 ScanNumber++;

}

InputAverage = InputSum / ScanNumber;

Subprograms

The execution rules for a subprogram are the same as for the top-level program in the program

stack that calls the subprogram. If the top-level program is a motion program, execution of the

subprogram follows motion program rules. If the top-level program is a PLC program, execution

follows PLC program rules. A subprogram with motion commands would therefore execute

differently when the top-level program is a PLC program compared to how it would execute

when the top-level program is a motion program. For this reason, extreme care is recommended

when writing a subprogram with commanded motion that is to be called by both motion and PLC

programs.

Kinematic Subroutines

Kinematic subroutines are called implicitly from programs as needed. They should not contain

any motion commands themselves. Their primary purpose is to convert between axis and motor

positions, but can contain other calculations as well (e.g. collision avoidance checks).

A kinematic subroutine will generally just run once through its calculations to the end. Looping

constructs may be used, and are often useful for iterative solutions. The number of loop cycles

that can be performed without suspending execution of the routine is determined by local data

structure element Ldata.GoBack. Each time the routine is called, the value of this element is set

to the value of saved setup element Coord[x].GoBack. If you wish a different value for the

kinematic subroutine, a value should be explicitly assigned to the local element at the beginning

of the subroutine (e.g. Ldata.GoBack = 20;).

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 641

Starting and Stopping Script Program Execution

Power PMAC provides multiple commands, both on-line and within script programs, to start and

stop execution of script motion and PLC programs. These commands are explained in this

section.

Coordinate System Addressing for Motion Programs

For on-line commands that start or stop motion program execution, if the command is to affect a

single coordinate system only, it will affect the modally addressed coordinate system for the

communications thread used. This coordinate system is the one specified by the most recent &x

command, where x is the number of the coordinate system. Often this addressing will

immediately precede the command itself (e.g. &1r, &2a). Since the addressing is modal, it is not

required that every subsequent command to the same coordinate system be preceded with an

addressing command, but this is generally recommended for clarity.

If a list of multiple coordinate systems immediately precedes the command (e.g. &1..3r,

&2,4,6a), all of the listed coordinate systems are affected by the command, but the modally

addressed coordinate system for the communications thread is not changed.

For buffered program commands that start or stop motion program execution, the program issuing

the command must either list the affected coordinate system in the command (e.g. run1,

abort2), or modally address the coordinate system by setting the value of (non-saved) element

Ldata.Coord for the program. Each PLC program and each coordinate system can have its own

modally addressed coordinate system for these commands. For PLC programs, the power-on

default value for Ldata.Coord is 0. For coordinate systems, which control the modal addressing

of commands issued from motion programs running in the coordinate system, the default value

for Ldata.Coord is the number of the coordinate system itself. Using the modal address, the

coordinate system does not have to be listed in the command itself (e.g. run, abort).

For buffered program commands that take an argument, such as the program number, the

argument value comes after a colon character (e.g. start:500). If there is a value before the

colon, this value specifies the coordinate system to be affected (e.g. start3:500)

Starting Script Motion Program Execution

There are several commands, both on-line and program, for starting motion program execution in

different ways.

For the coordinate system to be able to start execution of a motion program, the following

conditions must be met:

 All motors assigned to position axes in the coordinate system must be activated

(Motor[x].ServoCtrl > 0), enabled, and in closed-loop mode.

 If axis-definition statements are used, conversion from motor positions to matching axis

positions must be possible (Coord[x].Csolve = 1) so Power PMAC can compute the

starting axis positions from the present commanded motor positions. (If there is a

forward-kinematic subroutine present for the coordinate system, Power PMAC assumes

that it will calculate the starting axis positions correctly.)

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 642

 No motor assigned to a position axis in the coordinate system may have both overtravel

limits set.

 The selected motion program (and any label selected) must be present and valid.

 If re-starting from a suspended state, all motors must be in the same commanded position

as they were when initially stopped in the suspended state (but changes in master position

when following is in offset mode are permitted).

It is possible to execute a motion program in a coordinate system in which no motors are assigned

to axes. This provides a type of “dry run” capability for the program.

Selecting a Motion Program

Before any motion program can be executed, one must be selected (“pointed to”). To point a

coordinate system to a motion program, the on-line b command or the program begin command

is used. The integer part of the numerical argument in the command (e.g. b75, begin:75)

specifies the number of the motion program to be pointed to. The fractional part of the numerical

argument, if any, specifies the number of the “jump label” in the motion program to be pointed

to; the value of the fractional component is multiplied by 1,000,000 to obtain the number of the

jump label. For example, b75.00135 or begin:75.00135 points to jump label N1350: of

motion program 75. There is an implicit N0: jump label at the beginning of each motion

program, so if there is no fractional component to the argument, the command points the

coordinate system to the beginning of the motion program.

On-Line r Command, Program run Command

When a coordinate system that is presently pointing to a location in a motion program or a

subprogram that has been called from a top-level motion program receives an on-line r command

or is acted on by a program run command from another program, execution of the motion

program is started in continuous mode, and will proceed until the end of the program is reached

(unless a command to stop execution is received, or an error condition is detected). These

commands can be used to start execution of a motion program that has not been executing, or to

resume execution of a motion program that has been stopped in a suspended state.

On-Line s Command, Program step Command

When a coordinate system that is presently pointing to a location in a motion program or a

subprogram that has been called from a top-level motion program receives an on-line s command

or is acted on by a program step command from another program, execution of the motion

program is started in “single-step” mode, and will proceed until it calculates the next move

command in the program, or if it encounters a bstart command in the program before any

move command, until it encounters the next bstop command.

However, if Coord[x].StepMode is greater than 0, if the end of a program line is encountered

before a move command is found, program calculation is stopped at the end of the program line.

The s and step commands can be used to start execution of a motion program that has not been

executing, or to resume execution of a motion program that has been stopped in a suspended

state. (They can also be used to halt execution of a program that is currently running in

continuous mode – see the section below under Stopping Script Motion Program Execution.)

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 643

On-Line start Command, Program start Command

The on-line or program start command combines the functions of the b [begin] command

and the r [run] command. It points the coordinate system to a specified motion program (and

optionally to a jump label within that program), then starts continuous execution of that motion

program.

The integer part of the numerical argument in the command (e.g. on-line start12, program

start:12) specifies the number of the motion program to be pointed to. The fractional part of

the numerical argument, if any, specifies the number of the “jump label” in the motion program to

be pointed to; the value of the fractional component is multiplied by 1,000,000 to obtain the

number of the jump label. For example, on-line start12.001 or program start:12.001

points to jump label N1000: of motion program 12. There is an implicit N0: jump label at the

beginning of each motion program, so if there is no fractional component to the argument, the

command points the coordinate system to the beginning of the motion program and executes it

from that point.

On-Line resume Command, Program resume Command

When motion program execution in a coordinate system has been suspended, either at the end of

a programmed move as with a q [pause] command, or in the middle of a move with a \ [lh\]

or h [hold] command, execution can be resumed with an on-line resume command or program

resume command. The resume command puts the program in continuous execution mode, even

if it had been in single-step mode when suspended.

On-Line > Command, Program lh> Command

When motion program execution in a coordinate system has been suspended with a \ [lh\] or h

[hold] command, execution can be resumed with an on-line > command or program lh>

command. The suspended motion resumes in the forward direction, and program calculations will

resume as needed as triggered by the progression of the commanded moves.

If the program was in continuous execution mode (as from an r [run] command) when it was

suspended, it will resume in continuous execution mode. If the program was in single-step

execution mode (as from an s [step] command) when it was suspended, it will resume in

single-step mode, which probably means that the already calculated moves will be finished

without the calculation of further moves.

The > [lh>] command can also be used when the coordinate system is retracing moves from the

special lookahead buffer in the reverse direction after a < [lh<] command, without the need to

come to a full stopped state in between.

On-Line < Command, Program lh< Command

When motion program execution in a coordinate system has been suspended during execution of

moves from the special lookahead buffer with a \ [lh\] command, execution of buffered moves

can be started in the reverse direction with an on-line < command or program lh< command.

“Retrace” of these already buffered and executed moves can be continued as far back as the

lookahead buffer has had room to store them. No motion program calculations are performed

during this reverse execution of buffered moves.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 644

The < [lh<] command can also be used when the coordinate system is executing moves from the

special lookahead buffer in the forward direction, without the need to come to a full stopped state

in between.

Stopping Script Motion Program Execution

Power PMAC provides a variety of methods for stopping motion program execution. This variety

permits the user to select whether the halting action begins immediately or not, whether motion

stops at the end of a programmed move or not, whether motion can be resumed or not, and what

state the motors are left in.

Normal End-of-Program Termination

When the execution of the motion program finishes the last line in the program, the program

counter is reset to the beginning of the motion program, but further program calculations are

disabled. Moves that have been calculated by the program are completed. Motors assigned to axes

in the coordinate system are left in closed-loop zero-velocity position control at the final

programmed point. In this state, the program buffer can be opened to clear or reuse the buffer if

desired.

Program return Command

When the execution of the motion program encounters a return command in the top-level

program, the program counter is reset to the beginning of the motion program, but further

program calculations are disabled. Moves that have been calculated by the program are

completed. Commanded motion ends at the destination position of the last calculated move, with

motion occurring along the programmed path in multi-axis applications. Motors assigned to axes

in the coordinate system are left in closed-loop zero-velocity position control at the final

programmed point.

However, if execution encounters a return command in a called subprogram, the program

counter is set back to the next line in the calling program. Note that there is an implicit return

command at the end of every program buffer.

Program stop Command

When the execution of the motion program encounters a stop command in either the top-level

program or a called subprogram, the program counter is reset to the beginning of the top-level

motion program, but further program calculations are disabled. Moves that have been already

calculated by the program are completed. Commanded motion ends at the destination position of

the last calculated move, with motion occurring along the programmed path in multi-axis

applications. Motors assigned to axes in the coordinate system are left in closed-loop zero-

velocity position control at the last programmed point.

On-Line q Command or Program pause Command

When the coordinate system executing the motion program receives an on-line q command, is

acted on by a program pause command from another program, or encounters a pause

command in either the top-level motion program or a called subprogram, further program

calculations are disabled. Moves that have been already calculated by the program are completed.

Commanded motion ends at the destination position of the last calculated move, with motion

occurring along the programmed path in multi-axis applications. Motors assigned to axes in the

coordinate system are left in closed-loop zero-velocity position control at the last programmed

point.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 645

Execution of the motion program can be resumed from this point with an on-line r or s

command, or a program run or step command. Because execution can be resumed from this

point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state;

usually an a [abort] command is given first to put the coordinate system in a state where the

buffer can be cleared.

On-Line s Command or Program step Command

When the coordinate system executing the motion program receives an on-line s command, is

acted on by a program step command from another program, or encounters a step command

in either the top-level motion program or a called subprogram, one more programmed move (or

program section from bstart to bstop) is calculated, and further program calculations are

disabled. Moves that have been calculated by the program are completed. Commanded motion

ends at the destination position of the last calculated move, with motion occurring along the

programmed path in multi-axis applications. Motors assigned to axes in the coordinate system are

left in closed-loop zero-velocity position control at the last programmed point.

Execution of the motion program can be resumed from this point with an on-line r or s

command, or a program run or step command. Because execution can be resumed from this

point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state;

usually an a [abort] command or a b [begin] command is given first to put the coordinate

system in a state where the buffer can be cleared.

On-Line h Command or Program hold Command

When the coordinate system executing the motion program receives an on-line h command, or is

acted on by a program hold command from another program, the time-base “%” override value

for the coordinate system is ramped down to zero, starting immediately, at a rate set by the value

of saved setup element Coord[x].FeedHoldSlew for the coordinate system. Commanded motion

during the deceleration occurs along the programmed path in multi-axis applications, ending at

the point where the % value reaches zero. In general, this will not be at a programmed point.

Motors assigned to axes in the coordinate system are left in closed-loop zero-velocity position

control at the point where the % value reaches zero.

Technically, the program is still running in this state (Coord[x].ProgRunning = 1), but because

commanded motion is not advancing, no further program calculations are being triggered. It is

possible to tell that motion has been stopped because Coord[x].ProgProceeding has been set to

0. Also, Coord[x].FeedHold is set to 3 during the deceleration to stop, to 1 when stopped, and to

2 when accelerating from stop during resumption of motion.

Execution of the motion program can be resumed from this point with an on-line r, s, or >

command, or a program run, step, or lh> command. Because execution can be resumed from

this point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state;

usually an a [abort] command or a b [begin] command is given first to put the coordinate

system in a state where the buffer can be cleared.

On-Line \ Command or Program lh\ Command

When the coordinate system executing the motion program receives an on-line \ command, or is

acted on by a program lh\ command from another program, program execution will be

suspended in one of two ways. If the program is presently executing moves from the dynamic

lookahead buffer, the motors are decelerated to zero velocity, starting immediately, using motion

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 646

segments from the lookahead buffer, at a rate limited by the maximum acceleration parameter

Motor[x].InvAmax for one of the motors. This is called a “quick stop” command. In general,

motion will not stop at a programmed point, but in a multi-axis application, it will stop along the

programmed path. Motors assigned to axes in the coordinate system are left in closed-loop zero-

velocity position control at this point.

If the program is not presently executing moves from the dynamic lookahead buffer, motion is

stopped as if an h [hold] command had been given, as explained in the preceding section.

Technically, the program is still running in this state (Coord[x].ProgRunning = 1), but because

commanded motion is not advancing, no further program calculations are being triggered. It is

possible to tell that motion has been stopped because Coord[x].ProgProceeding has been set to

0. If stopped during a buffered lookahead move, Coord[x].LookAheadStop is set to 1.

Execution of the motion program can be resumed from this point with an on-line r, s, or >

command, or a program run, step, or lh> command. Because execution can be resumed from

this point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state;

usually an a [abort] command or a b [begin] command is given first to put the coordinate

system in a state where the buffer can be cleared.

Reverse execution of already executed buffered lookahead move segments can be started from

this point with an on-line < command or a program lh< command.

On-Line %0 Command or Program DesTimeBase=0 Command

When the time-base “%” override value for the coordinate system becomes exactly 0, move

execution is effectively suspended, because the interpolation equations that generate new desired

positions for the motors and axes in the coordinate system are “frozen” at a fixed time value.

This state can occur in a variety of different ways. If the coordinate system has its default setting

of responding to command changes in the time-base value (Coord[x].pDesTimeBase =

Coord[x].DesTimeBase.a), this can be one with an on-line %0 command or a program

Coord[x].DesTimeBase=0 command. Often this will come from an operator’s “override

knob” setting of 0. The time-base “%” override value for the coordinate system is ramped down

to zero, starting immediately, at a rate set by the value of saved setup element

Coord[x].TimeBaseSlew for the coordinate system.

If the coordinate system is using “external time base” from a master encoder or external clock

pulse train (Coord[x].pDesTimeBase = EncTable[n].DeltaPos.a), the absence of pulses will

cause the time-base value to become 0. Under external time base, Coord[x].TimeBaseSlew is

usually set to a high enough value that it never limits the rate of change of the time base value;

this is typically limited by the rate of change of frequency of the input signal.

Commanded motion during the deceleration occurs along the programmed path in multi-axis

applications, ending at the point where the % value reaches zero. In general, this will not be at a

programmed point. Motors assigned to axes in the coordinate system are left in closed-loop zero-

velocity position control at this point.

Technically in this mode, the program and moves are still executing (Coord[x].ProgRunning =

1, Coord[x].ProgProceeding = 1). Note that this status is different from that of a “hold”

condition. Execution of motion can be resumed simply by setting the time-base value greater than

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 647

zero, by command for internal time base, or by signal for external time base. Because execution

can be resumed from this point (Coord[x].ProgActive = 1), the motion program buffer cannot be

cleared in this state; usually an a [abort] command is given first to put the coordinate system in

a state where the buffer can be cleared.

On-Line a Command or Program abort Command

When the coordinate system executing the motion program receives an on-line a command, or is

acted on by a program abort command, all motors in the coordinate system are brought to a

closed-loop stopped state, starting immediately. (Note that this includes motors in the coordinate

system but not assigned to an axis – null definitions and spindle definitions.) Each motor is

decelerated to a stop at a rate determined by its own saved setup elements Motor[x].AbortTa and

Motor[x].AbortTs. In general, the motors will not stop at a programmed point, and in a multi-

axis application, the deceleration will not be along the programmed path.

The program counter is automatically reset to the beginning of the motion program, so it is not

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). Generally, an

abort command is only used to halt execution of a running motion program when there is a fault

or error condition.

However, if program execution has been suspended in a manner that would permit resumption

from the suspended point (hold, quit, step, etc.), and it is desired not to resume the program, an

abort is commonly used to completely terminate program execution. This permits the motion

program buffer to be cleared or reused.

On-Line or Program disable Command

When the coordinate system executing the motion program receives an on-line disable

command, or is acted on by a program disable command, all motors in the coordinate system

are immediately “killed” – the servo loops are opened, the servo outputs are forced to zero, and

the amplifiers are disabled. (Note that this includes motors in the coordinate system but not

assigned to an axis – null definitions and spindle definitions.) In general, the motors will not stop

at a programmed point, and in a multi-axis application, the (uncontrolled) deceleration will not be

along the programmed path.

If automatic brake control is enabled for a motor in the coordinate system (Motor[x].pBrakeOut

> 0), the disabling of the motor is not delayed until the brake is engaged.

The program counter is automatically reset to the beginning of the motion program, so it is not

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). All motors

assigned to axes in the coordinate system must be re-enabled in closed-loop mode before the

coordinate system can start a motion program again. Generally, a disable command is only used

to halt execution of a running motion program when there is a fault or error condition so severe

that motors cannot be brought to a closed-loop stop.

On-Line or Program ddisable Command

When the coordinate system executing the motion program receives an on-line ddisable

command, or is acted on by a program ddisable command, all motors in the coordinate system

are immediately “killed” – the servo loops are opened, the servo outputs are forced to zero, and

the amplifiers are disabled. (Note that this includes motors in the coordinate system but not

assigned to an axis – null definitions and spindle definitions.) In general, the motors will not stop

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 648

at a programmed point, and in a multi-axis application, the (uncontrolled) deceleration will not be

along the programmed path.

If automatic brake control is enabled for a motor in the coordinate system (Motor[x].pBrakeOut

> 0), the disabling of the motor is delayed until the brake is engaged, as set by

Motor[x].BrakeOnDelay. This delay is the only difference from using the disable command.

Because the use of disabling action during motion program execution is generally only needed for

serious fault conditions that could cause an immediate runaway, this delay is usually not

desirable, so the standard disable command is usually used instead.

The program counter is automatically reset to the beginning of the motion program, so it is not

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). All motors

assigned to axes in the coordinate system must be re-enabled in closed-loop mode before the

coordinate system can start a motion program again. Generally, a disable command is only used

to halt execution of a running motion program when there is a fault or error condition so severe

that motors cannot be brought to a closed-loop stop.

On-Line or Program adisable Command

When the coordinate system executing the motion program receives the on-line adisable

command, or is acted on by a program adisable command, all motors in the coordinate system

are brought to a closed-loop stopped state, starting immediately, as if an “abort” command had

been issued. Then, as each motor completes its controlled deceleration profile, reaching a

“desired velocity zero” state, it executes a “delayed kill”, engaging the brake (if any), then

disabling the motor (open-loop, zero output, amplifier disabled) after a delay of

Motor[x].BrakeOnDelay milliseconds.

The program counter is automatically reset to the beginning of the motion program, so it is not

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). Generally, an

“adisable” command is only used to halt execution of a running motion program when there is a

fault or error condition.

On-Line #*k Command

When the Power PMAC receives a #*k command (kill all motors), all motors in all coordinate

systems are immediately “killed” – the servo loops are opened, the servo outputs are forced to

zero, and the amplifiers are disabled. In general, the motors will not stop at a programmed point,

and in a multi-axis application, the (uncontrolled) deceleration will not be along the programmed

path.

If automatic brake control is enabled for a motor in the coordinate system (Motor[x].pBrakeOut

> 0), the disabling of the motor is not delayed until the brake is engaged.

In all coordinate systems executing a motion program, the execution is immediately halted, and

program counters are automatically reset to the beginning of the motion program, so it is not

possible to resume execution at the stopped point. All motors assigned to axes in a coordinate

system must be re-enabled in closed-loop mode before the coordinate system can start a motion

program again. Generally, a kill command is only used to halt execution of a running motion

program when there is a fault or error condition so severe that motors cannot be brought to a

closed-loop stop.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 649

Note that a kill command for specific motors (e.g. #3k or #1..8k), even if for all of the motors

in the coordinate system, will not act on the motors of a coordinate system that is executing a

motion program.

On-Line #*dkill Command

When the Power PMAC receives a #*dkill command (delayed kill of all motors), all motors in

all coordinate systems are immediately “killed” – the servo loops are opened, the servo outputs

are forced to zero, and the amplifiers are disabled. In general, the motors will not stop at a

programmed point, and in a multi-axis application, the deceleration will not be along the

programmed path.

If automatic brake control is enabled for a motor (Motor[x].pBrakeOut > 0), the disabling of the

motor is delayed until the brake is engaged, as set by Motor[x].BrakeOnDelay. This delay is the

only difference from using the disable command. Because the use of disabling action during

motion program execution is generally only needed for serious fault conditions that could cause

an immediate runaway, this delay is usually not desirable, so the standard kill-all (#*k) command

is usually used instead.

In all coordinate systems executing a motion program, the execution is immediately halted, and

program counters are automatically reset to the beginning of the motion program, so it is not

possible to resume execution at the stopped point. All motors assigned to axes in a coordinate

system must be re-enabled in closed-loop mode before the coordinate system can start a motion

program again. Generally, a kill command is only used to halt execution of a running motion

program when there is a fault or error condition so severe that motors cannot be brought to a

closed-loop stop.

Note that a kill command for specific motors (e.g. #3dkill or #1..8dkill), even if for all of

the motors in the coordinate system, will not act on the motors of a coordinate system that is

executing a motion program.

Starting Script PLC Program Execution

Power PMAC provides several commands to start and re-start PLC program execution, providing

flexibility in operation and debugging. Note that on power-on, reset, and project download, all

script PLC programs are disabled by default. Many users will put enabling commands into the

automatically executed command list of the pp_startup.txt project file if they want some or

all of their PLC programs to be running immediately on startup.

On-Line enable plc Command, Program enable plc Command

The on-line or program enable plc command (e.g. enable plc 1, enable plc 7..9)

causes the listed script PLC program(s) to execute scans starting in their next turn in either the

foreground cycle or the background cycle, as appropriate. The program(s) will continue to

execute a scan in its turn in each cycle until stopped by a disable plc, pause plc, or

step plc command.

The enable plc command can act on a PLC program that is disabled, paused, stopped in

single-step mode, or already enabled. In all cases, the next scan will start at the beginning of the

program. This is appropriate if the PLC program is disabled, and is the only way to start or re-

start execution of the PLC program, but may not be appropriate for the other modes, particularly

if the execution has stopped at a point other than the end of the program due to the scan ending at

the end of a while loop or because the program was in single-step mode.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 650

This command sets status bits Plc[i].Active and Plc[i].Running to 1 for the affected PLC

program(s).

On-Line step plc Command, Program step plc Command

The on-line or program step plc command (e.g. step plc 0, step plc 3,5,9) causes

the listed script PLC program(s), if disabled, paused, or stopped in single-step mode, to execute a

single program line in their next turn in either the foreground cycle or the background cycle, as

appropriate. If there are multiple commands on this program line, all will be executed in a single

scan. Note that bstart and bstop commands in a PLC program do not affect how single-step

operation works, unlike in motion programs.

This command sets (or leaves) status bit Plc[i].Active to 1, and sets Plc[i].Running to 0 after

completing the step for the affected PLC program(s).

This single-step mode of execution for PLC programs is primarily for debugging purposes.

On-Line resume plc Command, Program resume plc Command

The on-line or program resume plc command (e.g. resume plc 31, resume plc

9..17) causes the listed script PLC program(s), if paused or stopped in single-step mode, to re-

start executing scans in continuous mode starting in their next turn in either the foreground cycle

of the background cycle, as appropriate. The program(s) will continue to execute a scan in its turn

in each cycle until stopped by a disable plc, pause plc, or step plc command. The

resume plc command does not act on a PLC program that is disabled.

This command sets status bits Plc[i].Active and Plc[i].Running to 1 for the affected PLC

program(s).

Stopping Script PLC Program Execution

Power PMAC provides several commands for stopping execution of script PLC program

execution. These commands provide for different methods of stopping and subsequent re-starting.

On-Line disable plc Command, Program disable plc Command

The on-line or program disable plc command (e.g. disable plc 10, step plc

13..17) causes the listed script PLC program(s) not to execute a scan starting in their next turn

in either the foreground cycle or the background cycle, as appropriate. Execution can only be re-

started at the beginning of the program (regardless of where the last scan ended) with an enable

plc command (which starts continuous execution) or with a step plc command (which starts

single-step execution).

If the disable plc command is issued from within the PLC program itself, the present scan

will finish, even if the command is not the final command for the scan.

This command sets status bits Plc[i].Active and Plc[i].Running to 0 for the affected PLC

program(s).

On-Line pause plc Command, Program pause plc Command

The on-line or program pause plc command (e.g. pause plc 20, pause plc

22,25,27) causes the listed script PLC program(s) not to execute a scan starting in their next

turn in either the foreground cycle or the background cycle, as appropriate. Execution can be re-

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 651

started at the paused point (beginning of a while loop if the last scan finished at the end of the

loop, or at the beginning of the program if the last scan finished at the end of the program) in

continuous mode with a resume plc command, or in single-step mode with a step plc

command. Execution can be re-started at the beginning of the program (regardless of where the

last scan ended) with an enable plc command

If the pause plc command is issued from within the PLC program itself, the present scan will

finish, even if the command is not the final command for the scan.

This command leaves status bits Plc[i].Active at 1 and sets Plc[i].Running to 0 for the affected

PLC program(s).

On-Line step plc Command, Program step plc Command

The on-line or program (if executed from a different program) step plc command (e.g. step

plc 0, step plc 3,5,9) causes the listed script PLC program(s), if enabled, to execute a

single program line in their next turn in either the foreground cycle or the background cycle, as

appropriate. If there are multiple commands on this program line, all will be executed in a single

scan. The program step plc command, if executed from within the same program, causes the

PLC program to halt execution immediately at the end of the program line.

In either case, the program is ready to restart operation at the next line either with a resume

plc command (which starts continuous execution) or with a step plc command (which starts

single-step execution).

This command leaves status bits Plc[i].Active at 1 and sets Plc[i].Running to 0 for the affected

PLC program(s).

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 652

Implementing an RS-274 Style Motion Program

RS-274 is a widely accepted and widely used standard for path-control motion programs,

particularly for use in computer-numerically-controlled (CNC) cutting machines. Many

CAD/CAM (computer-aided-design/computer-aided-manufacturing) software packages produce

RS-274 code as output.

RS-274 is an old standard, dating back to times when the program parsers had to be very simple.

Its syntax is therefore also very simple, with all commands in letter/number format (e.g. X100

F50). It is also a very “loose” standard, with many different “dialects” of the language. In

addition, there are many different machine-specific implementation issues that must be dealt with

in any application.

Power PMAC supports implementation of RS-274 programs through a two-pronged strategy.

First, the native Power PMAC motion command syntax is compatible with the RS-274 standard.

In other words, Power PMAC can directly execute the move commands of an RS-274 program.

Second, Power PMAC interprets the other key commands in the RS-274 standard as subroutine

calls. This permits the machine integrator to write embedded subroutines that implement these

codes, using whatever “dialect” is desired, and covering all machine-specific issues.

G, M, T, and D-Codes

The standard “codes” in RS-274 are G-codes, M-codes, T-codes, and D-codes. Power PMAC

treats these as subroutine calls to dedicated subprograms.

A G-code (preparatory code) is a call to the subprogram of the number specified by

Coord[x].Gprog (default of subprog 1000) at the line jump label 1000 times the code

number (e.g. G17 jumps to N17000: of this subprogram).

An M-code (machine-output code) is a call to the subprogram of the number specified by

Coord[x].Mprog (default of subprog 1001) at the line jump label 1000 times the code

number (e.g. M08 jumps to N8000: of this subprogram).

A T-code (tool-select code) is a call to the subprogram of the number specified by

Coord[x].Tprog (default of subprog 1002) at the line jump label 1000 times the code

number (e.g. T5 jumps to N5000: of this subprogram).

A D-code (tool-data code) is a call to the subprogram of the number specified by

Coord[x].Dprog (default of subprog 1003) at the line jump label 1000 times the code

number (e.g. D25 jumps to N25000: of this subprogram).

Therefore, to implement the execution of RS-274 programs, the machine integrator must write

subprograms that execute the specific codes of these types in the manner desired. With these

subprograms resident in the Power PMAC, it can execute standard RS-274 “part programs”

directly. Part programmers and machine operators do not need to understand the underlying

mechanism for this execution.

In most implementations, these subprograms will be called only from motion programs running in

a single coordinate system, typically C.S.1. However, it is possible for motion programs running

in multiple coordinate systems to call the same subprograms. Due to the use of variables unique

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 653

to each coordinate system (local variables [L and D] or coordinate-system global [Q]), many

tasks can be done in the subprograms for multiple coordinate systems without conflict. However,

it may be easier in many cases to use separate subprograms for separate coordinate systems, even

if many of the code subroutines are identical between coordinate systems. This is particularly true

for M-codes, which will likely use different outputs the same tasks in different coordinate

systems.

Note that if the part program executes a code that causes a call to a non-existent subroutine in an

existing subprogram, it is treated as a “no-op”, and does not cause an error.

If the same subprogram can be called from motion programs running in multiple coordinate

systems, and it is necessary to know which coordinate system is calling it, this can be determined

from the value of local data structure element Ldata.coord. If it is necessary to access a data

structure element for the coordinate system that is executing the subroutine, a local variable

should be given the value of this element, and the local variable then used as the index for the

coordinate system. For example:

local ThisCs;

…

ThisCs = Ldata.coord;

Coord[ThisCs].NoBlend = 1;

S-Codes

S-codes in RS-274 programs are commonly used to set spindle speeds or equivalent (e.g. laser

intensity, waterjet pressure). Sometimes the S-value is used as an argument in an M-code. For

example M03 S1200 may mean “start spindle clockwise at 1200 rpm”. In this case, the S-value

is passed to the M03 subroutine with a read(S) command and the value is put in local variable

D19 for the coordinate system. The subroutine can then process this value further.

If the S-code is executed in a motion program when it is not an argument in a subroutine call, the

value of the constant or expression following it is assigned to local variable D53 for the

coordinate system, where it can be used by other routines as the user desires.

If Coord[x].Sprog is set to a value greater than 0 when this “independent” S-code is executed,

then after D53 is set to the value of the code, the subprogram specified by Coord[x].Sprog

(suggested 1004) is called. If the subprogram has a numerical jump label matching the code

number (1000 times the code number), subprogram execution will start at that label.

If the subprogram does not have a numerical jump label matching the code number, subprogram

execution will start from the top. In many applications, the execution logic of the subprogram will

be identical for all S-code values (with the S-code value in D53 simply specifying the speed), so

no numeric jump labels will be used.

This subprogram can be used when more complex control is required, such as stopping motion

until the specified speed is reached. The ability to call this subprogram is new in V2.4 firmware,

released 1st quarter 2018.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 654

H-Codes

An H-code (height-offset code) is a call to the subprogram of the number specified by

Coord[x].Hprog (commonly subprog 1005) at the line jump label 1000 times the code

number (e.g. H06 jumps to N6000: of this subprogram).

Standard G-Codes

This section explains implementation issues with the most common, and most standard of the

“preparatory” G-codes in RS-274 programs. These subroutines would be included in the

subprogram whose number is specified by Coord[x].Gprog, which is usually the default

subprog 1000. These examples are intended just as a starting point, as each application will

have unique features depending on the “dialect” used and machine-specific features.

Note

While many of the “modal” G-codes shown here will cause

specific settings of built-in coordinate-system status bits, many

users will want to set customized status values in user variables

in order to optimize the ease of monitoring the machine state

for operator display.

Top of Program – Non-Existent Codes

A robust implementation of a G-code subprogram should consider what action should be taken if

the motion program uses a G-code number that has not been specifically implemented in the

subprogram.

When there is a subprogram call to a non-existent label (but in an existing subprogram), such as

would occur with an unimplemented G-code, Power PMAC jumps to the top of the subprogram.

So whatever action is to be taken on an unimplemented code should be specified at the very

beginning of the G-code subprogram. Note that this should be before any jump label, including

the N0: label used for the G00 code implementation.

If an unimplemented G-code call is desired to be an error that stops execution of the motion

program, there should simply be a stop command at the top of the subprogram. This halts

execution of the program and returns the program counter to the beginning of the top level motion

program. The stop command does not need to be followed by a return command, but using

the return command may make it easier to understand that this is separate action from

subsequent codes.

If an unimplemented G-code call is desired just to be a “no-op”, there should simply be a

return command at the top of the subprogram.

Some users may want to “clear” the motion program line of possible arguments, as when the call

is for an unimplemented canned cycle. This can be done with a read command that checks the

command line for most possible letter arguments (but probably not G or M). For example:

read(A,B,C,D,E,H,I,J,K,L,P,Q,R,S,T,U,V,W,X,Y,Z);

return;

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 655

Of course, with a system variable and branching logic, it is possible to implement the user’s

choice of these options, giving the possibility of one option for development and debugging, and

another for operation.

G00 – Point-to-Point Positioning Mode

In Power PMAC, the G00 point-to-point positioning mode is usually implemented by declaring

the rapid move mode. The subroutine can be as simple as:

N0: rapid return;

Under the RS-274 standard, the parameters for G00 moves are not set in the program, but rather

by system constants. In Power PMAC, motor speed for a rapid-mode move is set by

Motor[x].MaxSpeed or Motor[x].JogSpeed, depending on the setting of

Motor[x].RapidSpeedSel. Whether all motors use these speeds, or those with shorter times for a

move are slowed to match the time of the longest motor, is determined by

Coord[x].RapidVelCtrl. Acceleration and deceleration are controlled by Motor[x].JogTa and

Motor[x].JogTs.

Some users will want to implement point-to-point positioning with a “fast” linear mode,

especially if the coordinate system is defined with kinematic subroutines. In this case, a rapid-

mode move may yield an unpredictable path in tool-tip coordinates, because the inverse

kinematics are only calculated for the end-point of a rapid-mode move, and no lookahead

dynamic limiting is possible. In addition, the use of linear mode permits the use of the same

“segmentation override” for feedrate override functions as for G01, G02, and G03 modes, and

provides the possibility of using separate acceleration and deceleration parameters.

There are multiple techniques for making Power PMAC’s linear move mode behave much like

the rapid move mode, but the simplest is to remove all axes from the vector-feedrate axis list with

the nofrax command, then use the value of Coord[x].AltFeedrate to control the speed of the

move(s). This technique is appropriate when there are only Cartesian positioning axes in the

system. The AltFeedrate parameter is used to calculate the move time whenever the time for a

“non-feedrate axis”, calculated as the axis distance divided by this value, is greater than the time

for the “vector feedrate” axes, calculated as the vector distance divided by the vector feedrate.

With no vector feedrate axes, this second time is zero, and the first of these move times will be

used, and it will be the longest time for any of the axes.

To implement point-to-point positioning mode with this technique, the G00 subroutine could be

implemented something like:

N0: linear;

dwell 0;

nofrax;

Coord[1].AltFeedrate = MyRapidSpeed;

Coord[1].NoBlend = 1;

return;

In this example, MyRapidSpeed is a user variable or constant in axis units (as set by the axis

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting

Coord[x].NoBlend to 1 ensures that no moves will be blended together.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 656

If there are rotary axes as well, it is better to specify a very high feedrate value, high enough that

at least one of the motors, linear or rotary, will always be limited by its Motor[x].MaxSpeed

parameter. In this case, the G00 subroutine could be implemented something like:

N0: linear;

if (MyMoveMode != 0) {

 dwell 0;

 MyLastCuttingFeedrate = -Coord[1].Tm;

}

MyMoveMode == 0;

F(MyRapidFeedrate);

Coord[1].NoBlend = 1;

return;

In this example, the present programmed feedrate is stored in a user variable so it can be restored

when returning to G01, G02, or G03 mode.

G01 – Linear Interpolation Mode

G01 linear interpolation mode is virtually always implemented using Power PMAC’s linear move

mode. If G00 mode is implemented using Power PMAC’s rapid move mode, the G01 subroutine

could simply be:

N1000: linear return;

If G00 mode is implemented as a “fast linear” mode with the speed controlled by

Coord[x].AltFeedRate, the G01 subroutine could be implemented as:

N1000: linear;

frax(X,Y,Z);

Coord[1].AltFeedrate = MyRotarySpeed;

Coord[1].NoBlend = 0;

return;

In this example, Coord[x].AltFeedRate would control the speed of any moves only involving

non-feedrate axes – usually rotary axes – and only needs to be set if there are non-feedrate axes in

the system. MyRotarySpeed is a user variable or constant in axis units (as set by the axis

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting

Coord[x].NoBlend to 0 enables blending between subsequent linear and circle mode moves.

If G00 mode is implemented as a “fast linear” mode with the speed controlled by a motor’s

Motor[x].MaxSpeed, the G01 subroutine could be implemented as:

N1000: linear;

if (MyMoveMode == 0) {

 dwell 0;

 F(MyLastCuttingFeedrate);

}

MyMoveMode == 1;

Coord[1].NoBlend = 0;

return;

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 657

G02 – Clockwise Circular Interpolation Mode

G02 clockwise circular interpolation mode is virtually always implemented using Power PMAC’s

circle1 move mode. If G00 mode is implemented using Power PMAC’s rapid move mode, the

G02 subroutine could simply be:

N2000: circle1 return;

If G00 mode is implemented as a “fast linear” mode with the speed controlled by

Coord[x].AltFeedRate, the G02 subroutine could be implemented as:

N2000: circle1;

frax(X,Y,Z);

Coord[1].AltFeedrate = MyRotarySpeed;

Coord[1].NoBlend = 0;

return;

In this example, Coord[x].AltFeedRate would control the speed of any moves only involving

non-feedrate axes – usually rotary axes – and only needs to be set if there are non-feedrate axes in

the system. MyRotarySpeed is a user variable or constant in axis units (as set by the axis

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting

Coord[x].NoBlend to 0 enables blending between subsequent linear and circle mode moves.

If G00 mode is implemented as a “fast linear” mode with the speed controlled by a motor’s

Motor[x].MaxSpeed, the G02 subroutine could be implemented as:

N2000: circle1;

if (MyMoveMode == 0) {

 dwell 0;

 F(MyLastCuttingFeedrate);

}

MyMoveMode == 2;

Coord[1].NoBlend = 0;

return;

G03 – Counterclockwise Circular Interpolation Mode

G03 counterclockwise interpolation mode is virtually always implemented using Power PMAC’s

circle2 move mode. If G00 mode is implemented using Power PMAC’s rapid move mode, the

G03 subroutine could simply be:

N3000: circle2 return;

If G00 mode is implemented as a “fast linear” mode with the speed controlled by

Coord[x].AltFeedRate, the G03 subroutine could be implemented as:

N3000: circle2;

frax(X,Y,Z);

Coord[1].AltFeedrate = MyRotarySpeed;

Coord[1].NoBlend = 0;

return;

In this example, Coord[x].AltFeedRate would control the speed of any moves only involving

non-feedrate axes – usually rotary axes – and only needs to be set if there are non-feedrate axes in

the system. MyRotarySpeed is a user variable or constant in axis units (as set by the axis

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 658

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting

Coord[x].NoBlend to 0 enables blending between subsequent linear and circle mode moves.

If G00 mode is implemented as a “fast linear” mode with the speed controlled by a motor’s

Motor[x].MaxSpeed, the G03 subroutine could be implemented as:

N3000: circle2;

if (MyMoveMode == 0) {

 dwell 0;

 F(MyLastCuttingFeedrate);

}

MyMoveMode == 3;

Coord[1].NoBlend = 0;

return;

G04 – Dwell Command

The G04 code implements a “dwell” of a specified time. In different “dialects” of RS-274, the

time is specified in different ways, but always with a letter/number combination immediately

following the G04 code. Common letters used are X, P, L, and D, and the number values can

represent the dwell time in seconds or milliseconds. The subroutine will use the read command

to obtain the value associated with the chosen letter.

Most Power PMAC implementations will choose a single letter and a specific time unit for the

dwell. For example, to use the letter P with a number specifying the time in seconds, the

subroutine could be:

N4000: read(P);

dwell(D16 * 1000);

return;

The read(P) command places the value after the letter P in the main program into local

variable D16 (as P is the 16th letter of the alphabet). Since Power PMAC’s dwell time is always

specified in milliseconds, the specified time in seconds is multiplied by 1000.

A more robust implementation may want to ensure that a dwell time value has actually been

specified in the command line. In the above subroutine, if no P-value were specified after the G04

in the part program, the subroutine would execute a dwell using whatever value happened to be in

the D16 variable at the time. Bit n-1 of local variable D0 is set to 1 if and only if a value

associated with the nth letter of the alphabet has been successfully read in the most recent read

command. For the letter P, this is bit 15, with a value of 215, or 32,768. A subroutine using this

feature would be like the following:

N4000: read(P);

if (D0 & 32768) dwell(D16 * 1000);

else dwell 0;

return;

Of course, the action to take, if any, if no value is present to be read, is up to the integrator.

Power PMAC’s dwell command always executes at 100%; it does not use the feedrate override

value (whether time base or segmentation override) in force at the time. It also stops any pre-

calculation for blending and lookahead purposes. On the other hand, Power PMAC’s delay

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 659

command executes at the override value in effect at the time, and does not disable pre-calculation.

Depending on what features the integrator wants, dwell, delay, or both commands could be

used. For example, to implement a G04 that uses the override value in effect, but disables pre-

calculation, the following subroutine could be used:

N4000: read(P);

if (D0 & 32768) {

 dwell 0;

 delay(D16 * 1000);

 dwell 0;

}

else dwell 0;

return;

G09 – Exact Stop

The G09 code is typically a “single-shot” (non-modal) exact stop intended to disable blending

between consecutive modes that normally would be blended together. It can be implemented by

setting non-saved setup element Coord[x].OnceNoBlend to 1, so blending is automatically

disabled after the next move:

N9000: Coord[1].OnceNoBlend = 1 return;

The value of Coord[x].OnceNoBlend is automatically decremented each time it is used to inhibit

a blend. So after the next move is executed, and the blending to the following move is inhibited,

OnceNoBlend will automatically be set to 0, and subsequent blending will not be inhibited. (This

functionality is distinct from the “exact stop mode” of G61 enabled by setting the modal

Coord[x].NoBlend to 1.)

In exact-stop mode, if Coord[x].InPosTimeOut is set to its default value of 0, the commanded

trajectory is brought to a momentary stop at the programmed point, but the actual positions may

not have reached the point before the next commanded move is begun. If it is set to a value

greater than 0, all motors in the coordinate system must become “in position” before the next

commanded move is begun. However, if this does not occur within the specified number of real-

time-interrupt periods from the end of the commanded move, the program will stop with a time-

out error.

The operation described above is for the standard functionality of single-shot exact stop, where

the blending is disabled after the next move commanded in the part program. So if the part

program had the command line G09 X10 Y20, the blending would be disabled at the point

(10,20). If you wish the G09 code to inhibit blending before the next move, the subroutine should

be:

N9000: dwell 0 return;

G17, G18, G19 – Circle, Cutter Comp Plane Select

The G17, G18, and G19 codes are used to specify the plane in X/Y/Z Cartesian space for circular

interpolation and 2D cutter radius compensation. G17 specifies the XY plane, G18 specifies the

ZX plane, and G19 specifies the YZ plane. In Power PMAC, this plane specification is performed

using the normal command, which specifies the vector normal to the desired plane. The standard

implementation of these codes would be:

N17000: normal K-1 return;

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 660

N18000: normal J-1 return;

N19000: normal I-1 return;

G40, G41, G42 – 2D Cutter Radius Compensation Control

The G40, G41, and G42 codes are used to control the 2D cutter radius compensation

functionality. G40 turns off the compensation, removing it gradually over the next linear-mode

move. G41 turns on compensation to the left, introducing it gradually over the next linear-mode

move. G42 turns on compensation to the right, introducing it gradually over the next linear-mode

move. This functionality is accomplished in Power PMAC with the ccmode0, ccmode1, and

ccmode2 commands, respectively. This means that the standard implementation of these codes

would be:

N40000: ccmode0 return;

N41000: ccmode1 return;

N42000: ccmode2 return;

Typically, specification of the cutter radius using the ccr{data} command is not performed

within these G-code routines. More commonly, it is specified in a T-code or D-code routine.

G61, G64 – Exact Stop, Continuous Cutting Mode Control

The G61 and G64 codes specify modal control of how cutting moves (linear and circle mode) are

combined. G61 specifies “exact stop” mode, in which the moves are not blended together, so the

trajectory comes to a full stop between each move. G64 specifies continuous cutting mode, in

which the moves are blended together without stopping. In Power PMAC, this control is

implemented through the setting of Boolean element Coord[x].NoBlend, so the standard

implementation of these codes would be:

N61000: Coord[1].NoBlend = 1 return;

N64000: Coord[1].NoBlend = 0 return;

Coord[x].NoBlend is a saved setup element, so the power-on/reset default state can be chosen by

the integrator. The factory default value for this element is 0, so blending is enabled by default.

In exact-stop mode, if Coord[x].InPosTimeOut is set to its default value of 0, the commanded

trajectory is brought to a momentary stop at each programmed point, but the actual positions may

not have reached the point before the next commanded move is begun. If it is set to a value

greater than 0, all motors in the coordinate system must become “in position” before the next

commanded move is begun. However, if this does not occur within the specified number of real-

time-interrupt periods from the end of the commanded move, the program will stop with a time-

out error.

The modal exact stop operation of G61 is distinct from the single-shot exact stop of G09.

G90, G91 – Absolute, Incremental Move Mode Control

The G90 and G91 codes specify absolute and incremental axis modes, respectively. In absolute

mode, the axis values in move commands represent positions (i.e. referenced to the axis

programming origin). In incremental mode, the axis values in move commands represent

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 661

distances (i.e. referenced to the axis starting position for the move). These modes are

implemented in Power PMAC with the abs and inc commands, respectively. This means that

the standard implementation of these codes would be:

N90000: abs return;

N91000: inc return;

G93, G94 – Inverse-Time, Feedrate Move Mode Control

The G93 and G94 codes specify how the values provided in the programmed F-codes are used. In

the G94 “feedrate” mode, the F-code value specifies the vector speed of the Cartesian axes,

typically in millimeters per minute or inches per minute. This is the default power-up mode for

Power PMAC.

In the G93 “inverse-time” mode, the F-code value specifies the reciprocal of the time for the

move, typically with the time in minutes being one divided by the F-code value. This mode is

commonly used when linear and rotary axes are commanded together in the same move block. It

is enabled by setting non-saved setup element Coord[x].InvTimeMode to a non-zero value.

Standard implementation of these codes would be:

N93000: Coord[1].InvTimeMode = 1 return;

N94000: Coord[1].InvTimeMode = 0 return;

Settings for Coord[x].InvTimeMode of 2 or 3 compute the time for circle-mode moves

differently from the setting of 1 used above. Refer to the description of inverse-time mode in the

User’s Manual chapter Power PMAC Move Mode Trajectories or the Software Reference

description of the parameter for details.

Both feedrate and inverse-time mode use the value of saved setup element Coord[x].FeedTime

in their calculations. This parameter itself has units of milliseconds. In virtually all RS-274

applications, Coord[x].FeedTime should be set to 60,000 so feedrates are specified in

millimeters or inches per minute, and times are specified as minutes divided by the F-code value.

Note that the factor default value of Coord[x].FeedTime is 1,000, specifying seconds, not

minutes.

G95 – Length per Revolution Mode Control

The G95 code, commonly used in lathe-style applications for operations like thread cutting,

permits the feedrate to be specified in units of length per revolution of the spindle (millimeters

per rev or inches per rev).

With Power PMAC’s “external time base” feature, the spindle does not need to be under precise

control of the Power PMAC; instead, its encoder can be used as the time base “master” for the

coordinate system with the linear axes. Refer to the chapter Synchronizing Power PMAC to

External Events for details.

The key actions for this code are to define a “real time” speed for the spindle master (in

revolutions per minute), then calculate the “real time input frequency” from the encoder (in

counts per millisecond) that would be produced at this speed. An encoder conversion table entry

whose scaling EncTable[i].ScaleFactor value uses the RTIF processes the spindle encoder input.

Power PMAC User’s Manual

Writing and Executing Script Programs in the Power PMAC 662

A typical implementation of the G95 code would look like the following:

N95000: // G95: length per rev mode

dwell 0; // Stop pre-computation and motion

Coord[1].InvTimeMode = 0; // Not compatible with inverse time

Coord[1].TimeBaseSlew = 1.0; // High value to track master

Coord[1].FeedTime = 60000 / SpindleRtRpm; // Time for rev in real time

Coord[1].pDesTimeBase = EncTable[i].DeltaPos.a; // Use encoder freq

return;

When using this code, it is necessary to restore settings properly for the G93 and G94 modes.

Typical implementations of those codes would look like the following:

N93000: // G93: inverse time mode

dwell 0; // Stop pre-computation and motion

Coord[1].InvTimeMode = 0; // Enable inverse time calcs

Coord[1].TimeBaseSlew = 0.001; // Low value for gradual change

Coord[1].FeedTime = 60000; // F values are minute/F-command

Coord[1].pDesTimeBase = Coord[1].DesTimeBase.a; // Use cmd % value

return;

N94000: // G94: length per minute mode

dwell 0; // Stop pre-computation and motion

Coord[1].InvTimeMode = 0; // Not inverse time

Coord[1].TimeBaseSlew = 0.001; // Low value for gradual change

Coord[1].FeedTime = 60000; // F values are per minute

Coord[1].pDesTimeBase = Coord[1].DesTimeBase.a; // Use cmd % value

return;

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 663

POWER PMAC MOVE MODE TRAJECTORIES

Power PMAC supports five fundamental move modes, each with its own particular strengths.

These move modes are:

 Rapid mode: trapezoidal/triangular profiles, minimum-time point-to-point moves

 Linear mode: trapezoidal/triangular profiles, straight-line paths in Cartesian space

 Circle mode: sinusoidal velocity profiles, arc paths in Cartesian space

 Spline mode: parabolic velocity profiles, cubic B-spline paths

 PVT mode: parabolic velocity profiles, Hermite-spline paths

Each move mode can be declared in a motion program, and all following move commands in the

program are executed using the rules of that mode, until a different mode is declared. PLC

programs can only command rapid-mode moves; if a PLC program commands a move, the

addressed coordinate system is automatically placed in rapid mode.

Modal Move-Rule Commands

The program commands that tell Power PMAC how to interpret the actual move commands are

all modal in nature. That is, the command affects all subsequent moves in the program until

another modal command of the same type is executed, superseding it. For example, the

commands that specify one of the five move modes – rapid, linear, circle, spline, pvt

– control all subsequent moves until another mode is commanded. The same is true for

commands setting move times or speeds, and those specifying absolute versus incremental mode.

Move Commands

The move commands themselves consist of a set of one-letter (e.g. X) or two-letter (e.g. YY) axis-

specifiers, each followed by one or two values – a constant without parentheses (e.g. X-20) or a

mathematical expression in parentheses (e.g. YY(Target+50)). The first value specified after

the axis name is always the end destination position if the axis is in abs (absolute) mode, or the

distance from the start point to the end point if the axis is in inc (incremental) mode. The

meaning of the second value, if there is one, depends on the move mode.

All separate axis moves specified on the same command line (e.g. X10.34 Y20) will execute

simultaneously in a coordinated fashion, starting at the same time, and in all modes except

possibly rapid mode, ending at the same time. Axis moves specified on separate lines will execute

sequentially, with or without stops in between, depending on the mode(s) in effect at the time.

Note that if any given axis specifier is found for a second time in one program line, Power PMAC

interprets this point as the beginning of a new command line. This permits multiple moves to be

condensed onto a single command line (e.g. X5 Y10 X7 Y13), possibly improving the

efficiency of the download process.

If an axis in the coordinate system is not explicitly commanded in the move command, it is

implicitly commanded to have the same endpoint as start point for the move. Often this means

that the axis is commanded to hold still during the move.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 664

Rapid Move Mode

Rapid-mode moves provide for minimum-time point-to-point moves, subject to predefined motor

constraints. These moves are essentially jog moves for each motor assigned to an axis specified in

the move. Successive rapid-mode moves are not blended together on the fly, as in other move

modes, but it is possible to break into a rapid-mode move at the presently executing point and

alter the move. Power PMAC’s rapid move mode is equivalent to the G00 mode in RS-274

machine-tool code.

Rapid-mode moves can be commanded either from motion programs or PLC programs. They are

the only type of move that can be commanded from PLC programs. If a move command is issued

from a PLC program, the coordinate system addressed by the PLC program is automatically put

into rapid mode (even if another move mode has just been declared in the program).

Rapid Mode Declaration

To put a coordinate system (and all the axes in the coordinate system) into the rapid move mode,

the rapid command is used. All subsequent move commands will be interpreted using the rules

of the rapid move mode until another move mode is declared.

Position or Distance Specification

The destination point of a rapid-mode move is specified in the move command itself (e.g.

X10Y20). The commanded destination for each axis can be specified as a position relative to the

programming origin (if the axis is in abs absolute mode) or with a distance from the last

commanded position (if the axis is in inc incremental mode). The command specifies one of

these; Power PMAC automatically calculates the other.

Velocity Specification

The top speed of a rapid-mode move is set either by the value of Motor[x].MaxSpeed or

Motor[x].JogSpeed. If Motor[x].RapidSpeedSel is set to the default value of 1,

Motor[x].MaxSpeed is used; if it is set to 0, Motor[x].JogSpeed is used instead. Note that a

move may not be long enough in distance to reach this top speed, given the acceleration

parameters.

