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Copyright Information 

© 2023 Delta Tau Data Systems, Inc. All rights reserved. 

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses 

are unauthorized without written permission of Delta Tau Data Systems, Inc.  Information 

contained in this manual may be updated from time-to-time due to product improvements, 

etc., and may not conform in every respect to former issues. 

To report errors or inconsistencies, call or email:  

Delta Tau Data Systems, Inc. Technical Support 

Phone: (818) 717-5656 

Fax: (818) 998-7807 

Email: support@deltatau.com 

Website: http://www.deltatau.com 

 

Operating Conditions 

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers 

contain static sensitive components that can be damaged by incorrect handling.  When 

installing or handling Delta Tau Data Systems, Inc. products, avoid contact with highly 

insulated materials.  Only qualified personnel should be allowed to handle this equipment. 
 

In the case of industrial applications, we expect our products to be protected from 

hazardous or conductive materials and/or environments that could cause harm to the 

controller by damaging components or causing electrical shorts.  When our products are 

used in an industrial environment, install them into an industrial electrical cabinet or 

industrial PC to protect them from excessive or corrosive moisture, abnormal ambient 

temperatures, and conductive materials.  If Delta Tau Data Systems, Inc. products are 

directly exposed to hazardous or conductive materials and/or environments, we cannot 

guarantee their operation.  
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Safety Instructions 

Qualified personnel must transport, assemble, install, and maintain this equipment.  Properly qualified 

personnel are persons who are familiar with the transport, assembly, installation, and operation of 

equipment.  The qualified personnel must know and observe the following standards and regulations: 

IEC364resp.CENELEC HD 384 or DIN VDE 0100 

IEC report 664 or DIN VDE 0110 

National regulations for safety and accident prevention or VBG 4 

 

Incorrect handling of products can result in injury and damage to persons and machinery.  Strictly adhere 

to the installation instructions. Electrical safety is provided through a low-resistance earth connection.  It 

is vital to ensure that all system components are connected to earth ground. 

 

This product contains components that are sensitive to static electricity and can be damaged by incorrect 

handling.  Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.).  Place the 

product on a conductive surface.  Discharge any possible static electricity build-up by touching an 

unpainted, metal, grounded surface before touching the equipment. 

 

Keep all covers and cabinet doors shut during operation.  Be aware that during operation, the product has 

electrically charged components and hot surfaces.  Control and power cables can carry a high voltage, 

even when the motor is not rotating.  Never disconnect or connect the product while the power source is 

energized to avoid electric arcing. 

 

 

A Warning identifies hazards that could result in personal injury or 

death. It precedes the discussion of interest. 

Warning 

 

!
 

Caution 

A Caution identifies hazards that could result in equipment damage. It 

precedes the discussion of interest. 

 

 
Note 

A Note identifies information critical to the understanding or use of 

the equipment. It follows the discussion of interest. 
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POWER PMAC FAMILY OVERVIEW 

The Power PMAC family of controllers is the latest generation of motion and machine controllers 

from Delta Tau Data Systems, Inc. It is available in a large and increasing number of 

configurations, permitting the user to configure controller hardware and software to particular 

application needs. This chapter provides a brief overview of the Power PMAC structure; all items 

mentioned here are covered in more detail elsewhere in the User’s Manual or in related reference 

manuals. 

What Is Power PMAC? 

Power PMAC is a general-purpose embedded computer with a built-in motion and machine-

control application. It also provides a wide variety of hardware machine interface circuitry that 

permits connection to common servo and stepper drives, feedback sensors, and analog and digital 

I/O points. 

Power PMAC Configurations 

Power PMAC is available in multiple physical configurations, optimized for different styles of 

applications. Each configuration shares the same core software capabilities, but the hardware 

interfaces differ between configurations. 

Power UMAC 

The Power UMAC is a modular rack-mounted configuration of the Power PMAC. It consists of a 

set of 3U-format (100mm x 160mm) boards in a Euro-Card rack. Along with the required Power 

PMAC CPU board, a customized set of interface boards can be added, communicating over a 

common backplane. These include digital and analog servo interface boards, digital and analog 

general-purpose I/O boards, machine network interface boards, and industrial fieldbus interface 

boards. A power supply installed in the rack can be used, or an external supply. 

 

Example Power UMAC Configuration 

Because of its modular nature, the Power UMAC provides the most flexible configuration for 

Power PMAC systems. 



Power PMAC User’s Manual 

Power PMAC Family Overview 26 

Compact Power UMAC 

The Power PMAC is also available in the “Compact Power UMAC” configuration. This is similar 

to the standard Power UMAC, with 3U-format (100mm x 160mm) boards on a common 

backplane. However, the field wiring is distributed behind the backplane, as in the Compact PCI 

format (but there is no PCI interface). This requires a customized and engineered distribution 

scheme, so this format is intended for high-volume OEMs who have the capability and financial 

justification for such a distribution scheme. 

CK3M (µUMAC) 

The CK3M is a small modular rack-mounted configuration of the Power PMAC, with similar 

form factor to the Omron NJ/NX PLCs. Along with the required Power PMAC CPU module, a 

customized set of interface boards can be added, communicating over a common backplane 

within one rack (line), and extensible to up to 4 lines through expansion modules and cables. 

 

Example CK3M (µUMAC) Controller Configuration 

Power PMAC Etherlite 

The Power PMAC Etherlite is a compact and cost-effective configuration intended for control 

through industrial networks and fieldbuses. It consists of a Power PMAC CPU board, a network 

interface board that can be configured for the MACRO fiber optic network, the EtherCAT 

electrical network, or both. Optionally, a fieldbus interface board for buses such as Profibus, 

DeviceNet, or CCLink can be installed. 

 

Power PMAC Etherlite Controller 
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The Power PMAC Etherlite is commonly used for large systems where networked connections 

are important to simplify system wiring. 

CK3E (µPowerPMAC) 

The µPowerPMAC [CK3E] controller is a packaged single-board controller that interfaces to 

servo drives and I/O devices through the EtherCAT network. 

 

CK3E (µPowerPMAC) Controller 

Power Brick Configurations 

The Power Brick controllers are integrated “boxed” configurations of Power PMAC. The come in 

three configurations: Power Brick AC, Power Brick LV, and Power Brick Controller. 

All of these configurations can support multiple styles of position feedback: digital incremental 

(quadrature) encoders, serial encoders, analog incremental (sinusoidal) encoders, and resolvers. 

All configurations provide a standard set of “flags” (e.g. limit, home, and user) for each axis, with 

a set of general-purpose digital I/O. General-purpose analog I/O is also available. 

Power Brick AC 

The Power Brick AC combines a Power PMAC controller with integrated 3-phase motor 

amplifier circuits for 4, 6 or 8 axes. The AC power input for the amplifiers can be up to 240VAC. 

 

Power Brick AC 4-Axis Configuration 
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Power Brick LV 

The Power Brick LV combines a Power PMAC controller with integrated motor amplifier circuits 

for 2-phase and 3-phase motors for 4 or 8 axes. It accepts a DC power input for the amplifiers of 

up to 60VDC. Each axis can be configured by the user for 2-phase or 3-phase motors, open-loop 

(stepper) or closed-loop (servo). 

 
Power Brick LV 8-Axis Configuration 

Power Brick Controller 

The Power Brick Controller combines a Power PMAC controller with an integrated multi-axis 

amplifier-interface board in a single boxed package. Both analog and digital amplifier interface 

boards are available, and each can be provided in 4-axis and 8-axis configurations. 

 
Power Brick Controller 4-Axis Configuration 
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Power Clipper 

The Power Clipper is a compact and cost-effective configuration of the Power PMAC for 

embedded applications. It combines the Power PMAC CPU, 4 channels of axis interface circuitry, 

32 general-purpose digital I/O points, and 4 optional analog inputs onto a single small circuit 

board. A second Clipper board, built without the CPU, provides another set of axis and general-

purpose I/O. 

 

Power Clipper Controller Board (without fan assembly) 

CK3C (ARM Power Clipper) 

The CK3C is the newest Power Clipper controller, utilizing the latest ARM processors.. It is a 

compact and cost-effective configuration of the Power PMAC for embedded applications. It 

combines the Power PMAC CPU, 4 channels of axis interface circuitry, 32 general-purpose 

digital I/O points, and 4 optional analog inputs onto a single small circuit board. It can accept 

several “stack” accessory boards for additional axis, digital, and analog I/O. 

 

CK3C (ARM Power Clipper) Controller Board with Enclosure 
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Power PMAC on Sysmac IPC 

The Power PMAC software has also been configured to run on Omron’s Sysmac IPC (Industrial 

Personal Computer). The Sysmac IPC is a multi-core PC, using one core for Power PMAC 

interrupt-driven foreground tasks, and a second core for its background tasks, both running under 

a real-time Linux operating system. Remaining cores are available for other uses such as HMI 

and network interfaces, running under the Microsoft Windows operating system. The operation of 

both operating systems is managed by an overall “hypervisor”. 

The interface to the servo drives and I/O devices on these PC-based systems is done through the 

EtherCAT network. 

 

Omron Sysmac IPC 
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What Power PMAC Does 

Power PMAC can handle all of the tasks required for machine control, constantly switching back 

and forth between the different tasks thousands of times per second. The major tasks involved in 

machine control are summarized here. More details on how these tasks are prioritized are given in 

the chapter Power PMAC System Configuration. 

Execute Sequenced Motion Programs 

The most obvious task of Power PMAC is executing sequences of motions given to it in a motion 

program written in the Power PMAC Script language. When told to execute a motion program, 

Power PMAC works through the program one move at a time, performing all the calculations up 

to that move command (including non-motion tasks) to prepare for actual execution of the move. 

Power PMAC is always working ahead of the actual move in progress, so it can blend properly 

into the upcoming move(s), if required.  See the chapter Writing and Executing Script Programs 

for more details. 

Execute Asynchronous PLC Programs 

The sequential nature of the motion program suits it well for commanding a series of moves and 

other coordinated actions but these programs are not good at performing actions that are not 

directly coordinated with the sequence of motions. For those types of tasks, Power PMAC 

provides the capability for users to write “PLC programs”. These are named after Programmable 

Logic Controllers because they operate in a similar manner, continually scanning through their 

operations as processor time allows. These programs are very useful for any task that is 

asynchronous to the motion sequences. PLC programs can be written both in the Power PMAC 

Script language and in C. Both types of programs can execute either as interrupt-driven 

foreground tasks, or as background tasks. See the chapters Writing and Executing Script 

Programs and Writing C Functions and Programs for more details. 

Perform Kinematic Transformations 

Power PMAC can automatically perform user-specified transformations between “tool-tip” (axis) 

coordinates in a geometry that the user finds easy to work with (e.g. a Cartesian reference frame) 

and the underlying “joint/actuator” (motor) coordinates in which the machine is built. The 

transformation can be a basic, mathematically linear, scaling and offset transformation, permitting 

scaling and offsetting into user engineering units and a flexible programming origin for each axis. 

This can be accomplished with simple “axis-definition” equations. 

The transformation can also be a complex, mathematically non-linear, transformation 

implemented in user-written “kinematic” subroutines. These subroutines can employ 

sophisticated math and logic to perform the transformation, selecting if necessary between 

multiple solutions, and even iterating to solutions when closed-form solutions are not available. 

See the chapter Setting Up a Coordinate System for more details 

Process Feedback and Master Position Data 

Power PMAC can perform sophisticated processing of sampled position-related data to prepare it 

for feedback or master use in servo-loop algorithms. This is done each servo cycle in a structure 

called the “Encoder Conversion Table”. The ECT can combine several sampled values to provide 

an enhanced net position value, as with timer-based extension of incremental encoders or 

sinusoidal interpolation of analog encoders. It can filter noisy values, automatically eliminate 

obviously erroneous values, integrate values, and combine multiple values by sum or difference. 
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See the chapters Setting Up Feedback and Master Position Sensors and Setting Up the Encoder 

Conversion Table for details. 

Compute Commanded Motor Trajectories 

Each servo cycle, Power PMAC can compute a new commanded position for each active motor, 

providing a “setpoint” for the servo loop to act upon. This commanded position can be from a 

programmed axis move, a direct motor move such as a jogging or homing search move, a position 

following (electronic gearing) algorithm, or some combination of the above. See the chapters 

Executing Individual Motor Moves and Power PMAC Move Mode Trajectories for details. 

Calculate Compensation Table Corrections 

Each servo cycle, Power PMAC can calculate table-based corrections to key motor parameters. 

Each table can be based on the position of 1, 2, or 3 motors (linear, planar, or volumetric tables, 

respectively), and can compensate the position, torque, or backlash correction of one or more 

motors. The “target” motor may or may not be the same as one of the “source” motors. These 

tables can provide classic “leadscrew” compensation, and more sophisticated corrections, 

including for cross-axis position compensations for straightness errors, and torque compensations 

for motor cogging torque variations. See the chapter Setting Up Compensation Tables for details. 

Calculate Cam Table Motions 

Each servo cycle, Power PMAC can calculate table-based motion for a motor based on the 

position of another motor, providing “electronic cam table” capability. In each “zone” of the 

table, Power PMAC computes the cam position by 3rd-order interpolation between table points, 

torque offset by 3rd-order interpolation between table points, and a discrete output word for the 

zone. It is possible to have Power PMAC compute the optimal torque offsets for each zone itself 

through “iterative learning control” to minimize the position errors over multiple cycles. See the 

chapter Setting Up Electronic Cam Tables for details. 

Close Motor Position/Velocity Servo Loops 

Each servo cycle, Power PMAC can close the servo loop for all active motors. Using the 

computed command position for the servo cycle, the processed actual position information, and 

the user-set servo gain term values, it calculates the feedback and feedforward components of the 

servo effort that is designed to minimize the difference between the commanded and actual 

position values. See the chapter Setting Up the Servo Loop for details. 

Perform Electronic Phase Commutation 

If Power PMAC is configured to perform the commutation for a multiphase motor, it will 

automatically perform commutation updates at a selectable fixed frequency (often around 9 kHz). 

The commutation, or phasing, update for a motor consists of measuring and/or estimating the 

rotor magnetic field orientation, then apportioning the command that was calculated by the servo 

update among the different phases of the motor. Once configured, this task occurs automatically 

without the need for any explicit commands. See the chapter Setting Up Power PMAC-Based 

Commutation and/or Current Loop for more details. 

Close Motor Current Loops 

If Power PMAC is configured to perform digital current-loop closure for a motor (as part of the 

commutation algorithm), each commutation update it will automatically read the motor phase 

current values from analog-to-digital converter registers, compare these values to the commanded 

current values, and compute the phase voltage command levels necessary to obtain the command 
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current levels. These phase voltage commands are usually encoded as PWM duty cycles, with the 

PWM signals directly driving the amplifier power transistors. See the chapter Setting Up Power 

PMAC-Based Commutation and/or Current Loop for more details. 

Provide Synchronous Data Gathering 

Every servo cycle (or every “n” servo cycles), Power PMAC can automatically log the values of 

up to 128 user-specified hardware and/or software registers into a data buffer for later analysis. 

Power PMAC’s Integrated Development Environment (IDE) software for the PC can 

automatically upload the gathered data and plot it in a variety of user-configurable formats. This 

functionality is also used for interactive and automatic tuning algorithms. It is also possible to 

gather the contents of up to 16 user-specified registers every phase cycle; this functionality is 

mainly used for setting up commutation and tuning the digital current loop. 

Perform General Housekeeping and Safety Checks 

Power PMAC is continually and automatically monitoring its hardware and software functions, 

updating status information and performing key safety checks for all active motors and coordinate 

systems. The safety checks include hardware and software overtravel position limits, position 

following error, amplifier fault signals, integrated current limits, encoder loss detection, and a 

watchdog timer check. See the chapter Making Your Power PMAC Application Safe for details. 

Respond to Host Computer Commands 

Power PMAC is continually checking for commands over its Ethernet port. As a networked 

device, commands can come from multiple tasks within a single computer, and from multiple 

computers. These commands can be for an action, as in jogging a motor or starting a program, or 

can be to query a value or state in the controller. See the chapter Talking to Power PMAC for 

details. 

Execute Independent C Applications 

Power PMAC can execute independent applications written in C under the general-purpose 

operating system (GPOS). These applications have access to Power PMAC’s shared memory and 

I/O, but do not need to use these structures. See the chapter Writing C Functions and Programs in 

Power PMAC for details. 
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Key Hardware Components 

Power PMAC hardware consists primarily of the CPU and machine interface circuitry. This 

section summarizes these key hardware components. Note that the Soft Power PMAC, running on 

an industrial PC (IPC) as the “Motion Machine”, does not have the interface hardware. Instead, it 

uses an Ethernet-based network to communicate with the machine. 

CPU Section 

The core of the Power PMAC is the central processing unit (CPU), consisting of a 

microprocessor, active memory, and non-volatile memory. The following figure shows the block 

diagram of the Power PMAC CPU for the UMAC rack-mounted controller. Other configurations 

are similar. 

 

Power PMAC CPU Section Block Diagram 

Processor 

Initial hardware implementations of the Power PMAC use an embedded Power PC RISC 

microprocessor. This 32-bit processor has relatively low heat dissipation requiring only limited 

cooling, and it has a substantial number of peripherals built in, keeping the parts count of the 

CPU section small. The processor has a dedicated hardware floating-point math engine, capable 

of processing mathematical operations directly on both single-precision (32-bit) and double-

precision (64-bit) floating-point values. 
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Subsequent hardware implementations use embedded microprocessors with the ARM 

architecture. These also have low heat dissipation requiring minimal cooling. 

Single-core processors running at 800 MHz and 1.0 GHz are available. Dual-core processors 

running at 1.2 GHz are available. 

When Power PMAC software runs on a PC, such as Omron’s IPC, the processor is of the x86 

architecture. 

Active Memory (RAM) 

The active memory in Power PMAC is DDR2 or 3 class RAM, typically with a capacity of 1 – 2 

gigabytes (GB). The Power PMACs with Power PC processors use error-correcting memory 

modules. The more cost-effective ARM processors use standard memory modules without error 

correction 

Non-Volatile Memory (Flash) 

The non-volatile memory provided with Power PMAC is solid-state flash memory. The computer 

BIOS for boot loading is stored in NOR flash. The operating system, PMAC application software 

and user projects are stored in NAND flash and loaded into RAM automatically on power-up and 

reboot/reset. The built-in NAND flash is typically provided with a capacity of 1 – 4 GB. 

Users can provide additional NAND flash capacity through USB-stick and/or SD card modules, 

depending on the configuration of the Power PMAC. 

Machine Interface ICs 

The processor interfaces to the machine through a variety of “machine interface” ICs. These 

appear to the processor as a set of memory-mapped registers and provide a variety of input and 

output signals to machine devices. Different ICs provide various interfaces, both for motion 

control and for general-purpose analog and digital I/O. 

PMAC2-Style “DSPGATE1” Servo IC 

The PMAC2-style Servo IC is called the “DSPGATE1”. It is a 4-channel part with 64 memory-

mapped registers. Each channel supports the following features: 

 3 output command signal sets, configurable as either: 

o 2 serial data streams to digital-to-analog converters of up to 18 bits, and one 

pulse-and-direction pair, or 

o 3 pulse-width-modulated (PWM) top and bottom pairs 

 Input for digital quadrature with index, pulse-and-direction, or MLDT feedback  

 4 input flags (home, +/-limit, user) that can trigger hardware encoder capture 

 Amplifier-fault input 

 4 supplemental input flags (T, U, V, W) for hall commutation sensors, sub-count data, 

fault codes, or general use 

 Amplifier-enable output 

 Hardware position-compare output 

 Input from 2 analog-to-digital converters of up to 18 bits (from amplifier or accessory 

board) 

 

The DSPGATE1 IC also has on-board software-configurable clock generation circuitry. It can 

generate the “servo” and “phase” clocks for the entire Power PMAC system (only one IC will do 
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this; the others will accept these as inputs). It also generates the clock signals that drive its own 

circuitry: encoders, DACs, ADCs, PWM and PFM (pulse-frequency-modulation). 
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PMAC2-Style “DSPGATE1” Servo IC 

The DSPGATE1 IC is presently provided on the following Power PMAC products: 

 ACC-24E2 UMAC PWM Axis-Interface Board 

 ACC-24E2A UMAC Analog Axis-Interface Board 

 ACC-24E2S UMAC Stepper Axis-Interface Board 

 ACC-51E UMAC Sine-Encoder Interpolator Board 

 ACC-58E UMAC Resolver Converter Board 

 ACC-24C2A Compact UMAC Analog Axis-Interface Board 

 ACC-51C UMAC Compact Sine-Encoder Interpolator Board 

PMAC2-Style “DSPGATE2” MACRO IC 

The PMAC2-style “DSPGATE2” MACRO IC provides a 16-node bi-directional interface for the 

MACRO ring. Of these nodes, eight can be used as “servo nodes”, each of which can transfer all 
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of the command and feedback data required for the servo and commutation of a motor. Six of the 

nodes can be used for general-purpose I/O, each node supporting 72 bits of hard real-time I/O in 

each direction. Two of the nodes are for non-real-time communications, including “broadcast” 

mode in which a master controller can talk to all of its slave devices simultaneously. 

The DSPGATE2 IC also has on-board software-configurable clock generation circuitry. It can 

generate the “servo” and “phase” clocks for the entire Power PMAC system (only one IC will do 

this; the others will accept these as inputs). 

The DSPGATE2 IC is presently provided on the ACC-5E UMAC MACRO-Interface Board. 

PMAC2-Style “IOGATE” Digital I/O IC 

The PMAC2-style IOGATE IC is used to access general-purpose digital I/O on most of the 

UMAC I/O boards. It provides 48 I/O points, addressed as 6 bytes in consecutive registers. 

Different boards use different buffers and drivers around the IOGATE to provide the specific I/O 

features desired. While on the IOGATE itself, each I/O point is individually selectable as to 

direction, on most of the I/O boards, each point’s direction is fixed by the external circuitry for 

that point. The IOGATE must be set up at power-on/reset to support the particular direction 

configuration of the board it is used on. 

The IOGATE IC is presently provided on the following Power PMAC products: 

 ACC-11E UMAC 24V 24-Point Sinking/Sourcing Output, 24-Point Sinking/Sourcing 

Input Board 

 ACC-14E UMAC 5V 48-Point I/O Board 

 ACC-65E UMAC Protected 24V 24-Point Sourcing Output, 24-Point Sinking/Sourcing 

Input Board 

 ACC-66E UMAC Protected 24V 48-Point Sinking/Sourcing Input Board 

 ACC-67E UMAC Protected 24V 48-Point Sourcing Output Board 

 ACC-68E UMAC Protected 24V 24-Point Sinking Output, 24-Point Sinking/Sourcing 

Input Board 

 ACC-11C Compact UMAC 24V 24-Point Sinking/Sourcing Output, 24-Point 

Sinking/Sourcing Input Board 
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PMAC3-Style “DSPGATE3” Machine Interface IC 

The PMAC3-style “DSPGATE3” machine interface IC provides servo, MACRO, and I/O 

interfaces in a single IC. In different products, different parts of this interface are used. It appears 

to the processor as 512 memory-mapped 32-bit registers. 
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DSPGATE3 Machine Interface IC Block Diagram 

It provides 4 servo channels, with each servo channel supporting the following features: 

 4 output command signal sets, configurable as either: 

o 3 serial data streams to digital-to-analog converters of up to 24 bits, and one 

pulse-and-direction pair, or 

o 4 pulse-width-modulated (PWM) top and bottom pairs 

 Input for digital quadrature with index, pulse-and-direction, or MLDT feedback  

 Hardware “1/T” timer-based sub-count interpolation 

 4 input flags (home, +/-limit, user) that can trigger hardware encoder capture 

 Amplifier-fault input 

 4 supplemental input flags (T, U, V, W) for hall commutation sensors, sub-count data, 

fault codes, or general use 

 Amplifier-enable output 

 3 additional output flags 

 Hardware position-compare output 

 Input from 8 analog-to-digital converters of up to 18 bits (from amplifier or accessory 

board) 

 Hardware 16-bit arctangent interpolation from “sine” and “cosine” ADCs for sine 

encoder and resolver conversion 
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The DSPGATE3 IC also provides 4 banks of 32 general-purpose digital I/O points, with each I/O 

point individually selectable for direction and software polarity. The first bank has dedicated pins 

on the IC; the second, third, and fourth banks share pins with the second, third, and fourth servo 

channels, respectively, with each pin individually selectable with regard to function. 

In addition, it provides a 32-node bi-directional interface for the MACRO ring. Of these nodes, 

16 can be used as “servo nodes”, each of which can transfer all of the command and feedback 

data required for the servo and commutation of a motor. 12 of the nodes can be used for general-

purpose I/O, each node supporting 72 bits of hard real-time I/O in each direction. Four of the 

nodes are for non-real-time communications, including “broadcast” mode in which a master 

controller can talk to all of its slave devices simultaneously. 

Finally, it has on-board software-configurable clock generation circuitry. It can generate the 

“servo” and “phase” clocks for the entire Power PMAC system (only one IC will do this; the 

others will accept these as inputs). 

The DSPGATE3 IC is presently provided on the following Power PMAC products: 

 ACC-24E3 UMAC Axis-Interface Board 

 ACC-5E3 UMAC MACRO-Interface Board 

 ACC-5EP3 Etherlite MACRO/EtherCAT-Interface Board 

 ACC-59E3 UMAC ADC/DAC Board 

 Power Brick Control Board 

 Power Clipper Controller Board 

 ACC-24S3 Clipper Axis Expansion Board 

 CK3W Axis Board for µUMAC (CK3M) 
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TALKING TO POWER PMAC 

During applications development, and often during applications execution, one or more “host” 

computers will communicate with Power PMAC. This section covers the basic aspects of 

communicating with Power PMAC from a host computer. 

Communications Security 

Communication with Power PMAC is intended to be done within a secure communications 

environment. Any cybersecurity measures must be taken on the devices and networks that are in 

communication with the Power PMAC. 

OMRON SHALL NOT BE RESPONSIBLE AND/OR LIABLE FOR ANY LOSS, DAMAGE, OR 
EXPENSES DIRECTLY OR INDIRECTLY RESULTING FROM THE INFECTION OF OMRON 
PRODUCTS, ANY SOFTWARE INSTALLED THEREON OR ANY COMPUTER EQUIPMENT, 
COMPUTER PROGRAMS, NETWORKS, DATABASES OR OTHER PROPRIETARY MATERIAL 
CONNECTED THERETO BY DISTRIBUTED DENIAL OF SERVICE ATTACK, COMPUTER 
VIRUSES, OTHER TECHNOLOGICALLY HARMFUL MATERIAL AND/OR UNAUTHORIZED 
ACCESS.   

It shall be the users sole responsibility to determine and use adequate measures and 
checkpoints to satisfy the users particular requirements for (i) antivirus protection, (ii) data 
input and output, (iii) maintaining a means for reconstruction of lost data, (iv) preventing 
Omron Products and/or software installed thereon from being infected with computer 
viruses and (v) protecting Omron Products from unauthorized access. 

Physical Interface 

Power PMAC utilizes an Ethernet interface for its main communications channel. Its Ethernet 

ports are capable of 1 gigabit-per-second (1Gbps, 1000-Base-T) communications, but can also 

communicate at lower speeds (e.g. 100Mbps, 100-Base-T), if that is all that the network or the 

linked computer is capable of. 

Power PMAC’s “ETH0” port is reserved for communications with the host computer(s)/network. 

(Its “ETH1” port is reserved for Ethernet-based “fieldbus” communications that are not the 

subject of this chapter.) It accepts a standard Ethernet cable with an RJ-45 jack. The connection 

can be direct to the host computer or through a network, including through hubs and routers. 

Use of the Internet Protocol Suite 

Power PMAC communications utilizes standards from the “Internet Protocol Suite”, even when 

the communications does not actually utilize the Internet. These standards are widely used around 

the world, and Power PMAC’s employment of these standard protocols facilitates familiarity and 

ease of use in applications. 

Layers of the Internet Protocol Suite 

The Internet Protocol Suite is a set of communications protocols for the Internet and similar 

networks. It consists of four “encapsulated” abstraction layers, each with a variety of possible 

protocols for different applications. 
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Link Layer 

The “link layer” is the lowest of these abstraction layers, operating just above the physical layer. 

It handles specific networking requirements on the local link. Common link layer protocols 

include ARP (Address Resolution Protocol), NDP (Neighbor Discovery Protocol), and MAC 

(Media Access Control – for Ethernet, DSL, and FDDI). 

Power PMAC employs the MAC link-layer protocol on its Ethernet interface. Each Power PMAC 

has a unique MAC address for its Ethernet interface that makes it identifiable at any physical 

location. This MAC address is not changeable by the user. 

Internet Layer 

The “internet layer” provides for basic datagram transmission between (potentially) different, and 

different types, of networks (hence, “internetworking”, or “Internet”). The common protocols for 

this layer have been Version 4 of the Internet Protocol (IPv4), Version 6 of the Internet Protocol 

(IPv6), and Internet Control Message Protocol (ICMP). 

Power PMAC employs Internet Protocol Version 6 (IPv6). Each Power PMAC has an IP address. 

This is set at the factory to the default IP address of 192.168.0.200. The user can change this 

address. (See Changing the Power PMAC IP Address, below.) If there are multiple Power 

PMACs on the same network, each must have a unique address. 

Transport Layer 

The “transport layer” establishes data channels between host ports, providing end-to-end 

communications services for applications. Common transport-layer protocols include UDP (User 

Datagram Protocol), TCP (Transmission Control Protocol), RDP (Reliable Datagram Protocol), 

and DCCP (Datagram Congestion Control Protocol). 

Power PMAC employs the most common on these protocols, TCP. The use of TCP permits 

communications with Power PMAC over indirect links, across networks, and even between 

networks. Data packets can arrive out of order and be properly re-ordered by the recipient, and 

packets with errors can be detected and retransmitted. 

Application Layer 

The “application layer” implements process-to-process communications across networks. 

Different types of applications (“processes”) use different protocols at this layer. Telnet 

implements “open text” (unsecured) communications by a virtual terminal. SSH (Secure Shell) 

implements protected communications by a virtual terminal. FTP (File Transfer Protocol) 

implements the movement of entire files across the network. DHCP (Dynamic Host 

Configuration Protocol) permits the automatic assignment of IP addresses at execution time. POP 

(Post Office Protocol) and SMTP (Simple Mail Transfer Protocol) are commonly used for e-mail 

transmission. 

Power PMAC employs several of these application-layer protocols. Basic command/response 

communications is done through Telnet or SSH (“Secure Shell”) protocols. The Integrated 

Development Environment (IDE) software for Windows PCs provided by Delta Tau uses SSH by 

default for these functions, such as its “terminal window”, but this can be changed to Telnet by 

the user. Most users prefer the added security of SSH, but some will choose the speed and 

simplicity of Telnet. 
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Power PMAC uses the FTP protocol for transfers of files to and from the Power PMAC, 

including the applications project files, and gathered-data files. 

Low-Level Terminal Communications 

No matter how fancy the host communications software that implements command/response 

communications with the Power PMAC, the underlying communications can be viewed as 

occurring from a “terminal-emulator” window. For this reason, it is instructive for a new user to 

implement communications with the Power PMAC through a simple software package that 

implements such a terminal window. Typing commands and viewing responses permit the user to 

understand how this command/response action works. This will aid the user in writing his own 

software to automate the communications process. 

Note 

It is not required for any user to execute the examples shown in 

this section. Most users will want first to establish 

communications using the IDE software. However, reading 

these examples and attempting to duplicate them can help the 

user to understand how the communications works, especially 

useful for those starting to write their own communications 

software. 

 

Terminal Emulator Programs 

There are many terminal emulator programs available for Windows, Apple, Linux, and Unix 

computers. The examples shown here use the Windows “Command Prompt” terminal emulator 

(CMD.EXE) provided automatically with Microsoft Windows operating systems, but other 

programs may be used as well. 

Establishing First Communications 

The first step is to tell the program to establish communications with the Power PMAC at its IP 

address. In Windows Command Prompt, this is done by typing “telnet” followed by the IP 

address, as shown in the following screen capture using the default IP address: 
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Establishing Communications from a Terminal Emulator 

If the program does find the Power PMAC, it will display the response from the Power PMAC. 

The first line of this response identifies the Power PMAC. The second line requests a user login. 

At the login prompt, type “root” and hit Enter to request communications at the root 

(administrator) level. 

Next, Power PMAC will request the password. At this prompt, type “deltatau” and hit Enter. 

This will provide the program with access to fundamental communications with the Power 

PMAC computer. The following screen capture shows the communications so far: 

 

Logging Into the Power PMAC Computer 



Power PMAC User’s Manual 

Talking to Power PMAC 44 

At this point, you are talking to the computer operating system (Linux), not the control 

application within the computer. You can use standard Linux commands to perform various tasks 

on the computer. 

Communicating with the Power PMAC Control Application 

Once you have established communications with the Linux computer, you can communicate with 

the Power PMAC control application within the computer by starting the basic communications 

application gpascii. This application is in the opt/ppmac directory, so with the Linux 

prompt (#) at this directory (which it will be as you first establish communications), type 

“gpascii” and hit Enter. 

The following screen capture shows the Linux “dir” (directory) command given at the 

opt/ppmac prompt, showing that the gpascii communications application is present in that 

directory, followed by the command to execute the gpascii application. The Power PMAC 

response (shown) is “STDIN Open for ASCII Input” 

 

Starting Communications with the Power PMAC Control Application 

At this point, you are talking to the Power PMAC control application within the computer, and 

you can issue Power PMAC commands and view the responses. You might start by issuing 

several query commands to find out basic information about the Power PMAC. The following 

screen shot shows the response to the Power PMAC commands cpu, date, vers, size, and 

free. The “spade” figure at the end of each Power PMAC response is the ACK (acknowledge) 

character (ASCII value 07), which Power PMAC uses as its “end of transmission” character. 
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Basic Commands and Responses with the Power PMAC Control Application 

Establishing Communications with the IDE 

Delta Tau’s Integrated Development Environment (IDE) software package for PCs running 

Microsoft Windows operating systems will be utilized by virtually all Power PMAC users to 

develop their application. It hides a lot of the lower-level details of the communications seen in 

the examples above from the user. 

Different versions of the IDE are compatible with different versions of the Windows OS. Consult 

the IDE manual for details. 

Startup Communications Control Window 

When you start the IDE, you will be presented with the control window shown below. It allows 

you to specify the address and protocol details for communication with your Power PMAC. The 

IP address shown in the control must match that of your Power PMAC. You can enter a new IP 

address in this control if the address shown here does not match that of your Power PMAC. Note 

that the address you enter here simply specifies the IP address at which the IDE will attempt to 

communicate; it does not set or change the IP address of the Power PMAC. 

Most users will retain the default SSH underlying communications protocol, which automatically 

selects virtual port number 22. Similarly, most users will select the default “Apply All Controls” 

setting of “True”, which is the most convenient setting in the vast majority of cases where there is 

only one Power PMAC in the system. 

If you leave “Select Device at Startup” at its default setting of “True”, you will be presented with 

this control window every time you start the IDE. If you set this to “False”, the IDE will 

automatically try to establish communications at startup using the last settings you have made. 

Click on “Connect” to attempt to establish communications with the Power PMAC at the 

specified IP address. If the IDE is successful in establishing communications with the Power 
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PMAC computer, it will execute the gpascii application so it can communicate with the Power 

PMAC control application. 

 

IDE Startup Control Window for Establishing Communications 

Embedded Communications Control Window 

If you want to view or change these settings after the start of execution of the IDE, select “Tools” 

on the top menu bar, then “Options” from the pull-down menu. When the Options control 

window appears, select Power PMAC. This will give you access to the same configuration 

choices as the start up control window, as shown below. 
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IDE Menu Control Window for Establishing Communications 

Changing the Power PMAC IP Address 

The IDE can also be used to change the IP address of the Power PMAC. To do this, select 

“Tools” on the top menu bar, then “Options” from the pull-down menu. When the Options 

control window appears, expand the “Power PMAC” selection and select “Network Settings”. 

This will provide you with a control window (shown below) that permits you to change the IP 

address. Type in your new desired IP address, then click on “Test”. If the test is successful, click 

on “Apply Permanently” to make the change. 

 

IDE Menu Control Window for Changing Power PMAC IP Address 
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Of course, you must select an IP address that is unique on your network and will not conflict with 

any other IP address. You may need to consult with your network administrator to select a 

permitted address. 

Finding an Unknown IP Address 

If you do not know the IP address of your Power PMAC, it is of course impossible to ask for the 

address using Ethernet communications. If you find yourself in this situation, you have two 

methods for finding the address. 

Using a Removable Memory Module 

In the first method, you can get Power PMAC to copy its IP address onto a removable memory 

module, either a USB memory stick or an SD memory card, which you can then read on a 

separate computer. 

To do this, first create a directory folder named “PowerPmacIP” at the root level on the memory 

device. This is usually done on a PC. The memory device must employ the FAT32 file system, 

which is by far the most common system for these devices. The folder can be left empty at this 

point; no files need to be created in it. Make sure the device is safely removed from the computer 

so the file system cannot be corrupted. 

Install this device in your Power PMAC, and apply power to the Power PMAC to turn it on. Wait 

for the boot sequence to complete – you will hear a relay click – or just allow a full minute to 

elapse. Then turn off the Power PMAC and remove the memory device. 

Next, install this device back in your PC and view the contents of the new “interfaces” text file in 

the “PowerPmacIP” folder. This will contain the IP address. You can then use this address to 

establish Ethernet communications using the IDE or your communications program (and 

subsequently change this address if you wish). 

Using an RS-232 Terminal Program 

In the second method, you can get Power PMAC to communicate over its RS-232 port to disclose 

its present IP address. If the Power PMAC does not have an RS-232 port, you can communicate 

to its USB port with a USB-to- RS-232 converter. 

To do this, connect a PC’s RS-232 serial port to Power PMAC’s RS-232 serial port. Start a 

terminal utility program, such as HyperTerminal for Windows XP systems, or PuTTY for 

Windows 7 systems, telling it to use the connected COM port. The settings for Power PMAC’s 

serial port are: 

 115,200 baud 

 8 data bits, 1 stop bit 

 No parity 

 No handshake, no XON/XOFF flow control 

 

Turn on the Power PMAC, and wait for the command prompt to appear in the terminal window. 

Log in as “root”, then enter the password (“deltatau”) at the next prompt. Power PMAC will then 

transmit information to the terminal window, including the IP address. You can then use this 

address to establish Ethernet communications using the IDE or your communications program 

(and subsequently change this address if you wish). 
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Special Power-On/Reset Modes 

On power-on or reset, Power PMAC automatically checks any present USB memory sticks or SD 

memory cards for certain folder names. The existence of any of these folders at the top level 

forces the Power PMAC into a special mode (known as “recovery mode”) instead of the normal 

operational mode, which automatically boots and installs the project saved in flash memory. 

PowerPmacNoRTLoad Folder 

If a folder with the name “PowerPmacNoRTLoad” is present, Power PMAC will run as a generic 

Linux computer without loading the Power PMAC application. No files need to be present in this 

folder. 

PowerPmacFactoryReset Folder 

If a folder with the name “PowerPmacFactoryReset” is present, Power PMAC will start up in 

factory reset mode, equivalent to executing a $$$*** command. In this mode, the Power PMAC 

application will be loaded, but no saved project will be loaded into active memory from flash 

memory. All saved setup elements will be set to factory default values. No files need to be 

present in this folder. 

PowerPmacConfigLoad Folder 

If a folder with the name “PowerPmacConfigLoad” is present, Power PMAC will copy the 

project from the files and sub-folders available in this folder to Power PMAC’s own flash 

memory, replacing any existing project there. The project should be under the 

“/PowerPmacConfigLoad/usrflash” sub-folder. 

PowerPmacFirmwareInstallandConfigLoad Folder 

If a folder with the name “PowerPmacFirmwareInstallandConfigLoad” is present, Power PMAC 

will install the firmware for the Power PMAC application and copy the project from the files and 

sub-folders available in this folder to Power PMAC’s own flash memory, replacing any existing 

project there. The firmware should be in a file with a name like “powerpmac.deb” in the main 

folder. The project should be under the “/PowerPmacConfigLoad/usrflash” sub-folder. 

PowerPmacIp Folder 

If a folder with the name “PowerPmacIP” is present with no “interfaces” file in the folder, Power 

PMAC will automatically copy its internal interfaces file into this folder, along with a boot.log 

file. This is useful if the present IP address of the Power PMAC is not known. 

If a folder with the name “PowerPmacIP” is present with an “interfaces” file in the folder, Power 

PMAC will use the IP address in that file for communications instead of the address in Power 

PMAC’s internal interfaces file. 
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Power PMAC Commands 

The Power PMAC control application is fundamentally a command-driven device. You make 

Power PMAC do things by issuing it ASCII command text strings, and Power PMAC generally 

provides information to the host computer in ASCII text strings. Power PMAC provides a 

powerful, flexible, and easy-to-use Script language comprised of an extensive set of commands. 

There are two fundamental classes of Script commands to the Power PMAC control application: 

on-line commands, and buffered program commands. These two classes of commands are 

documented in separate chapters in the Software Reference Manual. It is very important to 

understand the distinction between these two types of commands. 

On-Line (Immediate) Commands 

Many of the commands given to Power PMAC are on-line commands; that is, they are executed 

immediately by Power PMAC, to cause some actions, change some variable value, or report some 

information back to the host. The command itself is discarded after executing (so cannot be listed 

back), although its effects may stay in the Power PMAC. These on-line commands provide a 

simple but powerful interactive interface, whether the user is typing in these commands directly, 

or the host computer is assembling and transmitting these commands automatically. 

Note that some on-line commands are also valid as buffered program commands, so if a program 

buffer is open when such a command is sent, the command will be stored in the buffer instead of 

being immediately executed. 

Types of On-Line Commands 

There are 4 basic types of on-line commands: 

1. Thread-specific commands, which only affect the action of subsequent commands on the 

same communications thread 

2. Motor-specific commands, which only affect the addressed or listed motor[s]. 

3. Coordinate-system-specific commands, which only affect the addressed or listed 

coordinate system[s]. 

4. Global commands, whose effect is the same regardless of any addressing modes. 

In the On-Line Commands chapter of the Software Reference Manual, each command is 

classified into one of these types under the “Scope” descriptor. 

Each type of command is discussed briefly below. 

Thread-Specific On-Line Commands 

In order to maintain truly independent communications among multiple communications threads, 

it is necessary for certain commands that affect the operation of subsequent commands only to 

affect commands in the same communications thread. For this reason, the addressing commands - 

#n for motors and &n for coordinate systems – as well as buffer open and close commands, 

affect only subsequent commands in the same thread. 
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For example, the IDE terminal window can modally address a certain motor and coordinate 

system, while the watch window, utilizing a separate communications thread, addresses a 

different motor and coordinate system. 

Motor-Specific On-Line Commands 

A motor is addressed in a communications thread with the #n command, where n is the motor 

number, with a legal range of 0 to Sys.MaxMotors - 1. This addressing is modal, so the motor 

remains addressed in this thread until another #n command addresses a different motor.  

It is therefore not required to precede each motor-specific on-line command with a motor 

addressing command. Working in terminal mode, you may type #1j+ to start Motor 1 jogging in 

the positive direction. You can then simply type j/ to stop this same motor, as Motor 1 is still the 

addressed motor in the thread. However, when generating motor-specific on-line commands in 

software for Power PMAC, you are strongly advised to address the motor before each command 

to avoid possible intervening changes in the modally addressed motor. 

Note that at power-on/reset, Motor 0 (#0) is addressed by default in all communications threads. 

Since this is generally not used as a real motor, it is usually necessary to explicitly address a 

motor before issuing any motor-specific commands. 

Motor-specific commands include the “action” commands – enabling, disabling, jogging, 

homing, open-loop output – and the “query” commands – requests for motor information such as 

position, velocity, and following error. 

It is possible to “list” multiple motors to be affected by a single on-line command. For example, 

#2,4,6hm starts homing-search moves on Motors 2, 4, and 6 simultaneously. When multiple 

motors are specified this way, the addressing is not modal; only the immediately following 

command is affected. (Contrast this with #2hm#4hm#6hm, which leaves Motor 6 as the modally 

addressed motor.) The #* command non-modally causes the immediately following motor-

specific command to affect all active motors on the Power PMAC. 

An on-line motor “action” command, such as jogging, homing, or open-loop output, is not 

permitted if the motor is assigned to an axis in a coordinate system that is running a motion 

program, even if the motion program is not directly commanding any axis assigned to that motor. 

Such a command will be rejected with an error. 

Coordinate-System-Specific On-Line Commands 

A coordinate system is addressed in a communications thread with the &n command, where n is 

the coordinate system number, with a legal range of 0 to Sys.MaxCoords - 1. This addressing is 

modal, so the coordinate system remains addressed in this thread until another &n command 

addresses a different coordinate system.  

It is therefore not required to precede each motor-specific on-line command with a motor 

addressing command. Working in terminal mode, you may type &1b5r to start Coordinate 

System 1 execution of motion program 5. You can then simply type q to stop motion program 

execution in this same coordinate system, as Coordinate System 1 is still the addressed coordinate 

system in the thread. However, when generating coordinate-system-specific on-line commands in 

software for Power PMAC, you are strongly advised to address the coordinate system before each 

command to avoid possible intervening changes in the modally addressed coordinate system. 
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Note that at power-on/reset, Coordinate System 0 (&0) is addressed by default in all 

communications threads. Since this is generally not used as a real coordinate system, it is usually 

necessary to explicitly address a coordinate system before issuing any coordinate-system-specific 

commands. 

Coordinate-system-specific commands include axis-definition commands (because motors are 

defined to an axis in a particular coordinate system), motion-program control commands, Q-

variable assignment and query commands (because Q-variables are specific to a coordinate 

system), coordinate-system buffer-management commands (for kinematic, rotary, and lookahead 

buffers) and axis query commands – requests for axis information such as position, velocity, and 

following error. 

It is possible to “list” multiple coordinate systems to be affected by a single on-line command. 

For example, &1..4a aborts programs and moves for Coordinate Systems 1 through 4 

simultaneously. When multiple coordinate systems are specified this way, the addressing is not 

modal; only the immediately following command is affected. (Contrast this with 

#1a#2a#3a#4a, which leaves Coordinate System 4 as the modally addressed coordinate 

system.) The &* command non-modally causes the immediately following coordinate-system-

specific command to affect all active coordinate systems on the Power PMAC. 

Global Commands 

The effect of some on-line commands does not depend on which motor or coordinate system is 

addressed. For instance, the command P1=1 sets the value of global variable P1 to 1 regardless 

of what is addressed. Among these global commands are the global buffer-management 

commands (motion-program, PLC program, and subprogram buffers), and the saving and 

resetting commands. 

Multiple-Variable Query and Setting Commands 

With on-line commands, it is possible to use a single command to query the values of multiple 

variables, or to set the values of multiple variables (to the same value). To do this, a “list” of 

variables is used in the command where typically a single variable name is used. 

For numbered variables (e.g. I, P, Q, M, L), the list can specify a continuous range (e.g. 

P100..199, or Q0..8191), or a set of evenly spaced variables (e.g. P100,10 or 

I122,5,100). In both cases, the starting variable is specified first. In the case of a continuous 

range, the number of the last variable in the continuous range is specified after two periods. In the 

case of a set of evenly spaced variables, the next value specified (after a comma) is the quantity 

of variables in the list, and the following value (after another comma) is the numerical spacing of 

the variables. If there is no following value, the spacing is taken to be 1. 

For indexed data structure elements, the list can specify a set of evenly spaced indices for the 

element (e.g. Motor[1].Servo.Kp,4 or Coord[2].ProgActive,6,2). The next value 

specified (after a comma) is the quantity of elements in the list, and the following value (after 

another comma) is the numerical spacing of the indices for the list. If there is no following value, 

the spacing is taken to be 1. 

Buffered Program Commands 

As their name implies, Power PMAC Script buffered program commands are not acted on 

immediately, but held (buffered) for later execution. Sending a buffered program command to 
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Power PMAC merely causes the command to be loaded into the open program buffer; the 

command will not actually be executed until that program is run. 

Power PMAC has many Script program buffers – 1023 regular motion program buffers, 1 rotary 

motion program buffer for each coordinate system, 1 forward-kinematic and 1 inverse-kinematic 

program buffer for each coordinate system, 32 PLC program buffers, and 1023 subprogram 

buffers. 

Before commands can be entered into a program buffer, that buffer must be opened (e.g. open 

prog 3, open plc 7, open subprog 1000, &3 open rotary). Note that buffered 

commands can only be entered into the buffer through the same communications thread that 

issued the open command. Only one communications thread at a time may have an open 

program buffer. 

With the exception of the rotary motion program buffers, the act of opening the buffer 

automatically clears the contents of the buffer, so the next buffered program command sent 

becomes the first command in the program buffer. For rotary motion program buffers, it is 

possible to add commands to follow the already loaded commands after a new open rotary 

command. If it is desired to clear the contents of a rotary motion program buffer, the clear 

rotary command should be issued. 

Note that some buffered program commands (e.g. P1=1) are also valid as on-line commands, and 

will be executed as such if sent when no program buffer is open on the communications thread. 

Note that some of these commands will have completely different actions as on-line or buffered 

commands. Other buffered program commands (e.g. X100Y100) are not valid as on-line 

commands; if such a command is sent when no program buffer is open on the communications 

thread, this command will be rejected with an error.  

Power PMAC Processing of Commands 

The Power PMAC control application receives a Script command – on-line or buffered program – 

as ASCII text embedded within one or more TCP/IP data packets. The command must be 

terminated with a “carriage-return” (CR) character (ASCII value 0D hex); this control character is 

what causes Power PMAC to interpret the preceding set of alphanumeric characters as a 

command and to take the appropriate action. 

None of the command reserved words or data-structure element names is case-sensitive in a 

Script command. (Note that data-structure element names are case-sensitive in C programs.) 

Comments 

Any characters in a command line after a double-slash (//) are considered comments, and are 

ignored by the Power PMAC. The IDE downloader treats all characters between “slash-star” (/*) 

and “star-slash” (*/) as comments and will not download them to Power PMAC. However, if 

Power PMAC receives these from another source, it will not recognize them as comments, and 

will try to interpret them as commands, leading to errors. 

Command Acknowledgement 

Power PMAC acknowledges commands with the ACK character (ASCII value 07 hex) – this 

character was shown as the “spade” figure in the terminal emulator examples above. (However, 
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the commands that restart the Power PMAC – $$$ (reset), $$$*** (re-initialize), and reboot 

– are not acknowledged with the ACK character.) 

If the command requires no data response, only the ACK character is sent. If the command does 

require a data response, this response comes before the ACK character. In this way, the ACK 

character acts as an “end-of-transmission” character for any Power PMAC command response, 

also indicating that any actions specified by the command have been executed. 

Data Response 

If the command does require a data response (i.e. an on-line “query” command), each item of the 

response is provided as ASCII text followed by a carriage-return character, forming a “line” of 

the response on a terminal screen. There can be multiple data response items, each followed by a 

carriage-return character, forming multiple lines in response to a single command. After the last 

line of the response, the ACK character is sent. 

Echo Mode in Data Response 

When the value of a variable or data structure element, or the definition of a pointer variable (I or 

M-variable), is queried, Power PMAC can either “echo” the query command as part of the 

response, or not. If the query command is echoed in the response, the response is of a form that 

could then be used as a command to set the value or definition. It also makes it obvious what 

command this is a response to. However, it does increase the length of transmission. 

For example, with echoing enabled, the query command: 

Motor[1].JogSpeed 

 

will create a response such as: 

Motor[1].JogSpeed=32 

 

With echoing disabled, the same query command will create a response such as: 

32 

 

Each communications thread (e.g. each window in the IDE) can have its own echo mode. Many 

users will want echoing enabled in the Terminal window, but not in the Watch window (where 

the command is already displayed). 

The echo mode for a communications thread is set by the echo n on-line command. The value 

n has a range of 0 to 15 with 4 independent control bits. 

Bit 0 (value 1) controls whether the command is echoed back in a query for the value of a data 

structure element. If the bit is set to 1, echoing is disabled. 

Bit 1 (value 2) controls whether the command is echoed back in a query for the value of a 

numbered variable. If the bit is set to 1, echoing is disabled. 

Bit 2 (value 4) controls whether the command is echoed back in a query for the definition of a 

pointer variable. If the bit is set to 1, echoing is disabled. 
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Bit 3 (value 8) controls whether the values of “bit-field” and “address” data structure elements are 

reported as hexadecimal or decimal numbers. If the bit is set to 1, they are reported in decimal. 

Bits 4, 5, and 6 control how data is reported in response to backup commands. Refer to the 

description of the echo{constant} command for details. 

The power-on default echo-mode value is 0, which enables echoing in all these queries, and 

reports bit-field and address element values in hexadecimal. IDE control windows have a saved 

echo-mode setting, which can be viewed or changed by right-clicking on the window, then 

clicking on “Properties”, “Control”, and “General”. 

Error Reporting for Commands 

If there is an error in the command, the Power PMAC will return an error message with error 

number and error type. For example: 

nonsensecommand 

stdin:3:1: error #20: ILLEGAL CMD: nonsensecommand 

motor[333].JogSpeed 

stdin:4:1: error #21: ILLEGAL PARAMETER: motor[333].JogSpeed 

 

The following table shows the implemented command error numbers and messages: 
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Error ID Error Message 

0..2 Reserved 

3 SYSTEM FILE NOT AVAILABLE 

4 Reserved 

5 SYSTEM LOAD CONFIG FILE 

6 SYSTEM SAVE CONFIG FILE 

7 SYSTEM SEMAPHHORES NOT AVAILABLE 

8 SYSTEM SHM NOT AVAILABLE 

9 SYSTEM RESET TIMEOUT 

10..19 Reserved 

20 ILLEGAL CMD 

21 ILLEGAL PARAMETER 

22 PROGRAM NOT IN BUFFER 

23 OUT OF RANGE NUMBER 

24 OUT OF ORDER NUMBER 

25 INVALID NUMBER 

26 INVALID RANGE 

27..30 Reserved 

31 COMPILE ERR 

32 BREAK POINTS SET 

33 BUFFER IN USE 

34 BUFFER FULL 

35 INVALID LABEL 

36 INVALID LINE # 

37 INVALID BRKPT 

38 PROGRAM RUNNING 

39 NOT READY TO RUN 

40 BUFFER NOT DEFINED 

41 BUFFER ALREADY DEFINED 

42 NO MOTORS DEFINED 

43 MOTOR NOT CLOSED LOOP 

44 MOTOR NOT PHASED 

45 MOTOR NOT ACTIVE 

46 COORD JOGGED OUT OF POSITION 

47 SERVO REQUEST ACTIVE 

48..49 Reserved 

50 MACRO COM TIMEOUT 

51 MACRO PORT NOT OPEN 

52 

MACRO RING SELECTED NOT AVAILABLE OR PPMAC NOT SYNCH 

MASTER 

53 MACRO NOT AVAILABLE, NO MACRO ICs 

54 MACRO ASCII REQUEST EXCEEDED BUFFER SIZE 

55 MACRO ASCII COM TIMEOUT 
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56 MACRO RING INTEGRITY IN FAILED STATE 

57 MACRO SYNC MASTER MUST HAVE STN=0 

58 MACRO ASCII COM IN USE BY ANOTHER THREAD 

59 MACRO MRO FILE OPEN OR READ ERR 

60..69 Reserved 

70 Struct Write Data Error 

71 Struct Write Undefined Gate Error 

72 Struct Write L Parameter Error 

73 Struct Write Index Error 

74 Struct Write Card ID Error 

75 Struct Write Error 

76 Write To Struct Address Error 

77 Struct Write Gate Part Number Error 

78..79 Reserved 

80 MODBUS SOCKET NOT CONNECTED 

81 MODBUS SOCKET BUSY 

82 MODBUS SOCKET SEND/RECV ERROR 

83 MODBUS SOCKET CREATE ERROR 

84 MODBUS SERVER EXCEPTION ERROR 

85 MODBUS SOCKET IN USE 

86 MODBUS SERVER RESPONSE FORMAT ERROR 

87 MODBUS SOCKET CONNECT ERROR 

88 MODBUS SERVER SOCKET LISTEN ERROR 

89..90 Reserved 

91 MACRO STATION: ILLEGAL(I,M,P,Q) DATA_TYPE 

92 MACRO STATION: ILLEGAL(I,M,P,Q) DATA_NUMBER 

93 Reserved 

94 MACRO STATION: REMOTE COM TIMEOUT 

95 MACRO STATION: ANOTHER STATION AT THIS ADDRESS 

96 UNKNOWN # & ERROR 
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POWER PMAC SYSTEM CONFIGURATION 

Power PMAC systems have extensive capabilities for automatically identifying and self-

configuring their systems. This is particularly important for Power UMAC systems, with their 

wide variety of configurations. These capabilities provide the user with ease of use and flexibility 

in getting started with a particular configuration. 

Processors (CPUs) 

Different Power PMAC platforms use a variety of processors. For many purposes, the differences 

between these processors are invisible to the user. However, there are a few reasons why it may 

be important to understand which CPU family is used. 

Power PC 

The first Power PMAC implementations have processors that use the Power PC architecture. 

These include the AMCC 460EX single-core CPU and the AMCC 465 (APM86xx) single or 

dual-core CPU. 

ARM 

Newer embedded Power PMAC controllers have processors that use the ARM architecture. These 

include the Freescale 1021A dual-core CPU and the Freescale 1043A quad-core CPU. 

X86 

Omron Industrial PCs (IPCs) with PMAC firmware installed have processors that use the “x86” 

architecture. This include the Intel i7 and Celeron CPUs. 

Memory 

Power PMAC systems use both active and non-volatile memory. It is important to understand 

how they work together. 

Active Memory (RAM) 

Power PMAC systems use standard double data rate (DDR) synchronous dynamic random-access 

memory (RAM) modules for active memory. The standard RAM capacity is 1 GB. In most Power 

PMAC products, larger capacities (usually 2 GB) are available as options. 

Non-Volatile Memory (Flash) 

The Power PMAC uses non-volatile flash memory to store information while electrical power is 

not applied. Specific user operations are required to write to flash memory. 

NOR flash 

Embedded Power PMACs use a NOR flash IC to store the Linux operating system. The user does 

not write to the NOR flash in any normal operation. 

NAND flash 

Power PMACs use NAND flash “solid-state disks” (SSDs) to store user application information 

when power is not applied. 
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Use of Memory in Power PMAC Applications 

It is important to understand how the active memory (RAM) and non-volatile memory (flash) are 

used in Power PMAC applications. The application is developed interactively as a “project” in 

the Integrated Development Environment (IDE) software running on a PC. 

Downloading the Project to Active Memory 

When you are ready to try the project on the Power PMAC, you “download” the project from the 

PC to the Power PMAC, or “build and download” if there are C routines or applications to be 

compiled as part of the project. 

The first step in this process simply copies the project files with Script commands from the PC 

into a directory (/var/ftp/usrflash) in Power PMAC’s RAM. If there are C routines or applications, 

the IDE cross-compiles them for the Power PMAC processor, and transfers the executable code 

files. The source code files are not transferred to the Power PMAC in the default project 

configuration. However, the project properties can be changed to include the source code files in 

the download 

The second step is to internally issue the PMAC Script commands (both on-line and buffered 

program) just as if they had been externally issued from the terminal command window. This can, 

and usually does, include commands to set the values of savable setup elements. The project is 

now ready for execution. 
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Power PMAC Project Download, Save, and Reset Processes 



Power PMAC User’s Manual 

Power PMAC System Configuration 60 

Saving the Project to Flash Memory 

If you wish to store your project to non-volatile memory so you can cycle power and not need to 

download again from the IDE, you can issue the save command. This first causes the present 

active values of all savable setup elements to be copied into a file in flash memory. Then all of 

the active project files in RAM are copied into a corresponding directory in flash memory. 

Note that if you transfer any programs, tables, etc. to the Power PMAC outside of the project (for 

example, a CNC “part program” that is only intended to be used temporarily), it will not be 

copied to flash memory in a save operation. 

Resetting the Power PMAC 

When Power PMAC is reset, either by cycling power or by a $$$ reset command, the saving 

process is essentially reversed. First, the saved values of the setup elements are copied back into 

their active registers. 

Second, the most recent set of project files that has been saved in flash memory is copied into the 

matching directory in active memory, just as it would have been in the download process from 

the PC IDE program. 

Third, the PMAC Script commands (on-line and buffered program) in these files are internally 

issued, just as in the download process. Note that if any of the on-line commands in a file set the 

value of a saved setup element, this will overwrite the value that was just copied directly from 

flash memory for that element. 

Re-Initializing the Power PMAC 

If the Power PMAC is re-initialized by a $$$*** command, the values of all saved setup elements 

are set to factory defaults, and no project is loaded into active memory. If there is a project stored 

in flash memory, it is not lost – it just is not loaded into active memory. It can subsequently be 

loaded into active memory on a normal reset. 

If there is an error on a normal power-on/reset event, including a change in the hardware 

configuration since the last save operation, the Power PMAC is re-initialized instead, just as with 

an explicit re-initialization command. A previously saved project is not loaded into active 

memory, but it is not lost. 

Physical Configuration Status Reporting 

On any power-up or reset, including re-initialization, the Power PMAC processor automatically 

queries all possible interface addresses to see what hardware configuration is present in the 

system. Information as to what is found is stored in software data structures that are accessible by 

the user. This information is used by smart setup software in the Integrated Development 

Environment (IDE) software to help guide the user through the setup choices that are possible 

within a given hardware configuration. It is also possible for the user to access this information 

directly, but this is generally not necessary for the execution of an application – it is mostly used 

for troubleshooting. 

General Configuration 

A Power PMAC system can report key aspects of its configuration to the user. Typically the best 

way to see this information is in the “CPU Information” window of the IDE’s Task Manager 

(selected from the “Tools” menu). A sample is shown here: 
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Sample IDE Task Manager CPU Information Window 

This window uses several basic query commands to obtain its information, such as cpu, type, 

vers, date, and free. 

Interface ICs Present 

Power PMAC will report the interface ICs (“Gates”) of each type that it has found in the 

following status data structure elements: 

 Sys.Gate1AutoDetect  DSPGATE1 PMAC2-style Servo ICs 

 Sys.Gate2AutoDetect  DSPGATE2 PMAC2-style MACRO ICs 

 Sys.Gate3AutoDetect  DSPGATE3 PMAC3-style machine interface ICs 

 Sys.CardIoAutoDetect  IOGATE (or equivalent) PMAC2-style I/O ICs 

 Sys.CardDPRAutoDetect Dual-ported RAM ICs 

 

Each of these variables is a bit field. Bit i of the variable is set to 1 if the IC of that index number 

has been detected, to 0 if it has not. For example, if Sys.Gate1Autodetect had a value of $150, 

where bits 4, 6, and 8 were set to 1, this means that DSPGATE1 IC represented by data structures 

Gate1[4], Gate1[6], and Gate1[8] were detected, and no others. 

Note that the old ACC-11E UMAC digital I/O card cannot be auto-detected by the processor, 

even though it has an IOGATE IC, because it lacks the circuitry required for auto-detection. 

Interface IC Addresses 

In addition, Power PMAC will report the offset from the start of memory-mapped I/O (which is 

found in Sys.piom) of the base address of each interface IC it finds in the following status data 

structure elements: 
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 Sys.OffsetGate1[i]  Base address offset of Gate1[i] DSPGATE1 IC 

 Sys.OffsetGate2[i]  Base address offset of Gate2[i] DSPGATE2 IC 

 Sys.OffsetGate3[i]  Base address offset of Gate3[i] DSPGATE3 IC 

 Sys.OffsetCardIo[i]  Base address offset of I/O IC 

 Sys.OffsetCardDPR[i]  Base address offset of dual-ported RAM IC 

 

These address offsets can be useful for creating pointer variables in C to hardware registers in the 

ICs. The (absolute) register address is the sum of Sys.piom, this base address offset, and the 

register offset from this base (which can be found in the Power PMAC ASIC Register Element 

Addresses chapter of the Software Reference Manual). A value of 0 is reported for any IC not 

found. 

Note that many of the PMAC2-style digital I/O cards can be represented by the GateIo[i] data 

structure, but the analog I/O cards cannot. They must be represented by their own data structures, 

such as Acc28E[i], Acc36E[i], and Acc59E[i]. 

Interface IC Configuration Information 

For each interface IC auto-detected, Power PMAC will provide information in data structure 

elements about the hardware configuration present with the IC, as each type of IC can be used in 

several different configurations: 

For PMAC2-style ICs, these status elements are: 

 Gaten[i].PartNum  Accessory 6-digit Delta Tau part number 

 Gaten[i].PartOpt  Option code for accessory configuration 

 Gaten[i].PartRev  Revision number of accessory 

 Gaten[i].PartType  Interface class of accessory 

 

Here, n is ‘1’ for DSPGATE1 ICs, ‘2’ for DSPGATE2 ICs, and ‘Io’ for IOGATE ICs. The same 

status elements are available for the Acc28E[i], Acc36E[i], and Acc59E[i] analog I/O structures. 