If multiple axes are specified in the same move command, Power PMAC computes the move time

for each motor as the distance divided by the top speed. If Coord[x].RapidVelCtrl is set to its

default value of 0, all motors will use these move times (and therefore their commanded speeds),

and the motors with shorter times will finish first. However, if Coord[x].RapidVelCtrl is set to

1, the lesser move times are extended to equal the longest move time. In a Cartesian system, this

will yield a straight-line or nearly straight-line path, depending on the acceleration specifications

(see below).

No further checking of command velocity against any velocity limits is performed for rapid-mode

moves in any mode.

Acceleration Specification

The acceleration profile for rapid-mode moves is specified on a motor-by-motor basis using the

saved setup elements Motor[x].JogTa and Motor[x].JogTs (the same parameters that govern

acceleration for jogging and homing-search moves.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 665

Specification by Time

If Motor[x].JogTa is greater than zero, it specifies the basic acceleration time in milliseconds.

This time is used regardless of the change in speed, so the rate of acceleration will be different for

different changes in speed.

If Motor[x].JogTs is greater than zero, it specifies the “S-curve” time (the time in each half of

the “S” of the profile) in milliseconds. During the “S-curve” portion of the profile, the

acceleration is increasing or decreasing at a constant rate (so these sections of the profile have a

constant “jerk”). This time is used regardless of the value of the peak acceleration, so the rate of

jerk will be different for different peak accelerations. If it is set to 0, there are no S-curve sections

in the acceleration profiles.

If Motor[x].JogTa is greater than Motor[x].JogTs, the total acceleration time is the sum of the

two element values. (Note that this is different from the PMAC and Turbo PMAC.) If

Motor[x].JogTa is less than Motor[x].JogTs, the total acceleration time is 2 * JogTs, and

JogTa is not used. The profiles for both cases are shown in the figure below.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 666

JogTs JogTs

JogTa

ΔV/JogTa

JogSpeed

Vel Acc

JogTs JogTs

JogTs

V0

“Top speed”

ΔV/JogTs

AccVel

V0

Rapid Move Acceleration Profiles, Time Specification

Specification of acceleration parameters by time is better for creating true straight-line paths for

multi-axis moves in Cartesian space. If the times are the same for all motors, and

Coord[x].RapidVelCtrl is set to 1, a straight-line path will result.

Specification by Rate

If Motor[x].JogTa is less than zero, it specifies the inverse of the peak acceleration magnitude, in

msec2 / motor unit. This rate is used regardless of the change in speed, so the acceleration time

will be different for different changes in speed.

If Motor[x].JogTs is less than zero, it specifies the inverse of the jerk magnitude during each half

of the “S-curve” portion of the acceleration profile, in msec3 / motor unit. This rate is used

regardless of the value of the peak acceleration, so the S-curve time will be different for different

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 667

peak accelerations. If Motor[x].JogTs is less than zero, Motor[x].JogTa must also be less than

zero.

The following figure shows the acceleration profiles for these rate specifications of acceleration

and jerk, both for the case where the specified maximum acceleration is reached, and where this

acceleration is not reached before it must start returning to 0.

JogTs

JogTa

JogTs

JogTa

ΔV*JogTa

-1

JogTa

JogSpeed

Vel Acc

√-ΔV*JogTs √-ΔV*JogTs

√-ΔV*JogTs

V0

“Top speed”

√-ΔV/JogTs

AccVel

-1

JogTa

V0

Rapid Move Acceleration Profiles, Rate Specification

Specification of acceleration parameters by rate is better for creating minimum-time moves for

short distances. It is also better if you wish to issue new rapid move commands while the moves

from previous commands are still executing, as the transition is seamless, even during

accelerations.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 668

Sample Move Profile

The following plot shows the velocity and acceleration profiles for a rapid mode move of 200,000

motor units distance, with MaxSpeed = 50 (50 motor units per msec), JogTa = -10 (peak

acceleration of 0.1 motor units per msec2), and JogTs = -2000 (0.0005 motor units per msec3, for

200 msec to reach the peak acceleration).

Standard Rapid-Mode Move Profile

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 669

Multi-Axis Path Options

The following drawing shows the possibilities for multi-axis path control with rapid-mode moves.

Path A shows the course of the move with Coord[x].RapidVelCtrl at the default value of 0, so

the short-distance motor finishes first (with the same top speed values). Path B shows the course

of the move with Coord[x].RapidVelCtrl set to 1, but the accelerations specified by rate instead

of time (with the same rates). Path C shows the course of the move with Coord[x].RapidVelCtrl

set to 1, and the accelerations specified by time instead of rate (with the same times).

A B C

rapid inc x30 y10

A: RapidVelCtrl = 0, top speeds match

B: RapidVelCtrl = 1, accel rates match

C: RapidVelCtrl = 1, accel times match

Y

X

Rapid Move Multi-Axis Path Options

Rapid-Mode Move-Until-Trigger

The “move-until-trigger” function permits a programmed rapid-mode move to be interrupted by a

trigger and terminated by a move relative to the position at the time of the trigger. It is very

similar to a homing-search move, except that the motor zero position is not altered, and there is a

specific destination in the absence of a trigger. Note that the trigger occurs on a motor that has

been assigned to the programmed axis. For this reason, triggered moves are not permitted on axes

defined through kinematic routines.

Speeds and accelerations for both the pre-trigger and post-trigger portions of the move (and the

transition between them) are governed by the same variables as for regular rapid-mode moves.

The “move-until-trigger” function for an axis, and therefore for any motor(s) defined to that axis,

is specified by adding a ^{data} specifier to the move command for the axis, where {data} is

the signed distance from the trigger position to the end of the post-trigger portion of the move.

This makes the axis command for a move-until-trigger {axis}{data}^{data}, something

like X50^-5. The first value is the destination position or distance (depending on whether the

axis is in absolute or incremental mode, respectively) to be traveled in the absence of a trigger.

The second value is the signed distance of the end of the post-trigger move (should one occur)

relative to the position captured at the trigger. This value is always expressed as a relative

distance, regardless of whether the axis is in absolute or incremental mode. Both values are

expressed in the axis user units.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 670

Motor Action

The move-until-trigger function is technically a motor function, not an axis function. The axis

command simply provides an easy way of commanding the motor(s). With the usual one-to-one

relationship between axes and motors, this relationship is quite transparent to the user. However,

in other cases, there are issues that must be considered. If there are multiple motors defined to the

axis, as in some gantry configurations, each motor performs its own move-until-trigger with

independent trigger conditions. These triggers may not occur at the same time. If multiple axes

are commanded to do moves-until-trigger on the same program line, the associated motors will all

start together, but will find their triggers and execute their post-trigger moves independently.

Note

The move-until-trigger function is not supported for motors

and axes related through kinematic subroutines. In this case, an

axis move-until-trigger command will be executed as a normal

rapid-mode move, ignoring the triggering part. It is possible to

command motor jog-until-trigger moves from the motion

program in this configuration.

Trigger and Capture Conditions

The trigger and capture conditions for the motor in a rapid-mode move-until-trigger are specified

in the same way as for homing-search moves and jog-until-trigger moves. The variable settings to

specify these are described in detail in the section on triggered motor moves in the chapter

Executing Individual Motor Moves. A brief list of the relevant variables is given here:

 Motor[x].CaptureMode: Input or error trigger, hardware or software capture

 Motor[x].EncType: Quick set of variables for trigger and capture for class

 Motor[x].pCaptFlag: Address of input trigger register

 Motor[x].CaptFlagBit: Number of input trigger bit in specified register

 Gaten[i].Chan[j].CaptCtrl: Use and edge of index and/or flag from channel

 Gaten[i].Chan[j].CaptFlagSel: Selection of flag from channel to use

 Motor[x].WarnFeLimit: Magnitude of error for error trigger

 Motor[x].CaptPosShiftRight: # of bits to shift data right to eliminate unwanted bits

 Motor[x].CaptPosShiftLeft: # of bits to shift data back left to match servo resolution

 Motor[x].CaptPosRound: Flag to offset data half-count to match interpolated offset

Example

The following plot shows the velocity and acceleration profiles for a rapid mode triggered move

of -50,000 motor units distance from the trigger position, with MaxSpeed = 50 (50 motor units

per msec), JogTa = -10 (peak acceleration of 0.1 motor units per msec2), and JogTs = -2000

(0.0005 motor units per msec3, for 200 msec to reach the peak acceleration). Note that the rate of

acceleration is the same in each of the three acceleration sections, even though the changes in

speed are different.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 671

Triggered Rapid-Move Profile

Breaking into a Rapid-Mode Move

Uniquely among the Power PMAC programmed move modes, it is possible to break into an

executing rapid-mode move at any time and command a new rapid-mode move, with all, some, or

none of the move parameters changing. (The move-until-trigger function is just one example of

this capability.) Fundamentally, since rapid-mode moves are executed like jog moves, they share

this capability with motor jog moves.

The new move command must be issued from a PLC program (or using the on-line cx command,

which creates a one-line one-shot PLC program), because when a motion program commands a

rapid-mode move, it does no further calculations until the move execution is finished. New move

commands can be issued at up to the servo update rate; it is not necessary to wait for the previous

acceleration to finish, as in older PMACs.

Executing Rapid-Style Moves with Linear Mode

Some users, when desiring to command minimum-time point-to-point moves, still desire other

move attributes that are provided with Power PMAC’s linear move mode. These attributes

include the ability to traverse a straight-line “tool-tip” path with a non-Cartesian mechanism, the

ability to limit motor velocity and accelerations while maintaining a straight-line path, and to use

separate acceleration and deceleration times.

For details on implementing this functionality, refer to the section Using Linear Mode for

“Rapid” Moves under Linear Move Mode, below.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 672

Linear Move Mode

The linear move mode is the most commonly used move mode in Power PMAC. It is the default

mode for each coordinate system on power-up/reset. In this type of move, each axis moves

toward the target position at a designated speed, accelerating to, and decelerating from this speed

in a controlled fashion. If more than one move is specified in succession with no pause in

between, the first move can blend into the second with the same type of controlled acceleration as

is done to and from a stop. Power PMAC’s linear move mode is equivalent to the G01 mode in

RS-274 machine-tool code.

Optional Segmentation Mode

Linear-mode moves can be executed either without segmentation mode

(Coord[x].SegMoveTime set to the default value of 0) or with segmentation mode

(Coord[x].SegMoveTime > 0, specifying the time of the coarse-interpolation segments). Without

segmentation mode, the equations of motion generated from the move description are solved

directly at the servo update rate, for a “single-stage” interpolation. With segmentation mode, the

equations of motion from the move commands are solved at the coarser segment intervals, and a

second-stage “fine interpolation” is calculated at the servo update rate using a cubic B-spline

interpolation between the calculated segment points.

Segmentation mode requires more calculations, but it is required if the user wants to utilize any of

the following features:

 Circular interpolation

 Tool-radius compensation

 Special linear contouring mode

 Segmentation feedrate override

 Inverse-kinematic subroutines

 Special lookahead buffer for dynamic limiting

Note that in segmentation mode, acceleration-limit and jerk-limit checks using

Motor[x].InvAmax, Motor[x].InvDmax, and Motor[x].InvJmax are not performed at move

calculation time, as they are when not in segmentation mode. Acceleration-limit calculations are

performed at segmentation time if the special lookahead buffer is operating.

Linear Mode Declaration

To put a coordinate system (and all the axes in the coordinate system) into the linear move mode,

the linear command is used. All subsequent move commands will be interpreted using the

rules of the linear move mode until another move mode is declared.

Position or Distance Specification

The destination point of a linear-mode move is specified in the move command itself (e.g. X10

Y20). The commanded destination for each axis can be specified as a position relative to the

programming origin (if the axis is in abs absolute mode) or with a distance from the last

commanded position (if the axis is in inc incremental mode). The command specifies one of

these; Power PMAC automatically calculates the other.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 673

Feedrate or Move-Time Specification

The user can either specify the target velocity (“feedrate”) for the move, with an F{data}

command, or the move time with the tm{data} command. If F is specified, the move time is

calculated, and if tm is specified, the feedrate is calculated. The relationship between the two

values is reciprocal for a given move distance. Move-time and feedrate values are modal; they

affect all subsequent linear (and circle) mode moves until another F or tm value is specified in

the program.

The units of the tm time are milliseconds; the units of the F velocity are the user length (or angle)

units of the vector feedrate axes (see below) divided by the time units as defined by the saved

setup element Coord[x].FeedTime, in milliseconds. If Coord[x].FeedTime is at the default

value of 1000, the F units are length units per second; if Coord[x].FeedTime is set to 60,000, the

F units are length units per minute.

Both the F command and tm command set the value of the data-structure element Coord[x].Tm.

The tm command sets the element to a positive value representing the move time; the F

command sets the element to a negative value, whose magnitude represents the vector federate. It

is possible to bypass the F and tm commands and write to Coord[x].Tm directly. If no F or tm

command is specified after power-up/reset, the saved value of Coord[x].Tm is used for the

moves.

Any feedrate value specified in a program is compared to the value of the saved setup element

Coord[x].MaxFeedrate; if it is greater than this parameter, Coord[x].MaxFeedrate is used

instead.

!
Caution

Feedrate is a magnitude and should therefore always be

specified as a positive number. A negative feedrate-value

specification will cause the coordinate system to be put in

move-time mode, with the time in milliseconds set as the

magnitude of the specified value. (For example, an F-50

command sets a move time of 50 milliseconds for subsequent

moves.) This could lead to unintended and potentially

dangerous consequences.

Feedrate-Only Mode

In certain applications, particularly NC-style applications, the user may desire that only feedrate

specifications should be valid. For these applications, Coord[x].FProtect can be set to 1 so that a

valid (positive) feedrate command must be specified in a motion program before a linear or circle

mode move can be executed, and moves specified by tm are not permitted. Moves specified by

an F command in “inverse time mode” are still permitted in this case.

Vector Feedrate Axes

If a multi-axis move is specified by feedrate (and not time), the user has the further flexibility of

specifying which axes control the vector feedrate, using the buffered program frax command,

and velocity is apportioned among these axes so that their vector combination (root of sum of

squares) is the specified velocity. Power PMAC calculates the move time as the vector distance of

the feedrate axes divided by the programmed feedrate. This frees the user from having to compute

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 674

each axis’ velocity individually for each different angle of movement. If a simultaneous move is

requested of a non-feedrate axis, that move is completed in the same time as that computed for

the feedrate axes. The default feedrate axes for a coordinate system are the X, Y, and Z-axes.

If there are other axes (“non-feedrate axes”) commanded on the same line, Power PMAC

compares the move time computed for the vector feedrate axes to the move time derived by

taking the greatest distance of a non-feedrate axis divided by the value of the saved setup

element Coord[x].AltFeedRate. Whichever of these move times is the longest is used for all

axes.

Example Vector Feedrate Calculations

(Coord[x].AltFeedrate=40)

inc Vect Dist = SQRT(32 + 42) = 5
frax(X,Y) Move Time = 5/10 = 0.5

X3 Y4 F10 Vx = 3/0.5 = 6

 Vy = 4/0.5 = 8

inc Vect Dist = SQRT(32 + 42) = 5
frax(X,Y) Vect Move Time = 5/10 = 0.5

X3 Y4 Z12 F10 Non-Vect Dist = 12

 Non-Vect Move Time = 12/40 = 0.3

 Vx = 3/0.5 = 6

 Vy = 4/0.5 = 8

 Vz = 12/0.5 = 24

inc Vect Dist = SQRT(32+42+122)=13
frax(X,Y,Z) Move Time = 13/10 = 1.3

X3 Y4 Z12 F10 Vx = 3/1.3 = 2.31

 Vy = 4/1.3 = 3.08

 Vz = 12/1.3 = 9.23

inc Vect Dist = 0, Non-Vect Dist = 10

frax(X,Y,Z) Move Time = 10/40 = 0.25

C10 F10 Vc = 40

Transformation Matrix Rescaling of Feedrate

If the position magnitude of the vector feedrate axes is rescaled with a transformation matrix and

nothing else is done, the magnitude of the vector feedrate itself is also rescaled proportionally.

For example, if the position scaling is tripled in magnitude (a factor of 3.0), the vector feedrate

will also be tripled, so a programmed feedrate of 20 mm/sec would execute as 60 mm/sec.

However, it is possible to compensate for this effect. If saved setup element

Coord[x].AutoTxyzScale is set to 1, then status element Coord[x].TxyzScale is automatically

set to the “magnitude” of the selected XYZ transformation matrix (technically, to the cube root of

the determinant of the XYZ minor matrix of the transformation matrix) when a program

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 675

tsel{data} command is executed, selecting the matrix. For this method to be useful, the

matrix scaling of the X, Y, and Z axes must always be the same.

The value of Coord[x].TxyzScale can also be set “manually” with the program command

txyzscale{data}, where {data} specifies the value to be placed in the status element.

With either method of setting the value of this element, the feedrate as modified by the scaling of

the transformation matrix is divided by the value of this element (which should contain the matrix

scaling factor). Typically this is used to keep the feedrate at the programmed value regardless of

the scaling of the matrix.

Secondary Vector Feedrate Axes

A second set of vector feedrate axes can be defined with the buffered program frax2 command.

This capability is typically used when there are dual mechanisms performing path moves in the

same coordinate system.

At power-on/reset, there are no axes in this secondary feedrate axis set. When used, the secondary

set usually comes from the XX/YY/ZZ Cartesian axis set, or the U/V/W Cartesian axis set. To

include all three of the former set, the frax2(XX,YY,ZZ) command would be used.

When a secondary feedrate axis set exists and a feedrate-specified move is commanded, Power

PMAC compares the time for the primary feedrate axis set (its vector distance divided by the

feedrate) to the time for the secondary feedrate axis set (its vector distance divided by the same

feedrate), and uses the longer of these two times. Note that these calculations only make sense if

all primary and secondary feedrate axes have the same units.

The secondary feedrate axis set capability is new in V2.1 firmware (released 1st quarter 2016).

Non-Vector-Feedrate Axes

As mentioned above, in many systems, there are a combination of vector feedrate axes and non-

vector-feedrate axes in the same coordinate system. Most commonly, the vector feedrate axes are

linear axes in a Cartesian configuration, and the non-vector-feedrate axes are rotary axes.

In such a system, the time for the vector feedrate axes, calculated as explained above, is

compared to the time for the non-vector-feedrate axes, with the longer of the times being used.

When there are multiple non-vector-feedrate axes, there are two ways of computing the time for

these axes. With Coord[x].AltFeedMode at its default value of 0, the magnitude of the distance

for each of these axes is individually divided by Coord[x].AltFeedRate, and the longest of these

times is used to compare to the time for the vector feedrate axes. This method is typically

appropriate when the non-vector-feedrate axes are rotary, ensuring that no rotary axis will exceed

AltFeedRate.

If Coord[x].AltFeedMode is set to 1, the non-vector-feedrate axes are treated as a separate

vector set, with their combined distance (root of sum of squares) divided by

Coord[x].AltFeedRate used as the time for these axes, to be compare to the time for vector

feedrate axes (if any). This method is typically used to ignore the programmed feedrate value for

a Cartesian axis set, as to perform a fast “dry run” mode. With the set of vector feedrate axes

emptied using the nofrax command, the speed of moves will be governed by the value of

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 676

Coord[x].AltFeedRate instead of the programmed F value. No change to the motion program is

required.

Inverse Time Mode

The moves can also be specified in “inverse time” mode, a mode of operation common in

CNC machines that are coordinating linear and rotary axes, where it is often specified with

the G93 code. In inverse time mode, the time for a move is inversely proportional to the

value of the most recent F-code.

Inverse time mode in Power PMAC is specified by setting non-saved setup element

Coord[x].InvTimeMode to a value greater than 0. The power-on default for this element is

0, so this mode is always disabled on power-up/reset, and must be enabled explicitly. The

move time for linear-mode moves is calculated identically for any of the valid non-zero

settings for InvTimeMode; the distinction between these settings lies in how the times are

calculated for circle-mode moves. (See the section on circle-mode moves, below, for details.)

When in inverse time mode, the time for a linear-mode move in milliseconds is calculated by

dividing the specified value of the most recent F-code into the value of Coord[x].FeedTime,

which is expressed in milliseconds. For example, with Coord[x].FeedTime set to 60,000,

which is the common setting for CNC applications, an F300 code specifies a move time of

60,000 / 300 = 200 milliseconds (0.2 seconds).

Motor Velocity Limits

Power PMAC has a velocity-limit saved setup element Motor[x].MaxSpeed for each motor that

can be used to automatically limit the commanded velocity in linear-mode moves even if the

motion program requests a higher rate. Power PMAC compares the motor velocity magnitudes

requested by the motion program for each linear-mode move to the Motor[x].MaxSpeed limit for

each motor. (Unlike the velocity and acceleration limits, this check occurs regardless of whether

the coordinate system is in segmentation mode or not.)

If the request for any motor exceeds the limit, the move time is extended so that motor will not

exceed its limit; this automatically slows the other motors in the coordinate system in proportion

so that the coordination between motors (and the path in space) is maintained.

If segmentation mode is active (Coord[x].SegMoveTime > 0) and the special lookahead buffer is

active (Coord[x].LHDistance > 0, defined lookahead buffer), the velocity limit is also applied

segment by segment, which can be useful for inverse-kinematic axes, where there is a non-linear

relationship between the programmed tool-tip speeds and the underlying motor speeds during

moves.

Minimum Move Time

If the time for a linear-mode move, whether specified directly with a tm{data} command or an

F{data} command in inverse time mode, or calculated by Power PMAC as vector distance

divided by vector feedrate, is less than the specified total acceleration time, one of the times must

be altered to create a realizable move. In this case, the effective “move time” is lengthened so that

it is equal to the total acceleration time, lessening the top speed of the move. This means that

there is no “constant speed” section to the move; it transitions directly from the incoming

acceleration (or blending) to the outgoing deceleration (or blending).

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 677

In this way, the programmed acceleration time acts as the minimum permitted move time for an

individual linear-mode move. This is in part a protection against move times so short that Power

PMAC could not calculate them in real time. If you are working with very short move segments

(particularly programmed by feedrate) and your move sequence is going more slowly than you

want, this acceleration-time limit may be the cause.

If the acceleration-time parameters are set small enough (even to 0), the move times can become

very small. It is even possible for them to be less than a servo cycle in length, although moves

this short are simply skipped over until enough time in the trajectory has accumulated to pass the

next servo cycle. The user should be aware of the potential for overloading the processor in this

case, because each of these programmed moves must be calculated, even if they are actually

skipped over in execution. If the processor cannot compute the required moves before they must

be executed, a “run-time error” will occur, program execution will be halted, and all motors in the

coordinate system aborted (decelerated to a closed-loop stop).

Acceleration Specification

Power PMAC provides multiple parameters for specifying the acceleration and deceleration of

linear-mode moves. The ta{data} command specifies both the “acceleration” and

“deceleration” times for a linear-mode move, in units of milliseconds with floating-point

resolution. It sets the value of data-structure elements Coord[x].Ta, which governs the initial

acceleration from stop of the first move in a continuous sequence and blending between moves in

a sequence, and Coord[x].Td, which governs the final deceleration to a stop.

The td{data} command specifies the final “deceleration” time only, in units of milliseconds

with floating-point resolution, setting the value of data structure element Coord[x].Td alone.

This scheme makes it easy to specify common acceleration and deceleration times, using the

ta{data} command alone, or separate times, using the td{data} command after the

ta{data} command.

The value of Coord[x].Td is used to compute a deceleration to stop for each programmed move

as it is computed, even if that move is then blended on the fly into a subsequent move, with the

deceleration to a stop discarded. If the rate of deceleration exceeds that set by

Coord[x].InvDmax (see next section), this time can be extended, and this could possible cause

the move to be executed at a velocity lower than what was programmed.

It is possible to bypass the ta{data} and td{data} commands and write to Coord[x].Ta and

Coord[x].Td directly. If no ta{data} or td{data} command is specified after power-

up/reset, the saved values of Coord[x].Ta and Coord[x].Td are used for the moves.

The ts{data} command specifies the “S-curve” time for both acceleration and deceleration

(including blends), in units of milliseconds with floating-point resolution, setting the value of data

structure elements Coord[x].Ts (for the initial acceleration and blends) and Coord[x].Tsd (for

the final deceleration. These values are the time in each half of the “S” (so called because the

velocity-versus-time plot looks like the letter S), in which the acceleration or deceleration value is

linearly changing between zero and the peak value. If this S-curve time is zero, the accelerations

and decelerations are constant. If no ts{data} command is specified after power-up/reset, the

saved value of Coord[x].Ts is used for the moves.

The tsd{data} command specifies the final “deceleration” S-curve time only, in units of

milliseconds with floating-point resolution, setting the value of data structure element

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 678

Coord[x].Tsd alone. This scheme makes it easy to specify common acceleration and deceleration

S-curve times, using the ts{data} command alone, or separate times, using the tsd{data}

command after the ts{data} command.

If the Ts value is less than the Ta value (or the Tsd value is less than the Td value), the overall

acceleration (or deceleration) time is equal to Ta + Ts (or Td + Tsd). This is “partial S-curve”

acceleration, with a peak constant acceleration time of Ta – Ts (or Td + Tsd). If the Ts value is

greater than or equal to the Ta value (or the Tsd value is greater than or equal to the Td value),

the overall acceleration (or deceleration) time is equal to 2 * Ts (or 2 * Tsd), and there is not

peak constant acceleration time. (Note that these rules are different from those in Turbo PMAC.)

Acceleration Limits

Power PMAC has acceleration-limit saved setup elements Motor[x].InvAmax and

Motor[x].InvDmax for each motor that can be used to automatically limit the commanded

acceleration and final deceleration, respectively, in linear-mode moves even if the motion

program requests a higher rate. The details of how this limiting function operates are dependent

on the mode of operation.

This acceleration limiting is active either if segmentation mode is not active

(Coord[x].SegMoveTime = 0), in which case circular interpolation and cutter-radius

compensation are not permitted, or if segmentation mode is active (Coord[x].SegMoveTime > 0)

and the special lookahead buffer is active (Coord[x].LHDistance > 0, defined lookahead buffer),

in which case the acceleration limit is applied segment by segment (using only

Motor[x].InvAmax).

If the acceleration limits are active, Power PMAC compares the motor acceleration magnitudes

requested by the motion program to the Motor[x].InvAmax or Motor[x].InvDmax limit, as

appropriate, for each motor. Note that these elements are in units of inverse acceleration (msec2

per motor unit), which yields quicker calculations by the Power PMAC. If the request for any

motor exceeds the limit, the acceleration-section or segment time is extended so that motor will

not exceed its limit; this automatically slows the other motors in the coordinate system in

proportion so that the coordination between motors (and the path in space) is maintained.

Note

When the coordinate system is not in segmentation mode, the

specified acceleration time Coord[x].Ta must be greater than

0.0 in order for the acceleration limiting function (and jerk

limiting function) to be active.

Jerk Limit

Power PMAC also has a “jerk-limit” saved setup element Motor[x].InvJmax for each motor that

can be used to automatically limit the commanded jerk (rate of change of acceleration) in the “S-

curve” portions linear-mode move accelerations and decelerations even if the motion program

requests a higher rate. This jerk limiting is active only if segmentation mode is not active

(Coord[x].SegMoveTime = 0), in which case circular interpolation, special buffered lookahead,

and tool-radius compensation are not permitted.

If the jerk limits are active, Power PMAC compares the motor jerk magnitudes requested by the

motion program to the Motor[x].InvJmax limit for each motor. Note that these elements are in

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 679

units of inverse jerk (msec3 per motor unit), which yields quicker calculations by the Power

PMAC. If the request for any motor exceeds the limit, the S-curve time is extended so that motor

will not exceed its limit; this automatically slows the other motors in the coordinate system in

proportion so that the coordination between motors (and the path in space) is maintained.

Issues with Acceleration and Jerk Limits

Without the special lookahead buffer enabled, Power PMAC simply compares the acceleration

and jerk rates computed given the programmed Ta and Ts times for each change in velocity at a

programmed move boundary. If these rates exceed the limits, Power PMAC extends the Ta

and/or Ts times (or tries to extend them – see below) so that the limits are not violated.

Each linear move that Power PMAC calculates is considered to be potentially the last move in a

sequence, so Power PMAC checks the required rate to decelerate to a stop at the end of the move

against the acceleration and jerk limits, extending this deceleration time as necessary to see that

the limits are not violated. If this extends the total acceleration time to a value greater than the

move time, the move time is extended, slowing the move. This slowing occurs even if the move

turns out not to be the last move in the sequence and this deceleration is not required.

In another case, if Power PMAC wants to extend an acceleration time in the blending between

two linear-mode moves, because the symmetry of the blending algorithm causes half of the

blending time to be in the incoming move, the extension goes further into the incoming move.

This extension can only go as far as the beginning of the constant-speed portion of this move; it

cannot go into the acceleration/blending into this move, because that would force a recalculation

of the previous move, which will already have been executed. Because of the limits of the

extension of blending time, it is possible that the acceleration limits can be violated. (Those

wishing a robust observance of acceleration limits in this type of case should use the special

lookahead buffer.)

Linear Move Examples

The following plot shows the commanded velocity and acceleration profiles for a linear mode

move of 100 axis units (= 100,000 motor units) distance, with a feedrate of 40 axis units per

second (= 40 motor units per msec), a Ta time of 800 msec, and a Ts time of 200 msec. Seven

separate sections (the maximum number possible) are created from a single move command:

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 680

inc linear X100 F40 ta800 ts200

Seven-Section Linear Mode Move

The following plot shows the velocity and acceleration profiles for a linear mode move of 100

axis units (= 100,000 motor units) distance, with a feedrate of 40 axis units per second (= 40

motor units per msec), a Ta time of 400 msec, a Td time of 800 msec, and a Ts time of 0. Three

separate sections are created from a single move command:

inc linear X100 F40 ta400 td800 ts0

Three-Section Linear Move Mode, Separate Accel & Decel

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 681

The following plot shows the velocity and acceleration profiles for a linear mode move of 40 axis

units (= 40,000 motor units) distance, with a feedrate of 40 axis units per second (= 40 motor

units per msec), a Ta time of 7500 msec, and a Ts time of 750 msec, for a total acceleration time

of 1500 msec. Four separate sections are created from a single move command (there are no

separate sections at constant maximum acceleration, deceleration, or speed):

inc linear X40 F40 ta750 ts750

Four-Section Linear Mode Move

Blending Moves Together

If more than one linear-mode move is specified in succession with blending enabled

(Coord[x].NoBlend = 0 – the default) and no intervening dwell commands (or other inhibiting

factors – see below), each motor blends smoothly from its velocity for the first move to the

velocity for the second move according to the acceleration times and limits in force at the time

the second move is calculated. This blend starts at the point where the first move would begin to

decelerate to a stop at its specified end position if there were no blending, not at the first move’s

endpoint itself. It ends at the point where the second move would finish its acceleration from a

stop at its starting position if there were no blending.

Linear-mode moves can also blend into and from circle-mode moves and PVT-mode moves.

Details of these blends are discussed in the sections describing those move modes.

Control of Blend vs No-Blend

There are several factors that control whether linear moves are blended together or not. (These

same factors also control for circle moves.) If Coord[x].NoBlend is set to 1, no linear or circle

moves are blended together, regardless of other factors.

If Coord[x].NoBlend is set to 0, these moves are blended together unless some other factor

inhibits blending. In this case, if Coord[x].OnceNoBlend is greater than 0 when the move is

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 682

calculated, that move will not be blended into the next move, and the value of OnceNoBlend is

decremented by 1. This permits “single-shot” exact stop specification, as with the G09 NC code.

For multi-axis path-based moves, it is possible to control blending or not based on the corner

angle using Coord[x].CornerBlendBp. This permits “sharp” corners not to be blended, but

“shallow” corners to be blended. This is covered in detail in the section Blended Move Cornering

Control, below.

If motion program calculation is temporarily suspended because the number of “jumps back” in

execution while looking for the next move command exceeds the limit specified by

Coord[x].GoBack, then the most recently calculated move will not be blended into the next

move calculated after execution resumes.

Blending Profile Examples

The following diagrams show velocity-versus time plots for linear-mode move sequences with no

S-curve time and deceleration time equal to acceleration time for various cases. It shows the

decelerations that were “discarded” due to blending as dashed lines. They also show the

“rectangular” profiles for equivalent moves with no acceleration time for reference.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 683

P/F

P/F P/F

P/FP/F

P/FP/F P/F

L i n e a r M o d e T r a j e c t o r i e s

S m a ll a cce le ra tio n tim e

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 684

L i n e a r M o d e T r a j e c t o r i e s

A c c e l e r a t i o n t i m e m a t c h e s m o v e t i m e

P/F P/F

P/F P/F

P/F P/F

P/F

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 685

L i n e a r M o d e T r a j e c t o r i e s

L a rg e (v e lo city l im itin g) a cce le ra tio n tim e

P/F P/F

P/F

P/F P/F

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 686

Blending Path Implications

The following diagram shows a sequence of two linear-mode moves in the X/Y plane both

unblended and blended. On the left side is the unblended case. The first move stops fully before

the second move starts. The result is a sharp corner in the X/Y plane. On the right side is the

blended case. The first move blends into the second move without stopping. The result is a

rounded corner at the blend to the inside of the programmed point for the corner. The blended

path starts at the point where the first move began its deceleration to a stop in the unblended case,

and ends where the second move finished its acceleration from stop in the unblended case.

Linear Mode Paths – Non-Blended and Blended

Special Linear Contouring Mode

While it is common in the industry to use closely spaced linear-mode (G01) moves to generate

arbitrary contour paths, the standard linear mode is not optimal for this task, due to the fact that

the blends round to the inside of programmed point on the contour, and that any space between

blends generates “flats” in the path that may not be desired.

Power PMAC has a new special variant of linear-mode interpolation that avoids these problems.

If the saved setup element Coord[x].SegLinToPvt is set to 1 or 2, then linear-mode move

commands are automatically converted to PVT mode moves for execution.

Coord[x].SegMoveTime must be set greater than zero to enable segmentation in order for this

conversion to occur.

In this mode, Power PMAC takes the basic linear move command for the axis based on the

position/distance specification in the command and the modal feedrate/move-time specification as

the starting point for the conversion. It computes the axis end velocity for the move for a smooth

transition between this move and the next move while passing exactly through the programmed

Y Y

Vx Vx

Vy Vy

X X

t t

t t

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 687

point, and passes this value to the PVT-mode calculation algorithm. It also computes a move time

value that keeps the speed along the path as constant as possible (or smoothly transitioning from

one speed to another).

For smooth contours, there is essentially no difference between values of 1 and 2 for

Coord[x].SegLinToPvt. The behavior differs if there are sharp corners in the path. If it is set to

1, the velocity is increased at the corner to better preserve the path. If it is set to 2, the

programmed velocity at the corner is preserved better, but the path “bulges” more to the outside

on both sides of the corner.

In this mode, the Ta, Ts, and Td acceleration-time parameters are not used. Acceleration control

is typically accomplished through use of the special lookahead buffer.

This mode is intended for move sequences where the individual points are quite close together

and reasonably evenly spaced. Often, the sequences will be generated automatically from

CAD/CAM programs. Note that CAD/CAM programs often base their point spacing given your

specified error threshold using the errors found in traditional linear interpolation. The contouring

errors in this mode are so much smaller that the points can often be spaced 50 times farther apart

for the same error threshold.

Using Linear Mode for “Rapid” Moves

Some users will want one or more attributes of the linear move mode when they are executing

what would normally be “rapid” mode moves (G00 mode in RS-274 “G-Codes”). These attributes

include:

 Execution of inverse-kinematic transformations at segmentation rate to obtain a straight-

line tool-tip path in a non-Cartesian geometry.

 Execution of lookahead velocity and acceleration limiting at segmentation rate after

inverse-kinematic transformation in a non-Cartesian geometry

 Ability to use the same “segmentation override” as for linear and circle mode moves

 Ability to specify separate acceleration and deceleration times

The simplest way of getting linear mode moves to behave like typical rapid mode moves is to

declare a vector feedrate high enough that at least one motor will always limit on its

Motor[x].MaxSpeed parameter. The other motors will be slowed in proportion to maintain a

straight-line path. It will probably be necessary to store the programmed vector feedrate for linear

and circle-mode moves (found in Coord[x].Tm) in a holding variable, to be restored when

returning to linear or circle mode.

If there are only vector feedrate axes in the system (e.g. X, Y, and Z – no rotary axes), it is also

possible to declare nofrax when entering this mode, so that none of the axes are considered

vector feedrate axes. In this case, saved setup element Coord[x].AltFeedrate controls the speed

of the axes, setting the speed of the axis with the longest distance for the move, with the other

axes matching the move time. When returning to linear or circle mode, the axes should be

restored as vector feedrate axes, using a command such as frax(X,Y,Z).

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 688

Circle Move Mode

Power PMAC permits circular interpolation in the X/Y/Z-axis Cartesian space, and the

XX/YY/ZZ-axis Cartesian space in a coordinate system. Circular (or similar) paths can be

executed on any plane in either of these 3D spaces.

Enabling Move Segmentation

To execute circle-mode moves, the commanded trajectories must be “segmented”. “Segmentation

is a first-stage (coarse) interpolation where the exact circle calculations are performed. The

second-stage (fine) interpolation is performed at the servo update rate, using a very efficient cubic

B-spline interpolation algorithm (the same algorithm used in spline mode). Performing the

complex circle calculations themselves every servo cycle would put a tremendous computational

load on the processor, without significantly increasing accuracy.

Commanded trajectories (in circle, linear, and PVT modes) are segmented if

Coord[x].SegMoveTime is set greater than 0. The value of Coord[x].SegMoveTime is the

segmentation period in milliseconds, with floating-point resolution. Typically it is set to a value

equivalent to 10 to 20 servo cycles, providing a good trade-off between computational load and

resulting path accuracy.

If segmentation mode is disabled, a circle-mode move will execute as a linear-mode move

directly from the start point to the end point. Segmentation mode must also be enabled to use the

special lookahead buffer, tool-radius compensation, and kinematic-subroutine calculations.

Specifying the Interpolation Plane

The first thing that should be done in preparing for a circle-mode move is to specify the

orientation of the plane in the 3D space that will contain the circle. This is done by specifying the

vector normal to that plane with the normal command. The arguments of this command are the

component magnitudes of the vector. In X/Y/Z space, the components are I (X-axis direction), J

(Y-axis direction), and K (Z-axis direction). In XX/YY/ZZ space, the components are I (XX-axis

direction), J (YY-axis direction), and K (ZZ-axis direction).

A typical command might be normal I0.866 J-0.5 K0.0, or normal II0.0

JJ0.707 KK-0.707. Zero-magnitude components do not need to be specified; if a component

of the triplet is not specified, it is assumed to be zero. The length of the normal vector here is not

important (although most people use a net unit length); only the ratio between the component

magnitudes (which determines the direction) is.

Standard Planes

The “standard” planes require only a single non-zero component in the normal command. To

specify the X/Y-plane, the usual command is normal K-1. This is the power-on default vector,

and the command is equivalent to G17 in RS-274 “G-code” programming. Similarly, to specify

the Z/X-plane, the usual command is normal J-1 (G18 equivalent); to specify the Y/Z-plane,

the usual command is normal I-1 (G19 equivalent).

The equivalent commands for the standard planes in XX/YY/ZZ space are normal KK-1 for

the XX/YY-plane, normal JJ-1 for the ZZ/XX plane, and normal II-1 for the YY/ZZ-

plane.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 689

Clockwise Direction Sense

The directional sense of the normal vector for determining the clockwise/counter-clockwise sense

of moves in the plane is “right handed”. That is in a standard (right-handed) 3D space, if you

point your right thumb in the direction of the specified normal vector, your fingers will curl in the

direction of a clockwise arc in the plane. The standard clockwise sense is obtained by using

normal vectors that point in the negative direction along their axes.

The following figure shows the six possibilities for “single-component” normal vectors defining

the three standard planes, each with both possibilities for clockwise sense.

Basic Normal Vectors for Circle Mode Moves

+Z

+X +Y

+Z

+X +Y

+Z

+X +Y

+Z

+X +Y

+Z

+X +Y

+Z

+X +Y

normal K-1

normal I-1

normal J-1

normal K1

normal J1

normal I1

CW CW

CW

CW

CW

CW

G17
(default)

G18

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 690

Circle Mode Declaration

To put a set of the Cartesian axes into circle mode, the circlen command is used, where n can

take a value from 1 to 4. Each one of these commands puts one of the 3D Cartesian axis sets into

clockwise or counterclockwise circle mode. If the other 3D Cartesian axis set is already in linear

or circle mode, it is left alone; otherwise it is put in linear mode. All other axes in the coordinate

system are automatically put in linear mode on any of the circlen commands. All subsequent

move commands will be interpreted using the rules of the circle and linear move modes, as

appropriate, until another move mode is declared.

The following list shows what each of the circlen commands does:

 circle1 puts the X/Y/Z axis set in clockwise circle mode

 circle2 puts the X/Y/Z axis set in counterclockwise circle mode

 circle3 puts the XX/YY/ZZ axis set in clockwise circle mode

 circle4 puts the XX/YY/ZZ axis set in counterclockwise circle mode

The circle1 mode is equivalent to the G02 mode in RS-274 machine-tool code, and circle2

mode is equivalent to the G03 mode.

Position or Distance Specification

The destination point of a circle-mode move is specified in the move command itself (e.g.

X10Y20). The commanded destination for each axis can be specified as a position relative to the

programming origin (if the axis is in abs [absolute] mode) or with a distance from the last

commanded position (if the axis is in inc [incremental] mode). This is the “straight-line”

distance for the axis from start to end point, not the distance along the arc. As with other move

modes, if the axis position/distance is not explicitly specified in the move command, its end point

will be the same as the start point (in either abs or inc mode). However, in circle-mode, this

typically means that the axis will execute some commanded motion during the move.

In circle move mode, it is possible to command a full circle in a single move command when the

end point of all circle axes is the same as the start point. When the end point coordinates are

calculated mathematically, there may be small computational errors that make the end point

slightly different from the start point, which could mean that the intended full-circle command is

instead executed as a tiny arc move, typically too small to detect, so it appears that the move has

been skipped.

The saved setup element Coord[x].MinArcLen provides a tolerance for this type of

computational error. It specifies the minimum arc length (in radians) of a move that will be

executed as a short arc. If the angle subtended by the programmed arc move is smaller than this

value (even if not exactly zero), the move will be executed as a full circle (plus or minus the small

difference from start to end). If Coord[x].MinArcLen is set to its default value of 0.0, the end

point must equal the start point to full floating-point resolution in order for a full-circle move to

be executed.

Center Specification

Power PMAC provides two methods for specifying the arc center in circle-mode move

commands. The first and most commonly used method is to specify a vector from the move start

point to the center. The second method is to specify the magnitude of the radius and let Power

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 691

PMAC calculate the coordinates of the arc center point. If neither method is used, the move is

executed as a linear-mode move instead.

Center Vector Specification

If the vector method of locating the arc center is used, the vector is specified by its I, J, and K

components along the X, Y, and Z axes, respectively, or by its II, JJ, and KK components along

the XX, YY, and ZZ axes, respectively. In the default incremental vector mode, each vector

component specifies the distance in the respective axis from the move’s start point to the arc

center point. If a component is not explicitly specified, its value is assumed to be 0 for the move.

It is also possible to use absolute vector mode, implemented with the program command

abs(I,J,K) for X/Y/Z circles, or abs(II,JJ,KK) for XX/YY/ZZ circles. In this mode,

each vector component specifies the distance in the respective axis from the programming origin

to the arc center point.

A typical circle-mode move command with a center vector specification is:

X1000 Y2000 I500 J-500

With the center vector specification, if the end points of all the circle axes are equal to the start

points, whether by explicit command or by not specifying the axis values at all in the move

command, a full circle will be executed. For example, with the X/Y-plane specified for circles the

move command I10 specifies a full circle of radius 10, with the X-axis moving 20 units positive

and back, and the Y-axis moving plus and minus 10 units and back.

Radius Change and Errors

Note that there is nothing in the circle mode command with center-vector specification that

constrains the end point to be the same distance from the center point as the start point is. If the

user desires a true circular arc path, he must ensure in his command that his specified end point is

exactly the same distance from the specified center point as the start point is. If this is not the

case, Power PMAC will execute a spiral path from the start point to the end point, continuously

changing the radius of curvature along the path.

To separate the case of minor differences due to effects like mathematical round-off from the case

of programming errors, the user can set the threshold for the maximum change in radius that is

permitted in a circle-mode move. If saved setup element Coord[x].RadiusErrorLimit is set to a

positive value, any circle move with a difference in radius (distance to center) between the start

point and end point whose magnitude is greater than this value will be rejected. Power PMAC

will not execute this move, stopping at the beginning of the move, aborting the motion program,

and setting status element Coord[x].RadiusError to 1 (for a move in X/Y/Z space) or to 3 (for a

move in XX/YY/ZZ space). If Coord[x].RadiusErrorLimit is set to its default value of 0.0, no

checking is performed, and these moves are always executed without error.

Example

Starting from the point (X0, Y0), make a quarter circle clockwise in the XY plane to (X20, Y20),

then a linear move to (X40, Y20), then a three-quarters circle clockwise to (X20, Y0).

normal K-1; // XY plane

F10; // Vector speed specification

abs; // Absolute endpoint specification

circle1; // Clockwise circle mode

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 692

X20 Y20 I20 J0; // Arc move; I=20-0=20; J=0-0=0

linear; // Linear move mode

X40 Y20; // Straight-line move

circle1; // Clockwise circle mode

X20 Y0 I0 J-20; // Arc move; I=40-40=0; J=0-20=-20

Radius Size Specification

For the X/Y/Z axis set, the arc center can also be located by specifying the radius magnitude as

the value after the letter R in the move command. (RR is an axis name, so this method is not

available for the XX/YY/ZZ axis set.) The magnitude of this value always represents the distance

from the starting point. With this radius specification, it is necessary to specify whether the arc to

the move endpoint is the long route (>= 180 degrees) or the short route (<= 180 degrees).

Following an industry convention, Power PMAC takes the short route if the R value is positive,

and the long route if the R value is negative. R values are not modal – a value must be specified

on each move command line. It is not possible to do a full circle in a single move command with

radius-size specification; the circle must be broken into at least two parts.

Note that if the distance from start point to end point is more than twice the magnitude of the

specified radius, no circular path is possible, and Power PMAC will calculate an exponential

spiral path with continuously changing radius. However, if the magnitude of the difference

between the starting radius and the ending radius is greater than that of saved setup element

Coord[x].RadiusErrorLimit, the move will be rejected. Power PMAC will not execute this

move, stopping at the beginning of the move, aborting the motion program, and setting status

element Coord[x].RadiusError to 1 (for a move in X/Y/Z space) or to 3 (for a move in

XX/YY/ZZ space). If Coord[x].RadiusErrorLimit is set to its default value of 0.0, no checking

is performed, and these moves are always executed without error.

A typical circle move command with a radius specification is:

X1000 Y2000 R750

Example

To do the same moves as in the above example, except with radius center specification, the

program would be:

normal K-1; // XY plane

F10; // Vector speed specification

circle1; // Clockwise circle mode

X20 Y20 R20; // Arc move < 180 deg

X40 Y20; // Automatically linear

X20 Y0 R-20; // Arc move > 180 deg

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 693

The following figure shows several examples of circle-mode move commands and the paths that

result:

Y

X

X

Z

YY

XX

Y

X

normal K-1

abs

circle1

F10

X25 Y30 I20 J5

I

J

normal J-1

inc

tm1000

circle2

X-10 Z-10 K-10

normal KK-1

abs

circle3

XX15 YY25 JJ-10

or

JJ-10

normal K-1

inc

circle2

X-10 Y10 R10

normal K-1

inc

circle2

X-10 Y10 R-10

K

center

(15,20)

end

(15,10)

start

(25,20)

center

(30,10)start

(10,5)

end

(25,30)

start

(10,0)

end

(0,10)

[1]

[2]

[1]

[2]
R

R

start/end

(15,25)

JJ

center

(15,15)

Circle Mode Move Examples

Motion of Other Axes

With the coordinate system in circle mode, axes that are not circularly interpolated are linearly

interpolated. This includes all axes not in the 3D axis set where circular interpolation is

performed. A rotary axis may be commanded to keep a constant axis relative to the circular arc

path in this way. It also includes the component of motion in the 3D axis set that is perpendicular

to the plane of interpolation defined by the normal command. For example, with the XY plane

defined for circular interpolation, the Z-axis will be linearly interpolated during an XY circle

move, automatically producing helical interpolation.

Feedrate or Move-Time Specification

As with linear moves, the user can either specify the target velocity (“feedrate”) for the circle-

mode move, with an F{data} command, or the move time with the tm{data} command. If F

is specified, the move time is calculated, and if tm is specified, the feedrate is calculated. The

relationship between the two values is reciprocal for a given move distance. Move-time and

feedrate values are modal; they affect all subsequent circle (and linear) mode moves until another

F or tm value is specified in the program.

The units of the tm time are milliseconds; the units of the F velocity are the user length (or angle)

units of the vector feedrate axes (see below) divided by the time units as defined by the saved

setup element Coord[x].FeedTime, in milliseconds. If Coord[x].FeedTime is at the default

value of 1000, the F units are length units per second; if Coord[x].FeedTime is set to 60,000, the

F units are length units per minute.

More details on this specification are given in the section on linear-mode moves, above.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 694

Vector Feedrate Axes

As with linear-mode moves, the specified feedrate is applied to the “vector feedrate” axes, which

are X, Y, and Z by default, or specified by the frax command. However, for circle-mode moves,

if an axis is one of the circular interpolation axes as specified by the normal command, it is

automatically used as a vector feedrate axis, even if it is currently specified as such an axis.

More details on vector feedrate axes are given in the section on linear-mode moves, above.

Inverse Time Mode

The time for circle-mode moves can also be specified in “inverse time” mode. In this mode, the

time for a move is inversely proportional to the value specified in the most recent F-code in the

program.

Inverse time mode in Power PMAC is specified by setting non-saved setup element

Coord[x].InvTimeMode to a value greater than 0. The power-on default for this element is 0, so

this mode is always disabled on power-up/reset, and must be enabled explicitly. There are three

valid non-zero values; for each one, the exact method of computing circle-mode move times

differs. (The calculation of linear-mode move times is the same in all three – see the above

section for details.)

If Coord[x].InvTimeMode is set to 1, the time for a circle-mode move in milliseconds is

calculated by dividing the specified value of the most recent F-code into the value of

Coord[x].FeedTime, which is expressed in milliseconds. For example, with Coord[x].FeedTime

set to 60,000, which is the common setting for CNC applications, an F200 code specifies a move

time of 60,000 / 200 = 300 milliseconds (0.3 seconds) for that move.

If Coord[x].InvTimeMode is set to 2, the time for a circle-mode move in milliseconds is

calculated first by dividing the specified value of the most recent F-code into the value of

Coord[x].FeedTime and then multiplying this by the angle subtended by the X/Y/Z arc move in

radians. Here the value of the F command can also be considered as the arc velocity divided by

the X/Y/Z radius. For example, with Coord[x].FeedTime set to 60,000, a full circle move

specified with F100 would have a move time of (60,000 / 100) * 2 * π = 3770 milliseconds (3.77

seconds).

If Coord[x].InvTimeMode is set to 3, the time for a circle-mode move in milliseconds is

calculated first by dividing the specified value of the most recent F-code into the value of

Coord[x].FeedTime and then multiplying this by the angle subtended by the XX/YY/ZZ arc

move in radians. Here the value of the F command can also be considered as the arc velocity

divided by the XX/YY/ZZ radius. For example, with Coord[x].FeedTime set to 60,000, a

semicircle move specified with F150 would have a move time of (60,000 / 150) * π = 1257

milliseconds (1.257 seconds).

Motor Velocity Limits

The motor velocity-limit saved setup element Motor[x].MaxSpeed is applied to circle-mode

moves, whether or not the special lookahead buffer is active. The limit is applied on a segment-

by-segment basis, and since motor velocities generally change through the course of a circle-

mode move, the limits may be applied in some parts of a move and not others.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 695

Minimum Move Time

If the time for a circle-mode move, whether specified directly with a tm{data} command, or an

F{data} command in inverse time mode, or calculated by Power PMAC as vector distance

divided by vector feedrate, is less than the specified total acceleration time, one of the times must

be altered to create a realizable move. In this case, the effective “move time” is lengthened so that

it is equal to the total acceleration time, lessening the top speed of the move. This means that

there is no “constant speed” section to the move; it transitions directly from the incoming

acceleration (or blending) to the outgoing deceleration (or blending).

This means that the programmed acceleration time acts as the minimum permitted move time for

an individual circle-mode move. This is in part a protection against move times so short that

Power PMAC could not calculate them in real time. If you are working with very short move

segments (particularly programmed by feedrate) and your move sequence is going more slowly

than you want, this acceleration-time limit may be the cause.

If the acceleration-time parameters are set small enough (even to 0), the move times can become

very small. It is even possible for them to be less than a servo cycle in length, although moves

this short are simply skipped over until enough time in the trajectory has accumulated to pass the

next servo cycle.

Acceleration Specification

Power PMAC provides multiple parameters for specifying the acceleration and deceleration of

circle-mode moves. These parameters are the same parameters that govern the acceleration and

deceleration of linear-mode moves, and are described in detail in that section, above.

Acceleration Limits

Power PMAC can perform automatic acceleration limiting for circle-mode moves on a segment-

by-segment basis if the special lookahead buffer is enabled (Coord[x].LHDistance > 0, defined

lookahead buffer). If, in any segment generated by a circle-mode move, the magnitude

acceleration requested of a motor exceeds the limit specified by saved setup element

Motor[x].InvAmax, the time for the segment will be extended so the limit is not violated.

Preceding segments may also be extended so that the required deceleration to this point does not

exceed these limits.

Without the special lookahead buffer enabled, Power PMAC does not check for violations of

acceleration limits in circle-mode moves. Power PMAC does not check for violations of jerk

limits in circle-mode moves whether or not the special lookahead buffer is enabled.

Blending Moves Together

If a circle-mode move is part of a sequence of linear and circle moves with blending enabled

(Coord[x].NoBlend = 0 – the default) and no intervening dwell commands, each motor blends

smoothly from the velocity at the end of the first move to the velocity at the beginning of the

second move according to the acceleration parameters in force at the time the second move is

calculated. This blend starts at the point where the first move would begin to decelerate to a stop

at its specified end position if there were no blending, not at the first move’s endpoint itself. It

ends at the point where the second move would finish its acceleration from a stop at its starting

position if there were no blending.

The following diagram shows the blend paths between lines and arcs, both when there would be a

corner in the unblended path (“non-tangent”), and when there would not be (“tangent”).

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 696

Line/Line

Line/Arc

Arc/Arc

Non-Tangent Blend Tangent Blend

Line and Arc Blend Paths

Tangent blends involving arc moves result in a path over the blend that is “flatter” than the

unblended path would be. This feature permits smooth transitions in centripetal acceleration when

the radius/curvature changes, rather than the step change of unblended tangent moves.

Circle-mode moves can also blend into and from PVT-mode moves. Details of these blends are

discussed in the PVT-mode move section, below.

Blended Move “Cornering” Control

For path-based applications employing linear and circle mode moves, Power PMAC has a rich set

of automatic functions that make it easy to optimize the behavior at the blended “corners” created

at move boundaries in a given application.

Cornering Angle Definition

Many of these functions are based on the “angle” of the corner, and it is important to understand

exactly what is meant by this angle. First, it is the change in the directed angle of motion of the X,

Y, and Z axes at the programmed point (the target position of the incoming move) if the moves

were not smoothly blended. This angle is equal to 180° minus the “included angle” at the corner.

So for example, two consecutive moves in the same direction would have a 0° change in directed

angle used by Power PMAC calculations, but a 180° included angle.

Second, if either (or both) of the moves at the corner is a circle mode move, it is the direction of

the move immediately at the unblended corner that is used, not the direction at the end of any

blending (which would be different).

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 697

Finally, it is the angle in the plane defined by the normal command (the XY plane by default)

that is used for these functions. If the corner does not lie in this plane, it is the perpendicular

projection of this corner into the defined plane that determines the angle. For example, with the

XY plane defined, if the incoming move is linear X motion only, and the outgoing move is linear

Y and Z motion only, then the change in directed angle would be calculated as 90°, because the Z

motion is not relevant to the angle calculations in the XY plane.

If either the incoming or outgoing move at the corner has no component in the defined plane, the

corner is treated as having an angle whose cosine is equal to the value of saved setup element

Coord[x].NoCornerBp for the purposes of deciding whether to blend and/or dwell at the corner,

as discussed below.

Corner Blend/No-Blend Control

If saved setup element Coord[x].CornerBlendBp is a non-zero number, it specifies the cosine of

the “breakpoint” change in directed angle between corners where the incoming and outgoing

moves are blended together and those that are not. If the cosine of the change in directed angle is

greater than or equal to this value (a “shallow” corner), the moves will be blended together based

on several factors described below. If the cosine of the change in directed angle is less than this

value (a “sharp” corner), the moves will not be blended together, and the pause at the corner is

governed by several factors described below.

Coord[x].CornerBlendBp permits smooth contours to be generated without stops at each

programmed point, but the creation of sharp corners where there is a sudden change in direction,

without the need to specify this explicitly in the program. It is used only if saved setup element

Coord[x].NoBlend is set to its default value of 0, if Coord[x].NoBlend is set to 1, no moves are

blended, regardless of corner angle.

Blended Corner Characteristics

Power PMAC permits a variety of ways of defining the path of a blended corner. These allow the

user to optimize the application in any of several preferred methods. Note that these methods

operate at the programmed move calculation time. If the special lookahead buffer that

subsequently operates on move segments generated from the programmed move equations is

used, it can slow down execution of the moves at any point, including blends, if any motor

dynamic limits are violated, but it will not change the path initially calculated.

Fixed-Time Corner Blend

If saved setup elements Coord[x].CornerRadius, Coord[x].CornerAccel, and

Coord[x].CornerError are all set to their default values of 0.0, then the blended corner time is

set by and the values of Coord[x].Ta and Coord[x].Ts (often set by ta and ts commands in the

program) in force at the time, and the blended corner size is set by these parameters and the move

speed (usually set by an F command in the program). The overall blending time Tb is either Ta +

Ts or 2 * Ts, whichever is larger, and the blend starts and stops at a distance V * Tb / 2 from the

programmed corner part.

In this mode of operation, neither the cornering acceleration, the “radius” of curvature, nor the

corner blending path error is fixed as move speeds and corner angles change.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 698

The following plot shows how the corners are executed in this mode. It shows a figure with 45°,

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and

“2x” speeds. It illustrates how the blends vary with speed and angle.

Corner Blend Paths, Constant-Time Mode

The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended,

then blended at “1x” speed, and finally blended at “2x” speed. Note how the blending time is

constant over speed and corner angle.

Corner Blend Profiles, Constant-Time Mode

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 699

Fixed-Radius Corner Blend

If saved setup element Coord[x].CornerRadius is set to a positive value, it specifies the “radius”

of the corner blend. While the blended corner path is not a true circular arc, it is often very close,

particularly if there is no Ts time, so the concept of a corner radius is still valuable. (Technically,

it is the distance of the lines perpendicular to the paths at the starting and ending points of the

blend to their intersection point.)

Based on the moves speeds and the change in angle at the corner, it calculates a Ta time to

achieve the specified corner radius, instead of just using the value in Coord[x].Ta (which it does

not change). To get the closest possible approximation to a circular blend, it set the Ts time to 0,

instead of just using the value in Coord[x].Ts (which it does not change).

This mode of operation is generally used to generate a fixed size of corner, regardless of move

speeds and corner angles.

The following plot shows how the corners are executed in this mode. It shows a figure with 45°,

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and

“2x” speeds. It illustrates how the blends vary with speed and angle. Note that the blended paths

are identical at different speeds.

Corner Blend Paths, Constant-Radius Mode

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 700

The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended,

then blended at “1x” speed, and finally blended at “2x” speed.

Corner-Blend Profiles, Constant-Radius Mode

Fixed-Acceleration Corner Blend

If saved setup element Coord[x].CornerAccel is set to a positive value (but

Coord[x].CornerRadius is set to its default value of 0.0), it specifies the vector cornering

acceleration used at a blended corner. It does this by calculating a Ta time for the corner based on

the move speeds and the change in angle at the corner to achieve the specified vector

acceleration, instead of just using the value in Coord[x].Ta (which it does not change). If the

time calculated this way is less than the value of Coord[x].Td, it will use that value instead, so

Coord[x].Td acts as a minimum time in this mode of operation. This mode does use the value of

Coord[x].Ts in force at the time, resulting in an overall blending time Tb is either Ta + Ts or 2 *

Ts, whichever is larger, and the blend starts and stops at a distance V * Tb / 2 from the

programmed corner part.

This mode of operation is generally used to generate the smallest possible corner blends,

regardless of move speeds and corner angles, given an acceleration limit.

The corner blending time is computed to give the cornering acceleration given the programmed

speed at the corner. If buffered lookahead is used to execute the resulting path, the acceleration-

limiting function of the lookahead can be used to further limit motor accelerations by

automatically limiting speed along this path. (The buffered lookahead does not change the path

computed here.)

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 701

The following plot shows how the corners are executed in this mode. It shows a figure with 45°,

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and

“2x” speeds. It illustrates how the blends vary with speed and angle.

Corner Blend Paths, Constant-Acceleration Mode

The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended,

then blended at “1x” speed, and finally blended at “2x” speed.

Corner Blend Profiles, Constant-Acceleration Mode

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 702

Fixed-Error Corner Blend

If saved setup element Coord[x].CornerError is set to a positive value (but

Coord[x].CornerRadius and Coord[x].CornerAccel are set to their default values of 0.0), it

specifies the error between the blended path at the corner and the programmed corner point. It

does this by calculating a Ta and Ts time for the corner based on the move speeds and the change

in angle at the corner to achieve the specified path error, instead of just using the values in

Coord[x].Ta and Coord[x].Ts (which it does not change). It maintains the ratio between these

two values, allowing the user to control the “shape” of the corner. The bigger Coord[x].Ts is

relative to Coord[x].Ta, the “squarer” the corner will be.

If the time calculated this way is less than the value of Coord[x].Td, it will use that value instead,

so Coord[x].Td acts as a minimum time in this mode of operation. This mode does use the value

of Coord[x].Ts in force at the time, resulting in an overall blending time Tb is either Ta + Ts or 2

* Ts, whichever is larger, and the blend starts and stops at a distance V * Tb / 2 from the

programmed corner part.

The following plot shows how the corners are executed in this mode. It shows a figure with 45°,

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and

“2x” speeds. It illustrates how the blends vary with speed and angle. Note that the blended paths

are identical at different speeds.

Corner Blend Paths, Constant-Error Mode

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 703

The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended,

then blended at “1x” speed, and finally blended at “2x” speed.

Corner Blend Profiles, Constant-Error Mode

Hybrid Corner Acceleration/Error Control Blend

If both Coord[x].CornerAccel and Coord[x].CornerError are set to positive values, Power

PMAC will first calculate the blend time for fixed acceleration as specified by the value of

CornerAccel. It will then compare the blending error in this path against the value of

CornerError.

If the blending error computed from the acceleration specification is larger than the error limit,

the blending time is recomputed according to the error specification, resulting in a smaller corner

blend. The result of this mode is a corner blend that meets either the acceleration specification or

the error specification, whichever results in a smaller corner.

When the blend time is set by the error specification, the acceleration at the programmed speed

will be higher than that set by CornerAccel. However, if buffered lookahead is used in the

execution of the resulting path, the acceleration-limiting function of the lookahead can be used to

keep the actual motor accelerations in the blend within specifications by automatically reducing

the speed in the vicinity of the corner.

Non-Blended Corner Characteristics

If blending is disabled at a corner for whatever reason, the commanded trajectory of the incoming

move is brought to a stop according to the acceleration parameters Coord[x].Td and

Coord[x].Ts in force at the time. What happens next is dependent on the value of several

parameters.

Command Stop vs. Actual Stop

If saved setup element Coord[x].InPosTimeout is set to its default value of 0, when the

commanded trajectory at the end of the incoming move reaches zero velocity, Power PMAC is

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 704

immediately ready to start the next step, regardless of where the actual trajectory is. However, if

Coord[x].InPosTimeout is set to a positive value, Power PMAC will wait until all axes in the

coordinate system have pulled to within their “in-position band” at this target position before

Power PMAC is ready to start the next step.

When Coord[x].InPosTimeout is greater than zero, it specifies the number of real-time-interrupt

periods (Sys.RtIntPeriod + 1 servo cycles) after the commanded trajectory has stopped that

Power PMAC will continue to check for all axes to come “in position” before it gives up and

aborts the program. This should be set large enough so that normal variation in the time to

achieve “in-position” status will never cause an abort.

Added Corner Dwell

If saved setup element Coord[x].CornerDwellBp is a non-zero number, it specifies the cosine of

the “breakpoint” change in directed angle between non-blended corners for which a dwell period

is automatically added and those for which it is not. If the cosine of the change in directed angle

is greater than or equal to this value (a “shallow” corner), no dwell period is automatically added.

If the cosine of the change in directed angle is less than this value (a “sharp” corner), Power

PMAC will automatically add a dwell of the period specified by saved setup element

Coord[x].AddedDwellTime, expressed in real-time interrupt periods.

This dwell period is only added for corners where blending has been disabled because the corner

is sharper than that specified by Corner[x].CornerBlendBp. If Coord[x].InPosTimeout is

greater than 0, requiring that all motors in the coordinate system become “in-position” before the

next step in the process, the added blend period will start after the “in-position” condition occurs.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 705

Tool (Cutter) Radius Compensation

Power PMAC provides the capability for performing tool (cutter) radius compensation on the

moves it performs. This compensation can be performed among the X, Y, and Z axes, which

should be physically perpendicular to each other. The compensation automatically offsets the

described path of motion perpendicular to the path by a programmed amount, compensating for

the size of the tool. This permits the user to program the path along the edge of the tool, letting

Power PMAC calculate the tool-center path, based on a radius magnitude that can be specified

independently of the program.

Power PMAC supports both two-dimensional (2D) and three-dimensional (3D) cutter radius

compensation. In the more common 2D compensation, described immediately below, you first

specify the plane of compensation, the direction of compensation (left or right) relative to the

path, and the radius magnitude. In 3D compensation, described subsequently, you specify the

surface-normal vector and the tool-orientation vector, as well as the tool-tip geometry.

Cutter radius compensation is valid only in linear and circle move modes. The moves must

be specified by F (feedrate), not tm (move time). The coordinate system must be in move

segmentation mode (Coord[x].SegMoveTime > 0) to do this compensation

(Coord[x].SegMoveTime > 0 is required for circle mode moves anyway.)

Note

In circle mode, a move specification without any center

specification results in a linear move. This move is executed

correctly without cutter radius compensation active, but if the

compensation is active, it will not be applied properly in this

case. A linear move must be executed in linear mode for

proper cutter-radius compensation.

Two-Dimensional Tool Radius Compensation

In 2D compensation, it is assumed that there is a cylindrical tool perpendicular to the plane of

compensation. The compensation offset is automatically set perpendicular to both the axis of the

tool and the motion of the tool in the plane of compensation. The resulting compensated path is

offset by the specified cutter radius so that the edge of the tool traverses the programmed path,

permitting the user to specify the tool-edge path.

Setting Up the Compensation Buffer

In 2D tool radius compensation, programmed moves must be pre-computed and buffered in order

to implement several important features of the compensation:

1. Calculating the compensated intersection point with the next move

2. Ability to process “zero-motion-in-plane” moves (e.g. dwells, moves perpendicular to the

plane of compensation)

3. Checking for interference and overcut with upcoming move(s)

4. Ability to eliminate interfering moves and continue in the program

Each of these features requires that moves be pre-computed and buffered. Saved data structure

element Coord[x].CCSize, by setting the size of this buffer, specifies how many pre-computed

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 706

moves can be stored in the buffer for the coordinate system (not necessarily how many will be

stored).

Minimum Buffer Size

Any 2D compensation algorithm must pre-compute one move in order to calculate the

compensated intersection point with the present move. It is also very important to pre-compute a

second move to find the next compensated intersection point to see whether the first pre-

computed move is “reversed” by compensation, which usually indicates an “overcut” at the

beginning of the move. For this reason, Coord[x].CCSize must be set to a value of at least 2 in

order for 2D compensation to operate in the Power PMAC.

Zero-Distance Move Buffering

Some applications will require additional pre-computation and buffering. If there is the possibility

during a compensated sequence of moves of having one or more moves with zero distance in the

plane of compensation, these moves must be buffered so the algorithm can calculate the

compensated intersection point between the moves before and after these “zero-distance” moves.

Any type of move that has no component of motion in the plane of compensation must be

buffered. This includes dwells, delays, moves with no distance in any axis, moves perpendicular

to the plane of compensation (e.g. pure Z-axis moves with compensation in the XY-plane), and

rotary-axis moves. For example, if you can have a dwell, a perpendicular move up, a rotary-axis

move, a perpendicular move down, and another dwell between two “in-plane” moves, you must

reserve room to buffer 5 of these “zero-distance” moves.

Interference-Check Buffering

Being able to detect and handle interference conditions that can cause overcutting may require

additional buffering. The most basic interference check just requires a single additional pre-

computed move, as explained above. This is suitable for many applications, as most of the

interference cases encountered just require this single additional buffered move.

However, there are two reasons why additional moves would need to be buffered. First, there are

applications with the possibility of interference between compensated moves that are not adjacent

in a sequence, resulting in overcut (e.g. entry and exit moves for a pocket with a narrow neck). To

catch these cases, the PMAC must be able to buffer enough moves ahead to detect this type of

occurrence and take appropriate action before an overcut occurs.

Second, if it is desired to implement the mode of operation that deletes the move path between the

interfering points and continue operation without that section (sometimes desirable in rough

cutting passes), the number of moves buffered for the purpose of interference checking must be

doubled.

More details on how the interference checking is performed are provided in the section

Interference Checking, below.

Total Buffer Size

To calculate the buffer size needed for your application, decide how many moves “P” ahead you

want to check for interference and overcut (this must be at least 1). If you want to be able to

discard the interfering section and continue (instead of stopping with an error), double this value.

Next, decide how many consecutive “zero-distance-in-plane” moves “Q” (if any) you may need

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 707

to handle, and add this. Finally, add one move for the fundamental compensated intersection

calculation.

Coord[x].CCSize must be set to a value at least as big as this sum (P + Q + 1 or 2P + Q + 1). The

only disadvantage to defining a buffer larger than necessary is that it requires more memory (~1

kbyte per move), making that memory unavailable for other uses.

Specifying the Pre-Computation Length

Next, the user must specify how many “in-plane” moves ahead of the present move it will keep in

the buffer during a compensated move sequence by setting Coord[x].CCDistance. This number

is equivalent to P + 1 for the value of “P” computed above. If Coord[x].CCDistance is set to a

value less than 2, Power PMAC will use a value of 2. Coord[x].CCDistance cannot be set to a

value larger than Coord[x].CCSize, but it can, and often will, be set to a smaller value.

Defining the Plane of Compensation

The plane in which the 2D compensation is to be performed must be set using the buffered

motion-program normal command. This is the same plane that is specified for circular

interpolation. Any plane in XYZ-space may be specified. This is done by specifying a vector

normal to that plane, with I, J, and K-components parallel to the X, Y, and Z-axes, respectively.

For example, normal K-1, by describing a vector parallel to the Z-axis in the negative

direction, specifies the XY-plane with the standard right/left sense of the compensation.

(normal K1 would also use the XY-plane, but invert the right/left sense.) The vector normal

K-1 is the power-on/reset default. The compensation plane should not be changed while

compensation is active.

Other common settings are normal J-1, which specifies the ZX-plane for compensation

(common for lathes), and normal I-1, which specifies the YZ-plane. These three settings of

the normal vector correspond to RS-274 “G-codes” G17, G18, and G19, respectively. If you are

implementing G-codes in Power PMAC subprogram 1000 (the default G-code subprogram), you

could incorporate in subprog 1000:

N17000 normal K-1 return;

N18000 normal J-1 return;

N19000 normal I-1 return;

By using more than one vector component in a normal command, a “tilted” plane can be

defined. The ratio of the components determines the orientation of the normal vector, and

therefore of the plane of compensation. For example, the command normal K-0.866 J0.5

defines a plane tilted 30° from the XY-plane.

Defining the Magnitude of Compensation

The magnitude of the compensation – the tool radius – must be set using the buffered motion

program command ccr{data} (cutter compensation radius). This command can take either a

constant argument (e.g. ccr0.125) or an expression in parentheses (e.g.

ccr(P10+0.0625)). The units of the argument are the user units of the X, Y, and Z-axes. In

RS-274 style programs, these commands are often incorporated into “tool data” D-codes using

Power PMAC subprogram 1003 or equivalent.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 708

Negative and zero values for cutter radius are possible, although rarely used. Note that the

behavior in changing between a positive and negative magnitude is different from changing the

direction of compensation. See Changes in Compensation, below. Also, the behavior in changing

between a non-zero magnitude and a zero magnitude is different from turning the compensation

on and off. See the appropriate sections below.

Compensation Magnitude and Transformation Matrix Scaling

Some users will want to change the scaling of the X, Y, and Z axes through the use of

transformation matrices. By default, the magnitude of the radius compensation will scale with the

axis scaling. For example, if the axis units are scaled up by a factor of 5.0 with a transformation

matrix, a programmed radius of 4.0 mm will be used as a 20.0 mm radius.

In many applications, this is not desirable, so Power PMAC provides methods for rescaling the

magnitude of radius compensation through the use of status element Coord[x].TxyzScale. Most

users rescale the radius back to the “base” units of the coordinate system, although this is not

required.

If saved setup element Coord[x].AutoTxyzScale is set to 1, then status element

Coord[x].TxyzScale is automatically set to the “magnitude” of the selected XYZ transformation

matrix (technically, to the cube root of the determinant of the XYZ minor matrix of the

transformation matrix) when a program tsel{data} command is executed, selecting the

matrix. For this method to be useful, the matrix scaling of the X, Y, and Z axes must always be

the same.

The value of Coord[x].TxyzScale can also be set “manually” with the program command

txyzscale{data}, where {data} specifies the value to be placed in the status element.

With either method of setting the value of this element, the compensation radius as modified by

the scaling of the transformation matrix is then divided by the value of this element (which should

contain the matrix scaling factor). Typically this is used to keep the radius magnitude at the

programmed value regardless of the scaling of the matrix.

Feedrate of Compensated Arc Moves

When a circle-mode move is executed with 2D compensation active, the length of the

compensated arc move for the path of the tool center is different from the length of the

programmed arc move for the path of the tool edge. This means that the velocity of the tool center

is also different from the velocity of the tool edge along the programmed path.

The user can specify whether the compensated tool-center path moves at the programmed

feedrate, or the tool-edge path along the programmed path does so. If bit 3 (value 8) of saved

setup element Coord[x].CCCtrl is set to its default value of 0, the tool-center path moves at the

programmed feedrate. This means that the tool edge along the programmed path will move at a

different velocity, less if the compensation is to the outside of the arc, greater if to the inside of

the arc.

If bit 3 of Coord[x].CCCtrl is set to 1, the tool-edge path along the programmed path moves at

the programmed feedrate. This means that the compensated tool-center path will move at a

different velocity, greater if the compensation is to the outside of the arc, less if to the inside of

the arc.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 709

The ability to specify the tool-edge path feedrate of a compensated arc move by setting bit 3 of

Coord[x].CCCtrl to 1 is new in V2.1 firmware, released 1st quarter 2016. With the bit at its

default value of 0, operation is compatible with older firmware versions.

Turning On Compensation

The compensation is turned on by buffered motion program command ccmode1 (offset left) or

ccmode2 (offset right). (Note that the equivalent Turbo PMAC commands cc1 and cc2 are

axis motion commands for the “CC” axis in Power PMAC.) These are equivalent to the RS-274

G-codes G41 and G42, respectively. If you are implementing G-code subroutines in Power

PMAC subprogram 1000, you could simply incorporate into subprog 1000:

N41000 ccmode1 return;

N42000 ccmode2 return;

Turning Off Compensation

The compensation is turned off by buffered motion program command ccmode0, which is

equivalent to the RS-274 G- Code G40. (Note that the equivalent Turbo PMAC command cc0 is

an axis motion command for the “CC” axis in Power PMAC.) If you are implementing G-Code

subroutines in Power PMAC subprogram 1000, you could simply incorporate into subprog

1000:

N40000 ccmode0 return;

How Power PMAC Introduces Compensation

Power PMAC gradually introduces compensation over the next linear-mode move following

the ccmode1 or ccmode2 command that turns on compensation. Compensation cannot be

introduced over a circle-mode move (unlike in Turbo PMAC). Note that the length of the

programmed lead-in move must be greater than the cutter-compensation radius; otherwise the

program will be stopped with an error.

Inside Corner Introduction

If the lead-in move and the first fully compensated move form an inside corner, the compensated

lead-in move ends at a point one cutter radius away from the intersection of the programmed

lead-in move and the first fully compensated move, with the line from the programmed point to

this compensated endpoint being perpendicular to the path of the first fully compensated move at

the intersection. Note that this intersection point between the lead-in move and the first fully

compensated move is different from what the intersection between two compensated moves

would be. If the moves are to be blended, the corner will be blended according to the acceleration

times in force (Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 710

CCR CCR

Programmed

Path

Tool-Center

Path Tool-Center

Path

Programmed

Path

Lead-In

Move

Lead-In

Move

Linear Move

Arc Move

Introducing Compensation – Inside Corner

Outside Corner Introduction

If the lead-in move and the first fully compensated move form an outside corner, the compensated

lead-in move first moves to a point one cutter radius away from the uncompensated intersection

of the programmed lead-in move and the first fully compensated move, with the line from the

programmed point to this compensated endpoint being perpendicular to the path of the

compensated lead-in move at the intersection. This compensated tool path will be at a diagonal to

the programmed move path.

From this point, the path is dependent on whether the angle between the lead-in move and the

first fully compensated move is sharp enough that the corner is traversed with an added arc about

the uncompensated intersection point or not. The threshold for this choice is determined by

Coord[x].CCAddedArcBp (as it is for fully compensated intersections). This is explained more

completely in the section Treatment of Compensated Outside Corners, below.

If the angle is sharper than this threshold, Power PMAC will execute an arc move, with radius of

the cutter radius, about the uncompensated intersection point to a point perpendicular to the

starting direction of the fully compensated move.

If the angle is less sharp than this threshold, the compensated lead-in move will extend to the

direct compensated intersection point with the (extended) first fully compensated move. If the

moves are to be blended, the corner will be blended according to the acceleration times in force

(Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 711

Programmed

Path
Programmed

Path

Lead-In

Move
Lead-In

Move

Tool-Center

Path

Tool-Center

Path
Compensated

Linear Move

Compensated

Arc Move
CCR

CCR CCR

Programmed

Path

CCR

CCR

Tool-Center

Path

Compensated

Linear Move

Lead-In

Move

Added

Arc

Added

Arc

Programmed

Path

Lead-In

Move

Compensated

Arc Move

CCR

CCR

Tool-Center

Path

No Added Arc

With Added Arc

Introducing Compensation – Outside Corner

Treatment of Compensated Inside Corners

If the algorithm determines that the corner defined by two fully compensated moves must be

compensated to the inside, it will calculate the intersection point of these two compensated

moves. If the two moves are not blended for whatever reason, the incoming move will stop

exactly at this point. If the moves are to be blended, the compensated path will be blended

according to the acceleration times in force (Coord[x].Ta and Coord[x].Ts), just as for

uncompensated moves, and the blended path will pass to the “inside” of the corner at the

compensated intersection point.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 712

Programmed

Path

Programmed

Path

CCR

CCR CCR
CCR

Tool-Center

Path

Tool-Center

Path

Linear Move

Linear Move

Linear Move

Arc Move

Programmed

Path

Programmed

Path

Tool-Center

Path Tool-Center

Path

Arc Move
Arc Move

Arc Move

Linear Move

CCR
CCR

CCR
CCR

Inside Corner Cutter Compensation

Treatment of Compensated Outside Corners

If the algorithm determines that the corner defined by two fully compensated moves must be

compensated to the outside, it will first calculate the direct intersection point of these two

compensated moves. Then, it will calculate the distance from the uncompensated intersection

point to this compensated point, and compare it to the cutter radius. Next, it will compare the ratio

of the cutter radius to this distance (which for linear moves is equal to the cosine of the change in

directed angle between the two moves) to the saved setup element Coord[x].CCAddedArcBp.

Sharp Outside Corner

If this ratio is less than Coord[x].CCAddedArcBp, meaning that the compensated intersection is

farther away from the uncompensated corner than the “break point” set by this element, and

implying a “sharper” corner (greater change in direction), Power PMAC will add an arc move of

the cutter radius to traverse this outside corner from the point tangent to the incoming

compensated move to the point tangent to the outgoing compensated move.

The purpose of this arc move is to keep the tool-center time from moving too far from the

programmed corner point on sharp corners, which could interfere with other features on the part,

and take more time. The move will be executed at the same vector feedrate as the incoming

move, subject to two limitations. First, the minimum time for this move is the acceleration time in

force (Coord[x].Ta + Coord[x].Ts or 2 * Coord[x].Ts, whichever is greater). Second, the move

speed can be limited by the Coord[x].MaxCircleAccel centripetal acceleration limit.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 713

If the two moves are not blended for whatever reason, Power PMAC can be programmed to stop

either at the beginning of this added arc move (bit 0 – value 1 – of Coord[x].CCCtrl = 1) or at

the end of this added arc move (bit 0 of Coord[x].CCCtrl = 0).

Arc Move

Arc Move

Arc Move
Arc Move

Linear MoveLinear Move

Linear Move

Linear Move

Tool-Center

Path

Tool-Center

Path

Tool-Center

Path

Tool-Center

Path

Programmed

Path

Programmed

Path

Programmed

Path
Programmed

Path

CCR

CCR

CCR

CCR

CCR

CCR CCR

CCR

Added ArcAdded Arc

Added Arc Added Arc

Sharp Outside Corner Cutter Compensation

Shallow Outside Corner

If this ratio is greater than Coord[x].CCAddedArcBp, meaning that the compensated

intersection is closer to the uncompensated corner than the “break point” set by this element, and

implying a “shallower” corner (less change in direction), Power PMAC will use this compensated

intersection point to combine the two moves directly, with no added arc move in between. If the

two moves are not blended for whatever reason, the incoming move will stop exactly at this point.

If the moves are to be blended, the compensated path will be blended according to the

acceleration times in force (Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves,

and the blended path will pass to the “inside” of the corner at the compensated intersection point.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 714

Programmed

Path

Programmed

Path

Programmed

Path Programmed

Path

Linear Move

Linear Move Linear Move

Linear Move

Arc Move

Arc Move

Arc Move

Arc Move

Tool-Center

Path
Tool-Center

Path

Tool-Center

Path Tool-Center

Path

CCR

CCR

CCR

CCR

CCR

CCR

CCR

CCR

Shallow Outside Corner Cutter Compensation

Changing Radius During Compensation

It is possible to change the tool radius value while compensation is active. If this is done, the

change in compensation will be introduced linearly along the length of the next compensated

move. For a linear-mode move, this will result in a path that is diagonal to the programmed

move. For a circle-mode move, this will result in a spiral path for the compensated move.

Changing the tool radius value to or from zero will result in different path behavior from modally

removing or introducing compensation (respectively).

How Power PMAC Removes Compensation

Power PMAC gradually removes compensation over the next linear-mode move following the

cc0 command that turns off compensation. The process is exactly the reverse of the process that

introduces compensation. Note that the length of the programmed lead-out move must be greater

than the cutter-compensation radius; otherwise the program will be stopped with an error.

Inside Corner Removal

If the last fully compensated move and the lead-out move form an inside corner, the lead-out

move starts at a point one cutter radius away from the intersection of the last fully compensated

move and the lead-out move, with the line from the programmed point to this compensated

starting point being perpendicular to the path of the last fully compensated move at the

intersection. Note that this intersection point between the last fully compensated move and the

lead-out move is different from what the intersection between two compensated moves would be.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 715

If the moves are to be blended, the corner will be blended according to the acceleration times in

force (Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves. For the lead-out move,

the compensated tool path will be at a diagonal to the programmed move path, ending at the

programmed point for this move.

CCR CCR

Programmed

Path

Tool-Center

Path Tool-Center

Path

Programmed

Path

Lead-Out

Move

Lead-Out

Move

Linear Move

Arc Move

Inside Corner Cutter Compensation Removal

Outside Corner Removal

If the last fully compensated move and the lead-out move form an outside corner, the lead-in

move first moves to a point one cutter radius away from the uncompensated intersection of the

last fully compensated move and the lead-out move, with the line from the programmed point to

this compensated endpoint being perpendicular to the path of the last fully compensated move at

the intersection.

From this point, the path is dependent on whether the angle between the last fully compensated

move and the lead-out move is sharp enough that the corner is traversed with an added arc about

the uncompensated intersection point or not. The threshold for this choice is determined by

Coord[x].CCAddedArcBp (as it is for fully compensated intersections). This is explained more

completely in the section Treatment of Compensated Outside Corners, above.

If the angle is sharper than this threshold, Power PMAC will execute an arc move, with radius of

the cutter radius, about the uncompensated intersection point to a point tangent to a straight-line

move to the programmed point of the lead-out move. It will then execute the straight-line lead-out

move to this point. The path of this move will be diagonal to the path of the uncompensated

move.

If the angle is less sharp than this threshold, the last fully compensated move will extend to the

direct compensated intersection point with the (extended) compensated lead-out move. If the

moves are to be blended, the corner will be blended according to the acceleration times in force

(Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 716

Programmed

Path
Programmed

Path

Lead-Out

Move
Lead-Out

Move

Tool-Center

Path

Tool-Center

Path
Compensated

Linear Move

Compensated

Arc Move
CCR

CCR CCR

Programmed

Path

CCR

CCR

Tool-Center

Path

Compensated

Linear Move

Lead-Out

Move

Added

Arc

Added

Arc

Programmed

Path

Lead-Out

Move

Compensated

Arc Move

CCR

CCR

Tool-Center

Path

No Added Arc

With Added Arc

Outside Corner Cutter Compensation Removal

Interference Checking

Power PMAC has powerful capabilities to detect interference in the compensated tool-center path

that is indicative of “overcut” conditions on the part. Fundamentally, interference can be detected

if a compensated move is in the opposite direction from the uncompensated move, which will

cause a crossover in the compensated path.

In order to detect interference conditions in time to prevent an overcut, Power PMAC must be

pre-computing and buffering at least 2 “in-plane” moves in the compensated move sequence. The

number of pre-computed “in-plane” moves that will be buffered is specified by

Coord[x].CCDistance; the total number of moves – in-plane and not – that can be buffered is

specified by Coord[x].CCSize. The settings for these are discussed in the above sections

Specifying the Pre-Computation Length and Setting Up the Compensation Buffer.

Note

If Coord[x].CCDistance is large enough to cover a complete

programmed loop, it may consider the loop to constitute

interference.

Action on Detecting Interference

Power PMAC permits two different actions when interference in the compensated path is

detected. If bit 1 (value 2) of Coord[x].CCCtrl is set to 0, Power PMAC will stop the motion

program when interference is detected. Provided that the program has been told to pre-compute

enough moves, motion will be stopped before the resulting overcut would occur. This mode

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 717

basically assumes that the interference was caused by a programming error, so the program

should not continue.

However, if bit 1 (value 2) of Coord[x].CCCtrl is set to 1, Power PMAC will compute the

intersection point of the interfering compensated move paths, discard the trajectory between the

first arrival at this intersection point and the second arrival, and directly blend the first incoming

path to point to the second outgoing path. This mode is useful for rough cutting with a large tool

that may not be able to get into small features in the part, before a final path with a small tool that

can. Note that this removal is only possible for linear mode moves in the compensated path, and

that it is not always possible to compute a non-interfering path in this algorithm. If the Power

PMAC cannot compute a non-interfering path in this mode, it will stop the program when

interference is detected.

For debugging purposes, bit 2 (value 4) of Coord[x].CCCtrl can be set to 1. With this setting,

Power PMAC will permit interference to occur. This setting is suggested mainly for dry-run

modes, to be able to detect more clearly what the source of the problem is.

Examples

This XY path plot shows what can happen with interference checking disabled. The bottom path

shows the uncompensated path; this path has a “pocket” that is deep and narrow relative to the

radius of the tool. Without interference checking, the top compensated path goes too deep into the

pocket. One of the compensated moves is reversed in direction and the compensated path

intersects itself. The result is that the tool would “overcut” past the edge of the uncompensated

path.

Deep Pocket, Interference Check Disabled

The next XY path plot shows the same uncompensated and compensated paths, but this time with

interference checking enabled for the compensated moves. Note that the reversed move at the

bottom of the pocket of the compensated path is eliminated, and the moves entering and leaving

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 718

the pocket are shortened to the point where they intersected without interference checking. This

action prevents any overcutting by the tool.

Deep Pocket, Interference Check and Removal Enabled

In this next case, the XY path plot shows a case of interference that involves several moves. The

bottom path shows the uncompensated path with a small shallow pocket. Without interference

checking active, the top compensated path goes too deep into the pocket, causing overcut. Note

that the compensated path has several points of intersection with itself.

Shallow Pocket, Interference Check Disabled

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 719

The following XY path plot shows the same uncompensated and compensated paths, but this time

with interference checking enabled for the compensated moves. Notice that everything between

the first and last crossover point has been removed, so that the added outside arc going into the

pocket directly blends into the added outside arc leaving the pocket.

Shallow Pocket, Interference Check and Removal Enabled

Single-Stepping in 2D Tool Radius Compensation

Single-step execution of motion programs with 2D tool radius compensation active requires

special consideration by the Power PMAC. When this compensation is not active, a single-step

command simply progresses in the program until it finds and calculates the next move, and

executes that move.

However, when 2D compensation is active, in order to be able to execute the next move (which is

the operator’s intention), the program must calculate far enough ahead to compute the intersection

with the next in-plane move, and to check for possible interference conditions. At the end of a

compensated move sequence, no more moves must be calculated.

When given a single-step command with 2D compensation active – an on-line s command or a

buffered program step command – Power PMAC computes enough moves ahead so that it can

execute one move, taking that move out of the compensated move buffer. At the beginning of a

compensated move sequence, it must compute enough moves to get Coord[x].CCDistance

moves ahead. In the middle of a sequence, it must compute enough moves to stay this many in-

plane moves ahead – often one move, but sometimes more, and sometimes none. At the end of a

sequence, when the lead-out move has already been computed, no additional moves are computed

on a single-step command; one move is simply pulled from the buffer and executed.

Errors in 2D Tool Radius Compensation

Power PMAC can detect several types of errors during the execution of 2D tool radius

compensation. If it detects one of these errors, it will halt execution of the program and set an

error status value to denote the presence and type of error. The following table shows the values

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 720

of Coord[x].ErrorStatus that reflect 2D compensation errors. 8-bit element

Coord[x].ErrorStatus is part of full-word element Coord[x].Status[0], whose contents can also

be found with the &x? or backup Coord[x].Status query commands.

ErrorStatus

Value

Error Name Description

0 NoError Normal execution

3 CCMoveTypeError Illegal move mode or command while cutter compensation

active (rapid, pvt, spline, lin-to-pvt, new normal, pmatch,

pclr, pset, pload)

5 CCLeadOutMoveError Illegal cutter compensation lead-out move (circle mode or

length not greater than cutter radius)

6 CCLeadInMoveError Illegal cutter compensation lead-in move (circle mode or

length notgreater than cutter radius)

7 CCBufSizeError Insufficient size for cutter compensation move buffer (not

enough to find next in-plane move)

9 CCFeedRateError Moves not specified by feedrate for cutter comp

10 CCDirChangeError Compensated move in opposite direction from programmed

move; indicates interference condition

11 CCNoSolutionError No solution could be found for compensated move

13 CCDistanceError Could not resolve overcuts by removing moves

14 CCNoIntersectError Could not find intersection of compensated paths

15 CCNoMovesError No compensated moves between lead-in and lead-out

moves

Three-Dimensional Tool Radius Compensation

Power PMAC provides the capability for performing three-dimensional (3D) tool (cutter) radius

compensation on the moves it performs. This compensation can be performed among the X, Y,

and Z axes, which should be physically perpendicular to each other (even if the motors assigned

to the axes are not). Unlike the more common two-dimensional (2D) compensation, the user can

independently specify the offset vector normal to the cutting surface, and the tool orientation

vector.

The 3D compensation algorithm automatically uses this data to offset the described path of

motion, compensating for the size and shape of the tool. This permits the user to program the path

along the surface of the part, letting Power PMAC calculate the path of the center of the end of

the tool.

3D compensation is valid only in linear and circle move modes, and is really intended only

for linear moves.

Defining the 3D Tool Geometry

The magnitude of the 3D compensation is determined by a table that defines the size and

shape of the end of the cylindrical tool. The table specifies the cross-sectional shape of the

tool end as a set of up to 16 arcs of individually specified radii and subtended angles. These

define the shape of the tool tip from the end of the tool “shaft” to the tip point of the tool at

the center of rotation.

Most users will define a very simple table for either a “flat-end” tool or a spherical “ball-nose”

tool. These cases are given as specific examples below. However, this table gives the capability

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 721

for using other tool-tip shapes, and also for compensating for tool wear in very high-accuracy

applications.

Note

For convenience of description, the explanation of the tool

geometry will use the convention that the tool is vertical with

the tool tip at the bottom.

The table is defined within the data structure Coord[x].CC3Data[i], where x is the

coordinate system number, and i is the index (i = 0 to 16) of the arc section of the tool tip.

(Index i = 16 only contains data for the end of section 15.) Each tool-tip section structure

has multiple elements, as explained below. Note that each coordinate system only has one

table of tool-tip geometry, so if the tool is changed, the table must be re-entered using (on-

line or program) commands. The table contents cannot be saved to non-volatile memory, so

the table must be created after power-on/reset using (on-line or program) commands.

Sample Tool-Tip Geometry

User sets:

Coord[x].CC3Data[0].ToolRadius = TR0

Coord[x].CC3Data[0].ToolOffset = TO0

(values for higher indices i are calculated automatically)

Coord[x].CC3Data[i].CutRadius = Ri

Coord[x].CC3Data[i].NdotT = cos Θi

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 722

for i = 0 until cos Θi = 1.0

Setting the Initial Reference Point

The initial reference point for the table can be considered the transition point between the

non-cutting tool shaft and the cutting tool-tip. The user must define both the radial and

axial distance of this point from the tool-center reference point. The path in the motion

program is described as if this tool-center point were directly in contact with the part, and

the compensation function will offset the tool-center path to allow for the defined size and

shape of the tool end. The tool-center reference point must be on the center-line, or axis of

rotation, of the tool. Its location along the axis of rotation is at the discretion of the user.

The user defines the table’s initial reference point by setting two table elements.

Coord[x].CC3Data[0].ToolRadius is set to the radial distance of this point from the tool

center-line, in the linear length units of the coordinate system (typically millimeters or

inches). This must be a positive value, and is usually considered to be the “shaft radius”.

Coord[x].CC3Data[0].ToolOffset is set to the (signed) axial distance of the this point from

the tool-center reference point, in the linear length units of the coordinate system. If this is a

positive value, the initial reference point for the table is “above” (away from the tool tip) the

tool-center reference point; if it is a negative value, the initial reference point for the table is

“below” (toward the tool tip) from the tool-center reference point.

Note that the ToolRadius and ToolOffset elements exist and are used for higher section

index values (i = 1 to 16). However, these are automatically calculated by the Power PMAC

as arc-piece data is entered using Script commands. Note that the user should not enter

values for these elements using the Script language, and should not enter the arc-piece

section data using C-language commands.

Entering the Arc-Piece Section Data

Next, the user must enter element values defining the arc pieces used to build the cross-section of

the tool end. Each arc piece is defined by specifying its starting angle and its radius. The

subtended angle of an arc piece is simply the difference between the starting angle of this arc

piece and the starting angle of the next arc piece. There is no change of direction at the junction

of two arc pieces. If a sharp corner in the cross section is desired, a “dummy” arc piece of zero

radius must be defined.

The element Coord[x].CC3Data[i].NdotT is set to the cosine of the starting angle for the arc

piece with index i. The angle is defined as the angle between the tool axis of rotation (“vertical”)

and the radial line on the end of the arc away from the tool tip (the “top” end of the arc). This

cosine value is equivalent to the dot product of the surface-normal vector N and the tool-direction

vector T for this point on the tool, hence the element name NdotT. Of course, this value must be

within the range -1.0 to +1.0; an attempt to enter a value outside of this range will be rejected

with an error.

The value of NdotT for each arc piece must be greater than the value for the previous piece (so

the starting angle is less than for the previous piece) – this requires that the full tool-end cross-

section be convex. When a value for NdotT is entered for an arc piece with a Script command,

the values of NdotT for all subsequent (higher-numbered) arc pieces are checked against this

value, and if less, are set equal to this value. If a command attempts to set a value for NdotT that

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 723

is less than the value for a previous (lower-numbered) arc piece, the command will be rejected

with an error.

The element Coord[x].CC3Data[i].CutRadius is set to the length of the radius for the arc piece

with index i, in the linear length units of the coordinate system. This must be a non-negative

value. It can be larger or smaller than the tool radius. A zero value can be used to specify a sharp

corner in the cross-section.

The tool-tip cross section can be defined using up to 16 arc pieces (i = 0 to 15). A table of n arc

pieces is ended with a setting for Coord[x].CC3Data[n].NdotT of 1.0, which defines a zero-

degree angle from the “vertical” for the radial line at the end of the last arc piece (with index n-1),

specifying a “smooth” tool-center tip. Coord[x].CC3Data[16].NdotT is automatically set to 1.0,

so if the full set of 16 arc pieces is used, this will be the ending value for the last arc. In the

unusual event that a pointed tool-center tip is desired, a last arc piece of zero radius must be

specified to bring the final angle to zero degrees. No value of Coord[x].CC3Data[n].CutRadius

must be entered; this value will not be used in any case. A value for

Coord[x].CC3Data[16].CutRadius cannot be entered and will never be used.

The values of Coord[x].CC3Data[0].NdotT and Coord[x].CC3Data[0].CutRadius specify the

information for the first arc piece of the cross-section, which starts at the initial reference point. If

Coord[x].CC3Data[0].NdotT is set to 0.0, there is a smooth blend between the tool shaft

cylinder and the start of the tool end. If it is set to a non-zero value, there will be a sharp corner at

this junction. A negative value for Coord[x].CC3Data[n].NdotT is permissible; this will create a

“bulbous” tool end that permits undercutting operations in holes.

Examples

A semi-circular (“ball-nose”) tool-end cross section whose radius is specified in the variable

BallRad and whose tool-center reference point is at the center of the hemisphere can be defined

with the following settings:

Coord[x].CC3Data[0].ToolRadius = BallRad

Coord[x].CC3Data[0].ToolOffset = 0.0

Coord[x].CC3Data[0].NdotT = 0.0

Coord[x].CC3Data[0].CutRadius = BallRad

Coord[x].CC3Data[1].NdotT = 1.0

A tool-end cross section that is square with an overall size set by variable ShaftRad and a

circular corner of radius CornerRad, and whose tool-center reference point is ShaftRad in from

the tool tip, can be defined with the following settings:

Coord[x].CC3Data[0].ToolRadius = ShaftRad

Coord[x].CC3Data[0].ToolOffset = ShaftRad - CornerRad

Coord[x].CC3Data[0].NdotT = 0.0

Coord[x].CC3Data[0].CutRadius = CornerRad

Coord[x].CC3Data[1].NdotT = 1.0

Turning On 3D Compensation

3D cutter compensation is turned on by the buffered motion program command ccmode3. (Note

that the equivalent Turbo PMAC command cc3 is an axis motion command for the “CC” axis in

Power PMAC.) Since the offset vector is specified explicitly, there is no “left” or “right”

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 724

compensation here. When 3D compensation is turned on, the “surface-normal” vector is

automatically set to the “null” (zero-magnitude) vector, and the “tool-orientation” vector is also

automatically set to the “null” vector. Until a surface-normal vector and a tool-orientation vector

are explicitly declared with 3D compensation active, no actual compensation will occur. The first

move after 3D compensation is enabled must be a linear mode or circle (not

recommended) mode move; otherwise, the program will be halted with an error.

Turning Off 3D Compensation

3D cutter compensation is turned off by the buffered motion program command ccmode0, just

as for 2D compensation.). (Note that the equivalent Turbo PMAC command cc0 is an axis

motion command for the “CC” axis in Power PMAC.) Compensation will be removed over the

next linear mode or circle (not recommended) mode move after compensation has been

turned off. If a commanded move of a different mode is encountered in the program before there

is a linear or circle mode move that can remove the compensation, the program will be

halted with an error.

Declaring the Surface-Normal Vector

In 3D cutter compensation, the “surface-normal vector” must be explicitly declared in the part

program. (In 2D cutter compensation, it is automatically perpendicular to both the plane normal

vector and the velocity vector.) The surface-normal vector N is the vector that is to be

perpendicular to the part surface at the programmed point(s). The 3D compensation algorithm

uses this vector, along with the tool-orientation vector, to compute what part of the tool-tip must

be in contact with the surface at the point(s) to create a surface with this normal vector.

The direction of the surface-normal vector is determined by the nxyz I{data}, J{data},

and K{data} components declared in a motion program line, specifying the X, Y, and Z-axis

components, respectively. The absolute magnitude of these components does not matter, but the

relative magnitudes define the direction. The direction must be from the surface into the tool.

If a component is not declared in an nxyz command, that component is automatically set to 0.0.

For example the command nxyz I1 automatically sets the J and K components to 0, defining a

surface-normal vector parallel to the X-axis.

Note that the coordinates of the surface-normal vector must be expressed in the machine

coordinates. If the part is on a rotating table, these coordinates will not in general be the same as

the original part coordinates from the part design – the vector must be rotated into machine

coordinates before sending to Power PMAC.

The surface-normal vector affects the compensation for the move on the same line of the motion

program, and all subsequent moves until another surface-normal vector is declared. In usual

practice, a surface-normal vector is declared for each move, affecting that move alone.

Declaring the Tool-Orientation Vector

In 3D cutter compensation, the “tool-orientation vector” must be explicitly declared in the part

program. (In 2D cutter compensation, it is automatically parallel to the plane normal vector.) The

tool-orientation vector T is the vector that is parallel to the axis of rotation of the tool. The 3D

compensation algorithm uses this vector, along with the surface-normal vector, to compute what

part of the tool-tip must be in contact with the surface at the point(s) to create a surface with this

normal vector.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 725

The direction of the tool-orientation vector is determined by the txyz I{data}, J{data},

and K{data} components declared in a motion program line, specifying the X, Y, and Z-axis

components, respectively. The absolute magnitude of these components does not matter, but the

relative magnitudes define the direction. The direction sense of the tool-orientation vector is not

important; it can be from base to tip, or from tip to base.

If a component is not declared in a txyz command, that component is automatically set to 0.0.

For example the command txyz K1 automatically sets the I and J components to 0, defining a

surface normal vector parallel to the Z-axis.

The tool-orientation vector affects the compensation for the move on the same line of the motion

program, and all subsequent moves until another tool-orientation vector is declared. In usual

practice, a tool-orientation vector is declared for each move, affecting that move alone.

Note

Note that the tool-orientation vector declared here does not

command motion; it merely tells the compensation algorithm

the angular orientation that has been commanded of the tool.

Typically the motion for the tool angle has been commanded

with A, B, and/or C-axis commands, often processed through

an inverse-kinematic subroutine on Power PMAC.

Move Commands with 3D Compensation

A typical move command with 3D compensation active will include commands for all of the

axes, including the rotary axes, the surface-normal vector declaration, and the tool-orientation

vector declaration. It will usually look something like:

X37.32Y-1.64Z39.45A-17.23C27.33nxyzI0.73J-0.26K0.55txyzI0.51J0.72K-0.35

How 3D Compensation is Performed

In operation, Power PMAC starts from the uncompensated X, Y, and Z-axis positions for each

end-point programmed while 3D compensation is active. Then several offsets are applied to the

X, Y, and Z-axis positions. The first offset is taken along the surface-normal vector, of a

magnitude equal to the defined CutRadius for the arc-piece section of the tool-tip that is in

contact with the part given the surface-normal and tool-orientation vectors in force. The second

offset is then taken to the centerline of the tool, in the plane containing both the surface-normal

vector and the tool-orientation vector, perpendicular to the tool-orientation vector. The third

offset is then taken along the centerline of the tool, from this point to the tool-center reference

point.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 726

The following diagram shows how the programmed point, surface-normal vector, tool-orientation

vector, and tool-nose shape are used to compute the offset point.

T

N

C

P

Move command:

X.. Y.. Z.. A.. B.. nxyz I.. J.. K.. txyz I.. J.. K..

P: Programmed Point

(from X.. Y.. Z.. A.. B..)

N: Surface Normal Vector

(from nxyz I.. J.. K..)

T: Tool Orientation Vector

(from txyz I.. J.. K..)

R: Tool-Nose Radius

(from tool-tip table)

C: Tool Center Point

(automatically computed)
R

3D Tool Radius Compensation Offset

If Power PMAC cannot compute a proper solution for a move, it will stop the motion program

with an error. It will set Coord[x].ErrorStatus to 12 (“CCNdotTError”) to denote this particular

error. If the command backup Coord[x].Status is used, the text name of the error will be

reported for ErrorStatus.

Once the modified end-point is calculated, the move to that end-point is calculated just as it

would be without compensation. If the program is in linear mode, it will be linearly

interpolated. If the program is in circle mode (not advised), arc interpolation will be applied.

Because the offset to the end-point is directly specified for each move, there are no intersection

points for Power PMAC to compute using the equations for the next move. This means there are

no special lookahead or single-step execution considerations, as there are in 2D compensation.

No interference checking is performed.

All moves in 3D compensation are directly blended together. There are no special considerations

for outside corners, as there are in 2D compensation. Also, there are no special considerations for

the lead-in and lead-out moves. The lead-in move is simply an interpolated move from the last

uncompensated position to the first compensated position. The lead-out move is simply an

interpolated move from the last compensated position to the first uncompensated position.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 727

PVT Move Mode

For the user who desires more direct control over the trajectory profile, Power PMAC offers

Position-Velocity-Time (PVT) mode moves. In these moves, the user specifies the axis states

directly at the transitions between moves (unlike in linear or circle-mode moves). This requires

more calculation by the host, but allows tighter control of the profile shape. For each piece of a

move, the user specifies the end position or distance, the end velocity, and the piece time.

PVT Mode Declaration

To put a coordinate system (and all the axes in the coordinate system) into the PVT move mode,

the pvt{data} command is used. The value of {data} specifies the time for subsequent

moves, in milliseconds, with floating-point resolution. If you wish to change the move time while

staying in PVT move mode, you must issue another pvt{data} command with a different time

value. Unlike in PMAC and Turbo PMAC, the ta and tm commands do not affect PVT-mode

moves.

Position or Distance Specification

The destination point of a PVT-mode move is specified in the move command itself. The

commanded destination for each axis can be specified as a position relative to the programming

origin (if the axis is in abs absolute mode) or as a distance from the last commanded move (if the

axis is in inc incremental mode). The command specifies one of these; Power PMAC

automatically computes the other. As in other modes, the position or distance value is specified

immediately after the axis name, in the user axis units, either as a numerical constant without

parentheses or as a mathematical expression inside parentheses.

Velocity Specification

The ending velocity for an axis move is specified as a signed quantity following the “:” (colon)

character immediately after the position/distance value. This makes the axis mode command of

the form X100:-25. The value can be specified either as a numerical constant without

parentheses or as a mathematical expression inside parentheses. The velocity units are determined

by the user axis units and the coordinate-system time units. The user axis units are determined by

the axis definition; the coordinate-system time units are determined by the value of

Coord[x].FeedTime, in milliseconds. At the default value of 1000, the coordinate-system time

units are seconds, so the velocity units are the user axis units per second.

Note

Unlike the vector velocity (feedrate) specification for linear

and circle-mode moves, which is always a positive value, the

individual axis velocity specifications for pvt-mode moves are

signed quantities. If the axis move is to end going in the

negative direction, the specified velocity value should be

negative.