For PMAC3-style ICs, these status elements are: 

 Gate3[i].PartNum  Accessory 6-digit Delta Tau part number 

 Gate3[i].PartOptn  Option code for accessory component n configuration 

 Gate3[i].PartRev  Revision number of accessory 

 Gate3[i].PartType  Interface class of accessory 

 

Change in Configuration 

If, during the auto-detection process at power-on/reset, the Power PMAC CPU discovers that the 

physical configuration is different from the configuration that was present the last time a save 

command was issued to store configuration and project information to non-volatile flash memory, 

it will automatically set the Sys.HWChangeErr status bit and re-initialize the system to factory 

defaults. 

This detection of a configuration change can occur if a card has been added or removed, or if 

there is a hardware problem that prevents something in the configuration from being detected 

properly. The re-initialization is performed because it is very likely that the saved settings and 

project are no longer appropriate for safe and effective operation. 
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Power PMAC System Clock Source 

In a Power PMAC system, the system phase and servo clocks, which interrupt the processor and 

latch key input and output data for the servos, come from one (and only one) of the Servo ICs or 

MACRO ICs in the system. There must be a unique source of the phase and servo clocks for an 

entire Power PMAC system. This section explains how to specify that clock source. A later 

section of this chapter, Setting System Clock Frequencies, explains how to set the frequencies 

once the source has been determined. 

CPU Self Clocking 

Note that in a system with no Servo or MACRO ICs, it is possible to have the processor generate 

its own timer-based interrupts. This can be used for network-based servo interfaces such as 

EtherCAT, or for simulation purposes. Saved setup element Sys.CpuTimerIntr should be set to 

1 in this case. 

The CPU cannot output servo or phase clock signals, so if there are Servo ICs and/or MACRO 

ICs in this setting, their hardware operation will not be synchronous to the software operation of 

the CPU. 

Default Clock Source 

The re-initialization (factory-default) source for these clock signals is appropriate in almost all 

applications. Only in specialized cases will another source be used. The Power PMAC Setup 

control in the Integrated Development Environment (IDE) software will walk you through the 

setup of the frequencies for the source selected (setting the frequencies is discussed in the next 

section). 

IC Clock Generation Facilities 

Each PMAC2-style Servo IC (DSPGATE1 IC), PMAC2-style MACRO IC (DSPGATE2 IC), and 

PMAC3-style machine-interface IC (DSPGATE3 IC with both servo and MACRO circuitry) has 

the capability for generating its own phase and servo clock signals, or for accepting external 

phase and servo clock signals. Only one of these ICs in a system may generate its own clock 

signals; the others must accept an external signal. 

Note that it is strongly recommended that all Servo and MACRO ICs in the system be set up for 

the same phase and servo clock frequencies as the IC that is generating the system clock signals. 

When these ICs are set up to receive external clock signals, they are still generating internal clock 

frequencies, but are pulled into synchronization with the external signals through phase-locked-

loop (PLL) circuits. Intermediate signals, such as those used in PWM generation, operate better if 

the PLLs are only making small corrections. 
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Power PMAC System Clock Generation Example 

Saved setup element Gaten[i].PhaseServoDir controls the “direction” of the clock signal for 

each of these DSPGATEn ICs. If the variable value is 0, the IC generates its own clock signals 

and outputs them. If the variable value is 3, the IC accepts the clock signals from a source 

external to it. Only one of these ICs can have this variable at a value of 0; the rest must be set to 

3. 

Note 

If more than one of these ICs is set up to use its own clock 

signals and to output them, the processor will be interrupted by 

multiple sources and will not operate normally – it is possible 

that the watchdog timer will trip. (Because the outputs are 

open-collector types, there will be no hardware damage from 

signal contention, but system software operation will be 

compromised.) 

 

EtherCAT Network Distributed Clocks 

If the Power PMAC is commanding servo drives over an EtherCAT network, the network must 

be put in “distributed clock” (DC) mode to keep the controller and the drives fully synchronized. 

Otherwise, the different devices on the network will gradually drift apart over time because each 

device’s reference frequency will be slightly different. This drift can manifest itself as periodic 

glitches in the motion each time the drift goes past a full network cycle. 

With the Etherlab EtherCAT stack (Sys.EcatType = 0), ECAT[i].DistrClocks must be set to 1 to 

enable DC mode. With the Acontis EtherCAT stack (Sys.EcatType = 1), the EtherCAT Network 

Information (ENI) initialization file created by the configuration program must contain the 

command to enable DC mode. 

Shift Mode Selection 

In DC mode, one of the devices on the network is configured to provide the reference clock, and 

the other devices must be configured to adjust their own clock settings to maintain 
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synchronization. If the reference device is the EtherCAT master (Power PMAC), all of the slaves 

must adjust; this is called “bus shift mode”. If the reference device is one of the slaves, the master 

must adjust; this is called “master shift mode”. 

In most configurations, either bus shift or master shift mode can be used. However, some 

EtherCAT slave devices do not synchronize properly in one or the other mode, and this can force 

the user to choose a particular mode for the network. If Power PMAC is the master on multiple 

EtherCAT networks simultaneously, all of the networks must be operated in bus shift mode. 

Bus Shift Mode 

In bus shift mode, all of the slave devices must be configured to adjust their clock settings 

dynamically; each type of device has its own particular details for configuration. Power PMAC 

must be configured for bus shift mode by setting ECAT[i].DCRefMaster to 1. In this mode, 

none of the clock adjustment settings in Power PMAC is used. 

Master Shift Mode 

Power PMAC is configured for master shift mode by setting ECAT[i].DCRefMaster to 0. It also 

must be configured to specify which slave it gets its synchronization signal from. With the 

Etherlab stack, ECAT[i].DCRefSlave must be set to the number of the slave. With the Acontis 

stack, the initialization file created by the configuration program must specify the slave. 

In master shift mode, the Power PMAC must be set up to specify how it will adjust its servo 

clock frequency to stay synchronized to the reference slave. There are two adjustment methods. 

The first method is a PID feedback algorithm that has variable adjustments each cycle. The 

second method is a hysteresis loop with a fixed adjustment rate outside of a deadband. 

Both of these methods can be used whether the servo clock is generated by a Servo or MACRO 

ASIC, or by the processor itself. If the servo clock is generated by a DSPGATE1 or DSPGATE2 

IC, the value in Gaten[i].PwmPeriod is adjusted. If the servo clock is generated by a 

DSPGATE3 IC, the value in Gaten[i].PhaseFreq is adjusted. If the servo clock is generated 

inside the processor, the value in an internal timer register (originally set from Sys.ServoPeriod) 

is adjusted. 

The PID algorithm is selected by setting the proportional (P) gain term ECAT[i].DCKp greater 

than 0.0. Then the integral (I) gain term ECAT[i].DCKi, derivative (D) gain term 

ECAT[i].DCKd, integration limit ECAT[i].DCiLimit, and maximum correction 

ECAT[i].DCMaxAdjust are used as well. The default settings of these terms work well for most 

configurations. 

The hysteresis loop is selected by setting ECAT[i].DCKp to 0.0 (not its default). Then the fixed 

adjustment rate terms ECAT[i].DCRefPlus and ECAT[i].DCRefMinus, and deadband 

ECAT[i].DCRefBand are used. The default settings of these terms work well for most 

configurations. 

Distribution of Clock Signals 

Whatever the source of the phase and servo clock signals, these signals must be available to the 

processor and all Servo ICs and MACRO ICs, plus any other circuits that use these signals in 

their functioning (such as I/O cards that are used for parallel or serial feedback). Note that the 

“hardware clock” signals – the DAC clock, ADC clock, encoder sample clock, and PFM clock – 

are generated locally inside each Servo IC and MACRO IC, and are not shared between ICs. 
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In Power UMAC systems, the phase and servo clocks are shared across the “UBUS” backplane 

board in differential format among the different 3U-format cards inserted into that backplane. 

Each card has differential buffer ICs for these signals as they interface to the backplane. On cards 

that are potential sources of the phase and servo clock signals, such as the ACC-24E/C axis 

boards or the ACC-5E MACRO board, these buffers can be configured as either inputs or 

outputs. 

On each UMAC board with a PMAC2-style Servo IC that could be a clock source, there is a 

jumper that controls the configuration of the clock-direction buffers. In one setting, the board can 

only input the clock signals. This setting is required for the older UMAC MACRO, in which the 

clock signals always come from the MACRO interface board. It is permissible, but not 

recommended, for boards in UMAC Turbo systems that will be not be generating their own phase 

and servo clock signals. This setting is not permissible for the UMAC board that is generating the 

system phase and servo clocks. 

In the other setting (the factory default setting), the direction of the clock-signal buffers can be 

reversed by the CPU. This setting is required for the board that is generating the system clocks; it 

is recommended for the other boards as well (so the source can be changed without moving any 

buffers). At power-up/reset, the CPU will configure the buffers the board containing the Servo IC 

or MACRO IC that is specified by the saved configuration to generate the system clocks as 

outputs to the UBUS backplane; it will configure the buffers on all other boards to be inputs from 

the UBUS backplane. 

Re-Initialization Clock Actions 

On re-initialization of a Power PMAC system with the $$$*** command, the CPU searches all 

possible locations of Servo ICs and MACRO ICs to see which are present. It selects one as the 

clock source based on the following priority: 

1. Lowest-numbered PMAC3-style IC MACRO interface found 

2. Lowest-numbered PMAC2-style IC MACRO interface found 

3. Lowest-numbered PMAC3-style IC Servo or I/O interface found 

4. Lowest-numbered PMAC2-style IC Servo interface found 

 

It will set the Gaten[i].PhaseServoDir element for this IC to 0, and for all of the other ICs to 3. 

The global status element Sys.ClockSource indicates the type and index of the selected IC. 

Normal Reset Clock Actions 

On a normal power-up or reset sequence, the Power PMAC CPU reads the configuration 

information that was previously saved to flash memory and sets the Gaten[i].PhaseServoDir 

elements for each IC to the appropriate value. If there are bi-directional clock-signal buffers 

whose directions need to be set, the CPU will automatically do this as well. 

If the hardware configuration the CPU finds on power-up/reset is not the same as that in the last 

valid saved configuration, the Power PMAC will come up in an error condition, setting global 

status bit Sys.HWChangeErr to 1. In this case, the user must make the software system 

configuration match the new hardware configuration (usually by using the $$$*** re-

initialization command), save this configuration, and reset the system before proceeding. 
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If the CPU does not receive phase and servo clock signals after it configures the Servo and 

MACRO ICs and bi-directional clock buffers, it will come up in an error condition not permitting 

control, and set global status bit Sys.NoClocks to 1. 

Changing the Clock Source from Default 

In the rare event it is desired to select a clock source that is different from that automatically 

selected on system re-initialization, a simple procedure can be followed. This entails changing 

directions of the clock signals of the old and new source ICs. This must be done with multiple 

commands on a single command line, so there is no period when there is a double clock source or 

no clock source, either of which could cause a watchdog timer trip. 

The change involves changing the setting of Gaten[i].Chan[j].PhaseServoDir for the default 

source from 0 to 3 and for the new source from 3 to 0. In addition, for any PMAC2-style 

DSPGATE1 IC (as on an ACC-24E2x board) or DSPGATE2 IC (as on an ACC-5E board), a 

separate parameter Cid[x].Dir must be changed as well to turn around the direction of an external 

bi-directional buffer IC. (This is done automatically with PMAC3-style DSPGATE3 ICs.)  

Cid[x].Dir must be set to 0 when the IC is not a source, so it can accept the clock signals as 

inputs, and to 1 when the IC is a source, so it can output the clock signals. The Software 

Reference Manual chapter Power PMAC I/O Address Offsets has a table of the x index values for 

all Gaten[i] IC values. The most commonly used are Cid[2] for Gate1[4] and Cid[4] for 

Gate2[0]. 

For example, to change the clock source from an ACC-5E at Gate2[0] to an ACC-24E3 at 

Gate3[0], the following command line could be used: 

Gate3[0].PhaseServoDir=0 Gate2[0].PhaseServoDir=3 Cid[4].Dir=0 

 

These changes must be saved to maintain the settings through a reset or power cycle. After this, 

global status element Sys.ClockSource should reflect the IC you have chosen as the source of the 

system clocks. (If it reports a negative value, you have multiple clock sources, and you must 

correct this before you can continue.) 
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Setting System Clock Frequencies 

The phase clock and servo clock signals set the “heartbeat” for the entire Power PMAC system, 

synchronizing both hardware and software operations. While the factory default frequencies – 

9.04 kHz for the phase clock and 2.26 kHz for the servo clock – are suitable for most 

applications, some applications will either require changes, or could benefit from changes in one 

or both of these frequencies. Factors that go into the decision as to what frequencies to select are 

covered in the chapters on commutation and servo-loop closure. In general, higher frequencies 

can lead to higher performance (although there are points of diminishing returns, and other 

system limitations can cap performance no matter how fast the Power PMAC is running), at the 

cost of increase processor usage 

Phase and Servo-Clock Hardware Tasks 

The hardware tasks that are driven by the phase and servo clock signals include: 

 Latching of encoder counters (phase and servo clocks) 

 Latching of parallel feedback registers (phase or servo clock) 

 Strobing of serial encoders and latching of resulting data (phase or servo clock) 

 Strobing of A/D converters and latching of resulting data (phase clock) 

 Output to D/A converters (phase clock) 

 Output to PWM circuits (phase clock) 

 Communication over MACRO ring (phase clock) 

 

Phase-Clock Software Tasks 

The software tasks that are driven by the phase clock signal include: 

 “Servo-in-phase” updates: sub-interpolation and loop closure for fast-tools 

 Digital current loop closure 

 Motor phase commutation 

 Demuxing of muxed A/D converters 

 Phase data gathering 

 

Note that there are no phase tasks executed on PMACs that do not support Servo or MACRO ICs 

(e.g. CK3Es, IPCs). 

 

Servo-Clock Software Tasks 

The software tasks that are driven by the servo clock signal include: 

 Encoder conversion table pre-processing 

 Trajectory (fine) interpolation 

 Position following (electronic gearing) calculations 

 Compensation table and cam table update 

 Position/velocity loop closure 

 Motor commanded move (jog) equation calculations 

 Motor status/error checks: following error, desired velocity zero, in position 

 EtherCAT cyclic data transfers (if enabled) 

 Servo data gathering 
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While most users do not need to know the specific order of tasks within the servo interrupt, 

advanced users, especially those writing custom algorithms, may find this information useful. The 

order of tasks is: 

1. For Etherlab EtherCAT stack (Sys.EcatType = 0), EtherCAT cyclic input transfers (if 

enabled), loading input data including servo feedback into ECAT[i].IO[k].Data memory 

holding elements. 

 

For Acontis EtherCAT stack (Sys.EcatType = 1), no transfers are done at this time. 

2. Encoder conversion table pre-processing of feedback and master data, starting with the 

entry whose index is specified by Sys.FirstEnc and continuing in numerical order until 

the first entry with EncTable[n].type = 0. 

3. Update raw actual positions (Motor[x].Pos, Pos2) for all active motors, from lowest to 

highest numbered. For each: 

a. Read encoder conversion table results and add into previous cycle’s position 

b. Update buffers for filtered velocity calculations 

 

4. Update cam table and compensation table outputs for all active tables 

5. Update commanded position for all active motors, from lowest to highest numbered. For 

each: 

a. Compute master position following, if enabled 

b. If pending motor move command (jog or home), calculate trajectory equations 

c. Update computed move trajectory 

d. Execute trajectory pre-filter if enabled 

e. Store combined and filtered value into Motor[x].DesPos 

 

6. Servo loop update for each active motor, from lowest to highest numbered. For each: 

a. Add in compensation and backlash position corrections to raw actual positions to 

get net actual positions Motor[x].ActPos, ActPos2 

b. Compute intermediate values Motor[x].PosError, DesVel, ActVel for servo 

algorithm 

c. Update status for following error, desired-velocity-zero, and in-position 

d. Call selected (built-in or custom) servo algorithm 

e. Offset and clamp returned servo output value as needed 

7. Update time-base (%) value for each active coordinate system, from lowest to highest 

8. For Etherlab EtherCAT stack (Sys.EcatType = 0), EtherCAT cyclic output transfers (if 

enabled), transmitting output data including servo commands from ECAT[i].IO[k].Data 

memory holding elements over the network. 

 

For Acontis EtherCAT stack (Sys.EcatType = 1), EtherCAT cyclic input transfers (if 

enabled), loading input data including servo feedback into ECAT[i].IO[k].Data memory 

holding elements. Then EtherCAT cyclic output transfers (if enabled), transmitting output 
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data including servo commands from ECAT[i].IO[k].Data memory holding elements 

over the network. 

9. Servo data gathering (if enabled) 

 

Real-Time Interrupt Software Tasks 

The “real-time interrupt” in Power PMAC is a software interrupt that occurs every 

(Sys.RtIntPeriod + 1) servo interrupts. At the end of the servo tasks for these cycles, the real-

time interrupt software tasks are performed. These include: 

 Foreground PLC and CPLC execution 

 Motion program move planning 

 Trajectory coarse interpolation (segmentation) 

 Kinematic transformations 

 Buffered lookahead calculations 

 Motor safety and status checks* 

o Hardware and software overtravel limit checks 

o Amplifier enable and fault handshaking 

o Encoder-loss and auxiliary-fault checks 

o Integrated current (I2T) checks 

o Brake release/engage delay calculations 

o Backlash compensation calculations 

o Triggered move trigger check and software position capture 

o General status updates 

 Coordinate system status updates 

 Watchdog timer update 

 

*Can specify the number of motors to execute these checks each RTI with Sys.MotorsPerRtInt. 

Phase and Servo Hardware and Software Synchronization 

In Power PMAC systems with Servo an MACRO Interface ICs, the hardware and software are 

very tightly coordinated to minimize delays between feedback and output, and to minimize the 

variation in delays as well. 

The following diagram shows how key phase and servo clock hardware and software tasks are 

coordinated: 
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Power PMAC Hardware/Software Synchronization 

Strobing and Latching Feedback Data 

Feedback data that can be read directly by the processor, such as incremental encoder counter 

data, is latched on the falling edge of the phase or servo clock signal. This edge is also the 

interrupt to the CPU, which will be able to use this data almost immediately in its software tasks. 

Feedback devices that provide data to the Power PMAC serially, such as serial-protocol encoders, 

serial ADCs, and the MACRO ring, must be strobed earlier than these interrupt-causing clock 

edges to provide time for the full data transfer before the interrupt, at which time the data is 

latched into processor-readable registers. Usually, these are strobed on the preceding rising edge 

of the phase clock, meaning that there is an added one-half phase cycle delay in using this data. 

Some of the serial encoder and serial ADC interfaces permit the strobing to be delayed somewhat 

past this clock edge, permitting a reduction the time delay before use at the CPU interrupt. The 

serial encoder interfaces permit the strobing to occur on the previous falling edge of the phase 

clock, or on either edge of the servo clock, if there is not enough time to transmit the data in one-

half phase cycle. 

Phase and Servo Software Execution 

On the falling edge of the phase clock signal, the CPU is interrupted and it starts executing its 

phase software tasks. The CPU is expecting that any feedback data be immediately available for it 

to read. The command outputs for each motor are written directly to the specified registers after 

they are computed. 

When the phase tasks are completed in any cycle where the servo clock signal is low, the servo 

software tasks immediately start. As each motor’s servo loop is executed, if the motor is not 

commutated by PMAC, its command output is written directly to the specified register at this 

time. (See arrows marked [1].) If the motor is commutated by PMAC, its command output is held 
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in memory for use by the commutation algorithm that starts in the next phase clock cycle. This 

value may be used as input to the commutation algorithm in multiple phase cycles. (See arrows 

marked [2].) 

Transmission of Command Data 

Command data, whether from a phase or servo task, that has been written to Delta Tau Servo and 

MACRO ICs is transferred from the CPU-addressed registers to the working circuitry on the 

rising edge of the phase clock signal. 

In virtually all applications, the phase tasks for all motors will complete before the rising edge of 

the phase clock, so there is only a one-half phase cycle delay from the start of computation to the 

start of transmission. If the phase tasks for any motor complete after this rising edge, the 

command values will not be transmitted until the next rising edge, resulting in a one-and-one-half 

cycle delay. (This is very rare.) 

In many applications, the servo tasks for all motors will complete before the first rising edge of 

the phase clock. In this case, for motors not commutated by PMAC, command transmission will 

start at this first rising edge. If there are the default 4 phase cycles per servo cycle, there will be a 

1/8-servo-cycle delay from the start of computation to the start of transmission. If the servo tasks 

for any motor not commutated by PMAC complete after this rising edge, the command values 

will not be transmitted until the next rising edge. With 4 phase cycles per servo cycle, this results 

in a 3/8-servo-cycle delay. 

For a motor commutated by PMAC, if the servo tasks for a motor are completed by the next 

falling edge of the phase clock, the servo command output is used as an input to the commutation 

algorithm in this next phase cycle. If the servo tasks for a motor are not completed by this edge, 

the servo command output will not be used until the following phase cycle. 

Background Tasks 

For “single-core” versions of the CPU, in the time available between cycles of the above tasks, 

the Power PMAC processor performs background tasks, both those controlled by Power PMAC’s 

scheduler, and independent applications running under the general-purpose operating system 

(GPOS). 

For “multi-core” versions of the CPU, in the default configuration, the interrupt-driven tasks 

listed above execute in one core, and the background tasks execute simultaneously in a separate 

core. 

The Power PMAC scheduled software tasks running in background include: 

 Background Script PLC programs 

 Background C PLC programs 

 General housekeeping and status updates 

 Watchdog timer reset 

 

In Power PMACs with “kernel mode” operation (UMAC, Clipper, Brick, CK3M), each 

background cycle, Power PMAC repeats a loop of executing one scan of one active background 

Script PLC program, then one scan of all active background C PLC programs until all of the 

active background Script PLC programs have executed, followed by one pass of the background 

housekeeping and status update tasks. 
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In Power PMACs with “Posix mode” operation (CK3E, Sysmac IPC, NJ/NX PLC), each 

background cycle, Power PMAC repeats a loop of executing one scan of one active background 

Script PLC program, followed by one pass of the background housekeeping and status update 

tasks. 

In either case, when a background cycle is complete, the Power PMAC background scheduler 

“sleeps” for an interval to provide time for independent applications and GPOS tasks (including 

the “gpascii” communications threads) to run. The “sleep” interval is set by saved setup 

element Sys.BgSleepTime, and can range from 0.25 milliseconds to 10.0 milliseconds, with a 

default of 1.0 millisecond. 

  



Power PMAC User’s Manual 

Power PMAC System Configuration 74 

This diagram shows the background process flow for “kernel mode” Power PMACs: 
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“Kernel Mode” Power PMAC Example Background Cycle 

This diagram show the background process flow for “Posix mode” Power PMACs: 
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“Posix Mode” Power PMAC Example Background Cycle 
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Multi-Tasking Example 

The following time-line drawing provides an example of how a single-core Power PMAC 

processor allocates time for different tasks. The top line shows one phase cycle, with the phase 

tasks highlighted in red at the beginning of the cycle, immediately following the interrupt. The 

second line shows a servo cycle, with the servo tasks highlighted in blue occurring after the 

higher-priority phase tasks have finished. 

The third line shows a real-time interrupt cycle, with the RTI tasks highlighted in green occurring 

after the higher-priority phase and servo tasks have finished. The last line shows a background 

cycle (which is not a fixed-time cycle like the above cycles are), with the background tasks 

highlighted in yellow occurring when all the interrupt tasks have finished. 
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Example Power PMAC Multi-Tasking Time Line (Single Core) 

Multiple-Core Task Assignments 

Power PMACs with multiple CPU cores can run multiple tasks simultaneously on different cores, 

substantially increasing the total computational capability of the processor. 

In a dual-core CPU, the core executing the interrupt tasks is idle during the periods where a 

single-core CPU would be executing background tasks (yellow in the above example). The other 

core will be executing background tasks concurrently. 
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This next time-line drawing shows how time is allocated for different tasks on a dual-core 

processor with the default task assignments. This diagram is the equivalent of the last line of the 

single-core time line above. 
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Example Power PMAC Multi-Tasking Time Line (Dual Core) 

Power PMACs with Dual Core ARM CPUs (LS1021A) and Quad Core ARM CPUs (LS1043A) 

permit the user to change the task assignments from the default configuration through the IDE. 

Note, however, that the default configuration is appropriate for the large majority of applications, 

so the assignments should be changed only if the default is found to be not appropriate. See the 

section “Task Priority Duty Cycles” below for information on analyzing these cases. 

The IDE control for assigning tasks to cores is shown below for the Quad Core CPU. If the 

configuration is changed, a full reboot or power cycling is required to implement the change. 

 

Using the IDE to Set Phase and Servo Clock Frequencies 

It is possible to use the IDE to set the phase and servo clock frequencies without the need to 

understand the underlying mechanisms that control the frequencies. From the top menu of the 

IDE, select “Tools”, then “System Setup”. A window like the following will appear: 
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IDE System Setup Global Clock Setting Control 

In this window, you can enter your desired phase-clock frequency directly in kilohertz (kHz). For 

the servo-clock frequency, which must be derived from the phase-clock frequency, you must 

choose from the pick list of possible frequencies. The PWM frequencies of hardware that can 

generate pulse-width-modulated signals can also be selected from a pick list by right-clicking on 

the hardware name. Once you have entered the settings you want, click on the “Accept” button on 

the right to load the appropriate settings into the Power PMAC. 

The following sections explain how to make these settings manually and directly, both for 

understanding and to permit other avenues for specifying these settings. 

Setting Phase and Servo Clock Frequencies in PMAC2-Style ICs 

In a PMAC2-style Servo or MACRO IC, the internally generated phase and servo clock 

frequencies are determined by the setting of three saved setup elements for the IC: 

 Gaten[i].PwmPeriod 

 Gaten[i].PhaseClockDiv 

 Gaten[i].ServoClockDiv 
 

In this description, n is 1 for a DSPGATE1 Servo IC, or 2 for a DSPGATE2 MACRO IC. 

The following figure shows the block diagram for the circuits that generate these clock signals, as 

well as the “hardware clock” signals in a PMAC2-style IC. 
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PMAC2 Gate Array IC Clock Control
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Gaten[i].PwmPeriod: MaxPhase Clock Frequency Control 

As the name suggests, Gaten[i].PwmPeriod sets the period of the PWM cycle in the IC, to a time 

proportional to its value. The frequency is, of course, inversely proportional to the period. But it 

also sets the period of the internal “MaxPhase” clock signal, which is always ½ of the PWM 

cycle period – so its frequency is twice the PWM frequency. Even if you are not using PWM 

signals from the IC, the setting of this element is important. 

To set Gaten[i].PwmPeriod for a desired “MaxPhase” clock frequency, the following formula 

can be used: 

1
)(*2

)(8.964,117
].[ 

kHzeqMaxPhaseFr

kHz
PwmPeriodiGaten  

Gaten[i].PhaseClockDiv: Phase Clock Frequency Control 

From the internal “MaxPhase” clock signal, the phase clock signal is generated with a frequency 

divider circuit that is controlled by Gaten[i].PhaseClockDiv. The phase clock frequency is equal 

to the “MaxPhase” clock frequency divided by (Gaten[i].PhaseClockDiv + 1). 

The equation for Gaten[i].PhaseClockDiv is: 
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1
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)(
].[ 

kHzPhaseFreq

kHzeqMaxPhaseFr
DivPhaseClockiGaten  

At the default value of 0 (divide by 1) and the default MaxPhase frequency of 9.04 kHz, this sets 

a phase clock frequency of 9.04 kHz (110 μsec period). 

Gaten[i].ServoClockDiv: Servo Clock Frequency Control 

From the phase clock signal, the servo clock signal is generated with a frequency divider circuit 

that is controlled by Gaten[i].ServoClockDiv. The servo clock frequency is equal to the phase 

clock frequency divided by (Gaten[i].ServoClockDiv + 1). 

The equation for Gaten[i].ServoClockDiv is: 

1
)(

)(
].[ 

kHzServoFreq

kHzPhaseFreq
DivServoClockiGaten  

At the default value of 3 (divide by 4) and the default phase clock frequency of 9.04 kHz, this sets 

a servo clock frequency of 2.26 kHz (442 μsec period). 

The following diagram shows the relationship between the PWM counter, whose 

period/frequency is set by the Gaten[i].PwmPeriod parameter, the resulting MaxPhase clock 

signal, and the phase and servo clock signals that are derived from MaxPhase. 
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Setting Phase and Servo Clock Frequencies in PMAC3-Style ICs 

In a PMAC3-style “DSPGATE3” machine-interface IC, the internally generated phase and servo 

clock frequencies are determined by the setting of two saved setup elements for the IC: 

 Gate3[i].PhaseFreq 
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 Gate3[i].ServoClockDiv 
 

 

Note 

Sys.WpKey must be set to $AAAAAAAA in order to enable 

changes to Gate3[i] setup elements. While the IDE does this 

automatically for its interactive controls that set these elements, 

if you set them directly through commands, you must explicitly 

set this key value. 

 

The following figure shows the block diagram for the circuits that generate these clock signals, as 

well as the “hardware clock” signals in a PMAC3-style IC. 
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PMAC3 IC Clock Generation Circuitry 

Gate3[i].PhaseFreq: Phase Clock Frequency Control 

In the DSPGATE3 IC, the phase clock frequency is generated directly from a 300 MHz clock 

signal as controlled by the saved setup element Gate3[i].PhaseFreq. This element is a floating-

point value, expressed directly in Hertz (not kHz!). The default value of 9035.69 sets a frequency 

of approximately 9.04 kHz. 

If the IC is generating its own phase clock, it is possible for it to output a phase clock signal to the 

system that is 2, 4, or 8 times the frequency that it uses internally, as controlled by saved setup 

element Gate3[i].PhaseClockMult. The internal frequency is multiplied by a value of 

(2^Gate3[i].PhaseClockMult) to obtain the output frequency. At the default value of 0, the 

output frequency is the same as the internal frequency, and this should only be changed for 
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specialized systems, generally those that require a very wide range of PWM frequencies from 

different ICs. 

If the IC is accepting an external phase clock, it is possible for it to divide down this frequency 

for internal use by a factor of 2, 4, or 8, as controlled by saved setup element 

Gate3[i].PhaseClockDiv. The external frequency is divided by a value of 

(2^Gate3[i].PhaseClockDiv) to obtain the internal frequency. At the default value of 0, the 

internal frequency is the same as the input frequency, and this should only be changed for 

specialized systems, generally those that require a very wide range of PWM frequencies from 

different ICs. 

Note that in the DSPGATE3 IC, the channel PWM frequencies are derived from the phase clock 

frequency, whereas in the older PMAC2-style ICs, the phase clock frequency is derived from the 

(common) PWM frequency. In the DSPGATE3 IC, a channel’s PWM frequency is determined by 

Gate3[i].Chan[j].PwmFreqMult, and can range from 0.5 to 3.5 times the phase clock frequency. 

Gate3[i].ServoClockDiv: Servo Clock Frequency Control 

From the phase clock signal, the servo clock signal is generated with a frequency divider circuit 

that is controlled by Gate3[i].ServoClockDiv. The servo clock frequency is equal to the phase 

clock frequency divided by (Gate3[i].ServoClockDiv + 1). 

The equation for Gate3[i].ServoClockDiv is: 

1
)(

)(
].[3 

kHzServoFreq

kHzPhaseFreq
DivServoClockiGate  

At the default value of 3 (divide by 4) and the default phase clock frequency of 9.04 kHz, this sets 

a servo clock frequency of 2.26 kHz (442 μsec period). 

Clock-Related Software Settings 

There are several software setup elements related to the phase and servo clock settings. 

Sys.PhaseCycleExt: Phase Cycle Extension 

In the Power PMAC, it is possible to skip hardware phase clock cycles between consecutive 

executions of the phase update software. Power PMAC will execute the phase update software – 

mainly phase commutation and current-loop closure – every (Sys.PhaseCycleExt + 1) phase 

clock cycles. The default value of Sys.PhaseCycleExt is 0, so normally Power PMAC executes 

the phase update software every cycle of the hardware phase clock. 

If the Power PMAC is closing the current loop for direct PWM control over the MACRO ring, it 

is desirable to have two hardware ring update cycles (which occur at the hardware phase clock 

frequency) per software phase update. This eliminates one ring cycle of delay in the current loop, 

which permits higher gains and performance. To do this, the phase clock frequency would be set 

twice as high as the desired current-loop closure frequency (e.g. 18 kHz vs. 9 kHz), and 

Sys.PhaseCycleExt would be set to 1. 

Sys.PhaseOverServoPeriod: Ratio of Phase to Servo Period 

If a Power PMAC motor has been set up to close its servo loop under the phase interrupt by 

setting bit 3 (value 8) of Motor[x].PhaseCtrl to 1, it must compute a new desired position every 

software phase update with a “sub-interpolation” algorithm from the desired positions computed 
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in the servo update. To do this, it must know what fraction of the servo update period the phase 

update period is. Global saved setup element Sys.PhaseOverServoPeriod must be set to specify 

this properly. For example, at the default setting where the phase update frequency is 4 times the 

servo update frequency, Sys.PhaseOverServoPeriod would be set to 0.25 (1/4). If no motor is 

closing its servo loop under the phase interrupt, this parameter is not used. 

Sys.ServoPeriod: Servo Update Time Parameter 

Once the period/frequency of the phase and servo clock signals is set, the user must tell the Power 

PMAC what the scaled time period of the servo clock signal is. This numeric value is used in the 

trajectory interpolation algorithms as the (nominal) time update value between consecutive servo 

cycles. Saved setup element Sys.ServoPeriod must contain this value in units of milliseconds. 

Unless the processor is generating its own interrupts internally (Sys.CpuTimerIntr = 1), this 

parameter does not control the servo update period, it merely notifies the interpolation software 

what this period is. The default value of Sys.ServoPeriod matches the default settings for the 

servo update period in the Gaten[i] data structures. 

Motor[x].Stime: Motor Servo-Loop Closure Extension 

It is possible to extend the time between consecutive servo loop closures for an individual motor 

by setting Motor[x].Stime to a value greater than 0. The motor skips this many servo interrupt 

periods between consecutive loop closures, so closes its loop every (Motor[x].Stime + 1) servo 

interrupt periods. This feature is valuable for actuators with very slow dynamics. This is 

discussed in more detail in the Setting Up the Servo Loop chapter of the User’s Manual. 

Sys.RtIntPeriod: Real-Time Interrupt Period 

The real-time interrupt (RTI) is the next lower priority after the servo interrupt. The period is an 

integer multiple of the servo period – it executes every (Sys.RtIntPeriod + 1) servo periods. At 

the default setting, it occurs every third servo period. The main tasks performed in the real-time 

interrupt are motion program calculations and foreground PLC (script and C) program 

calculations. It also decrements the watchdog timer counter each RTI period, and this must 

happen more than 40 times per second to avoid a watchdog timer trip. 

Sys.MotorsPerRtInt: Number of Motors Checked per RTI 

By default, Power PMAC will perform a safety and status update for each active motor every 

real-time interrupt, checking for issues such as overtravel limits, amplifier faults, encoder loss, 

and integrated current limits. This checking can often take 0.5 microseconds or more per motor 

per RTI. 

In applications with very high RTI frequencies, typically for very high move block rates, this 

frequency of checking is not needed and can consume a noticeable percentage of CPU time. 

Setting Sys.MotorsPerRtInt (new in V1.6 firmware, released 1st quarter 2014) to a value greater 

than 0 means that only the specified number of motors will be checked each RTI. This parameter 

provides the user with additional flexibility in allocating CPU time in demanding applications. 

Setting the Phase and Servo Clock Period in the CPU 

If there are no DSPGATEn ICs in the Power PMAC system to generate system phase and servo 

clocks to interrupt the processor, the processor can be set up to generate its own interrupt 

internally. This is done by setting saved setup element Sys.CpuTimerIntr to 1. (At the default 

value of 0, the processor is expecting to receive external clock signals from an IC.) In this mode, 

Sys.ServoPeriod actually sets the period/frequency of the phase and servo updates (which are the 

same), rather than just reporting a value to the interpolation routines. 
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This mode of operation is used when the Power PMAC is commanding servo drives over a 

network such as EtherCAT and does not need any local ICs, or for software simulation purposes 

when only a CPU is present. Note that the CPU cannot output physical phase and servo clock 

signals in this mode, so it could not be kept synchronized with any of these local ICs. 
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Diagnosing Issues with Clock Settings 

Power PMAC provides numerous status indicators to permit you to optimize and troubleshoot 

your clock settings. 

Missing Clock Signals 

At power-up/reset, if the Power PMAC is expecting to receive hardware phase and servo clock 

signals (that is, the saved value of Sys.CpuTimerIntr is 0) but does not receive them, it will set 

global status bit Sys.NoClocks to 1. When this occurs, the processor continues to operate, but no 

motors may be enabled. This setting allows the user to reconfigure the system for the proper 

hardware or software clock source, save these settings, and reset the system to continue with 

system development. 

If Power PMAC detects valid clock signals at power-up/reset, but loses them subsequently, the 

watchdog timer will trip, shutting down operation of the system. If saved setup element 

Sys.BgWDTReset is set well, a “soft” trip will occur, leaving the processor running, but forcing 

all interface hardware into its reset state. If such a soft trip does not occur, the hardware watchdog 

timer circuitry will force a “hard” trip, completely shutting down the processor as well as forcing 

all interface hardware into its reset state. For more details on the watchdog timer, refer to the 

User’s Manual chapter Making Your Power PMAC Application Safe. 

Task Priority Duty Cycles 

Power PMAC provides numerous status elements for the user to understand how much processor 

time is spent at each priority level. This information is valuable in optimizing the clock 

frequencies for a given application. The IDE’s “task manager” display summarizes this 

information well. A sample display for a single-core CPU is shown below: 

 

Power PMAC IDE Single-Core CPU Task Time Overview Display 
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A sample display for a dual-core CPU is shown in the next figure. It shows the time usage of each 

core separately. 

 

Power PMAC IDE Dual-Core CPU Task Time Overview Display 

Note that the time status elements used for these displays, and detailed below, are only directly 

accessible from the Script environment, as they actually implement function calls to calculate the 

scaled values. 

Phase Task Statistics 

The following status data structure elements can be used to understand the processor loading 

under the phase-clock interrupt: 

 Sys.PhaseDeltaTime  Time between start of last two phase cycles (µsec) 

 Sys.PhaseTime   Time to complete tasks in last phase cycle (µsec) 

 Sys.FltrPhaseTime  Filtered average time in recent phase cycles (µsec) 

 Sys.MinPhaseTime  Lowest time to complete tasks in a phase cycle (µsec) 

 Sys.MaxPhaseTime  Highest time to complete tasks in a phase cycle (µsec) 

 Sys.PhaseErrorCtr  # of phase cycles tasks failed to complete in time 

 

The user can set the Sys.MinPhaseTime and Sys.MaxPhaseTime elements to 0.0 to “reset” 

them, and Power PMAC will restart its evaluation of the lowest and highest times, respectively, 

from this point. This is useful when a change in configuration is made. 

Any incrementing of the Sys.PhaseErrorCtr value should be considered a serious problem that 

requires correction. 
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Servo Task Statistics 

The following status data structure elements can be used to understand the processor loading 

under the servo-clock interrupt: 

 Sys.ServoDeltaTime  Time between start of last two servo cycles (µsec) 

 Sys.ServoTime   Time to complete tasks in last servo cycle (µsec) 

 Sys.FltrServoTime  Filtered average time in recent servo cycles (µsec) 

 Sys.MinServoTime  Lowest time to complete tasks in a servo cycle (µsec) 

 Sys.MaxServoTime  Highest time to complete tasks in a servo cycle (µsec) 

 Sys.ServoBusyCtr  # of servo cycles tasks failed to complete in time 

 Sys.ServoErrorCtr  # of servo cycles skipped entirely due to task overrun 

 

The user can set the Sys.MinServoTime and Sys.MaxServoTime elements to 0.0 to “reset” 

them, and Power PMAC will restart its evaluation of the lowest and highest times, respectively, 

from this point. This is useful when a change in configuration is made. 

If the servo tasks are interrupted by the phase clock before they are finished, the time elapsed 

measured for the servo tasks, which is simply the difference between the times when they started 

and when they ended, includes any intervening higher-priority phase tasks. For details of how to 

derive the actual servo task time, refer to the individual element descriptions in the Software 

Reference Manual. 

Any incrementing of the Sys.ServoBusyCtr value, or especially the Sys.ServoErrorCtr value, 

should be considered a serious problem that requires correction. 

Real-Time Interrupt Task Statistics 

The following status data structure elements can be used to understand the processor loading 

under the real-time interrupt: 

 Sys.RtIntDeltaTime  Time between start of last two RTI cycles (µsec) 

 Sys.RtIntTime   Time to complete tasks in last RTI cycle (µsec) 

 Sys.FltrRtIntTime  Filtered average time in recent RTI cycles (µsec) 

 Sys.MinRtIntTime  Lowest time to complete tasks in an RTI cycle (µsec) 

 Sys.MaxRtIntTime  Highest time to complete tasks in an RTI cycle (µsec) 

 Sys.RtIntBusyCtr  # of RTI cycles tasks failed to complete in time 

 Sys.RtIntErrorCtr  # of RTI cycles skipped entirely due to task overrun 

 

The user can set the Sys.MinRtIntTime and Sys.MaxRtIntTime elements to 0.0 to “reset” them, 

and Power PMAC will restart its evaluation of the lowest and highest times, respectively, from 

this point. This is useful when a change in configuration is made. 

Note 

Because of the way the user’s real-time interrupt C PLC 

(rticplc) program is called, its execution time is not included in 

these time calculations. 

 

If the real-time interrupt tasks are interrupted by the phase or servo clock before they are finished, 

the time elapsed measured for the real-time interrupt tasks, which is simply the difference 
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between the times when they started and when they ended, includes any intervening higher-

priority phase or servo tasks. For details of how to derive the actual RTI task time, refer to the 

individual element descriptions in the Software Reference Manual. 

Incrementing of the Sys.RtIntBusyCtr value, or even the Sys.RtIntErrorCtr value, especially if 

only occasional, is not necessarily a problem, but it may be important to understand that this is 

happening. 

Background Task Statistics 

The following status data structure elements can be used to understand the processor loading in 

the scheduled background task cycle: 

 Sys.BgDeltaTime  Time between start of last two BG cycles (µsec) 

 Sys.BgTime   Time to complete tasks in last BG cycle (µsec) 

 Sys.FltrBgTime  Filtered average time in recent BG cycles (µsec) 

 Sys.MinBgTime  Lowest time to complete tasks in a BG cycle (µsec) 

 Sys.MaxBgTime  Highest time to complete tasks in a BG cycle (µsec) 

 

The user can set the Sys.MinBgTime and Sys.MaxBgTime elements to 0.0 to “reset” them, and 

Power PMAC will restart its evaluation of the lowest and highest times, respectively, from this 

point. This is useful when a change in configuration is made. 

In the standard single-core CPUs, if the scheduled background tasks are interrupted by the phase, 

servo, or RTI clock before they are finished, the time elapsed measured for the background tasks, 

which is simply the difference between the time when they started and when they ended, includes 

any intervening higher-priority phase, servo, or RTI tasks. 

In a multi-core CPU, the background tasks are running on a separate core, so are not interrupted 

by foreground tasks. In this case, the time elapsed from start to finish is the time actually spent 

computing these tasks. 

The background cycle does not have a fixed period. After a background cycle’s tasks complete, 

the background execution thread “sleeps” for the time set by Sys.BgSleepTime (1.0 millisecond 

by default) before it will look to start the next cycle. This interval provides independent C 

applications with time to execute. Of course, all interrupt-based tasks will pre-empt any 

background tasks. 

Interrupt Response Latency 

The typical delay between the hardware interrupt signal and the start of interrupt software tasks is 

about 1 microsecond. However, there will be variations in this delay from cycle to cycle, and at 

very high phase and servo update rates, it is possible for these variations to impact performance. 

The time from the start of interrupt software tasks in one phase cycle to the start of these tasks in 

the next phase cycle can be found in status element Sys.PhaseDeltaTime. The longest time found 

is stored in Sys.MaxPhaseDeltaTime; the shortest time found is stored in 

Sys.MinPhaseDeltaTime. (The user can set these max and min elements to 0.0 to “reset” them.) 

If there is an unusually long latency in one cycle, Sys.PhaseDeltaTime for that cycle will be 

large. If the following cycle has a typical delay, Sys.PhaseDeltaTime for this next cycle will be 

small. A good estimate of worst case latency (WCL) can be made by calculating: 
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ltaTimeMinPhaseDeSysltaTimeMaxPhaseDeSys
WCL  

In this equation, the variation in latency is determined by subtracting the “min” value from the 

“max” value and dividing by 2. This variation is then added to the typical latency of 1 μsec. 

In a single-core CPU, the primary cause of intermittent high latency is heavy Ethernet 

communications, as there are certain tasks in the communications that cannot be interrupted. 

These can cause occasional latencies of 10 μsec or more. In a dual-core CPU, Ethernet 

communications is handled on a different core from the interrupt tasks, so this is not an issue. 

In a dual-core CPU, the primary cause of intermittent high latency is arbitration of shared 

resources between cores, such as the external memory bus. These can cause occasional latencies 

of 3 to 4 μsec. 

If the worst case latency causes the command output value of a phase or servo task to be 

computed after it should be sent to the output devices, this can cause a “glitch” in the control 

effort, which may not be tolerable in the application. 
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SETTING UP THE MACRO RING 

Many Power PMAC applications will utilize the MACRO ring for communications between 

controllers, amplifiers, and I/O modules. Setup of the MACRO ring requires hardware and 

software configuration summarized in this section. Individual MACRO devices have 

documentation explaining details particular to the individual devices. Many of the instructions in 

this chapter relating to the software setup of the encoder conversion table and motors to use the 

MACRO ring are also covered in chapters for those features, but the uses of the MACRO ring is 

dispersed throughout those chapters. 

If your Power PMAC application does not utilize the MACRO ring, this chapter can be skipped. 

MACRO Ring Overview 

MACRO is a real-time motion and machine control network in a ring configuration. Developed 

by Delta Tau Data Systems, it is an open protocol with many vendors providing compatible 

components. It is built around 100 megabit-per-second Ethernet technology (125 Mbit/sec with 

error correction bits) for high-speed transfers around the ring, minimizing transport delays. Most 

commonly used is fiber-optic transmission between stations on the ring, which provides complete 

noise immunity and the capability for long transmission between stations. 

MACRO is a master/slave network. Power PMAC is most commonly used as a master on the 

ring, sending commands to slave servo drives, I/O modules, and other peripherals on the ring, and 

receiving feedback values from them. However, it is possible to configure Power PMAC as a 

slave device on the ring, and for its motors to be set up to accept cyclic servo commands over the 

ring. This permits a single Power PMAC (the master) to compute all of the coordinated tasks, but 

to distribute the individual motor tasks such as servo-loop closure and motor commutation, and 

the hardware, across the ring. 

Power PMAC MACRO Interfaces 

There are several hardware interfaces to the MACRO ring for Power PMAC configurations. With 

each interface, the Power PMAC can be configured as a master or a slave on the ring, although it 

is much more common to configure it as a master. 

ACC-5E MACRO Interface for UMAC 

In a Power UMAC rack, the ACC-5E can be used for the MACRO interface. It can be configured 

with one or two PMAC2-style “DSPGATE2” MACRO ICs. Each IC supports up to 16 nodes of 

communication over the ring, with a separate “master IC” number for each IC. The registers of 

each IC can be accessed with the Gate2[i] data structure, or its “alias” of the Acc5E[i] data 

structure. Note that the IC’s data structure index i does not need to match the IC’s master number 

on the ring, although it will in most applications. 

ACC-5E3 MACRO Interface for UMAC 

Alternately, the Power UMAC can use the ACC-5E3 for the MACRO interface. This device can 

be configured with one or two PMAC3-style “DSPGATE3” MACRO ICs. Each IC supports up to 

32 nodes of communication over the ring, in two banks, with a separate “master IC” number for 

each bank in the IC. The registers of each IC can be accessed with the Gate3[i] data structure, or 

its “alias” of the Acc5E3[i] data structure. Note that an IC with a single data structure index i 

supports two separate “master IC” numbers on the ring, so in general, the index and the IC 

number will not match. 
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ACC-5EP3 MACRO Interface for Etherlite 

The Power PMAC Etherlite network controller uses the ACC-5EP3 for the MACRO interface. 

This device can be configured with one or two PMAC3-style “DSPGATE3” MACRO ICs. Each 

IC supports up to 32 nodes of communication over the ring, in two banks, with a separate “master 

IC” number for each bank in the IC. The registers of each IC can be accessed with the Gate3[i] 

data structure, or its “alias” of the Acc5EP3[i] data structure. Note that an IC with a single data 

structure index i supports two separate “master IC” numbers on the ring, so in general, the index 

and the IC number will not match. 

MACRO Interface for Power Brick 

The optional MACRO interface for the Power Brick line of controllers and integrated 

controller/amplifiers uses the same PMAC3-style “DSPGATE3” ICs that are used for the servo 

and I/O interfaces within the Brick. It can be configured with one or two of these ICs. Each IC 

supports up to 32 nodes of communication over the ring, in two banks, with a separate “master 

IC” number for each bank in the IC. The registers of each IC can be accessed with the Gate3[i] 

data structure, or its “alias” of the PowerBrick[i] data structure. Note that an IC with a single 

data structure index i supports two separate “master IC” numbers on the ring, so in general, the 

index and the IC number will not match. 

Configuring Master and Slave Devices 

The MACRO ring is a “master/slave” network, a configuration that is more deterministic than 

“peer-to-peer” networks. This is important for high-performance real-time control. In general, a 

controller is a “master” on the ring, and a drive or and I/O device is a slave. 

In addition, a MACRO ring can be configured as a “multi-master” network, with each master 

device commanding its own slave devices over a common ring. In this setup, one of the master 

devices must be configured as the “synchronizing master”, which provides the overall control of 

the ring. Other masters on the same ring must be configured as “non-synchronizing” masters. In 

the physical connection of the ring, the synchronizing master must be “upstream” of the other 

masters. (In a single-master ring, the master device must be configured as a synchronizing 

master.) 

Note that a single device on a MACRO ring may have multiple MACRO ICs, and each IC must 

be configured as to its function on the ring. Only a single IC on the ring may be configured as a 

synchronizing master. Other ICs on master devices, even if on the same device as the IC 

configured as a synchronizing master, must be set up as non-synchronizing masters. 

The function of a MACRO IC on a ring is determined by a saved setup element for the IC. The 

exact functionality of this setup element differs based on the IC used. 

PMAC2-Style MACRO IC 

In a PMAC2-style “DSPGATE2” MACRO IC, the IC’s function on the ring is determined by 

saved setup element Gate2[i].MacroMode. (Remember that you can also use the accessory name 

for the structure, so you could refer to it as Acc5E[i].MacroMode.) The important bits in this 

element are bit 4, bit 5, and bit 7. 

Bit 4 (value $10) should be set to 1 if the IC is used as a master on the ring, synchronizing or not. 

It should be set to 0 if the IC is used as a slave on the ring. 
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Bit 5 (value $20) should be set to 1 if the IC is used as the synchronizing master on the ring (in 

which case bit 4 must also be set to 1). It should be set to 0 if the IC is used as a non-

synchronizing master or as a slave. 

Bit 7 (value $80) determines whether the IC’s phase clock counter is automatically reset on the 

IC’s receipt of the “sync” data packet. This bit should be set to 0 if the IC is used as a 

synchronizing master, because its own phase clock will control the entire ring (but setting it to 1 

will not hurt operation). The bit should be set to 1 if the IC is used as a non-synchronizing master 

or as a slave, in order to keep it in sync with the synchronizing master. 

Synchronizing Master IC 

The IC used as the ring’s synchronizing master (most commonly Gate2[0]) should have bits 4 

and 5 set to 1, and bit 7 set to 0, so Gate2[i].MacroMode should be set to $30 for this IC. 

Non-Synchronizing Master IC 

An IC used as a non-synchronizing master should have bit 4 set to 1 and bit 5 set to 0. If the IC is 

in the same Power PMAC system as the ring’s synchronizing master IC, it receives the ring-

controlling phase clock signal directly, and does not need to use the receipt of the sync packet to 

stay synchronized. For such an IC (such as the 2nd MACRO IC on the same ACC-5E as the 

synchronizing master, or a MACRO IC on another ACC-5E in the same UMAC rack), bit 7 can 

be set to 0, so Gate2[i].MacroMode should be set to $10. 

However, if the IC is in a different Power PMAC system from the ring’s synchronizing master 

IC, it must use the receipt of the sync packet to stay properly synchronized on the ring. For such 

an IC, bit 7 should be set to 1 to maintain this synchronization. In addition, the IC must be able to 

accept “broadcast” communications from the synchronizing master, which has a different master 

IC number. These broadcast messages are sent on Node 14, so bit 14 (value $4000) of this 

element should also be set to 1 to disable the “master-number check” for the Node 14 packet. 

This means that Gate2[i].MacroMode should be set to $4090 for this IC (Node 14 master-

number check disable, sync packet receipt lock, and master IC). 

Slave IC 

An IC used as a slave on the ring should have bits 4 and 5 both set to 0 to disable any master 

functionality. Bit 7 should be set to 1 to lock in the IC’s phase clock on receipt of the sync packet. 

Bit 14 should be set to 1 to disable the “master-number check” on the Node 14 packet. This 

means that Gate2[i].MacroMode should be set to $4080 for this IC (Node 14 master-number 

check disable, sync packet receipt lock). This is the default value for the IC. 

Element Status Bits 

Note that bits 0, 1, 2, 3, and 6 of this element are status bits, and could report non-zero values 

when the element is read. Bits 0 – 3, represented in the last hex digit, are error bits that will 

seldom report a value of 1 in a properly working ring. Bit 6 reports a value of 1 for an IC that has 

received a sync packet since the last time the register has been read, a likely occurrence in a 

properly working ring. For example, if Gate2[i].MacroMode has been set to $4090, its value is 

likely to be reported as $40D0 when queried on a working ring, or $409F on a non-working ring. 

Note that the act of reading this register automatically clears any of these status bits that are set. 

PMAC3-Style MACRO IC 

In a PMAC3-style “DSPGATE3” MACRO IC, the IC’s function on the ring is determined by 

saved setup elements Gate3[i].MacroModeA and Gate3[i].MacroModeB. Note that the 
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DSPGATE3 IC acts as a “double IC” on the MACRO ring, with two separate master numbers, 

one for bank “A” of MACRO nodes, and one for bank “B”.  

(Remember that you can also use the accessory name for the structure, so you could refer to the 

elements as Acc5E3[i].MacroModeA and Acc5E3[i]MacroModeB for Power UMAC systems, 

or Acc5EP3[i].MacroModeA and Acc5EP3[i].MacroModeB for Power PMAC EtherLite 

controllers.) The important bits in this element are bit 12, bit 13, and bit 15. 

As key setup variables in the DSPGATE3 IC, these elements are write-protected to prevent 

inadvertent changes by unauthorized personnel. In the Script environment, global variable 

Sys.WpKey should be set to $AAAAAAAA to permit changes to the values of these elements. In 

the C environment, IC variable Gate3[i].WpKey should be set to $AAAAAAAA before each 

command that would change the value of these elements in the IC. 

Bit 12 (value $1000) should be set to 1 if the IC is used as a master on the ring, synchronizing or 

not. It should be set to 0 if the IC is used as a slave on the ring. 

Bit 13 (value $2000) should be set to 1 if the IC is used as the synchronizing master on the ring 

(in which case bit 12 must also be set to 1). It should be set to 0 if the IC is used as a non-

synchronizing master or as a slave. 

Bit 15 (value $8000) determines whether the IC’s phase clock counter is automatically reset on 

the IC’s receipt of the “sync” data packet. This bit should be set to 0 if the IC is used as a 

synchronizing master, because its own phase clock will control the entire ring (but setting it to 1 

will not hurt operation). The bit should be set to 1 if the IC is used as a non-synchronizing master 

or as a slave, in order to keep it in sync with the synchronizing master. 

Synchronizing Master IC 

The IC used as the ring’s synchronizing master (most commonly Gate3[0]) should have bits 12 

and 13 set to 1, and bit 15 set to 0, so Gate3[i].MacroModeA and Gate3[i].MacroModeB 

should be set to $3000 for this IC. 

Non-Synchronizing Master IC 

An IC used as a non-synchronizing master should have bit 12 set to 1 and bit 13 set to 0. If the IC 

is in the same Power PMAC system as the ring’s synchronizing master IC, it receives the ring-

controlling phase clock signal directly, and does not need to use the receipt of the sync packet to 

stay synchronized. For such an IC (such as the 2nd MACRO IC on the same ACC-5E3 or ACC-

5EP3 as the synchronizing master, or a MACRO IC on another ACC-5E3 in the same UMAC 

rack), bit 15 can be set to 0, so Gate3[i].MacroModeA and Gate3[i].MacroModeB should be 

set to $1000. 

However, if the IC is in a different Power PMAC system from the ring’s synchronizing master 

IC, it must use the receipt of the sync packet to stay properly synchronized on the ring. For such 

an IC, bit 15 should be set to 1 to maintain this synchronization. In addition, the IC must be able 

to accept “broadcast” communications from the synchronizing master, which has a different 

master IC number. These broadcast messages are sent on Node 14, so bit 22 (value $400000) of 

this element should also be set to 1 to disable the “master-number check” for the Node 14 packet. 

This means that Gate3[i].MacroModeA and Gate3[i].MacroModeB should be set to $409000 

for this IC (Node 14 master-number check disable, sync packet receipt lock, and master IC). 
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Slave IC 

An IC used as a slave on the ring, as in a Power Brick drive used as a slave device, should have 

bits 12 and 13 both set to 0 to disable any master functionality. Bit 15 should be set to 1 to lock in 

the IC’s phase clock on receipt of the sync packet. Bit 23 should be set to 1 to disable the 

“master-number check” on the Node 23 packet. This means that Gate3[i].MacroMode should be 

set to $808000 for this IC (Node 15 master-number check disable, sync packet receipt lock). 

Element Status Bits 

Note that bits 8, 9, 10, 11, and 14 of this element are status bits, and could report non-zero values 

when the element is read. Bits 8 – 11, represented in the third-to-last hex digit, are error bits that 

will seldom report a value of 1 in a properly working ring. Bit 14 reports a value of 1 for an IC 

that has received a sync packet since the last time the register has been read, a likely occurrence 

in a properly working ring. For example, if Gate3[i].MacroModeA has been set to $409000, its 

value is likely to be reported as $40D000 when queried on a working ring, or $409F00 on a non-

working ring. Note that the act of reading this register automatically clears any of these status bits 

that are set. 

Setting the Ring Frequency 

The update frequency for a MACRO ring is set by the phase-clock frequency of the 

“synchronizing master” controller IC for the ring. The phase-clock frequency for other ICs on the 

ring, both master and slave, should be set a close as possible to this frequency for best 

performance, so that the clock does not drift too far away before being re-synchronized. 

The synchronizing master IC for the ring should also be the source of the phase-clock signal for 

the Power PMAC in which it resides. When a Power PMAC system is re-initialized, it 

automatically selects the lowest numbered MACRO IC it finds (with a preference for PMAC3-

style ICs over PMAC2-style ICs if both are present) as its source for the phase (and servo) clock 

signal it uses internally. 

The general topic of setting the clock frequencies for a Power PMAC system is covered in the 

Power PMAC System Configuration chapter of the User’s Manual. This section covers those 

aspects particular to systems with a MACRO ring interface. 

PMAC2-Style MACRO IC 

In a PMAC2-style “DSPGATE2” MACRO IC, the phase-clock frequency is determined by the 

settings of saved setup elements Gate2[i].PwmPeriod, which sets the internal “MaxPhase” clock 

frequency, and Gate2[i].PhaseClockDiv, which controls how the phase-clock signal itself is 

divided down from MaxPhase. 

The required setting for Gate2[i].PwmPeriod to obtain a desired MaxPhase clock frequency is 

given by the following equation: 

1
)(*2

)(8.964,117
].[2 

kHzeqMaxPhaseFr

kHz
PwmPeriodiGate  

This is typically rounded down to the next integer if the equation produces a fractional 

component. 

The frequency of the phase clock signal is given by the following equation: 
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In almost all MACRO systems, it is acceptable to set the phase-clock frequency to the MaxPhase 

frequency, so Gate2[i].PhaseClockDiv can be set to 0, and Gate2[i].PwmPeriod can be used 

directly to set the phase-clock frequency. In this case, the frequency of any PWM signals 

generated by this IC are one-half that of the phase clock. It is rare that the same IC is used to 

generate PWM signals, so this is not a constraint in most systems. 

For example, to set a phase-clock frequency of 8 kHz, with the internal MaxPhase frequency the 

same, Gate2[i].PwmPeriod would be calculated as: 

73711
8*2

8.964,117
].[2 PwmPeriodiGate  

Gate2[i].PhaseClockDiv would be set to 0 so that the phase-clock frequency is the same as the 

MaxPhase clock frequency. 

PMAC3-Style MACRO IC 

In a PMAC3-style “DSPGATE3” MACRO IC, the phase-clock frequency is determined by the 

setting of saved setup element Gate3[i].PhaseFreq, which specifies the frequency directly in 

Hertz. To set a phase-clock frequency of 8 kHz, Gate3[i].PhaseFreq would be set to 8000. 

As a key setup variable in the DSPGATE3 IC, thiselement is write-protected to prevent 

inadvertent changes by unauthorized personnel. In the Script environment, global variable 

Sys.WpKey should be set to $AAAAAAAA to permit changes to the value of this element. In the 

C environment, IC variable Gate3[i].WpKey should be set to $AAAAAAAA before each 

command that would change the value of this element in the IC. 

Extending the Phase Software Update 

Because data is transmitted serially across the ring between master and slave devices, there are 

delays introduced in any feedback loop closed across the ring: one ring-cycle delay for command 

data from master to slave, and one ring-cycle delay for feedback data from slave to master. These 

time delays can increase the “phase lag” of the feedback loop, reducing or even eliminating the 

stability margins of the loop. 

If Power PMAC is closing the current loops of motors in “direct PWM” mode, as with Delta 

Tau’s Geo MACRO drives, the added ring delays can have a significant impact on the quality of 

the resulting performance. In this mode, many users want to increase the hardware ring-cycle 

frequency to lessen these delays. 

Saved setup element Sys.PhaseCycleExt specifies the number of hardware phase-clock cycles 

that are skipped between each phase-clock cycle that causes the software tasks such as 

commutation and current-loop closure to execute. At the default value of 0 that is used in almost 

all non-MACRO applications, these software tasks are executed every hardware phase-clock 

cycle. 

If Sys.PhaseCycleExt is set greater than 0, one or more hardware cycles are skipped between 

consecutive phase software updates in the Power PMAC. Since the MACRO ring operates on the 

hardware phase-clock cycle, it is possible to raise the ring-update frequency without increasing 
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the software load on the Power PMAC processor, but reduce the ring transport delays to improve 

loop performance. 

Many MACRO users will set Sys.PhaseCycleExt to 1 so that one hardware cycle is skipped 

between consecutive phase software updates. For example, a 20 kHz ring-cycle update frequency 

could be used with only a 10 kHz phase-software update rate. This reduces the ring transport 

delays from two 100-microsecond periods to two 50-microsecond periods, which can permit 

significantly higher performance. 

The following timeline diagram shows how the overall data transmission and loop calculations 

work with Sys.PhaseCycleExt set to 0 and 1, with the phase-clock frequency doubled when the 

setting is 1. Note that the overall loop delays are cut in half in this case, but the frequency of loop 

calculations in the master Power PMAC is unchanged. 
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MACRO Loop Delays Without and With Phase Cycle Extension 

If Power PMAC is commanding drives over the MACRO ring in torque or velocity mode, as with 

most third-party MACRO drives, the fact that the ring is updated every phase-clock cycle, but 

new data is only used every servo cycle typically provides sufficient “oversampling” of the ring 

(assuming that the phase-clock frequency is higher than the servo-clock frequency) so that this 

software extension is not useful. 
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Enabling MACRO Nodes 

MACRO ring communication occurs through “nodes” on the ring, with each enabled node 

transmitting a data packet every ring cycle. An enabled node on a master device will transmit a 

command packet every ring cycle, and then expect a feedback packet later in the cycle. An 

enabled node on a slave device will expect a command packet every ring cycle, which it will trap 

and immediately substitute a feedback packet for return to the master over the ring. 

Each node is identified by a 4-bit master number (0 to 15) and a 4-bit slave number (0 to 15). 

This means that each master number supports 16 slave numbers. The net 8-bit node number must 

match between master and slave devices for communication to take place between the devices. 