Power PMAC Calculations

To compute the equations of motion for the axis, Power PMAC uses the specified position,

velocity, and time from the command, plus the ending position and velocity from the previous

move (or stop condition), and computes the unique third-order position polynomial as a function

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 728

of time that satisfies these constraints. This results in a linearly changing acceleration, a parabolic

velocity profile, and a cubic position profile for the move.

Use of PVT Move to Create Arbitrary Profiles

The PVT mode is the most useful for creating arbitrary trajectory profiles. It provides a “building

block” approach to putting together linear and parabolic velocity profile sections to create

whatever overall profile is desired. The following diagram gives an example of such an arbitrary

PVT-mode sequence.

TA
P

V =

TA TATA TA TA TA

All segments same time

No velocity or acceleration

discontinuities at segment

boundaries

If segment were
done at constant
velocity:

VEL

TIME

etc.

etc.

INCREMENTAL

SPLINE

TA500

X10000

X9000

X10500

X12000

SPLINED MOVES

VEL

TIMETA

P

V

(specified)

(calculated)
P ,V

P PP

(from
before)

(calculated)= constant

A

A

dA

dt

(calculated)
(specified)

PVT200
...
X9000:150
...

Position, Velocity, and Time (PVT mode) [Parabolic Velocity]

PMAC Transition Point Moves

1000

900

500

200 100 100 200 500
200 400 600 11000

Velocity

(Units/sec)

Time

(msecs)
1 2 3 4 5

inc
pvt200
Y133.333:1000
pvt100
Y100:1000
Y96.667:900
pvt200
Y140:500
pvt500
Y83.333:0

Move Program

1

2
3

4

5

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 729

The next diagram shows the relationship between distance, velocity, and time for common PVT-

mode sections:

Vel

T ime

V

t

P=1/2 Vt

Vel

T ime

V

t

P=1/3 Vt

Vel

T ime

V

t

P=2/3 Vt

Vel

T ime

V

t

P=Vt

Vel

T ime

V

t

P=1/2(V +V) t

Vel

T ime

V

t

P =5/6 Vt

1 2

V/2

P =1/ 6 Vt
1

2

2t

P V T S e g m e n t S h a p e s

2

V1

Use of PVT Mode in Contouring

PVT mode provides excellent contouring capability, because it takes the interpolated commanded

path exactly through the programmed points. It creates a path known as a “Hermite spline”. To

use PVT mode for this multi-axis contouring, the axis velocities at each programmed point must

be specified in addition to the positions.

The following drawing shows one technique for computing the the axis velocities at each

programmed point of a contour. Each point in the sequence can be considered as being on a circle

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 730

with the point before and point after. The line from the center of this circle to the programmed

point (the radius vector) is perpendicular to the velocity vector at the point. Using the desired

vector velocity magnitude and the direction of the vector, the individual axis velocities can be

computed.

The automatic conversion of linear-mode moves to PVT format that is performed when

Coord[x].SegLinToPvt is greater than 0 uses an algorithm similar to this to compute the internal

PVT move commands from the programmed points and vector feedrate.

Lookahead with PVT Moves

The trajectories from PVT mode moves can be passed through the special lookahead buffer for

dynamic limiting, just as those from linear and circle mode moves are, if the coordinate system is

in segmentation mode (Coord[x].SegMoveTime > 0). Each segment derived from the

commanded PVT mode move is checked for possible violations of position, velocity, and

acceleration limits for every motor, and the time for the segment is extended if necessary to avoid

exceeding any of these limits. As with linear and circle mode moves, the path generated is not

changed, only the speed at which the path is traversed is.

Blending PVT Moves with Linear and Circle Moves

In Power PMAC, it is possible to blend PVT-mode moves with linear and circle-mode moves.

(This was not possible in earlier PMAC generations.) Unlike blending between linear and circle

mode moves themselves, this does not include a separate blend section governed by acceleration-

time parameters. In this case, the linear and circle-mode moves are treated as if they had zero

Ci+2

Ri+2

Vi+2

Pi+2

Vi+1

Pi+1

Ri+1

Ci+1

Ci

Ri

Pi

Pi-1

VXi

VYi

Vi

PVT Mode Contouring

(Hermite Spline)

To compute axis velocities at point Pi:

1. Find common center of Pi-1, Pi, and Pi+1

2. Compute velocity vector as normal

 to radius vector

3. Resolve velocity vector into components

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 731

acceleration times at the blend (regardless of the present settings of the acceleration-time

parameters), and these are directly concatenated with the PVT-mode moves before or after. Note

that the coordinate system must be in “segmentation mode” (Coord[x].SegMoveTime > 0) to

perform this blending.

Probably the most common use of this capability is to create “custom” acceleration and

deceleration profiles for linear and circle-mode moves that cannot be created by the standard

profiles for those modes.

In the case of a linear or circle-mode move blending into a PVT-mode move, the ending velocity

of each axis in the linear or circle-mode move is automatically used as the starting velocity for

that axis in the PVT-mode move, guaranteeing continuity of velocity. The ending (programmed)

position for each axis in the linear or circle-mode move (not where it would have started to

decelerate to a stop in the absence of blending) is the starting position for the PVT-mode move.

In the case of a PVT-mode move blending into a linear or circle-mode move, each axis starts the

linear or circle-mode move at the (unblended) programmed speed. Each axis ends the PVT-mode

move at the speed programmed in the PVT-mode move command. If these two speeds are not the

same, there will be a sudden step-change in the axis velocity. It is the user’s responsibility to

ensure that these two velocities are the same in order to achieve a smooth transition.

Acceleration is never guaranteed to be continuous at the junctions between PVT-mode sections

and linear or circle-mode sections. The user must include acceleration continuity as a constraint

in his calculations if he wishes such a condition.

The following plot shows the velocity and acceleration profiles for a linear-mode move with

PVT-mode acceleration and deceleration moves. The parabolic acceleration and deceleration

profiles in this example can optimize the use of a typical motor’s torque/speed envelope. The

sequence of commands is:

inc; // Incremental move mode

pvt1000; // PVT mode, 1 sec move

x20:30; // Accel to 30 over dist of 20

linear; // Switch to linear mode

x30 f30; // Move at speed of 30

pvt1000; // PVT mode, 1 sec move

x20:0; // Decel to stop over dist of 20

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 732

Linear Mode Move with PVT Mode Acceleration and Deceleration

Issues with Single-Stepping

Because PVT-mode moves can be, and usually are, specified with explicitly non-zero velocities

at the end points, single-stepping execution with the s [step] command presents problems not

found in other move modes. Users are in general discouraged from trying to single-step a PVT-

mode move with non-zero end velocity, because there will be an immediate deceleration to stop

from the programmed end velocity at the end of the move. In addition, the next move, which was

calculated assuming a non-zero starting velocity, will have a profile very different from that

intended when calculated, and will probably require a higher peak velocity than intended.

The bstart (block-start) and bstop (block-stop) program commands can be used to “bracket”

a set of PVT-mode moves in a motion program that start and end at zero velocity. Since single-

step execution progresses all the way from the bstart to the bstop (block-stop) command, the

entire move sequence can be safely executed as a single-step.

Note that if the PVT-mode move is executed in single-step mode with segmentation and the

special lookahead buffer active, the lookahead acceleration control will keep the profile within

the acceleration limits, but the profile will look nothing like that for continuous execution.

Enhanced PVAT Moves

If saved setup element Coord[x].PvatEnable is set to 1, moves in this mode are more

sophisticated and flexible. In addition to specifying the ending position/distance and ending

signed velocity for each axis in each move command, the user specifies the ending signed

acceleration as well. From this information, Power PMAC computes a 5th-order position profile

between the programmed points for each axis.

In this mode, commanded axis position, velocity, and acceleration are guaranteed to be

continuous, even at programmed move boundaries. Jerk (rate of change of acceleration) and

“snap” (rate of change of jerk) are continuous within each programmed move.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 733

(When Coord[x].PvatEnable is set to its default value of 0, Power PMAC computes a 3rd-order

position profile between the programmed points for each axis, with position and velocity

guaranteed to be continuous, even at programmed move boundaries. Acceleration is continuous

within each programmed move.)

The time for a move is still specified by the most recent pvt{data} command, with the value

of {data} setting the move time in milliseconds.

The move command for an axis in this mode is:

{axis}{data}:{data}:{data}

The first {data} value specifies the ending position or distance for the axis, depending on

whether the axis is in absolute or incremental mode, respectively. The second {data} value

specifies the ending signed velocity for the axis. These two terms are exactly the same as for

standard PVT moves with Coord[x].PvatEnable = 0.

The third {data} value specifies the ending signed acceleration for the axis. If no third value is

specified for the axis, Power PMAC will use a value of 0.0 for the end acceleration.

Power PMAC uses the constraints at the beginning of the move – from the previous move or a

stopped condition – and these constraints to compute the unique 5th-order position profile that

meets all of these constraints.

To execute moves in this mode, the coordinate system must be in segmentation mode, with

Coord[x].SegMoveTime set greater than zero, specifying the segmentation time in milliseconds.

In executing these moves, Power PMAC will solve the exact 5th-order equations each segment.

As with other segmented moves, the fine interpolation executing at the servo update rate is a 3rd-

order interpolation between the segmentation points.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 734

Spline Move Mode

Power PMAC’s spline move mode provides the capability for generating very smooth but

complex profiles and contours, generally with many programmed points spaced closely together.

It generates profiles and paths known as non-rational cubic B-splines. The time profiles are

guaranteed to be continuous in position, velocity, and acceleration, even at move boundaries.

Multi-dimensional paths are guaranteed continuous in position, direction, and curvature, even at

move boundaries.

Internally, Power PMAC uses this mode to perform the “fine interpolation” between coarse

segment points when executing linear, circle, and PVT mode moves in segmentation mode. When

moves are programmed directly in spline mode, the spline equations are generated directly from

the programmed points and interpolated at the servo update rate. Programmed spline-mode moves

are never segmented, even if the coordinate system is in “segmentation mode” with

Coord[x].SegMoveTime > 0.

Spline Mode Declaration

To put a coordinate system (and all the axes in the coordinate system) into the spline move mode,

the spline{data}[spline{data}[spline{data}]] command is used. The values of

the {data} elements specify the times for the individual spline segments. All subsequent move

commands will be interpreted using the rules of the spline move mode until another move mode

is declared. If you wish to change move times while staying in spline move mode, you must issue

another spline command with different time value(s). Unlike in PMAC and Turbo PMAC, the

ta and tm commands do not affect spline-mode moves.

The most common use of the spline mode utilizes the declaration of a single spline segment time

with the simplest form of this command: spline{data}. In this form, all of the spline

segments use the same time value. This case creates a “uniform” B-spline, and is explained in the

“Uniform-Time Calculations” section below.

If multiple spline-segment time values are declared using the optional forms of the spline

command, “non-uniform” B-spline trajectories can be created. In this form, the spline segments

use different time values. This case is explained in the “Non-Uniform Time Calculations” section

below.

Position or Distance Specification

The destination point of a spline-mode move is specified in the move command itself (e.g.

X10Y20). The commanded destination for each axis can be specified as a position relative to the

programming origin (if the axis is in abs absolute mode) or with a distance from the last

commanded position (if the axis is in inc incremental mode). The command specifies one of

these; Power PMAC automatically calculates the other.

Uniform-Time Calculations

A single spline-mode programmed move with all segments of the same time creates a “bell-

shaped” velocity-versus-time profile with three separate parabolic sections. In the figure “Spline-

Mode Uniform-Time Profiles” below, this case is shown in the “One Programmed Move” plot. A

constant-velocity move profile (“unsplined”) of the programmed time is shown in the rectangular

profile. The splined profile has equivalent times added before and after. The total distance for the

spline move (visualized as the area under the curve) is the same for the splined move as the

unsplined move. Note that the splined profile is continuous in both velocity and acceleration,

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 735

even at the section boundaries (including beginning and end). A single spline-mode move with

uniform times for all three sections will always have this profile.

If there are multiple spline-mode moves in a continuous sequence, the resulting profile can be

thought of as a superposition of individual moves, each offset by one programmed move time.

This concept is illustrated by subsequent drawings in the figure.

Spline-Mode Uniform Time Profiles

V

time T (added) T (added) T

V

time T (added) T (added) T T

V

time T (added) T (added) T T T

V

time T (added) T (added) T T T

One Programmed Move Two Programmed Moves

Three Programmed Moves

Four Programmed Moves

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 736

The following figure shows the profile for a typical spline sequence with uniform-time moves of

varying distances.

Spline Mode Sample Trajectory

Non-Uniform-Time Calculations

When the spline mode declaration command specifies multiple separate section times, the

resulting profiles are somewhat different, and not so symmetrical. For instance, with the

declaration command spline 50 spline 100 spline 150, then for a single

programmed move, the first parabolic section would be 50 msec long, the second section would

be 100 msec long, and the third section would be 150 msec long. The total distance (area under

the velocity profile curve) is still the programmed distance, and both velocity and acceleration are

always continuous, including at all section boundaries.

Power PMAC stores the times for the three sections of a programmed spline move in the data

structure elements Coord[x].T0Spline (for the incoming section), Coord[x].T1Spline (for the

center section), and Coord[x].T2Spline (for the outgoing section). If only a single time is

specified in the mode declaration command (e.g. spline 50), all three elements will be set to

the specified value. If two times are specified in the command (e.g. spline 50 spline

100), Coord[x].T0Spline and Coord[x].T1Spline are set to the first value, and

Coord[x].T2Spline is set to the second value. If three times are specified in the command (e.g.

spline 50 spline 100 spline 150), each element is set to a unique value.

When a spline move is calculated from a motion program command, all three sections are

calculated according to the times in effect at that point, but only the first section is committed to

(added) (added)

No velocity or acceleration

discontinuities at segment

boundaries

If segment were

done at constant

velocity:

VEL

TIME

etc.

etc.

All segments same time

T T T T T T

INC

SPLINE500

 X10000

X9000

X10500

X12000

ΔP
V = c

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 737

execution. If there is another move in the same continuous sequence, it will use as its starting

state the position, velocity, and acceleration of the end of the first section of the previous move,

and calculate the equations for its three sections, using the three section times in effect at that

point, “overwriting” the last two sections calculated from the previous move. Note that if the

section times have not been changed between the two move commands, the new command will

use Coord[x].T0Spline for its incoming section, overwriting the possibly different

Coord[x].T1Spline used for the matching section of the previous move. Also, the new command

will use Coord[x].T1Spline for its incoming section, overwriting the possibly different

Coord[x].T2Spline used for the matching section of the previous move.

Use of Spline Mode for Contouring

Power PMAC’s spline move mode is popular for multi-axis contouring due to the smoothness of

the path it generates. Because the profiles for each axis are guaranteed to be continuous in both

velocity and acceleration, the resulting commanded path is guaranteed to be continuous in both

direction and curvature.

However, the commanded path in spline mode does not pass exactly through the programmed

points in general. Instead, the path passes slightly to the inside of the programmed points. The

“way points” WPi through which the commanded path actually passes (for a uniform-time path)

can be calculated from the programmed point Pi and the points on either side of it as:

6

4 11
 iii

i

PPP
WP

For a given radius of curvature R in a path, the error introduced in the commanded path by the

splining algorithm can be approximated as:

R

TV
E

6

22

where V is the velocity and T is the programmed move time.

Some users will want to reduce this error in their contours. A simple algorithm that can

dramatically reduce this error pre-compensates for these errors. For each point Pi in the spline,

replace with a point P’i with the following formula before sending to Power PMAC:

6

8
' 11

 iii

i

PPP
P

These new points are to the outside of the desired curve (technically, they are “control points” for

the spline curve) and the fact that the spline algorithm will cause the commanded curve to pass to

the inside of these points means that the curve will pass very close to the original points. The

contouring error for a given radius of curvature R in a path using this technique can be

approximated as:

3

44

36R

TV
E

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 738

Power PMAC Special Lookahead Function

Power PMAC can perform highly sophisticated lookahead calculations on programmed

trajectories to ensure that the trajectories do not violate specified maximum quantities for the axes

involved in the moves. This permits the user to write the motion program simply to describe the

commanded path. Vector feedrate becomes a constraint instead of a command; programmed

acceleration times are used only to define corner sizes and minimum move block times. Power

PMAC will automatically control the speed along the path (but without changing the path) to

ensure that axis limits are not violated.

Lookahead calculations are appropriate for any execution of a programmed path where

throughput has been limited by the need to keep execution slow throughout the path because of

the inability to anticipate the few sections where slow execution is required. The lookahead

function’s ability to anticipate these problem areas permits much faster execution through most of

the path, dramatically increasing throughput.

Because of the nature of the lookahead calculations – trajectory calculations are done well in

advance of the actual move execution, and moves are kept within machine limits by the automatic

adjustment of move speeds and times – they are not appropriate for some applications. Any

application requiring quick reaction to external conditions should not use lookahead. Also, any

application requiring precise synchronization to external motion, such as those using PMAC’s

“external time base” feature, should not use lookahead.

Principle of Operation

When the lookahead function is enabled, Power PMAC will scan ahead in the programmed

trajectories, looking for potential violations of its position, velocity, and acceleration limits. If it

sees a violation, it will slow the trajectory at that point just enough so that no limit is violated. It

will then work backward through the pre-computed buffered trajectories, slowing down the parts

of these trajectories going into this point so that the deceleration to this point does not violate any

motor limits. These calculations are completed before these sections of the trajectory are actually

executed.

Power PMAC can perform these lookahead calculations on linear, circle, and PVT-mode moves.

The coordinate system must be put in segmentation mode (Coord[x].SegMoveTime > 0) to

enable lookahead calculations. In segmentation mode, Power PMAC automatically splits the

moves into small segments, which are executed as a series of smooth splines to re-create the

programmed moves.

Power PMAC stores data on these segments in a specially defined lookahead buffer for the

coordinate system. Each segment takes Coord[x].SegMoveTime milliseconds when it is put into

the buffer, but this time can be extended if it or some other segment in the buffer violates a

velocity or acceleration limit.

This technique permits Power PMAC to create deceleration slopes in the middle of programmed

moves, at the boundaries of programmed move, or over multiple programmed moves, whichever

is required to create the fastest possible move that does not violate constraints. All of this is done

automatically and invisibly inside the Power PMAC; the part programmer and operator do not

need to understand the workings of the algorithm.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 739

Sample Effect Diagrams

The following diagram shows the principle of how the lookahead function can automatically

create acceleration and deceleration profiles over multiple programmed moves. In this case, the

programmed moves are too short to permit the full acceleration to and from programmed speed in

a single programmed move. Without any change to the motion program, the lookahead function

will create a profile that does not violate acceleration constraints.

Lookahead for Multi-Block Accel / Decel

ACCEL & DECEL TIME MUST BE EQUAL TO

OR SHORTER THAN BLOCK MOVE TIME

ACCEL & DECEL ARE CONTROLLED BY

SPECIFIED ACCEL LIMIT (G’s)

Before Lookahead
F100

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

DWELL50

After Lookahead

 1 2 3 4 5 6 7 8 9 10

t

V

1 2 3 4 5 6 7 8 9 10

t

V

The next diagram shows how the lookahead function can automatically create a deceleration into

a tight corner, permitting the corner to be taken slowly to keep it within acceleration constraints,

and then to accelerate back up to the programmed speed coming out of the corner. This permits

the user to command high speeds, and to have Power PMAC slow down the path only where

needed. Note that the post-lookahead profile in this diagram is not time-extended as it would

really be; this was done to show the correspondence of points on the profiles.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 740

Lookahead & Small, Tight Corners

Y

X

Y

X

V
Y

Time

Time

V
Y

V
X

Time

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ACCEL & DECEL

CONTROLLED BY

SPECIFIED G’s

AT CORNER

F50

X10 Y10

X0 Y20

After Lookahead
Note how ‘Y” decelerates

to make the corner

Before Lookahead

Time

1 2 3 4 5

1

2

3

5
4

F50

X10 Y10

X0 Y20

V
X

Interactions with Kinematics

If Power PMAC’s inverse kinematic calculations are used, the conversion from “tip” coordinates

to “joint” coordinates takes place before lookahead calculations, segment by segment for linear,

circle, and PVT-mode moves. Therefore, Power PMAC can execute the lookahead calculations in

“joint space”, motor by motor, even if the system has been programmed in tip coordinates.

If it is desired that the lookahead algorithm limit tool-tip position, velocity, and/or acceleration as

well as joint (motor) dynamics, additional virtual motors (with active computation) should be

assigned to tool-tip axes in the kinematics subroutines with a direct 1-to-1 relationship.

Transparent Operation

Once the lookahead function has been set up, the lookahead function operates transparently to the

programmer and the operator. No changes need to be made to a motion program to use the

lookahead function, although the programmer may choose to make some changes to take

advantage of the increased performance capabilities that lookahead provides.

Quick Instructions: Setting Up Lookahead

The following list quickly explains the steps required for setting up and using the lookahead

function on the Power PMAC. Greater detail and context are given in the subsequent section.

1. Assign all desired motors to the coordinate system with axis definition statements.

2. Set Motor[x].MaxPos and Motor[x].MinPos positive and negative position limits, in motor

units for each motor in coordinate system, relative to the home position.

3. Set Motor[x].MaxSpeed maximum velocity in motor units/msec for each motor in

coordinate system. If your feedrate for the type of moves (e.g. linear and circle mode) for

which you will be employing lookahead is lower than the motor maximum speed, limit these

before lookahead with Coord[x].MaxFeedrate.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 741

4. Set Motor[x].InvAmax inverse maximum acceleration in msec2/motor unit for each motor in

coordinate system.

5. Set Coord[x].SegMoveTime segmentation time in milliseconds for the coordinate system to

your desired value, typically a length of 10 to 20 servo cycles.

6. Compute maximum stopping time for each motor as Motor[x].MaxSpeed *

Motor[x].InvAmax, or if these moves will be speed-limited more by

Coord[x].MaxFeedrate, by the product of Coord[x]MaxFeedrate and Motor[x].InvAmax

(scaled into consistent units).

7. Select the motor with longest stopping time.

8. Compute number of segments needed to look ahead as this “stopping time” divided by (2 *

Coord[x].SegMoveTime).

9. Multiply the “segments needed” by 4/3 (round up if necessary) and set the

Coord[x].LHDistance lookahead length parameter to this value.

10. If the application involves high block rates, set the Coord[x].Ta default acceleration time to

the minimum block time in msec; the Coord[x].Ts default S-curve time to 0.

11. If the application does not involve high block rates, set the Coord[x].Ta default acceleration

time and the Coord[x].Ts default S-curve time parameters to values that give the desired

blending corner size and shape at the programmed speeds.

12. Store these parameters to non-volatile memory with the save command if you want them to

be an automatic part of the machine state.

13. After each power-up/reset, send the card a define lookahead {# of segments}

command for the coordinate system, where {# of segments} is equal to

Coord[x].LHDistance plus any segments for which backup capability is desired.

14. Load your motion program into the Power PMAC. Nothing special needs to be done to the

motion program. The motion program defines the path to be followed; the lookahead

algorithm may reduce the speed along the path, but it will not change the path.

15. Run the motion program, and let the lookahead algorithm do its work!

Detailed Instructions: Setting Up to use Lookahead

A few steps are required to calculate and set up the lookahead function. Typically, the

calculations only have to be done once in the initial configuration of the machine. Once

configured, the lookahead function operates automatically and invisibly.

Defining the Coordinate System

The lookahead function checks the programmed moves against all motors in the coordinate

system. The first step is therefore to define the coordinate system by assigning motors to axes in

the coordinate system with axis definition statements or kinematic subroutines. This action is

covered in the User’s Guide under Setting Up the Coordinate System.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 742

Lookahead Constraints

Power PMAC’s lookahead algorithm forces the coordinate system to observe four constraints for

each motor. These constraints are defined in saved setup elements for each motor representing

maximum position extents, velocities, and accelerations. These setup elements must have valid

values in order for the lookahead algorithm to work properly.

Position Limits

Variables Motor[x].MaxPos and Motor[x].MinPos for each motor define the maximum and

minimum position values, respectively, that are permitted for the motor (“software overtravel

limits”). These variables are defined in motor units, and are referenced to the motor zero, or

home, position (often called “machine zero”). Even if the origin of the axis for programming

purposes has been offset (often called “program zero”), the physical position of these position

limits does not change; they maintain their reference to the machine zero point. Power PMAC

checks the actual position for each motor as the trajectory is being executed against these limits;

if a limit is exceeded, the program is aborted and the motors are decelerated at the time or rate set

by Motor[x].AbortTa and Motor[x].AbortTs.

In lookahead, if the algorithm, while scanning ahead in the programmed trajectory, determines

that any motor in the coordinate system would exceed one of its desired position limits, it will

suspend the program and force a stop right at that limit. It will then work backwards through the

buffered trajectory segments to bring the motors to a stop along the path at that point in the

minimum time that does not violate any motor’s Motor[x].InvAmax acceleration constraint.

(However, if Coord[x].SoftLimitStopDis is set to 1, the program does not stop at the limit.

Instead, it will continue, with the offending motor saturating at the limit value. If operating in this

mode, Motor[x].SoftLimitOffset should be set less than 0.0 for all involved motors to put the

execution-time limits outside of the calculation-time limits, preventing the program from being

stopped due to possible violation of execution-time limits.)

When stopped on a soft position limit within lookahead, the program is only suspended, not

aborted. The action is effectively equivalent to issuing a \ quick-stop command. It is possible to

“retrace” the path coming into the limit, or even to resume forward execution after changing the

limit value. An “abort” command must be issued before another program can be started.

Velocity Limits

Motor[x].MaxSpeed defines the magnitude of the maximum velocity permitted for each motor.

These variables are defined in motor units per millisecond, so a quick conversion must be

calculated from the axis user units (e.g. millimeters per minute).

If the algorithm, while looking ahead in the programmed trajectory, determines that any motor in

the coordinate system is being asked to violate its velocity limit during a segment, it will slow

down the trajectory at that point just enough so that no limit is violated. It will then work

backwards through the buffered trajectory segments to create a controlled deceleration along the

path to this limited speed in the minimum time that does not violate any motor’s

Motor[x].InvAmax acceleration constraint.

During the initial move-block calculations, before move data is sent to the lookahead function, a

couple of factors can result in commanded velocities lower than what is programmed:

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 743

 If the vector feedrate commanded in the motion program with the F command exceeds

the maximum feedrate parameter Coord[x].MaxFeedrate, then Coord[x].MaxFeedrate

is used instead.

 If the programmed feedrate and radius for a circle-mode move would result in a

centripetal acceleration greater than the limit specified by Coord[x].MaxCirAccel, the

speed of the move will be reduced so that this limit is not violated

 If the move-block time, either specified directly with the TM command, or calculated as

vector-distance divided by vector-feedrate, is less than the programmed acceleration time

(the larger of Ta + Ts or 2 * Ts), the programmed acceleration time is used instead. This

results in a speed less than what was programmed.

The lookahead function can further slow these moves, but it cannot speed them up.

Acceleration Limits

Motor[x].InvAmax defines the magnitude of the maximum acceleration permitted for each

motor (as the inverse of this magnitude). These variables are defined in the raw PMAC units of

milliseconds-squared per motor unit, so a quick conversion (and inversion) must be calculated

from the user units (e.g. in/sec2, or g’s).

If the algorithm, while looking ahead in the programmed trajectory, determines that any motor in

the coordinate system is being asked to violate its acceleration limit for a segment, it will slow

down the trajectory at that point just enough so that no limit is violated. It will then work

backwards through the buffered trajectory segments to create a controlled deceleration along the

path to this limited speed in the minimum time that does not violate any motor’s

Motor[x].InvAmax acceleration constraint.

Note

The acceleration calculations in lookahead can be very

sensitive to the numeric limitations of the commanded point

positions in the motion program. If the commanded points are

very close together, as in many contour applications, they

should be specified with at least two, and up to four, decimal

digits beyond the feedback resolution to avoid the problem of

artificial limitations due to “quantization noise”.

Calculating the Segmentation Time

Power PMAC’s lookahead function operates on intermediate motion “segments” calculated from

the programmed trajectory. An intermediate point for each motor is computed once per segment

from the programmed path, and then a fine interpolation using a cubic spline to join these

segments is executed at the servo update rate. The user settable “segmentation time” is therefore

an important parameter for optimization of the lookahead function.

Saved setup element Coord[x].SegMoveTime for each coordinate system defines the time for

each intermediate segment in the programmed trajectory (before it is possibly extended by the

lookahead function). Coord[x].SegMoveTime is a floating-point value, with units of

milliseconds. If Coord[x].SegMoveTime is set to 0, the coordinate system is not in

“segmentation mode”; no intermediate segments are calculated, and the lookahead function

cannot be enabled.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 744

Several issues must be addressed in setting the segmentation time. These include its relationship

to the maximum block rate, the small interpolation errors it introduces, and its effect on the

calculation load of the Power PMAC. Each of these is addressed in turn, below.

Block rate relationship

In most applications, the Coord[x].SegMoveTime segmentation time will be set so that it is less

than or equal to the minimum block (programmed move) time. Put another way, the segmentation

rate defined by Coord[x].SegMoveTime is usually set greater than or equal to the maximum

block rate. For example, if a maximum block rate of 500 blocks per second is desired, the

minimum block time is 2 milliseconds, and Coord[x].SegMoveTime is set to a value no greater

than 2.

This relationship holds because blocks of a smaller time than the segmentation time are skipped

over as Power PMAC looks for the next segment point. While this does not cause any errors,

there is no real point in putting these programmed points in the motion program if the controller

is going to skip over them. However, some people “inherit” old motion programs with points

closer together than is actually required; these users may have reason to set their segmentation

time larger than their minimum block time.

Note that the programmed acceleration time sets a limit on the maximum block rate. The move

time for a programmed block, even before lookahead, is not permitted to be less than the

programmed acceleration time. The programmed acceleration time is the larger of the sum of the

Ta and Ts times and twice the Ts time. In high-block-rate contouring lookahead applications, the

Ta time is typically set equal to the minimum desired block time, and the Ts time is typically set

to 0 (because it squares up corners).

Interpolation errors

The cubic-spline interpolation technique that Power PMAC uses to connect the intermediate

segment points is very accurate, but it does create small errors. These errors can be calculated as:

R

TV
Error

6

22

where V is the vector velocity along the path, T is the segmentation time (watch the units!), and R

is the local radius of curvature of the path. For example, if the speed is 100 mm/sec (~4 in/sec),

the segmentation time is 0.01 sec (Coord[x].SegMoveTime = 10 msec), and the minimum radius

at this speed is 50 mm (~2 in), then the worst-case interpolation error can be calculated as:

mmm
mm

mm

Error 3003.0
50*6

sec01.0*
sec

100 22

2

2
2

If the programmed path itself introduces path error, such as the “chordal error” of linear

interpolation, this must be added to the error budget as well. In addition, if the servo-loop

execution adds servo errors, these must also be included.

Calculating the Required Lookahead Length

In order for the coordinate system to reach maximum performance, it must be looking ahead for

the time and distance required for each motor to come to a full stop from maximum speed.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 745

Because the lookahead buffer stores motion segments, this lookahead length must be expressed in

segments.

To calculate this value, first compute the worst-case time required to stop for each motor in the

coordinate system. This value can be obtained by dividing the maximum motor velocity by the

maximum motor acceleration. In terms of Power PMAC parameters:

InvAmaxxMotorMaxSpeedxMotormsecStopTime].[*].[)(

Note that if the motor speed is limited to less than Motor[x].MaxSpeed in the segmented path

moves that used the lookahead buffer, through the use of Coord[x].MaxFeedrate or other

limiting methods, this lower speed can be used instead in these calculations.

Now take the motor with the longest stop time, and divide this time by 2 (because the segments

will come in at maximum speed, which takes half the time of ramping down to zero speed). Next,

convert this value to a number of segments by dividing by the coordinate system segmentation

time:

eSegMoveTim

InvAmaxMaxSpeed

segmsecseSegMoveTim

msecStopTime
ededSegmentsNe

*2

*

)/(*2

)(

This is the number of segments in the lookahead buffer that must always be properly computed

ahead of time. Because the Power PMAC does not fully recalculate the lookahead buffer every

segment, it must actually look further ahead than this number of required segments.

Lookahead Length Parameter

Saved setup element Coord[x].LHDistance for the coordinate system tells the algorithm how

many segments ahead in the program to look. This value is a function of the number of segments

that must always be correct in the lookahead buffer (“SegmentsNeeded”). The formula is:

eSegMoveTim

InvAmaxMaxSpeed
ededSegmentsNeLHDistancexCoord

*3

**2
*

3

4
].[

Setting Coord[x].LHDistance to a value larger than needed does not increase the computational

load (although it does increase the time of heaviest computational load while the buffer is filling).

However, it does require more memory storage, and it does increase the delay in having the

program react to any external conditions, including changes in the “segmentation override” value

commonly used for interactive feedrate override.

Some users will want to vary Coord[x].LHDistance dynamically during operation, making it

proportional to the present programmed speed, the present segmentation override, or both. This

can minimize “excessive” lookahead, making the system more responsive to external conditions

and commanded override changes.

Setting Coord[x].LHDistance to a value smaller than needed does not cause the limits to be

violated. However, it may cause Power PMAC to limit speeds more severely than the velocity

limits require in order to ensure that acceleration limits are not violated. Also, a “saw-tooth”

velocity profile may be observed.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 746

Defining the lookahead buffer

In order to use the lookahead function in a Power PMAC coordinate system, a lookahead buffer

must be defined for that coordinate system, reserving memory for the buffer. This is done with

the on-line coordinate-system-specific define lookahead {constant} command.

Because lookahead buffers are not retained through a power down or reset, this command must be

issued after every power-up or reset. This command can be included in the file

pp_startup.txt for automatic execution every power-up/reset.

The value associated with the define lookahead command determines the number of

motion segments for each motor in the coordinate system that can be stored in the lookahead

buffer. At a minimum, this must be set equal to Coord[x].LHDistance (and it must be greater

than or equal to 1024).

If this value is set greater than Coord[x].LHDistance, the lookahead buffer stores “historical”

data. This data can be used to reverse through the already executed trajectory. If reversal is

desired, the buffer should be sized to store enough “back segments” to cover the desired backup

distance. There is no penalty for reserving more memory for this history than is needed, other

than the loss of this memory for other uses.

The room reserved for the segment data in the lookahead buffer is dependent on the number of

motors assigned to axes in the coordinate system at the time of the define lookahead

command (motors with a null definition in the coordinate system do not count). If the number of

motors assigned to axes in the coordinate system then changes, the organization of the lookahead

buffer will be wrong, and the program will abort with a run-time error on the next move after the

coordinate system is changed.

The most common reason to alter the configuration of a coordinate system during an application

is to change a motor between a rotary positioning axis and a spindle (velocity) axis. Power

PMAC can support this change without the necessity to redefine the lookahead buffer. When the

lookahead buffer is defined, the motor should either be assigned to a position axis (e.g. #4->C)

or a spindle axis (e.g. #4->S0) in the coordinate system. After this time, the definition can be

changed between the two types without the need to reconfigure the lookahead buffer. When the

motor is assigned to a position axis, it is involved in the lookahead calculations; when it is

assigned to a spindle axis, it is not.

If a motor must be added to or removed from a coordinate system during an application that uses

lookahead, the lookahead buffer must first be deleted, then defined again after the change. The

following motion program code shows how this could be done:

dwell 10 // Stop lookahead execution

cmd "&1 delete lookahead" // Delete buffer

cmd "&1 #4->100C" // Assign new motor to C. S. 1

cmd "&1 define lookahead 10000" // Redefine buffer

sendallcmds // Make sure commands execute

Memory Requirements

The act of defining a lookahead buffer reserves space in active memory for the buffer. The longer

the buffer defined, and the more motors assigned to axes in the coordinate system, the more

memory will be reserved. The equation for the amount of memory required for a lookahead buffer

is:

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 747

 40*16* NSB

where B is the number of bytes of memory required, S is the length of the buffer in segments, and

N is the number of motors assigned to axes in the coordinate system. For example, defining a

lookahead buffer with a length of 20,000 segments in a coordinate system with 6 motors assigned

to axes requires 20,000 * (16*6 + 40) = 2,720,000 bytes (2.6 MB) of memory.

By default, Power PMAC reserves 16 MB of RAM for all lookahead and reversal buffers (plus

target-position and cutter-compensation buffers, which are typically very small). This is sufficient

memory for virtually all applications. The amount of memory still available in the buffer can be

determined using the on-line free query command. This amount can be changed as part of the

project management.

Running a Program with Lookahead

The lookahead function is automatically active when a motion program is run in a coordinate

system provided the following conditions are true:

1. The coordinate system is in segmentation mode (Coord[x].SegMoveTime > 0).

2. The coordinate system is told to look ahead (Coord[x].LHDistance > 0).

3. A lookahead buffer has been defined for the coordinate system since the last board power-

up/reset.

4. The motion program is executing linear, circle, or PVT-mode moves.

The lookahead function is active under these conditions even when Power PMAC is performing

inverse-kinematic calculations every segment to convert tip positions to joint positions. This

permits the user to write a motion program in convenient tip coordinates, yet still automatically

observe all joint-motor limits. This is particularly important if the tip path passes near a

singularity, requesting very high joint velocities and accelerations.

Other move modes – rapid and spline– can be executed with the lookahead buffer defined, but the

lookahead function is not active when these moves are being executed.

Note

Absolutely no change is required to the motion program to

utilize the lookahead function.

It is important to realize the implications of the lookahead function on several aspects of the

motion program. Each of these areas is covered below.

Vector Feedrate

Without lookahead, the vector feedrate value (Fxxx) is a command for each programmed move

block in the motion program. That is, each move is calculated so that it is traversed at the

programmed vector feedrate (speed). With lookahead active, the feedrate value is only a

constraint. The move will never be executed at a higher speed, but it may be executed at slower

speeds during some or all of the move as necessary to meet the motor constraints.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 748

If the move is programmed by move time instead of feedrate, the programmed move time

becomes a (minimum) constraint; the move will never be executed in less time, but it may be

executed in greater time.

Acceleration Time

The programmed acceleration times Coord[x].Ta and Coord[x].Ts, whether using the saved

values or setting with the ta and ts commands in the motion program, are the times before

lookahead. The lookahead function will control the actual acceleration times that are executed,

but the programmed acceleration times are still important for two reasons.

First, the programmed acceleration time Tacc, which is the larger of Ta + Ts and 2 * Ts, is the

minimum move-block time. If Power PMAC initially computes a smaller move time, typically as

(vector-distance divided by vector-feedrate), it will increase the time to be equal to the

acceleration time, slowing the move. This check occurs even before lookahead (which can only

slow the move further), and it is an important protection against computational overload. The

acceleration time must be set low enough not to limit valid moves.

Second, as longer moves are blended together, the programmed acceleration time and feedrate

control the corner size for the blending. The blended corner begins a distance of F * Tacc / 2

before the programmed corner point, where F is the programmed feedrate, and Tacc is the larger of

Ta + Ts and 2 * Ts. The blended corner ends an equal distance past the programmed corner

point.

If the lookahead algorithm determines that the blended corner violates the acceleration limit on

one or more motors, it will automatically slow the speed of the path in the corner. This will make

the time for the blended corner bigger than what was specified in the program. The lookahead

will also automatically create a controlled deceleration ramp going into the blended corner, and a

controlled acceleration ramp coming out of the corner. In this manner, the size of the rounding at

a corner can be kept small without violating acceleration constraints, and without limiting speeds

far away from the corners.

In general, the acceleration time should be set as large as it can be without either making the

minimum move time too large, or the corners too large. In high block-rate applications, the Ta

time is generally set to the minimum block time, and the Ts time is set to 0. In low block-rate

applications, the Ta and Ts times are generally set to get the desired corner size and shape.

Stopping While in Lookahead

If the user desires to stop axis motion while in lookahead mode, he must carefully consider how

the stopping is to be done. It is important to realize what point in the chain of execution is being

halted with the stopping command. Different stopping commands have different effects, and

different uses.

Quick Stop

The \ [lh\ buffered program command] “quick-stop” command causes Power PMAC to

immediately calculate and execute the quickest stop within the lookahead buffer that does not

exceed Motor[x].InvAmax acceleration limits for motors in the coordinate system. Motion

continues along the programmed path to a controlled stop, which is not necessarily at a

programmed point (and probably will not be). This command is the effective equivalent of a

“feed hold” within lookahead (even though the internal mechanism is quite different), and it

should be the command issued when an operator presses a “Hold” button during lookahead.

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 749

Outside of lookahead, this command causes an actual feed hold, as if the h [hold] command had

been given.

The \ command is the best command to use to stop interactively within lookahead operation with

the intention of resuming operation. Any synchronous M-variable assignments set to happen

within the deceleration will execute.

Motors may be jogged away from this stop point, if desired. Also, motion can be reversed along

the path with the < command (see “Reversal”, below).

Normal programmed motion can subsequently be resumed with the > [lh>]“resume-forward”, r

[run], or s [step] command, provided all motors are commanded to be at the same position at

which they originally stopped with the / command. If any motors have been jogged away from

this point, they must first be returned with the j= [jog=] command. Acceleration limits are

observed during the ramp up from a stop here. The > “resume-forward” command puts the

coordinate system in either continuous run mode, or single-step mode, whichever mode it was in

before the “quick-stop”.

Quit/Step

The q “quit” command simply tells the motion program not to calculate any further motion

program blocks. (The s “single-step” command will do the same thing if given while the program

is running.) Motion segments up to the end of the latest calculated motion program move block

are still added to the lookahead buffer, and all segments and synchronous M-variable assignments

in the lookahead buffer are completed.

Motion will come to a controlled stop at the end of the latest calculated move block without

violating constraints. However, there can be a significant delay – over (Coord[x].LHDistance *

Coord[x].SegMoveTime) milliseconds if the lookahead buffer is full – from the time the q or s

command is given and the time the axes stop.

Motors may be jogged away from this stop point, if desired. Motion can subsequently be resumed

with the r or s command. Motors do not have to be at the same position at which they were

originally stopped with the q or s command. However, if it is desired to return them to this

position, the j= command should be used.

Feed Hold

The h “feed hold” command brings the feedrate override value to zero, starting immediately, and

ramping down at a rate controlled by coordinate system variable Coord[x].FeedHoldSlew.

Motion continues along the programmed path to a controlled stop, which is not necessarily at a

programmed point (and probably will not be). Acceleration limits are not necessarily observed

during the ramp down to a stop. Any synchronous M-variable assignments set to happen within

the deceleration will execute.

Abort

The a “abort” command breaks into the executing trajectory immediately, and brings all motors

in the coordinate system to a controlled stop, each at its own deceleration time or rate as set by

Motor[x].AbortTa and Motor[x].AbortTs for the motor. The stop is not necessarily at a

programmed point (and probably will not be), and it is not necessarily even along the

programmed path (and probably will not be).

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 750

Segments and synchronous M-variable assignments already in the lookahead buffer are

discarded; they cannot be recovered. The program counter is automatically reset to the beginning

of the (top-level) motion program, so the abort command is not recommended except for stopping

quickly under error conditions.

Reversal While in Lookahead

If the lookahead buffer has been sized larger than what is required simply for the actual

lookahead, it will contain “historical” data that can be used for reversal along the programmed

path. This capability gives the system a “retrace” capability, allowing it easily to go backwards

along the already executed path. The key command to be used in reversal is the < [lh<]

“backup” command, which causes the coordinate system to start execution in the reverse

direction through the segments in the lookahead buffer.

Back-up Command

If the < command is given while the coordinate system is in normal forward execution in the

lookahead buffer, Power PMAC will internally generate a \ “quick-stop” command to halt the

forward execution, then immediately start reverse execution.

The < command can also be given after execution of the program has been halted with a \ quick-

stop command. It cannot be given after stopping with a q “quit”, s “single-step”, or a “abort”

command, or an automatic error termination.

Reverse Execution

Execution in the reverse direction will observe the position, velocity, and acceleration limits, just

as in the forward direction. If not stopped by another command, reverse execution will continue

until it reaches the beginning (oldest stored point) of the lookahead buffer. It will automatically

stop at this point with a controlled deceleration within the acceleration constraints.

Reversal cannot proceed through any non-segmented move (spline, rapid, homing), so will

automatically stop at the end point of the latest of this type of move. If the program had been

stopped with a q or s command, the lookahead buffer is cleared on restarting, so reversal can

only go back to that point.

It is possible for reversal to continue through a stop due to a dwell command or similar break,

but the time for such a stop is not retained; it is just a momentary stop in reversal (and subsequent

forward execution). Note that a delay command is part of the continuous motion sequence, so

its time at zero velocity is maintained during reversal.

Stopping Reverse Execution

The reverse execution can be halted before this point with the \ “quick-stop” command. Reverse

execution can then be resumed with another < “back-up” command; forward execution can be re-

started with a > “resume”, r “run”, or s “single-step” command. The > “resume” command puts

the coordinate system in either continuous run mode, or single-step mode, whichever mode it was

in before the back-up.

Synchronous Assignments in Reversal

No synchronous variable assignments are executed either during a reversal or during the forward

execution over the reversed part of the path. However, synchronous label assignments to

Coord[x].Nsync are executed in the reverse and forward directions so it is possible to monitor the

Power PMAC User’s Manual

Power PMAC Move Mode Trajectories 751

programmed move block being executed during all aspects of this procedure if synchronizing line

labels have been used in the program.

Forward execution over the reversed part of the path will blend seamlessly into previously

unexecuted parts of the path. At this point, standard execution of the lookahead buffer will

resume, with new points being added to the end of the lookahead buffer, and execution of

buffered synchronous M-variable assignments starting again.

Comparison to Time-Base Reversal

Power PMAC is also capable of reversible path execution using negative time-base if motor

“trace” buffers have been set up for all motors in the coordinate system. Reversing in the

lookahead buffer itself is usually better for “state” changes in direction, as with “forward”,

“reverse” and “stop/hold” buttons on the operator control panel.

Reversal with negative time base is generally better for “proportional” changes, as with operator

pot or handwheel rotation, or with a continuously varying process value that controls movement

along the programmed path.

Feedrate Override with Lookahead

Power PMAC provides two methods for implementing “feedrate override”. One method uses the

“time-base” override that executes at the servo update rate, varying the numerical time-change

value used for the (fine) interpolation update algorithm from the true physical time elapsed in one

servo update period. This override is accomplished using the %{constant} on-line command

(scaled in percent of “real time”), or by writing to the Coord[x].DesTimeBase data structure

element (scaled in milliseconds).

However, this override function occurs after the lookahead calculations, so it can override the

limits imposed by the lookahead algorithm. The velocity of the resulting trajectory varies linearly

with the override value, and the acceleration varies with the square of the override value. At an

override value of 150%, the velocities will be 150% of those programmed (or limited), and the

accelerations will be 225% of those programmed (or limited).

A more sophisticated technique is to use Power PMAC’s patented “segmentation override”

capability. This override function occurs at the segmentation (coarse interpolation) stage, before

the lookahead algorithm. It varies the numerical time-change value used for the segmentation

update from the true physical time elapsed in one segmentation update period, which is set by the

saved setup element Coord[x].SegMoveTime. This override is accomplished writing to the

Coord[x].SegOverride value (scaled so that 1.0 is “real time”). The numerical time-change value

used for the update is thus the product of Coord[x].SegMoveTime and Coord[x].SegOverride.

Because the lookahead algorithm occurs after this override function, the limits imposed by

lookahead are not changed by the override value. This factor makes the segmentation override the

preferred method in most applications. It should be noted that changes in the override value are

delayed by the length of the lookahead buffer. This delay is necessary to ensure that acceleration

limits are always observed.

Both override techniques are discussed in detail in the “Setting Up Coordinate Systems” chapter

of the User’s Manual.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 752

SYNCHRONIZING POWER PMAC TO EXTERNAL
EVENTS

Power PMAC has several powerful features to help in synchronizing the motion under Power

PMAC’s control to external events. These include:

 Position following (commonly known as electronic gearing)

 External time-base control (commonly known as electronic cams)

 Hardware position capture (useful for registration and probing)

 Hardware position compare (useful for triggering outputs and measurements)

A Note on “Master/Slave” Techniques

Power PMAC’s position-following and external-time-base functions are both what is generally

known as “master/slave” techniques, in that the action of the motor(s)/axis(es) in question (the

“slave(s)”) is dependent on the action of a “master” motion (or simulation of such a motor).

However, there is no causality in the opposite direction, as the action of the slave(s) does not

affect the action of the master.

Master

Desired

Action

Master

Actual

Action

Slave

Desired

Action

Slave

Actual

Action

Slaving

Algorithm

Desired

Relationship

Feedback

Algorithm

Multi-Axis Master/Slave Concept

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 753

A master/slave algorithm is one strategy for tying together the motion of two or more devices.

Another strategy is generally known as “coordination”. In a coordination strategy, the desired

motion of multiple axes is tied together through a mathematical relationship, and the physical

coordination is achieved through the action of the feedback loops for each motor causing the

actual motion to track the desired motion. In Power PMAC, this is achieved by means of

assigning the relevant motors to axes in the same coordinate system, and commanding the axes

together in a motion program.

Axis #1

Desired

Action

Axis #2

Desired

Action

Axis #1

Actual

Action

Axis #2

Actual

Action

Feedback

Algorithm
Feedback

Algorithm

Coordination

Algorithm

Desired

Relationship

Multi-Axis Coordination Concept

In general, if the desired physical relationship can be achieved through a coordination strategy,

such a strategy should be used. A mathematically generated trajectory is superior to a signal-

generated trajectory, reducing quantization noise, measurement noise, and delay. However, the

use of a coordination strategy requires a sufficiently high-quality feedback algorithm on all axes

to keep the relationship within the required tolerance, and the ability to generate all of the

trajectories in a single controller.

If these conditions do not apply, it is necessary to use one axis without tight feedback or

commanded from a separate controller as the “master”, employing a sensor on this device to

generate the master signal for the other axes operating as “slaves”. This signal is used in the

generation of the trajectories for the slave axes. Note that the imperfections (noise) in the master

signal may limit the aggressiveness of the tuning of the slave axes, particularly of the feedforward

terms.

Processing the Master Position Signal

The master position signal for either position following or external time base must be processed

first through interface hardware and then through the software of Power PMAC’s encoder

conversion table (ECT). In most cases, this processing is similar or even identical to that for

feedback position. Note that at re-initialization, Power PMAC automatically sets up an ECT entry

of the most appropriate type for each interface channel it detects.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 754

When the signal is used for feedback or position-following master, the output scale factor of the

ECT entry is usually set to scale the result in the “counts” or “LSBs” of the encoder or other

sensor. When the signal is used for external time-base master, the output scale factor of the ECT

entry is usually set based on a user-selected “real-time input frequency” (RTIF), so the result is

scaled in the “milliseconds” elapsed if the input signal were running at this RTIF. Refer to the

section “What is External Time-Base Control?” below for details on understanding and setting

the RTIF. The motion program running under external time base is written as if the master device

were always producing the RTIF, with the time base functionality automatically adjusting the

speed in proportion to the actual frequency.

If the same signal is used both for feedback and for external time-base master, it should be

processed through two separate ECT entries, one for the feedback function, and one for the time-

base master function. These two entries can be identical except for the output scale factor. The

scale factor for the time-base master entry should be smaller than the scale factor for the feedback

entry by a factor of the RTIF (in counts per millisecond). That is, to get the scale factor for the

time-base master entry, divide the scale factor for the feedback entry by the RTIF value.

Processing a Quadrature Encoder with a PMAC2-Style IC

If the master signal comes from a quadrature encoder connected into a PMAC2-style Servo IC, as

on an ACC-24E2x UMAC interface board, it should be processed with a Type 3 “software 1/T

extension” encoder conversion table entry, just as for a feedback encoder. The sub-count

interpolation provided by this timer-based extension is important to improve the smoothness of

the following.

This software sub-count interpolation computes 9 bits of fractional count information. When used

for feedback or position-following master, this type of entry usually has an output scale factor

EncTable[n].ScaleFactor of 1/29 (1/512) so the output is scaled in counts of the encoder. When

used for an external time-base master, the output scale factor should be set to 1/(512*RTIF), with

the RTIF expressed in counts per millisecond, so the output is in units of the fictitious

“milliseconds” required for external time-base. It is recommended that the value be entered as an

expression so Power PMAC can compute the result precisely.

Processing an External Clock Signal with a PMAC2-Style IC

Some applications require full synchronization to an external time clock signal (for true “external

time base”). This may be to get higher absolute time accuracy than Power-PMAC’s own internal

clock signal provides (generally 100ppm), or to synchronize to another sub-system with its own

clock signal, as with many video systems. A digital clock signal can be connected to the “A”

phase encoder input of a Power PMAC encoder interface channel, and the channel decode set up

for “pulse-and-direction” decode – Gate1[i].Chan[j].EncCtrl set to 0 or 4, whichever causes the

channel’s encoder counter to increment in the positive direction.

From this point on, the signal is treated just as a quadrature encoder would be (see directly

above). The RTIF is usually selected as the nominal frequency of this input signal.

Processing a Sinusoidal Encoder with a PMAC2-Style IC

If the master signal comes from a sinusoidal encoder connected into a PMAC2-style Servo IC, as

on an ACC-51E UMAC interface board, it should be processed with a Type 4 “software

sinusoidal extension” encoder conversion table entry, just as for a feedback encoder. The sub-

count interpolation provided by this extension from the analog circuitry is important the

smoothness of the following.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 755

This sub-count interpolation computes 10 bits of fractional count information (12 bits per line for

“4096x” interpolation). When used for feedback or position-following master, this type of entry

usually has an output scale factor EncTable[n].ScaleFactor of 1/210 (1/1024) so the output is

scaled in (quadrature) counts of the encoder. When used for an external time-base master, the

output scale factor should be set to 1/(1024*RTIF), with the RTIF expressed in counts per

millisecond, so the output is in units of the fictitious “milliseconds” required for external time-

base. It is recommended that the value be entered as an expression so Power PMAC can compute

the result precisely.