Node Allocation 

For each master IC number, there are 16 nodes, numbered 0 – 15, for which a data packet can be 

transmitted each ring cycle. In most MACRO systems, these nodes are organized as follows: 

 Servo nodes: 0, 1, 4, 5, 8, 9, 12, 13 

 I/O nodes: 2, 3, 6, 7, 10, 11 

 Auxiliary nodes: 14, 15 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Node

Auxiliary

Nodes

I/O Nodes

Servo Nodes

MACRO IC Node Allocation 

Typical Mapping of MACRO Nodes to Motors 

While many different mappings between motors and MACRO nodes in a Power PMAC are 

possible, the standard mapping works in numerical order with the lowest-numbered motor 

mapped to the lowest-numbered servo node of the first MACRO IC, the next motor mapped to 

the next servo node of this IC, and so on until all 8 servo nodes of this IC (or bank of the IC) have 

been allocated. The next motor is then mapped to the lowest-numbered servo node of the next 

MACRO IC (or next bank of the IC).  

For example, with PMAC2-style ICs, the standard mapping for a 20-axis system would be: 

Motor MACRO Node Motor MACRO Node 
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Motor[1] Gate2[0].Macro[0] Motor[11] Gate2[1].Macro[4] 

Motor[2] Gate2[0].Macro[1] Motor[12] Gate2[1].Macro[5] 

Motor[3] Gate2[0].Macro[4] Motor[13] Gate2[1].Macro[8] 

Motor[4] Gate2[0].Macro[5] Motor[14] Gate2[1].Macro[9] 

Motor[5] Gate2[0].Macro[8] Motor[15] Gate2[1].Macro[12] 

Motor[6] Gate2[0].Macro[9] Motor[16] Gate2[1].Macro[13] 

Motor[7] Gate2[0].Macro[12] Motor[17] Gate2[2].Macro[0] 

Motor[8] Gate2[0].Macro[13] Motor[18] Gate2[2].Macro[1] 

Motor[9] Gate2[1].Macro[0] Motor[19] Gate2[2].Macro[4] 

Motor[10] Gate2[1].Macro[1] Motor[20] Gate2[2].Macro[5] 

 

With PMAC3-style ICs, the standard mapping for a 20-axis system would be: 

Motor MACRO Node Motor MACRO Node 

Motor[1] Gate3[0].MacroA[0] Motor[11] Gate3[0].MacroB[4] 

Motor[2] Gate3[0].MacroA[1] Motor[12] Gate3[0].MacroB[5] 

Motor[3] Gate3[0].MacroA[4] Motor[13] Gate3[0].MacroB[8] 

Motor[4] Gate3[0].MacroA[5] Motor[14] Gate3[0].MacroB[9] 

Motor[5] Gate3[0].MacroA[8] Motor[15] Gate3[0].MacroB[12] 

Motor[6] Gate3[0].MacroA[9] Motor[16] Gate3[0].MacroB[13] 

Motor[7] Gate3[0].MacroA[12] Motor[17] Gate3[1].MacroA[0] 

Motor[8] Gate3[0].MacroA[13] Motor[18] Gate3[1].MacroA[1] 

Motor[9] Gate3[0].MacroB[0] Motor[19] Gate3[1].MacroA[4] 

Motor[10] Gate3[0].MacroB[1] Motor[20] Gate3[1].MacroA[5] 

 

In both cases, a motor will use the encoder conversion table entry of the same index number (e.g. 

Motor[2] will use EncTable[2]). 

Enabling Nodes in a PMAC2-Style MACRO IC 

In a PMAC2-style “DSPGATE2” MACRO IC, the node enabling function is controlled by saved 

setup element Gate2[i].MacroEnable. This 24-bit element is split into three parts. In the first 

part, bits 0 – 15, which form the last four hex digits, specify which of Nodes 0 – 15 are enabled, 

with bit n specifying for Node n. A value of 1 enables the node; a value of 0 disables the node. 

In the second part, bits 16 – 19, which form the second hex digit, specify the node number of the 

sync packet. In standard Power PMAC operation, this packet belongs to Node 15, so this hex 

digit is set to $F. 

In the third part, bits 20 – 23, which form the first hex digit, specify the master number for the IC, 

whether the IC is used as a master or a slave device. If it is a slave device, this value specifies the 

number of the master to which it responds. While it is possible for separate ICs to share the same 

master number, particularly for slave devices, it is essential that no two master devices with the 

same master number or no two slave devices with the same master number have any of the same 

servo or I/O nodes enabled. 

For example, to enable the first six servo nodes (0, 1, 4, 5, 8, and 9), the first three I/O nodes (2, 

3, and 6), and the two auxiliary nodes (14 and 15) for master number 1 with sync node 15, 

Gate2[i].MacroEnable would be set to $1FC37F. 

Hex digit   1    F    C    3    7    F  

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Bit Value 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 
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Component               Master IC         Sync Packet #              Node Enable Control Bits 

 

Enabling Nodes in a PMAC3-Style MACRO IC 

In a PMAC3-style “DSPGATE3” MACRO IC, the node enabling function is controlled by saved 

setup elements Gate3[i].MacroEnableA and Gate3[i].MacroEnableB. These 32-bit elements 

are split into three active parts. (Note that bits 0 – 7 of these elements are not used.) In the first 

part, bits 8 – 23, which form the sixth-to-last through third-to-last hex digits, specify which of 

Nodes 0 – 15 are enabled, with bit n specifying for Node n-8. A value of 1 enables the node; a 

value of 0 disables the node. 

In the second part, bits 24 – 27, which form the second hex digit, specify the node number of the 

sync packet. In standard Power PMAC operation, this packet belongs to Node 15, so this hex 

digit is set to $F. 

In the third part, bits 28 – 31, which form the first hex digit, specify the master number for the IC, 

whether the IC is used as a master or a slave device. If it is a slave device, this value specifies the 

number of the master to which it responds. While it is possible for separate ICs to share the same 

master number, particularly for slave devices, it is essential that no two master devices with the 

same master number or no two slave devices with the same master number have any of the same 

servo or I/O nodes enabled. 

As key setup variables in the DSPGATE3 IC, these elements are write-protected to prevent 

inadvertent changes by unauthorized personnel. In the Script environment, global variable 

Sys.WpKey should be set to $AAAAAAAA to permit changes to the values of these elements. In 

the C environment, IC variable Gate3[i].WpKey should be set to $AAAAAAAA before each 

command that would change the value of these elements in the IC. 

For example, to enable the first five servo nodes (0, 1, 4, 5, and 8), the first four I/O nodes (2, 3, 

6, and 7), and the two auxiliary nodes (14 and 15) for master number 0 with sync node 15, 

Gate3[i].MacroEnableA would be set to $0FC1FF00. 

  0    F    C    1    F    F    0    0  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 - - - - - - - - 

   Master IC        Sync Packet #              Node Enable Control Bits 
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Ring Check Function 

For robust operation of the MACRO ring, it is important to monitor for errors on a continuous 

basis. Power PMAC can perform automatic monitoring of the ring for communications errors, 

and provide an orderly shutdown if too many errors are detected. 

Ring Check Parameters 

Saved setup element Macro.TestPeriod sets the evaluation period in real-time interrupt periods 

(not ring cycles) over which errors are counted. If it is set to the default value of 0, this evaluation 

is not performed. A value of 50 is suggested for performing the evaluation. 

Saved setup element Macro.TestMaxErrors specifies the maximum number of errors that can 

be detected within a single evaluation period without causing a shutdown. A value of 2 is 

suggested for performing the evaluation, which means that the ring would be shut down on a third 

error in a given evaluation period. 

Saved setup element Macro.TestReqdSynchs specifies the minimum number of the specified 

synch packets that must be received within a single evaluation period to avoid a shutdown. A 

value of (TestPeriod – 2) is suggested for performing the evaluation, which means the ring 

would be shut down if only 2 or more expected sync packets were not received during the test 

period. 

MACRO Node Register Organization 

Each MACRO node in an IC has 8 hardware data registers – 4 output registers and 4 input 

registers. In a master device on the MACRO ring (which the Power PMAC usually is), the output 

registers of a servo node are “command” registers, and the input registers are “feedback” 

registers. In a slave device, the input registers of a servo node are “command” registers, and the 

output registers are “feedback” registers. 

For the 4 registers in each set, the register index values are 0, 1, 2, and 3. Register 0 has 24 bits (3 

bytes) of real data that is transmitted across the ring each cycle. Registers 1, 2, and 3 each have 16 

bits (2 bytes) of real data that is transmitted across the ring each cycle. 

Standard Use of Registers in a Servo Node 

The MACRO protocol describes a standard usage for the command and feedback registers of a 

servo node. This usage is described in the following table. 

Direction Register 0 Register 1 Register 2 Register 3 

Command Velocity/Torque/Phase A 

Command 

(24 bits) 

Phase B 

Command 

(16 bits) 

Phase C 

Command 

(16 bits) 

Control Flags 

 

(16 bits) 

Feedback Position Feedback 

 

(24 bits) 

Phase A Current 

Feedback 

(16 bits) 

Phase B Current 

Feedback 

(16 bits) 

Status Flags 

 

(16 bits) 

 

Data Elements in a PMAC2-Style MACRO IC 

In a PMAC2-style “DSPGATE2” MACRO IC, the MACRO data software elements for accessing 

the hardware registers of a node are Gate2[i].Macro[j][k], where i is the IC number (0 to 15), j is 

the node number (0 to 15) within the IC, and k is the register number (0 to 3) within the node. In 

this IC, each element represents both an output register and an input register. When the element is 
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written to, the value is placed in the output register; when the element is read from, the value 

returned is from the input register.  

Note 

Having separate input and output registers at the same address 

means that the user cannot read back a value that has been 

written to the output register. 

 

All of these data elements are 24-bit values (found in the high 24 bits of Power PMAC’s 32-bit 

bus). For registers 1, 2, and 3 of a node, the real 16 bits of data are found in the high 16 bits of the 

24-bit element. It is important to realize that many of the automatic functions will access the full 

32-bit register, so care must be taken in comparing the 24-bit value in the element with the 32-bit 

value used by the automatic function (which will be 256 times larger). 

Data Elements in a PMAC3-Style MACRO IC 

In a PMAC3-style “DSPGATE3” MACRO IC, the MACRO data software elements for accessing 

the hardware output registers of a node are Gate3[i].MacroOutA[j][k] and 

Gate3[i].MacroOutB[j][k] for banks A and B, respectively, of the IC, where i is the IC number 

(0 to 15), j is the node number (0 to 15) within the IC, and k is the register number (0 to 3) within 

the node. 

Similarly, in this IC, the MACRO data software elements for accessing the hardware input 

registers of a node are Gate3[i].MacroInA[j][k] and Gate3[i].MacroInB[j][k] for banks A and 

B, respectively, of the IC. Since the output and input hardware registers are accessed by separate 

elements in this IC, it is possible to read back a value written to an output register, which can be 

useful for debugging an application. 

All of these data elements are 32-bit values. For register 0 of a node, the real 24 bits of data are 

found in the high 24 bits of the 32-bit element. For registers 1, 2, and 3 of a node, the real 16 bits 

of data are found in the high 16 bits of the 32-bit element.  

Processing Position Feedback from the MACRO Ring 

As with any other source of position feedback for Power PMAC servo loops, feedback provided 

through the MACRO ring, from whatever ultimate source, must be processed through the encoder 

conversion table (ECT), before it is used by the servo loop. Often significant processing will 

already have occurred at the remote MACRO device before transmission to the Power PMAC. 

In almost all cases, the ECT entry will be reading the single value in a MACRO node input 

register 0, with real data in bits 8 – 31 of the 32-bit data bus, with the low 5 bits of this data 

representing a fractional count value (so the integer count data starts in bit 13). 

Encoder Table Entry Method: EncTable[n].type 

In virtually all cases, the encoder conversion method will simply be a single-register read, as any 

processing of multiple registers will already have been performed at the remote MACRO device. 

So EncTable[n].type should be set to 1 to specify this single-register read. 
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Encoder Table Entry Source Address: EncTable[n].pEnc 

The encoder table entry will read the input (feedback) register for the node as the source of its 

data. To specify this, EncTable[n].pEnc for the entry needs to be set to the address of this 

register. For a PMAC2-style MACRO IC, the address is specified as Gate2[i].Macro[j][0].a, 

where i is the IC number (0 to 15) and j is the node number. For a PMAC3-style MACRO IC, the 

address is specified as Gate3[i].MacroInA[j][0].a or Gate3[i].MacroInB[j][0].a. 

In most cases, the mapping of encoder table entry numbers to MACRO node numbers is the same 

as the mapping of motor numbers to MACRO node numbers explained above (although this is 

not required). In this scheme, the motor numbers will match the encoder table entry numbers 

number (e.g. Motor[2] will use EncTable[2]). 

Note 

The EncTable[0] entry is typically not used for standard 

feedback. It is not auto-assigned to any hardware address at re-

initialization, and few users utilize it for processing motor 

feedback sensors. 

 

For example, with PMAC2-style ICs, the standard mapping for a 20-axis system would be: 

ECT Pointer Variable PMAC2 IC Source Address 

EncTable[1].pEnc Gate2[0].Macro[0][0].a 

EncTable[2].pEnc Gate2[0].Macro[1][0].a 

EncTable[3].pEnc Gate2[0].Macro[4][0].a 

EncTable[4].pEnc Gate2[0].Macro[5][0].a 

EncTable[5].pEnc Gate2[0].Macro[8][0].a 

EncTable[6].pEnc Gate2[0].Macro[9][0].a 

EncTable[7].pEnc Gate2[0].Macro[12][0].a 

EncTable[8].pEnc Gate2[0].Macro[13][0].a 

EncTable[9].pEnc Gate2[1].Macro[0][0].a 

EncTable[10].pEnc Gate2[1].Macro[1][0].a 

EncTable[11].pEnc Gate2[1].Macro[4][0].a 

EncTable[12].pEnc Gate2[1].Macro[5][0].a 

EncTable[13].pEnc Gate2[1].Macro[8][0].a 

EncTable[14].pEnc Gate2[1].Macro[9][0].a 

EncTable[15].pEnc Gate2[1].Macro[12][0].a 

EncTable[16].pEnc Gate2[1].Macro[13][0].a 

EncTable[17].pEnc Gate2[2].Macro[0][0].a 

EncTable[18].pEnc Gate2[2].Macro[1][0].a 

EncTable[19].pEnc Gate2[2].Macro[4][0].a 

EncTable[20].pEnc Gate2[2].Macro[5][0].a 
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With PMAC3-style ICs, the standard mapping for a 20-axis system would be: 

ECT Variable PMAC3 IC Source Address 

EncTable[1].pEnc Gate3[0].MacroInA[0][0].a 

EncTable[2].pEnc Gate3[0].MacroInA[1][0].a 

EncTable[3].pEnc Gate3[0].MacroInA[4][0].a 

EncTable[4].pEnc Gate3[0].MacroInA[5][0].a 

EncTable[5].pEnc Gate3[0].MacroInA[8][0].a 

EncTable[6].pEnc Gate3[0].MacroInA[9][0].a 

EncTable[7].pEnc Gate3[0].MacroInA[12][0].a 

EncTable[8].pEnc Gate3[0].MacroInA[13][0].a 

EncTable[9].pEnc Gate3[0].MacroInB[0][0].a 

EncTable[10].pEnc Gate3[0].MacroInB[1][0].a 

EncTable[11].pEnc Gate3[0].MacroInB[4][0].a 

EncTable[12].pEnc Gate3[0].MacroInB[5][0].a 

EncTable[13].pEnc Gate3[0].MacroInB[8][0].a 

EncTable[14].pEnc Gate3[0].MacroInB[9][0].a 

EncTable[15].pEnc Gate3[0].MacroInB[12][0].a 

EncTable[16].pEnc Gate3[0].MacroInB[13][0].a 

EncTable[17].pEnc Gate3[1].MacroInA[0][0].a 

EncTable[18].pEnc Gate3[1].MacroInA[1][0].a 

EncTable[19].pEnc Gate3[1].MacroInA[4][0].a 

EncTable[20].pEnc Gate3[1].MacroInA[5][0].a 

 

This type of entry does not use a secondary source, so the setting of EncTable[n].pEnc1 does not 

matter. It is fine to leave it at its factory-default setting of Sys.pushm. 

Intermediate Processing: EncTable[n].index1, index2 

With the real data in the high 24 bits of the 32-bit source register and unknown values in the low 

8 bits, some processing is necessary to use only the valid data. EncTable[n].index2 should be set 

to 8 to cause an initial “shift-right” of the data by 8 bits to eliminate the low “garbage data”. 

The most significant bit of position data in the 24-bit hardware register must end up in the highest 

bit of the 32-bit intermediate result in order to support rollover of the source data properly. In the 

most common case, there is true position data in all 24 bits of the hardware register. In this case, 

EncTable[n].index1 should be set to 8 to cause a secondary “shift-left” of the data by 8 bits to 

return the position data to its original position in the 32-bit register (but now with all zeros in the 

low 8 bits). 

Occasionally, there will not be a full 24 bits of position data in the source register, and this second 

operation will need to be slightly different. For example, if the source register contains only 17 

bits of position data starting in bit 8 of the 32-bit register (bit 0 of the 24-bit hardware register and 

data structure element), after the initial shift-right of 8 bits, the most significant bit of position 

data is in bit 16. In order to have this bit end up in bit 31 of the intermediate result, a subsequent 

shift-left of 15 bits is required, so EncTable[n].index1 should be set to 15. 

Note that in the common case of having 24 bits of true position data, leaving index1 and index2 

at their default values of 0 will generally provide acceptable results, with the “noise” from 

undetermined data in the low 8 bits not being noticeable in most applications. However, it is 

recommended that these elements be set as explained above to minimize the chances of any 

problems. 
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Change Limiting: EncTable[n].index3, MaxDelta 

In the multi-step process of returning the position feedback value over the MACRO ring, it is 

possible that occasional bit errors could occur. If one or more higher-order bits are wrong when 

received by the Power PMAC, it could have significant effects on performance. 

The ECT permits you to implement a “maximum change” filter in an encoder table entry to 

mitigate the effects of such errors. If EncTable[n].MaxDelta is set to positive value, it represents 

the maximum change (either velocity or acceleration) that will be regarded as real. Changes 

larger than this will be considered due to data errors in the received data, and this data will not be 

used. 

Note that many users will not implement change limiting when they are establishing initial 

functionality, leaving MaxDelta at 0 during this stage of development. However, it is strongly 

recommended that some sort of change limiting be implemented before development is finished, 

even if no problems have been noted during development. 

Velocity Limiting 

If EncTable[n].index3 is set to its default value of 0, MaxDelta acts as the maximum velocity 

that will be considered real. It is expressed in least-significant-bits (LSBs) of the feedback per 

servo cycle. It assumes that the LSB is found in the bit of the 32-bit register specified by the 

index2 element for the entry. Note that in many cases using MACRO products, this LSB will be a 

fraction (often 1/32) of a “count” of the feedback. 

If the magnitude of change in the source data is greater than MaxDelta, the sample will be 

assumed to be erroneous, and so the source data will not be used. Instead, the data will be 

assumed to have changed the same amount it did in the previous cycle (i.e. to have maintained the 

last velocity), using the value held in the status element EncTable[n].PrevDelta. If in the next 

servo cycle, the change is still too large, a change in the source data is assumed to have occurred, 

and the result will be changed by MaxDelta. This rate will be maintained until the result matches 

the new source. 

In this mode, it is recommended that MaxDelta be set to a value about 25% greater than the 

maximum true velocity that is expected. 

For example, quadrature encoder feedback with 1/T extension is received with units of 1/32 of a 

count. The maximum expected speed is 200 quadrature counts per servo cycle, or 6400 LSBs per 

servo cycle. To set a speed limit, index3 is set to 0, and MaxDelta is set to 8000, providing a 

25% margin. 

Acceleration Limiting 

If EncTable[n].index3 is set to a value greater than 0, MaxDelta acts as the maximum 

acceleration that will be considered real. It is expressed in LSBs per servo cycle per servo cycle, 

assuming that the LSB is found in the bit of the 32-bit register specified by index2. If the 

magnitude of change in the rate of change (i.e. the second derivative) in the source data is greater 

than MaxDelta, the sample will be assumed to be erroneous, and so the source data will not be 

used. Instead, the data will be assumed to have the same second derivative it did in the previous 

cycle (i.e. to have maintained the last acceleration), using the value held in PrevDelta. If 

subsequent readings are also considered erroneous, the acceleration used in PrevDelta will be 

used for a total of index3 servo cycles. After this, it will use the value in MaxDelta to slew to the 

new source value. 
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In this mode, it is recommended that MaxDelta be set to a value about 25% greater than the 

maximum true acceleration that is expected. 

For example, absolute encoder feedback is received in units of LSBs of the encoder. In any servo 

cycle, the velocity is not expected to change more than 12 LSBs per servo cycle. We want to be 

able to “ride through” three bad readings. To set the acceleration limit this way, index3 should be 

set to 3, and MaxDelta should be set to 15 (providing a 25% margin). 

Numerical Integration 

As with other sources of feedback, Power PMAC can numerically integrate the source feedback 

in the ECT entry. EncTable[n].index4 specifies the number of times the incoming data is 

integrated, and it can be set to 0 (no integration), 1 (single integration – velocity to position), or 2 

(double integration – acceleration to position). It is rare to integrate feedback received over the 

MACRO ring, so usually index4 is left at its default value of 0. 

Output Scale Factor 

Most users will want the result of the ECT entry to be in meaningful units of the sensor, and a 

final multiplication of the intermediate result by the saved floating-point setup element 

EncTable[n].ScaleFactor provides this capability. 

After the data shifting, the unit of the sensor usually ends up in bit 8 (if no “sub-count” data was 

provided) or bit 13 (if 5 bits of “sub-count” data was provided) of the 32-bit intermediate value. 

In the first case, ScaleFactor should be set to 1/28, or 1/256 (= 0.00390625) so the result is in the 

proper units. In the second case, ScaleFactor should be set to 1/213, or 1/8192 (= 

0.0001220703125). In the case of the 17-bit encoder whose LSB was left in bit 15, ScaleFactor 

should be set to 1/215, or 1/32,768. It is usually best to enter these values as expressions and let 

Power PMAC compute the exact numerical values. 

Setting Up Motor Addressing Elements 

When Power PMAC controls a motor over the MACRO ring, it reads its inputs from MACRO IC 

registers, and writes its outputs to MACRO ring registers. The actual hardware inputs and outputs 

occur at a slave node on the ring. To configure this, the motor’s addressing elements specify the 

addresses of MACRO IC node registers, not of hardware input and output registers. This section 

explains the proper settings for this type of control. 

The MACRO IC node registers are expressed “generically” in this section, using IC index i, and 

node index j. In most cases, these index values will be those in the table shown above in the 

section Typical Mapping of MACRO Nodes to Motors. 

Command Output Address 

Motor[x].pDac specifies the address of the register where the motor’s command output is written 

(or if there are multiple registers, as when commutating a multi-phase motor, the address of the 

first register). When using the MACRO ring, this should be the address of Output Register 0 of 

the proper MACRO IC and node. 

When a PMAC2-style MACRO IC is used, the setting will be of the form Motor[x].pDac = 

Gate2[i].Macro[j][0].a. 

When a PMAC3-style MACRO IC is used, the setting will be of the form Motor[x].pDac = 

Gate3[i].MacroOutA[j][0].a or Gate3[i].MacroOutB[j][0].a. 
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If Power PMAC is not performing commutation or current-loop closure for the motor, the single 

command output from the servo loop will be written to this register. 

If Power PMAC is performing commutation for the motor, but not the digital current-loop closure 

(sinewave output mode), the first phase-current command (A) will be written to this register (0), 

and the second phase-current command (B) will be written to the next register (1) for the node. 

If Power PMAC is performing both commutation and current-loop closure (direct-PWM output 

mode) for the motor, the first phase-voltage command (A) will be written to this register (0), the 

second phase-voltage command (B) will be written to the next register (1) for the node, and the 

third phase-voltage command (C) will be written to the subsequent register (2) for the node. 

Position Feedback Address 

Motor[x].pEnc specifies the address of the register where the motor’s outer (position-loop) 

position feedback is read. Motor[x].pEnc2 specifies the address of the register where the motor’s 

inner (velocity-loop) position feedback is read. In most cases, the same sensor is used for both 

loops, so these two specify the same address. 

These position values must have been processed through the encoder conversion table, so these 

elements must specify the address of a table entry. So Motor[x].pEnc and Motor[x].pEnc2 are 

set to EncTable[n].a. In the most common case of a single sensor, both of these are set to the 

address of the same entry. Usually the entry index n is the same as the motor index x. 

Absolute Position Feedback Address and Format 

If there is absolute power-on position available over the MACRO ring, Motor[x].pAbsPos 

should be set to Gate2[i].Macro[j][0].a to specify the address of the IC and node for this absolute 

position value. (Otherwise, pAbsPos should be set to its default value of 0.) 

Motor[x].AbsPosFormat should be set to $01103808 to specify the use of the high 24 bits of 

this address and the high 16 bits of the next register, supporting a possible 40 bits of absolute 

position value. 

Motor[x].AbsPosSf should be set to 0.03125 (= 1/32) if the data is provided in the common 

scaling of 1/32 of a count. 

Interface Type 

Motor[x].EncType should be set to 4 to denote that this motor uses a MACRO interface to a 

slave device, or to 12 to denote that this motor uses a MACRO interface to a Turbo PMAC or 

Power PMAC acting as a MACRO slave. While this saved setup element does not do much 

directly, the act of setting it in the Script environment causes several key motor addressing 

settings to be made automatically, as explained below. 

However, if Motor[x].EncType is set to 4 or 12, the hardware-captured position for triggered 

moves such as homing search moves is obtained automatically through non-cyclic MACRO 

commands. The setting of Motor[x].pCaptPos is not used in this case. 

Input Flag Addresses 

Motor[x].pEncStatus is a “parent” address for the input flags for the motor. If the specific flag 

address parameters are the same as this, the input register does not need to be read again, saving 

access time. 
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Motor[x].pAmpFault, Motor[x].pLimits, and Motor[x].pCaptFlag specify the addresses of the 

registers where the motor’s amplifier-fault, hardware overtravel limit, and capture trigger flags 

are read. In most cases, these will be the same address, as all of these flags can be provided in the 

MACRO input flag register for a single node. 

When a PMAC2-style MACRO IC is used, the settings will be of the form Motor[x].p{flag} = 

Gate2[i].Macro[j][3].a. 

When a PMAC3-style MACRO IC is used, the settings will be of the form Motor[x].p{flag} = 

Gate3[i].MacroInA[j][3].a or Gate3[i].MacroInB[j][3].a. 

Input Flag Bits 

In addition to specifying the addresses of the registers where the input flags are read, the 

particular bits in the register must be specified as well. When using the standard MACRO 

protocol, the following settings should be used: 

Motor[x].AmpFaultBit = 23 

Motor[x].LimitBits = 25 

Motor[x].CaptFlagBit = 19 

The MACRO standard calls for a high-true amplifier fault bit, so Motor[x].AmpFaultLevel 

should be set to the default value of 1. 

When using quadrature encoder feedback with 5 bits of 1/T sub-count extension, the following 

settings should be used to process whole-count captured data, as for homing: 

Motor[x].CaptPosShiftLeft = 13 

Motor[x].CaptPosShiftRight = 0 

Motor[x].CaptPosRound = 1 

When receiving flags over the MACRO ring for a motor, Motor[x].EncType should be set to 4 

to tell Power PMAC of the expected format of the flags. With this setting, when 

Motor[x].pEncStatus is set to an address address (Gate2[i].Macro[j][3].a for a PMAC2-style 

IC, Gate3[i].MacroInA[j][3].a or Gate3[i].MacroInB[j][3].a for a PMAC3-style IC), Power 

PMAC automatically sets the above bit values to the appropriate settings for the MACRO 

protocol. 

Output Flag Addresses 

Motor[x].pEncCtrl specifies the address of the register the motor uses for its output control flags 

used to set up position-capture functions (as for homing) over the MACRO ring. 

When a PMAC2-style MACRO IC is used, the setting will be of the form Motor[x].pEncCtrl = 

Gate2[i].Macro[j][3].a. 

When a PMAC3-style MACRO IC is used, the setting will be of the form Motor[x].pEncCtrl = 

Gate3[i].MacroOutA[j][3].a or Gate3[i].MacroOutB[j][3].a. 

Motor[x].pAmpEnable specifies the address of the register where the motor’s amplifier-enable 

output flag is written. 
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When a PMAC2-style MACRO IC is used, the setting will be of the form 

Motor[x].pAmpEnable = Gate2[i].Macro[j][3].a. 

When a PMAC3-style MACRO IC is used, the setting will be of the form 

Motor[x].pAmpEnable = Gate3[i].MacroOutA[j][3].a or Gate3[i].MacroOutB[j][3].a. 

Output Flag Bits 

In addition to specifying the addresses of the registers where the output flags are written, the 

particular bit in the register must be specified as well. When using the standard MACRO 

protocol, the following setting should be used: 

Motor[x].AmpEnableBit = 22 

When sending flags over the MACRO ring for a motor, Motor[x].EncType should be set to 4 to 

tell Power PMAC of the expected format of the flags. With this setting, when Motor[x].EncCtrl 

is set to an address (Gate2[i].Macro[j][3].a for a PMAC2-style IC, Gate3[i].MacroOutA[j][3].a 

or Gate3[i].MacroOutB[j][3].a for a PMAC3-style IC), Power PMAC automatically sets the 

above bit value to the appropriate setting for the MACRO protocol. 

Commutation Addresses 

If Power PMAC is performing the phase commutation tasks for a motor controlled over the 

MACRO ring, several more address settings must be made properly to interface with the 

MACRO ring. 

For these motors, Motor[x].PhaseCtrl must be set to 4 to enable commutation using “unpacked” 

data (the data to and from each motor phase in a separate register), because none of the MACRO 

ICs support “packed” data. 

Commutation Position Address and Processing 

Motor[x].pPhaseEnc specifies the address of the register where the Power PMAC reads the 

commutation rotor angle position data. In the most common single-feedback configuration, this 

should be set to Gate2[i].Macro[j][0].a for a PMAC2-style MACRO IC, or to 

Gate3[i].MacroInA[j][0].a or Gate3[i].MacroInB[j][0].a for a PMAC3-style MACRO IC, the 

same address as for servo-loop feedback. 

Note that Power PMAC will read the entire 32-bit value at this address, even though there is only 

real data in the upper 24 bits (i.e. starting at bit 8). In addition, with many MACRO devices, the 

low 5 bits of the real data may contain fractional-count data for improved servo resolution, so a 

single “count” of feedback may appear in bit 13 of the 32-bit register. This must be taken into 

account when scaling the data into commutation cycles. 

Power PMAC can perform “data shifting” operations on the value read from this register using 

Motor[x].PhaseEncRightShift and Motor[x].PhaseEncLeftShift. While PhaseEncRightShift 

can be used to shift out the low 8 bits of “garbage data” in the register, since Power PMAC only 

uses 11 bits of position data in a commutation cycle, this is seldom needed. 

If true position data is not present in the highest bit of the register read, PhaseEncLeftShift must 

be used to shift the most significant bit of true position data to bit 31 of the resulting register. 

Otherwise, the rollover of the value in the register will not be handled properly. For example, if 
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the register holds only 17 bits of single-turn position data in bits 8 – 24 of the 32-bit register, 

PhaseEncLeftShift should be set to 7 to move the MSB to bit 31. 

Motor[x].PhasePosSf multiplies this 32-bit value to convert the units of this (entire) register to 

the commutation units of 1/2048 of a commutation cycle (motor pole pair). The formula for 

computing this element is: 

  cyccommBsregisterLSN

cyccommunits
PhasePosSfxMotor






2048
].[  

So the main step is to figure out how many (“N”) LSBs of the 32-bit register (after any shifting 

operations) there are per commutation cycle. This is best illustrated by some common examples. 

In the first example, a 1000-line quadrature encoder is used on a 4-pole motor. At the remote 

MACRO device, “times-4” decode is performed on the encoder to obtain 4000 counts per 

revolution, and “1/T” extension is performed to provide 5 bits of fractional count data before the 

data is sent to Power PMAC over the MACRO ring. This setup yields 2000 full encoder counts 

per commutation cycle, with a count appearing in bit 13 (8 + 5) of the 32-bit register. So there are 

(2000 * 213), or 16,384,000 register LSBs per commutation cycle. Motor[x].PhasePosSf should 

be set to 2048 / 16,384,000. It is usually best to enter this as an expression and let Power PMAC 

compute the exact resulting value. (In this case, the expression could be reduced to 1 / 8000). 

In the second example, an encoder provides 20 bits of single-turn data on an 8-pole motor. Each 

phase cycle, 24 bits of position data (covering 16 motor revolutions) are provided over the 

MACRO ring, with no fractional data. With 4 commutation cycles per motor revolution, there are 

218, or 262,144 encoder LSBs per commutation cycle, with an encoder LSB appearing in bit 8 of 

the 32-bit register. So there are (218 * 28) = 226, or 67,108,864 register LSBs per servo cycle. 

Motor[x].PhasePosSf should be set to 2048 / 67108864. (This could be reduced to 1 / 32768.) 

In the third example, an encoder provides 17 bits of single-turn data on a 4-pole motor. Each 

phase cycle, these 17 bits of position data are provided over the MACRO ring, with no fractional 

data. This data appears in bits 8 – 24 of the 32-bit register, with zeros above. 

Motor[x].PhaseEncLeftShift should be set to 7 to move the encoder MSB to bit 31 of the 

register. This leaves the encoder LSB in bit 15 of the register. With 2 commutation cycles per 

motor revolution, there are 216, or 65,536 encoder LSBs per commutation cycle, with an encoder 

LSB appearing in bit 15. So there are (216 * 215) = 231 register LSBs per servo cycle. 

Motor[x].PhasePosSf should be set to (211 / 231) = 1 / 220, or 1 / 1048576. 

Current Feedback Address and Processing 

If Power PMAC is not also performing digital current-loop closure for the motor, operating in 

“sinewave output” mode, Motor[x].pAdc is set to 0. However, if Power PMAC is performing 

digital current-loop closure, operating in “direct PWM” mode, Motor[x].pAdc must be used to 

specify the address of the (first) register where the Power PMAC reads the phase current data 

from the A/D converters. 

Using the standard MACRO protocol, this should be set to Gate2[i].Macro[j][1].a for a PMAC2-

style protocol, or to Gate3[i].MacroInA[j][1].a or Gate3[i].MacroInB[j][1].a for a PMAC3-

style MACRO IC. This will cause Power PMAC to read the node’s input register 1 for the Phase 

A current value, and input register 2 for the Phase B current value. 



Power PMAC User’s Manual 

Setting Up the MACRO Ring 109 

For n-bit ADCs, the true feedback data will appear in the high n bits of the 16-bit hardware 

register (and of the full 32-bit value read). The high n bits of the 32-bit saved setup element 

Motor[x].AdcMask should be set to 1 to tell Power PMAC which bits to use. For the most 

common 12-bit ADCs, AdcMask should be set to $FFF00000. 

 



Power PMAC User’s Manual 

Setting Up the MACRO Ring 110 

Setting Up a Motor as a Network Slave 

It is possible to set up a Power PMAC motor to receive and act on cyclic commands from a 

network such as a MACRO ring. This is typically used to coordinate large numbers of motors on 

multiple Power PMAC systems together over a network. All of the coordination is done in one of 

the Power PMACs, with cyclic commands generated from the coordinated motion sent over the 

network to other Power PMACs. 

This technique is particularly useful when individual Power PMAC systems are limited in the 

number of physical hardware channels they can interface to. For example, Power PMAC Brick 

systems are limited to 8 channels of local interface, so can only directly control 8 axes. However, 

this same system can also command 32 additional axes across the MACRO ring (for example on 

4 other Power PMAC Bricks), bringing the total to 40 axes. (Its software supports a total of 256 

axes.) In an alternate configuration a Power PMAC Etherlite network controller can command 

large number of axes on Power PMAC Bricks through this technique. If all of the coordinating 

software tasks (e.g. motion programs) are executed on a single Power PMAC, it is much easier to 

accomplish. 

This technique can also reduce the computational load on the coordinating Power PMAC by 

offloading some of the high-frequency cyclic tasks such as phase commutation and current-loop 

closure to other Power PMACs. This can permit the coordinating Power PMAC to execute its key 

tasks at higher frequencies than would be possible if it had to do all of these high-frequency tasks 

as well. 

One advantage of this technique is the ability for the network-slave Power PMAC to take full 

control of its axes in the event of a problem such as a ring break. This can provide important fault 

recovery capabilities, such as permitting the retraction of motors to safe positions. (Any fault 

recovery algorithms must be written by the user for any particular application.) 

Command Modes 

Cyclic commands of any of the following types can be sent to the network-slave motor: 

1. Commanded position 

2. Commanded velocity 

3. Commanded torque/force 

4. Commanded phase currents (“sinewave” mode) 

5. Commanded phase voltages (“direct PWM” mode) 

 

The most common command format in this mode of operation is torque/force. This offloads the 

high-frequency phase-commutation and current-loop closure tasks to the remote Power PMAC, 

but the main position/velocity servo loop is in the coordinating Power PMAC, making setup and 

tuning easier. Current-loop closure is done locally in the network slave, avoiding network 

transport delays inside the high-bandwidth current loop. In this mode, operation is the same as for 

commanding many third-party MACRO drives. 

The second most common command format is phase voltages (PWM). While this does not 

offload any computational load from the coordinating Power PMAC, all motor setup, including 

commutation setup and current-loop tuning, is in the coordinating Power PMAC. In this mode, 

operation is the same as for commanding Delta Tau Geo MACRO drives. 
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Note that, while cyclic commanded positions can be sent across the network, certain important 

functionality, such as establishing position reference, is not fully supported at this time. 

Coordinating Power PMAC Motor Setup 

The coordinating Power PMAC will perform the higher-level tasks for the motor. It is here that 

the motor will be assigned to an axis in a coordinate system and will generate commanded 

trajectories, either from the axis through a motion program, or from separate motor moves. 

Depending on how many of the subsequent motor tasks are performed in the network-slave motor 

on the remote PMAC, additional tasks such as servo-loop closure and commutation can be 

performed in the coordinating Power PMAC as well. 

A motor in the coordinating Power PMAC commanding a network-slave motor over the MACRO 

ring in another Power PMAC is set up just as if it were commanding a separate MACRO drive. A 

quick guide to the setup of the coordinating Power PMAC motor is given here. 

Motor Activation and Mode 

For the motor in the coordinating Power PMAC, Motor[x].ServoCtrl should be set to 1 (or 

possibly to 8 for a “gantry follower”). Motor[x].MotorMode should be set to 0 so this motor is 

not a network slave (this is the “network master” motor). 

Motor[x].EncType should be set to 4 to specify the motor’s hardware interface will be of the 

MACRO style. This automatically sets several parameters, including Motor[x].AmpEnableBit, 

Motor[x].AmpFaultBit, Motor[x].CaptFlagBit, and Motor[x].LimitBits, to the values 

matching the MACRO protocol. 

MACRO Ring Addresses 

One MACRO servo node should be selected to transfer all of the command and feedback data, 

including control and between the coordinating Power PMAC and the network slave Power 

PMAC. Servo nodes are numbered (j) 0, 1, 4, 5, 8, 9, 12, and 13. Several saved setup elements 

will be set to addresses of registers in this node. 

Motor[x].pDac should be set to the address of output register 0 of this MACRO servo node so 

the command output value(s) of whatever format will be sent over the ring through that node. For 

a PMAC2-style “DSPGATE2” MACRO IC, the setting will be of the form 

Gate2[i].Macro[j][0].a. For a PMAC3-style “DSPGATE3” IC, the setting will be of the form 

Gate3[i].MacroOutα[j][0].a. 

Motor[x].pEncCtrl should be set to the address of output register 3 of this MACRO servo node 

so the trigger flag on the remote Power PMAC can be properly armed. For a PMAC2-style 

“DSPGATE2” MACRO IC, the setting will be of the form Gate2[i].Macro[j][3].a. For a 

PMAC3-style “DSPGATE3” IC, the setting will be of the form Gate3[i].MacroOutα[j][3].a. 

Motor[x].pAmpEnable should be set to the address of output register 3 of this MACRO servo 

node so the amplifier-enable flag value is sent over the ring through the command-flag register of 

the node. For a PMAC2-style “DSPGATE2” MACRO IC, the setting will be of the form 

Gate2[i].Macro[j][3].a. For a PMAC3-style “DSPGATE3” IC, the setting will be of the form 

Gate3[i].MacroOutα[j][3].a. 

Motor[x].pEncStatus should be set to the address of input register 3 of this MACRO servo node 

so encoder flag functions sent over the ring are read. For a PMAC2-style “DSPGATE2” MACRO 
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IC, the setting will be of the form Gate2[i].Macro[j][3].a. For a PMAC3-style “DSPGATE3” IC, 

the setting will be of the form Gate3[i].MacroInα[j][3].a. 

Motor[x].pAmpFault, Motor[x].pCaptFlag, and Motor[x].pLimits should be set to the address 

of input register 3 of this MACRO servo node so the input flag values sent over the ring through 

the status-flag register of the node are read. For a PMAC2-style “DSPGATE2” MACRO IC, the 

setting will be of the form Gate2[i].Macro[j][3].a. For a PMAC3-style “DSPGATE3” IC, the 

setting will be of the form Gate3[i].MacroInα[j][3].a. 

Encoder Conversion Table Setup for Position Feedback 

EncTable[n].pEnc for the encoder conversion table entry processing the position feedback from 

the network slave should be set to the address of input register 0 of this MACRO servo node. For 

a PMAC2-style “DSPGATE2” MACRO IC, the setting will be of the form 

Gate2[i].Macro[j][0].a. For a PMAC3-style “DSPGATE3” IC, the setting will be of the form 

Gate3[i].MacroInα[j][0].a. 

EncTable[n].type for this entry should be set to 1 (single-register read). EncTable[n].index1 

and EncTable[n].index2 should both be set to 8 to shift the 24-bit value right and then left 8 bits 

to eliminate possible “garbage data” from the low 8 bits of the 32-bit bus. 

EncTable[n].ScaleFactor should be set to 1/256 if it is desired that the LSB of the 24-bit register 

be one unit of output from the entry. If the value from the network slave has 8 bits of fractional 

data, as with 1/T incremental encoder interpolation from a DSPGATE3 IC, this should be set to 

1/256/256, or 1/65,536, so an encoder count is one unit of output from the entry. 

It is recommended that EncTable[n].MaxDelta be set to a non-zero value to represent a 

maximum legal velocity magnitude (if EncTable[n].index3 = 0) or a maximum legal 

acceleration magnitude (if EncTable[n].index3 > 0) to protect against any possible data 

corruption during ring transfer. 

Motor[x].pEnc and Motor[x].pEnc2 should be set to the address of this encoder conversion 

table entry (EncTable[n].a) so the processed feedback value is used for the outer-loop and inner-

loop, respectively, actual position. Note that if dual feedback is desired, the secondary encoder 

would need to be transmitted back to the coordinating Power PMAC through a software 

mechanism other than the automatic motor transfers. 

Position Command Setup 

If the corresponding network-slave motor is expecting position commands, Motor[x].Ctrl for the 

coordinating Power PMAC motor should be set to Sys.PosCtrl so that no servo-loop closure is 

done by the Power PMAC motor, and position commands from the trajectory generator are 

directly output each servo cycle. (Remember that some non-cyclic positioning functions like 

establishing a position reference may not be fully supported in this mode of operation.) 

In this mode of operation, setup terms for the position/velocity servo loop, phase commutation 

algorithm, and digital current-loop are not used. The actual position feedback value from the 

network slave is only used for monitoring purposes – actual position can be queried, and the 

difference between commanded and actual position can be checked against the following error 

limits. Motor[x].PhaseCtrl should be set to 0 to disable phase tasks in the coordinating Power 

PMAC. 
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Velocity Command Setup 

If the corresponding network-slave motor is expecting velocity commands, Motor[x].Ctrl for the 

coordinating Power PMAC motor is usually set to the address one of the standard servo loop 

algorithms. Leaving it at the default value of Sys.ServoCtrl is fine for most applications, but 

because many of the important servo tasks are done in the network-slave motor algorithms, using 

the simpler algorithm at Sys.PidCtrl is usually sufficient and will save some processor time. This 

can be important in high-axis-count applications. In this mode, it is very unlikely that any of the 

more advanced servo algorithms, such as those at Sys.AdaptiveCtrl or Sys.GantryXCtrl, will be 

used, because those algorithms need to control the torque/force commands. 

In this mode of operation, no “inner-loop” feedback gains should be used, as the tasks they 

accomplish (e.g. damping) are done in the network-slave motor servo loop. In particular, velocity 

feedback gains Motor[x].Servo.Kvfb and Kvifb should be set to 0.0. Motor[x].PhaseCtrl 

should be set to 0 to disable phase tasks in the coordinating Power PMAC. 

Torque/Force Command Setup 

If the corresponding network-slave motor is expecting velocity commands, Motor[x].Ctrl for the 

coordinating Power PMAC motor is usually set to the address one of the standard servo loop 

algorithms. The user’s choice of the default Sys.ServoCtrl, the basic but fast Sys.PidCtrl, or the 

advanced Sys.AdaptiveCtrl or Sys.GantryXCtrl will be made for the same reasons as when the 

motor is fully locally controlled. 

In this mode of operation, it is essential that the inner (velocity) servo loop be properly tuned on 

the coordinating Power PMAC as well as the outer (position) servo loop. Motor[x].PhaseCtrl 

should be set to 0 to disable phase tasks in the coordinating Power PMAC. 

Phase Current (“Sinewave”) Command Setup 

If the corresponding network-slave motor is expecting phase-current (“sinewave mode”) 

commands, Motor[x].Ctrl for the coordinating Power PMAC motor is usually set to the address 

one of the standard servo loop algorithms. The user’s choice of the default Sys.ServoCtrl, the 

basic but fast Sys.PidCtrl, or the advanced Sys.AdaptiveCtrl or Sys.GantryXCtrl will be made 

for the same reasons as when the motor is fully locally controlled. 

In this mode of operation, it is essential that the inner (velocity) servo loop be properly tuned on 

the coordinating Power PMAC as well as the outer (position) servo loop. Motor[x].PhaseCtrl 

should be set to 4 to enable phase tasks in the coordinating Power PMAC interfacing through a 

MACRO IC. Motor[x].pAdc should be set to 0 to disable current-loop closure in the 

coordinating Power PMAC, since that task will be performed in the network-slave Power PMAC. 

Phase Voltage (“PWM”) Command Setup 

If the corresponding network-slave motor is expecting phase-voltage (“direct-PWM mode”) 

commands, Motor[x].Ctrl for the coordinating Power PMAC motor is usually set to the address 

one of the standard servo loop algorithms. The user’s choice of the default Sys.ServoCtrl, the 

basic but fast Sys.PidCtrl, or the advanced Sys.AdaptiveCtrl or Sys.GantryXCtrl will be made 

for the same reasons as when the motor is fully locally controlled. 

In this mode of operation, it is essential that the inner (velocity) servo loop be properly tuned on 

the coordinating Power PMAC as well as the outer (position) servo loop. Motor[x].PhaseCtrl 

should be set to 4 to enable phase tasks in the coordinating Power PMAC interfacing through a 

MACRO IC. Motor[x].pAdc should be set to the address of input register 1 of the MACRO 
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servo node to enable current-loop closure in the coordinating Power PMAC using the values read 

in registers 1 and 2 of the node. For a PMAC2-style “DSPGATE2” MACRO IC, the setting will 

be of the form Gate2[i].Macro[j][1].a. For a PMAC3-style “DSPGATE3” IC, the setting will be 

of the form Gate3[i].MacroInα[j][1].a. 

Network-Slave Power PMAC Motor Setup 

A Power PMAC motor that will be used as a network-slave motor in the actual application is 

usually set up initially as an independent motor to establish basic functionality. Then it will be 

converted to network-slave mode to operate under the control of a motor from the coordinating 

Power PMAC. 

Establishing Network-Slave Functionality 

For the motor in the network-slave Power PMAC, Motor[x].MotorMode must be set to a value 

greater than 0 to put the motor in network-slave mode so it accepts cyclic commands from the 

network and provides cyclic feedback to the network. The specific non-zero value of 

Motor[x].MotorMode tells the motor what kind of command to expect. The choices are: 

1. Commanded position 

2. Commanded velocity 

3. Commanded torque/force 

4. Commanded phase currents (“sinewave” mode) 

5. Commanded phase voltages (“direct PWM” mode) 

 

Motor[x].pMotorNode should be set to the address of the MACRO ring register where the cyclic 

command value (or the first cyclic command value in the case of multiple phase commands) is 

expected. This is virtually always the input register 0 of a MACRO servo node.  

When the MACRO IC is a PMAC2-style “DSPGATE2” IC, as in a UMAC ACC-5E this setting 

will be of the form Gate2[i].Macro[j][0].a, where i is the IC index, j is the node number. 

When the MACRO IC is a PMAC3-style “DSPGATE3” IC, as in a Power Brick or UMAC ACC-

5E3, the setting will be of the form Gate3[i].MacroInα[j][0].a, where i is the IC index, j is the 

node number, and α is “A” or “B”. 

Motor[x].MotorNodeOffset should be set to the difference in address between this first 

command register and the register where the position feedback is written, virtually always the 

output register 0 of the same MACRO servo node. 

When the MACRO IC is a PMAC2-style “DSPGATE2” IC, this will be set to 0, because in this 

IC the input and output registers for a MACRO node have the same addresses. 

When the MACRO IC is a PMAC3-style “DSPGATE3” IC, this will be set to 64, because in this 

IC the output registers start at an address 64 higher than the input registers of the same MACRO 

node. 

Network-Slave Motor Machine Interface Functionality 

For the motor in the network-slave Power PMAC, the addressing saved setup elements are 

configured just as if the motor were operating independently. These elements will be set to the 

addresses of input and output registers in the Power PMAC itself. This permits the motor to be set 
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up for independent operation first, then easily converted to network-mode. It also permits the 

motor to be converted back to independent operation if necessary for fault recovery. 

Typical settings for these addressing elements are: 

 Motor[x].pDac:  Gaten[i].Chan[j].Pwm[0].a 

 Motor[x].pEncCtrl:  Gate1[i].Chan[j].Ctrl.a 

     Gate3[i].Chan[j].OutCtrl.a 

 Motor[x].pAmpEnable: Gate1[i].Chan[j].Ctrl.a 

     Gate3[i].Chan[j].OutCtrl.a 

 Motor[x].pEncStatus:  Gaten[i].Chan[j].Status.a 

 Motor[x].pAmpFault:  Gaten[i].Chan[j].Status.a 

 Motor[x].pCaptFlag:  Gaten[i].Chan[j].Status.a 

 Motor[x].pLimits:  Gaten[i].Chan[j].Status.a 

Processing of Position Feedback 

The position feedback for this motor that is to be sent back to the coordinating Power PMAC 

must be processed through the encoder conversion table just as if the motor were in independent 

operation, so the EncTable[n] entry should be set up in the same way as it would be for 

independent motor operation, reading the actual hardware input registers such as encoder 

counters and timers, and producing a single processed (“converted”) result. 

Motor[x].pEnc should be set to the address of this entry (to EncTable[n].a). If 

Motor[x].MotorMode is greater than 0, the resulting value will be sent back to the coordinating 

Power PMAC through the specified MACRO node. If Motor[x].MotorMode is set to 1, it will 

also be used to close the outer (position) loop on this network-slave Power PMAC. 

Note that when this position value is received by the coordinating Power PMAC, it will be 

processed through an encoder conversion table entry there. That entry will not do significant 

processing. In many cases, it will simply pass the value through, although a “maximum change” 

filter to catch spurious values is recommended. 

In single-feedback systems, Motor[x].pEnc2 should be set to the address of this entry as well. In 

dual-feedback (load and motor) systems, it will be set to the address of a different entry to get a 

separate position value. Note that the position value obtained from the register pointed to by 

pEnc2 is not automatically sent back to the coordinating Power PMAC through this mechanism. 

However, if Motor[x].MotorMode is set to 1 or 2 (position or velocity commands), it will be 

used on the network-slave Power PMAC to close the inner (velocity) loop. 

Commutation and Current Loop 

In almost all cases, the network-slave Power PMAC will be performing some motor tasks under 

the phase interrupt, even if only transferring phase-command values from the ring to output 

registers, so Motor[x].PhaseCtrl should be set to a value greater than 0. It should be set to 1 if it 

will be using a DSPGATE3 IC in the efficient “packed” mode for direct PWM (with 
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Gate3[i].Chan[j].PackOutData set to its default value of 1 and Gate3[i].Chan[j].PackInData 

set to its default value of 2). It should be set to 4 if it will be using a Servo IC without packing 

two phases into one hardware register access (the only way you can use a DSPGATE1 IC). 

If Motor[x].MotorMode is set to 5, the network-slave Power PMAC will simply take the phase-

voltage commands it receives and write them to the registers specified by Motor[x].pDac, then 

read the actual phase-current values from the registers specified by Motor[x].pAdc and write 

them to the MACRO feedback registers. The phase-position register for the motor will be the 

same one as used for position-loop servo feedback (unless some other mechanism is used to send 

a separate value back). In this mode, no other commutation or current-loop parameters need to be 

set. 

If Motor[x].MotorMode is set to 1, 2, or 3, and the network-slave Power PMAC performs 

commutation and current-loop closure for the motor (this is the most common style of operation), 

then all of the commutation and current-loop parameters must be set on this Power PMAC, just as 

when the motor is operating independently. 
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SETTING UP FEEDBACK AND MASTER POSITION 
SENSORS 

Power PMAC systems can interface to a wide variety of position sensors for both feedback and 

“master” use. This section summarizes the basic hardware and software setup issues; more details 

can be found in the appropriate hardware reference manuals and the Power PMAC Software 

Reference Manual. 

Note that the initial setup for feedback or master sensors is independent of any motor or 

coordinate system. A motor or coordinate system may use the numerical value resulting from the 

initial hardware and/or software processing of a position signal, but this is not required. It is also 

possible for user programs or commands to access these position values directly, without a motor 

or coordinate-system automatic function using them at all. 

Setting Up Digital Quadrature Encoders 

Digital quadrature encoders are the most common position sensors used with Power PMACs. 

Interface circuitry for these encoders comes standard on Power UMAC axis-interface boards, 

Power Clipper boards, and Power Brick control boxes. In addition, axis interface channels based 

on the PMAC3-style “DSPGATE3” IC can use the serial encoder lines for auxiliary quadrature 

encoders. 

Signal Format 

Quadrature encoders provide two digital signals that are a function of the position of the encoder, 

each nominally with 50% duty cycle, and nominally one-quarter cycle apart. This format provides 

four distinct states per cycle of the signal, or per line of the encoder. The phase difference of the 

two signals permits the decoding electronics to discern the direction of travel, which would not be 

possible with a single signal. 

A

B

1 2 3 4 5 6 1 2 3 4 5 6

“Clockwise” “Counterclockwise”
 

Quadrature Waveforms Showing Direction Sense 

Typically, these signals are at 5V TTL/CMOS levels, whether single-ended or differential.  The 

input circuits are powered by the main 5V supply for the controller, but the can accept up to +/-

12V between the signals of each differential pair, and +/-12V between a signal and the GND 

voltage reference. 

Differential encoder signals can enhance noise immunity by providing common-mode noise 

rejection. Modern design standards virtually mandate their use for industrial systems, especially 

in the presence of PWM power amplifiers, which generate a great deal of electromagnetic 

interference. 
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Hardware Setup 

This section describes the Power PMAC encoder hardware interface in general terms. Consult the 

Hardware Reference Manual for your particular configuration for details. 

Power PMAC’s encoder interface circuitry employs differential line receivers, but can accept 

single-ended encoders as well as differential encoders. The following diagram shows the basic 

interface circuitry for a phase of an encoder: 

A+

A-

R aR

+

-

bR

A

A?

+5V

1

2

3

 

Power PMAC Incremental Encoder Input Circuitry 

The differential inputs for the phase (A+ and A-) are at left. They are connected to the two inputs 

of a differential line receiver whose digital output state is dependent on which signal has a higher 

voltage. The “+” signal has a pull-up resistor (with R about 1 kΩ) to the internal 5V supply. The 

“-” signal has a higher-valued pull-up resistor (with aR about 2 kΩ) to the internal 5V supply, and 

a second resistor with value bR that is (at least by default) pulled down to the 0V signal GND 

return. 

PMAC2-Style Interfaces 

On the PMAC2-style ACC-24E2, ACC-24E2A, and ACC-24E2S UMAC axis-interface boards, 

this second resistor is implemented with a reversible socketed resistor pack for the encoder. The 

resistors in this pack have the same value as the pull-up resistors (bR = aR) for this signal. In the 

default configuration (pin 1 of the pack – marked with the dot – matching pin 1 of the socket), it 

provides pull-down resistors that create a voltage divider that holds the “-” line at 2.5V if there is 

no input on the line. The resistor pack must be in this configuration to accept single-ended 

encoder signals on the “+” lines; nothing should be connected to the “-” lines. 

Encoders with differential line-driver signal pairs (RS-422 signal type), the most common type of 

industrial encoders, can be used with the resistor pack in either orientation. However, in the 

default orientation, the encoder-loss detection circuit is not enabled. If the resistor pack is 

reversed in the socket, making these pull-up resistors, the encoder-loss detection circuit, 

explained below, is enabled. 
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PMAC3-Style Interfaces 

On the PMAC3-style ACC-24E3 UMAC axis-interface board with the digital feedback 

mezzanine and on the PMAC3-style Power Brick control board, the second resistor for the “-” 

line is hardwired to ground, but it is of a higher-value than the pull-up resistor in a 3-to-2 ratio, so 

it creates a voltage divider that holds the line at 3V if there is no input on the line. The encoder-

loss logic uses TTL-level inputs that consider 3V a high logic level. In this way, the circuitry can 

be used for single-ended encoders and for differential encoders with encoder-loss detection 

enabled. 

Encoder-Loss Detection Circuitry 

Many users want to be able to detect directly the loss of signal from an encoder, as this can 

produce a dangerous runaway condition before software algorithms are able to detect the 

resulting problems. With differential signal pairs, one of the pair should produce a logic high and 

one a logic low at any given time. If when the signal is lost, both inputs are pulled to the same 

logic level, this condition can be detected directly by the input circuitry. 

Power PMAC encoder interface circuits provide this capability. Each signal pair is connected to 

the two inputs of an “exclusive-or” (XOR) gate, as well as to the differential line receiver. With a 

properly acting encoder with the two signals in different logic states, the output of the XOR gate 

is high. If the signal is lost, as when the cable comes disconnected, and the resistors on the input 

lines pull both signals to a high logic state, the output of the XOR gate goes low, indicating signal 

loss. 

Power PMAC software can provide automatic detection and shutdown of this encoder-loss 

condition. For more details, refer to the section on encoder loss detection in the chapter Making 

Your Power PMAC Application Safe of the User’s Manual. 

Power Supply and Isolation 

With the standard Power PMAC interfaces, the encoder circuitry is not isolated from Power 

PMAC’s digital circuitry and the signals are referenced to Power PMAC’s digital common level 

GND. Typically the encoders in this case are powered from Power PMAC’s +5V lines with a 

return on GND. The total encoder current draw must be considered in sizing the Power PMAC 

power supply. 

It is also possible to use a separate supply for the encoders with non-isolated signals connected to 

Power PMAC. In this case, the return of the supply should be connected to the digital common 

GND on Power PMAC to give the signals a common reference. The +5V lines of separate 

supplies should not be tied together, as they could fight each other to control the exact voltage 

level. 

Isolated Encoder Signals 

In some systems, the user will want to optically isolate the encoder circuitry from Power PMAC’s 

digital circuitry. This is common in systems with long distances from the encoder to the controller 

(>10m or 30 ft) and/or systems with very high levels of electrical noise. Isolation can be achieved 

using the ACC-8D Opt 6 4-channel encoder isolator board. With an isolated encoder, a separate 

power supply is required for the encoders to maintain isolation, and the return on this supply 

must not be connected directly to the Power PMAC’s digital common GND, or the isolation will 

be defeated. 



Power PMAC User’s Manual 

Setting Up Feedback and Master Position Sensors 120 

Simulated Encoder Signals 

Special consideration must be given to systems that have a simulated encoder signal provided 

from circuitry such as a resolver-to-digital converter in a servo drive. In these systems, the 

encoder signals are almost always referenced to the amplifier’s signal return, which in turn is 

connected to Power PMAC’s analog common AGND. The best setup in these cases is to isolate 

the simulated encoder signal from the Power PMAC digital circuitry with the ACC-8D Opt 6 

isolator board or similar module. This will keep full isolation between the Power PMAC digital 

circuitry and the amplifier. 

If isolation of the simulated encoder signals is not feasible, Power PMAC’s digital circuitry and 

the amplifier signal circuitry (including any Power PMAC’s analog circuitry) must be well tied 

together to provide a common reference voltage. This is best done by putting jumpers on the 

Power PMAC interface board (E-Points E85, E87, and E88 on many boards), tying the digital and 

analog circuits on Power PMAC together, and therefore also the analog signal circuits. What must 

be avoided is having the simulated encoder cable(s) providing the only connection between the 

circuits. This can result in lost signals from bad referencing, or even component damage from 

ground loops. 

Wiring Techniques 

There are several important techniques in the wiring of the encoders that are important for noise 

mitigation. First, the encoder cable should be kept physically separate from the motor power 

cable if at all possible. Second, both of these cables should be shielded, the motor cable to prevent 

noise from getting out, and the encoder cable to prevent noise from getting in. The encoder 

shields should be grounded at the “inward” end only, that is, to the device that is itself tied to a 

ground. 

A third important noise mitigation technique is to twist the leads of the complementary pairs 

around each other. With these “twisted pairs”, what noise does get in tends to cancel itself out in 

opposite halves of the twist. 

Hardware-Control Parameter Setup 

The Power PMAC ASICs are set up by default to accept quadrature feedback, but you may need 

to tweak some settings to optimize operation. 

Encoder Sample Clock Frequency 

After the front-end processing through the differential line receivers, the quadrature encoder 

inputs are sampled by digital logic in a PMAC2-style “DSPGATE1” Servo IC or PMAC3-style 

“DSPGATE3” IC at a rate determined by the frequency of the SCLK “encoder sample clock”, 

which is user settable. The higher the SCLK frequency, the higher the maximum permissible 

count rate; the lower the SCLK frequency, the more effective the “digital delay” noise filter is. 

Each encoder input channel has a digital delay filter consisting of three cascaded D-flip-flops on 

each line, with a best two-of-three voting scheme on the outputs of the flip-flops. The flip-flops 

are clocked by the SCLK signal. This filter does not pass through a state change that only lasts for 

one SCLK cycle; any change this narrow should be a noise spike. In doing this, the filter delays 

actual transitions by two SCLK cycles – a trivial delay in virtually all systems. 

If both the A and B channels change state at the decode circuitry (post-filter) in the same SCLK 

cycle, an unrecoverable error to the counter value will result. The ASIC hardware notes this 

problem by setting and latching the “encoder count error” bit in the channel’s status word, 
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accessible with the Gaten[i].Chan[j].CountError status element. The problem can also be 

detected by capturing the count value each revolution on the index pulse and seeing whether the 

correct number of counts have elapsed. 

 

The SCLK frequency must be at least 4 times higher than the maximum encoder cycle (line) 

frequency input, regardless of the quadrature decoding method used (with the most common 

“times-4” decode, the SCLK frequency must be at least as high as the count rate). In actual use, 

due to imperfections in the input signals, a 20 – 25% safety margin should be used. 

Few users will change the default SCLK frequency settings in the interface ICs. Some will 

increase the frequency to permit very high count rates, and some will lower the frequency for 

increased noise immunity. 

PMAC2-Style Servo IC SCLK Frequency Control 

In a PMAC2-style Servo IC, as on the UMAC Acc-24E2x axis-interface boards, the SCLK 

frequency is set by bits 0 – 3 of the 12-bit saved setup element Gate1[i].HardwareClockCtrl. 

These 3 bits, which collectively can take a value from 0 to 7, indicate the number of times an 

internal 39.32 MHz clock frequency is divided by 2 to produce the SCLK signal.  

The other three clock frequencies that this element controls are virtually never changed, so the 

following table may be useful for setting the SCLK frequency with the others left at the default 

frequency: 

HardwareClockCtrl SCLK Frequency HardwareClockCtrl SCLK Frequency 

2256 39.32 MHz 2260 2.46 MHz 

2257 19.66 MHz 2261 1.23 MHz 

2258* 9.83 MHz* 2262 612 kHz 

2259 4.92 MHz 2263 306 kHz 

*Default 

The default SCLK frequency of 9.83 MHz can reliably accept count frequencies up to 8 MHz, 

corresponding to 2 MHz line cycle frequencies. 
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PMAC3-Style Interface IC SCLK Frequency Control 

In a PMAC3-style machine-interface IC, as on the UMAC Acc-24E3 axis-interface boards, the 

SCLK frequency is set by 4-bit saved setup element Gate3[i].EncClockDiv. This element, which 

can take a value from 0 to 15, indicates the number of times an internal 100 MHz clock frequency 

is divided by 2 to produce the SCLK signal. At the default element value of 5, there is a net 

division by 32 yielding a 3.125 MHz SCLK frequency, which can reliably accept count 

frequencies up to about 2.5 MHz, corresponding to 625 kHz line cycle frequencies. The following 

table shows the possible settings and the clock frequencies they produce: 

Setting Divisor Frequency Setting Divisor Frequency 

0 1 100 MHz 8 256 390.6 kHz 

1 2 50 MHz 9 512 195.3 kHz 

2 4 25 MHz 10 1,024 97.65 kHz 

3 8 12.5 MHz 11 2,048 48.82 kHz 

4 16 6.25 MHz 12 4,096 24.41 kHz 

5 32* 3.125 MHz 13 8,192 12.21 kHz 

6 64 1.562 MHz 14 16,384 6.104 kHz 

7 128 781.2 kHz 15 32,768 3.052 kHz 

*default 

Note that while the ASIC itself could accept a 25 MHz signal frequency for a 100 MHz 

quadrature count rate, the line receiver circuitry is only rated to a 10 MHz signal frequency. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

Encoder Decode Control: Gaten[i].Chan[j].EncCtrl 

The decoding of the encoder signal, both as to resolution and direction, is determined by a 

channel-specific saved setup element for the IC. For PMAC2-style ICs, this is 

Gate1[i].Chan[j].EncCtrl; for PMAC3-style ICs, this is Gate3[i].Chan[j].EncCtrl. 

This variable is almost always set for “times-4” decode, which derives 4 counts per signal cycle, 

one for each signal edge. This requires a variable value of 3 or 7. The difference between these 

two values is the direction sense – which direction of motion causes the counter to count up.  

 

WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the feedback to increment in the 

positive direction – otherwise a dangerous runaway 

condition will occur when the servo loop is closed. 

Changing the direction sense of the decode of a feedback 

sensor in a properly working servo loop without changing 

the direction sense of the servo loop outputs will result in a 

dangerous runaway. 
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Using the Resulting Position Information 

Position information resulting from the IC’s decoding and counting is available to the processor 

in several memory-mapped registers for the channel, each represented by pre-defined status data 

structure elements. 

The following diagram shows a block diagram of the PMAC2-style “DSPGATE1” IC’s encoder 

circuitry, including the memory-mapped registers available to the processor. 
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DSPGATE1 IC Channel Incremental Encoder Processing Circuitry 

The following diagram shows a block diagram of the PMAC3-style “DSPGATE3” IC’s encoder 

circuitry, including the memory-mapped registers available to the processor. 
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DSPGATE3 IC Channel Incremental Encoder Processing Circuitry 
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Commutation Phase Position 

Each phase clock cycle, on the falling edge of the clock, the present value in the channel’s 

encoder counter is latched into the register represented by the element 

Gaten[i].Chan[j].PhaseCapt. Most commonly, this element is used for the rotor angle feedback 

for commutation by setting Motor[x].pPhaseEnc to the address of this element. 

Servo Feedback or Master Position 

Each servo clock cycle, on the falling edge of the clock, the present value in the channel’s 

encoder counter is latched into the register represented by the element 

Gaten[i].Chan[j].ServoCapt. Most commonly, this element is used for servo feedback or master 

position. The value in this register must first be processed through the encoder conversion table 

(ECT). 

PMAC2 ASIC-Based Interface 

With a PMAC2-style IC, the ECT will typically perform the software “1/T” timer-based 

extension of the count. This is a “Type 3” conversion, with the element 

Gate1[i].Chan[j].ServoCapt as the main position source. The following saved setup elements 

must be specified: 

 EncTable[n].Type = 3   // Software 1/T extension of count value 

 EncTable[n].pEnc = Gate1[i].Chan[j].ServoCapt.a 

 EncTable[n].pEnc2 = Gate1[i].Chan[j].TimeBetweenCts.a 

 EncTable[n].ScaleFactor = 1/512 // Scale output in whole counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

PMAC3-ASIC-Based Interface 

With a PMAC3-style IC, the 1/T extension, if performed, has been done in the IC, and the ECT 

entry will simply use Gate3[i].Chan[j].ServoCapt, which will have the extended count value, as 

the only position source using the “Type 1” single-register-read conversion. The following saved 

setup elements must be specified: 

 EncTable[n].Type = 1   // Single-register read 

 EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a 

 EncTable[n].index1 = 0  // No left shift 

 EncTable[n].index2 = 0  // No right shift 

 EncTable[n].ScaleFactor = 1/256 // Scale output in whole counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

If the encoder is connected to the serial encoder lines of an interface channel that uses a PMAC3-

style IC, with the serial interface disabled, the ECT entry is the same as above except that 

EncTable[n].pEnc is set to Gate3[i].Chan[j].SerialEncDataA.a. 

These conversions are covered in detail in the chapter “Setting Up the Encoder Conversion 

Table”. 
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Setting Up Digital Hall Sensors 

Three-phase digital Hall-effect position sensors (or their equivalent) are popular for commutation 

feedback. They can also be used with Power PMAC as low-resolution position/velocity sensors. 

As commutation position sensors, they are typically just used by Power PMAC for approximate 

power-up phase position; ongoing phase position is typically derived from the same high-

resolution encoder that is used for servo feedback. (Many controllers and amplifiers use these hall 

sensors as their only commutation position feedback, starting and ongoing, but that is a lower-

performance technique). 

Many optical encoders have “Hall tracks”. These commutation tracks provide signal outputs 

equivalent to those of magnetic Hall commutation sensors, but use optical means to create the 

signals. 

Note 

These digital Hall-effect position sensors should not be 

confused with analog Hall-effect current sensors used in many 

amplifiers to provide current feedback data for the current 

loop. 

 

Signal Format 

Digital Hall sensors provide three digital signals that are a function of the position of the motor, 

each nominally with 50% duty cycle, and nominally one-third cycle apart. This format is often 

called “120° spacing”. Power PMAC can also support “60° spacing” for the purpose of power-on 

commutation position, but its use is discouraged because of the increased difficulty in detecting 

signal failure. 

The 3-phase Hall format provides six distinct states per cycle of the signal. Typically, one cycle 

of the signal set corresponds to one electrical cycle, or pole pair, of the motor. These sensors, 

then, can provide absolute (but low-resolution) information about where the motor is in its 

commutation cycle, and eliminate the need to do a power-on phasing search operation. 

U/A

V/B

W/C

“Clockwise” “Counterclockwise”

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

 

3-Phase Hall Sensor Waveforms Showing Direction Sense 

This diagram shows the signal format for the 120° spacing for two full cycles. Note that the states 

where all signals are “high” and all are “low” are not valid states in this format. Since the 



Power PMAC User’s Manual 

Setting Up Feedback and Master Position Sensors 126 

common failure modes (such as a disconnected cable) would likely leave the signals in one of 

these invalid states, it is quite easy to detect signal failure. 

The 60° spacing format can be obtained by inverting any of the signals in the above diagram. In 

this format, the states where all signals are “high” and all are “low” are valid states, so it is much 

more difficult to detect the common failure modes. 

Hardware Setup 

If just used for power-up commutation position feedback, the hall sensors are typically wired into 

the U, V, and W supplemental flag inputs on a PMAC2-style or PMAC3-style interface channel. 

These are single-ended 5V digital inputs on all existing hardware implementations. They are not 

optically isolated inputs; if isolation is desired from the sensor, this must be done externally. 

Note 

In the case of magnetic hall sensors, the feedback signals 

sometimes come back to the controller in the same cable as the 

motor power leads. In this case, the possibility of a short to 

motor power must be considered; safety considerations and 

industrial design codes may make it impermissible to connect 

the signals directly to the Power PMAC TTL inputs without 

isolation. 

 

If used for servo position and velocity feedback, the three hall sensors are connected to the A, B, 

and C “encoder” inputs, so that the signal edges can be counted. As with quadrature encoders, 

these inputs can be single-ended or differential. They are not optically isolated inputs; if isolation 

is desired from the sensor, this must be done externally. There may be applications in which the 

signals are connected both to U, V, and W inputs (for power-on commutation position) and to A, 

B, and C inputs (for servo feedback). 

Hardware-Control Parameter Setup 

Use of Hall sensor feedback requires some setup of the ASIC. This setup is fundamentally the 

same in both the PMAC-style and PMAC3-style ASICs. 

Hall Sensor Demux Control: Gaten[i].Chan[j].IndexGateState 

If the Hall sensors are connected to the channel’s U, V, and W inputs, you must make sure that bit 

1 (value 2) of the channel’s “Hall Sensor Demux Control” saved setup element 

Gaten[i].Chan[j].IndexGateState is set to the default of 0. If this bit is set to 1, the information 

in the U, V, and W bits of the channel’s status register is de-multiplexed from the C-channel of 

the encoder input based on the states of the A and B inputs, as with Yaskawa Sigma I incremental 

encoders (a rarely used format in new systems). 

Encoder Decode Control: Gaten[i].Chan[j].EncCtrl 

If the Hall sensors are wired into the encoder inputs A, B, and C, they can be used as a 3-phase 

incremental encoder (if they use 120° spacing). The decoding of the signal for the counter is 

determined by the channel-specific saved setup element Gaten[i].Chan[j].EncCtrl. For the 3-

phase hall sensors, the decoding must be set to “times-6” decode, which derives 6 counts per 

signal cycle, one for each signal edge. This requires a variable value of 11 or 15. The difference 

between these two values is the direction sense – which direction of motion causes the counter to 

count up.  
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WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the counter to count in the positive 

direction – otherwise a dangerous runaway condition will 

occur when the servo loop is closed. Changing the 

direction sense of the decode of a feedback sensor in a 

properly working servo loop without changing the 

direction sense of the servo loop outputs will result in a 

dangerous runaway. 

 

Using the Resulting Position Information 

The resulting position information values are used differently depending on whether the Halls are 

connected into the channel’s U, V, and W inputs, or to the channels, A, B, and C inputs 

Position from the U, V, and W Inputs 

When the Hall signals are connected into a channel’s U, V, and W inputs, the input states are 

simply latched into the channel’s status register, where they can be read by the processor. The 

present state can be seen in the 3-bit status element Gaten[i].Chan[j].UVW. 

To use this value for power-on phase position, the following settings are typically used: 

 Motor[x].pAbsPhasePos = Gaten[i].Chan[j].Status.a 

 Motor[x].AbsPhasePosFormat = $0400031C (for a PMAC2-style “Gate1” IC) 

 Motor[x].AbsPhasePosFormat = $0400030C (for a PMAC3-style “Gate3” IC) 

 Motor[x].AbsPhasePosSf = +/-2048/12 

 Motor[x].AbsPhasePosOffset = {application-dependent setting} 

 

For details on setting up these variables, refer to the “Setting Up Commutation” chapter of the 

User’s Manual. 

Position from the A, B, and C Inputs 

When the Hall signals are connected into a channel’s A, B, and C inputs and processed with a 

“times-6” decode, they are being used as an incremental encoder, but with 3 phases instead of the 

two phases of a quadrature encoder. Subsequent use, whether for ongoing commutation position, 

or servo-loop position, is just as for quadrature encoders, and is explained above in that section. It 

is possible, and recommended, to use the 1/T timer-based extension to increase the effective 

resolution for both commutation and servo uses. 

Note 

The use of Hall sensors for ongoing servo and/or commutation 

feedback typically occurs for large motors in rugged 

environments where it is difficult to employ encoders. These 

cases are usually primarily velocity-control applications, and 

tight position control will probably not be possible due to the 

low position resolution of the Hall sensors. 
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Setting Up Serial Encoders 

Position encoders that provide numerical position information in a serial data stream, usually 

representing absolute position information, are becoming increasingly popular. Power PMAC 

provides two basic interfaces for serial encoders. The first is an FPGA-based interface, as used in 

the ACC-84E UMAC board, the ACC-84B add-in board for the Power Brick products, and the 

ACC-84S stack board for the Power Clipper. The second is an ASIC-based interface employing 

the “DSPGATE3” IC, as used in the ACC-24E3 UMAC board, the Power Brick control board, 

and the Power Clipper controller itself. 

Multiple serial encoder protocols can be supported by each interface type. In the FPGA-based 

interface, the board must be ordered with a (single) particular protocol installed for all channels. 

In the ASIC-based interface, all of the protocols are installed simultaneously, and the particular 

protocol desired is selected in software for all channels. 

Signal Format 

The signal format for the encoder is dependent on the particular protocol, but in all protocols, 

there is a “strobe” and/or “clock” output from the controller, and a data channel into the processor 

from the encoder. The encoder is queried synchronously with the Power PMAC’s phase or servo 

clock, and the incoming serial data is latched into a memory-mapped register for the processor to 

read. 

Hardware Setup 

This section describes the Power PMAC serial encoder hardware interface in general terms. 

Consult the Hardware Reference Manual for your particular configuration for details. 

All of the supported serial encoder interfaces use differential signal pairs at 5V RS-422 levels. All 

have clock and/or “strobing” outputs, and all have a data signal input. In some protocols, the data 

line is bi-directional, supporting data output commands to the encoder. 

Hardware-Control Parameter Setup 

The configuration of the hardware control registers differs slightly between the ASIC-based 

interface used on the ACC-24E3 and the Power Brick, which employs the 32-bit “DSPGATE3” 

IC, and the FPGA-based interface used on the ACC-84E, which employs the 24-bit “SEIGATE” 

FPGA. However, the principles of setup are the same in both cases. 

Because of the serial data protocol, the transfer of data from the encoder to the Power PMAC 

interface circuitry takes a significant amount of time. The data must be ready for the processor 

immediately after the falling edge of the phase and/or servo clock signals, which are the interrupts 

to the processor telling it to start those respective tasks.  

The process of querying the encoder for data must start well before these signal edges, and this 

timing must be carefully considered. If it starts too late, the data will not be ready in time. If it 

starts too early, unnecessary delay is introduced into the feedback loop, possibly compromising 

its performance. In both styles of interface, the multi-channel saved setup element permits the 

user to optimize the timing by selecting the edge (rising or falling) of the clock signal (phase or 

servo) that starts the triggering process, and the time delay from this edge until the actual 

triggering occurs. The following diagram shows the time lines for the possible configurations: 
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Serial Encoder Interface Timing 

ASIC-Based ACC-24E3, Power Brick, Power Clipper, CK3M 

The PMAC3-style “DSPGATE3” ASIC has a multi-channel setup element that affects all 

channels on the IC, a single-channel setup element for each channel, and an enabling setup 

control bit for each channel. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

This section describes the setup elements for the serial encoder interface in general terms. 

Detailed information for each serial encoder protocol can be found in the Power PMAC software 

reference manual, and the manual for the appropriate hardware device. 

Multi-Channel Saved Setup Element 

The multi-channel saved setup element Gate3[i].SerialEncCtrl specifies several aspects of the 

serial encoder configuration for all four channels of the IC: the protocol, the trigger, and the clock 

frequency. All three of these aspects must be common to all four channels of the IC, so it is not 

possible, for instance, to interface to encoders with different protocols from the same IC. 

The different components of this 32-bit full-word element cannot be accessed as independent 

elements, so it is necessary to assemble the full-word value from the values of the individual 
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components. It is easiest to treat the value as a hexadecimal value, so the individual components 

can be seen independently. 

Gate3[i].SerialEncCtrl can be viewed in hexadecimal form as $mmntddpp, where: 

 pp (SerialProtocol) is an 8-bit quantity specifying which of the supported serial encoder 

protocols is used 

 dd (SerialTrigDelay) is an 8-bit quantity specifying the delay in triggering the encoder 

from the specified clock edge 

 t (SerialTrigEdge, SerialTrigClock) is a 2-bit quantity specifying whether the rising or 

falling edge of the servo or phase clock is used to start the triggering of the encoder 

 n (SerialClockNDiv) is a 4-bit quantity specifying the “exponential” division factor used 

to create the serial encoder clock 

 mm (SerialClockMDiv) is an 8-bit quantity specifying the “linear” division factor used to 

create the serial encoder clock 

 

The full 32-bit element can be viewed as follows: 

                                

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

                                

           SerialClockMDiv             SerialClockNDiv   --    --   TC  TE            SerialTrigDelay  SerialProtocol 

 

Note 

This section provides information about 

Gate3[i].SerialEncCtrl that is common to all protocols. For 

more detailed and protocol-specific information, refer to the 

Power PMAC Software Reference Manual and the appropriate 

hardware manual. 

 

The protocols presently supported in the ASIC, and their specifying codes in “pp”, are: 

 $00: No serial protocol enabled 

 $01: SPI 

 $02: SSI 

 $03: EnDat2.1/2.2 (no additional information)* 

 $04: Hiperface 

 $05: Sigma I 

 $06: Sigma II/III/V (no fault clear or reset)* 

 $07: Tamagawa 

 $08: Panasonic 

 $09: Mitutoyo 

 $0A: Kawasaki 

 

* The ACC-84x FPGA-based interface has a more comprehensive interface for these protocols. 
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Note 

The DSPGATE3 ASIC used here has the interface circuitry for 

all of these protocols installed simultaneously (unlike the 

FPGA-based designs). The user can simply select which 

protocol – common to all 4 channels – is to be used by setting 

the value of this component of the element. 

 

The serial encoder signal lines can also be used for a simple auxiliary quadrature-encoder 

interface, independent of the main incremental encoder interface for the channel. This can be 

done when Gate3[i].SerialEncEna is set to its default value of 0. In this case, the clock and data 

lines are used for the A and B channel inputs of the quadrature encoder (there is no index channel 

input). The status register Gate3[i].Chan[j].SerialEncDataA contains the 32-bit clock-latched 

count value of the encoder, with the low 8 bits containing the timer-based sub-count estimation. 

The trigger select component “t” can presently take four values: 

 $0: Trigger on rising edge of phase clock 

 $1: Trigger on falling edge of phase clock 

 $2: Trigger on rising edge of servo clock 

 $3: Trigger on falling edge of servo clock 

 

Refer to the figure “Serial Encoder Interface Timing”, above, for an illustration of these options. 

It is best to choose the edge that minimizes the delay between the triggering of the encoder and its 

use by the Power PMAC software. The software will use the received encoder value immediately 

after the falling edge of the phase clock for commutation feedback, and immediately after the 

falling edge of the servo clock for servo feedback. 

If you are using the serial encoder data for commutation feedback, you must trigger using the 

phase clock in order to get new data every phase cycle. If there is sufficient time to receive the 

data in one half of a phase clock cycle, you should use the rising edge of the phase clock to 

trigger. For example, at the default phase clock frequency of 9 kHz, a clock cycle is 110 µsec. If 

the serial encoder data can be received within 55 µsec, the rising edge should be used. If not, the 

falling edge must be used. 

If you are only using the serial encoder data for servo, and not commutation, feedback, the servo 

clock can be used for the trigger. However, it is still advisable to use the phase clock if possible to 

minimize the delay. When using the servo clock, as with the phase clock, use the rising edge if 

possible for the trigger, and the falling edge only if required. 

Remember that the servo clock signal is low only for one half phase clock cycle. For example, 

with the default 9 kHz phase clock and 2.25 kHz servo clock, the servo clock is low for only a 

half of 110 µsec phase clock cycle, and the delay from the rising edge to the next falling edge is 

385 µsec. 

The triggering does not need to start exactly on the specified clock edge. The trigger delay 

component “dd” specifies the number of serial encoder clock cycles after the specified clock edge 

before the triggering of the encoder actually begins. It can take a value of $00 to $FF (0 to 255 

clock cycles). Non-zero values can be used to minimize the delay between triggering of the 

encoder and the use of its data in the next software cycle. 
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The linear clock-frequency division component “mm” controls how an intermediate clock 

frequency is generated from the IC’s fixed 100 MHz clock frequency. The resulting serial-

encoder clock frequency is then generated from this intermediate clock frequency by the 

exponential division component “nn”, described below. 

The equation for this intermediate clock frequency is: 
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M
MHzf  

where M is the numerical value of “mm”. This 8-bit component can take a value from 0 to 255, so 

the resulting intermediate clock frequencies can range from 100 MHz down to 392 kHz. 

The exponential clock-frequency division component “n” controls how the final serial-encoder 

clock frequency is generated from the intermediate clock frequency set by “mm”. The equation 

for this final frequency is: 
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where N is the numerical value of “n”. This 4-bit component can take a value from 0 to 15, so the 

resulting 2N divisor can take a value from 1 to 32,768.  

For serial-encoder protocols with an explicit clock signal and fixed timing on reading the data, the 

resulting frequency is the frequency of the clock signal that is output from the IC. For “self-

clocking” protocols without an explicit clock signal or for those with time-delay compensation 

circuitry, this frequency is the input sampling frequency, and will be 20 to 25 times higher than 

the input bit rate. Refer to the instructions for the particular protocol for details. 

Single-Channel Saved Setup Element 

Each channel of the ASIC has a 32-bit saved setup element Gate3[i].Chan[j].SerialEncCmd that 

specifies exactly how the channel’s serial encoder interface will operate, given the protocol, 

trigger timing, and frequency specified by the multi-channel element. It has multiple components 

that specify different aspects of this interface. These components cannot be accessed as 

independent data structure elements, so the value of the element must be “built up” from the 

value of the individual components, which are summarized in the following table. 

Component Bits Functionality 

SerialEncCmdWord 31 – 16 Serial encoder output command 

SerialEncParity 15 – 14 Serial encoder parity type 

SerialEncTrigMode 13 Serial trigger mode: continuous or one-shot 

SerialEncTrigEna 12 Serial trigger enable 

SerialEncGtoB 11 Serial SSI data Gray-to-binary convert control 

SerialEncDataReady 10 Serial encoder received data ready 

SerialEncStatusBits 09 – 06 Serial encoder SPI number of status bits 

SerialEncNumBits 05 – 00 Serial encoder bit length control 
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The full 32-bit element can be viewed as follows: 

                                

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

                                

SerialEncCmdWord    Parity   TM  TE GB Rdy      StatusBits          NumBits 

 

Note 

This section provides information about 

Gate3[i].Chan[j].SerialEncCmd that is common to all 

protocols. For more detailed and protocol-specific information, 

refer to the Power PMAC Software Reference Manual and the 

appropriate hardware manual. 

 

The 16-bit component SerialEncCmdWord is used to define a command value sent to the serial 

encoder in a protocol-specific manner. 

The 2-bit component SerialEncParity defines the parity type to be expected for the received data 

packet (for those protocols that support parity checking). A value of 0 specifies no parity; a value 

of 1 specifies odd parity; a value of 2 specifies even parity. (A value of 3 is reserved for future 

use.) 

The 1-bit component SerialEncTrigMode specifies whether the encoder is to be repeatedly 

sampled or just one time. A value of 0 specifies continuous sampling (every phase or servo cycle 

as set by the multi-channel element Gate3[i].SerialEncCtrl); a value of 1 specifies one-shot 

sampling. One-shot sampling is generally used if the encoder is only used for power-on absolute 

position, as with EnDat2.1 and Hiperface. 

The 1-bit component SerialEncTrigEna specifies whether the encoder is to be sampled or not. A 

value of 0 specifies no sampling; a value of 1 enables sampling of the encoder. If sampling is 

enabled with SerialEncTrigMode at 0, the encoder will be repeatedly sampled (every phase or 

servo cycle as set by the multi-channel element Gate3[i].SerialEncCtrl) as long as 

SerialEncTrigEna is left at a value of 1. However, if sampling is enabled with 

SerialEncTrigMode at 1, the encoder will be sampled just once, and the IC will automatically set 

SerialEncTrigEna back to 0 after the sampling. 

The 1-bit component SerialEncGtoB specifies whether the data returned in SSI protocol 

undergoes a conversion from Gray format to numerical-binary format or not. A value of 0 

specifies that no conversion is done; a value of 1 specifies that the incoming data undergoes a 

Gray-to-binary conversion. 

The 1-bit component SerialEncDataReady is a read-only status bit indicating the status of the 

serial data reception. It reports 0 during the data transmission indicating that valid new data is not 

yet ready. It reports 1 when all of the data has been received and processed. This is particularly 

important for slower interfaces that may take multiple servo cycles to complete a read; in these 

cases, the bit should be polled to determine when data is ready. 

The 4-bit component SerialEncStatusBits specifies the number of status bits the interface will 

expect from the encoder in the SPI protocol. The valid range of settings is 0 to 12. 
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The 6-bit component SerialEncNumBits specifies the number of data bits the interface will expect 

from the encoder in the SPI, SSI, or EnDat protocol. The valid range of settings is $0C to $3F (12 

to 63 bits). 

Single-bit saved setup element Gate3[i].Chan[j].SerialEncEna controls whether the serial 

encoder interface for the IC’s channel is enabled. If it is set to 0, the interface is disabled and the 

output pin SENC_MODEn for the channel is held low. In this case, the serial encoder data and 

clock lines can be used for an auxiliary quadrature encoder input. If it is set to 1, the interface is 

enabled and SENC_MODEn for the channel is set high (which can enable the serial encoder 

driver and receiver circuits in many products). 

FPGA-Based ACC-84E, ACC-84B, ACC-84S 

The “SEIGATE” FPGA on the ACC-84E UMAC board, the ACC-84B add-in board for the 

Power Brick products, or the ACC-84S stack board for the Power Clipper, has a multi-channel 

setup element that affects all channels on the IC, and a single-channel setup element for each 

channel. 

This section describes the setup elements for the serial encoder interface in general terms. 

Detailed information for each serial encoder protocol can be found in the Power PMAC software 

reference manual, and the manual for the appropriate hardware device. 

Note 

This section describes the setup of the FPGA-based elements 

using the Acc84E[i] data structure. If you are using the FPGA-

based serial encoder interface in the Power Brick or Power 

Clipper, substitute “Acc84B[i]” or “Acc84S[i]”, respectively, 

for “Acc84E[i]”. 

 

Multi-Channel Saved Setup Element 

The multi-channel saved setup element Acc84E[i].SerialEncCtrl specifies several aspects of the 

serial encoder configuration for all four channels of the IC: the protocol, the trigger, and the clock 

frequency. All three of these aspects must be common to all four channels of the IC, so it is not 

possible, for instance, to interface to encoders with different protocols from the same IC. 

The different components of this 24-bit full-word element cannot be accessed as independent 

elements, so it is necessary to assemble the full-word value from the values of the individual 

components. It is easiest to treat the value as a hexadecimal value, so the individual components 

can be seen independently. 

Acc84E[i].SerialEncCtrl can be viewed in hexadecimal form as $mmntdp, where: 

 p (SerialProtocol) is a 4-bit (read-only) quantity specifying which of the supported serial 

encoder protocols has been installed at the factory 

 d (SerialTrigDelay) is a 4-bit quantity specifying the delay in triggering the encoder from 

the specified clock edge 

 t (SerialTrigEdge, SerialTrigClock) is a 2-bit quantity specifying whether the rising or 

falling edge of the servo or phase clock is used to start the triggering of the encoder 

 n (SerialClockNDiv) is a 4-bit quantity specifying the “exponential” division factor used 

to create the serial encoder clock 
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 mm (SerialClockMDiv) is an 8-bit quantity specifying the “linear” division factor used to 

create the serial encoder clock 

 

The full element can be viewed in the following format. In the Script environment, it is a 24-bit 

element. In the C environment, it is a 32-bit element with the real data in the high 24 bits. 

Hex Digit ($)                         - - 

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - - 

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0 

Bit Value             - -           - - 

Component:    SerialClockMDiv              SerialClockNDiv   --    --    TC  TE  SerialTrigDelay    SerialProtocol 

 

Note 

This section provides information about 

Acc84E[i].SerialEncCtrl that is common to all protocols. For 

more detailed and protocol-specific information, refer to the 

Power PMAC Software Reference Manual and the appropriate 

hardware manual. 

 

The serial protocols presently supported in the FPGA, and their specifying codes in “p”, are: 

 $2: SSI 

 $3: EnDat2.1/2.2 

 $4: Hiperface 

 $6: Sigma II/III/V 

 $7: Tamagawa 

 $8: Panasonic 

 $09: Mitutoyo 

 $B: BiSS-B/C (Unidirectional) 

 $C: Matsushita 

 $D: Mitsubishi 

 $E: Omron 1S 

 

Note 

The FPGA used here comes with the interface for only a single 

serial protocol, which was pre-installed at the factory as 

specified in the order. (This is unlike the DSPGATE3 ASIC, 

which has all of the protocols installed.) This component of the 

element is read-only, simply notifying the user which protocol 

has been installed. 

 

The trigger select component “t” can presently take four values: 

 $0: Trigger on rising edge of phase clock 

 $1: Trigger on falling edge of phase clock 

 $2: Trigger on rising edge of servo clock 

 $3: Trigger on falling edge of servo clock 
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Refer to the figure “Serial Encoder Interface Timing”, above, for an illustration of these options. 

It is best to choose the edge that minimizes the delay between the triggering of the encoder and its 

use by the Power PMAC software. The software will use the received encoder value immediately 

after the falling edge of the phase clock for commutation feedback, and immediately after the 

falling edge of the servo clock for servo feedback. 

If you are using the serial encoder data for commutation feedback, you must trigger using the 

phase clock in order to get new data every phase cycle. If there is sufficient time to receive the 

data in one half of a phase clock cycle, you should use the rising edge of the phase clock to 

trigger. For example, at the default phase clock frequency of 9 kHz, a clock cycle is 110 µsec. If 

the serial encoder data can be received within 55 µsec, the rising edge should be used. If not, the 

falling edge must be used. 

If you are only using the serial encoder data for servo, and not commutation, feedback, the servo 

clock can be used for the trigger. However, it is still advisable to use the phase clock if possible to 

minimize the delay. When using the servo clock, as with the phase clock, use the rising edge if 

possible for the trigger, and the falling edge only if required. 

Remember that the servo clock signal is low only for one half phase clock cycle. For example, 

with the default 9 kHz phase clock and 2.25 kHz servo clock, the servo clock is low for only a 

half of 110 µsec phase clock cycle, and the delay from the rising edge to the next falling edge is 

385 µsec. 

The triggering does not need to start exactly on the specified clock edge. The trigger delay 

component “d” specifies the number of 20-microsecond intervals after the specified clock edge 

before the triggering of the encoder actually begins. It can take a value of $0 to $F (0 to 15, or 0 

to 300 microseconds). Non-zero values can be used to minimize the delay between triggering of 

the encoder and the use of its data in the next software cycle. 

The linear clock-frequency division component “mm” controls how an intermediate clock 

frequency is generated from the IC’s fixed 100 MHz clock frequency. The resulting serial-

encoder clock frequency is then generated from this intermediate clock frequency by the 

exponential division component “nn”, described below. 

The equation for this intermediate clock frequency is: 
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where M is the numerical value of “mm”. This 8-bit component can take a value from 0 to 255, so 

the resulting intermediate clock frequencies can range from 100 MHz down to 392 kHz. 

The exponential clock-frequency division component “n” controls how the final serial-encoder 

clock frequency is generated from the intermediate clock frequency set by “mm”. The equation 

for this final frequency is: 
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where N is the numerical value of “n”. This 4-bit component can take a value from 0 to 15, so the 

resulting 2N divisor can take a value from 1 to 32,768.  

For serial-encoder protocols with an explicit clock signal and fixed timing on reading the data, the 

resulting frequency is the frequency of the clock signal that is output from the IC. For “self-

clocking” protocols without an explicit clock signal or for those with time-delay compensation 

circuitry, this frequency is the input sampling frequency, and will be 20 to 25 times higher than 

the input bit rate. Refer to the instructions for the particular protocol for details. 

Single-Channel Saved Setup Element 

Each channel of the FPGA has a 24-bit saved setup element Acc84E[i].Chan[j].SerialEncCmd 

that specifies exactly how the channel’s serial encoder interface will operate, given the protocol, 

trigger timing, and frequency specified by the multi-channel element. It has multiple components 

that specify different aspects of this interface. Not all components are used in every protocol. 

Acc84E[i].Chan[j].SerialEncCmd is comprised of the following components. These 

components cannot be accessed as independent data structure elements, so the value of the 

element must be “built up” from the value of the individual components. 

Component Script  

Bits 

Hex 

Digit # 

C 

Bits 

Functionality 

SerialEncCmdWord 23 – 16 1 – 2 31 – 24 Serial encoder output command 

SerialEncParity 15 – 14 3 23 – 22 Serial encoder parity type 

SerialEncTrigMode 13 3 21 Serial trigger mode: continuous or one-shot 

SerialEncTrigEna 12 3 20 Serial trigger enable 

SerialEncGtoB 11 4 19 Serial SSI data Gray-to-binary convert control 

SerialEncEna/ 

SerialEncDataReady 

10 4 18 Serial encoder circuitry enable (write) 

Serial encoder received data ready (read) 

SerialEncStatusBits 09 – 06 4 – 5 17 – 14 Serial encoder SPI number of status bits 

SerialEncNumBits 05 – 00 5 – 6 13 – 08 Serial encoder bit length control 

 

The full element can be viewed in the following format. In the Script environment, it is accessed 

as a 24-bit element. In the C environment, it is accessed as a 32-bit element with the real data in 

the high 24 bits. 

Hex Digit ($)                         - - 

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - - 

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0 

Bit Value               -          - - 
Component:    SerialEncCmdWord                Parity  TM  TE   GB Ena          Status          NumBits 

 

Note 

This section provides information about 

Acc84E[i].Chan[j].SerialEncCmd that is common to all 

protocols. For more detailed and protocol-specific information, 

refer to the Power PMAC Software Reference Manual and the 

appropriate hardware manual. 

 

The 8-bit component SerialEncCmdWord is used to define a command value sent to the serial 

encoder in a protocol-specific manner. This value can be changed during an application for 

different functionality, such as resetting an encoder. Not all protocols require a command value. 



Power PMAC User’s Manual 

Setting Up Feedback and Master Position Sensors 138 

The 2-bit component SerialEncParity defines the parity type to be expected for the received data 

packet (for those protocols that support parity checking). A value of 0 specifies no parity; a value 

of 1 specifies odd parity; a value of 2 specifies even parity. (A value of 3 is reserved for future 

use.) 

The 1-bit component SerialEncTrigMode specifies whether the encoder is to be repeatedly 

sampled or just one time. A value of 0 specifies continuous sampling (every phase or servo cycle 

as set by the multi-channel element Acc84E[i].SerialEncCtrl); a value of 1 specifies one-shot 

sampling. 

The 1-bit component SerialEncTrigEna specifies whether the encoder is to be sampled or not. A 

value of 0 specifies no sampling; a value of 1 enables sampling of the encoder. If sampling is 

enabled with SerialEncTrigMode at 0, the encoder will be repeatedly sampled (every phase or 

servo cycle as set by the multi-channel element Acc84E[i].SerialEncCtrl) as long as 

SerialEncTrigEna is left at a value of 1. However, if sampling is enabled with 

SerialEncTrigMode at 1, the encoder will be sampled just once, and the ACC-84E’s IC will 

automatically set SerialEncTrigEna back to 0 after the sampling. 

The 1-bit component SerialEncGtoB specifies whether the data returned in SSI protocol 

undergoes a conversion from Gray format to numerical-binary format or not. A value of 0 

specifies that no conversion is done; a value of 1 specifies that the incoming data undergoes a 

Gray-to-binary conversion. 

The 1-bit component SerialEncEna / SerialEncDataReady has separate functions for writing to 

and reading from the register. When writing to the register, this bit represents SerialEncEna, 

which enables the driver circuitry for the serial encoder. This bit must be set to 1 to use any 

protocol of serial encoder on the channel. If there is an alternate use for the same signal pins, this 

bit must be set to 0 so the encoder drivers do not conflict with the alternate use. Note that you 

cannot read back the value you have written to this bit! 

When reading from the register, you get the SerialEncDataReady status bit indicating the state of 

the serial data reception. It reports 0 during the data transmission indicating that valid new data is 

not yet ready. It reports 1 when all of the data has been received and processed. This is 

particularly important for slower interfaces that may take multiple servo cycles to complete a 

read; in these cases, the bit should be polled to determine when data is ready. 

The 4-bit component SerialEncStatusBits specifies the number of status bits the interface will 

expect from the encoder in the SPI protocol. The valid range of settings is 0 to 12. 

The 6-bit component SerialEncNumBits specifies the number of data bits the interface will expect 

from the encoder in the SSI, EnDat, or BiSS protocol. The valid range of settings for these 

protocols is 12 – 63. In other protocols, the number of bits is not specified this way, and this value 

does not matter, so this component is usually left at 0. 

Using the Resulting Position Information 

Serial encoder position information is commonly used for both absolute power-on position and 

ongoing position, and both for the servo and commutation algorithms. 

Ongoing Commutation Phase Position 

For the commutation algorithm’s ongoing phase position, Power PMAC reads the entire 32-bit 

register specified by Motor[x].pPhaseEnc every phase cycle. In order to be able to handle 
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rollover of this data properly, the most significant bit (MSB) of this data must end up in bit 31 of 

the 32-bit result, shifted if necessary. With most protocols, no shifting is necessary, but some will 

require a net “left shift” to achieve this result. 

PMAC3 ASIC-Based Interface 

To use serial encoder position from an ASIC-based interface for ongoing phase position, the 

following saved setup elements must be specified: 

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].SerialEncDataA.a 

 Motor[x].PhaseEncRightShift = 0 // If encoder LSB in Register 0 

 Motor[x].PhaseEncLeftShift = (32 - # of bits) 

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle) 

 

In the 32-bit PMAC3 ASIC, the LSB of the encoder data is generally found in bit 0 on the 32-bit 

data bus. If the encoder protocol does not provide a full 32 bits of data in the SerialEncDataA 

register, the data will need to be “shifted left” so that the MSB ends up in bit 31 of the result. For 

purposes of computing the scale factor, the LSB of the resulting (post-shift) 32-bit value should 

be used as the “LSB”. 

ACC-84E FPGA-Based Interface 

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing phase 

position, the following saved setup elements must be specified: 

 Motor[x].pPhaseEnc = Acc84E[i].Chan[j].SerialEncDataA.a 

 Motor[x].PhaseEncRightShift = 8 // If encoder LSB in Register 8 

 Motor[x].PhaseEncLeftShift = (32 - # of bits) 

 Motor[x].PhasePosSf = 2048 / (Register LSBs per commutation cycle) 

 

In the 24-bit ACC-84E, the LSB of the encoder data is generally found in bit 8 on the 32-bit data 

bus, with unpredictable values in the lowest 8 bits of the bus. While this low “phantom” data is 

not known to affect actual commutation performance in real systems, some users will want to 

remove this data with an 8-bit “shift right” operation. When this is done, a “shift left” operation 

must also be done to leave the MSB of encoder data in bit 31 of the result. For purposes of 

computing the scale factor, the LSB of the resulting (post-shift) 32-bit value should be used as the 

“LSB”. 

Power-On Commutation Phase Position 

Because most serial encoders provide absolute position information, especially over one motor 

revolution, they are commonly used to provide the absolute rotor-angle position at power-up for 

the commutation algorithms. Doing this requires assigning proper values to several saved setup 

elements.  

This section gives an overview of those settings; details can be found in the element descriptions 

in the Software Reference Manual, the Setting Up Commutation chapter of the User’s Manual, 

and the Hardware Reference Manual for the interface. In addition the motor setup routines in the 

IDE software will walk you through this setup. 

PMAC3 ASIC-Based Interface 

To use serial encoder position from an ASIC-based interface for absolute power-on phase 

position, the following saved setup elements must be specified: 
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 Motor[x].pAbsPhasePos = Gate3[i].Chan[j].SerialEncDataA.a 

 Motor[x].AbsPhasePosFormat = $aabbccdd // Protocol-specific settings 

 Motor[x].AbsPhasePosSf = 2048 / (LSBs per commutation cycle) 

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero) 

 

For the format variable, the LSB of the encoder data is typically found in bit 0 of the 32-bit 

register, and only enough bits to cover a single commutation cycle need to be used. (However, it 

does not hurt to specify more bits than are required.) It is almost never required to use data from 

the next register. 

ACC-84E FPGA-Based Interface 

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on 

phase position, the following saved setup elements must be specified: 

 Motor[x].pAbsPhasePos = Acc84E[i].Chan[j].SerialEncDataA.a 

 Motor[x].AbsPhasePosFormat = $aabbccdd // Protocol-specific settings 

 Motor[x].AbsPhasePosSf = 2048 / (LSBs per commutation cycle) 

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero) 

 

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit 

register, and only enough bits to cover a single commutation cycle need to be used. (However, it 

does not hurt to specify more bits than are required.) It is seldom required to use data from the 

next register. 

Ongoing Servo Position 

To use the serial encoder position for ongoing servo position, the data must first be processed in 

the encoder conversion table. This is done with a “Type 1” single-register-read conversion from 

SerialEncDataA. In order to be able to handle rollover of this data properly, the most significant 

bit (MSB) of this data must end up in bit 31 of the 32-bit result, shifted if necessary. With most 

protocols, no shifting is necessary, but some will require a net “left shift” to achieve this result. 

PMAC3 ASIC-Based Interface 

To use serial encoder position from a PMAC3 ASIC-based interface for ongoing servo position, 

the following saved setup elements must be specified: 

 EncTable[n].Type = 1 

 EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a 

 EncTable[n].index1 = (32 - # of bits) // Shift left # of bits 

 EncTable[n].index2 = 0  // Shift right # of bits 

 EncTable[n].ScaleFactor = 1/ (232 - # of bits) // For result in encoder LSBs 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

ACC-84E FPGA-Based Interface 

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing servo 

position, the following saved setup elements must be specified: 

 EncTable[n].Type = 1 

 EncTable[n].pEnc = Acc84E[i].Chan[j].SerialEncDataA.a 
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 EncTable[n].index1 = (32 - # of bits) // Shift left # of bits 

 EncTable[n].index2 = 8  // Shift right # of bits 

 EncTable[n].ScaleFactor = 1/ (232 - # of bits) // For result in encoder LSBs 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Power-On Servo Position 

Many serial encoders can provide absolute position over the entire range of travel of the motor. If 

so, Power PMAC can execute an absolute power-on read of the encoder to establish the reference 

position, eliminating the need for a homing search move. 

This section gives an overview of those settings; details can be found in the element descriptions 

in the Software Reference Manual, the Basic Motor Setup chapter of the User’s Manual, and the 

Hardware Reference Manual for the interface. In addition the motor setup routines in the IDE 

software will walk you through this setup. 

PMAC3 ASIC-Based Interface 

To use serial encoder position from an ASIC-based interface for absolute power-on servo 

position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = Gate3[i].Chan[j].SerialEncDataA.a 

 Motor[x].AbsPosFormat = $aabbccdd  // Protocol-specific settings 

 Motor[x].AbsPosSf = (Motor units per sensor LSB) 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

For the format variable, the LSB of the encoder data is typically found in bit 0 of the 32-bit 

SerialEncDataA register. If the encoder provides more than 32 bits of absolute position data, the 

format element permits data from SerialEncDataB to be used as well. 

ACC-84E FPGA-Based Interface 

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on 

phase position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = Acc84E[i].Chan[j].SerialEncDataA.a 

 Motor[x].AbsPosFormat = $aabbccdd // Protocol-specific settings 

 Motor[x].AbsPosSf = (Motor units per sensor LSB) 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit 

SerialEncDataA register. If the encoder provides more than 24 bits of absolute position data, the 

format element permits data from SerialEncDataB to be used as well. Note, however, that the 

data in SerialEncDataA must go all the way to bit 31 for this to work. In protocols such as 

Tamagawa and Panasonic, which provide only 17 bits of data in SerialEncDataA and more in 

SerialEncDataB, the full absolute position must be assembled in a user algorithm. 
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Setting Up Analog Sinusoidal Encoders 

Analog sinusoidal encoders can provide the highest-resolution feedback available. Power PMAC 

has interface circuitry available that can accept the sinusoidal signals directly and provide 

interpolation capability that can resolve up to 65,536 states per line of the encoder.  

Note 

This section describes the interface to encoders that output 

analog sinusoidal signals, where Power PMAC performs the 

interpolation. Some encoders have internal analog sinusoidal 

signals that are used to perform interpolation inside the 

encoder. Those encoders output a digital position word, usually 

in a serial format. Interfacing to that style of encoder with 

Power PMAC is covered in a separate section. 

 

Signal Format 

The sinusoidal encoder interfaces for Power PMAC are designed to accept “sine” and “cosine” 

signals (90° out of phase with each other), of 1-volt (peak-to-peak) magnitude. Most commonly, 

these signals are differential pairs, wired into the SIN+, SIN-, COS+, and COS- inputs for the 

channel. Single-ended inputs can also be used, wired into the SIN+ and COS+ inputs for the 

channel, with the SIN- and COS- inputs connected directly to the 2.5V signal provided on the 

connector. 

The ideal signals are both centered around the reference voltage, exactly one-quarter cycle out of 

phase with each other, and of the same magnitude. Deviations from this ideal will cause errors in 

the resulting interpolated position values. The following diagram shows the common signal 

errors: 
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Sinusoidal Encoder Common Signal Errors 

Power PMAC hardware and software have the capability of correcting for some or all of these 

errors. The accuracy requirements of a particular system can dictate which type of interface is 

used. 
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Sinusoidal Encoder Interfaces 

Power PMAC provides three basic styles of interfaces for sinusoidal encoders. The first is based 

on the PMAC2-style “DSPGATE1” Servo IC, as used in the ACC-51E UMAC interpolator 

board. This requires the processor to compute the interpolated position from the hardware 

readings.  

The second style is based on the PMAC3-style “DSPGATE3” ASIC, as used in the standard 

analog feedback option for the UMAC ACC-24E3 axis-interface board or for the Power Brick 

family. This can compute the interpolated position in hardware, so the processor simply needs to 

read the result. Alternately, the data from this IC can be interpolated in software with additional 

correction terms. 

The third style is based on a combination of a PMAC3-style “DSPGATE3” ASIC and a pre-

processing FPGA, as used in the “auto-correcting” analog feedback option for the UMAC ACC-

24E3 axis-interface board or for the Power Brick family. In this style, the FPGA automatically 

detects and corrects for the common signal errors of voltage offsets, magnitude mismatch, and 

phase error. It also uses oversampling and averaging to reduce the effect of electrical noise on the 

resulting position. 

Comparison of Interface Type Performance 

The different sinusoidal encoder interpolator interface styles have different performance criteria. 

The best choice for a system depends on the system performance needs. This section summarizes 

the performance for each style. 

First Interface Type: ACC-51E PMAC2-Style Interpolator 

 Software-based interpolation only (in encoder conversion table) 

 Four I/O register reads required each servo cycle 

 Data not ready until 5 microseconds after servo interrupt 

 No automatic identification of signal errors 

 Software compensation for voltage offsets in ECT 

 Software compensation for phase error in ECT 

 Software compensation for magnitude mismatch error in ECT 

 Software filtering for noise in ECT at servo rates (in kHz) 

 Resulting position value has 12 bits of interpolation (4096 states per line) 

 Interpolated hardware capture and compare based on uncorrected signals 

 

Second Interface Type: ACC-24E3, Power Brick Standard Interpolator 

 Hardware-based or software-based interpolation 

 Hardware-based interpolation (in ASIC): 

o One I/O register read required each servo cycle 

o Encoder sampled half phase cycle before servo interrupt, ready at interrupt 

o No automatic identification of signal errors 

o Hardware compensation for voltage offsets in ASIC 

o No compensation for phase error or magnitude mismatch 

o Software filtering for noise in ECT at servo rates (in kHz) 

o Resulting position value has 14 bits of interpolation (16,384 states per line) 

o Interpolated hardware capture and compare based on uncorrected signals 

 Software-based interpolation (in encoder conversion table): 

o Four I/O register reads required each servo cycle 
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o Encoder sampled half phase cycle before servo interrupt, ready at interrupt 

o No automatic identification of signal errors 

o Software compensation for voltage offsets in ECT 

o Software compensation for phase error in ECT 

o Software compensation for magnitude mismatch error in ECT 

o Software filtering for noise in ECT at servo rate (in kHz) 

o Resulting position value has 14 bits of interpolation (16,384 states per line) 

o Interpolated hardware capture and compare based on uncorrected signals 

 

Third Interface Type: ACC-24E3, Power Brick Auto-Correcting Interpolator 

 Hardware-based interpolation (in ASIC or FGPA) 

 One I/O register read required each servo cycle 

 Encoder sampled ~3 microseconds before servo interrupt (for serial read from FPGA) 

 Encoder sampled half phase cycle before servo interrupt (for ASIC interpolation) 

 Automatic identification of signal errors in FPGA 

 Hardware compensation for voltage offsets in FPGA 

 Hardware compensation for phase error in FPGA 

 Hardware compensation for magnitude mismatch in FPGA 

 Hardware filtering for noise in FPGA at oversampling rate (in MHz) 

 Resulting position value has 16 bits of interpolation (65,536 states per line) 

 Interpolated hardware capture and compare based on corrected signals 

 

Hardware Setup 

This section describes the Power PMAC interpolator hardware interface in general terms. Consult 

the Hardware Reference Manual for your particular configuration for details. 

Interface Circuitry 

The interpolator analog hardware interfaces operate on a single 5V supply relative to the GND 

reference voltage. There is no isolation from the digital 5V circuitry. It is intended that the analog 

input signals be centered on the intermediate 2.5V level. If the signals are differential, this 

centering does not have to be precise, but the signal levels cannot go above 5V or below GND. If 

the signals are single-ended, they must be directly compared to an intermediate voltage, most 

likely the regulated 2.5V level generated in the interface and supplied on the connector. 

The “+” and “-” input pairs are connected in the interface through termination resistors. These 

resistors both serve to preserve the signal quality by preventing ringing and to facilitate signal-

loss detection by pulling the two inputs to the same voltage in the absence of a driving signal. 

The sinusoidal input signals are fed into both differential receivers acting as comparators that 

produce digital quadrature signals into the ASIC, and into analog-to-digital converters (ADCs) 

that produce numbers proportional to the sine and cosine signal levels. 
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 The following diagram shows the principle of the Power PMAC standard processing of the 

sinusoidal encoder signals. 
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Power PMAC Sinusoidal Encoder Standard Interpolation Technique 

The following diagram shows the principle of the Power PMAC Auto-Correcting Interpolator’s 

processing of the sinusoidal encoder signals. 
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Power PMAC Sinusoidal Encoder Auto-Correcting Interpolation Technique 

Wiring Techniques 

In order to get good position information from the sinusoidal encoder interface, it is vital that 

proper wiring techniques be employed. The impact of a small amount of noise on these analog 

signals is much greater than for digital signals. 
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The use of differential signal pairs is very important in reducing the amount of noise at the 

receiver circuits. These signal pairs provide common-mode noise rejection, with the resulting 

voltage difference being much smaller than the disturbance to the individual signals. The signal 

pairs should be wired as twisted pairs, providing cancellation of received noise. 

The encoder cable should be kept physically separate from the motor power cable if at all 

possible. Running the two cables parallel and adjacent provides a strong coupling mechanism for 

noise. Both motor cable and encoder cable should be shielded, the motor cable to prevent noise 

from getting out, and the encoder cable to prevent noise from getting in. 

If the motor is driven by a pulse-width-modulated (PWM) or similar switching drive, the rapid 

switching of the power signals generates high levels of noise that are difficult to keep out of the 

encoder signal. Often, chokes must be installed on the outputs from the drive to “soften” the 

transitions and reduce the generated noise. Note that in the highest-resolution systems, linearly 

modulated amplifiers are often employed to eliminate this switching noise altogether. 

The encoder cable for sinusoidal encoders is often double-shielded, with the inner shield tied to 

the signal ground (0V) at the controller end, and the outer shield tied directly to the chassis 

ground at the controller end. Some users prefer to tie the encoder casing to the outer shield, but 

the inner shielding should be left floating at the encoder end. This configuration provides the 

optimal protection of the encoder signal. 

The following diagram illustrates the optimal wiring and shielding for sinusoidal encoders. In the 

diagram, each signal pair is individually shielded. Many users will put all of the signal pairs 

inside a single shield, which provides protection almost as good for substantially reduced cost. 
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Recommended Wiring and Shielding for Sinusoidal Encoders 

Hardware Control Parameter Setup 

Setting up the interpolator hardware to process the signals correctly requires the proper setting of 

several saved setup elements for the ASIC used to provide the interface. Some of these elements 

can use the default settings, but not all. 
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ACC-51E PMAC2-Style Interface 

The UMAC ACC-51E interpolator uses the PMAC2-style DSPGATE1 ASIC to interface to the 

signals. With this accessory, the actual interpolation is always performed in software in the 

encoder conversion table. 

Encoder Sample Clock Frequency: Gate1[i].HardwareClockCtrl 

The digital quadrature signals created by the differential receivers in the interpolator circuitry are 

sampled by the ASIC at a rate determined by the SCLK encoder sample clock frequency just as 

for digital quadrature encoders themselves. The frequency of this sample clock must be high 

enough so that at most one quadrature edge (of which there are 4 per encoder line) occurs in a 

single SCLK cycle. In the vast majority of cases, the default settings of 9.83 MHz for PMAC2-

style ICs can be used. 

Instructions for setting the SCLK frequency are given in the section on digital quadrature 

encoders, above. Note that with analog sinusoidal encoders, noise issues must be dealt with well 

in the hardware interface, so that optimizing the ASIC’s digital delay filter is not important here. 

Encoder Decode Control: Gate1[i].Chan[j].EncCtrl 

The decoding of the digital encoder signal created in the interpolator hardware is determined by a 

channel-specific saved setup element for the IC – Gate1[i].Chan[j].EncCtrl. For interpolation of 

sinusoidal encoders, this must be set for “times-4” quadrature decode, which derives 4 counts per 

signal cycle. This requires a variable value of 3 or 7 (default). The difference between these two 

values is the direction sense – which direction of motion causes the counter to count up.  

 

WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the feedback to increment in the 

positive direction – otherwise a dangerous runaway 

condition will occur when the servo loop is closed. 

Changing the direction sense of the decode of a feedback 

sensor in a properly working servo loop without changing 

the direction sense of the servo loop outputs will result in a 

dangerous runaway. 

 

For proper operation, the direction sense of this decode must also match the direction sense of the 

“arctangent” processing of the sine and cosine ADC values so the whole-count and sub-count 

polarities match; otherwise rough operation will occur. When the interpolation is done in software 

in the encoder conversion table, as with the ACC-51E, the matchup only occurs on the 

initialization of the table entry (which is automatically done at power-up/reset of the Power 

PMAC). If the decode direction sense is changed between 3 and 7, the table entry must be re-

initialized by setting EncTable[n].index3 to 0. 

PMAC3 Standard ASIC-Based Interface 

The standard interpolator for the UMAC ACC-24E3 and Power Brick uses the PMAC3-style 

DSPGATE3 ASIC to interface to the signals. Note that some settings must be made differently 

depending on whether the interpolation calculations are done in hardware in the ASIC (which is 

faster but only supports correction for voltage offsets) or in software in the encoder conversion 
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table (which is slower but supports corrections for voltage offsets, phase error, and magnitude 

mismatch. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

Encoder Sample Clock Frequency: Gate3[i].EncClockDiv 

The digital quadrature signals created by the differential receivers in the interpolator circuitry are 

sampled by the ASIC at a rate determined by the SCLK encoder sample clock frequency just as 

for digital quadrature encoders themselves. The frequency of this sample clock must be high 

enough so that at most one quadrature edge (of which there are 4 per encoder line) occurs in a 

single SCLK cycle. In the majority of cases, the default setting of 3.125 MHz for PMAC3-style 

ICs can be used, supporting signal frequencies up to about 600 kHz. 

Gate3[i].EncClockDiv specifies the frequency of the SCLK signal. The default value of 5 

specifies a frequency of 3.125 MHz. This supports signal frequencies up to about 600 kHz, 

suitable for the majority of cases. Reducing the value of this element supports higher frequencies. 

Note that with analog sinusoidal encoders, noise issues must be dealt with well in the hardware 

interface, so that optimizing the ASIC’s digital delay filter is not important here. 

A/D-Converter Clock Frequency: Gate3[i].AdcEncClockDiv 

Gate3[i].AdcEncClockDiv specifies the frequency of the clock signal that drives the serial A/D 

converters for the channel’s encoder circuitry. The default value of 5 specifies a frequency of 

3.125 MHz, which is typically fast enough to get the serial data into the ASIC register in time for 

use. It takes 25 clock cycles to complete the serial transfer, and at 3.125 MHz, each clock cycle is 

320 nanoseconds, this takes 8 microseconds. If faster transfers are required, a setting of 4 for a 

frequency of 6.25 MHz or a setting of 3 for a frequency of 12.5 MHz can be used. 

Latch/Strobe Delay: Gate3[i].EncLatchDelay 

In the PMAC3-style ASIC, the strobing of the encoder ADCs and the latching of the encoder 

counter by default occur on the rising edge of the phase clock, so the conversion and transfer of 

the ADC values, the arctangent calculation of sub-count data, and the combination of this data 

with the latched whole-count data can be completed by the falling edge of the phase clock (which 

in some cycles is coincident with the falling edge of the servo clock), when the resulting data 

must be available to the processor. 

In this process, there is a delay of half of a phase-clock cycle between when the data is sampled 

and when the data is used. In a high-performance servo system, this time delay might produce a 

noticeable degradation of servo performance. In many cases, this half-cycle delay may be 

significantly more than is required to acquire and process the data. In these cases, saved setup 

parameter Gate3[i].EncLatchDelay permits this sampling to be started after the rising edge of 

the phase clock, thus reducing the delay between sampling and use. Gate3[i].EncLatchDelay is 

in units of 16 encoder ADC clock cycles (each default 320 nanoseconds, set by 

Gate3[i].AdcEncClockDiv), specifying how many of these cycles elapse before the encoder data 

is sampled. It can range from the default of 0 to 255, for 4080 ADC clock cycles. 
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Acquiring and processing the encoder data requires 25 cycles of the encoder ADC clock, which is 

8 microseconds at the default ADC clock frequency. At the default phase clock frequency of 9 

kHz, sampling fully a half phase cycle ahead yields a 55 microsecond delay, over 40 

microseconds more than is needed. If Gate3[i].EncLatchDelay is set to 125, the sampling is 

delayed for 40 microseconds from the rising edge, reducing the net delay from sampling until use 

to 15 microseconds, but still providing enough time to acquire and process the data. 

A/D-Converter Number of Header Bits: Gate3[i].AdcEncHeaderBits 

The A/D-converters used in this interpolator provide 1 “header bit” in front of the actual data, so 

Gate3[i].Chan[j].AdcEncHeaderBits should be set to the default value of 1 to interpret this data 

properly. 

A/D-Converter Signed/Unsigned Format: Gate3[i].AdcEncUtoS 

The A/D-converters used in this interpolator provide signed numerical values, so 

Gate3[i].AdcEncUtoS should be set to the default value of 0 to disable any unsigned-to-signed 

format conversion. 

Encoder Decode Control: Gate3[i].Chan[j].EncCtrl 

The decoding of the digital quadrature encoder signal created in the interpolator hardware is 

determined by a channel-specific saved setup element for the IC – Gate3[i].Chan[j].EncCtrl. 

For interpolation of sinusoidal encoders, this must be set for “times-4” quadrature decode, which 

derives 4 counts per signal cycle. This requires a variable value of 3 or 7 (default). The difference 

between these two values is the direction sense – which direction of motion causes the counter to 

count up.  

 

WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the feedback to increment in the 

positive direction – otherwise a dangerous runaway 

condition will occur when the servo loop is closed. 

Changing the direction sense of the decode of a feedback 

sensor in a properly working servo loop without changing 

the direction sense of the servo loop outputs will result in a 

dangerous runaway. 

 

For proper operation, the direction sense of this decode must also match the direction sense of the 

“arctangent” processing of the sine and cosine ADC values so the whole-count and sub-count 

polarities match; otherwise rough operation will occur. If the interpolation calculations are done 

in hardware in the interpolator, this matchup occurs automatically. However, if the interpolation 

calculations are done in software in the encoder conversion table, the matchup only occurs on the 

initialization of the table entry (which is automatically done at power-up/reset of the Power 

PMAC). If the decode direction sense is changed between 3 and 7 (which often happens during 

initial setup), the table entry must be re-initialized by setting EncTable[n].index3 to 0. 

ASIC Bias Compensation: Gate3[i].Chan[j].AdcOffset[k] 

Before computing the sub-count interpolated position with the arctangent calculation, the 

PMAC3-style ASIC can add in offset terms to the measured values in the ADC registers to 

compensate for voltage biases in the encoder and/or receiving circuitry. The value in saved setup 
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element Gate3[i].Chan[j].AdcOffset[0] is added to the value measured from the “sine” signal in 

Gate3[i].Chan[j].AdcEnc[0], and the value in Gate3[i].Chan[j].AdcOffset[1] is added to the 

value measured from the “cosine” signal in Gate3[i].Chan[j].AdcEnc[1]. 

If the sub-count interpolation is to be done in the encoder conversion table using a software-based 

arctangent calculation there, these bias-compensation terms in the ASIC are not used. The 

equivalent bias values should be placed in software elements EncTable[n].SinBias and 

EncTable[n].CosBias, respectively. These terms are used along with magnitude-mismatch error 

term EncTable[n].CoverSerror (cosine-over-sine error) and phase-error term 

EncTable[n].TanHalfPhi for a more complete correction of encoder signal errors. 

Arctangent Extension: Gate3[i].Chan[j].AtanEna 

The PMAC3-style ASIC has the capability to compute the sub-count interpolated position itself 

in hardware and to combine this value with the whole-count data from the quadrature counter. 

The sub-count data is always calculated from the ADC values and placed in the status element 

Gate3[i].Chan[j].Atan. If saved setup element Gate3[i].Chan[j].AtanEna is set to 1, this data is 

combined with the whole-count data and latched into Gate3[i].Chan[j].PhaseCapt each phase 

cycle, and into Gate3[i].Chan[j].ServoCapt each servo cycle. The low 12 bits of these values 

represent sub-count data, so there are 4096 states per quadrature count, or 16,384 states per 

encoder line, in the resulting values. 

If the sub-count interpolation is to be done in the encoder conversion table using a software-based 

arctangent calculation there, Gate3[i].Chan[j].AtanEna must be set to 0 to disable the 

combination of the hardware-calculated value with the quadrature count. The software-based 

interpolation has the capability to correct for phase-offset and magnitude-mismatch errors, but 

does require more processor time. It should only be used if correction for phase-offset and/or 

magnitude-mismatch errors is performed. 

PMAC3 Auto-Correcting FPGA & ASIC-Based Interface 

The Auto-Correcting Interpolator for the UMAC ACC-24E3 uses the PMAC3-style DSPGATE3 

ASIC working through a custom FPGA to interface to the signals. Because the ASIC is not 

interfacing directly to the A/D converters or quadrature comparators, some of the ASIC element 

settings are used differently from the standard interpolator. The encoder signals themselves are 

sampled by fast A/D converters at a fixed 20 MHz rate. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

Encoder Sample Clock Frequency: Gate3[i].EncClockDiv 

The corrected digital quadrature signals synthesized by the FPGA are sampled by the ASIC at a 

rate determined by the SCLK encoder sample clock frequency just as for digital quadrature 

encoders themselves. The frequency of this sample clock must be high enough so that at most one 

quadrature edge (of which there are 4 per encoder line) occurs in a single SCLK cycle. In the 

majority of cases, the default setting of 3.125 MHz for PMAC3-style ICs can be used, supporting 

signal frequencies up to about 600 kHz. 
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Gate3[i].EncClockDiv specifies the frequency of the SCLK signal. The default value of 5 

specifies a frequency of 3.125 MHz. This supports signal frequencies up to about 600 kHz, 

suitable for the majority of cases. Reducing the value of this element supports higher frequencies. 

Each reduction of 1 supports twice the frequency.  

A/D-Converter Clock Frequency: Gate3[i].AdcEncClockDiv 

Gate3[i].AdcEncClockDiv specifies the frequency of the clock signal that drives the synthesized 

corrected serial A/D values from the FPGA for the channel’s encoder. The default value of 5 

specifies a frequency of 3.125 MHz, which is typically fast enough to get the serial data into the 

ASIC register in time for use. It takes 25 clock cycles to complete the serial transfer, and at 3.125 

MHz, each clock cycle is 320 nanoseconds, this takes 8 microseconds. If faster transfers are 

required, a setting of 4 for a frequency of 6.25 MHz or a setting of 3 for a frequency of 12.5 MHz 

can be used. 

Latch/Strobe Delay: Gate3[i].EncLatchDelay 

In the PMAC3-style ASIC, the strobing of the encoder ADCs and the latching of the encoder 

counter by default occur on the rising edge of the phase clock, so the conversion and transfer of 

the ADC values, the arctangent calculation of sub-count data, and the combination of this data 

with the latched whole-count data can be completed by the falling edge of the phase clock (which 

in some cycles is coincident with the falling edge of the servo clock), when the resulting data 

must be available to the processor. In the auto-correcting interpolator, this process operates on 

synthesized corrected signals from the FPGA. 