Processing a Quadrature Encoder with a PMAC3-Style IC

If the master signal comes from a quadrature encoder connected into a PMAC3-style IC, as on an

ACC-24E3 UMAC interface board, “hardware 1/T extension” for timer-based sub-count

interpolation is automatically performed by the IC if saved setup element

Gate3[i].Chan[j].TimerMode is set to its default value of 0. The resulting value can be

processed with a Type 1 “single register read” encoder conversion table entry.

The hardware timer-based sub-count interpolation computes 10 bits of fractional count

information. When used for feedback or position-following master, this type of entry usually has

an output scale factor EncTable[n].ScaleFactor of 1/28 (1/256) so the output is scaled in counts

of the encoder. When used for an external time-base master, the output scale factor should be set

to 1/(256*RTIF), with the RTIF expressed in counts per millisecond, so the output is in units of

the fictitious “milliseconds” required for external time-base. It is recommended that the value be

entered as an expression so Power PMAC can compute the result precisely.

Processing an External Clock Signal with a PMAC3-Style IC

Some applications require full synchronization to an external time clock signal (for true “external

time base”). This may be to get higher absolute time accuracy than Power-PMAC’s own internal

clock signal provides (generally 50ppm), or to synchronize to another sub-system with its own

clock signal, as with many video systems. A digital clock signal can be connected to the “A”

phase encoder input of a Power PMAC encoder interface channel, and the channel decode set up

for “pulse-and-direction” decode – Gate3[i].Chan[j].EncCtrl set to 0 or 4, whichever causes the

channel’s encoder counter to increment in the positive direction.

From this point on, the signal is treated just as a quadrature encoder would be (see directly

above). The RTIF is usually selected as the nominal frequency of this input signal.

Processing a Sinusoidal Encoder with a PMAC3-Style IC

If the master signal comes from a sinusoidal encoder connected into a PMAC3-style IC, as on an

ACC-24E3 UMAC interface board, “hardware arctangent extension” for analog-based sub-count

interpolation is automatically performed by the IC if saved setup element

Gate3[i].Chan[j].AtanEna is set 1. The resulting value can be processed with a Type 1 “single

register read” encoder conversion table entry.

The hardware analog-circuitry-based sub-count interpolation computes 12 bits of fractional count

information (14 bits per line for “16,384x” interpolation). When used for feedback or position-

following master, this type of entry usually has an output scale factor EncTable[n].ScaleFactor

of 1/212 (1/4096) so the output is scaled in (quadrature) counts of the encoder. When used for an

external time-base master, the output scale factor should be set to 1/(4096*RTIF), with the RTIF

expressed in counts per millisecond, so the output is in units of the fictitious “milliseconds”

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 756

required for external time-base. It is recommended that the value be entered as an expression so

Power PMAC can compute the result precisely.

Processing a Serial Encoder with a PMAC3-Style IC

If the master signal comes from a serial encoder connected into a PMAC3-style IC, as on an

ACC-24E3 UMAC interface board, the data is simply latched into a register without any

extension or interpolation. The resulting value can be processed with a Type 1 “single register

read” encoder conversion table entry.

When used for feedback or position-following master, this type of entry usually has an output

scale factor EncTable[n].ScaleFactor of 1.0 so the output is scaled in counts (LSBs) of the

encoder. When used for an external time-base master, the output scale factor should be set to

1/RTIF, with the RTIF expressed in counts per millisecond, so the output is in units of the

fictitious “milliseconds” required for external time-base. It is recommended that the value be

entered as an expression so Power PMAC can compute the result precisely.

Position Following (Electronic Gearing)

Power PMAC’s simplest method of master/slave control is basic position following, also known

as “electronic gearing” because it mimics the functionality of mechanical gearing through

electronic means. This is a motor function, not a coordinate-system function as external time-base

control is. Typically, an encoder signal from the master (whether from real machine motion or an

operator “handwheel”) is fed into one of Power PMAC’s encoder inputs, and processed through

the encoder conversion table, just as a feedback encoder would be.

The functionality can be envisioned through its mechanical analogy as shown in the following

figure:

Master

Slave

Rm Rs

MasterPosSf = Rm / Rs

ΔPm ΔPs

Position Following Mechanical Analogy

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 757

Use of the position-following feature does not require the use of any motion or PLC programs. It

simply requires setting values for a few setup elements. These values can be saved to non-volatile

flash memory, but also can be changed at any time.

Position Following Master Address

Once the master signal has been processed through an encoder conversion table entry, as

explained in the above section, it is ready for use by a motor’s position-following function. The

saved setup element Motor[x].pMasterEnc must be set to the address of the ECT entry n that

provides the master position to follow. The assignment command will look like:

Motor[x].pMasterEnc = EncTable[n].a

This command can be either an on-line or buffered-program command. The assignment can also

be made interactively through the motor-setup program associated with the IDE. Note that the

only valid settings for Motor[x].pMasterEnc are addresses of ECT entries.

The default value of pMasterEnc for all motors is EncTable[0].a. ECT entry 0 is by default a

“dummy” entry, processing a null register. Many Power PMAC users who have a single master

encoder for position following will process it through ECT entry 0. However, if the encoder

channel used for the master encoder is already processed through a different entry (auto-

assignment of ECT entries to existing hardware interface channels at system re-initialization start

with ECT entry 1), it is usually best just to use that entry. Because all ECT entries are processed

first in each servo cycle, before any of the following or feedback algorithms, there is no delay

from using a higher-numbered ECT entry.

Position Following “Gear Ratio”

Saved setup element Motor[x].MasterPosSf establishes the commanded “gear ratio” for the

electronic gearing. It is a double-precision floating-point value, expressed in (slave) motor units

per master unit. The motor units are defined by the feedback sensor resolution (including ECT

scale factor) and Motor[x].PosSf; the master units are defined by the master sensor resolution

(including ECT scale factor). The default value of Motor[x].MasterPosSf is 1.0 for a 1-to-1 gear

ratio.

Note

This gear ratio in Turbo PMAC was expressed as the ratio of

two integers: Ixx07 and Ixx08. The equivalent gear ratio in

Power PMAC is the (floating-point) quotient of these two

values: Ixx07 / Ixx08.

Motor[x].MasterPosSf can be changed at any time to any floating-point value, whether or not

following is enabled. If saved setup element Motor[x].SlewMasterPosSf is set to its default

value of 0.0 (or in older firmware revisions where Motor[x].SlewMasterPosSf does not exist),

the ratio used is changed immediately to the new value; there is no slew-rate control. Care should

therefore be taken in this mode when changing this value while the motor is actually moving in

tracking the master position, as large instantaneous changes will cause significant step changes in

the commanded velocity of the slaved motor.

However, if Motor[x].SlewMasterPosSf is set to a positive value, slew-rate control on the

following ratio is enabled, and the actual ratio used each servo cycle, found in status element

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 758

Motor[x].ActiveMasterPosSf can change at most by the magnitude of

Motor[x].SlewMasterPosSf each servo cycle. The slew-rate control is active when following is

enabled or disabled, or when the desired ratio in Motor[x].MasterPosSf is changed.

When following is disabled, the actual ratio in Motor[x].ActiveMasterPosSf is set to 0.0. When

following is enabled, this actual ratio is incremented by the magnitude of

Motor[x].SlewMasterPosSf each servo cycle until the desired ratio is reached. When following

is disabled the actual ratio is incremented in the other direction by Motor[x].SlewMasterPosSf

each servo cycle until a value of 0.0 is reached. When the desired ratio is changed, the actual ratio

is incremented by the magnitude of Motor[x].SlewMasterPosSf each servo cycle until the new

desired ratio is reached.

If the application may enable or disable following, or change the desired ratio, while the master is

“moving”, it is strongly recommended to use slew-rate control to prevent step changes in the

commanded velocity of the slaved motor. However, the use of slew-rate control means that the

“position lock” between master and slave is not just dependent on the desired following ratio.

Enabling and Disabling Following

Bit 0 (value 1) of Motor[x].MasterCtrl controls whether the following function is enabled or

disabled for the motor. If it is set to the default value of 0, following is disabled; if it is set to 1,

following is enabled. If slew-rate control is not enabled (the default condition, with

Motor[x].SlewMasterPosSf at 0.0), the change is immediate, so great care should be taken when

enabling or disabling following while the master position is changing in this mode..

Following Mode: Normal vs. Offset

Bit 1 (value 2) of Motor[x].MasterCtrl controls the following “mode”. If it is set to the default

value of 0, “normal” mode is specified. In normal mode, the reference position for programmed

moves using the motor does not change as the motor follows the master position. Subsequent

absolute-mode moves will therefore “take out” the motion from the following. Also, in normal

mode, the reference position for reporting does not change with following motion, so the reported

position does change with following motion.

However, if bit 1 is set to 1, thus adding 2 to the value of Motor[x].MasterCtrl, “offset” mode is

specified, the reference position for programmed moves using the motor does change along with

the following motion. Subsequent absolute-mode moves are added on top of the position changes

from the following function. This permits the user to superimpose programmed and following

motion, as on a moving web, so the motion program can be written as if the web were not

moving, but resulting in an identical path relative to the moving web.

Use of Offset Mode for Cascaded Loops

Offset-mode following can be very useful for the implementation of cascaded servo loops. The

output of the outer loop is used as the master position for the inner position loop (and not sent

directly to an actuator). In this mode of operation, the inner loop typically is a standard position

loop; the outer loop closes a loop on force, tool height (gap), or some process variable. The use of

offset mode for this purpose permits the inner-loop motor to accept simultaneously trajectory

commands and following corrections for the outer-loop motor.

Changing Following Mode

The following mode is used in determining how the calculations relating programmed axis

position to underlying motor position are performed, so changing the mode changes how these

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 759

calculations would be done for subsequent moves, creating a “mismatch” between axis and motor

position, which could cause a sudden jump in the motor motion on the next programmed move if

not corrected. This is true regardless of whether following is enabled or not. To eliminate this

mismatch, a pmatch position-matching command must be executed before the next programmed

move command is executed.

Power PMAC automatically executes a pmatch command any time an r (run) or s (step)

command is issued to start a motion program; however, if the mode is changed in the middle of a

motion program, or if the next axis move is commanded from a PLC program, the pmatch

buffered program command must be issued explicitly in the program before the next move

command. It should be preceded by a dwell command in a motion program to ensure that any

pre-calculation is halted.

The program sequence would look something like:

dwell 0; // Stop pre-calculation

Motor[2].MasterCtrl |= 2; // Set mode bit to "offset"

pmatch; // Re-match axis and motor position

Y20; // Command programmed move

Speed and Acceleration Limiting in Following

Power PMAC’s position-following algorithm can automatically limit the speed and/or

acceleration of the slave motor that results from the following function. If saved setup element

Motor[x].MasterMaxSpeed is set to a positive value, then the magnitude of the position change

of the slave motor resulting from following in any servo cycle cannot exceed this value. If it is set

to the default value of 0.0, there is no speed limiting.

Note

This element is expressed in motor units per servo cycle, not

motor units per millisecond, as other motor velocity setup

elements are. The limit imposed by this element is not affected

by the time base override (%) value.

When the following is speed-limited, the motor “falls behind” the master, losing position

synchronization with it. In some applications, the desire is to “catch up” with the master when the

speed is no longer limited and re-establish “position lock” with the master. In other applications,

the desire is just to re-establish “velocity lock” with the master when the speed is no longer

limited, letting the motor “stay behind” the master.

Speed Limiting Only: Recovery of Velocity Lock

In Power PMAC, the choice between these two modes of operation is controlled by the setting of

saved setup element Motor[x].MasterMaxAccel. If this element is set to its default value of 0.0,

there is no acceleration limiting in following, and the motor will only re-establish “velocity lock”

with the master when the speed is no longer limited. It will not “catch up” to the master position;

any “excess” due to speed limiting is lost.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 760

The following plot demonstrates the case that is speed limited but not acceleration limited, and

which therefore only re-establishes velocity lock when no longer limited. The slave motor (Motor

2) does not catch up to the master position when it comes out of speed limiting.

Speed-Limited Following, No Recovery of Position Lock

Speed and Acceleration Limiting: Recovery of Position Lock

If Motor[x].MasterMaxAccel is set to a positive value, two aspects of the following function

change. First, the magnitude of the acceleration due to following is limited to the value of this

element. Second, any “excess” master distance from speed or acceleration limiting is accumulated

and then “released” when following is no longer limited. This permits the following function to

re-establish “position lock” with the master.

The “excess” accumulated at any time can be seen in the difference between the status elements

Motor[x].MasterPos (the unlimited position from the master) and Motor[x].ActiveMasterPos

(the limited position). Position lock is re-established when these two elements have the same

value. Note that acceleration limiting can only be enabled if velocity limiting is also enabled

(Motor[x].MasterMaxSpeed > 0).

Note

This element is expressed in motor units per servo cycle per

servo cycle, not motor units per millisecond per millisecond, as

other motor acceleration setup elements are. The limit imposed

by this element is not affected by the time base override (%)

value.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 761

The next plot demonstrates the case that is both speed limited and acceleration limited, and which

therefore “catches up” with the master once it is no longer limited. The slave motor (Motor 2)

continues at the speed set by Motor[x].MasterMaxSpeed, even when the master is no longer

commanding a speed this high, until it is almost caught up, at which time it decelerates at the rate

set by Motor[x].MasterMaxAccel.

Speed- and Acceleration-Limited Following, Recovery of Position Lock

Note that the initial slave-motor acceleration is kept well below the specified limit (at which the

final slave-motor deceleration occurs). This is due to the fact the Power PMAC is limiting the

speed so that a deceleration to zero velocity could occur within the specified acceleration limit,

even if there were no further change in master position.

Engaging and Disengaging Following on the Fly

The speed and acceleration limits in following make it possible to engage and disengage the

following in a controlled manner when the master is in motion. When following is enabled, the

slaved motor will first accelerate from zero at the rate specified by Motor[x].MasterMaxAccel

to a speed higher than a velocity lock to the master would cause. It will maintain a higher speed

until it has established a position lock with the master, by which time it will have decelerated to

be in velocity lock with the master as well. In establishing position lock, it will have traveled the

same distance relative to the master as it would have if it could have established velocity lock

immediately upon enabling.

When following is disabled when the master is in motion, the slave motor will first decelerate at

the rate specified by Motor[x].MasterMaxAccel until it is traveling in the opposite direction. It

will continue to move in the opposite direction until it has returned to the position where it was

when following was disabled, by which time it will have decelerated to zero velocity.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 762

The following plot shows the response to enabling and disabling following while the master is in

motion. In this case, the master is moving at approximately constant velocity throughout the

process.

On-the-Fly Engaging and Disengaging of Following, Acceleration-Limited

If, during the initial acceleration after enabling, continued acceleration would cause the following

motor to exceed its following speed limit, the following is clamped at this maximum speed even

while it is attempting to re-attain position lock with the master. This is shown in the following

plot:

On-the-Fly Engaging and Disengaging of Following, Acceleration- and Speed-Limited

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 763

Custom Following Algorithms

It is possible for the user to write directly to the Motor[x].MasterPos register, which is scaled in

the slave motor units. Doing this bypasses the built-in position-following algorithm. If this is

done, bit 0 (value 1) of Motor[x].MasterCtrl should be set to 0, disabling the built-in algorithm

so it is not trying to write to the same register. Setup elements Motor[x].pMasterEnc and

Motor[x].MasterPosSf are not used in this case. Bit 1 (value 2) of Motor[x].MasterCtrl is still

used to determine whether programmed moves are offset with the following or not.

It is suggested that custom following algorithms that directly to the Motor[x].MasterPos register

be implemented in a foreground PLC program executing at servo rate, or a user-written servo for

an unused motor (especially Motor 0). These algorithms can implement special features not

present in the standard algorithm.

Tuning the Servo Loop of the Slave Motor

Most users will employ the same tuning of the servo loop of a slave motor in position following

as they would for a motor executing calculated trajectories. However, due to the finite resolution

and imperfections of the master sensor, and possible mechanical disturbances and vibration, the

master trajectory will not be as “smooth” as an internal mathematically generated trajectory, and

it may not be possible to tune as aggressively when following. Note that low-pass filtering in the

feedforward path of the slave motor’s servo algorithm (with the “F” polynomial) can be used to

preserve decent tracking without too much amplification of the imperfections of the master

signal.

External Time-Base Control

A more sophisticated method of slaving to external motion is that of “external time-base” control,

in which the input signal frequency controls the rate of execution of moves and programs.

External time-base control operates on an entire coordinate system, affecting the motion of all

motors in that coordinate system.

What is External Time-Base Control?

Power PMAC’s motion language expresses position trajectories as functions of time. Whether the

moves are specified directly by time, or by speed, ultimately the trajectory is defined as a

position-vs-time function.

This is fine for a great number of applications. However, in some applications, we wish to slave

the Power PMAC axes to an external axis not under Power PMAC control. In these applications,

we really want to specify the trajectories as functions of master position, not of time. Most

controllers force the user to use a completely different method for specifying the trajectories for

this type of trajectory, often table-based, as common terms involved in position-vs-time

trajectories, such as velocity and acceleration, are no longer really valid.

Power PMAC’s method for specifying trajectories in this mode leaves the language expressing

position as a function of “time”, but makes this now-fictitious “time” proportional to the distance

covered by the master. This is done by defining a “real-time input frequency” (RTIF) from the

master’s position sensor, usually in units of counts per millisecond. For example, we define an

RTIF of 32 cts/msec. Then, in external time-base mode, when the motion program refers to a

millisecond (directly or indirectly), it is really referring to a distance elapsed on the master

corresponding to 32 counts of the master encoder. If the motion program commands a move to

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 764

take 2 seconds (2000 msec) to complete, it is really commanding the move to complete in 64,000

counts of the master encoder, however long of a time that takes.

The selected RTIF is used to compute a scale factor in the encoder conversion table (ECT) entry

that processes the master signal, as explained in the section “Processing the Master Position

Signal”, above. The motion program then specifies a trajectory assuming that the master always

provides this frequency.

The selection of the RTIF is quite arbitrary. In many applications, the frequency produced at the

“nominal” speed of the master is used. It can be desirable to select a value that is a power of 2

(such as 32) so that the scale factor in the ECT has an exact floating-point representation, if this

does not result in difficulties in writing the motion sequence. (The scale factor is inversely

proportional to the RTIF.) However, because the scale factor is a double-precision floating-point

value, in the vast majority of applications, a non-exact representation will not cause any

noticeable errors. (This is a substantial improvement over the PMAC and Turbo PMAC integer

algorithms, in which any inexactness would cause a quickly noticeable error. In Power PMAC, an

inexact representation would require continuous high-speed motion of the master for multiple

hours before any noticeable error could accumulate.)

One of the advantages of this method is that is possible to develop and debug the slave

trajectories without the need for a master signal, executing them as true functions of time (i.e.

with “internal time base”). This is often a very useful development strategy, especially employing

the data gathering and plotting features provided. Once satisfied with the results at this stage,

changing the value of a single variable (as explained below) converts execution to external time

base.

Comparison to Electronic Cam Tables

Many applications use Power PMAC’s external time-base feature to achieve functionality that is

similar, or even equivalent, to that provided by electronic cam tables. Power PMAC also provides

cam table functionality, providing users with a choice of approach. Power PMAC’s cam tables

are covered in a separate chapter.

The key advantage of the cam table approach is that the master can be fully bi-directional,

whereas the time-base master must be fundamentally uni-directional. Also, many users are more

familiar with the table-based approach, since it is more common in industry.

However, the external time-base approach is more flexible in that it can use the full capabilities of

Power PMAC’s motion program math, logic, and trajectory generation. It is not limited to cyclic

motions, and in many cyclic motions, the cycle can be described in a small number of

programmed moves, not necessarily evenly spaced, rather than a large number of evenly spaced

table points.

How External Time-Base Works

In executing commanded move profiles, every servo cycle n, Power PMAC’s interpolation

function calculates a new commanded position CPn for each active motor using the equation:

tCVCPCP nnn 1

where CPn-1 is the previous cycle’s command position, CVn is the cycle’s command velocity, and

Δt is the time elapsed in the servo cycle.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 765

In most operation, the value of Δt corresponds to the true physical time elapsed in one servo

cycle. This true time should be specified by the user in saved global setup element

Sys.ServoPeriod, in units of milliseconds. However, the numerical value used does not need to

match this physical time interval. If we instead use a value for Δt each servo cycle that is

proportional to the change in master position (ΔMP) during that servo cycle, we have made the

trajectory a function of elapsed master position, not of elapsed time.

Note that the physical time between servo cycles does not change, which means the dynamics of

the servo loop feedback and feedforward terms do not change either. It is only the rate of

execution of commanded trajectories that change, and since they change together for all motors in

the coordinate system, any path through space does not change, and full coordination is

maintained.

External time base is designed to work only in the positive direction (ΔMP > 0). The algorithm

can handle very brief moments of negative direction from the master without losing

synchronicity, as the motion is reversible within a single motion segment with given equations of

motion. This permits the master to come to a stop and to dither about a stopping point without the

slave axes losing their “lock” to the master. However, if the accumulated negative signal from the

master would require a transition into a previous segment with different motion equations, this

transition will not be made. Applications that require tracking of a fully bi-directional master

position signal may use position “compensation” tables with the master signal assigned to the

“source” motor and the slaved motor as the table’s “target” motor.

Time-Base Entry in the Encoder Conversion Table

The coordinate system’s source for its Δt time base value in external time-base mode must be an

entry in the encoder conversion table. This entry processes the incoming signal information to

calculate a “delta-position” value each servo cycle that will be used as a Δt value.

The details for processing each common type of signal in an ECT entry are given in the section

Processing the Master Position Signal earlier in this chapter. The key difference in using the

signal for time-base master instead of servo feedback is that the output scale factor for the entry

for time-base master should be a factor of the RTIF (in cts/msec) smaller than it would be for

servo feedback. If the signal is used for both purposes, two separate entries with different scale

factors should be used.

Using the Scaled Master Value

Each coordinate system has a saved setup element Coord[x].pDesTimeBase that tells the

coordinate system the address of the register to read to get its “Δt” value for its motor’s

interpolation functions. By default, this is set to the address of the register

(Coord[x].DesTimeBase.a) that responds to “%n” commands to the coordinate system. For

external time-base following, this should be set to the address of the scaled “delta-position”

register for the ECT entry processing the master signal:

Coord[x].pDesTimeBase = EncTable[n].DeltaPos.a

This will cause the coordinate system to use the computed scaled ΔMP value from the entry as its

Δt value in the motion interpolation equations. If the master encoder is outputting the real-time

input frequency, this value will match the real time elapsed in a servo cycle.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 766

The saved setup element Coord[x].TimeBaseSlew, which limits how much the time-base value

actually used in the interpolation equations can change each servo cycle, even if there are big

changes in the desired time-base value, is by default set to a very low value (0.00001) to prevent

sudden velocity changes when commanded time-base has a step change. When external time-base

is used, the inertia of the physical master prevents large instant changes, but there can be cycle-to-

cycle “noise” requiring significant changes to maintain full synchronization. Therefore

Coord[x].TimeBaseSlew should be set much larger (e.g. to 1.0) so it will not limit the changes

due to noise, which would cause a loss of synchronization.

Writing the Motion Program

When you write the motion program that is to be under external time-base control, simply write it

as if the input signal were always as the “real-time” frequency. When run, the motion will execute

at a rate proportional to the input frequency. All positions, speeds, and times are calculated to full

double-precision floating-point resolution.

Maintaining Synchronicity

Synchronicity to the master signal is only maintained during a continuous (blended or splined)

motion sequence. If there is a break in the sequence for whatever reason, even if only for a

moment, synchronicity to the master cannot be fully maintained between the motion sections

before and after the break. Conditions that will cause a break in the continuous sequence include

disabling of blending from setting Coord[x].NoBlend to 1 or from having a corner sharper than

that set by Coord[x].CornerBlendBp, using a rapid-mode move (which is never blended at

beginning or end), and using a dwell command (even a dwell 0).

Note that a dwell command always executes in “real time”, regardless of the input frequency. It

also disables pre-computation, so there is a brief but not fully deterministic break afterward to

compute the next move. If you want to command zero motion of the slave axes for a period

proportional to the frequency of the master, either explicitly command a zero-distance move of a

specified “time”, or use the delay command for this “time”. Unlike a dwell command, a

delay command executes in “variable time”, and it is part of a blended move sequence, with

calculations done during the continuous sequence.

Effect of Acceleration Profiles

If the commanded motion is started with the master signal already at speed, a programmed

acceleration profile is necessary to obtain a controlled start to the motion. If the acceleration is

specified by time, as with ta and ts commands, the actual time is inversely proportional to the

master signal frequency. If the acceleration is specified by rate, as with an InvAmax parameter,

the actual rate is proportional to the square of the master signal frequency. Note that any

acceleration rate calculations in programmed motion assume time base at 100% (i.e. at RTIF).

In some applications, the commanded motion is started with the master signal at rest, and so will

not actually begin until the master signal actually starts. If the master signal comes from a

position sensor on a physical device, the inertia of the device will limit the acceleration of the

signal. Sometimes, the user desires that the actual motion of the commanded trajectory be directly

proportional to the master signal frequency, without any lag (much like in electronic gearing). To

accomplish this, the acceleration times for the programmed trajectory should be set to 0, and if

there could be any acceleration rate limiting, the InvAmax parameters should be set to 0.0 to

permit “infinite” acceleration at 100%.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 767

Simple Time-Base Example: Crosscut on Moving Web

You have a web of material moving under open-loop control at a nominal speed of 800 mm per

second. There is a quadrature encoder on the web that provides 40 lines per mm. There is a cross-

cutting axis under Power PMAC control. When the web is moving at nominal speed, the crosscut

move should take 0.2 seconds. You want to repeat the crosscut every 500 mm of the web

material.

Step 1: Signal Connection and Decode

The master encoder is connected to the 4th channel of the 1st ACC-24E2A board at default address

settings, so the IC index is 4 and the channel index is 3. Gate1[4].Chan[3].EncCtrl is set to 3 or

7 for “times-4” decode, whichever causes the counter to count up in the direction of motion.

Step 2: Encoder Conversion Table Processing

Most commonly, an appropriate encoder conversion table (ECT) entry will automatically be

configured to process this encoder signal with “software 1/T extension” (Type = 3). In most

configurations this entry will be EncTable[4]. However, by default, this will have a scale factor

of 1/512 (= 0.001953125), which will probably not be appropriate for our real-time input

frequency (RTIF).

For simplicity, we will define our RTIF as the count frequency produced by the web encoder at

the nominal speed. We get:

msec

cts

line

cts

mm

lines

secm

sec

sec

mm
RTIF 64420

1000
800

Our desired ECT scale factor is 1 / (512 * RTIF), so we can set:

EncTable[4].ScaleFactor = 1/(512*64)

Step 3: Writing the Motion Program

Since our RTIF would be produced at the nominal speed of the web, we write our motion

sequence assuming the web is always moving at the nominal speed of 800 mm/sec. The cutting

move takes 200 msec at this speed, as stated above. We want the total cycle to occur over 500

mm of movement, which at the nominal speed takes 500/800 sec, or 625 msec. So the total return

must take 625 – 200 = 425 msec. We would have a program loop such as:

while (CuttingMode) { // Loop until mode changes

 CutterDown = 1; // Turn on output to lower cutter

 delay 100; // Proportional wait

 X1000 tm200; // Crosscut move

 delay 100; // Proportional wait

 CutterDown = 0; // Turn off output to raise cutter

 X0 tm225; // Return move

}

Triggered Time Base

The time-base techniques discussed so far keep the slaved coordinate system locked perfectly to

the master once locked in, but they do not provide a way of synchronizing to a particular point on

the master. Thus, the slave cycle can be “out of phase” with the master cycle, and some special

technique, usually involving position capture from a registration mark, must be used to bring the

cycles in phase with each other.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 768

Many time-base applications do not require the master and slave cycles to be in phase with each

other (for example, cutting blank sheets of paper to length rather than printed pages), and others

have to be continually re-registered due to stretching, slippage, or uneven spacing. These types of

applications can use the standard time-base functionality, with any necessary adjustments made in

the application program on the fly.

However, applications that simply need to start off in proper phase with the master cycle can use

the automatic “triggered time base” feature of the conversion table. This technique permits

perfect synchronization to the position of the master that is captured by a trigger, by freezing the

time base until the capture trigger is received, then starting the time base referenced precisely to

the position that was captured by the trigger. The trigger is commonly the index pulse of a spindle

encoder, or a registration mark on a moving web wired to one of the channel’s flags. The

“hardware capture” feature of PMAC ASICs is used to get the exact master position at the instant

of the capture, without any software reaction delays.

Valid Sensor Types

Triggered time base can be used with incremental encoders processed either through PMAC2-

style ICs (with software 1/T extension converted with Type = 3) or PMAC3-style ICs (with

hardware 1/T extension converted with Type = 1). The incremental encoders can be either digital

quadrature or analog sinusoidal, but analog sinusoidal encoders must be processed as if they were

digital quadrature encoders, with the sub-count interpolation coming from timer circuits, not A/D

converters.

Setting the Capture Trigger Condition

The capture trigger condition for the IC channel is set up in the same way as for a feedback

encoder, using saved setup elements Gaten[i].Chan[j].CaptCtrl, to specify what combination of

flag and/or index pulse will be used, Gaten[i].Chan[j].CaptFlagSel, to specify which type of

flag will be used (if used), and for PMAC3-style ICs only, Gate3[i].Chan[j].CaptFlagChan, to

specify the channel index of the specified flag (for PMAC2-style ICs, it must be the same channel

as the captured encoder).

Modifying the ECT Entry for Triggering

Triggered time base uses the same encoder conversion table entry that is used for standard time

base, either a Type 3 “software 1/T extension” entry for a PMAC2-style IC, or a Type 1 “single-

register read” entry for a PMAC3-style IC, where the 1/T extension is done in hardware in the IC.

Some elements of the entry are modified to set up the triggering, but when the trigger occurs, the

entry automatically reverts to the same state as for standard time base.

Freezing and Arming the Time Base

For either type of IC, changing EncTable[n].type to 10 creates a triggered entry and “freezes”

the time base. That is, the output value at EncTable[n].DeltaPos will be exactly 0.0 regardless of

the input frequency, and there will be no motion in the slaved coordinate system using this

register for its time base.

Then, EncTable[n].pEnc1, which specifies the address of the secondary source for the entry,

must be changed to Gaten[i].Chan[j].Status.a for the IC and channel used, so the trigger-capture

bit can be monitored. At this point, the time base is still frozen.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 769

Next, EncTable[n].index1 must be changed to 2 (for a PMAC2-style IC) or to 3 (for a PMAC3-

style IC). This “arms” the triggered time-base entry, so it can react to the trigger as soon as it

occurs.

(In the older Turbo PMAC, this arming step needed to be done in a separate PLC program to

ensure that the arming occurred after the first move was fully calculated. That separate function is

not required in the Power PMAC as long as the first move command line in the motion program

immediately follows the arming command.)

While the time base is in its frozen state, the initial programmed move that is to start on the

trigger must be fully calculated and completely read to start execution. This way, there will be no

possibility of a calculation delay hurting the accuracy of the relationship of the motion to the

master trigger position.

Triggering the Time Base

Once the entry is armed, it checks the specified status register every servo cycle to see if the

trigger has occurred. On the servo cycle where it sees that the trigger occurs, several things occur

automatically. First, it changes the entry back to its running state. For a PMAC2-style IC,

EncTable[n].Type is changed back to 3, and EncTable[n].pEnc1 is changed back to

Gate1[i].Chan[j].TimeBetweenCts.a so that the software 1/T extension can resume. For a

PMAC3-style IC, EncTable[n].Type is changed back to 1 (and the value of EncTable[n].pEnc1

does not matter in running mode). In either case, the entry is now simply a standard entry for

running time base.

It also reads the position captured at the instant of the trigger, and subtracts this from the position

captured at the start of the servo cycle to get the change in master position since the trigger

(which will be a fraction – between 0.0 and 1.0 – of the position elapsed since the previous servo

cycle), multiplies this difference by EncTable[n].ScaleFactor, and puts the result into

EncTable[n].DeltaPos.a, where it will be used by the slaved coordinate system.

In subsequent servo cycles, the change in master position will be calculated over the entire servo

cycle, but by using the hardware-captured position at the trigger, the motion will be referenced

exactly to this position.

Writing the Motion Program Sequence

The motion program that specifies the trajectory to be executed under a triggered time base must

perform several tasks. First, if there were any previous programmed moves or calculations, both

the moves and pre-calculations must be stopped with a dwell command. A dwell 0 command

is sufficient for this.

Next, the time base must be frozen by setting EncTable[n].type to 10 and prepared to read the

trigger by setting EncTable[n].pEnc1 to Gaten[i].Chan[j].Status.a.

If there are any extensive calculations required to prepare for the first move command, these

should be done next in the motion program.

Then, the trigger must be armed by setting EncTable[n].index1 to 2 or 3 for a PMAC2-style or

PMAC3-style IC, respectively. In Power PMAC, this can be done in the motion program

immediately before the first move command.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 770

(This arming can also be done, as in Turbo PMAC, in a single statement in a PLC program, e.g.:

if (EncTable[n].type == 10) EncTable[n].index1 = 2).

The actual move command for the first move to start on the trigger must immediately follow in

the motion program. Power PMAC will calculate the equations of motion for this move and place

them in the execution queue, but actual move execution (interpolation) will not begin because the

time base (Δt value) is frozen at zero. This move execution will not begin until the specified

trigger is detected.

Triggered Time Base Example

This example uses triggered time base for multi-thread screw threading on a lathe with an open-

loop spindle. Coordinate system 1 has X (radial) and Z (axial) axes, and is slaved to an encoder

on the spindle while cutting, so that axial cutter speed tracks spindle speed, resulting in constant

pitch.

Threading Application Block Diagram

Each thread cut pass is triggered by the index pulse of the spindle encoder, permitting a precisely

referenced start to the cut. This permits the different threads to be perfectly spaced relative to

each other, while still permitting the fastest possible return after each thread cut (which causes a

loss of synchronicity).

The spindle has a quadrature encoder with 1024 lines per revolution, which provides 4096 counts

per revolution with the standard “times-4” decode, connected into the last channel of our single

ACC-24E2A board at the default address. The spindle has a nominal speed of 1200 rpm (20

revolutions per second), which we will use as the real-time speed. The resulting real-time input

frequency is 81.92 cts/msec (81.92 kHz).

The spindle encoder channel is assigned by default to the ECT entry 4 as a Type 3 “software 1/T

extension” conversion, and we will not change that. However, the default scale factor is 1/512, so

we will change that to specify our selected RTIF with the command:

EncTable[4].ScaleFactor = 1 / (512*81.92)

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 771

The program sequence is to cut three equally spaced threads of a pitch of 4 mm and a depth of 0.5

mm on a cylinder of 10 mm radius from Z = 1 mm to Z = 25 mm. The programmed speed of the

cutting move is calculated as 4 (mm/rev) * 20 (rev/sec) = 80 mm/sec.Each thread is delayed one-

third of a revolution from the previous thread by the time of the “plunge” move; at the real-time

speed of 20 rps, this delay is 50/3 msec. The motion program code to implement this is:

rapid X11 Z1; // Quick move above thread start

Coord[1].pDesTimeBase = EncTable[4].DeltaPos.a; // External time base

Coord[1].TimeBaseSlew = 1.0; // High slew rate

Gate1[4].Chan[3].CaptCtrl = 1; // Trigger on rising index

ThreadNum = 1; // Initialize thread count

while (ThreadNum <= 3) { // Loop once per thread

 dwell 0; // Stop pre-calculation

 EncTable[4].Type = 10; // Triggered time base, frozen

 EncTable[4].pEnc1 = Gate1[4].Chan[3].Status.a; // Trigger register

 linear; // Linear mode move

 tm(Coord[1].Ta + (ThreadNum – 1) * 50 / 3); // Plunge move time

 EncTable[4].index1 = 2; // Arm trigger (PMAC2 IC)

 X9.5; // Plunge move command

 F80; // Cutting move speed at RTIF

 Z25; // Cutting move command

 tm(Coord[1].Ta); // Retract move time

 X11; // Retract move command

 dwell 0; // Stop pre-calculation

 Coord[1].pDesTimeBase = Coord[1].DesTimeBase.a; // Internal time base

 rapid Z1; // Fast return move, not sync’ed

 ThreadNum++; // Increment thread count

}

X0 Z0; // Done, return to home

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 772

Hardware Position-Capture Functions

The hardware position-capture function of the Power PMAC ASICs latches the present encoder

position at the instant of an external trigger into a dedicated register. It is executed totally in

hardware, without the need for software intervention (although it is set up, and later serviced, in

software). This means that the only delays in the hardware capture are the hardware gate delays

(negligible in any mechanical system), so this provides an incredibly accurate capture function,

exact to the count at any speed. The accuracy is not limited by the servo update rate, as the

position can be captured at any time during the servo cycle.

Power PMAC has high-level “move-until-trigger” constructs that can utilize the hardware

position-capture function to end a commanded move automatically at a precise distance from the

captured feedback position at the trigger. The “triggered time base” slaving function uses the

hardware-capture function on the master position data to provide a precise staring reference point

for the following. It is also possible to create your own “low-level” algorithms to use the

hardware capture functions for other purposes.

Requirements for Hardware Capture

The hardware position-capture function in a servo channel of a Power PMAC ASIC latches the

channel’s encoder counter value upon a pre-defined change in the encoder’s index-channel input

and/or a flag input. Note that for position data to have this hardware-capture capability, it must be

processed through the encoder counter of an IC servo channel. The most common sensor types

used with this capture function are digital quadrature encoders and analog sinusoidal encoders.

Parallel-format and serial-format encoders that are read by the controller only once per servo

cycle do not directly support this function; other techniques must be used.

Both PMAC2-style and PMAC3-style interface ICs support the hardware position-capture

function. Both also support capture of timer-based estimated sub-count position as well, although

this is much easier and more direct in the PMAC3-style IC.

Setting the Trigger Condition

In both the PMAC2-style and PMAC3-style ICs, the saved setup element

Gaten[i].Chan[j].CaptCtrl is the first parameter to set in specifying the trigger condition. This

4-bit variable, with a range of 0 to 15, permits specification of whether the channel’s index

channel, a flag input, or a combination of the two, is used in the trigger; and which edges of these

signals will cause the trigger.

If a flag is specified to be used, Gaten[i].Chan[j].CaptFlagSel specifies which flag is used in the

trigger condition. This element has a range of 0 to 3, specifying the home flag, positive limit flag,

negative limit flag, or user flag, respectively. In the PMAC2-style IC, the selected flag input must

be connected to the same channel as the encoder to be captured. If you want to capture multiple

positions simultaneously with a single flag input (as on a CMM probe), you must wire the

triggering flag into inputs for each of the channels whose position you wish to capture.

The following diagram shows the capture trigger specification circuitry for a channel of a

PMAC2-style IC as part of the encoder processing circuitry. The same basic circuitry is present in

each channel of a PMAC3-style IC.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 773

TimeBetweenCts

ServoCapt

PhaseCapt

HomeCapt

TimeSinceCts

CounterDecoder

Timers

Flag

Select

A

B

C

HOME

PLIM

MLIM

USER

Trigger

Phase

Clock

Servo

Clock

EncCtrl

CaptFlagSel

Trigger

Select

CaptCtrl

Address Data

PMAC2-Style IC Encoder Capture and Trigger Circuitry

In the PMAC3-style IC, however, it is possible to use a flag from any channel on the IC in the

trigger for a given channel’s position capture. Gate3[i].Chan[j].CaptFlagChan specifies the

channel index (0 to 3) for the flag that will be used in this (i) channel’s position capture. The

default value for each channel’s capture is the same channel’s flag. Whether the same or different

channel’s flag set is selected, Gate3[i].Chan[j].CaptFlagSel specifies which flag in the set is

used.

Automatic Move-Until-Trigger Functions

Power PMAC has three types of “move-until-trigger” functions that can use the hardware

position-capture feature to latch the exact position at the trigger:

1. Homing-search moves (on-line or in a motion program)

2. On-line jog-until-trigger moves

3. Program rapid-mode move-until-trigger

All of these create basically the same type of motion. All of them end their “post-trigger” move at

a pre-defined distance from the position at the trigger. These moves are described in detail in the

chapter Executing Individual Motor Moves.

Semi-Automatic Position-Capture Monitoring Function

Power PMAC can monitor a motor for a position-capture event, automatically processing the

captured sensor position into a motor position and storing that position for the userWhile this

monitoring function uses the same logic and processing as the position capture for triggered

moves such as homing search moves, unlike the triggered moves, it does not affect the motor

motion in any way. The monitoring function should not be used while a triggered move is looking

for the trigger, as the two functions could interfere with each other.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 774

The position-capture monitoring function is activated by setting non-saved setup element

Motor[x].CapturePos to 1. When this is done, it will monitor every real-time interrupt (RTI) for

the specified capture trigger. When it sees the trigger event, it will automatically read the

captured sensor position and process it into motor position, writing that calculated motor position

at the time of the capture to status element Motor[x].CapturedPos, where it is available for

application use.

The motor’s position-capture method is determined by Motor[x].CaptureMode. The capture

monitoring function can be used for all methods specified by CaptureMode. In the usual case

where the capture event is caused by an input trigger, the trigger bit to be monitored is specified

by Motor[x].pCaptFlag and Motor[x].CaptFlagBit.

The input trigger is most commonly from a capture flag in one of the Servo ICs (“gates”) for the

Power PMAC. In this case Gaten[i].Chan[j].CaptCtrl and Gaten[i].CaptFlagSel determine

which states of which inputs contribute to the trigger event.

For the IC hardware position capture, Motor[x].CaptPosRightShift,

Motor[x].CaptPosLeftShift, and Motor[x].CaptPosRound specify how to convert the captured

sensor position value to the same scaling as the servo position feedback. From this point, the

captured sensor position can be converted to motor position just as the servo sensor position is.

Once the captured motor position is calculated, it is stored in Motor[x].CapturedPos and the

control element Motor[x].CapturePos is set back to 0 to indicate that the function is complete.

An example of how to use this function is shown in the following PLC program code:

Motor[3].CapturePos = 1; // Activate monitoring

while (Motor[3].CapturePos == 1) {} // Wait for capture

MyVariable = Motor[3].CapturedPos; // Use motor pos at capture

…

Manual Use of the Hardware-Capture Feature

If the automatic move-until-trigger functions do not accomplish the action you need, you can

create your own functionality by accessing the capture registers directly. Each channel of either a

PMAC2-style IC or PMAC3-style IC has capture status flags and a captured-position register.

Capture Status Flags

In both PMAC2-style ICs and PMAC3-style ICs, Gaten[i].Chan[j].PosCapt is a 2-bit status flag

indicating whether a trigger capture has occurred for the channel. (For C users, who must access a

full 32-bit I/O register, it is bits 18 and 19 of the full-word element Gate1[i].Chan[j].Status for a

PMAC2-style IC, or bits 20 and 21 of the full-word element Gate3[i].Chan[j].Status for a

PMAC3-style IC.)

Bit 1 (value 2) of the status flag is set to 1 by the IC’s capture logic when the trigger condition

occurs and the position is latched into the capture register(s). It is set to 0 when the captured-

position register Gaten[i].Chan[j].HomeCapt is read by the processor. The act of reading this

register automatically resets and re-arms the capture logic.

Bit 0 (value 1) of the status flag is set to 1 by the IC’s capture when a trigger condition occurs

that uses the “gated index” as at least part of the trigger condition (Gaten[i].Chan[j].CaptCtrl bit

0 = 1 to specify use of the index, and Gaten[i].Chan[j].GatedIndexSel = 1 to specify “gating” of

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 775

the index pulse to a single quadrature-state width). Bit 1 is always set as well when this bit is set.

This bit is set to 0 when the captured-position register is read by the processor This bit is mainly

used by routines that check for position loss by comparing the difference in successive capture

values against the nominal counts per revolution.

Level vs Edge Triggering

PMAC2-style ICs use “level-triggered” capture logic. When the captured-position register is read,

clearing the status flags to 0, if the specified input signal(s) are still in the specified trigger

level(s), the logic will immediately retrigger, setting the status flag and latching the present

position. Robust application logic should check the trigger state before starting a move that is

expecting to see an edge.

PMAC3-style ICs use “edge-triggered” capture logic, so after a trigger and read of the captured-

position register, the specified input signal(s) must leave the specified trigger level(s) and then re-

enter these level(s) to create another trigger.

Captured Position Registers – PMAC2-Style ICs

In PMAC2-style ICs, the read-only element Gate1[i].Chan[j].HomeCapt is an unsigned 24-bit

register (for C users, a 32-bit register with real data in the high 24 bits) containing the most recent

position latched by the trigger logic (even if not from the home flag). It is in units of “counts” as

defined by the value of saved setup element Gate1[i].Chan[j].EncCtrl, usually specifying 4

counts per line of the encoder, whether for digital quadrature or analog sinusoidal encoders.

Note that the relationship of these “hardware count” units to any resulting motor position units

depend on the values for EncTable[n].ScaleFactor and Motor[x].PosSf used in processing the

position data for the motor.

The value in this register is referenced to the power-up/reset position of the sensor. That is, the

counter is set to zero at power-up/reset, and it counts from there. It does not get reset to zero if the

motor using it for feedback is homed. If the value in the register passes 0 in the negative

direction, or 16,777,215 (224 – 1) in the positive direction, it simply rolls over to the other end of

its range. See the section “Handling Rollover of the IC Position Registers”, below, for

instructions on how to deal with this effect.

Optional Fractional Count Registers

PMAC2-style Servo ICs optionally support the capturing of estimated fractional count values on

a trigger, not just the whole-count values. If saved setup element Gate1[i].Chan[j].1OverTEna

is set to 1, the IC will use its “1/T” timer circuitry to calculate an estimated fractional-count value

every SCLK cycle. This value can then be captured along with the whole-count value on the

selected input trigger.

This “hardware 1/T” extension in the IC is not compatible with the standard “software 1/T”

extension performed in the encoder conversion table for servo use. For this reason, it is most

often used with sinusoidal encoders, as on the ACC-51E interpolator board. In this case, the servo

uses analog arctangent extension in the ECT, but the capture (and compare) circuits use the

“hardware 1/T” in the IC.

When “hardware 1/T” extension is enabled for an IC channel, the contents of the two timer

registers for the channel change (which is why “software 1/T” extension in the conversion table

cannot be supported). The 24-bit element Gate1[i].Chan[j].TimeBetweenCts is split into 2 12-

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 776

bit components; the high 12 bits form the (unsigned) fractional count portion for HomeCapt (for

C users, these are the high 12 bits of a 32-bit element).

This component can take a value of 0 to 4095, in units of 1/4096 of a count. Higher values of

fractional count are closer to the more positive whole count, regardless of the direction of motion.

When reading the value in the component, it is best to mask out the low 12 bits (although some

will consider that data too insignificant to care about), then shift the data right by 24 bits to get it

into the fractional components of a count. (First, shift 12 bits to move the data to the LSBs of the

element, then 12 more bits to make it fractional. In C, this would be 20 + 12 = 32 bits of shift.)

Note carefully what a “count” means here. Because we are dealing with the hardware counter in

the Servo IC, these are “hardware counts” – one unit of the hardware counter. With the “times-4”

decode that is almost universally used (and must be used with ACC-51E boards), there are 4

hardware counts per line (signal cycle) of the encoder. The units of the output of an encoder

conversion table entry processing the sinusoidal encoder for motor servo feedback depend on the

scale factor used there (if the suggested value 1/1024 is used, it will have the same units).

Because the act of reading the whole-count position in the HomeCapt register re-arms the trigger

circuitry, the fractional-count position should be read first in any operation to read both and

combine into a single position value. For example:

MyCapturedPos = (Gate1[i].Chan[j].TimeBetweenCts & $FFF000) >> 24;

MyCapturedPos += Gate1[i].Chan[j].HomeCapt;

In C, which must work with 32-bit I/O elements, the mask value would be $FFF00000 and the

shift-right operation would be by 32 bits.

Captured Position Registers – PMAC3-Style ICs

In PMAC3-style ICs, the read-only element Gate3[i].Chan[j].HomeCapt is an unsigned 32-bit

register containing the most recent position latched by the trigger logic (even if not from the

home flag). It is in units of 1/256 of a “count” as defined by the value of saved setup element

Gate3[i].Chan[j].EncCtrl, usually specifying 4 counts per line of the encoder, whether for

digital quadrature of analog sinusoidal encoders. If Gate3[i].Chan[j].TimerMode is set to the

default value of 0, the low 8 “bits of this register contain an estimated fractional count value

estimated by the channel’s “1/T” timer-based circuitry. Otherwise, the fractional value is always

set to ½. The timer-based sub-count estimation can be used for this captured position register

even if analog sub-count extension is used for servo and phase position, as with sinusoidal

encoders (and is particularly useful in this case).

The following diagram shows how the fractional count position is generated for the positions

latched on the capture trigger, servo clock, and phase clock. Even if the “arctangent extension” is

used for the fractional count extension for servo and phase data (as enabled by setting saved setup

element Gate3[i].Chan[j].AtanEna to 1), the timer-based extension will can still be used for the

trigger-captured position.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 777

Home Capture

Whole Count

Servo Capture

Whole Count

Phase Capture

Whole Count

Phase

Fraction

Servo

Fraction

Home

Fraction

Timer

Extension

CounterDecoder

Arctangent

Extension

ADC Shift

Registers

A

B

SinData

CosData

Count

Dir

Phase

Clock

Servo

Clock

Servo

Clock

Phase

Clock

Trigger

Trigger

AtanEna

Address Data

PMAC3-Style IC Encoder Capture Circuitry

Note that the relationship of these “hardware count” units to any resulting motor position units

depend on the values for EncTable[n].ScaleFactor and Motor[x].PosSf used in processing the

position data for the motor.

The value in this register is referenced to the power-up/reset position of the sensor. That is, the

counter is set to zero at power-up/reset, and it counts from there. It does not get reset to zero if the

motor using it for feedback is homed. If the value in the register passes 0 in the negative

direction, or 232 - 1 in the positive direction, it simply rolls over to the other end of its range. See

the section “Handling Rollover of the IC Position Registers”, below, for instructions on how to

deal with this effect.

Manually Converting to Motor and Axis Positions

The capture registers are scaled in the raw counts of the encoders (possibly with fractional

resolution), referenced to the position at the latest power-up/reset. Typically, the user wishes to

work in either motor coordinates, whether still in encoder counts or scaled to engineering units

(e.g. mm, inches, degrees), referenced to the motor “home” position, or in axis coordinates,

virtually always in engineering units and referenced to a user-set origin.

For simplicity, this analysis assumes that EncTable[n].ScaleFactor for the ECT entry processing

the encoder for motor position feedback results in the entry’s output being scaled in the same

counts as the compare circuit uses. (There can be fractional resolution from 1/T timer extension

or analog arctangent extension, but each unit increment is a count.) If the application uses a

different scaling, this must be accounted for in subsequent calculations.

Handling Rollover of the IC Position Registers

In both the PMAC2-style ICs and the PMAC3-style ICs, the position values associated with the

capture registers have 24 bits of full count information, which means they have a range of 224

(16,777,216) counts before they roll over. They are automatically set to 0 at power-on/reset of the

Power PMAC. They are treated as unsigned values, so if they get outside of the range of 0 to

+16,777,215 counts from the power-on/reset position, they will roll over.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 778

If the user is accessing the captured position registers directly in an application where rollover is a

possibility, the application code must explicitly account for the rollover, calculating the number

of times the counter has rolled over, and in which direction, so a correction can be applied. In an

application where the motor is scaled in encoder counts and a PMAC2-style IC is used, the

following script algorithm (with declared user variables) can be used to account for rollover:

EncCaptPos = Gate1[i].Chan[j].HomeCapt; // Store capt enc pos (cts)

Diff = Motor[x].ActPos - EncCaptPos; // Difference from motor pos

ModDiff = rem(Diff, 16777216); // Modulo 2^24

RolloverCorr = Diff - ModDiff; // Correction of 2^24 * N

EncCaptPos += RolloverCorr; // Add in rollover correction

The same algorithm using a PMAC3-style IC is:

EncCaptPos = Gate3[i].Chan[j].HomeCapt / 256; // Capt enc pos (cts)

Diff = Motor[x].ActPos - EncCaptPos; // Difference from motor pos

ModDiff = rem(Diff, 16777216); // Modulo 2^24

RolloverCorr = Diff - ModDiff; // Correction of 2^24 * N

EncCaptPos += RolloverCorr; // Add in rollover correction

Note that EncCaptPos and Motor[x].ActPos are in units of full counts of the encoder in this

example. Use of other units for either will require rescaling.

Motor Offset and Scaling

When the motor is homed, Power PMAC stores the value of the encoder position (in motor units)

at the motor zero position (whether this is the same as the trigger position, or different as

specified by a non-zero value in saved setup element Motor[x].HomeOffset) is stored in status

element Motor[x].HomePos. This value will be used as the difference between motor position

and encoder position.

A Power PMAC motor takes the feedback position output from its selected ECT entry and

multiplies it by saved setup element Motor[x].PosSf to use as motor position. At the default

value of 1.0, the motor has the same units as the ECT output – counts in our case. However, if the

motor is scaled in engineering units, the value will be different from 1.0 – often much smaller. To

convert from motor units to encoder units, the calculation must divide by this motor scale factor.

The calculation combining the offset and scaling to convert from encoder units to motor units is:

MotorCapturePos = Motor[x].PosSf * EncCapturePos – Motor[x].HomePos

If the capture position register has fractional resolution, you will need to include that scaling in

the calculations. For example, the PMAC3-style ICs have 8 bits of fractional resolution, so you

will need to divide the read value in counts by 28 (256) (even if you will have a value of 0 in the

fractional component).

Axis Offset and Scaling

In the most common case for an axis definition, where a motor is assigned to an individual axis

with a scale factor and an offset, the conversion from motor to axis position is very

straightforward, with the inverse form of the axis definition itself. Using the values stored by the

axis definition command, the relationship can be described as:

AxisCapturePos = (MotorCapturePos – Motor[x].CoordSf[32]) / Motor[x].CoordSf[i]

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 779

where Motor[x].CoordSf[i] is the axis scale factor for the axis with index “i” (e.g. 0 for A, 1 for

B, etc.) and Motor[x].CoordSf[32] is the axis offset value.