In this process, there is a delay of half of a phase-clock cycle between when the data is sampled 

and when the data is used. In a high-performance servo system, this time delay might produce a 

noticeable degradation of servo performance. In many cases, this half-cycle delay may be 

significantly more than is required to acquire and process the data. In these cases, saved setup 

parameter Gate3[i].EncLatchDelay permits this sampling to be started after the rising edge of 

the phase clock, thus reducing the delay between sampling and use. Gate3[i].EncLatchDelay is 

in units of 16 encoder ADC clock cycles (each default 320 nanoseconds, set by 

Gate3[i].AdcEncClockDiv), specifying how many of these cycles elapse before the encoder data 

is sampled. It can range from the default of 0 to 255, for 4080 ADC clock cycles. 

Acquiring and processing the encoder data requires 25 cycles of the encoder ADC clock, which is 

8 microseconds at the default ADC clock frequency. At the default phase clock frequency of 9 

kHz, sampling fully a half phase cycle ahead yields a 55 microsecond delay, over 40 

microseconds more than is needed. If Gate3[i].EncLatchDelay is set to 125, the sampling is 

delayed for 40 microseconds from the rising edge, reducing the net delay from sampling until use 

to 15 microseconds, but still providing enough time to acquire and process the data. 

Operational Mode Control: Gate3[i].AdcEncStrobe 

The auto-correcting interpolator has multiple modes of operation, controlled by saved setup 

element Gate3[i].AdcEncStrobe. Because the DSPGATE3 ASIC is not communicating directly 

with the A/D converters in this interpolator, but instead communicates to the auto-correcting 

FPGA, which communicates with the A/D converters, this setup element is used to control the 

mode of operation of the FPGA in processing the input signals. Each phase cycle, this 24-bit 

word is output serially, most significant bit (MSB) first, one bit per AdcEncClock cycle, from the 

ASIC to the FPGA. 
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For standard operation with continuous auto-identification and auto-correction of encoder signal 

errors, Gate3[i].AdcEncStrobe should be set to $800000, which sets only the MSB to 1. In any 

mode of operation, this bit must be set to 1 to start the conversions synchronized to the phase 

clock cycle. The other bits of this element can be set to 1 for alternate modes of operation, as 

discussed here. Most of these alternate modes are for diagnostic purposes. 

Note 

The 24-bit element Gate3[i].AdcEncStrobe is part of the full-

word (32-bit) element Gate3[i].AdcEncCtrl, forming the high 

24 bits of the 32-bit element. Many users will simply want to 

set Gate3[i].AdcEncCtrl to $80000000. This full-word setting 

also specifies zero header bits (required), no unsigned-to-

signed conversion (required), and no strobe/latch delay 

(acceptable for most applications). 

 

The individual bit meanings of Gate3[i].AdcEncStrobe are shown in the following diagram: 
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Start Convert: The most significant bit (MSB) of Gate3[i].AdcEncStrobe must be set to 1 for 

the interpolator to operate properly. This is the first bit of the word output serially, and it starts the 

transmission of data from the FPGA to the ASIC. 

Clear Corrections: To use the uncorrected encoder signals in the interpolations, set the “Clear 

Corrections” bit for the channel to 1. To do this without changing any other settings, the 

following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800040  // Set bit 6 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800020  // Set bit 5 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800010  // Set bit 4 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800008  // Set bit 3 for Chan[3] 

 

To start using the corrected encoder signals in the interpolations again, reset the “Clear 

Corrections” bit for the channel to 0. To do this without changing any other settings, the 

following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFBF     // Clear bit 6 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFDF     // Clear bit 5 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFEF     // Clear bit 4 for Chan[2] 
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Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFFF7      // Clear bit 3 for Chan[3] 

 

Hold Corrections: To freeze the present corrections to use in the interpolations, set the “Hold 

Corrections” bit for the channel to 1. To do this without changing any other settings, the 

following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800400  // Set bit 10 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800200  // Set bit 9 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800100  // Set bit 8 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800080  // Set bit 7 for Chan[3] 

 

To start using new corrections in the interpolations again, reset the “Hold Corrections” bit for the 

channel to 0. To do this without changing any other settings, the following commands can be 

used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFBFF     // Clear bit 10 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFDFF     // Clear bit 9 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFEFF     // Clear bit 8 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $FFFF7F      // Clear bit 7 for Chan[3] 

 

Additional Data Requests: The auto-correcting interpolator permits the processor to access 

additional information for a channel in that channel’s alternate A/D converter registers 

Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3]. The following types of 

additional data are presently supported: 

0. Unfiltered uncorrected (“raw”) A/D-converter data 

1. Unfiltered corrected A/D-converter data 

2. Present sine and cosine bias values 

3. Present magnitude-mismatch and phase-error values 

4. Velocity and acceleration values, “x1” scaling 

5. Velocity and acceleration values, “x4” scaling 

6. Velocity and acceleration values, “x16” scaling 

7. Velocity and acceleration values, “x64” scaling 

 

Unfiltered uncorrected (“raw”) A/D-Converter Data: If the additional data request value for a 

channel is set to 0, the interpolator will place the unfiltered uncorrected A/D-converter values for 

the sine and cosine signals into Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], 

respectively, each phase cycle. These are the most recent direct readings from the ADCs. 

To request the uncorrected A/D converter values for a channel, set bit 0 of the “additional data 

request value” for the channel to 0. To do this without changing any other settings, the following 

commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $BFFFFF      // Clear bit 22 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $DFFFFF      // Clear bit 21 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $EFFFFF      // Clear bit 20 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $87FFFF       // Clear bit 19 for Chan[3] 

 

Unfiltered corrected A/D-Converter Data: If the additional data request value for a channel is set 

to 1, the interpolator will place the unfiltered, but corrected A/D-converter values for the sine and 

cosine signals into Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], respectively, 
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each phase cycle. Note that while these values are not filtered, they are corrected using the most 

recently determined correction factors. 

To request the unfiltered corrected A/D converter values for a channel, set bit 0 of the “additional 

data request value” for the channel to 1. To do this without changing any other settings, the 

following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C00000  // Set bit 22 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A00000  // Set bit 21 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $900000  // Set bit 20 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $880000  // Set bit 19 for Chan[3] 

 

Present Sine and Cosine Bias Values: If the additional data request value for a channel is set to 2, 

the interpolator will place the present bias values for the sine and cosine signals into 

Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], respectively, each phase cycle. 

To request the present sine and cosine bias values for a channel, set bit 1 of the “additional data 

request value” for the channel to 1. To do this without changing any other settings, the following 

commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $840000  // Set bit 18 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $820000  // Set bit 17 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $810000  // Set bit 16 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $808000  // Set bit 15 for Chan[3] 

 

Present Magnitude-Mismatch and Phase-Error Values: If the additional data request value for a 

channel is set to 3, the interpolator will place the present magnitude-mismatch value (ratio of sine 

over cosine) into Gate3[i].Chan[j].AdcEnc[2] and the present phase-error value (signed 16-bit 

value with full range representing ±180°) into Gate3[i].Chan[j].AdcEnc[3], each phase cycle. 

To request the present magnitude-mismatch and phase-error values for a channel, set bits 0 and 1 

of the “additional data request value” for the channel to 1. To do this without changing any other 

settings, the following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C40000 // Set bits 22 & 18 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A20000 // Set bits 21 & 17 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $910000 // Set bits 20 & 16 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $888000 // Set bits 19 & 15 for Chan[3] 

 

Velocity and Acceleration Data: As part of the process of identifying and correcting encoder 

errors, the FPGA in the Auto-Correcting Interpolator is continually calculating high-quality 

velocity and acceleration values from the encoder signals. If the additional data request value for 

a channel is set to 4, 5, 6, or 7, the interpolator will place these values into 

Gate3[i].Chan[j].AdcEnc[2] and Gate3[i].Chan[j].AdcEnc[3], respectively. These are 32-bit 

elements, with real data in the high 24 bits. 

It is possible to use these values for servo feedback, which can provide superior performance 

since these values have less time delay and time jitter than those values obtained by single and 

double differentiation of position values. 
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Note 

These velocity and acceleration values should not be used in 

integrated form for the outer-loop servo position feedback. 

They cannot be guaranteed to integrate properly into the actual 

position. The outer-loop position feedback should always come 

from one of the position values generated by the interpolator. 

 

The difference in operation from the possible additional data-request values 4, 5, 6, and 7 is just 

one of the scaling of the reported velocity and acceleration quantities, with each setting differing 

from the next by a value of 4. The scale factor SF for the velocity value can be computed as: 

)(**
75

16
HzServoFreqnSF   

where the reported velocity value (considered as a 32-bit value) multiplied by SF would equal the 

value obtained by the difference between the position values in consecutive servo cycles (the 

alternate method of computing velocity) when the position value is scaled in 1/65,536 of an 

encoder line. The possible values of “n” are: 

 Additional data request value: 4  n = 1 

 Additional data request value: 5  n = 4 

 Additional data request value: 6  n = 16 

 Additional data request value: 7  n = 64 

 

A smaller value of n and therefore a smaller scale factor SF means a larger reported velocity 

number for the same physical velocity. This means a lower maximum velocity before saturation, 

but more resolution in the reported velocity. The optimal setting is the lowest scale factor that 

supports the maximum physical velocity without saturation, as this will provide the highest 

resolution possible. 

To request the velocity and acceleration values for a channel with n = 1 scaling, set bit 2 of the 

“additional data request value” for the channel to 1. To do this without changing any other 

settings, the following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $804000 // Set bit 14 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $802000 // Set bit 13 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $801000 // Set bit 12 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $800800 // Set bit 11 for Chan[3] 

 

To request the velocity and acceleration values for a channel with n = 4 scaling, set bits 2 and 0 of 

the “additional data request value” for the channel to 1. To do this without changing any other 

settings, the following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C04000 // Set bits 22 & 14 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A02000 // Set bits 21 & 13 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $901000 // Set bits 20 & 12 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $880800 // Set bits 19 & 11 for Chan[3] 
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To request the velocity and acceleration values for a channel with n = 16 scaling, set bits 2 and 1 

of the “additional data request value” for the channel to 1. To do this without changing any other 

settings, the following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $844000 // Set bits 18 & 14 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $822000 // Set bits 17 & 13 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $811000 // Set bits 16 & 12 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $808800 // Set bits 15 & 11 for Chan[3] 

 

To request the velocity and acceleration values for a channel with n = 64 scaling, set bits 2, 1, and 

0 of the “additional data request value” for the channel to 1. To do this without changing any 

other settings, the following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $C44000 // Set bits 22, 18, 14 for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $A22000 // Set bits 21, 17, 13 for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $911000 // Set bits 20, 16, 12 for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe | $888800 // Set bits 19, 15, 11 for Chan[3] 

 

Disable Additional Data Request: To disable the request for additional information for a channel, 

reset all of the bits of the “additional data request value” for the channel to 0. To do this without 

changing any other settings, the following commands can be used: 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $BBBFFF     // Clear bits for Chan[0] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $DDDFFF    // Clear bits for Chan[1] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $EEEFFF      // Clear bits for Chan[2] 

Gate3[i].AdcEncStrobe = Gate3[i].AdcEncStrobe & $F777FF       // Clear bits for Chan[3] 

A/D-Converter Number of Header Bits: Gate3[i].AdcEncHeaderBits 

The simulated A/D-converter data from the FPGA in this interpolator do not provide any “header 

bits” in front of the actual data, so Gate3[i].Chan[j].AdcEncHeaderBits must be set to 0 (the 

default value is 1) to interpret this data properly. 

A/D-Converter Signed/Unsigned Format: Gate3[i].AdcEncUtoS 

The A/D-converters used in this interpolator provide signed numerical values, so 

Gate3[i].AdcEncUtoS should be set to the default value of 0 to disable any unsigned-to-signed 

format conversion. 

Reading the Data as a Modified Sinusoidal Encoder 

In the Auto-Correcting Interpolator, the FPGA outputs signals to the DSPGATE3 ASIC that 

mimic the signals from standard interpolator circuitry, but from a more perfect sinusoidal 

encoder. These signals include both digital quadrature on a continuous basis, and serial A/D 

converter values every phase cycle. 

The DSPGATE3 ASIC should be set up to accept these signals. Even if the primary position 

feedback is read from a simulated serial encoder signal (see next section), the quadrature and A/D 

data should be used to support the possibility of full-resolution hardware capture and compare in 

the ASIC, and to be able to read additional data values in the supplementary A/D converter 

registers. 
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Encoder Decode Control: Gate3[i].Chan[j].EncCtrl: The decoding of the digital quadrature 

encoder signal created in the interpolator hardware is determined by a channel-specific saved 

setup element for the IC – Gate3[i].Chan[j].EncCtrl. For interpolation of sinusoidal encoders, 

this must be set for “times-4” quadrature decode, which derives 4 counts per signal cycle. This 

requires a variable value of 3 or 7 (default). The difference between these two values is the 

direction sense – which direction of motion causes the counter to count up.  

 

WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the feedback to increment in the 

positive direction – otherwise a dangerous runaway 

condition will occur when the servo loop is closed. 

Changing the direction sense of the decode of a feedback 

sensor in a properly working servo loop without changing 

the direction sense of the servo loop outputs will result in a 

dangerous runaway. 

 

For proper operation, the direction sense of this decode must also match the direction sense of the 

“arctangent” processing of the sine and cosine ADC values so the whole-count and sub-count 

polarities match; otherwise rough operation will occur. If the interpolation calculations are done 

in hardware in the interpolator, this matchup occurs automatically. (With the Auto-Correcting 

Interpolator, there is no good reason to do the interpolation in software in the encoder conversion 

table.) 

ASIC Bias Compensation: Gate3[i].Chan[j].AdcOffset[k]: Before computing the sub-count 

interpolated position with the arctangent calculation, the PMAC3-style ASIC can add in offset 

terms to the measured values in the ADC registers to compensate for voltage biases in the 

encoder and/or receiving circuitry. However, because the auto-correcting circuitry in the FPGA of 

this interpolator has already included the corrections in the synthesized data sent to the ASIC, the 

correction terms in the ASIC should not be used, and Gate3[i].Chan[j].AdcOffset[0] and 

Gate3[i].Chan[j].AdcOffset[1] should be left at their default values of 0. 

Arctangent Extension: Gate3[i].Chan[j].AtanEna: The PMAC3-style ASIC has the capability to 

compute the sub-count interpolated position itself in hardware and to combine this value with the 

whole-count data from the quadrature counter. The sub-count data is always calculated from the 

ADC values and placed in the 16-bit status element Gate3[i].Chan[j].Atan. If saved setup 

element Gate3[i].Chan[j].AtanEna is set to 1, the high 14 bits of this 16-bit value is combined 

with the whole-count data and latched into the 32-bits elements Gate3[i].Chan[j].PhaseCapt 

each phase cycle, and into Gate3[i].Chan[j].ServoCapt each servo cycle. These 14 bits show the 

location within one line of the encoder, providing 16,384 states per line of the encoder (4,096 

states per quadrature count) in a single register. (It is possible in the encoder conversion table to 

include the last 2 bits from the arctangent value in the Atan element to get a full 65,536 states per 

line of the encoder.) 

Reading the Data as a Serial-Interface Position Value 

The FPGA of the auto-correcting interpolator can also provide the corrected position to the ASIC 

through the ASIC’s serial encoder interface each phase and servo cycle. Using the data provided 

this way for servo feedback provides several advantages that might be valuable in the highest-

performance applications.  
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First, as it is possible to request the data on the actual servo and phase interrupt and have it ready 

in time for use, there is less time delay inside the feedback loop. Second, it is possible to obtain 

this position with less time jitter due to the higher frequency of the serial encoder clock compared 

to the A/D converter clock. Third, the processor can access the fully interpolated value by just 

reading a single I/O register, rather than two, saving processor time each servo cycle. Most 

applications would not notice these improvements, but the highest-precision applications could 

see an advantage. 

The E1 jumper on the Auto-Correcting Interpolator board must be configured to connect pins 2 

and 3 to use this simulated serial-encoder value. If it is configured to connect pins 1 and 2, an 

external serial encoder can be read through this interface instead. 

It is possible to use this simulated serial position value for servo and commutation feedback, and 

simultaneously use the counter values for hardware capture and compare functionality. 

Multi-Channel Configuration: Gate3[i].SerialEncCtrl: To set up the serial interface, first set 

Gate3[i].SerialEncCtrl to $01010001. This specifies the SPI serial-encoder protocol for all 

channels with a 50 MHz clock rate, sampled on the falling edge of the phase clock (which is also 

the interrupt). Note that at a 50 MHz clock rate, the data will be ready for use by the processor 

within 1 microsecond, in time for the interrupt service routine to use the new position data. 

Single-Channel Configuration: Gate3[i].Chan[j].SerialEncCmd: Then, for each channel that is 

to use the serial interface, set Gate3[i].Chan[j].SerialEncCmd to $000010A0. This sets up the 

ASIC channel to request SPI data on a cyclic basis with 2 status bits and 32 data bits. The 32-bit 

position data has 14 bits of sub-count data (16 bits of sub-line data), so there are 16,384 states per 

quadrature count, or 65,536 states per encoder line, in the resulting value. 

Single-Channel Enabling: Gate3[i].Chan[j].SerialEncEna: In order for the ASIC channel to 

request and read this data, Gate3[i].Chan[j].SerialEncEna must be set to 1. 

Using the Resulting Position Information 

Position data from sinusoidal encoders is commonly used for both ongoing phase commutation 

position and ongoing servo position functions. Because it is incremental position data, it is not 

used for absolute power-on position for either phase commutation or servo functions. 

Ongoing Commutation Phase Position 

For the commutation algorithm’s ongoing phase position, Power PMAC reads the entire 32-bit 

register specified by Motor[x].pPhaseEnc every phase cycle. It then multiplies the value of the 

full register by Motor[x].PhasePosSf to rescale it into units of the standard commutation cycle 

(2048 per commutation cycle). 

ACC-51E PMAC2-Style Interface 

To use the (uninterpolated) sinusoidal encoder position from an ACC-51E interface for ongoing 

phase position, the following saved setup elements must be specified to read the encoder counter 

position value: 

 Motor[x].pPhaseEnc = Gate1[i].Chan[j].PhaseCapt.a 

 Motor[x].PhasePosSf = 2048 / (256 * 4 * lines per commutation cycle) 
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In the 24-bit ACC-51E, the LSB of the encoder counter is found in bit 8 on the 32-bit data bus, 

and so is equal to 256 LSBs of the 32-bit register. Each LSB of the counter is ¼ of an encoder 

line, because “times-4” decode is in force. Note that even this uninterpolated count value has 

enough resolution for high-performance commutation in virtually all cases. 

PMAC3 Standard ASIC-Based Interface 

To use the sinusoidal encoder position from a PMAC3 standard ASIC-based interface for 

ongoing phase position, the following saved setup elements must be specified: 

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].PhaseCapt.a 

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle) 

 

With the arctangent interpolation active in the ASIC channel (Gate3[i].Chan[j].AtanEna = 1), 

the LSB of the PhaseCapt register is 1/16,384 of an encoder line. The denominator of the 

expression for PhasePosSf should therefore be 16,384 times the number of encoder lines (signal 

cycles) per commutation cycle (or 4096 times the number of quadrature counts per commutation 

cycle). 

With the arctangent interpolation not active in the ASIC channel (Gate3[i].Chan[j].AtanEna = 

0), the LSB of the PhaseCapt register is 1/1024 of an encoder line. The denominator of the 

expression for PhasePosSf should therefore be 1024 times the number of encoder lines (signal 

cycles) per commutation cycle (or 256 times the number of quadrature counts per commutation 

cycle). 

PMAC3 Auto-Correcting FPGA & ASIC-Based Interface 

To use the sinusoidal encoder position from a PMAC3 standard ASIC-based interface for 

ongoing phase position, the following saved setup elements must be specified: 

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].PhaseCapt.a 

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle) 

 

With the arctangent interpolation active in the ASIC channel (Gate3[i].Chan[j].AtanEna = 1), 

the LSB of the PhaseCapt register is 1/16,384 of an encoder line. The denominator of the 

expression for PhasePosSf should therefore be 16,384 times the number of encoder lines (signal 

cycles) per commutation cycle (or 4096 times the number of quadrature counts per commutation 

cycle). 

With the arctangent interpolation not active in the ASIC channel (Gate3[i].Chan[j].AtanEna = 

0), the LSB of the PhaseCapt register is 1/1024 of an encoder line. The denominator of the 

expression for PhasePosSf should therefore be 1024 times the number of encoder lines (signal 

cycles) per commutation cycle (or 256 times the number of quadrature counts per commutation 

cycle). 

To use the encoder position in the ASIC obtained from the FPGA through the serial encoder 

interface for ongoing phase position, the following saved setup elements must be specified: 

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].SerialEncDataA.a 

 Motor[x].PhasePosSf = 2048 / (LSBs per commutation cycle) 
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The LSB of the SerialEncDataA register is 1/65,536 of an encoder line. The denominator of the 

expression for PhasePosSf should therefore be 65,536 times the number of encoder lines (signal 

cycles) per commutation cycle. 

Ongoing Servo Position 

To use the interpolated sinusoidal encoder position for ongoing servo position, the data must first 

be processed in the encoder conversion table. This processing can be different for the PMAC3-

style interface, where the interpolation can have already been performed in the ASIC, and the 

PMAC2-style interface, where the interpolation has not been performed in the ASIC, and so must 

be performed in the software conversion. 

ACC-51E PMAC2-Style Interface 

To use the interpolated sinusoidal encoder position from an ACC-51E interface for ongoing servo 

position, the following saved setup elements must be specified: 

 EncTable[n].Type = 4   // Software arctangent extension conversion 

 EncTable[n].pEnc = Gate1[i].Chan[j].Status.a     // Register with quadrature state 

 EncTable[n].pEnc1 = Gate1[i].Chan[j].Adc[0].a  // Register with sine input 

 EncTable[n].index5 = 0  // Use PMAC2-style IC format 

 EncTable[n].ScaleFactor = 1/1024 // For result in encoder quadrature counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Here the conversion table entry performs the (12-bit) arctangent interpolation in software using 

the A/D-converter values it reads. The choice of ScaleFactor depends on whether the units of the 

result are LSBs of the interpolation (= 1.0), quadrature counts (= 1/1024, as shown), or lines of 

the encoder (= 1/4096). 

Software Corrections: The following saved setup elements in the table entry can be set to non-

zero values to correct for signal imperfections: 

 EncTable[n].SinBias   // Voltage offset correction for sine value 

 EncTable[n].CosBias   // Voltage offset correction for cosine value 

 EncTable[n].CoverSerror  // Magnitude mismatch correction 

 EncTable[n].TanHalfPhi  // Phase-offset error correction 

 

Software Filtering: The analog front end of the standard interpolator circuitry has very “light” 

filtering, to permit the use of very high encoder signal frequencies (and therefore very high motor 

speeds). If the noise level on the resulting position values is too high, software filtering can be 

performed in the conversion table entry. This is enabled by setting EncTable[n].index2 to a 

value of 32 or larger, with EncTable[n].index1 and EncTable[n].index2 acting as the gains of 

the filter. Refer to the User’s Manual chapter Setting Up the Encoder Conversion Table for 

details. 

PMAC3 Standard ASIC-Based Interface 

To use the hardware-interpolated sinusoidal encoder position from a PMAC3 standard ASIC-

based interface for ongoing servo position, the following saved setup elements must be specified: 

 EncTable[n].Type = 1   // Single-register read conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a // Combined position register 
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 EncTable[n].index1 = 0  // No left shift 

 EncTable[n].index2 = 0  // No right shift 

 EncTable[n].ScaleFactor = 1/4096 // For result in encoder quadrature counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Here, the (14-bit) arctangent interpolation has been performed in the ASIC, and the conversion 

table simply needs to read the combined whole-count/fractional count value in the channel’s 

ServoCapt element. The choice of ScaleFactor depends on whether the units of the result are 

LSBs of the interpolation (= 1.0), quadrature counts (= 1/4096, as shown), or lines of the encoder 

(= 1/16384). 

To use software-based arctangent interpolated position from a PMAC3 standard ASIC-based 

interface, which can compensate for more types of signal errors, for ongoing servo position, the 

following saved setup elements must be specified: 

 EncTable[n].Type = 4   // Software arctangent extension conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].Status.a     // Register with quadrature state 

 EncTable[n].pEnc1 = Gate3[i].Chan[j].AdcEnc[0].a // Register with sine input 

 EncTable[n].index5 = 1  // Use PMAC3-style IC format 

 EncTable[n].ScaleFactor = 1/16384 // For result in encoder quadrature counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Here the conversion table entry performs the (16-bit) arctangent interpolation in software using 

the A/D-converter values it reads. The choice of ScaleFactor depends on whether the units of the 

result are LSBs of the interpolation (= 1.0), quadrature counts (= 1/16384, as shown), or lines of 

the encoder (= 1/65536). 

Software Corrections: The following saved setup elements in the table entry can be set to non-

zero values to correct for signal imperfections: 

 EncTable[n].SinBias   // Voltage offset correction for sine value 

 EncTable[n].CosBias   // Voltage offset correction for cosine value 

 EncTable[n].CoverSerror  // Magnitude mismatch correction 

 EncTable[n].TanHalfPhi  // Phase-offset error correction 

 

Software Filtering: The analog front end of the standard interpolator circuitry has very “light” 

filtering, to permit the use of very high encoder signal frequencies (and therefore very high motor 

speeds). If the noise level on the resulting position values is too high, software filtering can be 

performed in the conversion table entry. This is enabled by setting EncTable[n].index2 to a 

value of 32 or larger, with EncTable[n].index1 and EncTable[n].index2 acting as the gains of 

the filter. Refer to the User’s Manual chapter Setting Up the Encoder Conversion Table for 

details. 

PMAC3 Auto-Correcting FPGA & ASIC-Based Interface 

With the Auto-Correcting Interpolator, there are several possibilities for using the resulting data 

in the servo loop: hardware-interpolated position, simulated serial-encoder position, direct 

velocity value, and direct acceleration value. 
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Hardware-Interpolated Position: To use the full hardware- interpolated sinusoidal encoder 

position from a PMAC3 auto-correcting FPGA and ASIC-based interface for ongoing servo 

position, the following saved setup elements must be specified: 

 EncTable[n].Type = 7   // Extended interpolated conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a // Combined position register 

 EncTable[n].pEnc1 = Gate3[i].Chan[j].AtanSumOfSqr.a  // Full-res interpolation 

 EncTable[n].index1 = 0  // No left shift or filtering 

 EncTable[n].index2 = 0  // No right shift or filtering 

 EncTable[n].ScaleFactor = 1/16384 // For result in encoder quadrature counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Here, the (16-bit) arctangent interpolation has been performed in the ASIC, and the conversion 

table needs to read the combined whole-count/fractional count value in the channel’s ServoCapt 

register and combine it with the extended interpolation in the channel’s AtanSumOfSqr register. 

The choice of ScaleFactor depends on whether the units of the result are LSBs of the 

interpolation (= 1.0), quadrature counts (= 1/16,384, as shown), or lines of the encoder (= 

1/65,536). 

Note that the auto-correcting interpolator oversamples the signal and performs filtering in digital 

hardware, so further filtering in the encoder conversion table is not recommended in this case. 

Simulated Serial Encoder Position: To use the encoder position in the ASIC obtained from the 

FPGA through the serial encoder interface for ongoing servo position, the following saved setup 

elements must be specified: 

 EncTable[n].Type = 1   // Single-register read conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a // Serial register 

 EncTable[n].index1 = 0  // No left shift or filtering 

 EncTable[n].index2 = 0  // No right shift or filtering 

 EncTable[n].ScaleFactor = 1/16384 // For result in encoder quadrature counts 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Note that the auto-correcting interpolator oversamples the signal and performs filtering in digital 

hardware, so further filtering in the encoder conversion table is not recommended in this case. 

Direct Velocity Value: If the additional data request value has been set to obtain a direct velocity 

value from the FPGA, this value can be used to close the inner servo loop. (It should not be used 

to close the outer servo loop.) Use of this value may provide superior servo performance 

compared to using the differentiated position value. 

To use this value for inner-loop position, which requires a single numerical integration, the 

following saved setup elements must be specified: 

 EncTable[n].Type = 1   // Single-register read conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].AdcEnc[2].a // Auxiliary ADC register 

 EncTable[n].index1 = 8  // Shift left 8 bits 

 EncTable[n].index2 = 8  // Shift right 8 bits 
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 EncTable[n].index4 = 1  // Single integration (velocity to position) 

 EncTable[n].ScaleFactor = SF* // User settable scaling 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for inner-loop feedback 

 

* SF = N * 24 * Sys.ServoPeriod / (20 * 256), where N is scaling factor of reported 

velocity (1, 4, 16, or 64) 

 

Direct Acceleration Value: If the additional data request value has been set to obtain a direct 

acceleration value from the FPGA, this value can be used to close the inner servo loop. (It should 

not be used to close the outer servo loop.) Use of this value may provide superior servo 

performance when acceleration feedback is used (typically for “electronic flywheel” effects) 

compared to using the differentiated position value. 

To use this value for inner-loop position, which requires double numerical integration, the 

following saved setup elements must be specified: 

 EncTable[n].Type = 1   // Single-register read conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].AdcEnc[3].a // Auxiliary ADC register 

 EncTable[n].index1 = 8  // Shift left 8 bits 

 EncTable[n].index2 = 8  // Shift right 8 bits 

 EncTable[n].index4 = 2  // Double integration (acceleration to position) 

 EncTable[n].ScaleFactor = SF* // User settable scaling 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for inner-loop feedback 

 

* SF = N * 24 * Sys.ServoPeriod / (20 * 256), where N is scaling factor of reported 

velocity (1, 4, 16, or 64) 
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Setting Up Resolvers 

Resolvers are often used as position sensors when the environmental conditions – temperature, 

shock, vibration, radiation, etc. – do not permit the use of optical or magnetic encoders. In 

addition resolvers are absolute sensors, at least over one revolution of the motor. Power PMAC 

provides two basic interfaces for resolvers. The first is based on the PMAC3-style “DSPGATE3” 

IC, as used with the analog feedback option of the ACC-24E3 axis-interface board and of the 

Power Brick. The second is based on the PMAC2-style “DSPGATE1” Servo IC, as used in the 

UMAC ACC-58E resolver-to-digital (R/D) converter board.  

Note that in many uses of resolver feedback, the resolver interface and conversion is performed in 

the servo drive, and a simulated encoder signal, usually in digital quadrature format, is output 

from the drive to the controller. This is the case if it is a brushless motor drive operating in 

“torque mode”, “velocity mode”, or even “position mode”, because the drive needs the resolver 

position information for commutation. In these cases, Power PMAC setup is for the simulated 

signal type. 

Generally, Power PMAC performs the resolver interface and conversion only if it is performing 

commutation for the motor, usually with a “direct PWM” amplifier. 

Signal Format 

The Power PMAC resolver interfaces generate a sinusoidal “excitation” signal output for each 

resolver, and accept differential “sine” and “cosine” feedback signals from the resolver. The 

excitation signal has a programmable frequency, magnitude, and phase offset from the system 

clocks. The feedback signals contain this same “carrier” frequency, and demodulated, their 

magnitudes reflect the sine and cosine of the physical angle of the resolver.  

The Power PMAC interfaces effectively demodulate the feedback signals by sampling them 

synchronously into analog-to-digital converters (ADCs) at or near the peaks of the carrier signal; 

the angle is then calculated as the arctangent of the sine and cosine numbers produced by the 

ADCs. 
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The following diagram shows the principle of operation for this type of resolver interface. 
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Resolver Interface Principle of Operation 

Hardware Setup 

The two leads for the resolver’s excitation signal are connected between the channel’s RESOUT 

(R1) signal and the GND reference voltage. The four leads for the resolver’s differential sine and 

cosine signals are connected in pairs to the channel’s SIN+ (S2) and SIN- (S4), COS+ (S3) and 

COS- (S1) inputs. 

 

WARNING 

Exchanging any pair of resolver leads will have the effect 

of changing the direction polarity and the zero angle of the 

resolver. Changing the direction sense on the feedback 

resolver for a motor with a properly operating servo loop 

can cause a dangerous runaway condition. Changing the 

zero-angle on the feedback resolver for a motor with 

properly operating commutation can cause a dangerous 

runaway condition. 

 

Hardware-Control Parameter Setup 

The Power PMAC hardware interface for resolvers is configurable in software with saved setup 

elements. 
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PMAC3 ASIC-Based Interface 

For the resolver interface using the PMAC3 ASIC, there are two setup elements in the IC, one 

multi-component element for all channels, and one element for each channel. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

Excitation Signal Control: Gate3[i].ResolverCtrl 

The key configuration element in the PMAC3 ASIC-based resolver interface is multi-channel 

element Gate3[i].ResolverCtrl. This is a 32-bit element, with the only the high 12 bits, 

represented by the first three hexadecimal digits, presently being used. This element specifies the 

magnitude, frequency, and phase of the automatically generated sinusoidal excitation signal used 

for all four channels of the ASIC. 

The highest 8 bits of the element, which form component ResolverExciteShift, represented in the 

first two hex digits of the element, specify the phase shift of the excitation sine wave relative to 

the phase clock. It can take a value from $00 (0) to $FF (255), in units of 1/512 of an excitation 

cycle. This component is usually set experimentally, to maximize the magnitude of the feedback 

signals, which are sampled on the rising edge of the phase clock. Resolvers with different 

electrical L/R time constants will require different phase shifts to provide maximum readings. 

The IDE setup control for resolver feedback does this automatically; it is also possible to do this 

manually, by monitoring the magnitude of status element Gate3[i].Chan[j].SumofSquares for 

the ASIC channel. The ASIC automatically computes this value each phase cycle from the 

readings of input elements Gate3[i].Chan[j].AdcEnc[0] and AdcEnc[1]. 

The next 2 bits of the element, which form component ResolverExciteGain, represented in the 

high part of the third hex digit, specify the magnitude of the excitation output. Values of 0, 1, 2, 

and 3 for this component specify magnitudes of 1/4, 1/2, 3/4, and 1 times, respectively, the 

maximum magnitude. The highest magnitude that does not cause saturation of the feedback 

ADCs (which can be detected by values in SumOfSquares greater than 32,767) should be used. 

The next 2 bits of the element, which form component ResolverExciteFreq, represented in the 

low part of the third hex digit, specify the frequency of the excitation output. Values of 0, 1, 2, 

and 3 for this component specify frequencies of 1, 1/2, 1/4, and 1/6 times, respectively, the phase 

clock frequency. The frequency that comes closest to that recommended by the resolver 

manufacturer should be used. 

For example, to set up an excitation signal with a ¼-cycle (128/512 of a cycle) lag, ½ of the 

maximum magnitude, and at ¼ of the phase clock frequency, Gate3[i].ResolverCtrl would be set 

to $80500000. 

Direction Sense Control: Gate3[i].Chan[j].EncCtrl 

The direction sense of the resolver conversion for a channel is determined by bit 2 (value 4) of 

channel saved setup element Gate3[i].Chan[j].EncCtrl. Usually the element value is just 
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changed between its default value of 7 and 3, but for purposes of the resolver conversion, all that 

matters is the value of bit 2. 

 

WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the feedback to increment in the 

positive direction – otherwise a dangerous runaway 

condition will occur when the servo loop is closed. 

Changing the direction sense of the decode of a feedback 

sensor in a properly working servo loop without changing 

the direction sense of the servo loop outputs will result in a 

dangerous runaway. 

 

ACC-58E PMAC2-Style Interface 

The key configuration elements in the ACC-58E resolver-interface board are in the same 

auxiliary IC that contains the board identification information. These elements are called 

Gate1[i].PartData[k], also accessible as Acc58E[i].PartData[k]. 

Excitation Phase Shift: Gate1[i].PartData[2] 

Bits 8 – 17 of Gate1[i].PartData[2] specify the phase shift of the excitation sine wave relative to 

the phase clock. These bits can take a value from $00 (0) to $1FF (511), in units of 1/512 of an 

excitation cycle. The low 8 bits of this element are read-only, so it does not matter what is written 

to them. A value of $1FF00 written to the element specifies the maximum phase shift. This 

element is usually set experimentally, to maximize the magnitude of the feedback signals, which 

are sampled on the rising edge of the phase clock. Resolvers with different “L/R” electrical time 

constants will require different phase shifts to provide maximum readings. 

Excitation Magnitude: Gate1[i].PartData[1] 

Bits 8 – 11 of Gate1[i].PartData[1] specify the magnitude of the excitation output. Values of 0 

to 15 in these bits specify magnitudes of 1/16 to 1 times, respectively, the maximum magnitude. 

The highest magnitude that does not cause saturation of the feedback ADCs (which can be 

detected by reading the values in Gate1[i].Chan[j].Adc[0] and Adc[1]) should be used. The low 

8 bits of this element are read-only, so it does not matter what is written to them. A value of $F00 

written to the element specifies the maximum magnitude. 

Excitation Frequency: Gate1[i].PartData[3] 

Bits 8 – 9 of Gate1[i].PartData[3] specify the frequency of the excitation output. Values of 0, 1, 

2, and 3 for these bits specify frequencies of 1, 1/2, 1/4, and 1/6 times, respectively, the phase 

clock frequency. The frequency that comes closest to that recommended by the resolver 

manufacturer should be used. The low 8 bits of this element are read-only, so it does not matter 

what is written to them. A value of $300 written to the element specifies the minimum frequency. 

Direction Sense Control: Gate1[i].Chan[j].EncCtrl 

The position value is calculated in software in the encoder conversion table from the ADC 

readings. The ECT uses the value of bit 2 (value 4) of Gate1[i].Chan[j].EncCtrl to determine the 

direction sense of the position value it calculates. Usually the element value is just changed 

between its default value of 7 and 3, but for purposes of the resolver conversion, all that matters is 

the value of bit 2.  
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The ECT entry only reads this bit from the IC when the value of EncTable[n].index3 is 0 for the 

entry; it then copies the value of the IC channel’s EncCtrl element into its index3 element, which 

it then uses each servo cycle to determine the direction sense of its conversion (this saves 

significant computation time). Normally, this is done just at power-on reset. If you change the 

value of Gate1[i].Chan[j].EncCtrl during setup to change the direction sense, also set the value 

of EncTable[n].index3 to 0, so the ECT entry will use the new direction sense. 

 

WARNING 

For a feedback sensor, the sensor’s direction sense must 

match the servo-loop output’s direction sense – a positive 

servo output must cause the feedback to increment in the 

positive direction – otherwise a dangerous runaway 

condition will occur when the servo loop is closed. 

Changing the direction sense of the decode of a feedback 

sensor in a properly working servo loop without changing 

the direction sense of the servo loop outputs will result in a 

dangerous runaway. 

 

Using the Resulting Position Information 

Resolver position information is commonly used for both absolute power-on position and 

ongoing position and both for the servo and commutation algorithms. 

Note that with the PMAC2-style ACC-58E interface, the resolver position is computed in the 

encoder conversion table (ECT), which executes under the servo interrupt. Therefore, if the phase 

interrupt is at a higher frequency than the servo interrupt, it will not get new position data each 

cycle. Because the required position resolution for the commutation algorithm is not that high, the 

resulting errors usually do not matter. A simple compensation can be done using the 

Motor[x].AdvGain “phase advance” term, so that errors at velocity average to zero. Alternately, 

the servo clock frequency can be set equal to the phase clock frequency, and the servo-loop 

closure rate slowed if necessary by setting Motor[x].Stime greater than zero to skip interrupts 

between successive closures. 

Ongoing Commutation Phase Position 

Resolvers are commonly used for ongoing phase position as well, providing the rotor angle 

information each phase cycle. The resolver position information, whether calculated in the 

PMAC3 ASIC hardware, or in software in the ECT from the ACC-58E, ends up in the high 16 

bits of a 32-bit register.  

Power PMAC reads the entire 32-bit register each phase cycle and scales the result to the 2048-

part commutation cycle. (Note that this means that only the high 11 bits are really needed.) One 

cycle of the resolver position in this register has a range of 4,294,967,298 (232) LSBs of the 

register. This covers the travel over one north-south pole pair of the resolver. For the most 

common 2-pole resolver, this is a full mechanical revolution of the resolver. 

For an n-pole motor, one mechanical revolution covers n/2 commutation cycles of the motor. 

With the typical 2-pole resolver, one resolver cycle covers these n/2 commutation cycles. In the 

more general case of an nr-pole resolver on an nm-pole motor, one resolver cycle covers nm/nr 

resolver cycles. 
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PMAC3 ASIC-Based Interface 

To use resolver position from a PMAC3-style ASIC-based interface for ongoing phase position, 

the following saved setup elements must be specified: 

 Motor[x].pPhaseEnc = Gate3[i].Chan[j].AtanSumOfSqr.a // ASIC position 

 Motor[x].PhasePosSf = nm/nr * 2,048/4,294,967,298 // Scale to 2048-part cycle 

 

ACC-58E PMAC2-Style Interface 

To use resolver position generated from the readings in an ACC-58E for ongoing phase position, 

the position calculated in the ECT must be used. The following saved setup elements must be 

specified: 

 Motor[x].pPhaseEnc = EncTable[n].PrevEnc.a // ECT position 

 Motor[x].PhasePosSf = nm/nr * 2,048/4,294,967,298 // Scale to 2048-part cycle 

 

Power-On Commutation Phase Position 

Because resolvers provide absolute position information, at least of one motor revolution, they 

are commonly used to provide the absolute rotor-angle position at power-up for the commutation 

algorithms. With the Power PMAC resolver interfaces, the same register is read for power-on 

phase position as for ongoing phase position, although the processing is done a little differently. 

In either interface, the value of AbsPhasePosOffset is usually found by executing the “stepper-

motor” phasing search, which forces the motor to the zero point of the commutation cycle, and 

reading the value of the resolver position there. The negative of this value (using the proper 

number of bits) is multiplied by AbsPhasePosSf and written into AbsPhasePosOffset. 

PMAC3 ASIC-Based Interface 

To use resolver position from a PMAC3-style ASIC-based interface for power-on phase position, 

the following saved setup elements must be specified: 

 Motor[x].pAbsPhasePos = Gate3[i].Chan[j].AtanSumOfSqr.a 

 Motor[x].AbsPhasePosFormat = $00001010 // Use high 16 bits of 32-bit register 

 Motor[x].AbsPhasePosSf = = nm/nr * 2048/65536 // Scale to 2048-part cycle 

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero) 

 

ACC-58E PMAC2-Style Interface 

To use resolver position from an ACC-58E interface for power-on phase position, the position 

calculated in the ECT must be used, so the following saved setup elements must be specified: 

 Motor[x].pAbsPhasePos = EncTable[n].PrevEnc.a 

 Motor[x].AbsPhasePosFormat = $00001010 // Use high 16 bits of 32-bit register 

 Motor[x].AbsPhasePosSf = = nm/nr * 2048/65536 // Scale to 2048-part cycle 

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero) 

 

Ongoing Servo Position 

To use the interpolated sinusoidal encoder position for ongoing servo position, the data must first 

be processed in the encoder conversion table. This processing is different for the PMAC3-style 

interface, where the interpolation has already been performed in the ASIC, and the PMAC2-style 
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interface, where the interpolation has not been performed in the ASIC, and so must be performed 

in the software conversion. 

PMAC3 ASIC-Based Interface 

To use the hardware-converted resolver position from a PMAC3 ASIC-based interface for 

ongoing servo position, the following saved setup elements must be specified: 

 EncTable[n].Type = 1   // Single-register read conversion 

 EncTable[n].pEnc = Gate3[i].Chan[j].AtanSumofSqr.a 

 EncTable[n].index1 = 16  // 16-bit left shift to bring back to high end 

 EncTable[n].index2 = 16  // 16-bit right shift to eliminate low bits 

 EncTable[n].ScaleFactor = 1/65536 // For result in 16-bit conversion LSBs 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Here, the 16-bit arctangent conversion has been performed in the ASIC, and the conversion table 

simply needs to read the value in the upper half of the channel’s AtanSumOfSqr element. 

ACC-58E PMAC2-Style Interface 

To use the converted position from an ACC-58E interface for ongoing servo position, the 

following saved setup elements must be specified: 

 EncTable[n].Type = 6   // Software arctangent resolver conversion 

 EncTable[n].pEnc = Acc58E[i].PartData[0].a // Excitation value address 

 EncTable[n].pEnc1 = Acc58E[i].Chan[j].Adc[0].a 

 EncTable[n].index3 = 0 or 1  // Specifies direction sense 

 EncTable[n].ScaleFactor = 1/65536 // For result in conversion LSBs 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Here the conversion table entry performs the 16-bit arctangent calculation in software using the 

A/D-converter values it reads. 

Filtering in the Conversion Table 

Resolver feedback is often noisy. If the noise level on the resulting position values is too high, 

software filtering can be performed in the conversion table entry. This is enabled by setting 

EncTable[n].index2 to a value of 32 or larger, with EncTable[n].index1 and 

EncTable[n].index2 acting as the gains of the filter. Refer to the User’s Manual chapter Setting 

Up the Encoder Conversion Table for details. 

Power-On Servo Position 

It is possible to use the resolver position for absolute power-on servo position, but because a 

single resolver is only absolute over one motor revolution, this is seldom very useful. (A set of 

geared resolvers can provide multi-turn absolute position, but a custom algorithm is required to 

read these encoders and assemble the readings into a single position value. With the motor 

disabled, this value can be written into Motor[x].Pos.) 
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PMAC3 ASIC-Based Interface 

To use (a single) resolver position from a PMAC3-style ASIC-based interface for power-on servo 

position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = Gate3[i].Chan[j].AtanSumOfSqr.a 

 Motor[x].AbsPosFormat = $00001010 // Use high 16 bits of 32-bit register 

 Motor[x].AbsPosSf = 1.0  // Motor units of 65,536 per resolver cycle 

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero) 

 

PMAC3 ASIC-Based Interface 

To use (a single) resolver position from an ACC-58E PMAC2-style interface, where the position 

is calculated in the ECT, for power-on servo position, the following saved setup elements must be 

specified: 

 Motor[x].pAbsPos = EncTable[n].PrevEnc.a 

 Motor[x].AbsPosFormat = $00001010 // Use high 16 bits of 32-bit register 

 Motor[x].AbsPosSf = 1.0  // Motor units of 65,536 per resolver cycle 

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero) 
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Setting Up MLDTs 

A Power PMAC can provide direct interface to magnetostrictive linear displacement transducers 

(MLDTs), such as MTS’s Temposonics® brand, with either PMAC3-style ICs as used on the 

UMAC ACC-24E3 boards or in the Power Brick products, or PMAC2-style ICs, as used on the 

UMAC ACC-24E2x boards. MLDTs can provide absolute position information in rugged 

environments; they are particularly well suited to hydraulic applications. In this interface Power 

PMAC provides a periodic excitation pulse output to the MLDT, receives the echo pulse that 

returns at the speed of sound in the transducer, and very accurately measures the time between 

these pulses, which is directly proportional to the distance of the moving member from the 

stationary base of the transducer. The timer therefore contains a position measurement. 

Signal Format 

MLDTs are available with several different interface formats; for this interface, a format with 

“external excitation” is required, because Power PMAC provides the excitation pulse. Usually 

this format has an “RS-422” interface, because the excitation and echo pulses are at RS-422 

levels. The Power PMAC MLDT interface inputs and outputs are at RS-422 levels. 

 

Note 

Some MLDTs come with internal excitation and computation 

of position, providing a position value in a format such as 

Synchronous Serial Interface (SSI) or an analog voltage. In 

these cases, setting up the Power PMAC interface is dependent 

only on the data format, not on the underlying principle of the 

sensor. Refer to the appropriate feedback-format section for 

details. 

 

There are two common signal formats of the external excitation type; MTS calls them “RPM” 

and “DPM”. In the RPM format there are two short pulses returned from the MLDT: an 

immediate “start” pulse, and a delayed “stop” pulse. 

RPM Signal Format

Pulse Out

Return

Start Stop  

Since Power PMAC uses the first rising signal edge returned after the falling edge of the output 

pulse to latch the timer, the key setup issue in this format is to make sure that the output pulse 

width is large enough so that the falling edge of the output pulse occurs after the rising edge of 

the return line’s start pulse (see “PFM Pulse Width”, below). 
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In the DPM format, there is only one long pulse returned from the MLDT. 

DPM Signal Format

Pulse Out

Return

Start Stop  

The rising edge of the return pulse in the DPM format is the equivalent of the rising edge of the 

start pulse in the RPM format. The falling edge of the return pulse in the DPM format is the 

equivalent to the rising edge of the stop pulse in the RPM format. Because Power PMAC is 

expecting a rising signal edge to latch the timer, in this signal format the return signals should be 

inverted so that the ‘+’ output of the MLDT is wired into Power PMAC’s ‘-’ input, and vice 

versa. 

Hardware Setup 

The PULSEn output that is commonly used to command stepper drives is used as the excitation 

signal for the MLDT; the CHAn input that is typically part of encoder feedback is used to accept 

the response. The PULSEn output is an RS-422 style differential line-drive pair. The CHAn input 

is an RS-422 style differential line receiver pair. The use of differential pairs for both inputs and 

outputs is strongly encouraged for the common-mode noise rejection it provides. 

On some interface boards (e.g. ACC-24E2A, ACC-24E2S), the PULSEn+/- signals are output on 

lines that would otherwise be supplemental flag inputs, and jumper(s) must be installed to enable 

the outputs on these lines. Consult the hardware reference manual for your board for details. 

Remember that in the DPM signal format or equivalent (see above), the ‘+’ output of the MLDT 

should be wired into the CHAn- input, and the ‘-’ output of the MLDT should be wired into the 

CHAn+ input. 

Hardware-Control Parameter Setup 

With either the PMAC3-style ASIC or the PMAC2-style ASIC, some saved setup elements for 

the ASIC must be set properly to configure the ASIC channel to output the excitation pulse and 

measure the time until the echo pulse is received. The setup is different between the two ICs. 

PMAC3-Style Interface 

The PMAC3-style “DSPGATE3” Servo IC uses a channel’s pulse-frequency-modulation (PFM) 

output circuits and encoder timer input circuits to interface to an MLDT. Several setup elements 

must be configured for this interface. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 
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PFM Format Select: Gate3[i].Chan[j].OutputMode 

The Phase D output signal for a channel used for the MLDT interface must be configured for 

PFM output rather than PWM output. The signal format is determined by bit 3 (value 8) of saved 

setup element Gate3[i].Chan[j].OutputMode. This bit must be set to 1 to select PFM output, 

making the element 8 or greater. The A phase signal format is usually selected as DAC when 

using MLDTs, in which case the element value should be 9, 11, 13, or 15. 

MLDT Interface Select: Gate3[i].Chan[j].TimerMode 

The multi-purpose timers for the IC channel must be configured for the MLDT interface. This is 

done by setting saved setup element Gate3[i].Chan[j].TimerMode to 1. In this mode, the PFM 

output is automatically configured to output an excitation pulse on the falling edge of each servo 

cycle, regardless of the value in the PFM command register for the channel. Status element 

Gate3[i].Chan[j].TimerA will contain the time from this excitation pulse until the echo pulse is 

received on the encoder A-phase input, in units of the 600 MHz timer. 

Output Pulse Width: Gate3[i].Chan[j].PfmWidth 

The width of the output pulse for the Phase D output signal for a channel when it is in PFM mode 

is determined by the value of saved setup element Gate3[i].Chan[j].PfmWidth for the channel. 

This element is expressed in units of cycles of the internal PFM clock signal for the IC. This 

clock frequency is set for all IC channels by saved setup element Gate3[i].PfmClockDiv, whose 

default value is 5, establishing a 3.125 MHz frequency and 320 nanosecond period. At this clock 

setting the default value for Gate3[i].Chan[j].PfmWidth of 15 generates a 4.8 µsec pulse width. 

When using the RPM format or equivalent (see Signal Format, above), the pulse width must be 

large enough to enclose the rising edge of the returned “start” pulse – that is, it must be longer 

than the delay between the output pulse and the returned start pulse. 

PMAC2-Style Interface 

The PMAC2-style “DSPGATE1” Servo IC uses a channel’s pulse-frequency-modulation (PFM) 

output circuits and encoder timer input circuits to interface to an MLDT. Several setup elements 

must be configured for this interface. 

PFM Format Select: Gate1[i].Chan[j].OutputMode 

The Phase C output signal for a channel used for the MLDT interface must be configured for 

PFM output rather than PWM output. The signal format is determined by bit 1 (value 2) of saved 

setup element Gate1[i].Chan[j].OutputMode. This bit must be set to 1 to select PFM output, 

making the element equal to 2 or 3. The A and B phase signal formats are usually selected as 

DACs when using MLDTs, in which case the element value should be 3. 

Pulse Output Frequency: Gate1[i].Chan[j].Pfm 

In the PMAC2-style interface, the excitation pulse output frequency must be explicitly set using 

the channel’s PFM-control elements. This frequency is a function of both the PFM clock 

frequency and the PFM command value. 

The frequency of the pulse output should produce a period just slightly longer than the longest 

expected response time for the echo pulse. For MLDTs, the response time is approximately 0.35 

sec/mm (9 sec/inch). On an MLDT 1500 mm (~60 in) long, the longest response time is 

approximately 540 sec; a recommended period between pulse outputs for this device is 600 

sec, for a frequency of 1667 Hz. Note that the frequency should always be at least as high as the 
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servo update frequency for the motor, so each servo cycle uses new data. This may require 

lowering the servo update frequency for the motor. 

The PFM clock frequency, which sets the finest interval to which the pulse output timing can be 

controlled, is determined by the value of multi-channel saved setup element 

Gate1[i].HardwareClockCtrl. The PFM clock frequency at the factory default value for this 

element is 9.83 MHz, and this should not need to be changed for any MLDT application. 

The value in the non-saved 24-bit channel command register Gate1[i].Chan[j].Pfm determines 

the pulse output frequency given the clock frequency. Note that as a non-saved element, it must 

be set in the user’s project or program after each power-on or reset. 

To produce the desired pulse output frequency from a channel, the following formula can be 

used: 

)(_
216,777,16

].[].[1
)( kHzFreqPFMCLK

PfmjChaniGate
kHzOutputFreq   

or: 

)(_

)(
*216,777,16].[].[1

kHzFreqPFMCLK

kHzOutputFreq
PfmjChaniGate   

To produce a pulse output frequency of 1.667 kHz with the default PFMCLK frequency of 9.83 

MHz (9,830 kHz), we calculate: 

982,2
830,9

667.1
*216,777,16].[].[1 PfmjChaniGate  

Pulse Width: Gate1[i].PwmDeadTime 

The width of the output pulse for all channels on the IC is controlled by the PFM clock frequency 

and the value of (dual-use) multi-channel saved setup element Gate1[i].PwmDeadTime. This 

element specifies the PFM pulse width as the number of PFM clock cycles. At the default PFM 

clock frequency of 9.83 MHz, the default value of 15 produces a 1.5µsec output pulse width. This 

should be satisfactory for most MLDT devices. When using the RPM format or equivalent (see 

Signal Format, above), the pulse width must be large enough to enclose the rising edge of the 

returned “start” pulse – that is, it must be longer than the delay between the output pulse and the 

returned start pulse. 

PFM Format Select: Gate1[i].Chan[j].OutputMode 

The Phase C output signal for a channel used for the MLDT interface must be configured for 

PFM output rather than PWM output. The signal format is determined by bit 1 (value 2) of saved 

setup element Gate1[i].Chan[j].OutputMode. This bit must be set to 1 to select PFM output, 

making the element equal to 2 or 3. The A and B phase signal formats are usually selected as 

DACs when using MLDTs, in which case the element value should be 3. 

MLDT Feedback Select: Gate1[i].Chan[j].EncCtrl 

The decoding of the feedback signals on the “encoder” inputs for an IC channel is controlled by 

saved setup element Gate1[i].Chan[j].EncCtrl. For proper decoding of the MLDT signal, this 
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element must be set to 12. With this setting, the pulse timer is cleared to zero at the falling edge 

of the output pulse. It then counts up at 117.96 MHz until a rising edge on the return pulse is 

received, at which time the timer’s value is latched into status element Gate1[i].Chan[j].TimerA. 

Note 

The MLDT feedback uses the same circuitry that would be 

used for quadrature encoder feedback on that channel, so you 

cannot simultaneously connect an encoder and MLDT to the 

same channel’s feedback on Power PMAC. In this mode, it is 

the pulse timer that is used as a position measurement for 

feedback, not the pulse counter that is used with encoders. The 

counter still registers the number of pulses returned, but does 

not represent a position measurement here. 

 

Using the Resulting Position Information 

Position information from the MLDT, found in a channel timer register, is typically used for both 

absolute power-on servo position and ongoing servo position. Both of these uses are covered 

below. It is almost never used for commutation position. 

The timer register contains the time elapsed between the excitation pulse output and the echo 

pulse feedback. It is in the units of cycles of the high-frequency clock for the IC: 8.477 

nanoseconds for the PMAC2 IC’s 117.96 MHz clock, and 1.667 nanoseconds for the PMAC3 

IC’s 600 MHz clock.  

At the nominal speed of sound in these devices, 2.81 mm/µsec (0.110 in/µsec), each timer 

interval represents 0.0238 mm (0.000937 in) for a PMAC2 IC, or 0.00468 mm (0.000184 in) for a 

PMAC3 IC. Check with the manufacturer for the actual transmission speed for the particular 

sensor. 

Ongoing Servo Position 

To use the MLDT position for ongoing servo position, the data must first be processed in the 

encoder conversion table. This is done with a “Type 1” single-register-read conversion from the 

ASIC timer register. 

PMAC3-Style Interface 

To use the MLDT position value from the timer registers in a PMAC3-style IC for ongoing servo 

position, the following saved setup elements must be specified: 

 EncTable[n].Type = 1   // Single-register read 

 EncTable[n].pEnc = Gate3[i].Chan[j].TimerA.a 

 EncTable[n].index1 = 8  // Shift left 8 bits to restore position 

 EncTable[n].index2 = 8  // Shift right to eliminate lower 8 bits 

 EncTable[n].ScaleFactor = 1/256 // For units of timer LSB 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

PMAC2-Style Interface 

To use the MLDT position value from the timer registers in a PMAC2-style IC for ongoing servo 

position, the following saved setup elements must be specified: 



Power PMAC User’s Manual 

Setting Up Feedback and Master Position Sensors 177 

 EncTable[n].Type = 1   // Single-register read 

 EncTable[n].pEnc = Gate1[i].Chan[j].TimeBetweenCts.a 

 EncTable[n].index1 = 8  // Shift left 8 bits to restore position 

 EncTable[n].index2 = 8  // Shift right to eliminate lower 8 bits 

 EncTable[n].ScaleFactor = 1/256 // For units of timer LSB 

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback 

 

Power-On Servo Position 

Absolute power-on servo position from an MLDT is found simply by reading the 24-bit timer 

register, scaling and offsetting it into motor units. 

PMAC3-Style Interface 

To use the MLDT position value from the timer register in a PMAC3-style IC for absolute power-

on servo position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = Gate3[i].Chan[j].TimerA.a 

 Motor[x].AbsPosFormat = $00001808  // Use high 24 bits of 32-bit register 

 Motor[x].AbsPosSf = (Motor units per 600 MHz period) 

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero) 

 

PMAC2-Style Interface 

To use the MLDT position value from the timer register in a PMAC2-style IC for absolute power-

on servo position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = Gate1[i].Chan[j].TimeBetweenCts.a 

 Motor[x].AbsPosFormat = $00001808  // Use high 24 bits of 32-bit register 

 Motor[x].AbsPosSf = (Motor units per 117.96 MHz period) 

 Motor[x].AbsPosOffset = (Application specific value) 
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Setting Up Parallel Data Position Inputs 

Power PMAC can accept parallel-data position, usually through the ACC-14E UMAC TTL I/O 

card. While parallel-data formats are becoming less common, largely replaced by serial data 

formats, they are still used. 

Signal Format 

The ACC-14E card can accept up to 48 digital inputs at 5V TTL/CMOS levels. These levels are 

suitable for most parallel-format position data. 

Hardware Setup 

The multiple bits of the parallel position data word are connected to consecutively numbered I/O 

lines on the ACC-14E, with the LSB connected to the lowest numbered I/O pin of the set. 

Typically one 24-bit port of the ACC-14E is used for one set of data. Port A provides pins I/O00 

to I/O23, with I/O00 typically used for the LSB of the position data. Port B provides pins I/O24 

to I/O47, with I/O24 typically used for the LSB of the position data. 

Note that if the position data is not absolute, as with an interferometer, it may not be necessary to 

connect all of the bits provided. Only enough bits need to be connected so that the resulting 

numerical value cannot cover more than half of its cycle between consecutive servo cycles. If this 

is the case, Power PMAC can handle the rollover properly and extend the position data 

indefinitely. 

For example, many interferometers provide 32 bits of incremental position data, but it is rarely 

necessary to connect more than the low 24 bits. This permits a velocity of over 8 million (223) 

LSBs per servo cycle. At a 5 kHz servo update and a 1.25 nanometer LSB, this permits a top 

speed of over 50 meters per second. 

The ACC-14E provides several possibilities for handshaking and latching the data using the 

phase or servo clock signals and/or some other high-frequency clocks. Refer to the ACC-14E 

manual to select the appropriate method and implement it properly. 

Hardware Control Parameter Setup 

The IOGATE ASIC used in the ACC-14E is software configurable for a variety of I/O 

functionality. While the initialization values set by the auto-detection function will usually work 

properly, the user should check these values to ensure proper configuration of the card for 

feedback purposes. 

Each ACC-14E has a saved initialization sub-structure GateIo[i].Init (or Acc14E[i].Init). The 

following are the suggested settings for latched feedback inputs on all 48 pins (6 byte-wide data 

registers). 

GateIo[i].Init.CtrlReg should be set to $3F so that outputs on all 6 registers are disabled, and 

cannot interfere with the connected input values. 

The values of GateIo[i].Init.DataReg0[j], which set initial output values, do not matter, and can 

be left at 0. 

The values of GateIo[i].Init.DataReg64[j], which set the inversion control for the specified data 

register (j = 0 to 5), are typically set to $FF to specify all inputs non-inverting (high = 1). 
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The values of GateIo[i].Init.DataReg128[j], which control the numeric form expected for the 

specified data register (j = 0 to 5), should be set to $00 for the typical numeric binary, or to $FF 

for Gray code. 

The values of GateIo[i].Init.DataReg192[j], which control which value is read for the specified 

data register (j = 0 to 5), should be set to $FF to read the value latched on the most recent clock 

(rather than the “transparent” value). 

Using the Resulting Position Information 

The parallel position data brought into an ACC-14E can be used for both ongoing phase and 

servo position feedback data. If it represents absolute position, it can also be used for power-on 

phase and servo reference position. 

In all the sections below, if the LSB of the position word is connected to pin I/O00 on Port A, 

DataReg[0] is addressed. If the LSB of the position word is connected to pin I/O24 on Port B, 

DataReg[3] is addressed. 

Ongoing Servo Position 

To use the parallel position data from the ACC-14E for ongoing servo position, the data must first 

be processed in the encoder conversion table. This is done with a “Type 5” byte-wise register-

read entry. The following entries must be specified: 

 EncTable[n].type = 5    // Byte-wise register read 

 EncTable[n].pEnc = GateIo[i].DataReg[j].a // Starting (low) register address 

 EncTable[n].pEnc1 = GateIo[i].DataReg[j+1].a   // Next register address 

 EncTable[n].index1 = (32-# of bits)  // Shift left to permit rollover 

 EncTable[n].index2 = 0   // No shift right 

 EncTable[n].ScaleFactor = (1/2index1)  // For result units of LSBs 

 Motor[x].pEnc = EncTable[n].a  // Use result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a  // Use result for velocity-loop feedback 

 

Power-On Servo Position 

If the parallel position data from the ACC-14E is absolute over the entire range of travel for the 

motor, it can be used for power-on absolute servo position, eliminating the need for a homing 

search move. To use parallel position data from an ACC-14E for absolute power-on servo 

position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = GateIo[i].DataReg[j].a 

 Motor[x].AbsPosFormat = $aa20cc08  // $cc is number of bits, $aa is format 

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

Ongoing Commutation Phase Position 

Because the position data in the ACC-14E is not found in a single register, it cannot be used 

directly for ongoing commutation phase position feedback. If the position information is to be 

used for this purpose, it is best to use the intermediate single-register value from encoder 

conversion table processing. This will add some delay to the use of the data in the phase 

algorithms, but unless the commutation frequency is extremely high, this will not have a 
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noticeable effect on commutation performance. If necessary, this time delay can be compensated 

for with Motor[x].AdvGain. 

To use this processed data for ongoing commutation feedback, set Motor[x].pPhaseEnc to 

EncTable[n].PrevEnc.a, where n is the index of the ECT entry that is processing the feedback. 

The ECT processing needs to have performed any shifting necessary for the data to roll over 

properly, so Motor[x].PhaseEncRightShift and Motor[x].PhaseEncLeftShift should be left at 

their default values of 0. 

To scale the 32-bit value in the PrevEnc register into the commutation units of 1/2048 of a 

commutation cycle (pole-pair), you will need to know how many LSBs of the input data there are 

per commutation cycle, and in what bit n of the PrevEnc register the data LSB resides (which 

should be equal to the value of EncTable[n].index1 for the entry. The scaling element 

Motor[x].PhasePosSf can then be set according to the following equation: 

 cyclecommLSBs
PhasePosSfxMotor

n _/*2

2048
].[   

Power-On Commutation Phase Position 

If the parallel position data is absolute over a range of at least one commutation cycle, it can be 

used for absolute power-on phase position of a synchronous brushless servo motor, eliminating 

the need for a power-on phasing search move. To use parallel position data from an ACC-14E for 

absolute power-on servo position, the following saved setup elements must be specified: 

 Motor[x].pAbsPhasePos = GateIo[i].DataReg[j].a 

 Motor[x].AbsPhasePosFormat = $aa20cc08 // $cc is number of bits, $aa is format 

 Motor[x].AbsPhasePosSf = (Motor units per LSB) // Must match ongoing pos res 

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero) 
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Setting Up Analog Data Position Inputs 

Power PMAC can accept analog inputs for position (and other) servo-loop data through a variety 

of accessories, including: 

 ACC-28E UMAC 4-channel 16-bit ADC board 

 ACC-36E UMAC 16-channel 12-bit ADC board 

 ACC-59E UMAC 8-channel 12-bit ADC (+ 8-channel 12-bit DAC) board 

 ACC-59E3 UMAC 16-channel 16-bit ADC (+ 8-channel 16-bit DAC) board 

 Power Brick optional 4/8-channel 16-bit ADCs 

 Power Clipper optional 4/8-channel 12-bit ADCs 

 

These accessories can be used to interface to analog sensors such as LVDTs and RVDTs (already 

demodulated), potentiometers, capacitive distance sensors, tachometers, accelerometers, strain 

gauges, and others, to be used as servo loop feedback or master data. 

 

Note 

The coupled analog signals of sinusoidal encoders and 

resolvers are processed using hardware interfaces and software 

algorithms specific to those sensors. These are covered in 

separate sections in this chapter. 

 

Signal Format 

The analog-input accessories for the Power PMAC accept a voltage input that is intended to be 

proportional to the quantity being measured. (The ACC-59E3 can also be configured to accept 4 – 

20 mA current inputs, but that is seldom used for feedback data.) All of these accessories have 

differential analog inputs, measuring the voltage difference between ADCn+ and ADCn- input 

lines. 

While differential inputs are strongly recommended due to the common-mode noise rejection 

they provide, it is easy to use single-ended analog inputs simply by tying the ADCn- input to the 

AGND reference voltage provided on the same connector. 

ACC-28E 

On the ACC-28E, if jumper En (n = 1 to 4) for hardware channel ADCn connects pins 1 and 2 to 

select unipolar conversion, then the range of input voltage difference (V[ADCn+] – V[ADCn-]) 

is 0 to +10V, corresponding to converted values of 0 to 65,535. 

If jumper En connects pins 2 and 3 to select bipolar conversion, then the range of input voltage 

difference (V[ADCn+] – V[ADCn-]) is -10V to +10V, corresponding to converted values of 0 to 

65,535. 

ACC-36E, ACC-59E 

On the ACC-36E and ACC-59E, if the software convert code specifies unipolar conversion, then 

the range of input voltage difference (V[ADCn+] – V[ADCn-]) is 0 to +20V, corresponding to 

converted values of 0 to 4,095. 
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If the software convert code specifies bipolar conversion, then the range of input voltage 

difference (V[ADCn+] – V[ADCn-]) is -10V to +10V, corresponding to converted values of -

2048 to +2,047. 

ACC-59E3 

On the ACC-59E3, the range of input voltage difference (V[ADCn+] – V[ADCn-]) is -10V to 

+10V, corresponding to converted values of -32,768 to +32,767. 

Power Brick Optional ADCs 

On the Power Brick’s optional analog inputs, the range of input voltage difference (V[ADCn+] – 

V[ADCn-]) is -10V to +10V, corresponding to converted values of -32,768 to +32,767. 

Hardware Setup 

The ADCs on all of these accessories are sampled based on the system phase clock. Also, the 

highest frequency at which the converted values can be read by the processor is that of the phase 

clock. In almost all cases, the source of the phase clock signal is not the ADC accessory itself. (It 

is possible, but rare, for the ACC-59E3 to be the source of the system phase clock.) 

ACC-28E 

On the ACC-28E, all 4 ADCs are sampled simultaneously on the rising edge of the phase clock. 

The data is available to be read by the processor on the next falling edge of the phase clock, 

which is the phase interrupt to the processor. Every “N” phase-clock interrupts to the processor is 

also the servo clock interrupt, which causes servo tasks to be performed. 

ACC-36E, ACC-59E 

The ACC-36E and ACC-59E use multiplexed 8-channel ADCs. In the de-multiplexing scheme 

explained in the next section, on each falling edge of the phase clock, one of these 8 channels can 

be read by the processor, and the next channel selected and sampled for reading in the next phase 

clock cycle. 

ACC-59E3 

On the ACC-59E3, all 16 ADCs are sampled every phase clock cycle. The lower two numbered 

hardware channels on each connector (1, 2, 5, 6, 9, 10, 13, and 14) are sampled on the rising edge 

of the phase clock ,with the data available to be read by the processor on the next falling edge of 

the phase clock (one-half cycle later), which is the phase interrupt to the processor. The higher 

two numbered hardware channels on each connector (3, 4, 7, 8, 11, 12, 15, and 16) are sampled 

on the falling edge of the phase clock with the data available to be read by the processor on the 

following falling edge (one full cycle later). Every “N” phase-clock interrupts to the processor is 

also the-servo clock interrupt, which causes servo tasks to be performed. 

Power Brick Optional ADCs 

On the Power Brick products, the optional 4 or 8 channels of ADCs are all sampled on the falling 

edge of the phase clock with the data available to be read by the processor on the following 

falling edge (one full phase cycle later). Every “N” phase-clock interrupts to the processor is also 

the-servo clock interrupt, which causes servo tasks to be performed. 

Power Clipper Optional ADCs 

On the Power Clipper and its expansion board, the first two channels on each board (ADC1 and 

ADC2) are sampled on the rising edge of the phase clock with the data available to be read by the 
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processor on the next falling edge (one half phase cycle later). The last two channels on each 

board (ADC3 and ADC4) are sampled on the falling edge of the phase clock with the data 

available to be read by the processor on the following falling edge (on full phase cycle later). 

Every “N” phase-clock interrupts to the processor is also the-servo clock interrupt, which causes 

servo tasks to be performed. 

Hardware Control Parameter Setup 

For some of the analog input accessories, there are control parameters to set up the hardware to 

provide the desired data to the processor. 

ACC-28E 

On the ACC-28E, no setup parameters are necessary to prepare the ADC data for access by the 

processor, for either servo or non-servo tasks. 

De-Multiplexing ACC-36E and ACC-59E ADCs 

The ACC-36E and ACC-59E use multiplexed 8-channel ADCs. The ACC-59E has one of these 

8-channel ADCs, the ACC-36E has two (mapped into a single register). For use in the Power 

PMAC servo loops, the individual input values must first be “de-multiplexed” into separate 

registers using the built-in algorithms. 

Power PMAC’s automatic de-multiplexing algorithms select one register to read each phase cycle 

(which selects two ADCs on the ACC-36E). To create a “ring” cycle of reading all 8 channels of 

a multiplexed ADC takes 8 phase cycles. When ADC readings are used for servo purposes, there 

should be a new value every servo update. To ensure this happens, the user has several options.  

First, the hardware phase update frequency relative to the servo update frequency can be raised to 

be 8 times higher (the default is 4 times). If necessary, the bulk of the software tasks executed in 

the phase cycle – mainly the motor commutation algorithms – can be performed at a lower 

frequency than by setting Sys.PhaseCycleExt above its default value of 0. (The de-multiplexing 

still takes place at the phase clock frequency.) 

Second, the servo update frequency of a motor using this data can be set lower than the servo 

clock frequency by setting Motor[x].Stime above its default value of 0. (Since this is done on a 

motor-by-motor basis, other motors can be updated at the servo clock frequency.) 

Third, the de-multiplexing ring cycle can be made smaller than the full cycle of 8 ADC channels. 

However, any ADC channels that are not part of this ring cycle cannot be used at all, even for 

lower-priority non-servo tasks. 

To configure the ring cycle, the saved setup elements AdcDemux.Address[i] must be set to the 

address offset of the card in Power PMAC’s I/O space (e.g. to $A00000 for Acc36E[0] or 

Acc59E[0]). If every entry in the ring cycle is for the same card, each of these elements will be 

set to the same value. For example, to configure an 8-way ring cycle for the ADCs of Acc36E[1], 

the elements AdcDemux.Address[0] through AdcDemux.Address[7] should all be set to 

$B00000. 

Next, the ADC or pair of ADCs at the specified address for each ring slot, and the conversion 

format(s), must be selected with AdcDemux.ConvertCode[i]. These elements take a value of 

$m00n00, although for the ACC-59E, only the last 3 hex digits ($n00) are needed. The value of 

the variable hex digit n specifies the software index of the selected channel in the “low” 8-
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channel ADC, which is 1 less than the hardware channel number (e.g. 3 for ADC4). The value of 

the variable hex digit m is 9 less than the hardware channel number of the “high” 8-channel ADC 

on the ACC-36E (e.g. 5 for ADC14). If the ADC is to be sampled as a bipolar voltage, returning a 

signed value (rather than as a unipolar voltage, returning an unsigned value), a value of 8 should 

be added to the digit. 

For example, to sample all eight ADC channels of an ACC-59E as unipolar values in an 8-slot 

ring, the following settings would be made: 

AdcDemux.ConvertCode[0] = $000 

AdcDemux.ConvertCode[1] = $100 

AdcDemux.ConvertCode[2] = $200 

AdcDemux.ConvertCode[3] = $300 

AdcDemux.ConvertCode[4] = $400 

AdcDemux.ConvertCode[5] = $500 

AdcDemux.ConvertCode[6] = $600 

AdcDemux.ConvertCode[7] = $700 

 

In another example, to sample all sixteen ADC channels of an ACC-36E as bipolar values in an 

8-slot ring, the following settings would be made: 

AdcDemux.ConvertCode[0] = $800800 

AdcDemux.ConvertCode[1] = $900900 

AdcDemux.ConvertCode[2] = $A00A00 

AdcDemux.ConvertCode[3] = $B00B00 

AdcDemux.ConvertCode[4] = $C00C00 

AdcDemux.ConvertCode[5] = $D00D00 

AdcDemux.ConvertCode[6] = $E00E00 

AdcDemux.ConvertCode[7] = $F00F00 

 

Finally, AdcDemux.Enable must be set to specify the number of slots in the ring cycle. Setting it 

to a value of 8 will cause Power PMAC to use the values of AdcDemux.Address[i] and 

AdcDemux.ConvertCode[i] for i = 0 to 7. 

ACC-59E3 

On the ACC-59E3, several setup parameters in the Acc59E3[i] data structure (documented under 

the generic Gate3[i] structure name) are necessary to prepare the ADC data for access by the 

processor, either for servo or non-servo tasks. Most of the saved setup elements can use their 

factory default values. When setting the values of these elements, Sys.WpKey must be set to 

$AAAAAAAA to enable changes in their values. 

Acc59E3[i].AdcAmpStrobe should be set to its default value of $FFFFFC. 

Acc59E3[i].AdcAmpDelay should be set to its default value of 0. Acc59E3[i].AdcAmpUtoS 

should be set to its default value of 0. Acc59E3[i].AdcAmpHeaderBits should be set to 1 (not its 

default). All of these settings can be made by setting the full-word element 

Acc59E3[i].AdcAmpCtrl to $FFFFFC01. 

The cutoff frequency of the analog low-pass filtering on the card is configurable in software for 

each input. Two control bits per ADC channel permit the -3dB cutoff frequency to be selected 

from the choices of 3.2 kHz, 4.3 kHz, 12.2 kHz, and 24.5 kHz.  
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To enable the use of these control bits, saved direction-control element Acc59E3[i].GpioDir[0] 

must be set to $FFFFFFFF – not the default – so that all 32 of the IC’s 32 digital I/O lines are 

configured as outputs, and the saved polarity-control element Acc59E3[i].GpioPol[0] should be 

left at its default value of $00000000.) 

The value of the 32-bit non-saved element Acc59E3[i].GpioData[0] determines the value of 

these two control bits for each of the 16 inputs. To set all 16 analog inputs to the same cutoff 

frequency, the following settings can be used: 

 3.2 kHz: Acc59E3[i].GpioData[0] = $FFFFFFFF 

 4.3 kHz: Acc59E3[i].GpioData[0] = $FFFF0000 

 12.2 kHz: Acc59E3[i].GpioData[0] = $0000FFFF 

 24.5 kHz: Acc59E3[i].GpioData[0] = $00000000 

 

Since Acc59E3[i].GpioData[0] is not a saved element, it must be explicitly set after each power-

on/reset. This can be done in pp_startup.txt or in a power-on PLC program. If no explicit 

action is taken, all inputs are configured for a 24.5 kHz cutoff frequency. If you wish to set 

different cutoff frequencies for different inputs, refer to the ACC-59E3 manual for details. 

Further filtering can be done digitally in the encoder conversion table entry that processes the 

input. 

Power Brick Optional ADCs 

On the Power Brick products, several setup parameters in the PowerBrick[i] data structure 

(documented under the generic Gate3[i] structure name) are necessary to prepare the ADC data 

for access by the processor, either for feedback or non-feedback tasks. Most of the saved setup 

elements can use their factory default values. When setting the values of these elements, 

Sys.WpKey must be set to $AAAAAAAA to enable changes in their values. 

PowerBrick[i].AdcAmpStrobe should be set to its default value of $FFFFFC. 

PowerBrick[i].AdcAmpDelay should be set to its default value of 0. 

PowerBrick[i].AdcAmpUtoS should be set to its default value of 0. 

PowerBrick[i].AdcAmpHeaderBits should be set to 0 (not its default). All of these settings can 

be made by setting the full-word element Acc59E3[i].AdcAmpCtrl to $FFFFFC00. 

Power Clipper Optional ADCs 

On the Power Clipper, several setup parameters in the Clipper[i] data structure (documented 

under the generic Gate3[i] structure name) are necessary to prepare the ADC data for access by 

the processor, either for servo or non-servo tasks. Most of the saved setup elements can use their 

factory default values. When setting the values of these elements, Sys.WpKey must be set to 

$AAAAAAAA to enable changes in their values. 

Clipper[i].AdcEncStrobe should be set to its default value of $FFFFFC. 

Clipper[i].AdcEncDelay should be set to its default value of 0. Clipper[i].AdcEncUtoS should 

be set to its default value of 0. Clipper[i].AdcEncHeaderBits should be set to 1 (not its default). 

All of these settings can be made by setting the full-word element Acc59E3[i].AdcEncCtrl to 

$FFFFFC01. 
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Using the Resulting Position Information 

The analog data can be used for either ongoing servo position feedback or master data, and if 

absolute, for power servo reference position. (Because analog position data has a very limited 

range, it is very rarely used for the cyclic position feedback for phase commutation.) 

Ongoing Servo Position 

To use the parallel position data from an analog input card for ongoing servo position, the data 

must first be processed in the encoder conversion table (ECT). This is done with a “Type 1” 

single-register read entry in the table. Remember that this reads an entire 32-bit register, even if 

“real data” is only in part of that register. The details of the entry setup are dependent on which 

accessory is used. 

The examples shown in this section use the entry parameters EncTable[n].index1 and index2 to 

create a type of low-pass filter called a digital tracking filter. This can be used to reduce the effect 

of high-frequency noise in the signal. It is also possible to use these parameters to eliminate any 

“garbage data” from the low bits of the 32-bit source register, but since generally there is noise on 

at least the LSB of “real data”, any sub-LSB noise from the “garbage data” will not have any real 

effect on the resulting performance. 

If both EncTable[n].index1 and index2 are set to their default values of 0, no filtering or shifting 

is performed. This may be suitable for many applications. 

Note that unlike many other forms of feedback data, the numerical value from these analog 

signals will not roll over, so it is not required to shift the data so that the MSB of the real data 

ends up in the MSB of the 32-bit register. (It is acceptable, but not necessary.) 

If it is desired to perform numerical integration on source data in the ECT entry, as to convert 

velocity or acceleration data into position, it is not possible to perform explicit low-pass filtering 

as well. (The numerical integration automatically has the effect of low-pass filtering.) 

ACC-28E 

For an ACC-28E, the channel hardware register is read directly over the 32-bit bus. The data is in 

the high 16 bits of the 32-bit bus. (If you are reading the source element directly from a Script 

program, it is a 16-bit element from the high 16 bits of the bus.) 

For the ADC1 – ADC4 inputs on an ACC-28E, the values can be found in the status elements 

Acc28E[i].AdcSdata[j] or Acc28E[i].AdcUdata[j], where the index j (= 0 to 3) is one less than 

the hardware channel number. These two elements for each index j access the same data, just 

interpreting it differently, as signed or unsigned data, respectively. When specifying the address 

of the entire 32-bit register for the encoder conversion table entry, it does not matter which 

element name you use. 

The key elements for the ECT entry to process this value and for the motor to use the processed 

result are: 

 EncTable[n].type = 1    // Single register read 

 EncTable[n].pEnc = Acc28E[i].AdcSdata[j].a // ADC j+1 register address 

 EncTable[n].index1 = (filter Ki)  // For possible digital tracking filter 

 EncTable[n].index2 = (filter gain)  // For possible digital tracking filter 

 EncTable[n].ScaleFactor = 1/65536  // For result units of LSBs 
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 Motor[x].pEnc = EncTable[n].a  // Use result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a  // Use result for velocity-loop feedback 

 

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the 

motor units will be LSBs of the ADC. 

This example shows the most common setup, with a low-pass “tracking filter” to reduce noise, 

but no numerical integration. It is also possible to perform one or two integrations (e.g. velocity 

or acceleration into position) instead of filtering. 

ACC-36E, ACC-59E 

For an ACC-36E or ACC-59E, the de-multiplexed value is read from its holding register in 

memory over the 32-bit data bus. The actual data is in the low 12 bits of the 32-bit bus.  

For the ADC1 – ADC8 inputs on either the ACC-36E or ACC-59E, the de-multiplexed value can 

be found in status element AdcDemux.ResultLow[i], where the index i matches that of saved 

setup elements AdcDemux.Address[i] and AdcDemux.ConvertCode[i]. 

The key elements for the ECT entry to process this value and for the motor to use the processed 

result are: 

 EncTable[n].type = 1    // Single register read 

 EncTable[n].pEnc = AdcDemux.ResultLow[i].a // Demuxed ADC value address 

 EncTable[n].index1 = (filter Ki)  // For possible digital tracking filter 

 EncTable[n].index2 = (filter gain)  // For possible digital tracking filter 

 EncTable[n].ScaleFactor = 1.0   // For result units of LSBs 

 Motor[x].pEnc = EncTable[n].a  // Use result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a  // Use result for velocity-loop feedback 

 

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the 

motor units will be LSBs of the ADC. 

For the ADC9 – ADC16 inputs on the ACC-36E, the de-multiplexed value can be found in status 

element AdcDemux.ResultHigh[i], where the index i matches that of saved setup elements 

AdcDemux.Address[i] and AdcDemux.ConvertCode[i]. 

ACC-59E3 

For an ACC-59E3, the channel hardware register is read directly over the 32-bit bus. The actual 

data is in the high 16 bits of the 32-bit register. (If you are reading the source element from a user 

Script program or command, it is also a 32-bit value with real data in the high 16 bits.)  

The status element for each input can be accessed as Acc59E3[i].Chan[j].AdcAmp[k], where the 

channel and register indices for each input can be found in the following table: 
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Input IC Channel 

Index j 

Channel Register 

Index k 

Input IC Channel 

Index j 

Channel Register 

Index k 

ADC1 0 0 ADC9 2 0 

ADC2 0 1 ADC10 2 1 

ADC3 0 2 ADC11 2 2 

ADC4 0 3 ADC12 2 3 

ADC5 0 0 ADC13 3 0 

ADC6 0 1 ADC14 3 1 

ADC7 0 2 ADC15 3 2 

ADC8 0 3 ADC16 3 3 

 

The key elements for the ECT entry to process this value and for the motor to use the processed 

result are: 

 EncTable[n].type = 1    // Single register read 

 EncTable[n].pEnc = Acc59E3[i].Chan[j].AdcAmp[k].a // ADC register address 

 EncTable[n].index1 = (filter Ki)  // For possible digital tracking filter 

 EncTable[n].index2 = (filter gain)  // For possible digital tracking filter 

 EncTable[n].ScaleFactor = 1/65536  // For result units of LSBs 

 Motor[x].pEnc = EncTable[n].a  // Use result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a  // Use result for velocity-loop feedback 

 

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the 

motor units will be LSBs of the ADC. 

This example shows the most common setup, with a low-pass “tracking filter” to reduce noise, 

but no numerical integration. It is also possible to perform one or two integrations (e.g. velocity 

or acceleration into position) instead of filtering. 

Power Brick Optional ADCs 

For the Power Brick optional ADCs, the channel hardware register is read directly over the 32-bit 

bus. The data is in the high 16 bits of the 32-bit register. (If you are reading the source element 

from a user Script program or command, it is also a 32-bit value with real data in the high 16 

bits.) 

For the ADC1 – ADC4 values on the Power Brick, the data can be found in 

PowerBrick[0].Chan[j].AdcAmp[2], where j (= 0 to 3) is one less than the hardware channel 

number. For the ADC5 – ADC8 values, the data can be found in 

PowerBrick[1].Chan[j].AdcAmp[2], where j (= 0 to 3) is five less than the hardware channel 

number. In both cases, the structure name Gate3[i] can be used instead of PowerBrick[i]. The 

indices for each input are shown in the following table: 

Input IC  

Index i 

IC 

Channel 

Index j 

Channel 

Register 

Index k 

Input IC  

Index i 

IC 

Channel 

Index j 

Channel 

Register 

Index k 

ADC1 0 0 2 ADC5 1 0 2 

ADC2 0 1 2 ADC6 1 1 2 

ADC3 0 2 2 ADC7 1 2 2 

ADC4 0 3 2 ADC8 1 3 2 
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The key elements for the ECT entry to process this value and for the motor to use the processed 

result are: 

 EncTable[n].type = 1    // Single register read 

 EncTable[n].pEnc = PowerBrick[i].Chan[j].AdcAmp[2].a // ADC register address 

 EncTable[n].index1 = (filter Ki)  // For possible digital tracking filter 

 EncTable[n].index2 = (filter gain)  // For possible digital tracking filter 

 EncTable[n].ScaleFactor = 1/65536  // For result units of LSBs 

 Motor[x].pEnc = EncTable[n].a  // Use result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a  // Use result for velocity-loop feedback 

 

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the 

motor units will be LSBs of the ADC. 

Power Clipper Optional ADCs 

For the Power Brick optional ADCs, the channel hardware register is read directly over the 32-bit 

bus. The data is in the high 12 bits of the 32-bit register. (If you are reading the source element 

from a user Script program or command, it is also a 32-bit value with real data in the high 12 

bits.) 

For the ADC1 – ADC4 values on the Power Clipper board, the data can be found in 

Clipper[0].Chan[0].AdcEnc[k], where k (= 0 to 3) is one less than the hardware channel 

number. For the ADC1 – ADC4 values on the optional ACC-24S3 axis expansion stack board, 

the data can be found in Clipper[1].Chan[0].AdcEnc[k], where k (= 0 to 3) is one less than the 

hardware channel number. In both cases, the structure name Gate3[i] can be used instead of 

Clipper[i]. The indices for each input are shown in the following table: 

Clipper 

Input 

IC  

Index i 

IC 

Channel 

Index j 

Channel 

Register 

Index k 

ACC-

24S3 

Input 

IC  

Index i 

IC 

Channel 

Index j 

Channel 

Register 

Index k 

ADC1 0 0 0 ADC1 1 0 0 

ADC2 0 0 1 ADC2 1 0 1 

ADC3 0 0 2 ADC3 1 0 2 

ADC4 0 0 3 ADC4 1 0 3 

 

The key elements for the ECT entry to process this value and for the motor to use the processed 

result are: 

 EncTable[n].type = 1    // Single register read 

 EncTable[n].pEnc = Clipper[i].Chan[0].AdcAmp[k].a   // ADC register address 

 EncTable[n].index1 = (filter Ki)  // For possible digital tracking filter 

 EncTable[n].index2 = (filter gain)  // For possible digital tracking filter 

 EncTable[n].ScaleFactor = 1/1048576  // For result units of LSBs 

 Motor[x].pEnc = EncTable[n].a  // Use result for position-loop feedback 

 Motor[x].pEnc2 = EncTable[n].a  // Use result for velocity-loop feedback 

 

If scale factors Motor[x].PosSf and Motor[x].Pos2Sf are set to the default values of 1.0, the 

motor units will be LSBs of the ADC. 
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Power-On Servo Position 

If the analog position data from one of these accessories is absolute over the entire range of travel 

for the motor, it can be used for power-on absolute servo position, eliminating the need for a 

homing search move.  

The addresses given in this section are the same as for ongoing servo position, and are specified 

in more detail in that section, above. 

ACC-28E 

To use analog position data from an ACC-28E for absolute power-on servo position, the 

following saved setup elements must be specified: 

 Motor[x].pAbsPos = Acc28E[i].AdcSdata[j].a 

 Motor[x].AbsPosFormat = $aa001010  // $aa is 00 for unsigned, 01 for signed 

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

ACC-36E, ACC-59E 

To use analog position data from ADC1 – ADC8 on an ACC-36E or ACC-59E for absolute 

power-on servo position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = AdcDemux.ResultLow[i].a 

 Motor[x].AbsPosFormat = $aa000C14  // $aa is 00 for unsigned, 01 for signed 

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

To use analog position data from ADC9 – ADC16 on an ACC-36E for absolute power-on servo 

position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = AdcDemux.ResultHigh[i].a 

 Motor[x].AbsPosFormat = $aa000C14  // $aa is 00 for unsigned, 01 for signed 

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

ACC-59E3 

To use analog position data from an ACC-59E3 for absolute power-on servo position, the 

following saved setup elements must be specified: 

 Motor[x].pAbsPos = Acc59E3[i].Chan[j]AdcAmp[k].a 

 Motor[x].AbsPosFormat = $00001010  // Unsigned 16 bits from high 16 bits 

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

Power Brick Optional ADCs 

To use analog position data from the analog option of a Power Brick for absolute power-on servo 

position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = PowerBrick[i].Chan[j]AdcAmp[2].a 

 Motor[x].AbsPosFormat = $00001010  // Unsigned 16 bits from high 16 bits 
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 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 

 

Power Clipper Optional ADCs 

To use analog position data from the analog option of a Power Clipper for absolute power-on 

servo position, the following saved setup elements must be specified: 

 Motor[x].pAbsPos = Clipper[i].Chan[0]AdcAmp[k].a 

 Motor[x].AbsPosFormat = $00000C14  // Unsigned 12 bits from high 12 bits 

 Motor[x].AbsPosSf = (Motor units per LSB) // Must match ongoing pos resolution 

 Motor[x].HomeOffset = (Difference between sensor zero and motor zero) 
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SETTING UP THE ENCODER CONVERSION TABLE 

Power PMAC uses a two-step process to work with its feedback and master position information 

for the servo algorithms, in order to provide maximum power and flexibility. (Note that the 

commutation algorithms, which usually operate at higher frequencies, generally use raw feedback 

registers unprocessed by the conversion table.) For most Power PMAC users with quadrature 

encoder feedback, this process can be virtually transparent, with no need to worry about the 

details. However, some users will need to understand this conversion process in some detail to 

make the changes necessary to use other types of feedback, to optimize their system, or to 

perform special functions. This section is for those users. 

The first stage in the position processing uses the hardware registers such as encoder counters 

with associated timers, A/D registers, or accessory cards for parallel input. These work 

continually without direct software intervention (although they can be configured through 

software), with data typically latched on the servo interrupt. This stage is covered in the 

Hardware Reference manual for the particular device, and the Setting Up Feedback chapter of the 

User’s Manual. Beyond this point, the process is software-controlled. 

What the Encoder Conversion Table Does 

Most controllers directly use the raw data in the hardware registers for feedback or master 

position data. However, Power PMAC has an intermediate step using a software structure called 

the “Encoder Conversion Table” (ECT) to pre-process the information in the latched registers. 

This table tells Power PMAC what registers to process, and how to process them; it also holds the 

intermediate processed data. 

 
Note 

Despite the name “Encoder Conversion Table”, the ECT is not 

limited to processing the data from encoders. It can work with 

a wide variety of feedback types. 

 

Why is this pre-processing step necessary? There are several reasons: 

 All raw feedback data is “fixed-point” (integer) data. The servo algorithms require 

floating-point data. The ECT converts the data from fixed-point to floating-point data. 

 There are several pieces of raw data that need to be combined into one resulting position 

number, as with the counter and timers for “1/T” encoder interpolation. 

 There is some checking for special conditions, such as rollover or sudden changes 

indicative of noise, which needs to be done to ensure robust data. 

 Mathematical processing of the raw data, such as addition, subtraction, differentiation, or 

integration, needs to be done to get the resulting value. 

While the primary purpose of the table is to produce processed (“converted”) values for feedback 

and master position data for the servo algorithms to use, other uses are possible. The table’s 

guaranteed execution at the beginning of each servo cycle, and its many tools for processing data, 

permit other uses as well. 
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Conversion Table Execution 

The conversion table executes automatically at the beginning of each servo cycle, immediately 

after the servo interrupt. The entire active part of the table executes before any servo loops 

execute that cycle. Each entry in the table is executed every servo interrupt, even if the result is 

used less often (as when a motor’s own servo cycle is extended with Motor[x].Stime) or not at 

all. 

The table is executed in order from top (normally Entry 0, but if Sys.FirstEnc is set to a non-zero 

value, at the entry specified by its value) to bottom (last active entry before the first “end of table” 

entry found) each cycle. If a value from one entry is used as the source for another entry, it is 

usually desirable to have the second entry further down in the table, so a servo cycle’s delay is 

not introduced. 

Conversion Table Structure 

The conversion table is accessed through the EncTable[n] data structure. Each entry has its own 

index number n, where n can range from 0 to the value of system constant Sys.MaxEncoders - 1. 

(Sys.MaxEncoders = 768 in most Power PMAC systems.) Each entry processes one set of 

source data, and produces a single output value. Each entry has multiple saved setup elements, 

summarized here: 

 EncTable[n].Type  Conversion method 

 EncTable[n].pEnc  Primary source address 

 EncTable[n].pEnc1  Secondary source address 

 EncTable[n].index1  First conversion factor (0 .. 255) 

 EncTable[n].index2  Second conversion factor (0 .. 255) 

 EncTable[n].index3  Third conversion factor (0 .. 15) 

 EncTable[n].index4  Fourth conversion factor (0 .. 15) 

 EncTable[n].index5  Fifth conversion factor (0 .. 15) 

 EncTable[n].index6  Sixth conversion factor (0 .. 232-1) 

 EncTable[n].EncBias  Pre-integration offset 

 EncTable[n].MaxDelta  Largest permitted input change 

 EncTable[n].SinBias  First offset term for sinusoidal feedback 

 EncTable[n].CosBias  Second offset term for sinusoidal feedback 

 EncTable[n].TanHalfPhi Phase error term for sinusoidal feedback 

 EncTable[n].CoverSerror Magnitude mismatch term for sinusoidal feedback 

 EncTable[n].ScaleFactor Multiplication factor for output 

 

The 32-bit MaxDelta element and the two 16-bit elements SinBias and CosBias share a single 

32-bit register. The register is used for one or the other purpose depending on the conversion 

method. The EncBias element shares a register with the PrevDelta status element. 

Not all of these setup elements are used in every conversion type. Each is discussed where 

appropriate below, and also in the Software Reference Manual chapter on Saved Data Structure 

Elements. 
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Conversion Method Overview 

The data conversion method for each entry is determined by the setting of EncTable[n].Type for 

the entry. Presently the following conversion methods are supported: 

 EncTable[n].Type = 0  End of table 

 EncTable[n].Type = 1  Single 32-bit register read 

 EncTable[n].Type = 2  Double (24-bit + 8-bit) register read 

 EncTable[n].Type = 3  Software 1/T encoder extension (PMAC2 ICs) 

 EncTable[n].Type = 4  Software arctangent encoder extension 

 EncTable[n].Type = 5  Four-byte read 

 EncTable[n].Type = 6  Resolver direct arctangent conversion 

 EncTable[n].Type = 7  Extended hardware arctangent conversion (PMAC3 ICs) 

 EncTable[n].Type = 8  Addition of two entry results 

 EncTable[n].Type = 9  Subtraction of two entry results 

 EncTable[n].Type = 10 Triggered time base 

 EncTable[n].Type = 11 Floating-point register read 

 EncTable[n].Type = 12 Single-register read with error check 

 EncTable[n].Type = 13+ (Reserved for future use) 

 

Each of these conversion methods is covered in detail below. 

IDE Table Configuration Window 

The Integrated Development Environment (IDE) program on the PC has a user-friendly 

configuration window for the ECT. This window hides much of the underlying complexity of the 

table, including most of the individual setup elements, from the user. Instead, it asks the user for 

the required information from a user’s perspective and derives the values of the required setup 

elements itself. 

This configuration window can be found under the “Delta Tau” menu bar item, then selecting 

“Configure” from the pull-down menu, followed by “Encoder Conversion Table”. 
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IDE Encoder Conversion Table Setup Window 

Scaling of Entry Results 

Each entry has a user-set floating-point output scale factor term EncTable[n].ScaleFactor that 

multiplies the internal integer result value and converts it to floating-point format. This means 

that the user can make the units of the result value anything he likes. However, there are several 

important things to keep in mind when setting this term. 

Most users prefer to have the results in natural units of the sensors. For example, “counts” for 

quadrature encoders, “LSBs” (least significant bits) for ADCs and serial or parallel numeric 

feedback. There are subsequent motor scale factors for each motor term that uses an ECT result 

that can convert these raw units to engineering units, and also axis scale factors that can perform a 

further conversion. 

If you change the scale factor in the conversion table entry, you are changing the units of any 

subsequent motor and axis functions that use the result. Changing to larger engineering units can 

effectively disable many safety limits for motors, such as following-error and overtravel limits, 

that are scaled in the resulting motor units. For feedback terms, you are also changing the overall 

feedback-loop gain, which could result in dangerous instability in some cases. 
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It is also possible to change the sign of the entry scale factor to invert the direction sense of the 

result. However, doing so for data that is presently being used successfully to close a feedback 

loop will result in unstable positive feedback and a potentially dangerous runaway condition. 

In addition, if you are using hardware position capture for triggered moves such as homing-search 

moves, the motor must properly match the scaling of the servo data from the table result with the 

scaling of the captured position in hardware. 

Using Conversion Table Results 

To use the processed result of a conversion table entry, the motor addressing parameter simply 

contains the address of the entry itself: EncTable[n].a. This is true for the motor outer-loop 

(position) feedback address parameter Motor[x].pEnc, the motor inner-loop (velocity) feedback 

address parameter Motor[x].pEnc2, and the motor master position address parameter 

Motor[x].pMasterEnc. For example: 

Motor[1].pEnc = EncTable[1].a 

Motor[1].pEnc2 = EncTable[1].a 

Motor[1].pMasterEnc = EncTable[0].a 

 

These motor addressing parameters must be set to the address of an ECT entry. This means that 

any feedback or master position information for a motor must be processed through an ECT 

entry. 

Note that if a motor is specified to use “servo in phase” by setting bit 3 (value 8) of 

Motor[x].PhaseCtrl to 1, executing its servo algorithms under the phase interrupt, these position 

addressing elements must point to hardware registers that are updated every phase interrupt, 

instead of the ECT results that are only updated on the servo interrupt. For details, see the chapter 

Setting Up the Servo Loop. 

The final result for each ECT entry every servo cycle is actually stored in the data structure 

element EncTable[n].DeltaPos. However, the motor addressing elements just described should 

not be given the address of this register directly, as Power PMAC automatically adds in the offset 

from the starting address of the entry to the DeltaPos element. 

Note that the DeltaPos element contains the change in position for the most recent servo cycle as 

a scaled floating point value. Power PMAC automatically adds in this change to the previous 

cycle’s value for the outer-loop feedback position and the master position, so this is a hidden 

detail for most users. 

Another common use of the result of a conversion table entry is for “external time base” for a 

coordinate system. Here the coordinate system’s time-base addressing parameter 

Coord[x].pDesTimeBase should contain the address of the DeltaPos element itself, not the base 

address of the entry, as there is no automatic address offset. For example: 

Coord[1].pDesTimeBase = EncTable[0].DeltaPos.a 

 

The most recent cycle’s position value is stored in the data structure element 

EncTable[n].PrevEnc. Power PMAC stores this value for the next servo cycle to compute the 

change in position for that cycle. The value in PrevEnc incorporates the initial processing, but 

does not include the final output scaling. It is a 32-bit integer value. 
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Default Conversion Table Setup 

When the Power PMAC receives a $$$*** re-initialization command, it automatically checks 

the axis-interface hardware that is present, and sets up a table to do the most common type of 

processing for that hardware. 

For each PMAC2-style Servo IC it finds on a board designed for quadrature feedback, as on an 

ACC-24E2x board, it will set up a Type 3 “software 1/T encoder extension” entry for all four 

channels on the IC. 

For each PMAC2-style Servo IC it finds on a board designed for sinusoidal feedback, as on an 

ACC-51E board, it will set up a Type 4 “sinusoidal encoder arctangent extension” entry for all 

four channels on the IC. 

For each PMAC2-style MACRO IC it finds on a board designed for MACRO interface, as on an 

ACC-5E board, it will set up a Type 1 single-register read of the Register 0 for each of the 8 

MACRO servo nodes present on every IC found. 

For each PMAC3-style IC it finds on a servo card, as on an ACC-24E3 board, it will set up a 

Type 1 single-register read of the ServoCapt register for all four channels of the IC. This IC can 

automatically perform 1/T or arctangent extensions in hardware and provide the extended 

position in a single register, so all the ECT needs to access is this single register. 

For each PMAC3-style IC it finds on a board designed for MACRO interface, as on an ACC-5E3 

board, it will set up a Type 1 single-register read of the Register 0 for each of the 16 MACRO 

servo nodes present on every IC found. 

It starts assigning these entries with EncTable[1]. After all of the real entries it creates, all 

higher-numbered entries are set to the Type 0 “end of table” method so the Power PMAC does 

not waste time performing unneeded conversions. For example, if two 4-channel ICs are found, 

EncTable[1] through EncTable[8] are set up to use these. EncTable[9] and up are set to Type 0. 

In the default configuration, the entry EncTable[0] is set up to do a “dummy” conversion – a 

single-register read of the first register in the user shared-memory buffer. While many users will 

leave this entry as a dummy, some will use it for master position processing. If this is changed to 

a Type 0 “end of table” entry, no entries will be executed at all. 

As part of the re-initialization default parameter setup, motors starting with Motor 0 point to the 

results of the ECT entries of the same number for outer-loop (position) feedback and inner-loop 

(velocity) feedback. All motors point the result of Entry 0 for their master position (but following 

is disabled by default). 

Conversion Method Details 

This section details the settings required for each conversion method. Elements not specified for a 

particular method should be left at 0. 

Type 0: End of (Active) Table 

The Type 0 method in an entry specifies that only previous (lower-numbered) entries are to be 

processed. No subsequent (higher-numbered) entries will be processed, even if configured 
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properly. The first entry encountered with Type 0 does nothing except indicate end of table; the 

values of other setup elements in the entry do not matter. 

Note 

If global setup element Sys.FirstEnc, which specifies the first 

entry to be processed, is set to a non-zero value, it does not 

matter if any entries with an index less than its value are Type 

0. Non-zero values for Sys.FirstEnc are typically only used 

during development to compare different conversion strategies. 

 

Type 1: Single-Register Read 

The Type 1 method reads a single 32-bit register and processes it, using part or all of the word. 

EncTable[n].type is set to 1 to specify this method. 

 

Note 

The Type 12 method performs the same single-register 

position read, but adds an addition read of an error register. 

This provides additional robustness for many serial encoder 

protocols. 

 

Address of Single Register: pEnc 

EncTable[n].pEnc is set to the address of the source register. Usually it is set by naming the data 

structure element of the source register, followed by the .a (“address of”) suffix. The data can be 

in any continuous zone within this 32-bit register. 

(Real data anywhere in word)

031

at pEnc:
 

Source Data in ECT Single-Register Read 

It is commonly used to access registers in the PMAC3-style “DSPGATE3” IC, as in the ACC-

24E3 axis-interface accessory. Common types of settings are: 

EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a 

EncTable[n].pEnc = Gate3[i].Chan[j].TimerA.a 

EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a 

EncTable[n].pEnc = Gate3[i].Chan[j].Atan.a 

EncTable[n].pEnc = Gate3[i].Chan[j].AdcAmp[k].a 

 

 The ServoCapt register has an encoder count value that is extended by either timers or 

arctangent calculations in hardware (so software extension calculations are not required). 

 The TimerA register can hold the time elapsed before the echo pulse of an MLDT sensor 

is received (and therefore the position of the sensor). It can also hold the pulse count of 

the pulse-frequency modulation (PFM) output for stepper-type motors (or simulated 

motors). 



Power PMAC User’s Manual 

Setting Up the Encoder Conversion Table 199 

 The SerialEncDataA register holds the low 32 bits of position data from a serial encoder 

attached to the channel. (If there are more bits, only the low 32 bits are used every servo 

cycle.) 

 The Atan register holds the arctangent of the “sine” and “cosine” ADC registers, and so 

the position of a resolver whose winding voltages are read by these ADCs. 

 The AdcAmp[k] register holds the converted value of the analog input for that register, 

as for the analog-to-digital converters of the ACC-59E3 board. 

EncTable[n].pEnc can also be set to the address of registers in the PMAC2-style “DSPGATE1” 

Servo IC. Common types of settings are: 

EncTable[n].pEnc = Gate1[i].Chan[j].PhaseCapt.a 

EncTable[n].pEnc = Gate1[i].Chan[j].TimeBetweenCts.a 

 

 The PhaseCapt register has an encoder count value without any extension, useful to read 

when the pulse count of the PFM output drives the counter circuit. 

 The TimeBetweenCts register can hold the time elapsed before the echo pulse of an 

MLDT sensor is received (and therefore the position of the sensor). 

EncTable[n].pEnc can be set to the address of the low 24 bits of position data from a serial 

encoder attached to a channel of an ACC-84E or related serial encoder board: 

EncTable[n].pEnc = Acc84E[i].Chan[j].SerialDataA.a 

 

EncTable[n].pEnc can be set to the address of the position data from a MACRO input node on 

an ACC-5E (Gate2) or ACC-5E3 (Gate3): 

EncTable[n].pEnc = Gate2[i].Macro[j][0].a 

EncTable[n].pEnc = Gate3[i].MacroInα[j][0].a 

 

EncTable[n].pEnc can be set to the address of an EtherCAT input data register 

EncTable[n].pEnc = ECAT[i].IO[k].Data.a 

 

Secondary Address: pEnc1 

EncTable[n].pEnc1 is not used in this method, so its setting does not matter. 

Data-Shifting Operations: index1 and index2 (index2 < 32) 

EncTable[n].index1 and EncTable[n].index2 control how the raw data is processed by 

“shifting” operations to eliminate parts of the 32-bit word that do not contain real data. First the 

raw data is shifted right by the number of bits specified in index2. Generally, index2 is set to the 

bit number of the LSB of actual data in the source register, so all of the “garbage data” below it is 

eliminated. 

Next, this result is shifted left by the number of bits specified in index1. Generally, index1 is set 

to the quantity 32 minus the number of bits of real data in the source register. This will cause the 

MSB of actual data in the source register to end up in the highest bit of the intermediate result 

register. This must occur if Power PMAC is to handle rollover of the source data value properly. 
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For example, if the source register has 20 bits of real data starting at bit 8 (so in bits 8 – 27 of the 

32-bit register), index2 should be set to 8 to eliminate the original bits 0 – 7, and index1 should 

be set to (32 – 20), or 12, so that the MSB of real data in the source register (bit 27) ends up in bit 

31 of the intermediate result. The process is shown in the following diagram. 

- - - - - - - -20 bits real data- - - -

20 bits real data- - - - - - - - - - - -

(zeros)20 bits real data

0

0

0

78272831

192031

111231

8

12

 

ECT Data Shifting Example 

It is common to get feedback from Turbo-PMAC-generation interfaces, which have 24-bit 

registers mapped into the high 24 bits of the 32-bit Power PMAC data bus. These interfaces 

include those using the DSPGATE1 (Gate1[i]) ASIC, MACRO interfaces, and ACC-84x serial 

encoder interfaces. In these cases, index2 should be set to 8 to shift out the low 8 bits that do not 

represent real data, and if there is the possibility of rollover in the data, index1 should also be set 

to 8 so the MSB of the source data ends up in the highest bit of the intermediate register. 

If the source data cannot roll over and comes from the most significant bits of the 32-bit register, 

as is the case with some types of feedback processed through an analog-to-digital converter, it is 

not necessary to perform the shift-left operation, so index1 can be set to 0. Eliminating this 

second shift has two advantages in this case. First, it eliminates the slight possibility that a jump 

of more than half the range of the source in a single servo cycle could lead to an inadvertent 

rollover extension of the result. Second, if the LSB of the source data ends up in bit 0 of the 32-

bit intermediate register, the output scale factor for the entry can be 1.0. 

Note, however, that if index2 is set to a value of 32 or greater (an impossible shift!), then index1 

and index2 are used as gains in a tracking filter, and no shifting is performed. The operation of 

the tracking filter is described in a later section. 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

If EncTable[n].index2 is set to a value 32 or greater, a digital tracking filter is enabled for the 

entry, and no shifting operations are performed for parallel-read conversions (so all 32 bits are 

used). This software tracking filter mimics the dynamics of hardware tracking loops often found 

in devices such as resolver-to-digital converters. This permits low-pass filtering of noisy input 

data, but with no steady-state tracking error at constant velocity. It is commonly used for 

fundamentally analog feedback sensors such as resolvers, sinusoidal encoders, and LVDTs. 

In the tracking filter, index2 serves as the “proportional” gain term, index1 serves as the 

“mantissa” of the “integral” gain term, and index4 serves as the “exponent” of the “integral” gain 

term. All are 8-bit unsigned integer values, with a range of 0 to 255. 
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Filter Execution 

The following equations are executed by a tracking filter in a Power PMAC encoder conversion 

table (ECT) entry each servo cycle k: 

1 kkk outinerr  

kidkk errKierrierr  1  

kkpdkk ierrerrKoutout  1
 

where the digital gain terms Kid (digital integral gain) and Kpd (digital proportional gain), 

expressed in terms of entry parameters, are: 

42*256
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Re-arranging these equations and converting to digital (z) transform form, we get: 
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Converting to an equivalent analog (s) transform using 
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where the analog gain terms are: 



Power PMAC User’s Manual 

Setting Up the Encoder Conversion Table 202 
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This can be viewed in block diagram form like a traditional tracking loop: 
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From this, we can compute the overall transfer function of the filter: 
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The standardized form of this type of second-order analog filter is: 
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From this, we can derive the analog gain terms from standard filter specifications: 

2

niK   

npK 2  

Next, we can compute the digital gain terms and the tracking filter parameters: 

snps TKTindex  5122562256  

sn Tindex  5122562  

222 256256'1 snis TKTindex    
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If the integral gain term specified by index1 is set to 0, then the filter reduces to a 1st-order low-

pass filter with a time constant in servo cycles of (256 /[256- index2]) – 1. It is not recommended 

to use a 1st-order filter for servo feedback terms, because there will be steady-state error at 

velocity. 

Recommended Design Procedure 

The following procedure is recommended for designing a tracking filter: 

1. Select a cutoff frequency f c in Hertz. This is the frequency beyond which the filter will 

start attenuating the signal. Generally values from 100 – 200 Hz are used for resolvers, 

and values of about 1000 Hz are used for sinusoidal encoders. 

2. Compute the filter’s natural frequency ωn = 2 * π * fc. 

3. Select a damping ratio ς for the filter (usually = 0.7). 

4. Compute the filter’s sample time Ts in seconds. This is the servo update period, and can 

be calculated as Sys.ServoPeriod / 1000. 

5. Compute the proportional gain term index2 = 256 - 512 * ς * ωn * Ts and round to the 

nearest integer. 

6. Compute the (tentative) integral gain term index1' = 256 * ωn
2 * Ts

2 

7. If index1' is less than 64, rounding it to the nearest integer could change the filter 

characteristics too much, so double it enough times to make it greater than 64, set the 

element index1 to this value, and set the element index4 to the number of doublings. 

Example 

As an example, we will design a tracking filter for resolver feedback at the default servo update 

period: 

1. We select a cutoff frequency f c of 200 Hz. 

2. We compute the filter natural frequency ωn = 2 * π *200 = 1257 sec-1 

3. We select a damping ratio ς of 0.7 

4. We compute the filter sample time in seconds as 0.442 / 1000 = 4.42 x 10-4 

5. We compute index2 = 256 – (512 * 0.7 * 1257 * 4.42 x 10-4) = 57 

6. We compute index1 = 256 * 12572 * (4.42 x 10-4)2 = 79 

Change-Limiting Operations: index3 and MaxDelta 

In many types of “parallel-read” feedback, electrical noise and other anomalies can lead to 

temporary huge numeric errors in the resulting data. It is therefore often worthwhile to look for 

sudden changes in the source data values and reject those that are not physically possible. The 

ECT permits you to look for limit violations in the first derivative (velocity) or the second 

derivative (acceleration) and reject readings that are in violation. 
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If EncTable[n].MaxDelta is set greater than 0, this change-limiting is active for the entry. With 

this limiting active, if index3 is set to 0, then the first derivative (velocity) of the source data is 

limited to MaxDelta, expressed in LSBs of real source data per servo cycle (this assumes that this 

LSB is in bit (32 – index1) of the 32-bit source register). 

If the magnitude of the source data changes by more than this amount in a single servo cycle, the 

source data is rejected, and instead the resulting position is changed by the same amount it was in 

the previous servo cycle (i.e., the velocity is maintained), using the value stored in the status 

element EncTable[n].PrevDelta for the entry. If the anomaly persists for one or more additional 

servo cycles, the source data is still rejected, but the resulting position is now slewed at the 

MaxDelta rate toward the new source value. (This case usually occurs during configuration, 

when some aspect of the setup or source is changed, yielding a step change in the input value.) 

With EncTable[n].MaxDelta greater than 0, if index3 also set greater than 0, then the second 

derivative (acceleration) of the source data is limited to MaxDelta, expressed in LSBs of real 

source data per servo cycle per servo cycle (again assuming that this LSB is in bit (32 – index1) 

of the 32-bit source register). In this case, the value of index3 is the number of servo cycles the 

last valid acceleration is maintained in the case of an anomaly. After this number of servo cycles, 

if the anomaly persists, the resulting position jumps immediately to the new source value. 

Generally, a velocity limit is easier to implement, and is satisfactory for most applications. 

However, an acceleration limit can be more sensitive to corrupted data, and provide a more 

accurate substitute in case bad data is detected. 

Numerical-Integration Operations: index4 and EncBias 

If EncTable[n].index2 is less than 32 (no tracking filter), then EncTable[n].index4 specifies the 

number of times the source data is integrated into the result data. At the default value of 0, no 

numerical integration is performed. A value of 1 specifies that a single integration is performed, 

as from a velocity reading into a position result. A value of 2 specifies that two integrations are 

performed, as from an acceleration reading into a position result. Values of 3 to 15 specify double 

integration with “damping” of the singly integrated (“velocity”) value, with higher values 

providing quicker damping.  

If index4 is greater than 0 to enable integration, EncTable[n].EncBias (which shares a register 

with status element EncTable[n].PrevDelta) acts as the “bias” term on the input data. It is added 

to the source data before integration. Also, EncTable[n].MaxDelta acts as a velocity limit 

(regardless of whether 1 or 2 integrations are performed) with no limit on the number of 

consecutive servo cycles clamped. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result 

in which the least significant bit of real data in the source register amounts to one unit of the 

result, ScaleFactor should be set to 1 / 2(32 - #ofBits). 

In our example of 20 bits of real data, after the two shifting operations, the LSB of real source 

data will be in bit 12 of the intermediate register. To get a result value where this LSB amounts to 

one unit, this must be multiplied by 1 / 2(32 – 20) = 1 / 212 = 1/4096. It is usually best to enter the 

value for ScaleFactor as an expression and let Power PMAC compute the exact resulting value. 
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Type 2: Double-Register Read 

The Type 2 method reads two registers to assemble a 32-bit value before further processing. It 

can use up to 24 bits from the first register and up to 8 bits from the second register. Note that 

even if the source data provides more than 24 bits of data, it is not necessary to use the second 

register on an ongoing basis unless it is possible for the source data to change by half the range or 

more of the 24-bit register (that is, 223, or 8,388,608, LSBs) in a single servo cycle. If the 

maximum speed is less than this amount, a type = 1 single-register read is recommended, as it 

saves both hardware access time, and software computation time. 

Addresses of the Registers: pEnc and pEnc1 

EncTable[n].pEnc is set to the address of the first source register. It takes data from the high 24 

bits (bits 8 – 31) of this register and uses this data to form the low 24 bits of the initially 

assembled 32-bit value. It can be used to access the low 24 bits of the parallel I/O on the 

DSPGATE2 IC, or the low 24 bits from a serial encoder through an ACC-84E board. In these 

cases, the setting is like: 

EncTable[n].pEnc = Gate2[i].LowIoData.a 

EncTable[n].pEnc = Acc84E[i].SerialEncDataA.a 

 

EncTable[n].pEnc1 is set to the address of the second source register. It takes data from bits 8 – 

15 of this register and uses this data to form the high 8 bits of the initially assembled 32-bit value. 

It can be used to access the high 8 bits of the parallel I/O on the DSPGATE2 IC, or the high 8 bits 

from a serial encoder through an ACC84E board. In these cases, the setting is like: 

EncTable[n].pEnc1 = Gate2[i].HighIoData.a 

EncTable[n].pEnc1 = Acc84E[i].SerialEncDataB.a 

 

The following diagram shows how the data from the two sources is combined in this first step: 

- - - - - - - -24-bit data field

- - - - - - - -8-bit data- - - - - - - - - - - - - - - -

         32-bit data field

07831

815

31 0

at pEnc:

at pEnc1:

Combined

Result

0731 16

24 23
 

ECT Type 2 Double-Register Data Combination 

Data-Shifting Operations: index1 and index2 (index2 < 32) 

Once the data from the two source registers has been assembled into a single 32-bit value, 

subsequent operations work just like those for the single-register read method. For data shifting, 

refer to the section under Single-Register Read. 
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Change-Limiting Operations: index3 and MaxDelta 

The change-limiting operations for the double-register read method are identical to those for the 

single-register read. Refer to the section under Single-Register Read for details. 

Numerical-Integration Operations: index4 and EncBias 

The numerical-integration operations for the double-register read method are identical to those for 

the single-register read. Refer to the section under Single-Register Read for details. 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

The tracking-filter operations for the double-register read method are identical to those for the 

single-register read. Refer to the section under Single-Register Read for details. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result 

in which the least significant bit of real data in the first source register amounts to one unit of the 

result, ScaleFactor should be set to 1 / 2(32 - #ofBits). 

With 28 bits of real data, after the two shifting operations, the LSB of real source data will be in 

bit 4 of the intermediate register. To get a result value where this LSB amounts to one unit, this 

must be multiplied by 1 / 2(32 – 28) = 1 / 24 = 1/16. It is usually best to enter the value for 

ScaleFactor as an expression and let Power PMAC compute the exact resulting value. 

Type 3: Software 1/T Encoder Extension 

The Type 3 method reads several registers in the channel of a PMAC2-style IC to process 

quadrature encoder data and estimate sub-count position data using timer registers in the IC 

channel. Nine bits of sub-count fractional data are estimated, for a resulting resolution of 1/512 

count. 

The following diagram shows the principle of 1/T sub-count extension, with the timer values 

being used to estimate the fractional count value between the whole-count information from the 

hardware counter. 
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A

B

T1 T2 T1 T2

Pos = Counter + T2/T1

Latch/

Interrupt

Latch/

Interrupt
Latch/

Interrupt

Pos

Time

Counter

Position

Extended

Position

 

1/T Sub-Count Extension Principle 

The DSPGATE1 Servo IC is commonly used to process up to four quadrature encoders, as on the 

ACC-24E2, ACC-24E2A, and ACC-24E2S axis-interface modules for the UMAC rack. It 

employs the Gate1[i] data structure. The DSPGATE2 MACRO IC can also be used to process 

one or two quadrature encoders, as on the ACC-5E MACRO & I/O module for the UMAC rack. 

It employs the Gate2[i] data structure. 

Note 

The PMAC3-style DSPGATE3 IC performs this timer-based 

extension in hardware, so this software extension method 

should not be used with the PMAC3-style IC. Instead, a Type 1 

single-register read of the IC hardware channel’s ServoCapt 

register should be used. 

 

Addresses of the Counter and Timer Registers: pEnc and pEnc1 

EncTable[n].pEnc is set to the address of the register for the encoder count value latched on the 

servo interrupt. Common setting types are: 

EncTable[n].pEnc = Gate1[i].Chan[j].ServoCapt.a 

EncTable[n].pEnc = Gate2[i].Chan[j].ServoCapt.a 

 

EncTable[n].pEnc1 is set to the address of the first timer register for the channel. Common 

setting types are: 

EncTable[n].pEnc1 = Gate1[i].Chan[j].TimeBetweenCts.a 

EncTable[n].pEnc1 = Gate2[i].Chan[j].TimeBetweenCts.a 
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Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result 

in which one quadrature count amounts to one unit of the result, ScaleFactor should be set to 

1/512, because the intermediate result has 9 bits (29 = 512) of fractional count extension from the 

timer values. 

Type 4: Software Arctangent Sinusoidal Encoder Extension 

The Type 4 method reads several registers in the channel of a PMAC2-style IC or a PMAC3-style 

IC to process sinusoidal encoder data and calculate sub-count position data using ADC registers 

in the IC channel and pre-determined correction factors. It is the only method available to process 

sinusoidal encoder data from a PMAC2-style IC (which uses the Gate1[i] data structure), as from 

an ACC-51E or ACC-51C UMAC interpolator board. 

If a PMAC3-style IC (which uses the Gate3[i] data structure) is used, as from an ACC-24E3 

UMAC board with a standard analog feedback mezzanine board, or a Power Clipper or Power 

Brick with a standard analog feedback board, it is possible to use the hardware extension 

performed in the IC and simply employ a Type 1 single-register read of the IC channel’s 

ServoCapt register with the sub-count position data. This requires substantially less processor 

time.  

However, the only correction factors the IC’s hardware extension has are those for voltage 

offsets. When this Type 4 software extension is employed, magnitude mismatch and phase offset 

correction factors can be used as well. Note that when this software extension technique is used, 

Gate3[i].Chan[j].AtanEna for the source IC channel must be set to 0 to disable the hardware 

extension in the IC. 

With an “auto-correcting interpolator” board on the ACC-24E3 UMAC board or in the Power 

Brick, all of these errors are detected and corrected for in hardware, resulting in a very accurate 

interpolated position value in the ServoCapt or SerialEncDataA register for the channel, so 

there is no reason to use this Type 4 software extension in that case.. 

The following diagram shows the common signal errors found in feedback from a sinusoidal 

encoder. Correction terms for these errors are detailed below. 

CosOffset

CosMag

SinMag

SinOffset
90°

φ

(φ = PhaseError)

V

θ

 

Sinusoidal Encoder Common Signal Errors 
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When the data comes from a PMAC2-style IC, 10 bits of sub-count fractional data are calculated, 

for a resulting resolution of 1/1024 of a quadrature count, or 1/4096 of an encoder line. When the 

data comes from a PMAC3-style IC, 14 bits of sub-count fractional data are calculated, for a 

resulting resolution of 1/16,384 of a quadrature count, or 1/65,536 of an encoder line.  

Note that the hardware extension provides 12 bits of sub-count fractional data in a single register, 

for a resulting resolution of 1/4096 of a quadrature count, or 1/16,384 of an encoder line, directly 

accessible with the type = 1 single-register read method. The type = 7 extended hardware 

arctangent interpolation adds 2 more bits, providing 14 bits of sub-count fractional data, for a 

resulting resolution of 1/16,384 of a quadrature count, or 1/65,536 of an encoder line 

Addresses of the IC Channel Registers: pEnc and pEnc1 

EncTable[n].pEnc is set to the address of the status register of the IC’s channel, where it will 

read key information on the encoder that was latched on the most recent servo interrupt. The 

setting will be of the form: 

EncTable[n].pEnc = Gate1[i].Chan[j].Status.a 

EncTable[n].pEnc = Gate3[i].Chan[j].Status.a 

 

EncTable[n].pEnc1 is set to the address of the first ADC register used for the channel. The 

setting will be of the form: 

EncTable[n].pEnc1 = Gate1[i].Chan[j].Adc[0].a 

EncTable[n].pEnc1 = Gate3[i].Chan[j].AdcEnc[0].a 

 

Hardware IC Type: index5 

EncTable[n].index5 specifies which type of IC is used for the source data. If index5 is set to the 

default value of 0, the table entry treats the source IC as a PMAC2-style IC with the format of a 

Gate1[i] data structure. If index5 is set to 1, the table entry treats the source IC as a PMAC3-style 

IC with the format of a Gate3[i] data structure. 

Image of Encoder Decode Control: index3 

In operation, EncTable[n].index3 must contain the value of the encoder decode control value for 

the IC channel (which can be read in Gaten[i].Chan[j].EncCtrl). This value is necessary for the 

proper combination of the whole-count and fractional-count data. If index3 is set to 0 at the start 

of execution of a cycle of the table entry, it will read the control value from the IC and copy this 

value into index3 for use in subsequent servo cycles. This increases the efficiency of the 

operation by eliminating the need for an additional slow I/O read every servo cycle. 

However, on the initial setup of the entry, and on any change to the decode value, it is important 

to set this either to 0 or to the (new) value of the EncCtrl element. The EncCtrl element for the 

IC channel must be set to 3 (“times-4” decode clockwise) or to 7 (“times-4” decode counter-

clockwise) in order for this entry to process the data correctly. If the direction sense of 

EncTable[n].index does not match that of the present value of Gaten[i].Chan[j].EncCtrl, the 

direction sense of the resulting sub-count data will not match that of the whole-count data, 

resulting in a “sawtooth” pattern in the resulting combined position. 

Offset Compensation Terms: SinBias and CosBias 

In general, there will be offsets in the ADC readings of the “sine” (Adc[0] in a PMAC2-style IC, 

AdcEnc[0] in a PMAC3-style IC) and “cosine” (Adc[1] in a PMAC2-style IC, AdcEnc[1] in a 

PMAC3-style IC) values that can limit the accuracy of the position value calculated with the 
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arctangent function. The SinBias and CosBias terms allow the user to compensate for this type of 

offset. The value of SinBias is added to the reading in Adc[0] or AdcEnc[0], and the value of 

CosBias is added to the reading in Adc[1] or AdcEnc[1], before the arctangent is calculated. 

SinBias and CosBias are signed 16-bit values, so for the purpose of calculating the needed 

offsets, the ADCs should be treated as having 16-bit resolution (even though they are probably 14 

bits). For example, if a 14-bit ADC has a reading of -5 LSBs when it should read 0, this is 

equivalent to a reading of -20 of a 16-bit ADC, and the bias term should be set to +20 to 

compensate. The hardware ADC registers in the ICs – Gate1[i].Chan[j].Adc[k] in a PMAC2-

style IC, Gate3[i].Chan[j].AdcEnc[0] in a PMAC3-style IC – are treated as 24-bit elements in 

the Script environment and 32-bit elements in the C environment, with the real data from the n-bit 

ADC in the high n bits of the element. 

Magnitude Mismatch Compensation Term: CoverSerror 

EncTable[n].CoverSerror (Cosine-over-Sine-error) permits the entry to compensate for a 

mismatch in the magnitudes of the physical “sine” and “cosine” signals. It is used in a correction 

factor that is multiplied by the measured cosine signal value before the arctangent calculations are 

performed to compute the sub-count extension value. 

EncTable[n].CoverSerror represents the fractional component of the correction factor, not the 

entire correction factor. It is a signed 16-bit integer value, and its range of -32,768 to +32,767 

represents a fractional value of -1.0 to +0.9999 that is added to 1.0 and the resulting sum is 

multiplied by the measured cosine signal value. In this way, the default value of 0 for 

CoverSerror represents a correction factor of 1.0, which provides no adjustment. CoverSerror 

should be greater than 0 if the measured cosine signal (Adc[1] or AdcEnc[1]) has a lower 

numerical magnitude that the measured sine signal, and less than 0 if the measured cosine signal 

has a higher numerical magnitude that the measured sign signal. 