If the axis definitions are more complex than this, either involving multiple axes in a single

definition, or using kinematic subroutines, then this simple relationship cannot be used, and

application-specific algorithms must be employed.

Processor Interrupt on Hardware Capture Event

When the PMAC3-style IC detects a hardware-capture event, it can interrupt the Power PMAC

processor with the highest-priority interrupt so that the processor can respond very quickly. This

interrupt does not enhance the accuracy of the captured position, since the ASIC itself has already

latched the position at the instant of the capture trigger. Instead, it can be useful to prepare for the

next capture event if these can occur at a very high frequency.

This interrupt has a higher priority than even the phase and servo interrupts that control the

motors. This means that capture events can be processed at a higher frequency than even the

phase and servo interrupts. However, it also means that the interrupt service routine must be kept

very short so that phase and servo tasks can always complete in the correct update cycle. The

intent of this routine is to update a list of positions in memory quickly from the captured position

register and prepare the capture circuitry for the next trigger.

Power PMAC permits the user to install a dedicated interrupt service routine written in C to react

to capture and/or compare events from a PMAC3-style IC. Refer to the chapter Writing C

Functions and Programs for more details.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 780

Hardware Position-Compare Functions

The hardware position-compare function of the Power PMAC ASICs creates a digital output

signal based on the instantaneous encoder position within the ASIC. When the encoder position

matches that of a preset “compare” register, the “EQU” compare digital output is toggled. This

function is executed totally in hardware, without the need for software intervention (although it is

set up in software). This means that the only delays in the hardware compare are the hardware

gate delays (negligible in any mechanical system), so this provides an incredibly accurate

compare function, exact to the count at any speed. The accuracy is not limited by the servo update

rate, as the compare position can be reached at any time during the servo cycle.

The position-compare function is implemented in software-configurable hardware registers in the

ASICs. The software configuration gives the function its flexibility; the hardware circuitry gives

the function its speed and accuracy.

The individual hardware used determines where the position-compare outputs are brought out,

and the nature of the driver circuit. Consult the Hardware Reference manual for your product.

These outputs, typically labeled “EQUn”, can be used to driver external hardware, such as the

triggers for scanning and measurement equipment.

Setup on a PMAC2-Style IC

Each encoder channel in a PMAC2-style servo IC has a position-compare circuit. Furthermore,

the position value of the 1st channel (index j = 0) on the IC can use any or all of the 4 compare

circuits on the IC. The action of the compare function for a channel is controlled by 3 24-bit

position registers and 2 control elements.

Compare Registers

The position-compare circuitry for each channel is based on three (non-saved) setup data

structure elements:

 Gate1[i].Chan[j].CompA

 Gate1[i].Chan[j].CompB

 Gate1[i].Chan[j].CompAdd

All 3 elements are unsigned 24-bit integer values, in units of counts of the encoder. Even though

they are unsigned values, you can assign negative values to them and get the same effect as

though they were signed registers. For example, if you wrote a value of -100 to one of the

registers, the value would report back as 16,777,116 (224 - 100).

The encoder counter value associated with the compare position registers is automatically set to 0

at power-on/reset, and counts from there. It is not reset on the homing of an associated motor or

transformation of an associated axis. The present value of the encoder counter can be read in the

element Gate1[i].Chan[j].PhaseCapt (in units of counts).

Each SCLK (encoder sample clock) cycle, the encoder counter value is compared to the values in

CompA and CompB. If it matches either value, the compare output is toggled from the existing

state. Technically, the transition occurs on the transition from “equal” to “not equal” in either

direction. For instance, if the compare register has a value of 100, the toggling of the output

would occur on the counter transition from 100 to 101 counts in the positive direction, or on the

transition from 100 to 99 counts in the negative direction.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 781

Note

If the value of CompA is equal to the value of CompB in a

PMAC2-style IC, as is the case when both have their power-on

default value of 0, there will be a single toggle event of the

output when the value of the encoder counter matches this

value.

Auto-Increment Function

In addition, when the output is toggled by the count matching one of the compare registers, the

other compare register is incremented immediately by the amount in the CompAdd element. If

the output is toggled by movement in the positive direction, the value in CompAdd is added to

the other compare register. If the output is toggled by movement in the negative direction, the

value in CompAdd is subtracted from the other compare register. Of course, if the value of

CompAdd is 0 (the power-on default value), there is no change to the value of the compare

registers.

If the value of CompAdd is non-zero, all of the compare edges should be at least two counts

apart. This means that the values of CompA and CompB should not be less than two counts

apart, and the minimum non-zero value for CompAdd should be 4.

The “auto-increment” feature implemented by non-zero values of CompAdd makes it possible to

create multiple evenly spaced compare pulses from a single software setup operation without any

further software intervention. This aids in ease of use, and permits higher frequencies than is

possible with software updating.

Because every compare event that toggles the output causes the other compare value to be

incremented, to start a series of pulses with auto-increment, it is necessary to set CompA and

CompB initially to “bracket” the present position counter value. In the figure below, we want the

first pulse to turn on at the CompA position represented by A0 and turn off at the CompB

position represented by B1. However, when the counter reaches the A0 position and the output

turns on, the value of CompB will be incremented automatically. This means that the initial value

B0 that we write to CompB must be equal to B1 minus the auto-increment value.

 Starting Position

 B0 A0 B1 A1

 Auto-Increment

PMAC2 IC Position Compare with Auto-Increment Setup

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 782

(If a 50% duty cycle in the compare-output waveform is acceptable, and it is known which

direction from the starting position to the first transition will be, it is possible to set up for a

repeated compare output of even intervals without bracketing the starting position. To do this,

both CompA and CompB should be set to the value of the position where the first transition is

desired. CompAdd should be set to half the value of a full on/off cycle. In this case, each time a

compare position is reached, the output is toggled once, and both elements are automatically

incremented to the position where the output will be toggled in the opposite direction.

Compare Control Elements

There are two control elements for each channel on a PMAC2-style Servo IC. Both are part of the

full-word element Gate1[i].Chan[j].Ctrl. They are:

Gate1[i].Chan[j].Equ1Ena: This single-bit saved setup element determines whether the compare

circuitry for the channel uses the encoder counter for the same channel, or for the first channel

(index j = 0) of the IC. Of course, this element for the first channel on the IC has no effect. Note

that when multiple compare circuits have been assigned to the first channel’s counter, the

compare output for the first channel is the logical OR of all the compare logical states of circuits

assigned to this counter.

Gate1[i].Chan[j].EquWrite: This two-bit (non-saved) element allows you to force the state of

the output directly, either as an initial state for a compare sequence, or to use the output for

general-purpose use. Bit 1 (value 2) is the output value to be forced; a “1” in this bit forces a high

state on the output of the IC (this may be inverted by the output driver); a “0” forces a low state

of the IC output. Bit 0 (value 1) is the “forcing” bit. Writing a value of 1 in this bit causes the

value of bit 1 to be forced onto the IC output, and once this is done, the IC resets this bit to 0.

Setting EquWrite to 3 forces the IC output value (which can be read in status bit

Gate1[i].Chan[j].Equ) to 1 (high); setting EquWrite to 1 forces the IC output value to 0 (low).

Optional Fractional Count Registers

PMAC2-style Servo ICs optionally support the triggering of compare outputs at estimated

fractional count values, not just at whole count values (i.e. at edges). If saved setup element

Gate1[i].Chan[j].1OverTEna is set to 1, the IC will use its “1/T” timer circuitry to calculate an

estimated fractional-count value every SCLK cycle. It can then compare the combined whole-

count and fractional-count value against combined compare registers.

This “hardware 1/T” extension in the IC is not compatible with the standard “software 1/T”

extension performed in the encoder conversion table for servo use. For this reason, it is most

often used with sinusoidal encoders, as on the ACC-51E interpolator board. In this case, the servo

uses analog arctangent extension in the ECT, but the compare (and capture) circuits use the

“hardware 1/T” in the IC.

When “hardware 1/T” extension is enabled for an IC channel, the contents of the two timer

registers for the channel change (which is why “software 1/T” extension in the conversion table

cannot be supported). The 24-bit element Gate1[i].Chan[j].TimeBetweenCts is split into 2 12-

bit components; the low 12 bits form the (unsigned) fractional count portion for CompA. The 24-

bit element Gate1[i].Chan[j].TimeSinceCts is also split into 2 12-bit components; the low 12

bits form the (unsigned) fractional count portion for CompB.

These components can take a value of 0 to 4095, in units of 1/4096 of a count. Higher values of

fractional count are closer to the more positive whole count, regardless of the direction of motion.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 783

When writing to one of these 24-bit elements, you can simply assign as value of 0 to 4095, as the

high 12 bits are read-only and will not be affected. However, to read the value in the component,

it is necessary to mask out the value in the high 12-bits of the 24-bit element (e.g.

Gate1[i].Chan[j].TimeBetweenCts & $FFF).

Note carefully what a “count” means here. Because we are dealing with the hardware counter in

the Servo IC, these are “hardware counts” – one unit of the hardware counter. With the “times-4”

decode that is almost universally used (and must be used with ACC-51E boards), there are 4

hardware counts per line (signal cycle) of the encoder. The units of the output of an encoder

conversion table entry processing the sinusoidal encoder for motor servo feedback depend on the

scale factor used there (if the suggested value 1/1024 is used, it will have the same units).

The auto-increment function is still available in extended-count mode, but the auto-increment

value is limited to integer numbers of counts.

In operation in this mode, the user writes to both the whole-count compare element and the

fractional-count compare element. In this mode, the integer value written to the whole-count

compare register is offset by one count from the count value at which the compare output will

toggle. The direction of this offset is dependent on the direction of motion. If a value of n counts

is written to the integer compare register, the compare output will toggle at n+1 counts when

moving in the positive direction, or n-1 counts when moving in the negative direction. To

compensate for this, simply add or subtract 1 count depending on the direction of motion. For

instance, to get a compare edge at 743.25 counts when moving in the positive direction, write 742

(= 743 - 1) to the integer compare register, and write 1024 (= 0.25 * 4096) to the fractional

compare register.

Setup on a PMAC3-Style IC

Each encoder channel in a PMAC3-style IC has a position-compare circuit. Furthermore, the

position value of the 1st channel (index j = 0) on the IC can use any or all of the 4 compare

circuits on the IC. Also, the compare output for each channel can be a user-specified logical

combination of the 4 internal compare states in the IC. The action of the compare function for a

channel is controlled by 3 32-bit position registers and 4 control elements.

Compare Registers

The position-compare circuitry for each channel is based on three (non-saved) setup data

structure elements:

 Gate3[i].Chan[j].CompA

 Gate3[i].Chan[j].CompB

 Gate3[i].Chan[j].CompAdd

All 3 elements are unsigned 32-bit integer values, in units of 1/4096 of a count of the encoder.

That is, they have 20 bits of full-count information, and 12 bits of fractional-count information.

Even though they are unsigned values, you can assign negative values to them and get the same

effect as though they were signed registers. For example, if you wrote a value of -1000 to one of

the registers, the value would report back as 4,294,966,296 (= 232 - 1000).

If saved setup element Gate3[i].Chan[j].TimerMode is set to its default value of 0, “hardware

1/T” count extension is enabled for the channel to calculate an estimated fractional-count value

with potentially 12 bits of resolution every SCLK cycle. The IC can then compare the combined

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 784

whole-count and fractional-count value against the values in the compare registers, which have 20

bits of whole-count data and 12 bits of fractional data. If TimerMode is set to a different value,

the fractional count value is fixed at ½.

The encoder counter value associated with the compare position registers is automatically set to 0

at power-on/reset, and counts from there. It is not reset on the homing of an associated motor or

transformation of an associated axis. If saved setup element Gate3[i].Chan[j].AtanEna is set to

its default value of 0, the present value of the encoder position, latched on the most recent servo

interrupt, which can be read in the element Gate3[i].Chan[j].ServoCapt, has 8 bits of fraction,

so has units of 1/256 of a count. Note that the units of the ServoCapt register is different from

that of the compare registers, and the numerical value in ServoCapt will be 16 times that of the

compare registers for the same position (before rollover).

Note

In this mode, the status element Gate3[i].Chan[j].TimerA has

the same information as ServoCapt, but with 12 bits of

fractional count resolution, so it is in the same units as the

compare registers. The TimerA register is therefore the easiest

to us as representing the present position with regard to the

compare position registers.

If Gate3[i].Chan[j].AtanEna is set to 1, the present value of the encoder position, latched on the

most recent servo interrupt, which can be read in the element Gate3[i].Chan[j].ServoCapt, has

12 bits of fraction derived from the A/D converters through a hardware arctangent calculation in

the ASIC. In this mode, the ServoCapt register has the same units as the compare registers.

However, the converters cannot be sampled often enough to be useful for the compare function,

so the sub-count data in the instantaneous position value to be checked against the compare

positions is still timer-based (provided TimerMode is set to its default value of 0).

Each SCLK (encoder sample clock) cycle, the encoder position value, potentially with timer-

estimated sub-count resolution, is compared to the values in CompA and CompB. If it has

matched or passed either value, the compare output is toggled from the existing state.

(Note that if the value of CompA is equal to the value of CompB in a PMAC3-style IC, as is the

case when both have their power-on default value of 0, the output will not toggle when the value

of the encoder counter matches this value.)

Auto-Increment Function

In addition, when the output is toggled by the count reaching the value of one of the compare

registers, the other compare register is incremented immediately by the amount in the CompAdd

element. If the output is toggled by movement in the positive direction, the value in CompAdd is

added to the other compare register. If the output is toggled by movement in the negative

direction, the value in CompAdd is subtracted from the other compare register. Of course, if the

value of CompAdd is 0 (the power-on default value), there is no change to the value of the

compare registers. Note that it is possible to suppress the first auto-increment operation of a

sequence, making the initial setup easier in many applications. See the instructions for the

EquWrite element, below.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 785

Compare A

Compare

Increment

Compare B

Decoder/

Counter/

Timer Extension

=?

=?

Σ

Σ
T

T

Q

A

B

Compare

Out

To

CPU

Present

Position

DSPGATE3 Position Compare Functionality with Auto-Increment

The “auto-increment” feature implemented by non-zero values of CompAdd makes it possible to

create multiple evenly spaced compare pulses from a single software setup operation without any

further software intervention. This aids in ease of use, and permits higher frequencies than is

possible with software updating.

In theory, compare edges can be as close as 1/128 of a count (32 LSBs of the register) apart, so

CompAdd could be as small as 1/64 of a count (64 LSBs of the register). However, for this to

operate correctly, the count edges must be perfectly evenly spaced in time, requiring both

completely constant speed and perfect spacing of encoder edges (or zero-crossings) to eliminate

any possible discontinuities in the timer-estimated sub-count data. In addition, each compare

event must occur in a separate SCLK cycle. If sub-count spacing of edges is desired, particularly

with auto-increment active, careful characterization is required to ensure reliable operation.

The following diagram shows the waveform possibilities for the compare function, first with

auto-increment disabled, then with auto-increment enabled in both the mode where the first

increment is not inhibited, and where it is.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 786

(Start) CompA CompB

(Start) CompA0CompB0 CompB1 CompA1 CompB2

CompAdd

CompAdd

(Start) CompA0 CompB0 CompA1 CompB1

CompAdd

CompAdd

0

1

0

1

0

1

Auto-Increment Disabled (CompAdd = 0)

Auto-Increment Enabled (CompAdd > 0)

Auto-Increment Enabled
(1st Increment Disabled – Gate3 only)

EQUn

EQUn

EQUn

Position

CompAdd

PMAC3 ASIC Position Compare Waveforms

Compare Control Elements

There are four control elements for each channel on a PMAC3-style IC. All are part of the full-

word element Gate3[i].Chan[j].OutCtrl. They are:

Gate3[i].Chan[j].Equ1Ena: This single-bit saved setup element determines whether the compare

circuitry for the channel uses the encoder counter for the same channel, or for the first channel

(index j = 0) of the IC. The default value of 0 specifies the use of the same channel’s counter. Of

course, this element for the first channel on the IC has no effect.

Gate3[i].Chan[j].EquOutMask: This 4-bit saved setup element determines which channels’

internal position compare states are used to generate this channel’s (Chan[j]) compare output. If

bit k (k = 0 to 3) of this element is set to 1, the internal state from Chan[k] is combined into this

channel’s output state in a logical OR operation. This logical combination facility enables

functions such as multi-dimensional “box” compares, or, when used with the same encoder

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 787

counter, “windowing” of high-frequency auto-incrementing outputs to a set zone. The default

setting for each channel uses that channel’s internal compare state only.

Gate3[i].Chan[j].EquOutPol: This single-bit saved setup element determines whether the

channel’s compare output is logically inverted or not after the logical combination specified by

Gate3[i].Chan[j].EquOutMask. A value of 0 (default) specifies no inversion; a value of 1

specifies an inversion. Note that the output driver on some hardware may further invert the

voltage (but generally a high level out of the IC will turn on an inverting driver such as an open

collector).

The internal compare state for a channel can be read in the single-bit status element

Gate3[i].Chan[j].Equ; the compare output state for a channel can be read in the single-bit status

element Gate3[i].Chan[j].EquOut.

The following diagram illustrates the relationship between the channel internal compare states

and the channel compare outputs.

Chan[0].CompA

Chan[0] Counter

Chan[0].CompB

Chan[1].CompA

Chan[1] or [0] Counter

Chan[1].CompB

Chan[2].CompA

Chan[2] or [0] Counter

Chan[2].CompB

Chan[3].CompA

Chan[3] or [0] Counter

Chan[3].CompB

Toggle

Toggle

Toggle

Toggle

Chan[0].

EquOutMask,

EquOutPol

Chan[1].

EquOutMask,

EquOutPol

Chan[2].

EquOutMask,

EquOutPol

Chan[3].

EquOutMask,

EquOutPol

Chan[0].

Equ

Chan[1].

Equ

Chan[2].

Equ

Chan[3].

Equ

Chan[0].

EquOut

Chan[1].

EquOut

Chan[2].

EquOut

Chan[3].

EquOut

DSPGATE3 Position Compare Internal States and Outputs

The next diagram shows how the logical combination of the internal Equ signals, along with the

ability to apply multiple compare circuits to the first encoder channel of the ASIC, produces a

“windowing” function, providing high-frequency output signals only within a pre-defined range.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 788

Gate3[i].Chan[0].Equ

(Gate3[i].Chan[0].CompAdd > 0)

Gate3[i].Chan[1].Equ

(Gate3[i].Chan[1].CompAdd = 0)

(Gate3[i].Chan[1].Equ1Ena = 1)

Gate3[i].Chan[0].EquOut

(Gate3[i].Chan[0].EquOutMask = 3)

(Gate3[i].Chan[0].EquOutPol = 0)

Gate3[i].Chan[1].EquOut

(Gate3[i].Chan[1].EquOutMask = 3)

(Gate3[i].Chan[1].EquOutPol = 1)

Chan[0] Encoder Position

Internal States

External Signals

DSPGATE3 Compare Output Windowing Functionality Example

Gate3[i].Chan[j].EquWrite: This two-bit (non-saved) element allows you to force the state of

the channel’s internal compare state directly, either as an initial state for a compare sequence, or

for general-purpose use. Bit 1 (value 2) is the state value to be forced. Bit 0 (value 1) is the

“forcing” bit. Writing a value of 1 in this bit causes the value of bit 1 to be forced into the

channel’s internal compare state, and once this is done, the IC resets this bit to 0.

Setting EquWrite to 3 forces the channel’s internal compare state (which can be read in status bit

Gate3[i].Chan[j].Equ) to 1; setting EquWrite to 1 forces the channel’s internal compare state to

0. This can immediately affect one or more of the IC’s compare outputs if the compare state is

used in the generation of those outputs.

The act of forcing a value into the channel’s internal compare state, whether it changes the state

or not, will disable the auto-increment operation on the first subsequent compare event for the

channel. This permits the user to specify the first two compare positions directly in an auto-

incrementing sequence; without this, the second compare position must initially be specified one

increment interval away from where the desired position would be (as is required with PMAC2-

style ICs – see above). Writing to either CompA or CompB (re-)enables the first auto-increment

operation.

In most applications, it is desirable to specify the first two compare edge positions directly, both

in the same direction from the present position. This makes it easier to specify the sequence when

the position is changing, and provides more flexibility as to where the sequence will start, as it

can be more than one increment interval away. In these applications, the initial values of CompA

and CompB should be assigned before forcing the initial value with EquWrite.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 789

Handling Fractional Count Values

In some applications, the method for handling fractional count values is important, even if the

only desire is to eliminate the fractional component for a whole-count compare. As mentioned

above, all of the compare position elements in both PMAC2-style and PMAC3-style ICs are

unsigned integer registers, even if they represent fractional count values. In the Power PMAC

script language, a command that assigns a non-integer value to an integer register automatically

truncates the value before writing to the register. For an unsigned integer register, this always

rounds towards 0 (not towards the nearest integer value). If you wish to round to the nearest

integer value, you should add 0.5 to the expression to be assigned to the element, or use the rint

(round to nearest integer) function. For example:

Gate1[i].Chan[j].CompB = rint(MyDesiredCompPos);

In a PMAC2-style IC, if you wish to retain the fractional count component for use with the

“hardware 1/T extension”, you must explicitly split the value into whole-count and fractional-

count components so these can be written to separate registers. For example:

MyWholeCountCompPos = int(MyDesiredCompPos);

Gate1[i].Chan[j].CompB = MyWholeCountCompPos;

Gate1[i].Chan[j].TimeSinceCts = (MyDesiredCompPos -

 MyWholeCountCompPos) * 4096;

In a PMAC3-style IC, where the compare position registers are single 32-bit elements with 12

bits of fraction, simply multiply the desired value in encoder counts by 4096, regardless of

whether you are using the fractional count value or not. For example:

Gate3[i].Chan[j].CompA = MyDesiredCompPos * 4096;

Converting from Motor and Axis Coordinates

The compare registers are scaled in the raw counts of the encoders (possibly with fractional

resolution), referenced to the position at the latest power-up/reset. Typically, the user wishes to

work in either motor coordinates, whether still in encoder counts or scaled to engineering units

(e.g. mm, inches, degrees), referenced to the motor “home” position, or in axis coordinates,

virtually always in engineering units and referenced to a user-set origin.

For simplicity, this analysis assumes that EncTable[n].ScaleFactor for the ECT entry processing

the encoder for motor position feedback results in the entry’s output being scaled in the same

counts as the compare circuit uses. (There can be fractional resolution from 1/T timer extension

or analog arctangent extension, but each unit increment is a count.) If the application uses a

different scaling, this must be accounted for in subsequent calculations.

Handling Rollover of the IC Position Registers

In the PMAC2-style ICs, the position values associated with the compare registers have 24 bits of

full count information, which means they have a range of 224 (= 16,777,216) counts before they

roll over. In the PMAC3-style ICs, they have 20 bits of full count information, and so a range of

220 (= 1,048,576) counts before they roll over. In both cases, they are automatically set to 0 at

power-on/reset of the Power PMAC. They are treated as unsigned values, so if they get outside of

the range of 0 to +16,777,215, or 0 to +1,048,576, counts from the power-on/reset position, they

will roll over.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 790

When writing a value to a compare register, if there is a possibility that the total position value

could be outside of this range, it is important to ensure that the value written is kept within this

range. This is usually done with a “modulo” or “remainder” operation. Power PMAC’s script

language provides two methods of implementing this functionality: the “%” modulo operator, and

the rem remainder function.

For example, in a PMAC2-style IC:

Gate1[4].Chan[1].CompA = MyDesiredCompPos % 16777216;

Gate1[6].Chan[3].CompB = rem(MyDesiredCompPos, 16777216);

In a PMAC3-style IC, where the units of the compare position registers are in 1/4096 of a count,

typical program commands would be:

Gate3[0].Chan[3].CompA = (MyDesiredCompPos % 1048576) * 4096;

Gate3[1].Chan[0].CompB = rem(MyDesiredCompPos, 1048576) * 4096;

Motor Offset and Scaling

When the motor is homed, Power PMAC stores the value of the encoder position (in motor units)

at the motor zero position (whether this is the same as the trigger position, or different as

specified by a non-zero value in saved setup element Motor[x].HomeOffset) is stored in status

element Motor[x].HomePos. This value will be used as the difference between motor position

and encoder position.

A Power PMAC motor takes the feedback position output from its selected ECT entry and

multiplies it by saved setup element Motor[x].PosSf to use as motor position. At the default

value of 1.0, the motor has the same units as the ECT output – counts in our case. However, if the

motor is scaled in engineering units, the value will be different from 1.0 – often much smaller. To

convert from motor units to encoder units, the calculation must divide by this motor scale factor.

The calculation combining the offset and scaling to convert from motor units to encoder units is:

EncComparePos (cts) = (MotorComparePos + Motor[x].HomePos) / Motor[x].PosSf

If the compare position register has fractional resolution, you will need to include that scaling in

the calculations. For example, the PMAC3-style ICs have 12 bits of fractional resolution, so you

will need to multiply the desired value in counts by 212 (= 4096) before writing to the register

(even if you will have a value of 0 in the fractional component).

Axis Offset and Scaling

In the most common case for an axis definition, where a motor is assigned to an individual axis

with a scale factor and an offset, the conversion from axis to motor position is very

straightforward, with the same form as the axis definition itself. Using the values stored by the

axis definition command, the relationship can be described as:

MotorComparePos = Motor[x].CoordSf[i] * AxisComparePos + Motor[x].CoordSf[32]

where Motor[x].CoordSf[i] is the axis scale factor for the axis with index “i” (e.g. 0 for A, 1 for

B, etc.) and Motor[x].CoordSf[32] is the axis offset value.

Power PMAC User’s Manual

Synchronizing Power PMAC to External Events 791

If the axis definitions are more complex than this, either involving multiple axes in a single

definition, or using kinematic subroutines, then this simple relationship cannot be used, and

application-specific algorithms must be employed.

Processor Interrupt on Hardware Compare Event

When the PMAC3-style IC detects a hardware-compare event, it can interrupt the Power PMAC

processor with the highest-priority interrupt so that the processor can respond very quickly. This

interrupt does not enhance the accuracy of the compare output, since the ASIC itself has already

toggled the compare output at the instant of the compare event. Instead, it can be useful to prepare

for the next compare event if these can occur at a very high frequency.

This interrupt has a higher priority than even the phase and servo interrupts that control the

motors. This means that compare events can be processed at a higher frequency than even the

phase and servo interrupts. However, it also means that the interrupt service routine must be kept

very short so that phase and servo tasks can always complete in the correct update cycle. The

intent of this routine is to update the compare registers quickly from a list of positions already in

Power PMAC memory.

Power PMAC permits the user to install a dedicated interrupt service routine written in C to react

to capture and/or compare events from a PMAC3-style IC. Refer to the chapter Writing C

Functions and Programs for more details.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 792

WRITING C FUNCTIONS AND PROGRAMS IN POWER
PMAC

Power PMAC’s ability to accept and execute functions and programs written in the standard C

programming language provides powerful capabilities for experienced programmers, giving them

full access to the flexibility and sophistication of these programming languages.

Priorities for C Programs and Routines in Power PMAC

Power PMAC can run C routines and programs at several priority levels, permitting great

flexibility in the functionality of user C code.

The priorities at which user C code can be executed are:

1. Capture/compare interrupt: Special capture/compare interrupt service routine. The

PMAC3-style DSPGATE3 IC can generate an interrupt to the processor on a hardware

position-capture or position-compare event on any of its four channels. This ISR can be

invoked on this highest-priority interrupt, intended to store the latest captured position or

to supply the next compare position extremely quickly.

2. Phase interrupt: “User-written phase” functions: The most common use for these

functions is to execute specialized motor phase commutation and/or current-loop-closure

algorithms, but these can also be used for other tasks (e.g. fast I/O) at this highest priority

level. Each motor with an active phase task can select its own phase function (built-in or

user-written) to be called each phase interrupt.

3. Servo interrupt: “User-written servo” functions: The most common use for these

functions is to execute specialized motor feedback and feedforward algorithms, but these

can also be used for other tasks (e.g. fast I/O) at this second-highest priority level. Each

motor with an active servo task can select its own servo function (built-in or user-written)

to be called each servo interrupt.

4. Real-time interrupt: “Real-time C PLC” function: This function is most commonly used

for non-motion operations that must occur at a predictably repeatable interval. This

(single) function is called each real-time interrupt.

5. Each background scan: “Background C PLC” functions: These functions are most

commonly used for non-motion operations that do not need to be run as an interrupt task.

These 32 separately enabled functions are called between each scan of a single

background Script PLC program.

6. General-purpose operating system: C application programs: Power PMAC can run

independent C programs under the standard Linux operating system in the times when

interrupt tasks are not executing and when dedicated background tasks have released the

processor.

Each of these priority levels is discussed in its own section, below.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 793

Creating C Functions and Programs

The Power PMAC Integrated Development Environment (IDE) program on Windows PCs

provides a broad tool set for implementing C functions and programs. The Project Manager in the

IDE facilitates the organization of all Script and C software, along with declarations and setup

variables. This organization can be seen in the Project Manager’s “Solution Explorer”, shown in

the upper-right corner of the screen shot below.

The IDE also provides a sophisticated text editor, shown in the center of the screen capture, for

both Script and C programs with color coding and syntax checking. Most users will write their

code directly in this text editor, but others may simply paste in their code from another editor that

they prefer.

The IDE includes a built-in GNU C/C++ cross-compiler that automatically compiles your C/C++

code on the PC for the Power PMAC’s processor. This public-domain and open-source compiler

is very popular and well supported in the software community. To compile your C software and

load the resulting executable code to the Power PMAC, simply right-click on the project name in

the Solution Explorer, then click on “Build and Download All Programs”.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 794

Accessing Shared Memory and Structures

Power PMAC provides a simple method for giving the user’s C code access to variables, data

structures, and buffers on the Power PMAC. The vast majority of these variables, data structures,

and buffers on the Power PMAC are placed in shared memory, where multiple tasks can access

them.

All files with C code that want to access anything in shared memory must start with the directive:

#include <RtGpShm.h>

This will give the software in the file access to the provided header file “RtGpShm.h”, which

contains the definitions for the accessible variables, data structures, and buffers in shared memory

(Shm), for both real-time (Rt) – that is, interrupt-driven – and general-purpose (Gp) – that is,

background – routines and programs.

For C routines automatically called by Power PMAC (user-written phase and servo, C PLCs), the

code automatically has access to several pre-defined pointer variables, “inherited” from the

calling software:

pshm: pointer to the full shared-memory data structure

piom: pointer to I/O space

pushm: pointer to user-defined buffer memory space

Independent background C application programs must explicitly declare a pointer variable for the

shared-memory data structure. For example:

volatile struct SHM *pshm;

Data-structure element names are fundamentally the same as in the Script environment. Of

course, in C, the element name must be preceded with “pshm->”. (Other names could be used in

independent programs.)

Keep in mind that the data structure and element names are case-sensitive in C, whereas they are

not in the Script environment. Furthermore, in the Script environment, many elements are write-

protected so user code cannot change their values, but these elements can be read at any time. In

the C environment, any element for which you are provided access (that is, whose name is

provided in the RtGpShm.h header file) can be written to. However, many of the elements that

are write-protected in the Script environment are not provided at all in the C environment.

Accessing ASIC Hardware Registers

Accessing the data structure elements that represent hardware registers in the Servo, MACRO,

and I/O ASICs in a Power PMAC system from a C program is somewhat different from accessing

software data structure elements. The ASIC data structures are referenced to a different base

address, piom instead of pshm. In addition, the read and write accesses to I/O registers must use

the full 32-bit data bus; explicit shifting and masking operations are required to isolate partial-

word elements in these I/O data structure (this is done automatically “behind the scenes” in the

Script environment).

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 795

Accessing these registers can be done using the pre-defined data structure elements for the

registers, or directly with pointer variables. Both methods are discussed below.

In both cases, the variables should be declared as “volatile” so that each use of the variable results

in a full 32-bit access of the hardware register. This keeps optimizing compilers such as GNU

from attempting shortcuts that can have unpredictable results.

Note that the actual read or write access to a hardware register takes approximately 100

instruction cycles, so the number of such accesses should be carefully limited. If you want to use

the value read from a hardware register in multiple instructions, it should first be copied into a

software variable. If you have several operations setting different bits in the same hardware

output register (as with discrete outputs), you should manipulate bits in an “image” variable in

software, then copy this variable to the output register in a single operation.

Using the Data Structures

Most users will want to utilize the pre-defined data structures for these ASICs, yielding an

approach that is quite similar to that in the Script environment. In this approach, structure

variables are declared for each IC using the references in RtGpShm.h and then mapped to

particular ICs with function calls from RtPmacApi.h.

The variable declarations will look like:

volatile GateArray1 *MyFirstGate1IC, *MySecondGate1IC;

volatile GateArray2 *MyFirstGate2IC, *MySecondGate2IC;

volatile GateArray3 *MyFirstGate3IC, *MySecondGate3IC;

volatile GateIOStruct *MyFirstGateIoIC, *MySecondGateIoIC;

These declared variables can then be assigned to particular ICs with function calls in program

statements like the following. These must be executed every time the Power PMAC is started up.

MyFirstGate1IC = GetGate1MemPtr(4);

MySecondGate1IC = GetGate1MemPtr(6);

MyFirstGate2IC = GetGate2MemPtr(0);

MySecondGate2IC = GetGate2MemPtr(1);

MyFirstGate3IC = GetGate3MemPtr(0);

MySecondGate3IC = GetGate3MemPtr(1);

MyFirstGateIoIC = GetGateIoMemPtr(0);

MySecondGateIoIC = GetGateIoMemPtr(1);

Note that functions will return a NULL value if the corresponding IC was not auto-detected by

Power PMAC at power-on/reset. It will always be valid numerical value if the IC was detected.

This can be used to check for the expected configuration of the system.

Then, “whole-word” elements in these structures can be used in program statements like:

MyFirstGate1IC->Chan[0].CompA = MyCompPos << 8;

MyTriggerFlag = (MySecondGate1IC->Chan[3].Status & 0x80000) >> 19;

MyFirstGate2IC->Macro[2][1] = My16BitOutBlock << 16;

My24BitInBlock = MySecondGate2IC->Macro[6][0] >> 8;

MyFirstGate3IC->Chan[1].AdcOffset[0] = My12BitSineOffset << 20;

MySumOfSquares = MySecondGate3IC->Chan[2].AtanSumOfSqr & 0xffff;

MyFirstGateIoIC->DataReg[3] = My8BitOutBlock << 8;

My8BitInBlock = (MySecondGateIoIC->DataReg[0] & 0xff00) >> 8;

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 796

Using Direct Pointer Variables

It is also possible to use pointer variables assigned directly to the ASIC registers by address,

bypassing the structures and elements. This is a little more efficient, but also more difficult to use

and document.

In this case, the variable declarations will look like:

volatile int MyFirstGate1Ptr, MySecondGate1Ptr;

volatile int MyFirstGate2Ptr, MySecondGate2Ptr;

volatile int MyFirstGate3Ptr, MySecondGate3Ptr;

volatile int MyFirstGateIoPtr, MySecondGateIoPtr;

volatile int *MyFirstGate1Ch0CompAPtr;

volatile int *MySecondGate1Ch3StatusPtr;

volatile int *MyFirstGate2MacroNode2Reg1Ptr;

volatile int *MySecondGate2MacroNode6Reg0Ptr;

volatile int *MyFirstGate3Ch1AdcOfs0Ptr;

volatile int *MySecondGate3Ch2AtanSoSPtr;

volatile int *MyFirstGateIoDataReg3Ptr;

volatile int *MySecondGateIoDataReg0Ptr;

The IC pointer variables are then assigned to the ICs using Power PMAC’s address auto-detection

elements. This can be done with program statements like the following. For global variables,

these must be executed once every time the Power PMAC is started up. For local variables, these

must be executed each time the routine is entered.

MyFirstGate1Ptr = pshm->OffsetGate1[4];

MySecondGate1Ptr = pshm->OffsetGate1[6];

MyFirstGate2Ptr = pshm->OffsetGate2[0];

MySecondGate2Ptr = pshm->OffsetGate2[1];

MyFirstGate3Ptr = pshm->OffsetGate3[0];

MySecondGate3Ptr = pshm->OffsetGate3[1];

MyFirstGateIoPtr = pshm->OffsetCardIo[0];

MySecondGateIoPtr = pshm->OffsetCardIo[0];

Note that the value of one of these elements will be 0 if the corresponding IC was not auto-

detected by Power PMAC at power-on/reset. It will always be non-zero if the IC was detected.

This can be used to check for the expected configuration of the system.

The next step is to compute the address offset of the IC register in question from the IC’s base

address offset. To do this, the user must refer to the Software Reference Manual chapter “Power

PMAC ASIC Register Element Addresses”. These give the offset of the register address from the

IC base address offset. The net address of the register element can then be computed as the sum

of piom, the IC’s base address offset, and the register’s offset from IC base. Note that for

channel-specific registers in the Servo ICs, one must use the sum of the channel offset from the

IC base, and the register offset from the channel base.

The register pointer variables can be computed with program statements like the following. For

global variables, these must be executed once every time the Power PMAC is started up. For local

variables, these must be executed each time the routine is entered.

MyFirstGate1Ch0CompAPtr = (int *) piom + ((MyFirstGate1Ptr+0x3C) >> 2);

MySecondGate1Ch3StatusPtr = (int *) piom + ((MySecondGate1Ptr+0x80+0x20) >> 2);

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 797

MyFirstGate2MacroNode2Reg1Ptr = (int *) piom + ((MyFirstGate2Ptr+0x100+0x20+4) >> 2);

MySecondGate2MacroNode6Reg0Ptr = (int *) piom + ((MySecondGate2Ptr+0x100+0x60) >> 2);

MyFirstGate3Ch1AdcOfs0Ptr = (int *) piom + ((MyFirstGate3Ptr+0x80+0x60) >> 2);

MySecondGate3Ch2AtanSoSPtr = (int *) piom + ((MySecondGate3Ptr+0x100+0xC) >> 2);

MyFirstGateIoDataReg3Ptr = (int *) piom + ((MyFirstGateIoPtr+0xC) >> 2);

MySecondGateIoDataReg0Ptr = (int *) piom + (MySecondGateIoPtr >> 2);

The “shift-right 2” (>> 2) operation converts the “byte addressing” of the offset values into the

“word addressing” that the program requires. This effective division by 4 reflects the fact that

there are 4 bytes per 32-bit word.

Now, these pointer variables can be used in program statements like:

*MyFirstGate1Ch0CompAPtr = MyCompPos << 8;

MyTriggerFlag = (*MySecondGate1Ch3StatusPtr & 0x80000) >> 19;

*MyFirstGate2MacroNode2Reg1Ptr = My16BitOutBlock << 16;

My24BitInBlock = *MySecondGate2MacroNode6Reg0Ptr >> 8;

*MyFirstGate3Ch1AdcOfs0Ptr = My12BitSineOffset << 20;

MySumOfSquares = *MySecondGate3Ch2AtanSoSPtr & 0xffff;

*MyFirstGateIoDataReg3Ptr = My8BitOutBlock << 8;

My8BitInBlock = (*MySecondGateIoDataReg0Ptr & 0xff00) >> 8;

Capture/Compare Interrupt Service Routine

Power PMAC can be configured for automatic execution of a user-written interrupt service

routine (ISR) on an interrupt from a PMAC3-style “DSPGATE3” machine-interface ASIC, as on

an ACC-24E3 UMAC axis-interface board or on a Power Brick control board. The ASIC has a

built-in programmable interrupt controller (PIC) that can be configured to generate an interrupt

on a hardware position-capture event or a hardware position-compare event (rising edge of the

channel’s internal “EQU” bit) on any of the four channels in the ASIC. This interrupt is the

highest-priority interrupt in the Power PMAC, higher than both the phase and servo interrupts.

The user-written ISR permits extremely fast software response to these hardware events. This

allows the user to set up the circuits very quickly for the next event, facilitating very high update

rates on these events. Typically, the ISR will simply log the latest captured-position value to a

memory array, or seed the next compare-position value from a memory array. Update rates to 60

kHz and above can be supported with this technique.

ASIC Interrupt Control Register

The PIC in the DSPGATE3 ASIC has a single control/status register assigned to the data

structure element IntCtrl. This register uses the low 24 bits of the 32-bit bus, and is organized in

three bytes.

The high byte (bits 16 – 23) is the “interrupt enable” byte. It allows the user to control which of

the possible 4 capture and 4 compare events will create an interrupt.

The middle byte (bits 8 – 15) is the “interrupt source” byte. This read-only byte permits the ISR

to check which signal(s) have triggered the interrupt.

The low byte (bits 0 – 7) is the “interrupt status” byte. Writing a 1 to a bit in this byte clears the

corresponding interrupt and re-arms it for the next interrupt. When a 1 is written to any bit in this

low byte, no changes will be made to the “interrupt source” byte, whatever is written to that byte.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 798

Within each byte, the bits for each of the 8 signals that can create an interrupt are arranged as

follows:

 Bit 0: Chan[0].PosCapt (1st channel capture flag)

 Bit 1: Chan[1].PosCapt (2nd channel capture flag)

 Bit 2: Chan[2].PosCapt (3rd channel capture flag)

 Bit 3: Chan[3].PosCapt (4th channel capture flag)

 Bit 4: Chan[0].Equ (1st channel internal compare flag)

 Bit 5: Chan[1].Equ (2nd channel internal compare flag)

 Bit 6: Chan[2].Equ (3rd channel internal compare flag)

 Bit 7: Chan[3].Equ (4th channel internal compare flag)

Writing a Capture/Compare Interrupt Service Routine

To create a capture/compare interrupt service routine in the IDE, go into the Project Manager’s

“Solution Explorer”, expand the “C language” branch, and then expand the “Realtime Routines”

branch. In this branch, select the file “usrcode.c” for editing. Remember that this file can contain

multiple routines, including phase and servo algorithms.

A capture/compare ISR must be declared in the form:

void CaptCompISR (void)

There can only be a single routine of this type in a Power PMAC, and it must have this exact

name and declaration. The starting “void” indicates that no value is returned to the calling

program (the Power PMAC real-time scheduler). The final “void” in parentheses indicates that

the function takes no arguments.

Note

No floating-point variables or math can be used in a

capture/compare ISR. This means, for example, that no Power

PMAC P or Q-variables can be used, as those are floating-

point variables. Most commonly, arrays of integer variables in

the user shared memory buffer are used to store or load the

capture or compare registers (respectively) of the ASIC.

Executing the Capture/Compare Interrupt Service Routine

In order for the capture/compare ISR to execute when the processor receives an interrupt from a

DSPGATE3 IC, the non-saved setup element UserAlgo.CaptCompIntr must be set to 1. Since

the value of this element is not saved and its power-on default value is 0, it must be set in the

user’s application to enable execution of the routine.

Capture Interrupt Routine Example

The following is an example of a routine that logs each captured position from the first channel

into an array in the user shared memory buffer. The trigger counter and index value is stored in

Sys.Idata[65535] in the buffer; the captured positions are stored starting in Sys.Idata[65536].

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 799

The captured position value in Gate3[i].Chan[j].HomeCapt is a 32-bit integer in units of 1/256

of a count (i.e. the low 8 bits are fractional counts, estimated by timer-based extension if

Gate3[i].Chan[j].TimerMode is set to its default value of 0) relative to the power-on/reset

position, the same units as that of Gate3[i].Chan[j].PhaseCapt, which holds the present position

(latched in the most recent phase cycle). This is logged by copying it to the 32-bit integer

Sys.Idata element in the user buffer. The act of reading the channel’s HomeCapt register

automatically re-arms the capturing circuitry for the next trigger edge. Writing a 1 to the IntCtrl

register clears the interrupt to prepare it for the next capture trigger on this channel. This should

be done as early as possible in the routine.

// Script command to set up interrupt on first channel capture

Gate3[0].IntCtrl = $10000 // Unmask PosCapt[0] (not saved)

// Script command to initialize trigger counter

Sys.Idata[65535] = 0

// Script command to enable capture/compare ISR

UserAlgo.CaptCompIntr = 1

void CaptCompISR (void)

{

 volatile GateArray3 *MyFirstGate3IC; // ASIC structure pointer

 int *CaptCounter; // Logs number of triggers

 int *CaptPosStore; // Storage pointer

 MyFirstGate3IC = GetGate3MemPtr(0); // Pointer to IC base

 MyFirstGate3IC->IntCtrl = 1; // Clear interrupt source

 CaptCounter = (int *)pushm + 65535; // Sys.Idata[65535]

 CaptPosStore = (int *)pushm + *CaptCounter + 65536;

 *CaptPosStore = MyFirstGate3IC->Chan[0].HomeCapt; // Store in array

 (*CaptCounter)++; // Increment counter

}

In the header file “usrcode.h” in the same directory, the following declarations must be made:

void CaptCompISR (void);

EXPORT_SYMBOL (CaptCompISR);

Compare Interrupt Routine Example

The following is an example of a routine that loads each compare position for the first channel

from an array in user shared memory. The compare counter and index value is stored in

Sys.Idata[65535] in the buffer; the compare positions are loaded from registers starting in

Sys.Idata[65536]. (The first compare positions are pre-loaded in a separate routine.)

The compare position values in Gate3[i].Chan[j].CompA and CompB are 32-bit integers in

units of 1/4096 of a count (i.e. the low 12 bits are fractional counts, estimated by timer-based

extension if Gate3[i].Chan[j].TimerMode is set to its default value of 0). These values are 16

times bigger than those of Gate3[i].Chan[j].PhaseCapt, which holds the present counter position

(latched in the most recent phase cycle) in units of 1/256 of a count (8 fractional bits).

Gate3[i].Chan[j].CompA is set by copying the value from the presently reference 32-bit integer

Sys.Idata element in the user buffer. In this example, the 0-to-1 transition of the channel’s

internal compare state triggers the interrupt. The example routine sets Gate3[i].Chan[j].CompB

to a value 10 counts more positive than that of CompA, and the compare state would be forced

back to 0 on reaching the CompB position. Note that CompB is not really required in this

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 800

example, because the routine forces the compare state back to 0 in software, which could happen

before the CompB position is reached. But setting CompB does enforce a maximum pulse width.

After each compare interrupt (caused by the channel’s internal Equ state going to 1), the routine

forces the Equ state back to 0 by setting bit 7 of the channel’s 32-bit OutCtrl register to 0, and

bit 6 to 1. This is done by reading the hardware register into a software variable, masking the bits

in question, and writing back the modified full 32-bit value. (This operation is equivalent to

setting 2-bit element Gate3[i].Chan[j].EquWrite to 1 in the Script environment.) Note that this

is done after setting new compare positions. Writing a 10 (hex) to the IC’s IntCtrl register clears

the interrupt to prepare it for the next capture trigger on this channel. This should be done as early

as possible in the routine

// Script command to set up interrupt on first channel compare

Gate3[0].IntCtrl = $100000 // Unmask PosComp[0] (not saved)

// Script command to initialize compare counter

Sys.Idata[65535] = 0

// Script commands to initialize compare registers

Gate3[0].Chan[0].CompA = Sys.Idata[65536]

Gate3[0].Chan[0].CompB = Sys.Idata[65536] + 40960 // + 10 counts

Gate3[0].Chan[0].CompAdd = 0 // Disable hardware increment

Gate3[0].Chan[0].EquWrite = 2 // Force internal state to 0

// Script command to enable capture/compare ISR

UserAlgo.CaptCompIntr = 1

void CaptCompISR(void)

{

 volatile GateArray3 *MyGate3; // DSPGATE3 IC structure variable

 int *CompCounter; // Pointer to compare event index

 int *CompPosStore; // Pointer to next compare position

 int Temp;

 MyGate3 = GetGate3MemPtr(0); // Set to Gate3[0] structure

 MyGate3->IntCtrl = 0x10; // Clear interrupt

 CompCounter = (int *)pushm + 65535; // Set to Sys.Idata[65535]

 (*CompCounter)++; // Increment event index

 CompPosStore = (int *)pushm + *CompCounter + 65536; // Point to next

 MyGate3->Chan[0].CompA = *CompPosStore; // Next CompA pos

 MyGate3->Chan[0].CompB = *CompPosStore + 40960; // Next CompB pos

 Temp = MyGate3->Chan[0].OutCtrl; // Read present word

 Temp &= 0xFFFFFF7F; // Clear bit 7 (EQU state to force)

 MyGate3->Chan[0].OutCtrl = Temp | 0x40; // Set bit 6 and write

}

In the header file “usrcode.h” in the same directory, the following declarations must be made:

void CaptCompISR (void);

EXPORT_SYMBOL (CaptCompISR);

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 801

User-Written Phase Routines

Power PMAC can execute “user-written phase” routines for any motor. At each phase interrupt,

Power PMAC will call a phase subroutine for each motor with Motor[x].PhaseCtrl > 0. This can

either be the built-in routine for phase-commutation and possibly current-loop closure, or a user-

written routine, individually selectable by motor. Different motors can execute different user-

written routines; multiple motors can execute the same routine.

Most people who write user-written phase routines will use them to execute a custom algorithm

for motor phase commutation and/or current-loop closure, providing capabilities that the built-in

algorithm does not have. However, the routines can be used to perform actions that have nothing

to do with these tasks. Use of these routines for very fast I/O operations is common.

To create a user-written phase routine in the IDE, go into the Project Manager’s “Solution

Explorer”, expand the “C language” branch, and then expand the “Realtime Routines” branch. In

this branch, select the file “usrcode.c” for editing. Remember that this file can contain multiple

routines, for both phase and servo.

Declaration

A user-written phase routine must be declared in the form:

void MyPhaseAlg (MotorData *Mptr)

The “void” indicates that no value is returned to the calling program. “MyPhaseAlg” is the

user’s name for the routine. “MotorData *Mptr” must be included as an argument (even if it

is not used in the routine). “Mptr” is a pointer to the motor data structure for the present motor.

This permits a single routine to be used for multiple motors, providing access to all of the data

structure elements for the calling motor.

Automatic Preparation for Routine

Before calling a user-written phase routine, the Power PMAC will automatically read the value in

the register specified by Motor[x].pPhaseEnc and scale it into commutation units by multiplying

this value by Motor[x].PhasePosSf. The resulting value is put into status element

Motor[x].PhasePos, where the user-written algorithm can access it.

The basic code that performs this function is:

PresentEnc=*Mptr->pPhaseEnc; // New rotor position

DeltaEnc=(double)(PresentEnc-Mptr->PrevPhaseEnc); // Change

Mptr->PrevPhaseEnc=PresentEnc; // Store for next cycle

PhasePos=Mptr->PhasePos+Mptr->PhasePosSf*DeltaEnc; // Scale to table

This automatic preparation does not add any “slip” or other offsets to this value, and it does not

make sure it is rolled over into the required range of (0.0 <= PhasePos < 2048.0) that would be

required to use Power PMAC’s built-in 2048-unit sine table.

Input/Output Access

Unlike the user-written servo algorithm, a user-written phase algorithm that is actually

performing motor functions must write its resulting command values directly to the output

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 802

registers. To use the motor’s command output addressing element for this (which is

recommended, but not required), the routine would have code something like:

Mptr->pDac[0]=PhaseACmd;

Mptr->pDac[1]=PhaseBCmd;

Mptr->pDac[2]=PhaseCCmd;

Basic Example Routine

The following code implements a very simple sinusoidal commutation routine using existing

setup elements:

void user_phase(struct MotorData *Mptr)

{

 int TableOfs;

 float *SineTable;

 double PhaseAng, IqVolts, IaVolts, IbVolts;

 PhaseAng=Mptr->PhasePos; // Copy into local var

 if (PhaseAng<0.0) PhaseAng+=2048.0; // Negative rollover?

 else if (PhaseAng>=2048.0) PhaseAng-=2048.0; // Positive rollover?

 TableOfs=(int)PhaseAng; // Table entry

 Mptr->PhasePos=PhaseAng; // Store for next cycle

 IqVolts=Mptr->IqCmd; // Get torque command

 SineTable=Mptr->pVoltSineTable; // Start addr of lookup table

 IaVolts=IqVolts*SineTable[(TableOfs+512)&2047];

 IbVolts=IqVolts*SineTable[(TableOfs+Mptr->PhaseOffset+512)&2047];

 Mptr->pDac[0]=((int)(IaVolts*65536)); // Output Phase A

 Mptr->pDac[1]=((int)(IbVolts*65536)); // Output Phase B

}

Note

Do not embed your user code inside an indefinite loop in the

routine. This would probably get the Power PMAC “stuck”

inside the routine, leading to a failure of other tasks to execute

at the needed times, and could even lead to a watchdog-timer

trip. Repeated execution of this routine will happen because

the built-in Power PMAC sequencing software calls this

routine every interrupt.

Compiling and Downloading

In the header file “usrcode.h” in the same directory, the following declarations must be made:

void MyPhaseAlg (struct MotorData *Mptr);

EXPORT_SYMBOL (MyPhaseAlg);

To compile and download this code to the Power PMAC, right-click on the project name in the

Solution Explorer, then select “Build and Download All Programs”.

To instruct the Power PMAC to use a compiled and downloaded user-written phase routine, right-

click on “Realtime Routines” in the “C Language” branch. Select “User Servo Setup” to get the

window permitting you to assign user routines to motors. If you have not added your routine’s

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 803

name to the list of selectable routines, click on “Add New Function”, type your routine name into

the dialog box, and click on “Apply”.

Then to select this routine for Motor “x”, click on the down arrow associated with “User Phasex”

and select the routine name from the pick list. When you have done this for all of the motors you

desire, click on “Apply” for the large window.

IDE User Phase and Servo Selection Control

User-Written Servo Routines

Power PMAC can execute “user-written servo” routines for any motor. At each servo interrupt,

Power PMAC will call a servo subroutine for each motor with Motor[x].ServoCtrl > 0. This can

either be the built-in routine for feedback and feedforward, or a user-written routine, individually

selectable by motor. Different motors can execute different user-written routines; multiple motors

can execute the same routine.

Most people who write user-written servo routines will use them to execute a custom algorithm

for motor feedback and feedforward, providing capabilities that the built-in algorithm does not

have. However, the routines can be used to perform actions that have nothing to do with these

tasks. Use of these routines for fast I/O operations is common.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 804

To create a user-written servo routine in the IDE, go into the Project Manager’s “Solution

Explorer”, expand the “C language” branch, and then expand the “Realtime Routines” branch. In

this branch, select the file “usrcode.c” for editing. Remember that this file can contain multiple

routines, for both phase and servo.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 805

Declaration

A user-written servo routine must be declared in the form:

double MyServoAlg (MotorData *Mptr)

The “double” indicates that a double-precision floating-point value (the servo output command)

is returned to the calling program. “MyServoAlg” is the user’s name for the routine.

“MotorData *Mptr” must be included as an argument (even if it is not used in the routine).

“Mptr” is a pointer to the motor data structure for the present motor. This permits a single

routine to be used for multiple motors, providing access to all of the data structure elements for

the calling motor.

Automatic Preparation of Input Values

Power PMAC automatically computes the values of several commonly used quantities before

calling a user-written servo algorithm each cycle.

The following automatically computed elements are of particular use. All are “double” format

floating-point values.

Motor[x].DesPos Net desired position (trajectory, master, compensation)

Motor[x].DesVel Net desired velocity (DesPosnew – DesPosold)

Motor[x].ActPos Outer loop net actual position (measured, compensation, backlash)

Motor[x].ActPos2 Inner loop net actual position (measured, compensation)

Motor[x].PosError Following error (DesPos – ActPos)

Motor[x].ActVel Inner loop net actual velocity (ActPos2new – ActPos2old)

Automatic Processing of Returned Value

Because this routine is returning its resulting value to the calling program, it does not need to

write the result to an output register, or to the appropriate input register for a commutation

algorithm. Power PMAC firmware will handle that task.

Basic Example Routine

The following code implements a very simple PID servo routine using existing setup elements:

double user_pid_ctrl(struct MotorData *Mptr)

{

 double ctrl_out;

 if (Mptr->ClosedLoop) {

 // Compute PD terms

 ctrl_out=Mptr->Servo.Kp*Mptr->PosError-Mptr->Servo.Kvfb*Mptr->ActVel;

 Mptr->Servo.Integrator+=Mptr->PosError*Mptr->Servo.Ki; // I term

 ctrl_out+=Mptr->Servo.Integrator; // Combine

 return ctrl_out;

 }

 else {

 Mptr->Servo.Integrator=0.0;

 return 0.0;

}

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 806

Note

Do not embed your user code inside an indefinite loop in the

routine. This would probably get the Power PMAC “stuck”

inside the routine, leading to a failure of other tasks to execute

at the needed times, and could even lead to a watchdog-timer

trip. Repeated execution of this routine will happen because

the built-in Power PMAC sequencing software calls this

routine every interrupt.

Multi-Motor Routines

It is possible to write servo routines for coupled control of multiple motors. In fact, this is one of

the key reasons that custom servo algorithms are employed. (Power PMAC has one built-in

multi-motor servo algorithm – the two-motor cross-coupled gantry algorithm.)

The motors affected by this coupled algorithm must be consecutively numbered, and the servo

algorithm actually executed by the lowest-numbered of these motors. The saved setup element

Motor[x].ExtraMotors for this motor must be set to the additional number of motors controlled

by this algorithm. For example, if Motors 3 through 7 are controlled in a single servo algorithm,

this algorithm will be executed by Motor 3 and Motor[3].ExtraMotors would be set to 4. Motors

4 through 7 would then not execute any servo algorithms.

The Mptr structure passed to the custom algorithm refers to the structure of this lowest numbered

motor. There are a couple of methods of accessing the structure(s) of the other motor(s)

controlled.

In “relative addressing”, you can declare new structure variables like Mptr2 and Mptr3 and

reference them in the routine with:

Mptr2 = Mptr + 1;

Mptr3 = Mptr + 2;

In “absolute addressing”, you can simply use the full structure name for these motors, such as:

pshm->Motor[4].ActPos…

pshm->Motor[5].ActPos…

The servo command for the motor actually executing the routine is the returned value. For the

other motors, the routine should write directly to the ServoOut element (a “double” variable) for

that motor, such as:

Mptr2->ServoOut

or

pshm->Motor[4].ServoOut

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 807

Compiling and Downloading

In the header file “usrcode.h” in the same directory, the following declarations must be made:

double MyServoAlg (struct MotorData *Mptr);

EXPORT_SYMBOL (MyServoAlg);

To compile and download this code to the Power PMAC, right-click on the project name in the

Solution Explorer, then select “Build and Download All Programs”.

To instruct the Power PMAC to use a compiled and downloaded user-written phase routine, right-

click on “Realtime Routines” in the “C Language” branch. Select “User Servo Setup” to get the

window permitting you to assign user routines to motors. If you have not added your routine’s

name to the list of selectable routines, click on “Add New Function”, type your routine name into

the dialog box, and click on “Apply”.

Then to select this routine for Motor “x”, click on the down arrow associated with “User Servox”

and select the routine name from the pick list. When you have done this for all of the motors you

desire, click on “Apply” for the large window.

Real-Time Interrupt C PLC Routine

At each real-time interrupt (RTI), Power PMAC will call a special C PLC routine if the function

is enabled. This occurs after any motion-program or motion-segment calculations started in the

RTI have finished, and after a scan of the script PLC 0, if one exists and is active. A real-time

interrupt occurs every (Sys.RtIntPeriod + 1) servo interrupts, but if the calculations from the

previous RTI leave no time for the new cycle’s calculations to start, the cycle will be skipped.

To create an RTI C PLC in the IDE, go into the Project Manager’s “Solution Explorer”, expand

the “C language” branch, and then expand the “CPLCs” branch, followed by the “rticplc” branch.

In this branch, select the file “rtiplcc.c” for editing.

This routine must be named as “realtimeinterrupt_plcc” and must be declared as:

void realtimeinterrupt_plcc()

The “void” indicates that no value is returned to the calling program. Unlike user-written phase

and servo algorithms, the user cannot select his own name for this routine.

The following code implements a simple example of writing to banks of discrete outputs in

alternating on/off patterns.

#include <RtGpShm.h>

#include <stdio.h>

#include <dlfcn.h>

#define IoCard0Out0_7 *(piom + 0xA0000C/4)

#define IoCard0Out8_15 *(piom + 0xA00010/4)

#define IoCard0Out16_23 *(piom + 0xA00014/4)

#define OutputData(x) (x << 8)

void realtimeinterrupt_plcc() // RTI C PLC function

{

 static int i = 0;

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 808

 if (i++>1000) { // > 1 sec from cycle start

 IoCard0Out0_7=OutputData(0xAA); // Odd-numbered outputs on

 IoCard0Out8_15=OutputData(0xAA);

 IoCard0Out16_23=OutputData(0xAA);

 if (i>2000) i=0; // Reset to start of cycle

 }

 else { // < 1 sec from cycle start

 IoCard0Out0_7=OutputData(0x55); // Even-numbered outputs on

 IoCard0Out8_15=OutputData(0x55);

 IoCard0Out16_23=OutputData(0x55);

 }

}

Note

Do not embed your user code inside an indefinite loop in the

routine. This would probably get the Power PMAC “stuck”

inside the routine, leading to a failure of other tasks to execute

at the needed times, and could even lead to a watchdog-timer

trip. Repeated execution of this routine will happen because

the built-in Power PMAC sequencing software calls this

routine every interrupt.

To compile and download this code to the Power PMAC, right-click on the project name in the

Solution Explorer, then select “Build and Download All Programs”.

To enable the execution of this routine, simply set the data structure element UserAlgo.RtiCplc

to 1. To disable the execution, set UserAlgo.RtiCplc to 0.

Background C PLC Routines

After each scan of each enabled background Script PLC program, Power PMAC will call every

active background CPLC program that is present as a function. Power PMAC can have up to 32

separate background CPLC programs, with the enabling individually controlled. These

background C PLC programs are equivalent in scheduling the background compiled (script) PLC

programs of the Turbo PMAC.

To create a background C PLC in the IDE, go into the Project Manager’s “Solution Explorer”,

expand the “C language” branch, and right click on the “CPLCs” folder. In the window that pops

up select a C PLC number (0 to 31) from the pick list. The Solution explorer will create a sub-

folder “bgcplcnn”, and a file in that folder “bgplcnn.c”, where nn is the selected C PLC number

(always two digits). Select this file for editing.

The routine for all background CPLC programs must be named as “user_plcc” and must be

declared as:

void user_plcc()

The “void” indicates that no value is returned to the calling program. Unlike user-written phase

and servo algorithms, the user cannot select his own name for this routine. Note that the routine

itself contains no information as to what number the CPLC has – that is determined by the file

and folder names.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 809

Note

Do not embed your user code inside an indefinite loop in the

routine. This would probably get the Power PMAC “stuck”

inside the routine, leading to a failure of other tasks to execute

at the needed times, and could even lead to a watchdog-timer

trip. Repeated execution of this routine will happen because

the built-in Power PMAC sequencing software calls this

routine every background cycle.

To compile and download this code to the Power PMAC, right-click on the project name in the

Solution Explorer, then select “Build and Download All Programs”.

To enable the execution of routine C PLC n, simply set the data structure element

UserAlgo.BgCplc[n] to 1. To disable the execution, set UserAlgo.BgCplc[n] to 0.

The next background Script PLC program will not run until all of the enabled background C PLC

programs have finished executing a scan, or 100 microseconds after the start of execution of these

C PLC programs, whichever is less.

CfromScript Function

CfromScript is a C-language function that the user can call from Power PMAC Script

programs. This function permits users to access their C subroutines directly from the PMAC

Script language. It is expected to be used primarily for kinematics calculations, but is flexible

enough that the user can use it for many different purposes. This function is useful especially for

kinematics calculations (which are known to be generally quite computationally intensive)

because this C function executes calculations much faster than if the calculations had been written

in the Script-based subroutines directly.

Power PMAC can have only a single CfromScript function. However, it is possible using passed

arguments and internal logic to call this single function from multiple Script programs, even at

overlapping times. Techniques to do this are explained below.

Declaring CfromScript()

The CfromScript function must be written in the “usrcode.c” file in the “Realtime Routines”

folder of the Project Manager. The declaration must be of the form:

double CfromScript(double arg1, double arg2, double arg3, double arg4, double arg5,double

arg6, double arg7, LocalData *Ldata)

While the user can give whatever names are desired to the eight arguments, there must be seven

arguments of type “double”, and one final argument of the structure type “LocalData”.

There must be exact matching prototype and symbol exportation declarations in the “usrcode.h”

file in the same folder:

double CfromScript(double arg1,double arg2,double arg3,double arg4,double arg5,double

arg6,double arg7,LocalData *Ldata);

EXPORT_SYMBOL(CfromScript);

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 810

Calling CfromScript from Script Programs

CfromScript() is usually called from a Script routine that executes in the real-time interrupt,

such as a foreground PLC program (the number of which is set by Sys.MaxRtPlc), kinematics

subroutines, or motion programs. However, the function can be called from background routines

if the user first sets non-saved setup element UserAlgo.CFunc to 1. If the user plans to call

CfromScript() from a background routine, it is recommended to set UserAlgo.CFunc = 1 in

the “global definitions.pmh” file under the “PMAC Script Language” “Global Includes” folder

of the Project Manager, or to set it to 1 in pp.startup.txt.

The calling command in the Script program is of the form:

MyReturnVar = CfromScript(arg1, arg2, arg3, arg4, arg5, arg6, arg7);

The calling program must pass to CfromScript() all seven arguments of type double, even

if CfromScript() does not use all of the arguments internally. If CfromScript() does not

use one of the arguments, it is recommmended just to pass a zero to CfromScript() for that

argument. All general-purpose user variables in Power PMAC (P, Q, L, R, C, D) are of type

double. Some data structure elements are of type double, but the value in an element of a

different type can be converted to double simply by copying the value into a general-purpose

variable.

Power PMAC automatically passes to CfromScript() into the 8th argument a pointer to the

local data structure of the program from which the user is calling the function. The user should

not include this argument explicitly in the function call.

The calling program must store the result of CfromScript() in a variable (R, L, C, D, P, Q, or

M variable) even if the result is not needed. Otherwise, the command will be flagged with a

syntax error.

Note that the execution of the calling program will halt until the CfromScript() function call

has completed – there is no need to write additional code to force PMAC to wait for

CfromScript() to finish.

Basic calling example

This example simply calls CfromScript() from foreground PLC 0, passing zeros to all

arguments of the function, and stores the result in P1000.

open plc 0

P1000 = CfromScript(0,0,0,0,0,0,0);

close

Using Local Data Variables within CfromScript

If the user desires to use the local variables from within CfromScript(), he can pass the local

data pointer usually called “Ldata” to built-in C functions that return pointers to the R, L, C, and

D variable arrays in the LocalData space. These functions are GetRVarPtr(),

GetLVarPtr(), GetCVarPtr(), and GetDVarPtr(), for R, L, C, and D local variables,

respectively. See the following example for the syntax.

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 811

double CfromScript(double arg1, double arg2, double arg3 double arg4, double arg5, double

arg6, double arg7, LocalData *Ldata)

{

 double *R;

 double *L;

 double *C;

 double *D;

 R = GetRVarPtr(Ldata); //Ldata->L + Ldata->Lindex + Ldata->Lsize;

 L = GetLVarPtr(Ldata); //Ldata->L + Ldata->Lindex;

 C = GetCVarPtr(Ldata); //Ldata->L + Ldata->Lindex + MAX_MOTORS;

 D = GetDVarPtr(Ldata); // Ldata->D;

// User places additional calculations here

return 0.0; // Can change this to return anything else if needed

}

Once these pointers have been assigned, R, L, C, and D variables can be used with array notation.

For example, R[0] will be equivalent to accessing R0 in the script program that calls

CfromScript(), L[0] will be just like L0, C[0] like C0, and D[0] like D0, R[1] equivalent to

R1, and so on for other indices.

In the kinematics routines, the variables L[n] are the Motor n positions – inputs for the forward

kinematics, and results for the inverse kinematics. The variables C[n] are the Axis α positions –

inputs for the inverse kinematics and results for the forward kinematics.

Calling CfromScript from Multiple Script Programs

If the user desires to use CfromScript() for many different purposes, he or she can design

CfromScript() to be a state-machine-type handler function. Then, the calling program simply

needs to pass to CfromScript() the state number into one of its seven available arguments,

and possibly any other useful data, such as the coordinate system number of the calling program.

CfromScript() will then call the appropriate subsequent C function based on the state

information it receives.

Example: Using CfromScript() as a Kinematics Handler

This example uses CfromScript() in the execution of both forward and inverse kinematics

from multiple coordinate systems. It uses the arguments passed to it from the calling Script

kinematic routines to decide what action to take. In this case, it is fundamentally deciding which

C subroutine to call, and the real calculations are done inside these further subroutines. The

following code is placed in usrcode.c:

// #defines – For determining the states and kinematics types to use

#define Forward_Kinematics_State 0

#define Inverse_Kinematics_State 1

#define KinematicsType1 1

#define KinematicsType2 2

// Prototypes

int ForwardKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata);

int InverseKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata);

int ForwardKinematicsSubroutine1(int CS_Number,LocalData *Ldata);

int InverseKinematicsSubroutine1(int CS_Number,LocalData *Ldata);

int ForwardKinematicsSubroutine2(int CS_Number,LocalData *Ldata);

int InverseKinematicsSubroutine2(int CS_Number,LocalData *Ldata);

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 812

double CfromScript(double CS_Number_double,double State_double,double

KinematicsType_double,double arg4,double arg5,double arg6,double arg7,LocalData *Ldata)

{

// CfromScript() functions as a State Machine handler.

// Inputs:

// CS_Number_double: Coordinate System number of the coordinate system

// program that called this instance of CfromScript().

// State_double: State number. Pass in the state corresponding to

// what the user wants CfromScript() to do; e.g., design CfromScript() such

// that Forward_Kinematics_State (= 0) will make CfromScript() run the

// forward kinematics routine.

// KinematicsType_double: Type of kinematics to use. Only need to use this

// argument if using kinematics; otherwise, set to 0.

// arg4 - arg7: unused in this example.

// Output: ErrCode – error code of function calls.

// Will return -11 if invalid state entered.

int CS_Number = (int)CS_Number_double;

intState = (int)State_double;

int KinematicsType = (int)KinematicsType_double;

int ErrCode = 0;

switch(State)

 {

 case Forward_Kinematics_State:

 {

 ErrCode = ForwardKinematics(CS_Number,KinematicsType,Ldata);

 break;

 }

 case Inverse_Kinematics_State:

 {

 ErrCode = InverseKinematics(CS_Number,KinematicsType,Ldata);

 break;

 }

 default:

 {

 ErrCode = -11; // InvalidState Entered

 break;

 }

 }

return (double)ErrCode;

}

int ForwardKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata)

{

 int ErrCode = 0;

 switch(Kinematics_Type)

 {

 case KinematicsType1:

 ErrCode = ForwardKinematicsSubroutine1(CS_Number,Ldata);

 break;

 case KinematicsType2:

 ErrCode = ForwardKinematicsSubroutine2(CS_Number,Ldata);

 break;

 // Can implement other types of forward kinematics handling

 // here by adding other case statements for other

 // Kinematics_Type values

 default:

 ErrCode = -1; // Invalid Kinematics Type Entered

 break;

 }

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 813

 return ErrCode;

}

int InverseKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata)

{

 int ErrCode = 0;

 switch(Kinematics_Type)

 {

 case KinematicsType1:

 ErrCode = InverseKinematicsSubroutine1(CS_Number,Ldata);

 break;

 case KinematicsType2:

 ErrCode = InverseKinematicsSubroutine2(CS_Number,Ldata);

 break;

 // Can implement other types of inverse kinematics handling

 // here by adding other case statements for other

 // Kinematics_Type values

 default:

 ErrCode = -1; // Invalid Kinematics Type Entered

 break;

 }

 return ErrCode;

}

int ForwardKinematicsSubroutine1(int CS_Number,LocalData *Ldata)

{

 int ErrCode = 0;

 double *R;

 double *L;

 double *C;

 double *D;

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize;

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex;

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS;

 D = GetDVarPtr(Ldata);// Ldata->D;

//** Put forward kinematics calculations here **//

 return ErrCode;

}

int InverseKinematicsSubroutine1(int CS_Number,LocalData *Ldata)

{

 int ErrCode = 0;

 double *R;

 double *L;

 double *C;

 double *D;

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize;

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex;

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS;

 D = GetDVarPtr(Ldata);// Ldata->D;

//** Put inverse kinematics calculations here **//

 return ErrCode;

}

int ForwardKinematicsSubroutine2(int CS_Number,LocalData *Ldata)

{

 int ErrCode = 0;

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 814

 double *R;

 double *L;

 double *C;

 double *D;

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize;

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex;

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS;

 D = GetDVarPtr(Ldata);// Ldata->D;

//** Put forward kinematics calculations here **//

 return ErrCode;

}

int InverseKinematicsSubroutine2(int CS_Number,LocalData *Ldata)

{

 int ErrCode = 0;

 double *R;

 double *L;

 double *C;

 double *D;

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize;

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex;

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS;

 D = GetDVarPtr(Ldata);// Ldata->D;

//** Put inverse kinematics calculations here **//

 return ErrCode;

}

// Add any to usrcode.c other functions one might need for other

// kinematics calculations or anything else CfromScript() might need

// to call

This CfromScript() function can then be called from Script kinematics routines such as

the following:

// Define the same state values as defined in usrcode.c

#define Forward_Kinematics_State 0

#define Inverse_Kinematics_State 1

#define KinematicsType1 1

#define KinematicsType2 2

#define CS_Number_1 1

#define CS_Number_2 2

// Define storage flags for the error code returns

csglobal ForwardKin1ErrCode,ForwardKin2ErrCode,InvKin1ErrCode,InvKin2ErrCode;

// Forward Kinematics Buffers

open forward (1) // Put Coordinate System number inside "(cs)"

ForwardKin1ErrCode =

CfromScript(CS_Number_1,Forward_Kinematics_State,KinematicsType1,0,0,0,0);

close

open forward (2) // Put Coordinate System number inside "(cs)"

ForwardKin2ErrCode =

CfromScript(CS_Number_2,Forward_Kinematics_State,KinematicsType2,0,0,0,0);

close

// Inverse Kinematics Buffers

open inverse (1) // Put Coordinate System number inside "(cs)"

InvKin1ErrCode =

CfromScript(CS_Number_1,Inverse_Kinematics_State,KinematicsType1,0,0,0,0);

close

Power PMAC User’s Manual

Writing C Functions and Programs in Power PMAC 815

open inverse (2) // Put Coordinate System number inside "(cs)"

InvKin2ErrCode =

CfromScript(CS_Number_2,Inverse_Kinematics_State,KinematicsType2,0,0,0,0);

close

Note

One can make the C subfunctions be of type int with internal

int ErrCode variables within each function and then pass

theErrCodeof each functionall the way back up to

CfromScript() and back to the calling function. This is

one way the user can track error reporting from within

CfromScript(); i.e., from the script program that called

CfromScript(), the user can read the error code that

CfromScript() returns to determine what happened. To

use a unique error code for each type of error is best when

using this technique.

Background C Application Programs

Multiple independent C-language “application” programs can be downloaded into the Power

PMAC and executed under the “general purpose” Linux operating system. These are separate

programs, and not functions as all of the other types of routines mentioned above are. They are

not called by the Power PMAC’s built-in scheduling software, but executed directly under the

Linux operating system.

These programs can be completely independent of the Power PMAC control tasks, or they can

interact with these control tasks through the Power PMAC shared-memory structures.

Each program must be compiled with the #include <RtGpShm.h> directive to access the

pre-defined header file with the structure definitions. Since these are independent programs, they

must explicitly declare variables to access the structures, as noted above.

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 816

POWER PMAC EXAMPLE SCRIPT PROGRAMS

This chapter provides some simple Power PMAC Script programs. Many users will want to try

these examples to get started in understanding how these programs work

Simple Motion Programs

This section shows some very simple motion programs with their associated setup in Power

PMAC. Each example in this section includes the on-line commands necessary to set up the

coordinate system to run the motion program immediately following it. These examples assume

that any motors utilized in the example have already been set up for proper operation.

Example 1: Basic Moves

This first example shows a simple move of an axis out and back.

// A typical coordinate system setup for this program is like:

// &1 // Address C.S. 1

// #1->1000X // Motor 1 assigned to X-axis, 1000 counts/unit

// Motion program code

open prog 1 // Open buffer for entry

linear; // Linear interpolation move mode

abs; // Absolute move mode

ta500; // 1/2-second accel/decel time

ts0; // No S-curve accel/decel time

f5; // Speed of 5 axis units per time unit

X10; // Move X-axis to position of 10 units

dwell500; // Sit here for 1/2-second

X0; // Move X-axis to position of 0 units

dwell500; // Sit here for 1/2-second

close // Close buffer, end program entry

// To run this program with C.S. 1, issue these on-line commands:

// &1 b1r

Note several things about this simple example:

 The motion program does not belong to any specific coordinate system, nor does it

directly specify which motor(s) it will move. One or more coordinate systems can point

to the program and run it (even simultaneously!). Which motor or motors move is

dependent on which have already been assigned to the X-axis in the executing coordinate

system.

 The program explicitly declares all of the factors affecting the moves. It is possible to

rely on defaults for much of this, but it is better where possible to declare explicitly, both

because the defaults can change, and because it makes it easier to understand what the

program is intended to do. Note that these factors are modal; they do not have to be

declared for each move.

 The setup assigns a motor to an axis with 1000 motor units (usually encoder counts) per

axis unit. Therefore, each axis unit commanded corresponds to 1000 units of the assigned

motor.

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 817

The following diagram shows the commanded trajectory generated by execution of this program,

gathered from Power PMAC’s actual execution of the program:

Example 2: A More Complex Move Sequence

This example introduces scaling of axes in user units, incremental end-point specification, time-

specification of moves, S-curve acceleration with different acceleration and deceleration times,

looping logic, variable use, and simple arithmetic.

// A typical coordinate system setup for this program is like:

// &1 // Address C.S. 1

// #2->1000Y // Motor 2 assigned to Y-axis, 1000 counts/unit

// Motion program code

open prog 2

local LoopCount; // Loop counter index

linear; // Linear interpolation move mode

inc; // Incremental move mode

ta500; // 1/2-second accel time

td1000; // 1-second decel time

ts250; // 1/4-second S-curve accel/decel time

tm2000; // 2-second move time

Gather.Enable = 2; // Start data gathering

LoopCount = 1; // Initialize counter index

while (LoopCount <= 10) { // Loop until false (10 times)

 Y10; // Move distance of 10 units positive

 dwell500; // Stay here for 1/2-second

 Y-10; // Move distance of 10 units negative

 dwell500; // Stay here for 1/2-second

 if (LoopCount == 2) Gather.Enable = 0; // Stop gathering on 2nd loop

 LoopCount++; // Increment loop counter

} // End of while loop

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 818

close

// To run this program with C.S. 1, issue the following on-line commands:

// &1 b2r

The following diagram shows the commanded trajectory generated by the first two loops of

execution of this program, gathered from Power PMAC’s actual execution of the program:

Example 3: Moves with Looping, Branching, and I/O

This next example program introduces conditional branching, calculated move distances, waiting

for settling “in position”, and I/O addressing.

// Variable declarations

ptr LoopCtrlInput->u.io:$A00000.8.1; // IO Card 0 Point 00

ptr DirCtrlInput->u.io:$A00000.9.1; // IO Card 0 Point 01

ptr LaserOn->u.io:$A0000C.8.1; // IO Card 0 Point 24

csglobal MoveLength; // Externally settable variable

MoveLength = 40; // Set value for this example

// A typical coordinate system setup for this program is something like:

// &1

// #3->1000Z // Motor 3 assigned to Z-axis, 1000 counts/unit

// Motion program code

open prog 3

local ThisCs; // Local var for # of CS running program

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 819

ThisCs = Ldata.Coord; // Set to # of CS running program

rapid; // Rapid move mode

abs; // Absolute end-point specification

while (LoopCtrlInput) { // Loop until control input false

 if (DirCtrlInput) Z(MoveLength); // Move in positive direction

 else Z(-1.0*MoveLength); // Move in negative direction

 while (Coord[ThisCs].InPos == 0) {} // Wait for settled

 LaserOn = 1; // Turn on laser control output

 dwell100; // Hold for 100 msec

 LaserOn = 0; // Turn off laser control output

 Z0; // Return to home position

 dwell50; // Hold for 50 msec

}

close

The following plot shows the commanded velocity profile along with the direction-control input

and the laser-control output.

Example 4: Coordinated and Blended Moves with Linear and Circular
Interpolation

This example introduces coordinated moves (multiple axes commanded on the same line of a

motion program are automatically fully coordinated), blended moves (consecutive moves are

automatically blended together unless specifically commanded not to), plus rapid, linear, and

circular interpolation in a Cartesian system.

ptr DispensePumpOn->u.io:$A0000C.12.1; //IO Card 0 IO Point 28

Coord[1].SegMoveTime = 5; // Segmentation time of 5 msec

open prog 4

abs; // Absolute end-point specification

normal k-1; // XY-plane specification for circles

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 820

Gather.Enable = 2; // Start data gathering

rapid x1 y4; // Rapid mode move to (1,4)

dwell 20; // Hold position for 20 msec

DispensePumpOn = 1; // Turn on dispensing pump

dwell 50; // Hold position for 50 msec

f50; ta100; ts50; // Params for linear & circle moves

linear y13; // Straight-line move to (1,13)

circle1 x2 y14 i1 j0; // CW arc to (2,14) about (2,13)

linear x3; // Straight-line move to (3,14)

circle1 x4 y13 i0 j-1; // CW arc to (4,13) about (3,13)

linear y7; // Straight-line move to (4,7)

circle2 x7 y4 i3 j0; // CCW arc to (7,4) about (7,7)

linear x13; // Straight-line move to (13,4)

circle1 x14 y3 i0 j-1; // CW arc to (14,3) about (13,3)

linear y2; // Straight-line move to (14,2)

circle1 x13 y1 i-1 j0; // CW arc to (13,1) about (13,2)

linear x4; // Straight-line move to (4,1)

circle1 x1 y4 i0 j3; // CW arc to (1,4) about (4,4)

dwell 0; // Stop blending and lookahead

DispensePumpOn = 0; // Turn off dispensing pump

rapid x0 y0; // Return to home position

Gather.Enable = 0; // Stop data gathering

close

The following plot shows the XY commanded path generated by this program.

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 821

Example 5: Coordinated Path Motion

Many applications require the controller to generate a precise path in a plane or in space. Power

PMAC controllers have easy and powerful capabilities for doing this. The moves of axes

commanded on the same program line are automatically fully coordinated, starting and stopping

together and taking the prescribed path. Consecutive moves are automatically blended together

(unless specifically told not to).

The most common move modes used for generating paths are linear and circle modes, so called

because of the paths they create in a Cartesian system. This example uses linear and circle modes

to generate the following oval shape in a Cartesian system.

 (-60,20) (60,20)

 (-60,0) (0,0) (60,0)

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 822

For circular interpolation it is necessary to define the “segmentation time” for the coordinate

system – the period at which the exact circle calculations are done. In between these precisely

calculated points, a simpler cubic-spline interpolation is done to create new commanded positions

every servo cycle. Typically the exact calculations are done every 10 to 20 servo cycles, yielding

a very accurate path without overloading the processor from too many trigonometric calculations.

Here we set the segmentation time for C.S. 1 to 5 msec with Coord[1].SegMoveTime = 5.

// Coordinated path motion example

open prog 5

normal k-1; // XY plane for circles

abs; // Absolute endpoint specification

F200; // Vector speed of 200 mm/sec

ta25; ts0; // 25 msec accel/decel time, no S-curve

Gather.Enable=2; // Start data gathering

linear X60 Y0; // Straight move to (60,0)

circle2 X60 Y20 R10; // CCW arc of radius 10 to (60,20)

linear X-60 Y20; // Straight move to (-60,20)

circle2 X-60 Y0 R10; // CCW arc of radius 10 to (-60,0)

linear X0 Y0; // Straight move to (0,0)

dwell 100; // Hold position for 100 msec

Gather.Enable=0; // Stop data gathering

close

Note that the circular arc moves are programmed here by specifying the radius of the arc. It is

also possible to program them by specifying a vector to the center of the arc with I, J, and K

components.

The following diagram shows the commanded path generated by execution of this program,

gathered from Power PMAC’s actual execution of the program:

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 823

Programmed Move Profiles

This first diagram shows the commanded axis velocity profiles, with a 25-msec acceleration time

and without lookahead, gathered from actual execution on Power PMAC:

The next diagram shows the commanded acceleration profiles for the same move sequence:

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 824

Buffered Lookahead for Dynamic Limiting

Many times, some parts of the path, such as tight arcs or sharp corners may have to be executed

more slowly than other parts because of acceleration constraints. On many systems, figuring out

where the system needs to move slowly and how to tell the controller where to move more slowly

is so difficult that the whole path is executed slowly.

However, Power PMAC’s buffered lookahead feature permits the controller to automatically

identify problem areas in the path, compute the highest speed at these areas that do not violate

constraints, and to compute the optimum deceleration into these areas and acceleration out of

them. The user simply needs to tell Power PMAC what the constraints are and to enable the

feature. The problem areas do not need to be identified in the motion program. (While the

lookahead algorithm also checks for violations of position and velocity constraints, it is usually

the acceleration constraints that are key.)

In this example, the X and Y-axes are limited to an acceleration of 1000 mm/sec2. To execute the

arc moves, which have a radius of 10 mm, at the programmed speed of 200 mm/sec would

require a centripetal acceleration of 200*200/10 = 4000 mm/sec2. Note that simply programming

a lower speed for these moves would not necessarily solve the problem, because it does not

ensure that the deceleration into the arc and the acceleration out of it are handled properly.

For robust acceleration control, the algorithm must look ahead at least the worst case stopping

time, which is the maximum velocity divided by the maximum acceleration. In this example, we

have a maximum velocity of 500 mm/sec (even though the program only asks for 200), so our

worst case stopping time is 500/1000 = 0.5 sec, or 500 msec to decelerate from full speed.

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 825

The following commands can be used to set up the buffered lookahead for this example:

// Setup for buffered lookahead

Motor[1].MaxSpeed=500; // 500 motor units per msec

Motor[1].InvAmax=1.0; // 1 motor unit per msec per msec

Motor[2].MaxSpeed=500; // 500 motor units per msec

Motor[2].InvAmax=1.0; // 1 motor unit per msec per msec

Coord[1].SegMoveTime=5; // Segmentation time of 5 msec

&1 define lookahead 3000 // Set up buffer with 3K segments

Coord[1].LHDistance=200; // Look ahead 200 segments in path

These next two diagrams show the profiles when lookahead has been applied. First we see the

commanded velocities. Note that the acceleration ramps to and from a stop have been

significantly stretched out compared to the above velocity profiles. Note also that the arc moves

have been slowed down, not because their programmed velocities exceeded the lookahead

velocity limits, but because their centripetal acceleration at the programmed speed is above the

lookahead acceleration limit. Furthermore, the linear moves going into the arcs start slowing

down well before the beginning of the arc, and the linear moves out of the arc accelerate for some

distance from the end of the arcs.

Finally we see the commanded accelerations with lookahead applied. We see that the magnitude

of acceleration has been dramatically reduced compared to the plot without limits, above. Note

that the acceleration-limiting calculations are approximations, permitting very momentary slight

excursions past the specified limits (+/-1,000,000 counts/sec2) to preserve smoothness in the

trajectories.

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 826

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 827

A Move with Separate Acceleration and Deceleration

Some users want point-to-point moves with different acceleration and deceleration parameters –

typically a longer and more gradual deceleration for smoother settling. This is easy to do with

Power PMAC, as this example shows.

/**/

open prog 1 // Open buffer for entry

linear; // Linear interpolation move mode

abs; // Absolute move specification mode

ta500; // 0.5 second acceleration time

td800; // 0.8 second deceleration time

ts100; // 0.1 second S-curve accel/decel time

F5; // Speed of 5 axis units per time unit

Gather.Enable = 2; // Turn on data gathering

X10; // Move X-axis to position of 10 units

dwell 500; // Sit here for 0.5 seconds

X0; // Move X-axis to position of 0 units

dwell 500; // Sit here for 0.5 seconds

Gather.Enable = 0; // Turn off data gathering

close

/**/

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 828

Motion with Related Machine I/O

This example shows motion with related discrete inputs (controlling looping and the direction of

the next move) and a discrete output (turning a laser on and off).

/**/

// Variable declarations

ptr LoopCtrlInput->u.io:$A00000.8.1; // IO Card 0 Point 00

ptr DirCtrlInput->u.io:$A00000.9.1; // IO Card 0 Point 01

ptr LaserOn->u.io:$A0000C.8.1; // IO Card 0 Point 24

csglobal MoveLength; // Externally set variable

MoveLength = 40; // Set value for this example

open prog 3

local ThisCs; // Local var for # of CS

ThisCs = Ldata.Coord; // Set to # of CS running program

rapid; abs; // Rapid move mode, end-point spec

while (LoopCtrlInput) { // Loop until control input false

 if (DirCtrlInput) Z(MoveLength); // Move in positive direction

 else Z(-1.0*MoveLength); // Move in negative direction

 while (!(Coord[ThisCs].InPos)) {} // Wait for settled

 LaserOn = 1; // Turn on laser control output

 dwell100; // Hold for 100 msec

 LaserOn = 0; // Turn off laser control output

 Z0; // Return to home position

 dwell50; // Hold for 50 msec

}

close

/**/

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 829

Interactive Jog Control PLC Programs

This example shows a very simple PLC program as an example of customizing an operator

interface.

/***/

// Interactive motor jog PLC program

// A single motor selected out of #1-#8 can be jogged in "continuous"

// mode, in either the positive or negative direction.

// In continuous mode, the motor will be commanded to jog its

// "deceleration distance" from the present position each scan as long

// as the button is pressed.

// This distance is calculated as V^2/A/2 or V^2xTa/2.

// With S-curve accel specified (JogTs != 0), this distance is

// increased somewhat.

// Declarations of input variables -- application specific

ptr MotorSelectSw->u.io:$A00000.8.3;

ptr JogMinusButton->u.io:$A00000.12.1;

ptr JogPlusButton->u.io:$A00000.13.1;

global JogDecelDist = 500;

/**/

open plc 1

local JogMotor; // # of motor selected for jogging

local JogMotorStatus; // Present state of selected motor

if (JogMotorStatus == 0) { // No motor jogging?

 JogMotor = MotorSelectSw + 1; // Read switch to select motor

 Ldata.Motor = JogMotor; // Specify motor for jog commands

}

if (JogMinusButton && JogMotorStatus <= 0) {

 jog:(-JogDecelDist);

 JogMotorStatus = -1;

}

else {

 if (JogPlusButton && JogMotorStatus >= 0) {

 jog:(JogDecelDist);

 JogMotorStatus = 1;

 }

 else JogMotorStatus = 0;

}

close

/**/

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 830

This next example shows a more sophisticated version of a jogging control PLC program

/**/

// Interactive motor jog PLC program

// A single motor selected out of #1-#8 can be jogged in either "incremental"

// or "continuous" mode, in either the positive or negative direction.

//

// In incremental mode, each time a jog button is pressed, the motor will move

// the distance specified by saved element Motor[x].ProgJogPos (the equivalent

// of the on-line incremental jog command). The button must be released before

// another jog increment can be commanded.

// In continuous mode, the motor will be commanded to jog its "deceleration

// distance" from the present position each scan as long as the button is pressed.

// This distance is calculated as V^2/A/2 or V^2xTa/2. With S-curve accel

// specified (JogTs != 0), this distance is increased somewhat.

// Declarations of input variables -- application specific

ptr MotorSelectSw->u.io:$A00000.8.3;

ptr IncJogSw->u.io:$A00000.11.1;

ptr JogMinusButton->u.io:$A00000.12.1;

ptr JogPlusButton->u.io:$A00000.13.1;

/**/

open plc 2

local JogMotor; // Number of motor selected for jogging

local JogDecelDist; // Distance required to decelerate

local JogMotorStatus; // Present jogging status of selected motor

local JogMode; // 0 = continuous; 1 = incremental

if (JogMotorStatus == 0) { // No motor jogging?

 JogMotor = MotorSelectSw + 1; // Read switch to select motor

 Ldata.Motor = JogMotor; // Specify motor for jog commands

 JogMode = IncJogSw; // Read switch to select jog mode

 if (JogMode == 0) { // Continuous mode?

 if (Motor[JogMotor].JogTa < 0) { // Accel & jerk rates specified?

 JogDecelDist = pow(Motor[JogMotor].JogSpeed,2) * Motor[JogMotor].JogTa * -0.5;

 JogDecelDist += Motor[JogMotor].JogSpeed / Motor[JogMotor].JogTa *

Motor[JogMotor].JogTs * 0.5;

 JogDecelDist += pow(Motor[JogMotor].JogTs,2) / pow(Motor[JogMotor].JogTa,3) * -0.5;

 }

 else {

 if (Motor[JogMotor].JogTa > 0) { // Accel & jerk times specified?

 JogDecelDist = Motor[JogMotor].JogSpeed * Motor[JogMotor].JogTa * 0.5;

 JogDecelDist += Motor[JogMotor].JogSpeed * Motor[JogMotor].JogTs * 0.5;

 JogDecelDist += Motor[JogMotor].JogSpeed * (pow(Motor[JogMotor].JogTs,2) /

Motor[JogMotor].JogTa) * 0.5;

 }

 else { // Zero accel specified

 JogDecelDist = Motor[JogMotor].JogSpeed * 200 * 0.5; // As for 200 msec Ta

 } // if (JogTa > 0) else

 } // if (JogTa < 0) else

 } // if (JogMode == 0)

} // if (JogMotorStatus == 0)

if (JogMode == 1) { // Incremental jog mode?

 if (JogMinusButton && JogMotorStatus == 0) {

 jog:(-1.0 * Motor[JogMotor].ProgJogPos);

 JogMotorStatus = -1;

 }

 else {

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 831

 if (JogPlusButton && JogMotorStatus == 0) {

 jog:(Motor[JogMotor].ProgJogPos);

 JogMotorStatus = 1;

 }

 else {

 if (!(JogMinusButton) && !(JogPlusButton)) JogMotorStatus = 0;

 } // if (JogPlusButton...) else

 } // if (JogMinusButton...) else

} // if (JogMode == 1)

else { // Continuous jog mode

 if (JogMinusButton && JogMotorStatus <= 0) {

 jog:(-JogDecelDist);

 JogMotorStatus = -1;

 }

 else {

 if (JogPlusButton && JogMotorStatus >= 0) {

 jog:(JogDecelDist);

 JogMotorStatus = 1;

 }

 else {

 JogMotorStatus = 0;

 } // if (JogPlusButton...) else

 } // if (JogMinusButton...) else

} // if (JogMode == 1) else

close

/**/

Power PMAC User’s Manual

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 832

SCARA Robot Kinematics

This example shows the forward and inverse-kinematic subroutines for a 4-axis (“shoulder”,

“elbow”, “wrist”, and “vertical” SCARA robot. These subroutines permit the user to program

robot motion in Cartesian coordinates, with Power PMAC automatically computing the required

joint positions to obtain the desired tool-tip path.

//==

// SCARA robot forward kinematic subroutine

// Global variable declarations and values

global Len1 = 400; // Shoulder-to-elbow length 400 mm

global Len2 = 300; // Elbow-to-wrist length 300 mm

global Zofs = 250; // Vertical axis offset 250 mm

global SumLenSqrd; // L1^2 + L2^2

global ProdOfLens; // 2 * L1 * L2

global DifLenSqrd; // L1^2 - L2^2

//==

open forward (1) // Forward kinematics for C.S.1

local SplusE; // Sum of shoulder and elbow angles

if (Coord[1].HomeComplete) { // All motors referenced?

 SplusE = KinPosMotor1 + KinPosMotor2;

 KinPosAxisX = Len1 * cosd(KinPosMotor1) + Len2 * cosd(SplusE);

 KinPosAxisY = Len1 * sind(KinPosMotor1) + Len2 * sind(SplusE);

 KinPosAxisC = SplusE + KinPosMotor3;

 KinPosAxisZ = KinPosMotor4 + Zofs;

 KinAxisUsed = $1C4; // Mask for C,X,Y,Z values returned

 // Compute intermediate constants for inverse kinematics

 SumLenSqrd = Len1 * Len1 + Len2 * Len2;

 ProdOfLens = 2 * Len1 * Len2;

 DifLenSqrd = Len1 * Len1 - Len2 * Len2;

}

else Coord[1].ErrorStatus = 255; // Not referenced; stop

close

//==

// SCARA robot inverse kinematic subroutine

open inverse (1) // Inverse kinematics for C.S.1

local X2Y2, Ecos, SplusQ, Qangle; // Intermediate variables

X2Y2 = KinPosAxisX * KinPosAxisX + KinPosAxisY * KinPosAxisY;

Ecos = (X2Y2 - SumLenSqrd) / ProdOfLens;

if (abs(Ecos) < 0.996) { // Valid solution w/ 5-deg margin?

 KinPosMotor2 = cosd(Ecos);

 SplusQ = atan2d(KinPosAxisY, KinPosAxisX);

 Qangle = acosd(X2Y2 + DifLenSqrd) / (2 * Len1 * sqrt(SumLenSqrd));

 KinPosMotor1 = SplusQ - Qangle;

 KinPosMotor3 = KinPosAxisC - KinPosMotor1 - KinPosMotor1;

 KinPosMotor4 = KinPosAxisZ - Zofs;

 }

 else Coord[1].ErrorStatus = 255; // No valid solution; stop

close

//==

	Copyright Information
	Operating Conditions
	Power PMAC Family Overview
	What Is Power PMAC?
	Power PMAC Configurations
	Power UMAC
	Compact Power UMAC
	CK3M (µUMAC)
	Power PMAC Etherlite
	CK3E (µPowerPMAC)
	Power Brick Configurations
	Power Brick AC
	Power Brick LV
	Power Brick Controller

	Power Clipper
	CK3C (ARM Power Clipper)
	Power PMAC on Sysmac IPC

	What Power PMAC Does
	Execute Sequenced Motion Programs
	Execute Asynchronous PLC Programs
	Perform Kinematic Transformations
	Process Feedback and Master Position Data
	Compute Commanded Motor Trajectories
	Calculate Compensation Table Corrections
	Calculate Cam Table Motions
	Close Motor Position/Velocity Servo Loops
	Perform Electronic Phase Commutation
	Close Motor Current Loops
	Provide Synchronous Data Gathering
	Perform General Housekeeping and Safety Checks
	Respond to Host Computer Commands
	Execute Independent C Applications

	Key Hardware Components
	CPU Section
	Processor
	Active Memory (RAM)
	Non-Volatile Memory (Flash)

	Machine Interface ICs
	PMAC2-Style “DSPGATE1” Servo IC
	PMAC2-Style “DSPGATE2” MACRO IC
	PMAC2-Style “IOGATE” Digital I/O IC
	PMAC3-Style “DSPGATE3” Machine Interface IC

	Talking to Power PMAC
	Communications Security
	Physical Interface
	Use of the Internet Protocol Suite
	Layers of the Internet Protocol Suite
	Link Layer
	Internet Layer
	Transport Layer
	Application Layer

	Low-Level Terminal Communications
	Terminal Emulator Programs
	Establishing First Communications
	Communicating with the Power PMAC Control Application

	Establishing Communications with the IDE
	Startup Communications Control Window
	Embedded Communications Control Window
	Changing the Power PMAC IP Address
	Finding an Unknown IP Address
	Using a Removable Memory Module
	Using an RS-232 Terminal Program

	Special Power-On/Reset Modes
	PowerPmacNoRTLoad Folder
	PowerPmacFactoryReset Folder
	PowerPmacConfigLoad Folder
	PowerPmacFirmwareInstallandConfigLoad Folder
	PowerPmacIp Folder

	Power PMAC Commands
	On-Line (Immediate) Commands
	Types of On-Line Commands
	Thread-Specific On-Line Commands
	Motor-Specific On-Line Commands
	Coordinate-System-Specific On-Line Commands
	Global Commands
	Multiple-Variable Query and Setting Commands

	Buffered Program Commands
	Power PMAC Processing of Commands
	Comments
	Command Acknowledgement
	Data Response
	Echo Mode in Data Response

	Error Reporting for Commands

	Power PMAC System Configuration
	Processors (CPUs)
	Power PC
	ARM
	X86

	Memory
	Active Memory (RAM)
	Non-Volatile Memory (Flash)
	NOR flash
	NAND flash

	Use of Memory in Power PMAC Applications
	Downloading the Project to Active Memory
	Saving the Project to Flash Memory
	Resetting the Power PMAC
	Re-Initializing the Power PMAC

	Physical Configuration Status Reporting
	General Configuration
	Interface ICs Present
	Interface IC Addresses
	Interface IC Configuration Information
	Change in Configuration

	Power PMAC System Clock Source
	CPU Self Clocking
	Default Clock Source
	IC Clock Generation Facilities
	EtherCAT Network Distributed Clocks
	Shift Mode Selection
	Bus Shift Mode
	Master Shift Mode

	Distribution of Clock Signals
	Re-Initialization Clock Actions
	Normal Reset Clock Actions
	Changing the Clock Source from Default

	Setting System Clock Frequencies
	Phase and Servo-Clock Hardware Tasks
	Phase-Clock Software Tasks
	Servo-Clock Software Tasks
	Real-Time Interrupt Software Tasks
	Phase and Servo Hardware and Software Synchronization
	Strobing and Latching Feedback Data
	Phase and Servo Software Execution
	Transmission of Command Data

	Background Tasks
	Multi-Tasking Example
	Multiple-Core Task Assignments
	Using the IDE to Set Phase and Servo Clock Frequencies
	Setting Phase and Servo Clock Frequencies in PMAC2-Style ICs
	Gaten[i].PwmPeriod: MaxPhase Clock Frequency Control
	Gaten[i].PhaseClockDiv: Phase Clock Frequency Control
	Gaten[i].ServoClockDiv: Servo Clock Frequency Control

	Setting Phase and Servo Clock Frequencies in PMAC3-Style ICs
	Gate3[i].PhaseFreq: Phase Clock Frequency Control
	Gate3[i].ServoClockDiv: Servo Clock Frequency Control

	Clock-Related Software Settings
	Sys.PhaseCycleExt: Phase Cycle Extension
	Sys.PhaseOverServoPeriod: Ratio of Phase to Servo Period
	Sys.ServoPeriod: Servo Update Time Parameter
	Motor[x].Stime: Motor Servo-Loop Closure Extension
	Sys.RtIntPeriod: Real-Time Interrupt Period
	Sys.MotorsPerRtInt: Number of Motors Checked per RTI

	Setting the Phase and Servo Clock Period in the CPU

	Diagnosing Issues with Clock Settings
	Missing Clock Signals
	Task Priority Duty Cycles
	Phase Task Statistics
	Servo Task Statistics
	Real-Time Interrupt Task Statistics
	Background Task Statistics

	Interrupt Response Latency

	Setting Up the MACRO Ring
	MACRO Ring Overview
	Power PMAC MACRO Interfaces
	ACC-5E MACRO Interface for UMAC
	ACC-5E3 MACRO Interface for UMAC
	ACC-5EP3 MACRO Interface for Etherlite
	MACRO Interface for Power Brick

	Configuring Master and Slave Devices
	PMAC2-Style MACRO IC
	Synchronizing Master IC
	Non-Synchronizing Master IC
	Slave IC
	Element Status Bits

	PMAC3-Style MACRO IC
	Synchronizing Master IC
	Non-Synchronizing Master IC
	Slave IC
	Element Status Bits

	Setting the Ring Frequency
	PMAC2-Style MACRO IC
	PMAC3-Style MACRO IC
	Extending the Phase Software Update

	Enabling MACRO Nodes
	Node Allocation
	Typical Mapping of MACRO Nodes to Motors
	Enabling Nodes in a PMAC2-Style MACRO IC
	Enabling Nodes in a PMAC3-Style MACRO IC

	Ring Check Function
	Ring Check Parameters

	MACRO Node Register Organization
	Standard Use of Registers in a Servo Node
	Data Elements in a PMAC2-Style MACRO IC
	Data Elements in a PMAC3-Style MACRO IC

	Processing Position Feedback from the MACRO Ring
	Encoder Table Entry Method: EncTable[n].type
	Encoder Table Entry Source Address: EncTable[n].pEnc
	Intermediate Processing: EncTable[n].index1, index2
	Change Limiting: EncTable[n].index3, MaxDelta
	Velocity Limiting
	Acceleration Limiting
	Numerical Integration
	Output Scale Factor

	Setting Up Motor Addressing Elements
	Command Output Address
	Position Feedback Address
	Absolute Position Feedback Address and Format
	Interface Type
	Input Flag Addresses
	Input Flag Bits
	Output Flag Addresses
	Output Flag Bits
	Commutation Addresses
	Commutation Position Address and Processing
	Current Feedback Address and Processing

	Setting Up a Motor as a Network Slave
	Command Modes
	Coordinating Power PMAC Motor Setup
	Motor Activation and Mode
	MACRO Ring Addresses
	Encoder Conversion Table Setup for Position Feedback
	Position Command Setup
	Velocity Command Setup
	Torque/Force Command Setup
	Phase Current (“Sinewave”) Command Setup
	Phase Voltage (“PWM”) Command Setup

	Network-Slave Power PMAC Motor Setup
	Establishing Network-Slave Functionality
	Network-Slave Motor Machine Interface Functionality
	Processing of Position Feedback
	Commutation and Current Loop

	Setting Up Feedback and Master Position Sensors
	Setting Up Digital Quadrature Encoders
	Signal Format
	Hardware Setup
	PMAC2-Style Interfaces
	PMAC3-Style Interfaces
	Encoder-Loss Detection Circuitry
	Power Supply and Isolation
	Isolated Encoder Signals
	Simulated Encoder Signals

	Wiring Techniques

	Hardware-Control Parameter Setup
	Encoder Sample Clock Frequency
	PMAC2-Style Servo IC SCLK Frequency Control
	PMAC3-Style Interface IC SCLK Frequency Control

	Encoder Decode Control: Gaten[i].Chan[j].EncCtrl

	Using the Resulting Position Information
	Commutation Phase Position
	Servo Feedback or Master Position
	PMAC2 ASIC-Based Interface
	PMAC3-ASIC-Based Interface

	Setting Up Digital Hall Sensors
	Signal Format
	Hardware Setup
	Hardware-Control Parameter Setup
	Hall Sensor Demux Control: Gaten[i].Chan[j].IndexGateState
	Encoder Decode Control: Gaten[i].Chan[j].EncCtrl

	Using the Resulting Position Information
	Position from the U, V, and W Inputs
	Position from the A, B, and C Inputs

	Setting Up Serial Encoders
	Signal Format
	Hardware Setup
	Hardware-Control Parameter Setup
	ASIC-Based ACC-24E3, Power Brick, Power Clipper, CK3M
	Multi-Channel Saved Setup Element
	Single-Channel Saved Setup Element

	FPGA-Based ACC-84E, ACC-84B, ACC-84S
	Multi-Channel Saved Setup Element
	Single-Channel Saved Setup Element

	Using the Resulting Position Information
	Ongoing Commutation Phase Position
	PMAC3 ASIC-Based Interface
	ACC-84E FPGA-Based Interface

	Power-On Commutation Phase Position
	PMAC3 ASIC-Based Interface
	ACC-84E FPGA-Based Interface

	Ongoing Servo Position
	PMAC3 ASIC-Based Interface
	ACC-84E FPGA-Based Interface

	Power-On Servo Position
	PMAC3 ASIC-Based Interface
	ACC-84E FPGA-Based Interface

	Setting Up Analog Sinusoidal Encoders
	Signal Format
	Sinusoidal Encoder Interfaces
	Comparison of Interface Type Performance
	First Interface Type: ACC-51E PMAC2-Style Interpolator
	Second Interface Type: ACC-24E3, Power Brick Standard Interpolator
	Third Interface Type: ACC-24E3, Power Brick Auto-Correcting Interpolator