For example, if the magnitude of the measured sine signal (Adc[0] or AdcEnc[0]) is 7.5% larger 

than that of the measured cosine signal (Adc[1] or AdcEnc[1]), the cosine signal values should 

be multiplied by a factor of 1.075, and CoverSerror, which represents the fractional component 

of 0.075, should be set to 2458 (= 0.075 * 32,768). 

Phase Error Compensation Term: TanHalfPhi 

EncTable[n].TanHalfPhi permits the entry to compensate for “sine” and “cosine” signals that 

are not the ideal 90° of a signal period apart. It is used to adjust both the measured sine and cosine 

signal values so that they are 90° part before the arctangent calculations are performed to 

compute the sub-count extension value. 

EncTable[n].TanHalfPhi represents the tangent of half of the phase error angle (“phi”). A 

positive value of phase error phi (and therefore a positive value of TanHalfPhi) means that the 

two signals are separated by more than 90°; a negative value of Phi means that the two signals are 

separated by less than 90°. TanHalfPhi is a signed 16-bit integer value, and its range of -32,768 

to +32,767 represents a range for the tangent of -0.5 to +0.49999, covering a range of “half 

angles” of +/-26.5°, or a range of phase error angles of +/-53°. 

For example, if the two signals were found to be separated by 80° instead of the ideal 90°, the 

phase error phi would be -10°, so the half angle would be -5°, and the tangent of the half angle 

would be -0.087488, and TanHalfPhi should be set to -5734 (= -0.087488 * 32,768 * 2). 
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Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

The tracking-filter operations for the software arctangent sinusoidal-encoder extension method 

are identical to those for the single-register read. Refer to the section under Single-Register Read 

for details. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and its value implicitly specifies the units of the entry result. 

Different users of sinusoidal encoders prefer different result units.  

When a PMAC2-style IC is used, for users who wish the result to be scaled in units of LSBs of 

the interpolator (1/1024 of a quadrature count, or 1/4096 of an encoder line), this should be set to 

1.0. For users who wish the result to be scaled in units of quadrature counts (1/4 of an encoder 

line), as if it were a digital quadrature encoder, this should be set to 1/1024. For those who wish 

the result to be scaled in units of encoder lines, this should be set to 1/4096. It is usually best to 

enter the value for ScaleFactor as an expression and let Power PMAC compute the exact 

resulting value. 

When a PMAC3-style IC is used, for users who wish the result to be scaled in units of LSBs of 

the interpolator (1/16,384 of a quadrature count, or 1/65,536 of an encoder line), this should be 

set to 1.0. For users who wish the result to be scaled in units of quadrature counts (1/4 of an 

encoder line), as if it were a digital quadrature encoder, this should be set to 1/16,384. For those 

who wish the result to be scaled in units of encoder lines, this should be set to 1/65,536. It is 

usually best to enter the value for ScaleFactor as an expression and let Power PMAC compute 

the exact resulting value. 
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Type 5: Four-Byte Read 

The Type 5 method reads four bytes in four separate registers to assemble a 32-bit value before 

further processing. It is mainly intended for data read through the “IOGATE” IC on modules such 

as the ACC-14E. This IC has an 8-bit data bus. 

Addresses of the Registers: pEnc and pEnc1 

EncTable[n].pEnc is set to the address of the least significant byte. It takes data from the second 

byte of this register (bits 8 – 15) and uses this data to form the low 24 bits of the initially 

assembled 32-bit value. It is most commonly used to access the lowest byte of a 24-bit port (A or 

B) on an ACC-14E. In this case the setting is like: 

EncTable[n].pEnc = GateIo[i].DataReg[0].a // Low byte of Port A 

EncTable[n].pEnc = GateIo[i].DataReg[3].a // Low byte of Port B 

 

EncTable[n].pEnc1 is set to the address of the second source register. It takes data from bits 8 – 

15 of this register and uses this data to form the next 8 bits of the initially assembled 32-bit value. 

It is most commonly used to access the middle byte of a 24-bit port (A or B) on an ACC-14E. In 

this case, the setting is like: 

EncTable[n].pEnc1 = GateIo[i].DataReg[1].a // Mid byte of Port A 

EncTable[n].pEnc1 = GateIo[i].DataReg[4].a // Mid byte of Port B 

 

The third byte automatically comes from the next register after the one specified by pEnc1 (an 

address 4 higher). This will typically be the high byte of a 24-bit port (A or B) on an ACC-14E. 

The fourth byte (seldom used) automatically comes from the third-next register after the one 

specified by pEnc (an address 12 higher). In the cases where there is real data in this byte, this 

will typically be the low byte of Port B of an ACC-14E, where the other three bytes come from 

Port A. 

The following diagram shows how the data from the 4 registers is combined in this first step: 

- - - - - - - -LSByte- - - - - - - - - - - - - - - -

- - - - - - - -2nd Byte- - - - - - - - - - - - - - - -

- - - - - - - - 3rd Byte- - - - - - - - - - - - - - - -

- - - - - - - -MSByte- - - - - - - - - - - - - - - -

data field32-bit

at pEnc:

at pEnc1:

at pEnc1 + 4:

at pEnc + 12:

Combined

Result

07

07

8

8

15

15

16

162324

31

31
 

ECT Type 5 Four-Byte Data Combination 
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Data-Shifting Operations: index1 and index2 (index2 < 32) 

Once the data from the four source registers has been assembled into a single 32-bit value, 

subsequent operations work just like those for the single-register read method. For data shifting, 

refer to the section under Single-Register Read. 

Change-Limiting Operations: index3 and MaxDelta 

The change-limiting operations for the four-byte read method are identical to those for the single-

register read. Refer to the section under Single-Register Read for details. 

Numerical-Integration Operations: index4 and EncBias 

The numerical-integration operations for the four-byte read method are identical to those for the 

single-register read. Refer to the section under Single-Register Read for details. 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

The tracking-filter operations for the four-byte read method are identical to those for the single-

register read. Refer to the section under Single-Register Read for details. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result 

in which the least significant bit of real data in the first source register amounts to one unit of the 

result, ScaleFactor should be set to 1 / 2(32 - #ofBits). 

With 24 bits of real data, after the two shifting operations, the LSB of real source data will be in 

bit 8 of the intermediate register. To get a result value where this LSB amounts to one unit, this 

must be multiplied by 1 / 2(32 – 24) = 1 / 28 = 1/256. It is usually best to enter the value for 

ScaleFactor as an expression and let Power PMAC compute the exact resulting value. 

Type 6: Resolver Arctangent Direct Conversion 

The Type 6 method reads several registers of a device like an ACC-58E resolver-to-digital (R/D) 

converter board to calculate the angular position of a resolver. 

Note that the PMAC3-style DSPGATE3 IC performs this arctangent conversion in hardware, so 

this software-based arctangent conversion should not be used with the PMAC3-style IC. Instead, 

a Type 1 single-register read of the Atan register should be used. 

Addresses of the Output and Input Registers: pEnc and pEnc1 

EncTable[n].pEnc is set to the address of the latched numerical excitation output value for the 

resolver. This value is needed to correlate with the simultaneously strobed input values. There is a 

common excitation value for all of the feedback channels on an ACC-58E. It is found at an 

address just past the registers in the DSPGATE1 IC that processes the sine and cosine feedback. 

The setting can be of the form: 

EncTable[n].pEnc = Gate1[i].a + 256 

 

EncTable[n].pEnc1 is set to the address of the first ADC register for the channel. The setting 

will be of the form: 

EncTable[n].pEnc1 = Gate1[i].Chan[j].Adc[0].a 
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Offset Compensation Terms: SinBias and CosBias 

In general, there will be offsets in the ADC readings of the “sine” (Adc[0]) and “cosine” (Adc[1]) 

values that can limit the accuracy of the position value calculated with the arctangent function. 

The SinBias and CosBias terms allow the user to compensate for this type of offset. The value of 

SinBias is added to the reading in Adc[0], and the value of CosBias is added to the reading in 

Adc[1], before the arctangent is calculated. 

SinBias and CosBias are signed 16-bit values, so for the purpose of calculating the needed 

offsets, the ADCs should be treated as having 16-bit resolution (even if they have other 

resolution). 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

It is strongly recommended that a tracking filter be used as part of the resolver conversion, 

because of the noise sensitivity of the direct conversion. The combination of the direct hardware 

conversion and the software tracking filter produces dynamics similar to that of the traditional 

tracking R/D converters. 

The tracking-filter operations for the software arctangent direct resolver conversion method are 

identical to those for the single-register read. Refer to the section under Single-Register Read for 

details. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and its value implicitly specifies the units of the entry result. 

The ACC-58E can provide a 16-bit conversion (65,536 states per resolver cycle), but many times 

the noise level in the system means that some of the lower bits of the result do not provide 

meaningful information. 

For users who wish the result to be scaled in units LSBs of the 16-bit conversion (1/65536 of a 

resolver cycle), this should be set to 1.0. For users who wish the result to be scaled as if a lower-

resolution conversion were performed, this should be set to 1/216-n for an n-bit conversion. For 

example, to scale the result as if a 14-bit conversion had been performed, ScaleFactor should be 

set to 1/216-14 = 1/4. This is the most common setting. 

Type 7: Extended Hardware Arctangent Interpolation 

When the PMAC3-style DSPGATE3 IC performs hardware interpolation of a sinusoidal encoder, 

it automatically combines the whole-count data and interpolated fractional-count data into the 

channel’s ServoCapt and PhaseCapt registers, where they can be used directly by reading only a 

single register from the IC. These registers provide 16,384 states per line of the encoder (14 bits 

of fraction per line, or 12 bits of fraction per quadrature count). Simply reading the ServoCapt 

register with a Type 1 single-register read provides the servo with “x16384” interpolation. 

With the “auto-correcting” interpolator (released 4th quarter 2013 for the ACC-24E3), it is 

possible to obtain a higher degree of interpolation that can be obtained in this register alone. The 

Type 7 extended hardware arctangent interpolation method allows the user to obtain 16 bits of 

fraction per line (14 bits of fraction per quadrature count) for “x65536” interpolation. 

To use this method, Gate3[i].Chan[j].AtanEna for the source IC channel must be set to 1 to 

enable the hardware extension in the IC. 
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Address of Primary Register: pEnc 

EncTable[n].pEnc is set to the address of the channel’s ServoCapt register, which latches the 

interpolated count value, with 14 bits of fraction per line, each servo cycle. The setting will be of 

the form: 

EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a 

Address of Secondary Register: pEnc1 

EncTable[n].pEnc1 is set to the address of the channel’s register containing the Atan element, 

which contains 16 bits of fraction per line, updated each servo and phase cycle. The setting will 

be of the form: 

EncTable[n].pEnc1 = Gate3[i].Chan[j].AtanSumOfSqr.a 

It is also possible to specify this simply as the address of the partial-word Atan element, but it 

will report back as the address of the full-word AtanSumOfSqr element. 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

The tracking-filter operations for the extended hardware arctangent interpolation method are 

identical to those for the single-register read. Refer to the section under Single-Register Read for 

details. Note that the auto-correcting interpolator circuitry performs significant filtering itself in 

hardware, so this software tracking filter will probably not be helpful. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and its value implicitly specifies the units of the entry result. 

Different users of sinusoidal encoders prefer different result units.  

For users who wish the result to be scaled in units of LSBs of the interpolator (1/16,384 of a 

quadrature count, or 1/65,536 of an encoder line), this should be set to 1.0. For users who wish 

the result to be scaled in units of quadrature counts (1/4 of an encoder line), as if it were a digital 

quadrature encoder, this should be set to 1/16,384. For those who wish the result to be scaled in 

units of encoder lines, this should be set to 1/65,536. It is usually best to enter the value for 

ScaleFactor as an expression and let Power PMAC compute the exact resulting value. 

Types 8 and 9: Addition and Subtraction 

The Type 8 and 9 methods permit the addition and subtraction, respectively, of numerical values. 

Almost always, they will use values from other ECT entries that have already been processed 

(except for final scaling). These methods assume that the data in the two source registers have the 

same scaling. Once the addition or subtraction occurs, further processing is possible. 

Addresses of the Registers: pEnc and pEnc1 

EncTable[n].pEnc is set to the address of the first source register. It reads the entire 32-bit value 

at this register, treating it as a signed integer. In most cases, this register will be the PrevEnc 

element of an earlier (lower-numbered) entry in the conversion table. In this case the setting is 

like: 

EncTable[n].pEnc = EncTable[m].PrevEnc.a 
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EncTable[n].pEnc1 is set to the address of the second source register. It reads the entire 32-bit 

value at this register, treating it as a signed integer. In most cases, this register will be the 

PrevEnc element of an earlier (lower-numbered) entry in the conversion table. In this case the 

setting is like: 

EncTable[n].pEnc1 = EncTable[l].PrevEnc.a 

 

In Type 8, the value in the second source register is added to the value in the first source register. 

In Type 9, the value in the second source register is subtracted from the value in the first source 

register. Once this addition or subtraction has been performed, subsequent processing can be done 

just as for one of the parallel-read methods. Note, however, that this processing could also have 

been done in the ECT entries of the source registers. 

Data-Shifting Operations: index1 and index2 (index2 < 32) 

Once the data from the two source registers has been mathematically combined into a single 32-

bit value, subsequent operations work just like those for the single-register read method. For data 

shifting, refer to the section under Single-Register Read. 

Change-Limiting Operations: index3 and MaxDelta 

The change-limiting operations for the addition and subtraction methods are identical to those for 

the single-register read. Refer to the section under Single-Register Read for details. 

Numerical-Integration Operations: index4 and PrevDelta 

The numerical-integration operations for the addition and subtraction methods are identical to 

those for the single-register read. Refer to the section under Single-Register Read for details. 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

The tracking-filter operations for the addition and subtraction methods are identical to those for 

the single-register read. Refer to the section under Single-Register Read for details. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result 

in which the least significant bit of real data in the source registers amounts to one unit of the 

result, ScaleFactor should be set to 1 / 2(32 - #ofBits). 

Type 10: Triggered Time Base 

The Type 10 method permits the implementation of “triggered time base” master encoder 

functionality. It is actually an alternate “state” of a Type 3 “software 1/T extension” method for a 

digital quadrature encoder processed through a PMAC2-style IC, or of a Type 1 “single-register 

read” method for a digital quadrature or analog sinusoidal encoder. When the type element for 

one of these entries is set to 10 (instead of 1 or 3) the time base value of the DeltaPos element is 

always 0.0, regardless of the speed of the encoder, thereby “freezing” the time base until the 

specified trigger occurs. 

If this master encoder is also used as a feedback encoder, there will likely be two ECT entries 

reading the encoder position value. The first will keep the type = 1 or type = 3 setting all the time 

so it can be used for servo feedback. The second, used for the triggered time base master, with the 

value of type changed between the frozen/armed state and the running state. 
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Address of the Position Register: pEnc 

The address of the main position register specified by EncTable[n].pEnc is the same in the 

frozen state as in the running state. For these types of encoders, it must be set to the address of the 

“servo capture” register for the encoder channel in the ASIC: Gaten[i].Chan[j].ServoCapt.a. 

Address of the Trigger Register: pEnc1 

Once the entry is “frozen” by setting type to 10, the secondary register specified by 

EncTable[n].pEnc1 must be set to the address of the status register for the encoder channel in 

the ASIC: Gaten[i].Chan[j].Status.a. This register contains the capture trigger bit that indicates 

that the specified trigger condition has occurred. 

“Arming” Control: index1 

Once the entry has been frozen by setting type to 10 and prepared for the trigger by setting 

pEnc1 to the address of the channel’s status register, it can be “armed” by setting 

EncTable[n].index1 to 2 for a PMAC2-style IC, or to 3 for a PMAC3-style IC. The value 

specifies which bit in the status register to check for the trigger (different in the two ICs) and how 

to set Type and pEnc1 after the trigger is found.  

In a PMAC2-style IC, type is set back to 3 and pEnc1 is set back to 

Gate1[i].Chan[j].TimeBetweenCts.a to re-enable the software 1/T extension used for the 

running time base. In a PMAC3-style IC, type is set back to 1; the setting of pEnc1 while time 

base is running is not used. In both cases, index1 is set back to 0 when the trigger is found. 

To ensure proper referencing to the master position at the trigger, the arming operation must 

occur after the initial move that is to start at the trigger has been fully calculated and ready to 

execute. It is best accomplished in a PLC program, where a single program line can arm the entry 

if it sees that it is frozen – for example: 

if (EncTable[4].type == 10) EncTable[4].index1 = 2; 

 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. For a time-base 

master, it is set based on a user-selected “real-time input frequency” (RTIF). The idea is that 

when the master sensor is producing this count frequency, the slave motion will execute in the 

programmed time. 

If the running state of the entry is type = 3, ScaleFactor for a time base master entry should be 

set to 1 / (512 * RTIF), with RTIF expressed in counts per millisecond. 

If the running state of the entry is type = 1, ScaleFactor for a time base master entry should be 

set to 1 / (256 * RTIF), with RTIF expressed in counts per millisecond. 
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Type 11: Floating-Point Register Read 

The Type 11 method reads a floating-point register, either single-precision (32-bit) or double-

precision (64-bit) and prepares it for use by servo tasks. The main purpose of this method is to 

use the commanded servo output of a motor to create simulated feedback in software, without the 

requirement to write the output to a fixed-point “dummy” register. This permits techniques such 

as “direct microstepping” for open-loop stepper-motor control. It can also be used to provide an 

offset command to an inner servo loop in a “cascaded servo loop” configuration.  

Format of the Source Register: index6 

If index6 is set to the default value of 0, Power PMAC will interpret the source value as a single-

precision (32-bit) floating-point value. If index6 is set to 1, Power PMAC will interpret the 

source value as a double-precision (64-bit) floating-point value. 

Address of the Source Register: pEnc 

If configured for a single-precision source, EncTable[n].pEnc can be set to the address of a 

motor’s servo-output register (Motor[x].IqCmd.a), which is useful for simulated or cascaded 

servo loops, or of a single-precision register in the user shared memory buffer (Sys.Fdata[i].a). 

If configured for a double-precision source, EncTable[n].pEnc can be set to the address of a 

motor’s commutation angle register (Motor[x].PhasePos.a), which is useful for direct 

microstepping, of a motor’s net desired position register (Motor[x].DesPos.a), useful for tracking 

a commanded trajectory, or of a double-precision register in the user shared memory buffer 

(Sys.Ddata[i].a). 

Pre-Scaling Operation: index5 

The input floating-point value can be pre-scaled using the index5 element. The value is 

multiplied by (index5 + 1) before conversion to fixed-point format for further operations. At the 

default value of 0 for index5, no pre-scaling is performed. Larger values of index5 (up to 255) 

permit resolution to be maintained from small source values. 

Data Shifting Operations: index1 and index2 (index2 < 32) 

Once the data from the floating-point register has been read and converted to fixed-point format, 

it can be shifted just as for the single-register (fixed-point) read method. Refer to the section 

under Single-Register Read for details. 

Change-Limiting Operations: index3 and MaxDelta 

The change-limiting operations for the floating-point register read method are identical to those 

for the single-register (fixed-point) read method. Refer to the section under Single-Register Read 

for details. 

Numerical-Integration Operations: index4 

The numerical integration operations for the floating-point read are identical to those for the 

single-register (fixed-point) read method. When this method is used for a simulated servo 

feedback, numerical integration is almost always enabled. For use in cascaded servo loops as the 

offset command to the inner loop, no integration is typically used if only small offsets are 

provided to the inner loop, or a single integration if indefinitely large offsets can be provided (as 

for tensioning a moving web). When the PhasePos commutation angle register is used for direct 

microstepping “feedback”, it is not integrated. Refer to the section above under Single-Register 

Read for details on setting up the integration in the entry. 
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Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. For the floating-

point read, if index5 is 0 to disable pre-scaling, and ScaleFactor is set to 1.0, the result of the 

entry will have a magnitude 256 times that of the source register value. If you wish the result to 

have the same scaling as the source, set ScaleFactor to 1/256. For direct microstepping, 

ScaleFactor is commonly set to 1/65,536. It is usually best to enter the value for ScaleFactor as 

an expression and let Power PMAC compute the exact resulting value. 

Type 12: Single Register Read with Error Check 

The Type 12 method implements a single-register read as in Type 1, but adds the ability to check 

for error bits in a separate source register. If an error is found in a given servo cycle, the source 

position is not used; instead the position values from previous valid reads are extended for use in 

its place. This method is mainly for use with serial encoders, for which a variety of errors (e.g. 

timeout, CRC error) can be detected, but something needs to be done to “ride through” an 

occasional error properly. 

Address of Single Position Register: pEnc 

EncTable[n].pEnc is set to the address of the source position register. Usually it is set by naming 

the data structure element of the source register, followed by the .a (“address of”) suffix. As with 

Type 1, the data can be in any continuous zone within this 32-bit register. 

Because this method is focused on serial encoders, this element is typically used to access the 

first serial encoder data register in either the PMAC3-style “DSPGATE3” IC, as in the ACC-

24E3, the Power Brick, or the Power Clipper, or in the ACC-84x FPGA IC: 

EncTable[n].pEnc = Gate3[i].Chan[j].SerialEncDataA.a 

EncTable[n].pEnc = Acc84E[i].Chan[j].SerialEncDataA.a 

Address of Error Register: pEnc1 

EncTable[n].pEnc1 is set to the address of the register containing error, alarm, and/or status bits 

for the position source. Power PMAC will read the full 32-bit register at this address, then only 

use the specified bits to determine whether or not there is an error. 

For the usual serial encoder interface, this element is used to access the second serial encoder data 

register in the PMAC3-style “DSPGATE3” IC, or the second or third serial encoder data register 

(depending on the protocol) in the ACC-84x FPGA IC. 

EncTable[n].pEnc1 = Gate3[i].Chan[j].SerialEncDataB.a 

EncTable[n].pEnc1 = Acc84E[i].Chan[j].SerialEncDataB.a 

EncTable[n].pEnc1 = Acc84E[i].Chan[j].SerialEncDataC.a 

If EncTable[n].pEnc1 is set to the default value of Sys.pushm (the start of the user shared 

memory buffer), no read of an error register will be performed, so no errors of this type can be 

automatically detected and acted upon. 
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Error Register Mask: index6 

In this method, the 32-bit element EncTable[n].index6 is combined with the value read in the 

error register specified by EncTable[n].pEnc1 through a bit-by-bit AND operation. This permits 

the user to specify which bits of the source register will be treated as error bits. For example, if 

only bit 31 is to be treated as an error bit, index6 should be set to $80000000. If bits 31 and 30 

are both to be treated as error bits, index6 should be set to $C0000000.  

The following tables show the settings to be used if all of the error bits, and optionally alarm bits 

and status bits, are to be treated as real errors by the entry, for both the DSPGATE3 IC and ACC-

84x interfaces. Of course, the user may choose not to monitor all of these bits. 

DSPGATE3-Based Interfaces 

Protocol Gate3[i] Element Bits Mask Word 

index6 value 

SPI SerialEncDataB Status bits 31:20* $FFF00000* 

SSI SerialEncDataB Error bit 31 $80000000 

EnDat 2.1 SerialEncDataB Error bits 31:29 $E0000000 

Hiperface (not for cyclic read)   

Yaskawa I (not for cyclic read)   

Yaskawa II/III/V SerialEncDataB Error bits 31:29 

+Alarm bits 27:20 

$E0000000 

$EFF00000 

Tamagawa SerialEncDataB Error bits 31:30 

+Alarm bits 23:16 

$C0000000 

$C0FF0000 

Panasonic SerialEncDataB Error bits 31:30 

+Alarm bits 15:08 

$C0000000 

$C000FF00 

Mitutoyo SerialEncDataB Error bits 31:30 

+Alarm bits 23:16 

+Status bits 27:24 

$C0000000 

$C0FF0000 

$CFFF0000 

Kawasaki SerialEncDataB Error bits 31:30 

+Alarm bits 26:24 

$C0000000 

$C7000000 

* Implementation-specific; most encoders will not use all of these bits. 

ACC-84x Interfaces 

Protocol Acc84x[i] Element Bits Mask Word 

index6 value 

BiSS-B/C SerialEncDataB Error bits 31:30 

+Status bits 29:24 

$C0000000 

$FF000000 

EnDat 2.1/2.2 SerialEncDataB Error bits 31:30,27:26 $CC000000 

Mitutoyo SerialEncDataC Error bits 31:30 

+Alarm bits 23:16 

$C0000000 

$C0FF0000 

Panasonic SerialEncDataC Error bits 31:30 

+Alarm bits 23:16 

$C0000000 

$C0FF0000 

SSI SerialEncDataB Error bit 31 $80000000 

Tamagawa SerialEncDataC Error bits 31:30 

+Alarm bits 23:16 

$C0000000 

$C0FF0000 

Yaskawa II/III/V SerialEncDataB or 

SerialEncDataC 

Error bits 31:29 or 

Alarm bits 23:16 

$E0000000 or 

$00FF0000 

 

If any of the bits in the error register specified by index6 is found to be true in a given servo 

cycle, the data in the position register will be considered invalid. In this case, a replacement 

position value would be calculated just as if the read position value caused the “maximum 
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change” limit, as set by the index3 and MaxDelta elements for the entry, to be exceeded (see 

below). 

In addition, if any of these errors is found in a given servo cycle, bit 0 of EncTable[n].Status is 

set to 1. (If no errors are found in a given servo cycle, this bit is set to 0.) Some users may want to 

have the motor’s automatic encoder-loss detection function use this bit, which can effectively 

combine multiple error bits. This is done by setting Motor[x].pEncLoss to 

EncTable[n].Status.a, Motor[x].EncLossBit to 0, and Motor[x].EncLossLevel to 1. 

Motor[x].EncLossLimit, which sets the accumulated number of errors that must be exceeded 

before shutdown, should generally be set large enough to permit continued operation on 

intermittent errors. 

Data-Shifting Operations: index1 and index2 (index2 < 32) 

EncTable[n].index1 and EncTable[n].index2 control how the raw data is processed by 

“shifting” operations to eliminate parts of the 32-bit word that do not contain real data. First the 

raw data is shifted right by the number of bits specified in index2. Generally, index2 is set to the 

bit number of the LSB of actual data in the source register, so all of the “garbage data” below it is 

eliminated. 

Next, this result is shifted left by the number of bits specified in index1. Generally, index1 is set 

to the quantity 32 minus the number of bits of real data in the source register. This will cause the 

MSB of actual data in the source register to end up in the highest bit of the intermediate result 

register. This must occur if Power PMAC is to handle rollover of the source data value properly. 

For more information and examples for these elements, refer to the description of Type 1, above. 

Tracking-Filter Operations: index1, index2 (index2 > 31), index4 

While it is possible to create a digital low-pass tracking filter in a type = 12 entry instead of data 

shifting, it is not commonly done. Refer to the description under type = 1 for how to implement a 

tracking filter. 

Change-Limiting Operations: index3 and MaxDelta 

The Type 12 method, as in other methods, permits the user to specify the maximum change in 

source position that will be considered valid. If this limit is exceeded in a servo cycle, the source 

position value for the cycle will not be used, and in its place will be calculated a value 

extrapolated from the most recent valid readings. However, the type = 12 method will also 

calculate this replacement value if any of the specified error bits is found to be true. In addition, 

the type = 12 method will set bit 0 of EncTable[n].Status to 1 in any servo cycle where the limit 

is exceeded. 

If EncTable[n].MaxDelta is set greater than 0, this change-limiting is active for the entry. While 

this change can be specified as a first derivative (velocity) by setting EncTable[n].index3 to 0, it 

is much better in this method to specify it as a second derivative (acceleration) by setting index3 

greater than 0, with the value of index3 specifying the number of consecutive servo cycles the 

last valid acceleration is maintained in the replacement position value. After this number of servo 

cycles, if the anomaly persists, the resulting position jumps immediately to the new source value. 

When the change limit is expressed as an acceleration, MaxDelta is expressed in LSBs of the 

source data per servo cycle per servo cycle. 
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Numerical-Integration Operations: index4 and EncBias 

While it is possible to numerically integrate the source date in a type = 12 entry, it is not 

commonly done. Refer to the description under type = 1 for how to implement numerical 

integration. 

Output Scaling: ScaleFactor 

EncTable[n].ScaleFactor performs a final multiplication on the processed value to create the 

result. It is a floating-point value, and will typically be less than or equal to 1.0. To obtain a result 

in which the least significant bit of real data in the source register amounts to one unit of the 

result, ScaleFactor should be set to 1 / 2(32 - #ofBits). 
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BASIC MOTOR SETUP 

Power PMAC has many modes for controlling motors. A major part of the initial setup of a 

Power PMAC is the hardware and software configuration to specify a specific mode of operation. 

The commonly used modes of operation are: 

 Analog command of velocity-mode drives 

 Analog command of torque-mode drives 

 Analog command of sine-wave input drives 

 Direct-PWM control of “power-block” drives 

 Pulse-and-direction command of stepper or “stepper-replacement” servo drives 

 Numerical command of networked position-mode or torque-mode drives 

 

The following diagram shows the tasks that are performed in motor control and the different 

places they can be split between the controller and the drive. 
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Motor Control Task Division Points 

Any of these modes can be employed directly in a Power PMAC system, or over the MACRO 

ring. When using the MACRO ring, the command and feedback values are passed across the ring 

as binary numerical values; the actual generation of command signals and processing of feedback 

signals is done at the remote MACRO node. The motor algorithms in the Power PMAC are the 

same regardless of whether the MACRO ring is used or not. The choice of mode of operation is 

independent for each motor. 
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IDE Interactive Setup 

Power PMAC’s Integrated Development Environment (IDE) software for the PC has interactive 

menus that walk the user through much of this setup. Most users will be able to use these menus 

to accomplish their motor setup, reducing or eliminating the need to use the material in this 

chapter. However, this chapter does provide useful “low-level” information for those working 

without the IDE, or for those who wish to understand fully each step of the operation. 

The IDE motor setup control can be invoked by clicking on “Tools” in the top bar, then on 

“System Setup” in the pull-down menu. On the left window of the control, click on “Power 

PMAC”, then on a motor number, or on “Add Motor”. 

 

IDE Motor Setup Control 

Parameters to Set Up Basic Motor Operation 

Each motor has setup data structure elements to permit specific software configuration of that 

motor’s control algorithms. Most commonly, the inputs and outputs for the motor pass through an 

ASIC that has its own setup data structure elements. 

Most of the software configuration of a motor involves setting proper values for these variables, 

as explained in the following sections. This section has a quick survey of the key variables, and 

the variables that are common to all modes. Depending on how you are setting up the motor, you 

may branch to other sections of the manual. The following flow chart summarizes the motor setup 

possibilities: 
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Motor Setup Flowchart 
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Initial Setup Parameters 

Activating the Motor: Motor[x].ServoCtrl 

The element Motor[x].ServoCtrl must be set to a value greater than 0 for that motor to be used 

in an application. It should be set to 0 for any motor that is not used, so Power PMAC will not 

waste computation time on that motor. An activated motor can be enabled or disabled; a de-

activated motor is not monitored in any way.  

 

Caution 

The value of Motor[x].ServoCtrl should not be changed with 

the servo loop enabled. Make sure the servo loop is disabled 

(killed) before changing the value of this element.  

 

Presently, two non-zero values are supported. A value of 1 activates this motor in normal mode, 

in which it generates its own command trajectory. A value of 8 activates this motor in a special 

“gantry follower” mode, in which it uses the commanded trajectory generated by the motor 

specified by this motor’s saved setup element Motor[x].CmdMotor. This mode guarantees that 

this motor will track the specified “gantry leader” motor during jogging, homing, and 

programmed moves. This gantry leader motor is set up identically to an independent motor, with 

a value of 1 for this element. 

Special Considerations for Gantry Follower Mode 

When gantry follower mode (Motor[x].ServoCtrl = 8), special care must be taken in controlling 

the states (enabled closed-loop, enabled open-loop, disabled) of the leader and follower motors. 

This is true whether the two motors have independent servo loops, or use a single cross-coupled 

servo algorithm (Sys.GantryXCtrl). 

It is possible for the motors to be in different states, but before attempting any positioning move 

commands, both motors should be in the enabled closed-loop state. 

If either the leader motor or the follower motor has a killing (disabling) fault, the other motor will 

automatically be disabled as well. If the leader motor is disabled by command, the follower motor 

will automatically be disabled too. Both motors must be re-enabled with the loops closed before 

issuing any positioning move commands to the leader motor.  

Typically, a special joint homing search move procedure is performed to reference both motors 

and to automatically remove any skew that was present on power-up. This procedure is explained 

in the chapter Executing Individual Motor Moves. 

Activating PMAC Motor Commutation: Motor[x].PhaseCtrl 

The element Motor[x].PhaseCtrl must be set to a value greater than 0 for any phase-interrupt 

tasks to be performed for that motor. For multi-phase motor commutation, and possibly current-

loop closure, to be performed, either bit 0 (value 1) or bit 2 (value 4) must be set to 1. 

If bit 2 is set to 1 (typically Motor[x].PhaseCtrl = 4), Power PMAC will perform commutation 

tasks for the motor with any phase input and output values accessed in separate registers for each 

phase. This is known as “unpacked mode”, and must be used with PMAC2-style Servo ICs, as on 

the ACC-24E2x UMAC axis-interface boards, or with a MACRO ring interface using either 
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PMAC2 or PMAC3 ASICs. It can be used with PMAC3-style ICs, as on the ACC-24E3 UMAC 

axis interface boards, provided that the setup elements Gate3[i].Chan[j].PackInMode and 

Gate3[i].PackOutMode are changed from their default values of 1 and set to 0. 

If bit 0 is set to 1 (typically Motor[x].PhaseCtrl = 1), Power PMAC will perform commutation 

tasks for the motor with any phase input and output values accessed in pairs, two values per 32-

bit register – Phases A and B together, Phases C and D (if present) together. This is known as 

“packed mode”, and can be used with PMAC3-style ICs, as on the ACC-24E3 UMAC axis 

interface boards, provided that the setup elements Gate3[i].Chan[j].PackInMode and 

Gate3[i].PackOutMode are set to their default values of 1. Packed mode saves significant time 

for input/output operations, which can be important in high-frequency and/or high-axis-count 

applications. 

If commutation tasks are enabled in either packed or unpacked mode, the commutation setup 

elements must be set to specify how commutation is performed. The instructions for setting these 

variables are given in the Setting Up Power PMAC Commutation chapter of the User’s Manual. 

Note 

It is possible in Power PMAC to perform “direct PWM” 

control of DC brush motors, closing the current loop digitally 

inside the Power PMAC. Because the current-loop algorithm in 

Power PMAC is an optional branch of the commutation 

algorithm executing under the phase interrupt, it is necessary to 

activate the Power PMAC commutation algorithm by setting 

Motor[x].PhaseCtrl greater than zero to do this control, even 

though it will not actually be performing the commutation. 

(The AC nature of the commutation is defeated by setting the 

Motor[x].PhasePosSf scaling factor to 0.). 

 

If bit 3 of Motor[x].PhaseCtrl is set to 1 (typically Motor[x].PhaseCtrl = 8), then the servo 

loop for this motor will be closed in the phase interrupt, which usually has a higher frequency 

than the servo interrupt. This setting is most commonly used for special high-bandwidth actuators 

such as galvanometers, piezo-motors, and voice coil motors, permitting them to close their loops 

at higher frequencies than the other motors in the system. While it is possible both to close the 

servo loop in the phase interrupt and to perform commutation tasks for the motor (using a setting 

of 9 or 12), this is very unusual, as these high-bandwidth actuators seldom require electronic 

commutation. 

Motor Address Setup Parameters 

Each Power PMAC motor has several “address” setup elements that tell the motor what registers 

to use for its inputs and outputs. Each of these variables contains the Power PMAC address of the 

register for the particular function. This provides a “mapping” between the motor calculation 

registers and the different types of servo I/O registers (encoders, D/A converters, flags, etc.) used 

for the physical interface. By providing a user-settable mapping, Power PMAC makes it very 

easy to utilize different types of feedback and output signals for each motor. 

The names of these address parameters start with a lower-case “p”, which indicates “pointer to”. 
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It is not necessary for the user to know the numerical value of the address specified for one of 

these functions. Instead, the name of the data structure element for the register is specified, along 

with the “.a” (denoting “address of”) suffix. 

Command Output Address: Motor[x].pDac 

Motor[x].pDac instructs Power PMAC where to place its output command value(s) for Motor x 

by specifying the address of the register (or the first register if multiple outputs are used). Note 

that despite the name of this element, it is not required that the address be that of an actual D/A-

converter register. 

The default values of Motor[x].pDac use the output registers for the machine interface channel 

usually assigned to the motor, or command registers (starting with Register 0) for the MACRO 

node usually assigned to the motor. The exact setting is dependent on the mode used, and is 

covered in the section for each mode of control. Typical types of settings used are: 

 Motor[x].pDac = Gaten[i].Chan[j].Dac[0] 

 Motor[x].pDac = Gaten[i].Chan[j].Pwm[0] 

 Motor[x].pDac = Gaten[i].Chan[j].Pfm 

 Motor[x].pDac = Gate2[i].Macro[j][0] 

 Motor[x].pDac = Gate3[i].MacroOutα[j][0] 
 

Motor vs. Load Feedback 

A servo system designer faces a choice in placing the feedback device(s); whether there should be 

a feedback sensor on the motor, on the load, or both. As in all engineering designs, there are 

tradeoffs that must be considered. 

Using a feedback sensor on the motor alone is usually the most cost-effective solution, especially 

for a rotary motor. If the motor rotation is “geared down” to the load, the sensor provides a higher 

resolution when measuring load movement. It is typically easier to protect the sensor from 

environmental damage when it is on the motor. 

However, a motor-mounted sensor provides a very indirect measurement of the load position, 

with many factors capable of introducing errors, including coupling compliance, gear backlash, 

and screw tolerances. If only a motor sensor is used, these errors must either be tolerated, or 

characterized and compensated. 

A feedback sensor mounted directly on the load provides a much more direct, and therefore 

accurate, measurement of the load position. However, a load sensor, particularly if linear, tends to 

be much more exposed to physical and environmental damage, and is often more expensive. Of 

course, effective resolution multiplication through gearing is not possible for a directly mounted 

load sensor. If only a load sensor is used, coupling and connection imperfections, such as 

compliance and backlash, are “inside” the servo loops closed with its feedback, making it more 

difficult to achieve stable control. 

Power PMAC makes it easy to utilize dual motor/load feedback to get the advantages of both 

sensor placements. It closes an outer position loop with its choice of feedback sensor, and an 

inner velocity loop with a separate choice of feedback sensor. While a large majority of users will 

select the same sensor for both loops, it is very simple to select separate sensors, closing the 

position loop using the load sensor for high accuracy, and the velocity loop using the motor 

sensor for good stability and high bandwidth (from the effective high resolution). 
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The following diagram shows the basic principle of selecting single or dual feedback with Power 

PMAC. The details of this selection are covered in the next sections. 
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Power PMAC Motor and Load Feedback Selection Options 

Outer (Position) Loop Feedback: Motor[x].pEnc, PosSf 

Motor[x].pEnc specifies the address of the register Power PMAC reads for the ongoing outer-

loop feedback for the motor. The outer loop is virtually always the position loop for the motor. 

This address must be the address of an entry in the “encoder conversion table” (ECT) to access 

processed data from the table, so the specification will always take the form of EncTable[n].a. 

This means that any data to be used for servo feedback must be processed through the ECT. 

Despite the name of this element, it is not required that the feedback ultimately come from an 

encoder sensor. 

By default, Motor n accesses the result of ECT entry n for its outer-loop feedback. Refer to the 

User’s Manual section on the encoder conversion table for more information on that setup. 

The data read at this address is multiplied by the value of the scale factor element 

Motor[x].PosSf before it is used for motor position. The floating-point data read from the ECT 

will almost always have units of “counts” or “LSBs”, even if there is fractional resolution. Most 

users will leave Motor[x].PosSf at its default value of 1.0 so that motor units are also in “counts” 

or “LSBs”.  

However, it is possible to use a different, and usually smaller, value than 1.0 to make the motor 

units engineering units such as millimeters and degrees, which virtually always consist of many 

feedback “counts”. Note, however, that Motor[x].PosSf acts as a gain term in the servo loop, and 

decreases to its value will require corresponding increases to servo-loop gain terms that use the 

resulting position values.  
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!
Caution 

If the motor units are redefined to larger increments by 

reducing the value of Motor[x].PosSf, several important motor 

safety settings, such as following-error and overtravel limits, 

are “opened up”, reducing or practically eliminating their 

effectiveness. It is very important that these values be reduced 

immediately (by the same factor that Motor[x].PosSf was 

reduced to keep the same effective value) to maintain the 

safety of the system. 

 

Inner (Velocity) Loop Feedback: Motor[x].pEnc2, Pos2Sf 

Motor[x].pEnc2 specifies the address of the register Power PMAC reads for the ongoing inner-

loop feedback for the motor. The inner loop is virtually always the velocity loop for the motor. It 

works just like Motor[x].pEnc, and usually contains the same address. However, the ability to 

specify a separate address provides a very easy method to use dual motor/load feedback. 

The data read at this address is multiplied by the value of the scale factor element 

Motor[x].Pos2Sf before it is used for the motor’s inner-loop position. The floating-point data 

read from the ECT will almost always have units of “counts” or “LSBs”, even if there is 

fractional resolution. Most users will leave Motor[x].Pos2Sf at its default value of 1.0 so that the 

motor’s inner-loop units are also in “counts” or “LSBs”.  

However, it is possible to use a different, and usually smaller, value than 1.0 to make the inner-

loop units engineering units such as millimeters and degrees, which virtually always consist of 

many feedback “counts”. Note, however, that Motor[x].Pos2Sf acts as a gain term in the servo 

loop, and decreases to its value will require corresponding increases to inner-loop servo-loop 

gains that use the resulting position values. 

!
Caution 

For a motor that previously had well-performing servo gains, 

making a substantial decrease to Motor[x].Pos2Sf without 

compensating increases to the servo gains that act on the inner-

loop position can lead to dangerous instability. 

 

Changing Feedback on the Fly 

In specialized applications, there may be a need to change sources of feedback during operation. 

This can be done simply by changing the values of Motor[x].pEnc and Motor[x].pEnc2 to the 

address of a different entry in the conversion table. The entries in the conversion table that are 

potential sources of feedback information should always be executing so they are ready to be 

used at any time. 

When the new feedback source is selected, the motor will immediately start using the change in 

position from the new source instead of the old source. Because it reads the change in position 

each cycle, and not the position itself, there is no position jump when the new source is selected. 

(And there is no need, as in older PMACs, to read and store a “previous position” to compute this 

change properly.) 
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It is strongly recommended that all sources of feedback position have the same resolution as they 

appear to the motor. With differing resolutions, handling issues of servo gains and position 

referencing become extremely difficult. If the sensors have different physical resolution, the use 

of compensating scale factors in their encoder conversion table entries can provide them with 

matching effective resolutions to the motor. 

Feedback Source and Type: Motor[x].EncType 

Motor[x].EncType specifies the type of the primary feedback used for the motor. On re-

initialization of the Power PMAC it is set automatically based on the interface hardware found by 

the processor to the most common type of sensor used with that interface. The user can change 

the value subsequently. 

The possible settings of Motor[x].EncType at present are: 

1. Quadrature encoder, no extension through PMAC2-style IC 

2. Quadrature encoder with 1/T extension, through PMAC2-style IC 

3. Sinusoidal encoder with arctangent extension, through PMAC2-style IC 

4. MACRO-ring feedback from slave-only system 

5. Quadrature encoder with 1/T extension, through PMAC3-style IC 

6. Sinusoidal encoder with 14-bit arctangent extension, through PMAC3-style IC 

7. Sinusoidal encoder with 16-bit arctangent extension, through PMAC3-style IC 

12. MACRO-ring feedback from PMAC acting as a MACRO slave 

 

Setting the value of Motor[x].EncType in the Power PMAC script environment (but not in C) 

automatically sets the value of several other setup elements for the “flags” for the motor to values 

that match the feedback type and interface. These elements include: 

 Motor[x].pCaptFlag 

 Motor[x].pCaptPos 

 Motor[x].CaptFlagBit 

 Motor[x].CaptPosRightShift 

 Motor[x].CaptPosLeftShift 

 Motor[x].CaptPosRound 

 Motor[x].AmpEnableBit 

 Motor[x].AmpFaultBit 

 Motor[x].LimitBits 
 

This automatic assignment sets up for the most common configuration for the interface, but 

permits subsequent changes for unusual configurations. Each of these elements is discussed 

separately, below, and in the section on triggered moves in the Motor Moves chapter. In addition, 

each is described in detail in the Software Reference Manual. 

Encoder Status Address: Motor[x].pEncStatus 

Motor[x].pEncStatus specifies the address of the register Power PMAC reads for the status 

information involved with the encoder and its flags. Almost always, this is the status register for 

the channel of an ASIC used for servo interface, so it will take the form of 

Gaten[i].Chan[j].Status.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3] 

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a 

PMAC3-style IC. 
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Position-Capture Flag Address: Motor[x].pCaptFlag, CaptFlagBit 

Motor[x].pCaptFlag specifies the address of the register Power PMAC reads for the capture 

trigger typically used for triggered moves such as homing search. Almost always, this is the status 

register for the channel of an ASIC used for servo interface, so it will take the form of 

Gaten[i].Chan[j].Status.a or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3] 

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a 

PMAC3-style IC.. When the value of Motor[x].EncType is set with a script command, 

Motor[x].pCaptFlag is automatically set to the same address as Motor[x].pEncStatus. 

In order to use the very accurate hardware position capture function of the ASIC, this must use 

the status register from the same ASIC and channel as is used for ongoing outer (position) loop 

feedback as specified by Motor[x].pEnc and EncTable[i].pEnc from the table entry thus 

specified. 

Motor[x].CaptFlagBit specifies the bit number within this specified register to be used as the 

capture trigger bit. It should be set to 19 for a PMAC2-style Servo IC, or for a MACRO interface; 

it should be set to 20 for a servo interface in a PMAC3-style IC. It will be assigned the 

appropriate value automatically when a script command sets the value of Motor[x].EncType. 

Limit Flag Address: Motor[x].pLimits, LimitBits 

Motor[x].pLimits specifies the address of the register Power PMAC reads for the status of the 

hardware overtravel limit flag inputs for the motor. Almost always, this is the status register for 

the channel of an ASIC used for servo interface, so it will take the form of 

Gaten[i].Chan[j].Status.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3] 

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a 

PMAC3-style IC. If no hardware overtravel limit flags are used for the motor, this element should 

be set to 0, disabling the function for the motor. 

Saved setup element Motor[x].LimitBits specifies which bit(s) of the 32-bit register are read for 

the status of the limit inputs. In the standard range of 0 to 30, its value specifies the bit number of 

the positive limit input, with the negative limit input mapped into the next higher bit. This range 

should be appropriate for all standard Delta Tau hardware interfaces.  

Motor[x].LimitBits should be set to 24 when using a PMAC2-style “DSPGATE1” IC, as on an 

ACC-24E2x UMAC board, or to 25 when using the standard MACRO-ring protocol. It should be 

set to 9 when using a PMAC3-style “DSPGATE3” IC, as on an ACC-24E3 UMAC board, a 

Power Clipper board, or a Power Brick system. 

If Motor[x].LimitBits is in the range of 32 to 63, (LimitBits – 32) specifies the bit number of the 

single input that is triggered by either the positive or negative limit switch. This configuration is 

not recommended, but occasionally must be used, particularly on retrofit systems. Note that with 

this setting, it is not possible to command a move out of either limit without first disabling the 

limit functionality by setting Motor[x].pLimits to 0. 

If Motor[x].LimitBits is in the range of 64 to 94, (LimitBits – 64) specifies the bit number of the 

negative limit input, with the positive limit input mapped into the next higher bit. This setting can 

be useful for some networked drives with the limit switches wired into the drives. 

If Motor[x].LimitBits is in the range of 96 to 127, (LimitBits – 96) specifies the bit number of 

the positive limit in the register specified by Motor[x].pLimits. In this case, 



Power PMAC User’s Manual 

Basic Motor Setup 233 

Motor[x].pAuxFault specifies the register for the negative limit input, with 

Motor[x].AuxFaultBit setting the bit number for that input in the register. This range permits the 

use of separate registers, or non-adjacent bits in the same register, for the two limit input bits, 

particularly valuable when the limits are wired into general-purpose I/O points on a fieldbus or 

network. 

If bit 7 (value 128) of Motor[x].LimitBits is also set, a value of “0” in a specified limit input bit 

signifies that the motor is into that limit, rather than a “1” if this control bit is not set. The use of 

normally closed limit switches is strongly recommended, and usually these report a “1” when 

open (on the limit), so this control bit is rarely set. However, some devices, particularly when 

using a fieldbus or network, will have the opposite polarity, requiring the use of the control bit to 

configure the system. 

Amplifier Fault Flag Address: Motor[x].pAmpFault, AmpFaultBit 

Motor[x].pAmpFault specifies the address of the register Power PMAC reads for the status of 

the amplifier-fault input flag for the motor. Almost always, this is the status register for the 

channel of an ASIC used for servo interface, so it will take the form of 

Gaten[i].Chan[j].Status.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3] 

for a PMAC2-style MACRO IC, or Gate3[i].MacroInA[k][3] or Gate3[i].MacroInB[k][3] for a 

PMAC3-style IC. If no amplifier-fault flag is used for the motor, this element should be set to 0, 

disabling the function for the motor. 

Motor[x].AmpFaultBit specifies the bit number within this specified register to be used as the 

amplifier fault bit. It should be set to 23 for a PMAC2-style Servo IC, or for a MACRO interface; 

it should be set to 7 for a servo interface in a PMAC3-style IC. It will be assigned the appropriate 

value automatically when a script command sets the value of Motor[x].EncType. 

Because there is no standard on amplifier-fault interfaces, the value of the saved setup element 

Motor[x].AmpFaultLevel (0 or 1) determines which value in the fault status bit of the specified 

register will be interpreted as a fault. 

Amplifier Enable Flag Address: Motor[x].pAmpEnable, AmpEnableBit 

Motor[x].pAmpEnable specifies the address of the register Power PMAC writes to in order to 

set the state of the amplifier-enable output flag for the motor. Almost always, this is the control 

register for the channel of an ASIC used for servo interface, so it will take the form of 

Gaten[i].Chan[j].Ctrl.a, or if the MACRO ring is used for the motor, Gate2[i].Macro[k][3] for 

a PMAC2-style MACRO IC, or Gate3[i].MacroOuA[k][3] or Gate3[i].MacroOutB[k][3] for a 

PMAC3-style IC. If no amplifier-enable flag is used for the motor, this element should be set to 0, 

disabling the function for the motor. 

Motor[x].AmpEnableBit specifies the bit number within this specified register to be used as the 

amplifier-enable bit. It should be set to 22 for a PMAC2-style Servo IC, or for a MACRO 

interface; it should be set to 8 for a servo interface in a PMAC3-style IC. It will be assigned the 

appropriate value automatically when a script command sets the value of Motor[x].EncType. 

Power PMAC always considers a “0” in the enable control bit to mean a disabled state for the 

amplifier, and a “1” to mean an enabled state. Because Power PMAC must be able to force the 

disable state in hardware (due to a watchdog timer trip or hardware reset), it is not possible to 

change this polarity in software. 
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Absolute Power-On Position Address: Motor[x].pAbsPos 

Motor[x].pAbsPos specifies the address of the register Power PMAC reads to get absolute 

power-on position, if this information is available in the system. If this variable is set to the 

default value of 0, there is no power-on absolute position for the motor, and the power-on 

position is automatically set to zero (even if an absolute sensor is reporting a non-zero value at 

this time). This is the proper setting if there is only an incremental position sensor used. In this 

situation, a homing-search move is required to establish the position reference for the motor. 

Note that many systems will have a sensor that is absolute over a single motor revolution or 

commutation cycle, but not over the entire range of motion for the motor, as with a single-turn 

resolver or absolute encoder, or with Hall-style commutation sensors. In these cases, if the motor 

position is required to be known over multiple revolutions, a homing-search move will still be 

required, and Motor[x].pAbsPos should be set to 0. (If Power PMAC is performing the phase 

commutation for such a motor, the similar element Motor[x].pAbsPhasePos can be set to read 

this sensor for absolute position within one commutation cycle.) 

Motor[x].pAbsPos can be set to the address of the hardware register for the absolute position 

sensor (e.g. Gate3[i].Chan[j].SerialEncData.a or GateIo.DataReg[j].a) or to already-processed 

data in the encoder conversion table (e.g. EncTable[i].PrevEnc.a). It can also be set to a memory 

register (e.g. Sys.udata[i].a) if custom processing by the user is required. 

The data read here does not have to be from the same sensor as is used for ongoing outer 

(position) loop feedback. It does not have to have the same scaling, offset, or even direction sense 

as the ongoing position. 

Power PMAC interprets the data at the specified address according to the rules specified by 

Motor[x].AbsPosFormat. Note that while this provides great flexibility, the data read must be in 

integer (not floating-point) format. Motor[x].AbsPosFormat is a 32-bit value consisting of 4 

byte fields, specifying the starting bit number in the specified register, the number of bits to use, 

how to use data in any subsequent registers, and how to interpret the data (numerical binary or 

Gray code, signed or unsigned). 

The formatted value is next multiplied by the scale factor Motor[x].AbsPosSf (which can be 

negative to change the direction sense), and then offset by subtraction of the value of 

Motor[x].HomeOffset to get the resulting absolute motor position value. Note that 

Motor[x].AbsPosSf can be different from the scale factor for “ongoing” position 

Motor[x].PosSf, permitting the use of different sensors with different resolution for power-on 

and ongoing position. 

If the saved value of bit 2 (value 4) of Motor[x].PowerOnMode is set to 1, this absolute position 

read function will automatically be performed at power-on/reset. With this setting, it is very 

important that the sensor is reliably powered up and ready to respond before Power PMAC 

attempts this read. This absolute position read can be commanded at any time (regardless of the 

setting of this bit) using the on-line hmz command or the buffered program command homez. 
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Is Power PMAC Commutating or Closing the Current Loop for 
This Motor? 

All motors of significant travel require commutation (reversal of current) in the motor phases in 

order to generate consistent torque/force as the motor moves. The only question is where and how 

this commutation is done. In a brush DC motor the commutation is performed mechanically 

inside the motor. With brushless motors, the commutation is often performed electronically inside 

the drive. In these cases, Power PMAC is not performing the commutation. 

Virtually all modern servomotor control employs current-loop closure for high response, 

tolerance of parameter variation, and protection against overcurrent conditions. While this has 

traditionally performed in the servo drive, Power PMAC is capable of closing the current loop 

digitally for motors using “power-block” amplifiers in “direct PWM” mode. 

If Power PMAC is either performing the phase commutation, closing the current loop, or both, for 

the motor, jump to the next chapter, “Setting Up Power PMAC-Based Commutation and/or 

Current Loop” for further instructions. If Power PMAC is doing neither task for this motor, 

continue below in this chapter. 

There are three subsequent sections in this chapter. The first deals with using the traditional 

analog velocity-mode or torque-mode interface, still the most common servo-amplifier interface. 

The second deals with the pulse-and-direction interface, the traditional and still most common 

stepper-amplifier interface, also used with “stepper-replacement” servo amplifiers. The last 

covers position-mode amplifiers, with which Power PMAC just provides the trajectory generation 

algorithm and does not close any feedback loops. 

Setting Up Power PMAC for Velocity or Torque Control 

If Power PMAC is not performing the commutation or current loop for a motor, it provides a 

single output command value for the motor. Usually this output represents either a velocity 

command or a torque (force, or current magnitude) command, and typically this output is encoded 

as an analog signal-level voltage. While the servo-loop tuning for velocity and torque commands 

is different, the setup until that point is identical for both modes.  

The Power PMAC setup for both types of control is the same with the exception of the servo loop 

tuning. With a velocity-command output, the velocity loop is closed in the drive, and the velocity-

feedback gains in the Power PMAC can be set to 0.0 (provided the drive’s velocity loop is well 

tuned). With a torque-command output, Power PMAC is closing the velocity loop, and at least 

one of the velocity feedback gains in the Power PMAC servo algorithm must be set greater than 

zero to close a velocity loop. 

When driving a hydraulic cylinder through either a proportional valve or a servo valve, the 

dynamics appear to the Power PMAC to be those of a velocity command to a motor. 

Hardware Setup 

Several Power PMAC products and accessories have analog outputs suitable for use as voltage or 

torque commands to appropriate servo amplifiers. The most common of these are the UMAC 

ACC-24E2A analog servo interface board using PMAC2-style ICs, and ACC-24E3 servo 

interface boards using PMAC3-style ICs with “analog amplifier interface” mezzanine boards. 
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This diagram shows the output circuitry for a channel of the PMAC2-style DSPGATE1 IC. 
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DSPGATE1 IC Channel Servo Output Circuitry 
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The following diagram shows the output circuitry for a channel of the PMAC3-style DSPGATE3 

IC. It has four phases (A, B, C, and D), rather than the three of the DSPGATE1 IC. 
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DSPGATE3 IC Channel Servo Output Circuitry 

The products may have more than one phase of analog output per servo channel. For velocity or 

torque-mode control, only one phase is used, typically the “A” phase. The output for a phase may 

be used in single-ended format, using just the DAC+ output for the phase with respect to the 

reference voltage AGND. Alternately it may be used in differential mode, using the DAC+ and 

the DAC- outputs together. Note that the voltage between DAC+ and DAC- is always twice the 

voltage between DAC+ and AGND. 

Consult the appropriate hardware reference or accessory manual for the details of the hardware 

setup and connection. 
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ASIC Programmable Signal Setup 

The machine interface ICs used in Power PMAC systems have great flexibility to support 

different types of interfaces, and so must be set up properly for the particular type of interface 

used. This section explains how to set up the IC’s for “true-DAC” analog output commands. 

PMAC2-Style IC Signal Setup for True-DAC Analog Output 

The PMAC2-style “DSPGATE1” Servo IC is used in several servo-interface accessories for the 

Power PMAC. The most common one used for velocity and torque-mode control is the ACC-

24E2A analog-output board. The registers in this IC are accessible through elements of the 

Gate1[i] data structure. The user can also access them through the “alias” for this data structure 

that uses the name of the accessory, such as Acc24E2A[i]. However, this chapter will use the 

underlying Gate1[i] name. 

DAC Clock Frequency Control: Gate1[i].HardwareClockCtrl 

Gate1[i].HardwareClockCtrl specifies the frequency of the bit clock for the D/A converters 

connected to all channels of the specified IC. (It also controls three other clock frequencies for the 

IC.) The default value specifies a frequency of 4.92 MHz, which is suitable for all DACs used by 

Delta Tau. 

DAC Strobe Signal: Gate1[i].DacStrobe 

Gate1[i].DacStrobe specifies the common “strobe word” for the D/A converters connected to all 

channels of the specified IC. This 24-bit word is shifted out, one bit per DAC clock cycle, most 

significant bit first. The default value of $7FFFC0, with 17 bits set to 1, is suitable for use with 

the 18-bit DACs used by Delta Tau with these ICs. In general, for an n-bit DAC, n-1 bits of the 

strobe word are set to 1. 

Output Signal Mode Control: Gate1[i].Chan[j].OutputMode 

Gate1[i].Chan[j].OutputMode must be set to 1 or 3 to specify that the Phase A and B outputs 

for the specified IC and channel are in DAC mode, not PWM mode. A setting of 1 puts the Phase 

C output (not used for servo tasks in this mode of operation) in PWM mode; a setting of 3 puts 

the Phase C output in PFM mode. 

Output Inversion Control: Gate1[i].Chan[j].OutputPol 

Gate1[i].Chan[j].OutputPol controls whether the serial data streams to the DACs for the 

specified IC and channel are inverted or not. The default value of 0 (non-inverted) is suitable for 

use with any of the Delta Tau analog outputs. Inverting the bits of the serial data stream has the 

effect of negating the DAC voltage.  

 

WARNING 

In a servo algorithm changing the high/low polarity of the 

digital DAC data stream and therefore the analog polarity 

of the DAC output also changes the polarity match 

between output and input, which would produce a 

dangerous runaway condition if the system were working 

properly before the inversion. 
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PMAC3-Style IC Signal Setup for True-DAC Analog Output 

The PMAC3-style “DSPGATE3” machine-interface IC is used in several servo-interface 

accessories for the Power PMAC. For analog velocity and torque-mode control, it is used on the 

ACC-24E3 with the analog amplifier-interface mezzanine board. The registers in this IC are 

accessible through elements of the Gate3[i] data structure. The user can also access them through 

the “alias” for this data structure that uses the name of the accessory, such as Acc24E3[i]. 

However, this chapter will use the underlying Gate3[i] name. 

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

DAC Clock Frequency Control: Gate3[i].DacClockDiv 

Gate3[i].DacClockDiv specifies the frequency of the bit clock for the D/A converters connected 

to all channels of the specified IC by specifying how many times the frequency is halved from an 

internal. The default value of 4 specifies a frequency of 6.25 MHz, which is suitable for all DACs 

used by Delta Tau. 

DAC Strobe Signal: Gate3[i].DacStrobe 

Gate3[i].DacStrobe specifies the common “strobe word” for the D/A converters connected to all 

channels of the specified IC. This 32-bit word is shifted out, one bit per DAC clock cycle, most 

significant bit first. The default value of $FFFF0000, with 16 bits set to 1, is suitable for use with 

the standard 16-bit DACs used by Delta Tau with these ICs. A value of $FFFFFF00, with 24 bits 

set to 1, is suitable for use with the optional 18-bit DACs (which accept a 24-bit data stream) used 

by Delta Tau for very high-precision applications. In general, for an n-bit data stream, the high n 

bits of the strobe word are set to 1. 

Note that because the 18-bit DACs used on the ACC-24E3 in this configuration accept a 24-bit 

word, the data must first be shifted. The motor element Motor[x].DacShift must be set to 6 in 

this case to orient the data properly before it is written to the hardware. 

Output Signal Mode Control: Gate3[i].Chan[j].OutputMode 

Gate1[i].Chan[j].OutputMode must be set to 3, 7, 11, or 15 to specify that the Phase A and B 

outputs for the specified IC and channel are in DAC mode, not PWM mode. The difference 

between these values determines the signal modes of the Phase C and D outputs, which are not 

used for servo tasks in this mode of operation. 

Output Inversion Control: Gate3[i].Chan[j].OutputPol 

Gate3[i].Chan[j].OutputPol controls whether the serial data streams to the DACs for the 

specified IC and channel are inverted or not. The default value of 0 (non-inverted) is suitable for 

use with any of the Delta Tau analog outputs. Inverting the bits of the serial data stream has the 

effect of negating the DAC voltage.  
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WARNING 

In a servo algorithm changing the high/low polarity of the 

digital DAC data stream and therefore the analog polarity 

of the DAC output also changes the polarity match 

between output and input, which would produce a 

dangerous runaway condition if the system were working 

properly before the inversion. 

 

PMAC3-Style IC Signal Setup for Filtered-PWM Analog Output 

A few Power PMAC products can use the PMAC3 machine interface IC to generate analog 

outputs inexpensively by filtering digital PWM commands. At present, these products are the 

Power Clipper and a CK3M filtered PWM axis module. 

Please consult the product-specific reference manuals for those configurations for detailed 

instructions on setting up the filtered-PWM analog outputs. 

Motor Parameter Setup 

The next step is to configure the basic saved setup elements for the motor. 

Phase Task Control: Motor[x].PhaseCtrl 

For analog velocity or torque-mode control, bit 0 (value 1) and bit 2 (value 4) of 

Motor[x].PhaseCtrl must be set to 0. For the standard case where the servo loop is closed as a 

servo-loop task, bit 3 (value 8) is also set to 0, making the value of the entire element equal to 0. 

For the special case where the servo loop for this motor is closed in the phase interrupt, bit 3 is set 

to 1, making the value of the entire element equal to 8. This is generally done only for special 

high-bandwidth actuators such as galvanometers and voice-coil motors. 

Command Output Address: Motor[x].pDac 

To use the Phase A analog output register of a PMAC2-style or PMAC3 style IC for the motor’s 

servo output, Motor[x].pDac must be set to the address of the Dac[0] register for the desired IC 

and channel. The assignment would take the form of Gate1[i].Chan[j].Dac[0].a for a PMAC2-

style IC, or Gate3[i].Chan[j].Dac[0].a for a PMAC3-style IC. 

Note that these registers share an address with the Pwm[0] registers for the same channel, so 

when the value of Motor[x].pDac is queried or backed up, the address will report as that of the 

Pwm[0] register. 
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Setting Up Power PMAC for Pulse-and-Direction Control 

A Power PMAC with PMAC2-style or PMAC3-style ICs is capable of commanding stepper-

motor drives that require pulse-and-direction format input, or “stepper-replacement” servo drives 

that require this format. Power PMAC can command these drives either in open-loop fashion, in 

which case it internally routes the pulse train into its own encoder counters to create a pseudo-

closed loop, or in closed-loop fashion, in which case an external feedback device is wired to the 

Power PMAC to create a true feedback loop. 