	Hardware Setup
	Interface Circuitry
	Wiring Techniques

	Hardware Control Parameter Setup
	ACC-51E PMAC2-Style Interface
	Encoder Sample Clock Frequency: Gate1[i].HardwareClockCtrl
	Encoder Decode Control: Gate1[i].Chan[j].EncCtrl

	PMAC3 Standard ASIC-Based Interface
	Encoder Sample Clock Frequency: Gate3[i].EncClockDiv
	A/D-Converter Clock Frequency: Gate3[i].AdcEncClockDiv
	Latch/Strobe Delay: Gate3[i].EncLatchDelay
	A/D-Converter Number of Header Bits: Gate3[i].AdcEncHeaderBits
	A/D-Converter Signed/Unsigned Format: Gate3[i].AdcEncUtoS
	Encoder Decode Control: Gate3[i].Chan[j].EncCtrl
	ASIC Bias Compensation: Gate3[i].Chan[j].AdcOffset[k]
	Arctangent Extension: Gate3[i].Chan[j].AtanEna

	PMAC3 Auto-Correcting FPGA & ASIC-Based Interface
	Encoder Sample Clock Frequency: Gate3[i].EncClockDiv
	A/D-Converter Clock Frequency: Gate3[i].AdcEncClockDiv
	Latch/Strobe Delay: Gate3[i].EncLatchDelay
	Operational Mode Control: Gate3[i].AdcEncStrobe
	A/D-Converter Number of Header Bits: Gate3[i].AdcEncHeaderBits
	A/D-Converter Signed/Unsigned Format: Gate3[i].AdcEncUtoS
	Reading the Data as a Modified Sinusoidal Encoder
	Reading the Data as a Serial-Interface Position Value

	Using the Resulting Position Information
	Ongoing Commutation Phase Position
	ACC-51E PMAC2-Style Interface
	PMAC3 Standard ASIC-Based Interface
	PMAC3 Auto-Correcting FPGA & ASIC-Based Interface

	Ongoing Servo Position
	ACC-51E PMAC2-Style Interface
	PMAC3 Standard ASIC-Based Interface
	PMAC3 Auto-Correcting FPGA & ASIC-Based Interface

	Setting Up Resolvers
	Signal Format
	Hardware Setup
	Hardware-Control Parameter Setup
	PMAC3 ASIC-Based Interface
	Excitation Signal Control: Gate3[i].ResolverCtrl
	Direction Sense Control: Gate3[i].Chan[j].EncCtrl

	ACC-58E PMAC2-Style Interface
	Excitation Phase Shift: Gate1[i].PartData[2]
	Excitation Magnitude: Gate1[i].PartData[1]
	Excitation Frequency: Gate1[i].PartData[3]
	Direction Sense Control: Gate1[i].Chan[j].EncCtrl

	Using the Resulting Position Information
	Ongoing Commutation Phase Position
	PMAC3 ASIC-Based Interface
	ACC-58E PMAC2-Style Interface

	Power-On Commutation Phase Position
	PMAC3 ASIC-Based Interface
	ACC-58E PMAC2-Style Interface

	Ongoing Servo Position
	PMAC3 ASIC-Based Interface
	ACC-58E PMAC2-Style Interface
	Filtering in the Conversion Table

	Power-On Servo Position
	PMAC3 ASIC-Based Interface
	PMAC3 ASIC-Based Interface

	Setting Up MLDTs
	Signal Format
	Hardware Setup
	Hardware-Control Parameter Setup
	PMAC3-Style Interface
	PFM Format Select: Gate3[i].Chan[j].OutputMode
	MLDT Interface Select: Gate3[i].Chan[j].TimerMode
	Output Pulse Width: Gate3[i].Chan[j].PfmWidth

	PMAC2-Style Interface
	PFM Format Select: Gate1[i].Chan[j].OutputMode
	Pulse Output Frequency: Gate1[i].Chan[j].Pfm
	Pulse Width: Gate1[i].PwmDeadTime
	PFM Format Select: Gate1[i].Chan[j].OutputMode
	MLDT Feedback Select: Gate1[i].Chan[j].EncCtrl

	Using the Resulting Position Information
	Ongoing Servo Position
	PMAC3-Style Interface
	PMAC2-Style Interface

	Power-On Servo Position
	PMAC3-Style Interface
	PMAC2-Style Interface

	Setting Up Parallel Data Position Inputs
	Signal Format
	Hardware Setup
	Hardware Control Parameter Setup
	Using the Resulting Position Information
	Ongoing Servo Position
	Power-On Servo Position
	Ongoing Commutation Phase Position
	Power-On Commutation Phase Position

	Setting Up Analog Data Position Inputs
	Signal Format
	ACC-28E
	ACC-36E, ACC-59E
	ACC-59E3
	Power Brick Optional ADCs

	Hardware Setup
	ACC-28E
	ACC-36E, ACC-59E
	ACC-59E3
	Power Brick Optional ADCs
	Power Clipper Optional ADCs

	Hardware Control Parameter Setup
	ACC-28E
	De-Multiplexing ACC-36E and ACC-59E ADCs
	ACC-59E3
	Power Brick Optional ADCs
	Power Clipper Optional ADCs

	Using the Resulting Position Information
	Ongoing Servo Position
	ACC-28E
	ACC-36E, ACC-59E
	ACC-59E3
	Power Brick Optional ADCs
	Power Clipper Optional ADCs

	Power-On Servo Position
	ACC-28E
	ACC-36E, ACC-59E
	ACC-59E3
	Power Brick Optional ADCs
	Power Clipper Optional ADCs

	Setting Up the Encoder Conversion Table
	What the Encoder Conversion Table Does
	Conversion Table Execution
	Conversion Table Structure
	Conversion Method Overview
	IDE Table Configuration Window
	Scaling of Entry Results
	Using Conversion Table Results
	Default Conversion Table Setup
	Conversion Method Details
	Type 0: End of (Active) Table
	Type 1: Single-Register Read
	Address of Single Register: pEnc
	Secondary Address: pEnc1
	Data-Shifting Operations: index1 and index2 (index2 < 32)
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Filter Execution
	Recommended Design Procedure
	Example

	Change-Limiting Operations: index3 and MaxDelta
	Numerical-Integration Operations: index4 and EncBias
	Output Scaling: ScaleFactor

	Type 2: Double-Register Read
	Addresses of the Registers: pEnc and pEnc1
	Data-Shifting Operations: index1 and index2 (index2 < 32)
	Change-Limiting Operations: index3 and MaxDelta
	Numerical-Integration Operations: index4 and EncBias
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Output Scaling: ScaleFactor

	Type 3: Software 1/T Encoder Extension
	Addresses of the Counter and Timer Registers: pEnc and pEnc1
	Output Scaling: ScaleFactor

	Type 4: Software Arctangent Sinusoidal Encoder Extension
	Addresses of the IC Channel Registers: pEnc and pEnc1
	Hardware IC Type: index5
	Image of Encoder Decode Control: index3
	Offset Compensation Terms: SinBias and CosBias
	Magnitude Mismatch Compensation Term: CoverSerror
	Phase Error Compensation Term: TanHalfPhi
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Output Scaling: ScaleFactor

	Type 5: Four-Byte Read
	Addresses of the Registers: pEnc and pEnc1
	Data-Shifting Operations: index1 and index2 (index2 < 32)
	Change-Limiting Operations: index3 and MaxDelta
	Numerical-Integration Operations: index4 and EncBias
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Output Scaling: ScaleFactor

	Type 6: Resolver Arctangent Direct Conversion
	Addresses of the Output and Input Registers: pEnc and pEnc1
	Offset Compensation Terms: SinBias and CosBias
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Output Scaling: ScaleFactor

	Type 7: Extended Hardware Arctangent Interpolation
	Address of Primary Register: pEnc
	Address of Secondary Register: pEnc1
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Output Scaling: ScaleFactor

	Types 8 and 9: Addition and Subtraction
	Addresses of the Registers: pEnc and pEnc1
	Data-Shifting Operations: index1 and index2 (index2 < 32)
	Change-Limiting Operations: index3 and MaxDelta
	Numerical-Integration Operations: index4 and PrevDelta
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Output Scaling: ScaleFactor

	Type 10: Triggered Time Base
	Address of the Position Register: pEnc
	Address of the Trigger Register: pEnc1
	“Arming” Control: index1
	Output Scaling: ScaleFactor

	Type 11: Floating-Point Register Read
	Format of the Source Register: index6
	Address of the Source Register: pEnc
	Pre-Scaling Operation: index5
	Data Shifting Operations: index1 and index2 (index2 < 32)
	Change-Limiting Operations: index3 and MaxDelta
	Numerical-Integration Operations: index4
	Output Scaling: ScaleFactor

	Type 12: Single Register Read with Error Check
	Address of Single Position Register: pEnc
	Address of Error Register: pEnc1
	Error Register Mask: index6
	Data-Shifting Operations: index1 and index2 (index2 < 32)
	Tracking-Filter Operations: index1, index2 (index2 > 31), index4
	Change-Limiting Operations: index3 and MaxDelta
	Numerical-Integration Operations: index4 and EncBias
	Output Scaling: ScaleFactor

	Basic Motor Setup
	IDE Interactive Setup
	Parameters to Set Up Basic Motor Operation
	Initial Setup Parameters
	Activating the Motor: Motor[x].ServoCtrl
	Special Considerations for Gantry Follower Mode

	Activating PMAC Motor Commutation: Motor[x].PhaseCtrl

	Motor Address Setup Parameters
	Command Output Address: Motor[x].pDac
	Motor vs. Load Feedback
	Outer (Position) Loop Feedback: Motor[x].pEnc, PosSf
	Inner (Velocity) Loop Feedback: Motor[x].pEnc2, Pos2Sf
	Changing Feedback on the Fly
	Feedback Source and Type: Motor[x].EncType
	Encoder Status Address: Motor[x].pEncStatus
	Position-Capture Flag Address: Motor[x].pCaptFlag, CaptFlagBit
	Limit Flag Address: Motor[x].pLimits, LimitBits
	Amplifier Fault Flag Address: Motor[x].pAmpFault, AmpFaultBit
	Amplifier Enable Flag Address: Motor[x].pAmpEnable, AmpEnableBit
	Absolute Power-On Position Address: Motor[x].pAbsPos

	Is Power PMAC Commutating or Closing the Current Loop for This Motor?
	Setting Up Power PMAC for Velocity or Torque Control
	Hardware Setup
	ASIC Programmable Signal Setup
	PMAC2-Style IC Signal Setup for True-DAC Analog Output
	DAC Clock Frequency Control: Gate1[i].HardwareClockCtrl
	DAC Strobe Signal: Gate1[i].DacStrobe
	Output Signal Mode Control: Gate1[i].Chan[j].OutputMode
	Output Inversion Control: Gate1[i].Chan[j].OutputPol

	PMAC3-Style IC Signal Setup for True-DAC Analog Output
	DAC Clock Frequency Control: Gate3[i].DacClockDiv
	DAC Strobe Signal: Gate3[i].DacStrobe
	Output Signal Mode Control: Gate3[i].Chan[j].OutputMode
	Output Inversion Control: Gate3[i].Chan[j].OutputPol

	PMAC3-Style IC Signal Setup for Filtered-PWM Analog Output
	Motor Parameter Setup
	Phase Task Control: Motor[x].PhaseCtrl
	Command Output Address: Motor[x].pDac

	Setting Up Power PMAC for Pulse-and-Direction Control
	Hardware Setup
	Signal Timing
	Power PMAC Parameter Setup
	Hardware Setup for PMAC2-Style ICs
	PFM Clock Frequency: Gate1[i].HardwareClockCtrl
	PFM Pulse Width: Gate1[i].PwmDeadTime
	Output Mode Control: Gate1[i].Chan[j].OutputMode
	Output Inversion Control: Gate1[i].Chan[j].OutputPol
	PFM Direction Inversion Control: Gate1[i].Chan[j].PfmDirPol
	Encoder Decode Control: Gate1[i].Chan[j].EncCtrl

	Hardware Setup for PMAC3-Style ICs
	PFM Clock Frequency: Gate3[i].PfmClockDiv
	PFM Pulse Width: Gate3[i].Chan[j].PfmWidth
	Output Mode Control: Gate3[i].Chan[j].OutputMode
	Data Packing Control: Gate3[i].Chan[j].PackOutData
	Output Inversion Control: Gate3[i].Chan[j].OutputPol
	PFM Direction Inversion Control: Gate3[i].Chan[j].PfmDirPol
	Encoder Decode Control: Gate3[i].Chan[j].EncCtrl, Gate3[i].Chan[j].TimerMode

	Parameters to Set Up Basic Motor Operation
	Phase Task Control: Motor[x].PhaseCtrl
	Command Output Address: Motor[x].pDac
	Encoder Conversion Table Processing: EncTable[n]
	Feedback Addresses: Motor[x].pEnc, Motor[x].pEnc2

	Parameters to Set Up Motor Servo Gains
	Deadband

	Setting Up Power PMAC for Position-Output Control
	Power PMAC Parameter Setup
	Phase Task Control: Motor[x].PhaseCtrl
	Control Mode: Motor[x].Ctrl
	Command Output Address: Motor[x].pDac
	Position Feedback Address: Motor[x].pEnc
	Auxiliary Command Output Addresses
	Position Compensation Table Functionality

	Setting up Power PMAC-Based Commutation and/or Current Loop
	Selection of Phase Update Frequency
	Beginning Setup of Commutation
	Commutation Enable: Motor[x].PhaseCtrl
	“Unpacked” Commutation I/O
	“Packed” Commutation I/O

	Commutation Position Feedback Source: Motor[x].pPhaseEnc
	Commutation Position Source Processing: Motor[x].PhaseEncRightShift, Motor[x].PhaseEncLeftShift
	Commutation Position Scale Factor: Motor[x].PhasePosSf
	Current Loop in Power PMAC or Not: Motor[x].pAdc

	Setting Up for Sine-Wave Output Control
	Hardware Setup
	PMAC2-Style IC Interface
	PMAC2-Style Servo IC Hardware Clock Frequency Control: Gate1[i].HardwareClockCtrl
	PMAC2-Style Servo IC DAC Strobe Word: Gate1[i].DacStrobe
	PMAC2-Style Servo IC Channel Output Mode: Gate1[i].Chan[j].OutputMode
	PMAC2-Style Servo IC Channel Encoder Decode: Gate1[i].Chan[j].EncCtrl

	PMAC3-Style IC Interface
	PMAC3-Style IC DAC Clock Frequency Control: Gate3[i].DacClockDiv
	PMAC3-Style IC DAC Strobe Word: Gate3[i].DacStrobe
	PMAC3-Style IC Channel Output Mode: Gate3[i].Chan[j].OutputMode

	Motor Software Setup
	Command Output Address: Motor[x].pDac
	Output Data Shift: Motor[x].DacShift
	Commutation Output Scale Factor: Motor[x].PwmSf
	Commutation Phase Angle: Motor[x].PhaseOffset
	Intermittent Current Limit: Motor[x].MaxDac
	Continuous Current Limit: Motor[x].I2tSet
	Integrated Current Limit: Motor[x].I2tTrip

	Setting Up For Direct PWM Control
	Introduction
	Digital Current Loop Principle of Operation
	Frames of Reference
	Working in the Field Frame
	Analog Loops in the Stator Frame
	Digital Loops in the Field Frame

	Hardware Setup
	PMAC2-Style IC Interface
	PMAC2-Style Servo IC PWM Frequency Control: Gate1[i].PwmPeriod
	PMAC2-Style Servo IC Hardware Clock Frequency Control: Gate1[i].HardwareClockCtrl
	PMAC2-Style Servo IC PWM Deadtime Control: Gate1[i].PwmDeadTime
	PMAC2-Style Servo IC ADC Strobe Word: Gate1[i].AdcStrobe
	PMAC2-Style Servo IC Channel Output Mode: Gate1[i].Chan[j].OutputMode

	PMAC3-Style IC Interface
	PMAC3-Style IC Phase Clock Frequency Control: Gate3[i].PhaseFreq
	PMAC3-Style IC PWM Frequency Control: Gate3[i].Chan[j].PwmFreqMult
	PMAC3-Style IC PWM Deadtime Control: Gate3[i].Chan[j].PwmDeadTime
	PMAC3-Style IC Amplifier ADC Clock Frequency Control: Gate3[i].AdcAmpClockDiv
	PMAC3-Style IC Amplifier ADC Strobe Word: Gate3[i].AdcAmpStrobe
	PMAC3-Style IC Amplifier ADC Header Processing: Gate3[i].AdcAmpHeaderBits

	Motor Software Setup
	Command Output Address: Motor[x].pDac
	Current Feedback Address: Motor[x].pAdc
	Current Feedback Mask Word: Motor[x].AdcMask
	PWM Output Scale Factor: Motor[x].PwmSf
	Instantaneous Current Limit: Motor[x].MaxDac
	Continuous Current Limit: Motor[x].I2tSet
	Integrated Current Limit: Motor[x].I2tTrip
	Commutation Phase Angle: Motor[x].PhaseOffset
	Current Loop Gains: Motor[x].IpfGain, IpbGain, IiGain
	Setting the Current Loop Gains
	Example

	Current Loop Offset Compensation: Motor[x].IaBias, IbBias
	Current Loop Offset Compensation Auto-Detection: Motor[x].CurrentNullPeriod
	PWM Deadband Compensation: Motor[x].PwmDbComp, PwmDbI

	Voltage-Mode Direct-PWM Control
	Direct PWM Control of Brush Motors
	Motor Settings Common with Brushless Motors
	Motor Settings Special for Brush Motors
	Special Instructions for Tuning Current Loop

	Direct Microstepping with Direct PWM Control
	Principle of Operation
	Speed Limitations
	Hardware Setup
	Encoder Conversion Table Entry Setup
	Simulated Servo Loop Setup
	Commutation and Current-Loop Setup
	Limiting Parameters

	Establishing a Phase Reference (Synchronous Motors)
	“Stepper Motor” Phasing Search
	“Four Guess” Phasing Search
	Absolute Phasing Reads
	Hall Commutation Sensors
	Hall Sensor Address
	Hall Sensor Data Format
	Hall Sensor Scale Factor
	Hall Sensor Offset
	Invalid Hall Sensor Read

	Absolute Encoders
	Absolute Encoder Address
	Absolute Encoder Data Format
	Absolute Encoder Scaling
	Absolute Encoder Offset

	Resolvers
	Resolver Address
	Resolver Data Format
	Resolver Scaling
	Resolver Offset

	Correcting an Approximate Phase Reference

	Finishing Setting Up Power PMAC Commutation (Direct PWM or Sine Wave), Asynchronous (Induction) Motors
	Calculating Motor[x].DtOverRotorTc Slip Constant
	Calculating from Name Plate Data
	Example

	Calculating from Rotor Time Constant
	Example

	Experimentally Optimizing Slip Constant

	Setting Motor[x].IdCmd Magnetization Current

	Setting Up the Servo Loop
	Servo Update Rate
	Choosing an Update Rate
	Reason to Increase Rate
	Reason to Decrease Rate

	Ramifications of Changing the Rate
	Setting the Servo Clock Frequency/Period
	Extending the Servo Update Period for a Motor
	Closing the Servo Loop Under the Phase Interrupt for a Motor
	Specifying Position Feedback

	Types of Amplifiers
	Amplifiers for Which Servo Produces Position Command
	Amplifiers for Which Servo Produces Velocity Command
	Analog-Input Velocity-Mode Amplifiers
	Pulse-and-Direction-Input Amplifiers
	Hydraulic-Valve Amplifiers

	Amplifiers for Which Servo Produces Torque/Force Command
	Analog-Input Torque-Mode Amplifiers
	Sinusoidal-Input Amplifiers
	Direct-PWM Power-Block Amplifiers

	Selecting a Servo Algorithm
	Position Command Output Algorithm
	Position Output Values
	Using Actual Position
	Synchronizing Desired and Actual Position Reporting

	Auxiliary Command Outputs
	Delaying the Auxiliary Outputs

	Basic PID Algorithm
	Feedback Terms
	Proportional Gain Term
	Velocity Feedback (Derivative) Gain Terms
	Integral Gain Term

	Feedforward Filter
	Velocity Feedforward Gain Terms
	Acceleration Feedforward Gain Term

	Auxiliary Command Output

	Standard Servo Algorithm
	Polynomial Filters
	Polynomial Order Control
	How Polynomial Filters Work
	The “A” Polynomial Filter
	The “B” Polynomial Filter
	The “C” Polynomial Filter
	The “D” Polynomial Filter
	The “E” Polynomial Filter
	The “F” Polynomial Filter
	Calculating Filter Coefficients Manually
	Calculating Notch Filter Coefficients
	Calculating First-Order Low-Pass Filter Coefficients
	Calculating Second-Order Low-Pass Filter Coefficients

	Integration Modes
	When Integration Active
	Endpoint Clearing of Integrator

	Friction Feedforward
	Static Friction Feedforward
	Acceleration Feedback
	Input Deadband Compensation
	Output Hysteretic Deadband

	“Legacy” Servo Algorithm
	Algorithm Structure
	Polynomial Filters
	Conversion Details

	Adaptive Servo Control
	Selecting the Adaptive Control Algorithm
	Establishing the Reference System
	Software Setup for Adaptive Control
	Gain Scheduled Adaptive Control
	Executing the Adaptive Control Algorithm

	Cross-Coupled Gantry Control
	Selecting the Cross-Coupled Control Algorithm
	Enabling the Gantry with Cross-Coupling
	Tuning the Non-Coupled Terms
	Tuning the Cross-Coupled Terms

	Custom User Servo Algorithms
	Tuning the Servo Loop in the IDE
	Automatic Tuning
	Sample Interactive Tuning Process

	Cascading Servo Loops
	Strategies for Coupling the Loops
	To Integrate Outer Loop Command or Not
	Inner Loop General Setup
	Outer Loop General Setup
	Joining the Loops through Position Following Function
	Processing the Outer-Loop Command
	Using the Outer-Loop Command as Inner-Loop Master Position
	Inner-Loop Master Position Scale Factor
	Inner-Loop Following Enable and Mode

	Joining the Loops through Compensation Table
	Motor Numbering Considerations
	Setting Up the Compensation Table

	Joining the Loops Directly
	Tuning the Outer Loop
	Programming the Outer-Loop Motor
	Setup Examples
	Conversion Table Processing of Analog Feedback
	Outer-Loop Motor Setup
	Coordinate System Setup
	Coupling the Loops with Position Following
	Coupling the Loops with Compensation Table
	Coupling the Loops Directly

	Changing the Operational Mode of Control
	Changing Operational Mode Using Position Following
	Changing Operational Mode Using Compensation Table
	Changing Operational Mode Using Direct Linkage

	Trajectory Pre-Filter
	Typical Uses of the Pre-Filter
	Overview
	Saved Setup Elements
	Enabling and Sample Period
	Filter Coefficients

	Filter DC Gain
	Spliner Reconstruction
	Automated Filter Setup
	Manual Filter Calculations
	Converting In-Line Filters to Difference Path
	Sample Filter Design: Butterworth Filter
	Backward-Difference Digital Conversion
	Bi-Linear Digital Conversion
	Conversion to Difference-Path Format

	Setting Up Compensation Tables
	Table Data Structure
	Reserving Memory for the Tables
	Defining the Data Buffer Size
	Dynamic Allocation of Buffer Memory to Tables

	Defining the Table Structure
	Dimension Indices
	Number of Active Dimensions: Nx[n] > 0
	One-Dimensional Tables
	Two-Dimensional Tables
	Three-Dimensional Tables
	“Zero-Dimensional” Tables

	Source Motors for Each Dimension: Source[n]
	Source Position Used for Each Dimension: SourceCtrl
	Number of Data Zones in Each Active Dimension: Nx[n]
	Starting Source Location for Each Active Dimension: X0[n]
	Source Span for Each Active Dimension: Dx[n]
	Example

	Interpolation-Order and Boundary-Mode Control: Ctrl
	Interpolation Order
	Boundary Mode
	Maintain-Last-Correction Mode
	Rollover Mode
	Mirror Mode

	Assembling the Value of the Ctrl Element
	Examples

	Target Register Addresses: Target[q]
	Position-Correction Compensation Tables
	Cam-Command Compensation Tables
	Torque Compensation Tables
	Backlash Compensation Tables

	Target Output Scale Factors: Sf[q]
	Overwriting vs. Additive Outputs: OutCtrl

	Entering the Table Data Points
	Entering Table Data Points in C

	Enabling Compensation Tables
	Action of the Compensation Tables
	Use of “0D” Compensation Tables
	Iterative Learning Control for Torque Compensation Tables
	Sample Compensation Tables
	1D “Leadscrew Compensation” Table
	2D “Planar” Position Compensation Table

	Setting Up Electronic Cam Tables
	Uses of Electronic Cam Tables
	Position Commands
	Torque Offset Commands
	Direct Output Commands

	Comparison to External Time Base Techniques
	Table Design Techniques
	Table Data Structure
	Reserving Memory for the Tables
	Defining the Data Buffer Size
	Dynamic Allocation of Buffer Memory to Tables

	Defining the Table Structure
	Source Motor Number: Source
	Number of Data Zones: Nx
	Starting Source Location: X0, SlewX0
	Source Span: Dx
	Target Motor Number: Target
	Target Position Scale Factor: PosSf
	Target Position Offset Slew: SlewPosOffset
	Target Torque Offset Enable Control: DacEnable
	Target Torque Scale Factor: DacSf
	Output Address: pOut
	Buffered Output Address: pOutBuf
	Output Shifting:OutLeftShift
	Output Masking: OutBits

	Entering the Table Data Points
	Returning vs. Non-Returning Position Tables
	Returning Position Tables
	Non-Returning Position Tables

	Enabling the Cam Tables
	Action of the Cam Tables
	Adjusting of the Table Action
	Adjusting on Source Motor Position
	Adjusting on Target Motor Position
	Phasing the Cam Cycle on a Source Motor Trigger
	Using the Position Capture Monitoring Function
	Sample Phase Adjustment Algorithm
	Alternative Strategies for Non-Returning Cams

	Rollover of the Table
	Position Output at Rollover
	Torque Offset Output at Rollover
	General Purpose Outputs at Rollover

	Iterative Learning Control
	Combining Cam Motion with Other Motion
	Reporting Motor Position with Cam Table Motion
	Disabling the Cam Tables
	Switching Between Cam Tables

	Making Your Power PMAC Application Safe
	Watchdog Timer
	Soft Watchdog Trips
	Soft Trip from Background Failure
	Soft Trip from Foreground Failure

	Hard Watchdog Trips

	Global Abort-All Input
	Software Setup
	Action on Trip

	Voltage Interlock Circuits
	Following Error Limits
	Fatal Following Error Limit
	Warning Following Error Limit

	Position (Overtravel) Limits
	Software Overtravel Limit Parameters
	Checks at Move Calculation Time
	Jogging Moves
	Homing Search Moves
	Motion Program Moves: Stop or Saturate
	Non-Segmented Program Moves
	Segmented Program Moves

	Checks at Move Execution Time
	Position Following (Electronic Gearing)
	Gantry Leader/Follower Operation
	Difference Between Calculation and Execution Limits
	Open-Loop Move Action

	Hardware Overtravel Limit Switches
	Limit Switch Interface Circuitry
	Specifying the Limit Inputs
	Standard PMAC Configuration
	Single Limit Input Configuration
	Reverse-Order Limit Input Configuration
	Limit Inputs in Separate Registers Configuration
	Alternate Polarity of Limit Inputs
	Optional Software Filtering of Inputs

	Action on Closed-Loop Trip
	Controlled Stop
	Disabled Stop

	Action on Open-Loop Trip
	Controlled Stop
	Disabled Stop

	Software Motor Interlocks
	Encoder Loss Detection
	Signal Loss Detection Circuits
	Digital Quadrature Encoders
	Analog Sinusoidal Encoders and Resolvers
	Serial Encoders

	Software Setup for Loss Detection
	Digital Quadrature Encoders
	Analog Sinusoidal Encoders and Resolvers
	Serial Encoders
	Setting the Encoder Loss Limit Value
	Action on Encoder-Loss Error

	Auxiliary Fault Detection
	Software Setup for Auxiliary Fault Detection
	Secondary Encoder Loss Detection
	Motor Thermal Fault Detection (Power Brick)
	Setting the Auxiliary Fault Limit Value
	Action on Auxiliary-Fault Error
	Separate Negative Position Limit Detection

	Automatic Brake Control
	Specifying the Brake Control Output
	Specifying the Brake Timing

	Amplifier Enable and Fault Lines
	Amplifier Enable Output Configuration
	Amplifier Fault Input Configuration
	Polarity Control
	Optional Specification of Multiple Scans for Fault
	Action on Fault

	Current Limits
	Intermittent Current Limits
	Time-Integrated Current Limits
	Special Case: Extending the Monitoring Interval
	Comparison to Older PMAC Scaling

	RMS Current Calculations
	AC Waveform RMS Calculations
	Motion Profile RMS Calculations

	Reference Frame Conversions
	Field-Frame Current Commands
	Sinewave Mode Current Output Conversion
	Direct PWM Mode Current Input Conversion

	Torque Control Mode
	Intermittent Current Limit
	Continuous Current Limit
	Integrated Current Limit

	Sinewave Output Mode
	Intermittent Current Limit
	Continuous Current Limit
	Integrated Current Limit

	Direct PWM Output Mode
	Intermittent Current Limit
	Continuous Current Limit
	Integrated Current Limit

	Velocity Limits
	Programmed Vector Velocity Limit
	Programmed Motor Velocity Limit
	Position-Following Velocity Limit

	Acceleration Limits
	Programmed Vector Acceleration Limits
	Programmed Motor Acceleration Limits
	Motor Move Acceleration Command
	Position-Following Acceleration Limit

	Jerk Limits
	Programmed Motor Jerk Limit
	Motor Move Jerk Command

	Commanded Safety Stops
	Abort: Controlled Stop
	Disable: Uncontrolled Stop
	Hybrid Abort/Disable

	Executing Individual Motor Moves
	Jogging Move Control
	Jog Speed Control
	Jog Acceleration Control
	Acceleration Time Control
	Acceleration Rate Control

	Example Jog Move Profile
	Jog Commands
	Indefinite Jog Commands
	Definite Jog Commands
	Absolute Jog Commands
	Relative (Incremental) Jog Commands
	Return Jog Command

	Triggered Jog Commands
	Jog Command Processing

	Triggered Motor Moves
	Types of Triggered Moves
	Trigger Conditions
	Input Triggering
	PMAC2-Style Interface
	PMAC3-Style Interface
	MACRO Interface

	Following-Error Triggering

	Capturing the Position at Trigger
	Hardware Capture
	PMAC2-Style Interface
	PMAC3-Style Interface

	Software Capture
	Timer-Assisted Software Capture
	Specifying This Capture Mode
	Setting Up the ASIC Hardware
	Motor Setup

	Processing the Hardware-Captured Position
	Processing Steps
	Right-Shift Operation
	Left-Shift Operation
	Half-Count-Offset Operation

	PMAC2-Style Interface for Quadrature Encoders
	PMAC2-Style Interface for Sinusoidal Encoders
	PMAC3-Style Interface for Quadrature Encoders
	Not Using Sub-Count Captured Data
	Using Sub-Count Captured Data

	PMAC3-Style Interface for Sinusoidal Encoders
	Using Sub-Count Captured Data
	Not Using Sub-Count Captured Data

	MACRO Interface with Quadrature Encoders
	Extended Servo Feedback
	Non-Extended Servo Feedback

	MACRO Interface with Sinusoidal Encoders

	Processing the Software-Captured Position
	Post-Trigger Move
	Homing-Search Moves
	Home Commands
	Homing Speed Control
	Homing Acceleration Control
	Home Trigger Condition
	Post-Trigger Move
	Example Homing Search Plot
	Failure to Find Trigger
	Monitoring the Move
	Homing Gantry Leader/Follower Motors

	Jog-Until-Trigger Moves
	Jog-Until-Trigger Commands
	Trigger Condition
	Position Capture Method
	Acceleration and Speed Control
	Monitoring the Move

	Program Move-Until-Trigger

	Open-Loop Moves

	Setting Up Coordinate Systems
	What is a Coordinate System?
	Number of Coordinate Systems
	Strategy for Assigning Coordinate Systems
	Fault Sharing

	What is an Axis?
	Single-Motor Axes
	Multiple-Motor Axes
	Special Gantry Leader/Follower Mode

	Phantom Axes

	Axis Definition Statements
	Matching Motor to Axis
	Scaling and Offset
	The Null Definition
	Defining a Motor to Multiple Axes
	Cartesian Axis Sets
	Rotary Axes with Rollover Capability
	The Spindle Axis Definition
	Conversion from Axis to Motor Position
	Conversion from Motor to Axis Positions

	Coordinate-System Kinematic Subroutines
	Creating the Kinematic Program Buffers
	Creating the Forward-Kinematic Program
	Kinematic Motor and Axis Position Variables
	Double-Pass Option
	Distinguishing Motion-Program Calls from Query-Command Calls
	Stopping Program Execution from a Kinematic Routine
	Example
	Iterative Solutions

	Creating the Inverse-Kinematic Program
	Example
	Rotary Axis Rollover

	Inverse-Kinematic Program for PVT Mode, No Segmentation
	Example
	Iterative Solutions

	Implementing Kinematic Calculations in C

	Generalizing the Routines to Multiple Coordinate Systems

	Axis Transformation Matrices
	Transformation Matrix Data Structures
	Using the Matrices
	Initializing a Transformation Matrix
	Propagating Transformations
	Re-Establishing Motor/Axis Relationships

	Examples
	Rescaling Feedrate and Tool Radius

	Segmentation Mode
	Time-Base Control and Override Techniques
	Time-Base Control
	“%” Override Commands
	Effect on Speed and Acceleration
	Commanding from within a Program
	External Time Base Control
	Negative Time Base Values
	Reversal through Motor Trace Buffers
	Comparison to Lookahead Buffer Reversal
	Preventing Unintended Extended Negative Time Base

	Acceleration Limiting with Changing Time Base

	Segmentation Override
	Segmentation Process
	Effect on Acceleration
	Specifying the Override
	Optimizing the Response to Changes
	Examples

	Axis Target Position and Distance-to-Go Reporting
	Setting Up the Target Position Buffer
	Querying the Target Position Data
	On-Line Query Commands
	Buffered Query Commands
	Data Structure Elements

	Path Vector Speed and Angle Reporting
	Enabling the Path Calculations
	Configuring the 2D Path Calculations
	Additionally Configuring the 3D Path Calculations
	Using With Non-Cartesian Systems
	Using the Reported Results
	Using the Vector Path Speed
	Using the Vector Path Distance
	Transferring Through the Encoder Table
	Transferring Directly to Target Motor

	Using the Vector Path Angle(s)
	Transferring Through the Encoder Conversion Table
	Transferring Directly to Target Motor

	Pre-Orienting the Tangent Tool

	Power PMAC Computational Features
	Computational Priorities
	Phase (Commutation) Update
	Servo Update
	Real-Time Interrupt Tasks
	Motion Program Move Planning
	Foreground PLC Programs

	Background Tasks
	Monitoring Processing Time

	Numerical Values
	Internal Formats
	Double-Precision Floating-Point Values
	Single-Precision Floating-Point Values
	Special Floating-Point Representations
	Integer Values
	Receiving Numerical Values
	Examples

	Reporting Numerical Values

	Pre-Defined Data Structures
	Specifying Data Structure Indices

	User Variables
	Direct Access to User Variables
	Array Function Access

	User-Specified Variable Names Through IDE
	Automatically Assigned Declared Variables
	User-Specified Array Names
	Manually Defined Variable Names
	Accessing User Variable Names

	System Global (“P”) Variables
	Coordinate System Global (“Q”) Variables
	User Pointer (“M”) Variables
	Pre-Defined Setup Pointer (“I”) Variables
	Local (“L”) Variables
	Return/Stack (“R”) Variables
	Coordinate System Kinematic Axis (“C”) Variables
	Non-Stack Local (“D”) Variables
	User Shared Memory Buffer Variables
	Buffer Data Structure Elements
	M-Variable Access
	Access from C Routines

	Operators
	Arithmetic Operators
	Modulo Operator

	Bit-Wise Operators
	Standard Assignment Operators
	Synchronous Assignment Operators

	Functions
	Scalar Functions
	Vector Functions
	Matrix Functions

	Expressions
	The {data} Syntax
	Standard Variable Value Assignment
	Synchronous Variable Value Assignment
	Variables That Can Be Assigned Synchronously
	Why Needed in Motion Programs
	Why Needed in PLC Programs
	The Synchronous Assignment Buffer
	Execution Details

	Comparators
	Conditions
	Explicit Comparisons
	Compound Conditions
	Condition Negation

	Using General Purpose Digital I/O with Power PMAC
	Note on Using “Dedicated” I/O for General Purpose Use
	Digital I/O Hardware and Configuration
	UMAC Digital I/O Boards
	Compact UMAC ACC-11C Digital I/O
	Addressing

	UMAC ACC-5E Digital I/O
	Addressing

	UMAC ACC-5E3 Digital I/O
	Direction Selection
	Addressing

	Power Brick Digital I/O
	Power Clipper Digital I/O
	ACC-34 Family Multiplexed Digital I/O

	Software Configuration for Digital I/O Use
	UMAC Digital I/O Boards
	Direction Control
	Initial Output Values
	Inversion Control
	Read Control
	Latch Control

	Compact UMAC ACC-11C Digital I/O
	UMAC ACC-5E Digital I/O
	General-Purpose I/O Use
	Buffer Direction Control
	I/O Point Direction Control
	I/O Point Polarity Control

	UMAC ACC-5E3 Digital I/O
	Direction Control
	Polarity Control

	Power Brick Digital I/O
	Direction Control
	Polarity Control
	Input Mode Control

	Power Clipper Digital I/O
	Direction Control
	Polarity Control
	Input Mode Control

	ACC-34 Family Multiplexed Digital I/O
	Power PMAC Interface Port Specification
	UMAC ACC-5E JTHW Port
	UMAC ACC-5E3 JIO Port
	Power Clipper JTHW Port

	ACC-34 Port Enabling and Direction Control
	ACC-34 Input Port Parity Check Control
	ACC-34 Port Timing
	ACC-34 Communications Enabling

	Accessing Digital I/O Points in the Script Environment
	Accessing Output Points at Different Priority Levels
	Power PMAC Priority Levels
	Process-Locking Mechanism

	UMAC Digital I/O Boards
	Compact UMAC ACC-11C Digital I/O
	UMAC ACC-5E Digital I/O
	UMAC ACC-5E3 Digital I/O
	Power Brick Digital I/O
	Power Clipper Digital I/O
	ACC-34 Family Multiplexed Digital I/O

	Using Cyclic Scanned Buffered Inputs and Outputs
	Enabling Cyclic Scanned I/O
	Specifying Scanned Input Registers
	Override “Forcing” of Inputs
	Filtering of Inputs
	Resulting Registers
	Using the Resulting Values
	Writing to Outputs Using Holding Registers
	Override “Forcing” of Outputs
	Specifying Scanned Output Registers

	Accessing Digital I/O Points in the C Environment
	Accessing Output Points at Different Priority Levels
	Volatile Variable Declarations
	Using Data Structures
	Using Direct Pointer Variables
	UMAC Digital I/O Boards
	Data Structure Method
	Direct Pointer Method

	Compact UMAC ACC-11C Digital I/O
	UMAC ACC-5E Digital I/O
	Data Structure Method
	Direct Pointer Method

	UMAC ACC-5E3 Digital I/O
	Data Structure Method
	Direct Pointer Method

	Power Brick Digital I/O
	Data Structure Method
	Direct Pointer Method

	Power Clipper Digital I/O
	Data Structure Method
	Direct Pointer Method

	ACC-34 Family Multiplexed Digital I/O

	Writing and Executing Script Programs in the Power PMAC
	Classes of Script Programs
	Motion Programs
	Rotary Motion Programs
	PLC Programs
	Subprograms
	Kinematic Subroutines

	Script Language Syntax Features
	Mathematical Capabilities
	Program Flow Control
	Branching Structures
	“If/Else” Branching
	“Switch/Case” Branching
	Conditional Execution Branching

	Looping Structures
	“While” Loops
	“Do/While” Loops
	Nesting of Loops
	“Continue” and “Break” Commands in Loops

	Subroutine and Subprogram Calls
	“Jump” Line Labels
	“Gosub” Commands
	“Callsub” Commands
	“Call” Commands
	G, M, T, and D-Code Commands
	“Return” Commands
	Conditional Subprogram Calls

	Jump commands

	Motion Specification
	Modal Move Type and Parameter Specification
	Move Mode Declaration
	Axis Mode Declaration
	Move Parameters

	Move Commands
	Basic Axis Move Command
	Move-Until-Trigger Command
	Circle-Mode Move Command
	PVT Mode Move Command

	Program Direct Commands
	Motor Program Direct Commands
	Coordinate System Program Direct Commands

	Downloading Rules for Script Programs
	Motion Programs
	Rotary Motion Programs
	PLC Programs
	Subprograms
	Kinematic Subroutines

	Implementing Script Programs in the IDE
	Organizing Your Program Files
	User Variable Names
	Auto-Assigned User Variable Names
	“Global” Variable Declaration
	“Csglobal” Variable Declaration
	“Ptr” Variable Declaration
	Comments on “global”, “csglobal”, and “ptr” declarations
	“Local” Variable Declaration

	Manually-Assigned User Variable Names

	IDE Program Enhancements
	Subprograms
	Subroutines Within Programs
	Subroutines Within Subprograms
	Kinematic Subroutines

	Execution Rules for Script Programs
	Motion Programs
	Starting a Set of Motion Program Calculations
	Suspending Motion Program Calculations
	Filling the Motion Queue
	Failure to Calculate Far Enough Ahead
	Special Considerations for Very High Move-Rate Applications
	Suspending Calculations Without a Full Motion Queue

	Standard vs Synchronous Variable Assignments
	Motion Error Response

	Rotary Motion Programs
	PLC Programs
	Foreground PLC Scans
	Background PLC Scans
	Buffered I/O for PLC Programs
	Commanding Moves from PLC Programs
	Delaying Action of a PLC Program

	Subprograms
	Kinematic Subroutines

	Starting and Stopping Script Program Execution
	Coordinate System Addressing for Motion Programs
	Starting Script Motion Program Execution
	Selecting a Motion Program
	On-Line r Command, Program run Command
	On-Line s Command, Program step Command
	On-Line start Command, Program start Command
	On-Line resume Command, Program resume Command
	On-Line > Command, Program lh> Command
	On-Line < Command, Program lh< Command

	Stopping Script Motion Program Execution
	Normal End-of-Program Termination
	Program return Command
	Program stop Command
	On-Line q Command or Program pause Command
	On-Line s Command or Program step Command
	On-Line h Command or Program hold Command
	On-Line \ Command or Program lh\ Command
	On-Line %0 Command or Program DesTimeBase=0 Command
	On-Line a Command or Program abort Command
	On-Line or Program disable Command
	On-Line or Program ddisable Command
	On-Line or Program adisable Command
	On-Line #*k Command
	On-Line #*dkill Command

	Starting Script PLC Program Execution
	On-Line enable plc Command, Program enable plc Command
	On-Line step plc Command, Program step plc Command
	On-Line resume plc Command, Program resume plc Command

	Stopping Script PLC Program Execution
	On-Line disable plc Command, Program disable plc Command
	On-Line pause plc Command, Program pause plc Command
	On-Line step plc Command, Program step plc Command

	Implementing an RS-274 Style Motion Program
	G, M, T, and D-Codes
	S-Codes
	H-Codes
	Standard G-Codes
	Top of Program – Non-Existent Codes
	G00 – Point-to-Point Positioning Mode
	G01 – Linear Interpolation Mode
	G02 – Clockwise Circular Interpolation Mode
	G03 – Counterclockwise Circular Interpolation Mode
	G04 – Dwell Command
	G09 – Exact Stop
	G17, G18, G19 – Circle, Cutter Comp Plane Select
	G40, G41, G42 – 2D Cutter Radius Compensation Control
	G61, G64 – Exact Stop, Continuous Cutting Mode Control
	G90, G91 – Absolute, Incremental Move Mode Control
	G93, G94 – Inverse-Time, Feedrate Move Mode Control
	G95 – Length per Revolution Mode Control

	Power PMAC Move Mode Trajectories
	Modal Move-Rule Commands
	Move Commands
	Rapid Move Mode
	Rapid Mode Declaration
	Position or Distance Specification
	Velocity Specification
	Acceleration Specification
	Specification by Time
	Specification by Rate

	Sample Move Profile
	Multi-Axis Path Options
	Rapid-Mode Move-Until-Trigger
	Motor Action
	Trigger and Capture Conditions
	Example

	Breaking into a Rapid-Mode Move
	Executing Rapid-Style Moves with Linear Mode

	Linear Move Mode
	Optional Segmentation Mode
	Linear Mode Declaration
	Position or Distance Specification
	Feedrate or Move-Time Specification
	Feedrate-Only Mode
	Vector Feedrate Axes
	Transformation Matrix Rescaling of Feedrate
	Secondary Vector Feedrate Axes
	Non-Vector-Feedrate Axes
	Inverse Time Mode
	Motor Velocity Limits
	Minimum Move Time

	Acceleration Specification
	Acceleration Limits
	Jerk Limit
	Issues with Acceleration and Jerk Limits

	Linear Move Examples
	Blending Moves Together
	Control of Blend vs No-Blend
	Blending Profile Examples
	Blending Path Implications

	Special Linear Contouring Mode
	Using Linear Mode for “Rapid” Moves

	Circle Move Mode
	Enabling Move Segmentation
	Specifying the Interpolation Plane
	Standard Planes
	Clockwise Direction Sense

	Circle Mode Declaration
	Position or Distance Specification
	Center Specification
	Center Vector Specification
	Radius Change and Errors
	Example

	Radius Size Specification
	Example

	Motion of Other Axes
	Feedrate or Move-Time Specification
	Vector Feedrate Axes
	Inverse Time Mode
	Motor Velocity Limits
	Minimum Move Time

	Acceleration Specification
	Acceleration Limits

	Blending Moves Together
	Blended Move “Cornering” Control
	Cornering Angle Definition
	Corner Blend/No-Blend Control
	Blended Corner Characteristics
	Fixed-Time Corner Blend
	Fixed-Radius Corner Blend
	Fixed-Acceleration Corner Blend
	Fixed-Error Corner Blend
	Hybrid Corner Acceleration/Error Control Blend

	Non-Blended Corner Characteristics
	Command Stop vs. Actual Stop
	Added Corner Dwell

	Tool (Cutter) Radius Compensation
	Two-Dimensional Tool Radius Compensation
	Setting Up the Compensation Buffer
	Minimum Buffer Size
	Zero-Distance Move Buffering
	Interference-Check Buffering
	Total Buffer Size

	Specifying the Pre-Computation Length
	Defining the Plane of Compensation
	Defining the Magnitude of Compensation
	Compensation Magnitude and Transformation Matrix Scaling
	Feedrate of Compensated Arc Moves
	Turning On Compensation
	Turning Off Compensation
	How Power PMAC Introduces Compensation
	Inside Corner Introduction
	Outside Corner Introduction

	Treatment of Compensated Inside Corners
	Treatment of Compensated Outside Corners
	Sharp Outside Corner
	Shallow Outside Corner

	Changing Radius During Compensation
	How Power PMAC Removes Compensation
	Inside Corner Removal
	Outside Corner Removal

	Interference Checking
	Action on Detecting Interference
	Examples

	Single-Stepping in 2D Tool Radius Compensation
	Errors in 2D Tool Radius Compensation

	Three-Dimensional Tool Radius Compensation
	Defining the 3D Tool Geometry
	Setting the Initial Reference Point
	Entering the Arc-Piece Section Data
	Examples

	Turning On 3D Compensation
	Turning Off 3D Compensation
	Declaring the Surface-Normal Vector
	Declaring the Tool-Orientation Vector
	Move Commands with 3D Compensation
	How 3D Compensation is Performed

	PVT Move Mode
	PVT Mode Declaration
	Position or Distance Specification
	Velocity Specification
	Power PMAC Calculations
	Use of PVT Mode in Contouring
	Lookahead with PVT Moves
	Blending PVT Moves with Linear and Circle Moves
	Issues with Single-Stepping
	Enhanced PVAT Moves

	Spline Move Mode
	Spline Mode Declaration
	Position or Distance Specification
	Uniform-Time Calculations
	Non-Uniform-Time Calculations
	Use of Spline Mode for Contouring

	Power PMAC Special Lookahead Function
	Principle of Operation
	Sample Effect Diagrams
	Interactions with Kinematics
	Transparent Operation
	Quick Instructions: Setting Up Lookahead
	Detailed Instructions: Setting Up to use Lookahead
	Defining the Coordinate System
	Lookahead Constraints
	Position Limits
	Velocity Limits
	Acceleration Limits

	Calculating the Segmentation Time
	Block rate relationship
	Interpolation errors

	Calculating the Required Lookahead Length
	Lookahead Length Parameter
	Defining the lookahead buffer
	Memory Requirements

	Running a Program with Lookahead
	Vector Feedrate
	Acceleration Time

	Stopping While in Lookahead
	Quick Stop
	Quit/Step
	Feed Hold
	Abort

	Reversal While in Lookahead
	Back-up Command
	Reverse Execution
	Stopping Reverse Execution
	Synchronous Assignments in Reversal
	Comparison to Time-Base Reversal

	Feedrate Override with Lookahead

	Synchronizing Power PMAC to External Events
	A Note on “Master/Slave” Techniques
	Processing the Master Position Signal
	Processing a Quadrature Encoder with a PMAC2-Style IC
	Processing an External Clock Signal with a PMAC2-Style IC
	Processing a Sinusoidal Encoder with a PMAC2-Style IC
	Processing a Quadrature Encoder with a PMAC3-Style IC
	Processing an External Clock Signal with a PMAC3-Style IC
	Processing a Sinusoidal Encoder with a PMAC3-Style IC
	Processing a Serial Encoder with a PMAC3-Style IC

	Position Following (Electronic Gearing)
	Position Following Master Address
	Position Following “Gear Ratio”
	Enabling and Disabling Following
	Following Mode: Normal vs. Offset
	Use of Offset Mode for Cascaded Loops
	Changing Following Mode

	Speed and Acceleration Limiting in Following
	Speed Limiting Only: Recovery of Velocity Lock
	Speed and Acceleration Limiting: Recovery of Position Lock
	Engaging and Disengaging Following on the Fly

	Custom Following Algorithms
	Tuning the Servo Loop of the Slave Motor

	External Time-Base Control
	What is External Time-Base Control?
	Comparison to Electronic Cam Tables
	How External Time-Base Works
	Time-Base Entry in the Encoder Conversion Table
	Using the Scaled Master Value
	Writing the Motion Program
	Maintaining Synchronicity
	Effect of Acceleration Profiles

	Simple Time-Base Example: Crosscut on Moving Web
	Step 1: Signal Connection and Decode
	Step 2: Encoder Conversion Table Processing
	Step 3: Writing the Motion Program

	Triggered Time Base
	Valid Sensor Types
	Setting the Capture Trigger Condition
	Modifying the ECT Entry for Triggering
	Freezing and Arming the Time Base
	Triggering the Time Base

	Writing the Motion Program Sequence
	Triggered Time Base Example

	Hardware Position-Capture Functions
	Requirements for Hardware Capture
	Setting the Trigger Condition
	Automatic Move-Until-Trigger Functions
	Semi-Automatic Position-Capture Monitoring Function
	Manual Use of the Hardware-Capture Feature
	Capture Status Flags
	Level vs Edge Triggering
	Captured Position Registers – PMAC2-Style ICs
	Optional Fractional Count Registers

	Captured Position Registers – PMAC3-Style ICs

	Manually Converting to Motor and Axis Positions
	Handling Rollover of the IC Position Registers
	Motor Offset and Scaling
	Axis Offset and Scaling
	Processor Interrupt on Hardware Capture Event

	Hardware Position-Compare Functions
	Setup on a PMAC2-Style IC
	Compare Registers
	Auto-Increment Function
	Compare Control Elements
	Optional Fractional Count Registers

	Setup on a PMAC3-Style IC
	Compare Registers
	Auto-Increment Function
	Compare Control Elements

	Handling Fractional Count Values
	Converting from Motor and Axis Coordinates
	Handling Rollover of the IC Position Registers
	Motor Offset and Scaling
	Axis Offset and Scaling
	Processor Interrupt on Hardware Compare Event

	Writing C Functions and Programs in Power PMAC
	Priorities for C Programs and Routines in Power PMAC
	Creating C Functions and Programs
	Accessing Shared Memory and Structures
	Accessing ASIC Hardware Registers
	Using the Data Structures
	Using Direct Pointer Variables

	Capture/Compare Interrupt Service Routine
	ASIC Interrupt Control Register
	Writing a Capture/Compare Interrupt Service Routine
	Executing the Capture/Compare Interrupt Service Routine
	Capture Interrupt Routine Example
	Compare Interrupt Routine Example

	User-Written Phase Routines
	Declaration
	Automatic Preparation for Routine
	Input/Output Access
	Basic Example Routine
	Compiling and Downloading

	User-Written Servo Routines
	Declaration
	Automatic Preparation of Input Values
	Automatic Processing of Returned Value
	Basic Example Routine
	Multi-Motor Routines
	Compiling and Downloading

	Real-Time Interrupt C PLC Routine
	Background C PLC Routines
	CfromScript Function
	Declaring CfromScript()
	Calling CfromScript from Script Programs
	Basic calling example

	Using Local Data Variables within CfromScript
	Calling CfromScript from Multiple Script Programs
	Example: Using CfromScript() as a Kinematics Handler

	Background C Application Programs

	Power PMAC Example SCRIPT Programs
	Simple Motion Programs
	Example 1: Basic Moves
	Example 2: A More Complex Move Sequence
	Example 3: Moves with Looping, Branching, and I/O
	Example 4: Coordinated and Blended Moves with Linear and Circular Interpolation
	Example 5: Coordinated Path Motion
	Programmed Move Profiles
	Buffered Lookahead for Dynamic Limiting

	A Move with Separate Acceleration and Deceleration
	Motion with Related Machine I/O
	Interactive Jog Control PLC Programs
	SCARA Robot Kinematics