 

Note 

It is often difficult to get good loop performance with pulse-

and-direction output when using a real encoder for feedback, 

due to phase and resolution mismatches. If it is desired to use 

an encoder to make sure steps are not lost, it is often better to 

use it for end-of-move verification rather than for servo 

feedback. 

 

This same technique is useful for creating “virtual” motors with no physical motion hardware 

attached. These are often used to follow real motors that do not have incremental encoders, so 

counter-associated functions such as position-compare outputs can be used on the virtual motor as 

if they were on the actual motor. 

A PMAC2-style or PMAC3-style IC creates its pulse-and-direction output signal with an on-

board fully digital pulse-frequency-modulation (PFM) circuit. This circuit repeatedly adds the 

latest command frequency value into an accumulator at a programmable rate of up to 40 MHz for 

a PMAC2-style IC, or 100 MHz for a PMAC3-style IC. When the accumulator overflows, an 

output pulse is generated with a positive direction signal; when the accumulator underflows, an 

output pulse is generated with a negative direction signal. This creates a pulse train whose 

frequency is directly proportional to the command value, with virtually no harmonic distortion, 

and none of the offset problems that affect analog pulse generation schemes. 
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Power PMAC Pulse-and-Direction Output Concept 
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Hardware Setup 

PMAC2-style and PMAC3-style ICs have pulse-and-direction outputs for each channel on the IC. 

In most configurations of interface and breakout hardware, these signals are accessible as RS-

422-level differential line-driver output pairs. These signals are driven by the value in a register 

for the channel, with the pulse frequency proportional to the value in this register. For this reason, 

these outputs are technically known as pulse-frequency-modulated (PFM) outputs. 

The signals from the PFM output register can alternately be used as pulse-width-modulated 

(PWM) outputs, and commonly form the last-phase command signals for “direct-PWM” output 

of brushless motors.  

The pulse-and-direction signals are available on the encoder connectors of the UMAC ACC-

24E2S, ACC-24E2A, and ACC-24E2 axis-interface boards. On the ACC-24E2S and ACC-

24E2A, the outputs use the same pins as the T, U, V, and W flag inputs for the channel; a jumper 

must be installed to enable the outputs on these pins.  

On the ACC-24E3, these outputs are also shared with the T, U, V, and W input pins on the 

encoder connector, but the outputs are enabled under software control by setting the (unsaved) 

OutFlagD control bit for the channel to 1 (Gate3[i].Chan[j].OutFlagD = 1). If the digital 

amplifier-interface mezzanine board is used, they are directly available as the “D” phase outputs. 

Signal Timing 

The PULSEn and DIRn signals are driven from the internal PFM clock signal, whose frequency 

is controlled by Gate1[i].HardwareClockCtrl or Gate3[i].PfmClockDiv (see below). The width 

of the pulse is controlled by the PFM clock frequency and Gate1[i].PwmDeadTime or 

Gate3[i].Chan[j].PfmWidth (see below). The output on PULSEn can be high-true (high during 

pulse, low otherwise) or low-true, as controlled by Gate1[i].Chan[j].OutputPol or 

Gate3[i].Chan[j].OutputPol; the default is high-true. The polarity of the DIRn signal is 

controlled by Gate1[i].Chan[j].PfmDirPol or Gate3[i].Chan[j].PfmDirPol. 

The DIRn signal is latched in this state at least until the front end of the next pulse. The PULSEn 

signal stays true for the number of PFMCLK cycles set by the dual-use multi-channel element 

Gate1[i].PwmDeadTime for PMAC2-style ICs, or by the channel-specific element 

Gate3[i].Chan[j].PfmWidth for PMAC3-style ICs.  

In the PMAC2-style IC, it then goes false and stays false for a minimum of this same time. This 

guarantees that the pulse duty cycle never exceeds 50%; the pulse signal can be inverted with 

Gate1[i].Chan[j].OutputPol without violating minimum pulse width specifications. If another 

pulse is generated internally during this minimum false time, the pulse will be skipped entirely 

(not delayed) on the output signal. 

In the PMAC3-style IC, there is no minimum time in the false state, so the duty cycle can go to 

100%. If the pulse width is less than the cycle length for the commanded frequency, the signal 

will go false until the start of the next cycle. If the pulse width is greater than or equal to the cycle 

length for the commanded frequency, the signal will simply stay true. 

In either case, undesired signal properties will be present at frequencies high enough that the 

cycle length becomes almost as short as the pulse width. The user should be careful to ensure that 

this cannot occur in the actual application. 
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Power PMAC Parameter Setup 

Hardware Setup for PMAC2-Style ICs 

With the PMAC2-style “DSPGATE1” ICs, many of the Gate1[i] setup elements for the PFM 

outputs are shared with other functions. 

PFM Clock Frequency: Gate1[i].HardwareClockCtrl 

Gate1[i].HardwareClockCtrl determines the frequency of addition of the command value into 

the accumulator by setting the frequency of the internal PFM clock signal. One addition is 

performed during each PFM clock cycle, so the addition frequency is equal to the PFM clock 

frequency. The pulse frequency for a given command value is directly proportional to this 

addition frequency. While the default frequency is suitable for almost all applications, those 

requiring very high or very low pulse frequencies may need to change this clock frequency. 

This PFM clock frequency puts an upper limit on the pulse frequency that can be generated – 

with an absolute limit of 1/4 of the PFM clock frequency. Depending on the worst-case frequency 

distortion that can be tolerated at high speeds, most people will limit their maximum pulse 

frequency to 1/10 of the PFMCLK/addition frequency, therefore selecting a PFMCLK/addition 

frequency 10 to 20 times greater than their maximum desired pulse frequency. 

The PFMCLK/addition frequency sets a lower limit on the pulse frequency as well – an absolute 

limit of one eight-millionth of the addition frequency. The default frequency of approximately 10 

MHz can provide a useful range of about 1 Hz to 1 million Hz, and is suitable for a wide variety 

of applications, especially with microstepping drives. For full or half step drives, the 

PFMCLK/addition frequency will probably be set considerably lower – to the approximately 1.2 

MHz or 600 kHz settings. 

Gate1[i].HardwareClockCtrl controls the PFM clock frequency for all of the axis-interface 

channels on the specified PMAC2-style IC, as well as other hardware clock signals. The input to 

the clock control circuitry is a 39.3216 MHz signal; this can be divided by 1, 2, 4, 8, 16, 32, 64, 

or 128 to create the PFMCLK signal.  Therefore, the possible PFMCLK frequencies and the I-

variable values that set them are: 

Divide by: Divider N 

(1/2^N) 

PFMCLK Freq Element Value* 

1 0 39.3216 MHz 2240 

2 1 19.6608 MHz 2249 

4 2 9.8304 MHz 2258 

8 3 4.9152 MHz 2267 

16 4 2.4576 MHz 2276 

32 5 1.2288 MHz 2285 

64 6 611.44 kHz 2294 

128 7 305.72 kHz 2303 

*SCLK frequency = PFMCLK frequency; ADCCLK and DACCLK frequencies at default 

 

The “divider” N is used in these I-variables to determine the frequency. 

These variables also independently control the frequencies of the encoder sample clock SCLK, 

plus the clocks for the serial D/A and A/D converters, DACCLK and ADCCLK, which are also 

divided down in the same way from the same 39.3216 MHz signal. The SCLK frequency should 

be the same as the PFMCLK frequency if the pulse train is fed into the encoder counters. The 
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above table shows the value of the I-variable for each possible frequency of the PFMCLCK, 

assuming the SCLK frequency is set equal to the PFMCLK frequency, and the DACCLK and 

ADCCLK frequencies are left at their default settings. 

PFM Pulse Width: Gate1[i].PwmDeadTime 

Gate1[i].PwmDeadTime, in addition to controlling the full-off “dead time” of PWM outputs for 

the IC, controls the pulse width of PFM outputs for the IC The pulse width is specified in PFM 

clock cycles; the valid range is 2 to 255 cycles. 

The minimum gap between pulses is equal to the pulse width, so the minimum pulse cycle period 

is twice the pulse width set here. This sets a maximum frequency of the PFM output. If the 

algorithm asks for a higher frequency, the IC will not produce the requested frequency, and 

pulses will be skipped. 

Output Mode Control: Gate1[i].Chan[j].OutputMode 

Gate1[i].Chan[j].OutputMode controls what types of signals are brought out from the specified 

IC and channel’s Phases A, B, & C; it must be set to 2 or 3 to use the PFM signals from the C 

register. 

Output Inversion Control: Gate1[i].Chan[j].OutputPol 

Gate1[i].Chan[j].OutputPol controls whether the pulse signals are inverted or not.  A value of 0 

or 1 means the PFM pulse is high-true; a value of 2 or 3 means that it is low true 

PFM Direction Inversion Control: Gate1[i].Chan[j].PfmDirPol 

Gate1[i].Chan[j].PfmDirPol controls the polarity of the PFM direction signal alone (it does not 

affect the pulse signal). A value of 0 means positive direction is low; a value of 1 means the 

negative direction is low. 

Encoder Decode Control: Gate1[i].Chan[j].EncCtrl 

Gate1[i].Chan[j].EncCtrl controls the source of the position feedback signal and how it is 

decoded. Values of 0 to 7 set up for an external signal wired into PMAC, with the different values 

in this range determining how the signal is decoded. One of these values should be used if you 

have a real feedback sensor; typically 3 or 7 for “times-4” decode of a quadrature encoder signal. 

A value of 8 selects the internally generated PFM signal, and automatically selects the pulse-and-

direction decode for the signal. Note that no external cable is required to feed back the PFM 

signal.  

For an external feedback signal, the correct setting of Gate1[i].Chan[j].EncCtrl should cause the 

encoder counter to count up in the direction you desire. It also must match the direction sense of 

the output; a positive command value (for instance, with the out10 command) must cause the 

counter to count up, and a negative command value (e.g. out-10) must cause the counter to 

count down. You can invert the direction sense of the output with Gate1[i].Chan[j].PfmDirPol, 

or by changing the wiring. 

Hardware Setup for PMAC3-Style ICs 

With the PMAC3-style “DSPGATE3” ICs, the Gate3[i] setup elements for the PFM outputs are 

dedicated to the PFM function. 
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Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

PFM Clock Frequency: Gate3[i].PfmClockDiv 

Gate3[i].PfmClockDiv determines the frequency of addition of the command value into the 

accumulator by setting the frequency of the internal PFM clock signal. One addition is performed 

during each PFM clock cycle, so the addition frequency is equal to the PFM clock frequency. The 

pulse frequency for a given command value is directly proportional to this addition frequency. 

While the default frequency is suitable for almost all applications, those requiring very high or 

very low pulse frequencies may need to change this clock frequency. 

This PFM clock frequency puts an upper limit on the pulse frequency that can be generated – 

with an absolute limit of 1/4 of the PFM clock frequency. Depending on the worst-case frequency 

distortion that can be tolerated at high speeds, most people will limit their maximum pulse 

frequency to 1/10 of the PFMCLK/addition frequency, therefore selecting a PFMCLK/addition 

frequency 10 to 20 times greater than their maximum desired pulse frequency. 

The PFMCLK/addition frequency sets a lower limit on the pulse frequency as well – an absolute 

limit of one eight-millionth of the addition frequency. The default frequency of approximately 12 

MHz can provide a useful range of about 1.5 Hz to 1 million Hz, and is suitable for a wide variety 

of applications, especially with microstepping drives. For full or half step drives, the 

PFMCLK/addition frequency will probably be set considerably lower – to the approximately 1.6 

MHz or 800 kHz settings. 

Gate3[i].PfmClockDiv specifies how many times an internal 100 MHz clock signal is divided by 

2 to create the PFM clock signal. It has a range of 0 to 15, permitting a range of PFM clock 

frequencies from 100 MHz down to 3 kHz. 

The encoder input circuitry for the channel must be able to accept pulses at least as fast as they 

are generated, so the encoder sample clock frequency must be at least as great as the PFM clock 

frequency. This means that the element Gate3[i].EncClockDiv must be set to a value less than or 

equal to that of Gate3[i].PfmClockDiv. 

PFM Pulse Width: Gate3[i].Chan[j].PfmWidth 

Gate3[i].Chan[j].PfmWidth controls the pulse width of PFM outputs for the specified IC and 

channel. The pulse width is specified in PFM clock cycles; the valid range is 1 to 4095 cycles. 

Unlike the PMAC2-style ICs, there is no minimum gap between pulses, as long as there is a gap. 

If pulses are generated internally faster than the previous pulses end, the pulse output will be 

continuously in the “on” state. 

Output Mode Control: Gate3[i].Chan[j].OutputMode 

Gate3[i].Chan[j].OutputMode controls what types of signals are brought out from the specified 

IC and channel’s Phases A, B, C & D; it must be set to 8 or higher to use the PFM signals from 

the Phase D. 
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Data Packing Control: Gate3[i].Chan[j].PackOutData 

Gate3[i].Chan[j].PackOutData determines whether two phases of output data are “packed” into 

a single register or not. It must be set to 0 to disable this packing so that the PFM command is 

written by itself into Phase D’s command register Gate3[i].Chan[j].Pfm. 

Output Inversion Control: Gate3[i].Chan[j].OutputPol 

Gate3[i].Chan[j].OutputPol controls whether the pulse signals are inverted or not. A value of 0 

or 1 means the PFM pulse is high-true; a value of 2 or 3 means that it is low true. 

PFM Direction Inversion Control: Gate3[i].Chan[j].PfmDirPol 

Gate3[i].Chan[j].PfmDirPol controls the polarity of the PFM direction signal alone (it does not 

affect the pulse signal). A value of 0 means positive direction is low; a value of 1 means the 

negative direction is low. 

Encoder Decode Control: Gate3[i].Chan[j].EncCtrl, Gate3[i].Chan[j].TimerMode 

The PMAC3-style DSPGATE3 IC provides several options for accepting real and simulated 

feedback when generating pulse-and-direction outputs with the PFM circuit. The first, and most 

common, option is to feed the pulse train back into the encoder counter circuitry for simulated 

feedback, with no position sensor of any kind used. 

The second option is to feed back the pulse train for simulated feedback, but also to use an 

encoder for confirmation periodically. In the PMAC3-style IC, this can all be done in a single 

channel (it requires two channels on a PMAC2-style IC). 

The third option is to use an actual encoder to close the servo loop. Because of the difficulty in 

properly matching encoder counts to pulse outputs, this option is generally not recommended. 

There are two possibilities to implement the first option. If Gate3[i].Chan[j].EncCtrl is set to 8, 

the encoder decoding circuitry accepts and processes the internally generated PFM signal, and 

automatically selects the pulse-and-direction decode mode. With Gate3[i].Chan[j].TimerMode 

at the default value of 0, the pulse count, with 8 bits of timer-based fractional-count estimation, is 

latched each servo cycle into the Gate3[i].Chan[j].ServoCapt register, where it can be used by 

the encoder conversion table to pre-process the simulated motor feedback. 

The second possibility is to set Gate3[i].Chan[j].TimerMode to 3. This feeds back the internally 

generated PFM signal to the timer circuitry, using it as a counter. In this mode, the pulse count is 

latched each servo cycle into the Gate3[i].Chan[j].TimerA register, in units of whole counts, 

with no fractional-count estimation. Since the fractional-count estimation can cause unwanted 

dithering, this mode is usually preferred for the first option. 

To implement the second option, the pulse train must be fed back into the channel’s timer 

circuitry with Gate3[i].Chan[j].TimerMode set to 3. The Gate3[i].Chan[j].TimerA register will 

be used to close the simulated servo loop. The confirming encoder is fed into the channel’s 

encoder inputs, and Gate3[i].Chan[j].EncCtrl is set to a value from 0 to 7 (probably 3 or 7) to 

decode this signal. 

Gate3[i].Chan[j].EncCtrl controls the source of the position feedback signal and how it is 

decoded. Values of 0 to 7 set up for an external signal wired into PMAC, with the different values 

in this range determining how the signal is decoded. One of these values should be used if you 

have a real feedback sensor; typically 3 or 7 for “times-4” decode of a quadrature encoder signal. 
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The pulse count, without fractional-count estimation, is latched each servo cycle into the 

Gate3[i].Chan[j].ServoCapt register, where it can be compared to the internal pulse count as 

desired. 

For the third option of an external feedback signal, the correct setting of 

Gate3[i].Chan[j].EncCtrl should cause the encoder counter to count up in the direction you 

desire. It also must match the direction sense of the output; a positive command value (for 

instance, with the out10 command) must cause the counter to count up, and a negative 

command value (e.g. out-10) must cause the counter to count down. You can invert the 

direction sense of the output with Gate3[i].Chan[j].PfmDirPol, or by changing the wiring. 

Parameters to Set Up Basic Motor Operation 

Phase Task Control: Motor[x].PhaseCtrl 

For pulse-and-direction control, bit 0 (value 1) and bit 2 (value 4) of Motor[x].PhaseCtrl must 

be set to 0. For the standard case where the servo loop is closed as a servo-loop task, bit 3 (value 

8) is also set to 0, making the value of the entire element equal to 0. For the special case where 

the servo loop for this motor is closed in the phase interrupt, bit 3 is set to 1, making the value of 

the entire element equal to 8. This is generally done only for special high-bandwidth actuators 

such as galvanometers and voice-coil motors, and would very rarely be done in pulse-and-

direction mode. 

Command Output Address: Motor[x].pDac 

To use the PFM output register of a PMAC2-style or PMAC3 style IC for the motor’s servo 

output, Motor[x].pDac must be set to the address of the Pfm register for the desired IC and 

channel. The assignment would take the form of Gate1[i].Chan[j].Pfm.a for a PMAC2-style IC, 

or Gate3[i].Chan[j].Pfm.a for a PMAC3-style IC. 

Note that these registers share an address with the Pwm[2] register (PMAC2-style IC) or the 

Pwm[3] register (PMAC3-style IC) for the same channel, so when the value of Motor[x].pDac is 

queried or backed up, the address will report as that of the Pwm[k] register. 

Encoder Conversion Table Processing: EncTable[n] 

The counter value used for feedback, whether from an actual encoder, or directly from the pulse 

train, must be processed by the encoder conversion table (ECT) before it can actually be used by 

the Power PMAC motor for feedback. Most people use the setup window in the IDE to configure 

the entry, as it calculates many of the needed values for you and presents the possible choices to 

you. 

When using a PMAC2-style IC, to get the count value with 1/T sub-count extension, you would 

select “Type 3” conversion (software 1/T extension). This method has the advantage of being 

automatically present in the table already, but it might lead to dithering at rest. In the IDE menu, 

you just need to select the IC and channel numbers, and the IDE will make all of the settings to 

provide an output scaled in counts (with fractional resolution). 

If setting up the entry manually, the following settings should be made (with the appropriate 

numerical indices): 

EncTable[n].Type = 3 

EncTable[n].pEnc = Gate1[i].Chan[j].ServoCapt.a 

EncTable[n].pEnc1 = Gate1[i].Chan[j].TimeBetweenCts.a 
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EncTable[n].index3 = 0 

EncTable[n].MaxDelta = 0 

EncTable[n].ScaleFactor = 1/512 

 

When using a PMAC2-style IC, to get the count value without 1/T sub-count extension, you 

would select “Type 1” conversion (single-register read). This method has the advantage of not 

being susceptible to dithering due to sub-count feedback values. In the IDE menu, you just need 

to specify that the source register is the PhaseCapt register for the channel, to use 24 bits starting 

at bit 8, with one output unit per count. 

If setting up the entry manually, the following settings should be made (with the appropriate 

numerical indices): 

EncTable[n].Type = 1 

EncTable[n].pEnc = Gate1[i].Chan[j].PhaseCapt.a 

EncTable[n].index1 = 8 

EncTable[n].index2 = 8 

EncTable[n].index3 = 0 

EncTable[n].MaxDelta = 0 

EncTable[n].ScaleFactor = 1/256 

 

When using a PMAC3-style IC, to get the value with 1/T sub-count extension (already done by 

the IC), you would select “Type 1” conversion (single-register read). This method has the 

advantage of being automatically present in the table already, but it might lead to dithering. In the 

IDE menu, you just need to specify that the source register is the ServoCapt register for the 

channel, with one output unit per 256 LSBs. 

If setting up the entry manually, the following settings should be made (with the appropriate 

numerical indices): 

EncTable[n].Type = 1 

EncTable[n].pEnc = Gate3[i].Chan[j].ServoCapt.a 

EncTable[n].index1 = 0 

EncTable[n].index2 = 0 

EncTable[n].index3 = 0 

EncTable[n].MaxDelta = 0 

EncTable[n].ScaleFactor = 1/256 

 

When using a PMAC3-style register, to get the pulse-count value from the “timer” register, which 

does not have sub-count extension, you would select “Type 1” conversion (single-register read). 

This method has the advantage of not being susceptible to dithering due to sub-count feedback 

values. In the IDE menu, you just need to specify that the source register is the TimerA register 

for the channel, to use 24 bits starting at bit 0, with one output unit per count. 

If setting up the entry manually, the following settings should be made (with the appropriate 

numerical indices): 

EncTable[n].Type = 1 

EncTable[n].pEnc = Gate3[i].Chan[j].TimerA.a 

EncTable[n].index1 = 0 

EncTable[n].index2 = 0 
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EncTable[n].index3 = 0 

EncTable[n].MaxDelta = 0 

EncTable[n].ScaleFactor = 1/256 

Feedback Addresses: Motor[x].pEnc, Motor[x].pEnc2 

Motor[x].pEnc specifies what register the motor reads for its outer (position) loop feedback. This 

must be the result from an encoder conversion table entry, and will always take the form of 

EncTable[n].a. 

Motor[x].pEnc2 specifies what register the motor reads for its inner (velocity) loop feedback. 

This also must be the result from an encoder conversion table entry, and will always take the form 

of EncTable[n].a. In this mode, it will virtually always be the same register as is used for outer-

loop feedback. 

Parameters to Set Up Motor Servo Gains 

If you are using a real feedback sensor, the motor’s servo loop should be tuned just as a normal 

servo motor would be. This is covered in a later section of the manual. However, if you are just 

using the counted pulse train for feedback to create a fully electronic loop, the response is very 

predictable, and the tuning gains can be set directly. The following values provide a responsive 

and stable performance at the default servo update frequency for a motor scaled in units of pulses 

(counts): 

Motor[x].Servo.Kp = 40 

Motor[x].Servo.Kvfb = 0 

Motor[x].Servo.Kvff = 40 

Motor[x].Servo.Ki = 0.001 

 

Deadband 

Because it is easy to command end positions with fractional-count components and the system 

can only resolve full count (pulse) values at rest, it is strongly advised to implement a count of 

true deadband in the simulated servo loop to prevent dithering at rest. To do this, the following 

settings should be made: 

Motor[x].Servo.BreakPosErr = 1.0  // For motor scaled in counts (pulses) 

Motor[x].Servo.Kbreak = 0   // Zero gain inside deadband zone 

 

This deadband functionality is not present in the basic PID algorithm (Sys.PidCtrl). However, it 

is present in the default Sys.ServoCtrl algorithm and all of the other built-in algorithms. 
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Setting Up Power PMAC for Position-Output Control 

The command output value for Power PMAC can also represent a position command. This mode 

is typically used in two types of cases: fast-tool actuators such as galvanometers and piezomotors 

with very high-bandwidth analog position loops, and smart positioning drives using network 

interfaces such as EtherCAT. In this mode of operation, Power PMAC computes the desired 

trajectory for the motor, but does not close any of the feedback loops. 

Power PMAC Parameter Setup 

Since much more of the work is being done external to Power PMAC in this mode, there are 

fewer parameters to set up. However, several parameters must be set correctly in order for this 

mode to operate correctly. 

Phase Task Control: Motor[x].PhaseCtrl 

For position-mode control, bits 0 (value 1), 1 (value 2), and 2 (value 4) of Motor[x].PhaseCtrl 

must be set to 0 to disable all phase commutation tasks. For the standard case where the servo 

loop is closed as a servo-loop task, bit 3 (value 8) is also set to 0, making the value of the entire 

element equal to 0. For the special case where the servo loop for this motor is closed in the phase 

interrupt, bit 3 is set to 1, making the value of the entire element equal to 8. This is generally done 

only for high-bandwidth actuators such as galvanometers and voice-coil motors. 

Control Mode: Motor[x].Ctrl 

To output position command values, Motor[x].Ctrl must be set to Sys.PosCtrl. This selects the 

“servo” algorithm that does not actually close any feedback loops, but simply outputs the net 

desired position (including computed trajectory, position following, and position compensation) 

as an integer command value. 

Command Output Address: Motor[x].pDac 

To use the Phase A analog output register of a PMAC2-style or PMAC3 style IC for the motor’s 

position-command output, Motor[x].pDac must be set to the address of the Dac[0] register for 

the desired IC and channel. The assignment would take the form of Gate1[i].Chan[j].Dac[0].a 

for a PMAC2-style IC, or Gate3[i].Chan[j].Dac[0].a for a PMAC3-style IC. 

Note that these registers share an address with the Pwm[0] registers for the same channel, so 

when the value of Motor[x].pDac is queried or backed up, the address will report as that of the 

Pwm[0] register. 

To use a network output register, Motor[x].pDac must specify the address of the appropriate 

register for that network. Refer to instructions for the particular network for details. 

Position Feedback Address: Motor[x].pEnc 

Because Power PMAC is not closing the position loop in this mode, it is not necessary to set 

Motor[x].pEnc to the address of a register containing the actual position. However, if the Power 

PMAC is not reading actual position information through a register specified by Motor[x].pEnc, 

the value reported by queries for actual position will not be valid; desired position values must be 

queried instead. In addition, Power PMAC will still be computing following error as the 

difference between net desired position and net actual position; if the Power PMAC is not reading 

actual position, Motor[x].FatalFeLimit should be set to 0.0 to disable a possible shutdown due 

to “excessive” following error. 
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In the case of a fast actuator with an analog feedback loop, a position feedback value is often not 

available (and would require an ADC input on the Power PMAC in any case). However, with a 

networked positioning drive, the actual position value is almost always reported back to the 

central controller. In this case, it is strongly recommended to process this position value through 

the encoder conversion table and read it for the motor through Motor[x].pEnc for both position 

reporting and error checking purposes.  

In a networked drive, the actual position is often reported back to the Power PMAC one or two 

network cycles after the comparable command position is sent. At high velocities, especially with 

high feedback resolution, this can lead to Power PMAC computing large numerical following-

error values (which do not exist in the drive). The value of Motor[x].FatalFeLimit may have to 

be adjusted to avoid unnecessary failures. 

For example, with a 1-millisecond network update period and a 2-cycle delay in reporting actual 

position, a motor with a 17-bit encoder (131,072 “counts” per revolution) running at 3000 rpm 

(50 rev/sec), Power PMAC would report a following error of: 

ctsmsec
msec

sec

sec

rev

rev

cts
FE 107,132*

1000
*50*072,131   

This error would be present even if there were no actual following error in the network drive’s 

own servo loop. In this case, Motor[x].FatalFeLimit would need to be increased substantially 

from its default value of 2000. Of course, the drive should have its own error limit, and the user 

should set this as tight as possible without causing nuisance trips. 

Auxiliary Command Output Addresses 

In addition to the main position command output, it is possible to have auxiliary velocity and 

acceleration (torque) output commands each cycle from feedforward gains. This can provide 

improved response for position-mode drives that are able to accept “offset” values each cycle. 

This functionality is enabled by setting Motor[x].Servo.pVelOut and/or 

Motor[x].Servo.pAccOut to the addresses of the specified registers, typically network registers 

that are mapped to drive offset registers. See the User’s Manual chapter Setting Up the Servo 

Loop section on the position control servo algorithm for details. 

Position Compensation Table Functionality 

In other control modes, when a compensation table is used to correct for position measurement 

errors with the target position register being Motor[x].CompPos, the correction calculated by the 

table is added to the raw actual (measured) position value. However, when Power PMAC is 

simply outputting the commanded position value in this mode, this would not permit these 

corrections. So in position-output mode, this correction is instead subtracted from the commanded 

position output value each servo cycle. It is also possible in newer firmware versions to use 

Motor[x].CompDesPos as the target register for position corrections; this value is added to the 

net desired position value that is output. 
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SETTING UP POWER PMAC-BASED COMMUTATION 
AND/OR CURRENT LOOP 

This chapter provides detailed instructions for the step-by-step manual setup of motor phase 

commutation and/or digital current-loop closure within the Power PMAC. If you are not 

performing the commutation in the Power PMAC, as for mechanically commutated brush motors 

or brushless motors commutated in a “velocity-mode” or “torque-mode” amplifier, the 

instructions in this chapter do not concern you. 

Very few users will do these steps manually; almost all will use the automated procedures of the 

IDE’s “motor setup” control, even for the setup of the first unit. The instructions in this section 

are for the user who wants a full understanding of the Power PMAC algorithms and how they are 

set up for a particular application. 

Selection of Phase Update Frequency 

The frequency at which the commutation and/or digital current loop algorithms are executed for 

each motor is determined by the setting of the (common) phase clock frequency for the Power 

PMAC. Instructions for setting the phase clock frequency are given in the earlier chapter Power 

PMAC System Configuration. Note that it is possible to extend the software phase update period 

to multiple phase clock cycles by setting the value of saved setup element Sys.PhaseCycleExt to 

a value greater than the default of 0, specifying the number of hardware clock cycles to be 

skipped between consecutive software phase updates. 

The selection of an optimal phase clock frequency depends on several factors. The phase clock 

frequency must be an integer multiple of the servo clock frequency. While it is possible to set the 

phase clock frequency equal to the servo clock frequency, this typically delays the servo 

command value from taking effect on the machine for too great a time, because the output does 

not occur until the next phase update after the servo loop is closed. For this reason, in most 

applications, the phase clock frequency is set to 2 to 4 times the servo clock frequency. 

If a motor is being commutated by Power PMAC, but the current loop is being closed in the 

amplifier, the key performance factor is ensuring that there are sufficient updates to complete a 

cycle. There should be a minimum of 6 software phase updates per commutation cycle of the 

motor. Note that this will only become a factor for very high-speed motors. The default phase 

update frequency of 9 kHz can support a commutation frequency of 1.5 kHz, which corresponds 

to 45,000 rpm on a 4-pole motor. 

If the current loop is being closed by Power PMAC, proper selection of the phase update 

frequency becomes important in more applications, as the bandwidth of the current loop can be 

dependent on the update rate. While the default update rate of 9 kHz is sufficient for many 

applications, a significant number of applications can benefit in performance from a higher 

update frequency. Remember that the phase update frequency cannot be more than twice the 

PWM output frequency for a motor (because only two decisions can be made in a PWM cycle: 

the turn-on time, and the turn-off time). 
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Beginning Setup of Commutation 

If Power PMAC is to perform the commutation of a motor, it must do more than simply close the 

position/velocity-loop servo for the motor. Several parameters must be set up correctly to 

configure the commutation. 

The first steps in setting up the commutation are common whether or not Power PMAC is 

performing the current loop closure (direct-PWM output mode) or not (sine-wave output mode). 

These steps are described in this section.  The next steps differ based on which mode is used; 

these are described in the next two sections, only one of which is used for any given motor. 

Finally, the last steps in the setup of commutation are again common to the two modes of 

operation; these are described in the following section. 

Commutation Enable: Motor[x].PhaseCtrl 

If Power PMAC is performing the commutation for Motor x, the value of Motor[x].PhaseCtrl 

must be set greater than 0. This data structure element has several independent control bits. 

“Unpacked” Commutation I/O 

If bit 2 (value 4) of Motor[x].PhaseCtrl is set to 1, Power PMAC will perform commutation for 

the motor, with the command output for each phase written to separate consecutively registers, 

and the phase current feedback (if used) read from separate consecutively addressed registers. 

This is known as the “unpacked” format, and it must be selected for commutation with the 

DSPGATE1 or DSPGATE2 PMAC2-style ASICs (as in the ACC-24E2x and ACC-5E UMAC 

accessories), whether communicating directly with the ASIC that is interfaced to the amplifier 

and feedback device or remotely over the MACRO ring.  

This unpacked software format can be used with the DSPGATE3 PMAC3-style ASIC (as in the 

ACC-24E3 UMAC accessory) if the ASIC channel hardware is also set up in “unpacked” format. 

The channel hardware will be in unpacked format if Gate3[i].Chan[j].PackOutData (bit 23 of 

the channel’s output control register Gate3[i].Chan[j].OutCtrl) is set to 0, and 

Gate3[i].Chan[j].PackInData (bit 22 of the channel’s input control register 

Gate3[i].Chan[j].InCtrl) is set to 0. However, this mode is less efficient than “packed” format 

(see below), and should generally only be used when more than 16 bits of command output 

resolution are required, as with the optional 18-bit DAC outputs of the ACC-24E3. 

“Packed” Commutation I/O 

If bit 0 (value 1) of Motor[x].PhaseCtrl is set to 1, Power PMAC will perform commutation for 

the motor, with the command outputs for the phases written in pairs (C with A, and if needed, D 

with B) of 16-bit values in single 32-bit registers. This can be used with the DSPGATE3 

PMAC3-style ASIC (as in the ACC-24E3 UMAC accessory) if the ASIC channel hardware is in 

“packed” format. The channel hardware will be in packed format if 

Gate3[i].Chan[j].PackOutData (bit 23 of the channel’s output control register 

Gate3[i].Chan[j].OutCtrl) is set to 1, and Gate3[i].Chan[j].PackInData (bit 22 of the channel’s 

input control register Gate3[i].Chan[j].InCtrl) is set to 1. These are the default values for the IC 

setup elements, and the use of packed format saves significant time by reducing the number of 

time-consuming read and write cycles required. 

The “packed” I/O format cannot be used with the PMAC2-style DSPGATE1 or DSPGATE2 

ASICs, or when the control is done over the MACRO ring with any ASIC. 
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Only one of bit 0 and bit 2 of Motor[x].PhaseCtrl should be set to 1 at any given time. Bits 1 

and 3 control other features related to use of the phase interrupt, and their settings are 

independent of these two bits. 

Note 

Direct PWM control of brush motors with digital current loop 

utilizes Power PMAC’s commutation algorithms even though 

the motor does not require electronic commutation; either bit 0 

or bit 2 of Motor[x].PhaseCtrl must still be set to 1 for this 

case. Setup of this case is covered in a separate section below. 

 

Commutation Position Feedback Source: Motor[x].pPhaseEnc 

The saved data structure element Motor[x].pPhaseEnc tells Power PMAC where to get its rotor 

angle position feedback for commutation. This is almost always the encoder “phase capture” 

position register of a Servo ASIC, or the position feedback Register 0 of a MACRO node.  

The element is usually set to the address of the desired register by using the “.a” suffix with the 

register’s element name. For an incremental encoder phase capture register, the setting will take 

the form of: 

Motor[x].pPhaseEnc = Gaten[i].Chan[j].PhaseCapt.a 

where n specifies the ASIC type (1, 2, or 3), i specifies the ASIC number in the system, and j 

specifies the channel index (0 to 3). 

For a serial encoder position register in a PMAC3-style DSPGATE3 IC, the setting will take the 

form of: 

Motor[x].pPhaseEnc = Gate3[i].Chan[j].SerialEncDataA.a 

For a MACRO-node position-feedback register, the setting will take the form of: 

Motor[x].pPhaseEnc = Gate2[i].Macro[k][0].a 

for a PMAC2-style DSPGATE2 MACRO ASIC, where i specifies the ASIC number in the 

system, and k specifies the node number in the ASIC (0 to 15); or: 

Motor[x].pPhaseEnc = Gate3[i].MacroInA[k][0].a 

Motor[x].pPhaseEnc = Gate3[i].MacroInB[k][0].a 

for a PMAC3-style DSPGATE3 ASIC as in the ACC-5E3 MACRO card for UMAC racks. Note 

that in this ASIC, there are separate input and output registers, so you must specify a “MacroIn” 

register to read the value, and there are two banks of registers, A and B, so you must specify 

which one is to be used. As with the PMAC2-style ASIC, i specifies the ASIC number in the 

system, and k specifies the node number in the bank (0 to 15). 

Power PMAC reads the specified 32-bit register without masking out any bits. If the position data 

in the register can roll over, the most significant bit of the data must be in the highest bit (bit 31) 
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of the register. If there are a few undetermined low bits in the register, as with 8 low bits when 

reading a 24-bit register from a PMAC2-style ASIC or MACRO register, their value will not have 

any significance to the resulting calculations. 

Commutation Position Source Processing: Motor[x].PhaseEncRightShift, 
Motor[x].PhaseEncLeftShift 

In most applications, Power PMAC simply reads the 32-bit register whose address is specified by 

Motor[x].pPhaseEnc and uses the 32-bit value to calculate the commutation phase angle. 

However, there are a few cases where this may not be sufficient. If there is any possibility that the 

value in this register could “roll over” between maximum positive value and maximum negative 

value, the most significant bit (MSB) of the value must be in bit 31 of the register. 

Some serial encoder data protocols separate single-turn and multi-turn data into separate registers. 

If the MSB of the single-turn data does not appear on the data bus in bit 31, the data must be 

processed before it can be used. In addition, there is the possibility that less significant bits in the 

register do not reflect position data, and need to be eliminated. (However, remember that Power 

PMAC only uses 11 bits of position data for its 2048-part commutation cycle.) 

Each phase cycle, Power PMAC takes the 32-bit data from the register specified by 

Motor[x].pPhaseEnc and shifts it right by the number of bits specified in saved setup element 

Motor[x].PhaseEncRightShift. A n-bit right shift eliminates the low n bits of the starting value. 

Then it takes this new value and shifts it left by the number of bits specified in saved setup 

element Motor[x].PhaseEncLeftShift. An m-bit left shift eliminates the high m bits of the 

starting value and fills in the low m bits of the result with zeros. 

The following diagram shows how the shifting process would work for 20-bit commutation 

position feedback that is found in bits 8 through 27 of the 32-bit bus. There is first a right of 8 

bits, then a left-shift of 32 – 20 = 12 bits. 

- - - - - - - -20 bits real data- - - -

20 bits real data- - - - - - - - - - - -

(zeros)20 bits real data

0

0

0

78272831

192031

111231
 

Commutation Feedback Data Shifting Example 

With both elements at their default value of 0, no net processing is done; the resulting value is the 

same as the value read from the source register. If all that is desired is to eliminate some low bits, 

the two shift lengths should be the same. If all that is desired is to move the data MSB to bit 31 of 

the result, the right shift value should be 0, and the left shift value should be set to 31 minus the 

bit number of the MSB in the source data. 
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Commutation Position Scale Factor: Motor[x].PhasePosSf 

The data structure element Motor[x].PhasePosSf is used to multiply the source rotor-angle 

position value from the 32-bit register specified by Motor[x].pPhaseEnc to convert this value 

into the “normalized” scale of 2048 units per commutation cycle. This value effectively specifies 

the size of the commutation cycle, but it is inversely proportional to the feedback units per 

commutation cycle. 

Motor[x].PhasePosSf converts the data from the raw units of the 32-bit source register (after any 

shifting operations) to units of 1/2048 of a commutation cycle. Note that the units of the full 

source register will be different from those of the hardware circuit if the hardware does not use 

the full range of the 32-bit register. For example, the 24-bit “phase capture” registers of PMAC2-

style ASICs used in ACC-24E2x UMAC boards occupy bits 8 to 31 of the 32-bit register, with bit 

8 representing 1 count of the encoder. Bit 0 of the 32-bit register therefore represents 1/256 of a 

count, so the source register should be considered to have units of 1/256 of a count. 

In the PMAC3-style ASIC, the encoder “phase capture” registers are 32 bits wide, but for 

quadrature encoders a single count is in bit 8 (the low 8 bits being fractional-count estimate), so 

here also the source register should be considered to have units of 1/256 of a count. For sinusoidal 

encoders, the “phase capture” registers have 12 bits of fractional resolution per quadrature count 

(14 bits per line of the encoder), so the source register should be considered to have units of 

1/4096 of a count (1/16,384 of a line). 

The equation for calculating Motor[x].PhasePosSf is: 
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For example, if there are 5000 quadrature-encoder counts per commutation cycle (as with 10,000 

counts per revolution for a 4-pole motor) read through a PMAC2-style Servo IC, this scale factor 

should be computed as: 
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It is often easier to let Power PMAC do the math for you, so the following command could be 

used to set this element for Motor 1: 

Motor[1].PhasePosSf = 2048/5000/256 

In another example, a linear motor has a 64-millimeter commutation-cycle length, using a 

sinusoidal encoder of 20-micron pitch interpolated through a PMAC3-style ASIC. This scale 

factor should be computed as: 
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For direct-PWM control of a brush DC motor, Motor[x].PhasePosSf should be set to 0, 

effectively disabling the AC commutation. 
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Current Loop in Power PMAC or Not: Motor[x].pAdc 

Power PMAC can perform commutation for a motor with or without closing the current loop for 

the motor phases. If the current loops are closed in the Power PMAC, the outputs from the Power 

PMAC are phase voltage commands, usually represented as pulse-width-modulated (PWM) 

digital outputs. This technique is called “direct PWM” control, because the PWM signals are 

typically used directly as the on/off control signals for the power transistors in the amplifier. If 

the current loops are not closed in the Power PMAC, the outputs from Power PMAC are phase 

current commands, usually represented as +/-10V analog voltage signals. This technique is called 

“sine-wave output” control, because in constant-velocity, constant-torque motion, the outputs 

appear as sine waves on an oscilloscope. 

Motor[x].pAdc controls which mode of operation is used. If it is set to 0, Power PMAC will not 

close the current loops for the motor. Further setup for this mode is covered in the next section, 

“Setting Up for Sine-Wave Output Control”. 

If Motor[x].pAdc is set to a non-zero address value, Power PMAC will close the current loops 

for the motor, with this value specifying the address of the first register for current feedback. 

Setup for this mode is covered in the following section, “Setting Up for Direct PWM Control”. 
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Setting Up for Sine-Wave Output Control 

This section explains how to set up the commutation scheme if Power PMAC is performing the 

commutation for a motor, but not the digital current loop. In this mode, Power PMAC outputs 

two phase current commands to the amplifier, usually as analog voltages through digital-to-

analog converters (DACs). In the steady state (constant velocity and constant load), these 

voltages are a sinusoidal function of time, so this mode is often called “sine-wave output”. This 

mode is selected by setting bit 0 (value 1) or bit 2 (value 4) of Motor[x].PhaseCtrl to 1 and 

setting Motor[x].pAdc to 0. 

Sine-wave output mode is typically used to control linearly modulated brushless motor amplifiers 

in the highest-precision systems, often with sub-nanometer resolution. There are several reasons 

for its use in this class of applications. First, it has the highest-resolution command outputs, with 

16-bit or 18-bit DACs directly commanding motor phase currents. Second, the ability to use 

linearly modulated amplifiers dramatically reduces electromagnetic interference (EMI) from the 

amplifier compared to switching (PWM) amplifiers, reducing noise on the position feedback and 

other measurements. Finally, the analog nature of the current-loop closure in the drives eliminates 

sampling delays that can reduce control performance. 

 

 

 

 

 

 

 

 

 

 

 

 

Power PMAC Sinewave Commutation with Amplifier Current Loop 

Hardware Setup 

For Power PMAC to operate a motor in the sine-wave commutation analog output mode, two 

analog outputs are required for the motor. Typically, these are the Phase A and B DACs on the 

same channel of a Servo IC. 
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PMAC2-Style IC Interface 

PMAC2-style “DSPGATE1” Servo ICs are used on ACC-24E2A analog axis interface boards for 

the UMAC rack-mounted control systems. These provide two DACs per servo channel. 

PMAC2-Style Servo IC Hardware Clock Frequency Control: Gate1[i].HardwareClockCtrl 

Gate1[i].HardwareClockCtrl determines the frequency of four hardware clock signals used for 

the machine interface channels on a PMAC2-style Servo IC. These can probably be left at the 

default values. The four hardware clock signals are SCLK (encoder sample clock), PFMCLK 

(pulse frequency modulator clock, DACCLK (digital-to-analog converter clock), and ADCCLK 

(analog-to-digital converter clock). 

Only the DACCLK signal is directly used with the sine-wave output, to control the frequency of 

the serial data stream to the DACs. The default DAC clock frequency of 4.9152 MHz is suitable 

for the DACs on all Delta Tau PMAC2-style hardware. Refer to the 

Gate1[i].HardwareClockCtrl description for detailed information on setting these variables. 

PMAC2-Style Servo IC DAC Strobe Word: Gate1[i].DacStrobe 

Gate1[i].DacStrobe defines the 24-bit “strobe word” for all of the D/A converters interfaced to 

the “DSPGATE1” PMAC2-style Servo IC. This word is shifted out, MSB first, one bit per 

DACCLK cycle, each phase cycle to start the conversion of the D/A converters. The default value 

of $7FFFC0 is suitable for use with the 18-bit DACs used on the ACC-24E2A UMAC analog-

output axis-interface boards. 

PMAC2-Style Servo IC Channel Output Mode: Gate1[i].Chan[j].OutputMode 

Channel-specific element Gate1[i].Chan[j].OutputMode must be set to 1 or 3 to specify that 

outputs A and B for the channel are in DAC mode, not PWM mode. A setting of 1 puts output C 

(not used for servo or commutation tasks in this mode) in PWM mode; a setting of 3 puts output 

C in PFM mode. 

PMAC2-Style Servo IC Channel Encoder Decode: Gate1[i].Chan[j].EncCtrl 

Gate1[i].Chan[j].EncCtrl must be set up to decode the commutation encoder properly. Almost 

always a value of 3 or 7 is used to provide “times-4” decode of a quadrature encoder (4 counts 

per encoder line). The difference between 3 and 7 is the direction sense of the encoder; you 

should set this variable so your motor counts up in the direction you want. 

The sign of the Motor[x].PhaseOffset commutation phase angle parameter must match that of 

Gate1[i].Chan[j].EncCtrl for your particular wiring; if it is wrong, you will lock into a position 

rather than generate continuous torque. A test for determining this polarity match is given below. 

Remember that if you change Gate1[i].Chan[j].EncCtrl on a working motor, you will have to 

change Motor[x].PhaseOffset as well. 

PMAC3-Style IC Interface 

PMAC3-style “DSPGATE3” ICs are used on ACC-24E3 axis interface boards for the UMAC 

rack-mounted control systems and in the Power PMAC Brick Controller. These can be ordered 

with analog-amplifier interface boards with one or two DACs per servo channel. The 

configuration with two DACs per servo channel must be ordered to perform sine-wave output 

commutation. 
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PMAC3-Style IC DAC Clock Frequency Control: Gate3[i].DacClockDiv 

Gate3[i].DacClockDiv determines the frequency of the clock signal to the serial DACs 

controlled by the IC. It specifies how many times the internal 100 MHz clock signal is divided by 

two in order to generate the DACCLK signal. The default value of 5 yields a DACCLK 

frequency of 3.125 MHz, which is appropriate for the DACs used with the ACC-24E3. 

PMAC3-Style IC DAC Strobe Word: Gate3[i].DacStrobe 

Gate3[i].DacStrobe defines the 32-bit “strobe word” for all of the DACs interfaced to the 

“DSPGATE3” PMAC3-style IC. This word is shifted out, MSB first, one bit per DACCLK cycle, 

each phase cycle to start the conversion of the DACs. The default value of $FFFF0000 is suitable 

for use with the 16-bit DACs most commonly used on the ACC-24E3 UMAC analog-amplifier-

interface mezzanine boards. A value of $FFFFFF00 is used for the 24-bit data field of the 18-bit 

DACs alternately available on these boards. 

PMAC3-Style IC Channel Output Mode: Gate3[i].Chan[j].OutputMode 

Bits 0 and 1 of channel-specific element Gate3[i].Chan[j].OutputMode must be set to 1 to 

specify that outputs A and B for the channel are in DAC mode, not PWM. This yields possible 

settings for the 4-bit element of 3, 7, 11, and 15, which differ in the output modes for Phases C 

and D of the channel. 

Motor Software Setup 

Several saved setup elements for the motor must be configured properly for sinewave-output 

commutation mode. 

Command Output Address: Motor[x].pDac 

Motor[x].pDac instructs Power PMAC where to place its output commands for the motor by 

specifying the address of the first register. In sinewave output mode, Power PMAC will write to 

this register and the next higher addressed register. Almost always in this mode, the registers 

specified are the A and B-phase DAC output registers in a Servo IC, or the matching registers in a 

MACRO IC that will send the output information over the ring. These are specified by setting 

Motor[x].pDac to the address of the register that feeds the A-phase DAC. In most configurations, 

these are the default settings for this setup element. 

If a PMAC2-style DSPGATE1 Servo IC is used for the direct interface, as in the ACC-24E2A, 

the setting will be of the type: 

Motor[x].pDac = Gate1[i].Chan[j].Dac[0].a 

where i is the IC number (4 to 19), and j is the channel index number (0 to 3) in the IC. Note that 

when the value of this element is queried, it will report back showing the “Pwm” register at the 

same address instead of the “Dac” register. 

If a PMAC2-style DSPGATE2 MACRO IC is used for the interface over the ring, as in the ACC-

5E, the setting will be of the type: 

Motor[x].pDac = Gate2[i].Macro[k][0].a 

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC. 

Register 0 of the node must be specified to conform to the MACRO standard for this mode. 
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If a PMAC3-style DSPGATE3 IC is used for the direct interface, as in the ACC-24E3, the setting 

will be of the type: 

Motor[x].pDac = Gate3[i].Chan[j].Dac[0].a 

where i is the IC number (0 to 15), and j is the channel index number (0 to 3) in the IC. Note that 

when the value of this element is queried, it will report back as the “Pwm” register at the same 

address instead of the “Dac” register. 

If a PMAC3-style DSPGATE3 IC is used for the interface over the MACRO ring, as in the ACC-

5E3, the setting will be of the type: 

Motor[x].pDac = Gate3[i].MacroOutA[k][0].a 

or  

Motor[x].pDac = Gate3[i].MacroOutB[k][0].a 

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC. 

Register 0 of the node must be specified to conform to the MACRO standard for this mode. 

Output Data Shift: Motor[x].DacShift 

With most output devices, there is no need to shift the computed outputs, and Motor[x].DacShift 

can be left at its default value of 0. However, with the 18-bit DACs that are optionally available 

on the ACC-24E3 analog amplifier-interface module, the data must be shifted right 6 bits to the 

proper place in the 24-bit SPI data field, so Motor[x].DacShift must be set to 6 if these are used. 

(The 18-bit DACs on the ACC-24E2A and the 16-bit DACs on the ACC-24E3 do not require this 

shift.) 

Commutation Output Scale Factor: Motor[x].PwmSf 

Motor[x].PwmSf multiplies the normalized internal commutation command values, scaling the 

command values that are actually output. It does this for both sinewave output mode and direct-

PWM output mode. For sine-wave output mode, it is almost always set to 32,768 so the full 

output range of the DACs can be used. (Torque/current limitations are usually implemented by 

reducing Motor[x].MaxDac, which is a clamping limit, not a multiplying scale factor that acts as 

a gain term.) Note that changing the sign of Motor[x].PwmSf reverses the direction sense of the 

commutation. 

Commutation Phase Angle: Motor[x].PhaseOffset 

Motor[x].PhaseOffset controls the angular relationship between the phases of a multiphase 

motor. Power PMAC splits the commutation cycle into 2048 parts. For a 3-phase motor, the angle 

from Phase A to Phase B is ±1/3 of a cycle, so this variable is set to ±683. For a 2-phase motor, 

the angle from Phase A to Phase B is ±1/4 of a cycle, so this variable is set to ±512. 

The proper sign of Motor[x].PhaseOffset is dependent on the commutation feedback sensor’s 

direction sense as determined by its wiring and the encoder decode variable’s direction sense, and 

on the wiring of the phases of the motor. This setting is generally determined experimentally 

through a test explained below. Changing the sign of Motor[x].PhaseOffset is equivalent to 

exchanging two phase wires of the motor. 
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The test uses the offset variables Motor[x].IaBias and Motor[x].IbBias to force current direction 

into the particular phases and drive the motor like a stepper motor. Based on the direction of 

motion between the two “steps”, the proper sign for Motor[x].PhaseOffset can be determined. 

The following example uses Motor 1, commanded from the terminal window: 

#1out0    // Open loop, zero output 

Motor[1].IaBias=2000  // Plus offset on Phase A 

Motor[1].PhasePos   // Request pos (after motor settles) 

382     // Power PMAC responds 

Motor[1].IbBias=2000  // Plus offset on Phase B 

Motor[1].PhasePos   // Request pos (after motor settles) 

215     // Power PMAC responds 

 

If the phase position changed in the negative direction between these two steps, 

Motor[x].PhaseOffset should be a positive value (683 for a 3-phase motor, 512 for a 2-phase 

motor). If the phase position changed in the positive direction between these two steps, 

Motor[x].PhaseOffset should be a negative value (-683 for a 3-phase motor, -512 for a 2-phase 

motor). 

Remember to set the bias terms back to zero before continuing! 

Intermittent Current Limit: Motor[x].MaxDac 

Motor[x].MaxDac is the limit of the output of the position/velocity servo loop, which is the 

torque (quadrature) current command input to the commutation algorithm. As such, it acts as an 

intermittent (“instantaneous”) current magnitude limit for the motor. Open-loop out commands 

are expressed as a percent of Motor[x].MaxDac. A value of 32,768.0 (215) for 

Motor[x].MaxDac for this parameter is full range. 

If the servo loop computes an output value with a higher magnitude than Motor[x].MaxDac, the 

magnitude of the output will be limited to that of Motor[x].MaxDac before it is used by the 

commutation algorithm. Note that this is a clamping limit, not a multiplying gain term. 

For details on how to calculate the appropriate value for MaxDac, refer to the Current Limits 

section of the User’s Manual chapter Making Your Power PMAC Application Safe. 

Continuous Current Limit: Motor[x].I2tSet 

Motor[x].I2tSet specifies the magnitude of the continuous current limit for the motor/drive 

system for integrated-current algorithms for thermal protection. Power PMAC uses “I2T” 

protection, squaring the value of the current before integrating it. While this limit can be used to 

protect both the motor and the amplifier, most amplifiers will have this protection built in, so this 

parameter is typically set to protect the motor, where resistive losses are proportional to the 

square of the current. 

With sinewave-output commutation, Power PMAC is not measuring the actual current in the 

motor and amplifier, so it uses the commanded current values in its calculations 

Almost always it is the continuous current rating of the motor that is used for this limit. 

Motor[x].I2tSet is calculated in a manner similar to Motor[x].MaxDac: 

768,32*2
urrentFullRangeC

tLimitContCurren
tSetI   
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For details on how to calculate the appropriate value for I2tSet, refer to the Current Limits 

section of the User’s Manual chapter Making Your Power PMAC Application Safe. 

Integrated Current Limit: Motor[x].I2tTrip 

Motor[x].I2tTrip sets the permitted limit of the time-integrated current over the continuous 

current value. If the time-integrated current exceeds this threshold, Power PMAC will kill this 

axis as it would for an amplifier fault. Typically, this parameter is set by noting the drive 

specification for time permitted at the instantaneous current limit. If I2T protection is used, this 

specification is used in the following equation: 

  (sec)*22 222 imePermittedTtSetIIdCmdMaxDactTripI   

The following diagram illustrates how I2T protection works using a sample time history. 
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I2T Protection Example – Sinewave Output Mode 

For details on how to calculate the appropriate value for I2tTrip, refer to the Current Limits 

section of the User’s Manual chapter Making Your Power PMAC Application Safe. 
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Setting Up For Direct PWM Control 

In direct-PWM control mode, Power PMAC is performing both the commutation and current-

loop algorithms for the motor. The amplifier performs only the power conversion task, and is 

typically called a “power-block” amplifier. In this mode Power PMAC outputs PWM voltage 

commands for each phase of the motor. 

Introduction 

In this mode, the current control loop is closed by using digital computation operating on 

numerical values in registers rather than by using analog processing operating on voltage levels 

with op-amps. The digital techniques bring many advantages: there is no need for pot tweaking or 

personality modules; there is no drift over temperature or time; computer analysis and auto-tuning 

are possible; gain values are easily stored for backup and copying onto other systems; and 

adaptive techniques are possible. 

When performing digital current loop closure on the Power PMAC, several hardware and 

software features must be set up properly to utilize the digital current loop and direct PWM 

outputs correctly. The following section details how to perform this setup manually. However, 

typically, these steps are automated through the use of the motor setup screens of the IDE 

program running on a PC and communicating with the Power PMAC. 

Note 

The instructions given in this section are for the first-time 

setup with an otherwise unknown interface. For a given 

interface to the drive, motor and feedback device, many parts 

of the setup will simply be taken from a list, and will not have 

to be tested, or tested as thoroughly as described in this 

chapter. A list of configuration-specific settings should come 

with the manual for each particular interface or drive. 

Subsequent versions of the same setup should be even easier. 

 

Digital Current Loop Principle of Operation 

Traditionally, motor phase current loops have been closed in analog fashion, with op-amp circuits 

creating phase voltage commands from the difference between commanded and actual phase 

current signal levels. These analog phase voltage commands are converted to PWM format 

through analog comparison to a “saw tooth” waveform. 

Power PMAC permits digital closure of the motor current loops, mathematically creating phase 

voltage commands from numerical registers representing commanded and actual current values.  

These numerical phase voltage commands are converted to PWM format through digital 

comparison to an up/down counter that creates a digital “saw tooth” waveform. The analog 

current measurements must be converted to digital form with ADCs before the loop can be 

closed. 

The following diagram shows the principle of the PWM signal generation using PMAC2-style 

Servo ICs, using the comparison of the PWM command value to the running up/down PWM 

counter value. The principle in the PMAC3-style IC is similar. 
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PWM Signal Generation in PMAC ASICs 

By directly commanding the on-off states of the power transistors in this manner, Power PMAC 

minimizes the calculation and transport delays in the feedback loops. This permits the use of 

higher gains, which in turn permit greater stiffness, acceleration, and disturbance rejection. Also, 

digital techniques permit the use of mathematical transformations of the current-loop data, 

turning measured AC quantities into DC quantities for loop closure. This technique, explained in 

the next section, significantly improves high-speed performance by minimizing high-frequency 

problems. 

Frames of Reference 

A very important advantage of the digital current loop is its ability to close the current loops in 

the “field frame”. To understand this advantage, some basic theoretical background is required. 

In a motor, there are three frames of reference that are important. The first is the “stator frame”, 

which is fixed on the non-moving part of the motor, called the stator. In a brushless motor, the 

motor armature windings are on the stator, so they are fixed in the stator frame. 

The second frame is the “rotor frame”, which is referenced to the mechanics of the moving part of 

the motor, called the rotor. This frame, of course, rotates with respect to the stator. For linear 

brushless motors, this is actually a translation, but because it is cyclic, we can easily think of it as 

a rotation. 

The third frame is the “field frame”, which is referenced to the magnetic field orientation of the 

rotor. In a synchronous motor such as a permanent-magnet brushless motor, the field is fixed on 

the rotor, so the field frame is the same as the rotor frame. In an asynchronous motor such as an 

induction motor, the field “slips” with respect to the rotor, so the field frame and rotor frame are 

separate. 
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Working in the Field Frame 

The physics of motor operation are best understood in the field frame. A current vector in the 

stator that is perpendicular to the rotor field (that is, current in the stator that produces a magnetic 

field perpendicular to the rotor magnetic field) produces torque. This component of the stator 

current is known as “quadrature” current. The output of the position/velocity loop servo algorithm 

is the magnitude of the commanded quadrature current. For diagnostic purposes on a Power 

PMAC, an out command can be used to set a fixed quadrature current command. 

A current vector in the stator that is parallel to the rotor field induces current in the rotor that 

changes the magnetic field strength of the rotor (when the stator and rotor field are rotating 

relative to each other). This component of the stator current is known as “direct” current. For an 

induction motor, this is required to create a rotor magnetic field. For a permanent-magnet 

brushless motor, the rotor magnets always produce a field, so direct current is not required, 

although it can be used to modify the magnetic field strength. On Power PMAC, saved setup 

element Motor[x].IdCmd determines the magnitude of the direct current. 

Analog Loops in the Stator Frame 

In an amplifier with an analog current loop, the closure of the loops on the stator windings must 

be closed in the stator frame, because the current measurements are in the stator frame, and 

analog circuitry has no practical way to transform these. In such a system, the current commands 

must be transformed from the field frame in which they are calculated to the stator frame, and 

converted to voltage levels representing the individual stator phase current commands. These are 

compared to other voltage levels representing the actual stator phase current measurements. 

As the motor is rotating, and/or the field is slipping, these current values, command and actual, 

are AC quantities. Overall loop gain, and therefore system performance, is reduced at high 

frequencies (high speeds). The back EMF phase voltage, which acts as a disturbance to the 

current loop, is also an AC quantity. The current loop integral gain or lag filter, which is supposed 

to overcome disturbances, falls well behind at high frequencies. 

Digital Loops in the Field Frame 

In a system with a digital current loop, it is possible to close the current loops in the field frame 

(not all such systems do, however). Instead of transforming the current commands from field 

frame to stator frame before closing the loop, the actual current measurements are transformed 

from stator frame to field frame. In the field frame, a direct-current loop is closed, and a 

quadrature current loop is closed. This produces a direct-voltage command, and a quadrature-

voltage command; these are transformed back into the stator frame to become phase-voltage 

commands, which are implemented as PWM values. 

The direct and quadrature current values are DC quantities when the motor is moving in one 

direction, even as the motor is rotating and the field is slipping. Therefore, the high-frequency 

limitations of the servo loop are irrelevant. This provides significantly improved high-speed 

performance from identical motors and power electronics. 

Power PMAC has a PI (proportional-integral) digital current loop. There is only one set of gains, 

which serves for both the direct current loop and the quadrature current loop. Tuning is best done 

on the direct current loop, because this will generate no torque, and therefore no movement. The 

current-loop auto-tuner in the PMAC Executive program uses the direct current loop to tune. This 

is valid even for permanent-magnet brushless motors where no direct current will be used in the 

actual application. It is important to remember that current loop performance is not load-
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dependent, so the motor does not need to be attached to the load during the tuning process (for 

position/velocity loop tuning, the load does need to be attached). 

The following diagram shows the principle of the digital current loop closure in the field frame. It 

should be compared to the comparable diagram for sinewave-output mode in the previous section. 
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Power PMAC Direct PWM Commutation with Digital Current Loop 

Hardware Setup 

For Power PMAC to operate a motor in the direct PWM output mode, three PWM top-and-

bottom signal pairs, and two current measurements through ADCs, are required for the motor. 

Using either the PMAC2-style or PMAC3-style Servo ICs, this requires PWM outputs on the A, 

B, and C phases and ADC inputs on the A and B phases for the channel. 

PMAC2-Style IC Interface 

PMAC2-style “DSPGATE1” Servo ICs are used on ACC-24E2 PWM axis interface boards for 

the UMAC rack-mounted control systems. These provide three PWM phase outputs and two 

ADC inputs per servo channel. 

PMAC2-Style Servo IC PWM Frequency Control: Gate1[i].PwmPeriod 

If you are driving the axes directly through a PMAC2-style Servo IC (DSPGATE1 ASIC), as in 

an ACC-24E2 direct-PWM interface accessory, set element Gate1[i].PwmPeriod to define the 

PWM frequency you want for the 4 channels on the IC according to the equation: 
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(If the axes are being driven from a MACRO Station, MI900 on the Station controls the PWM 

frequency of the first four channels on the Station according to the same equation; MI906 does 

the same for the second four channels on the Station.) 

The frequency should be set within the specified range for the drives. Too high a frequency can 

lead to excessive drive heating due to switching losses; too low a frequency can lead to lack of 

responsiveness, excess acoustic noise, possible physical vibration, and excessive motor heating 

due to high current ripple. 

The PWM frequency for any set of channels must have a definite relationship to the phase clock 

frequency. If the channels are driven by the same Servo IC that is generating the phase and servo 

clock, this relationship is set automatically. If the PWM frequency for channels on another Servo 

IC is the same, this relationship also will automatically hold. 

The PWM frequency on other channels does not have to be the same as the frequency of those 

channels on the Servo IC generating the phase clock, but they do have to have a synchronous 

relationship with the phase clock. The following relationship must hold for proper direct-PWM 

operation of other channels: 

}_{*2 IntegerPositive
PhaseFreq

PWMFreq
  

If a Servo IC is used to generate the Phase and Servo clocks, Gate1[i].PwmPeriod for that IC 

also sets the frequency of the “MaxPhase” clock to twice the PWM frequency for the channels on 

that IC. The MaxPhase clock is the highest frequency at which Power PMAC’s phase update 

tasks, which include phase commutation and digital current loop closure, can operate. Note that 

any change to this IC’s Gate1[i].PwmPeriod automatically changes the Phase and Servo clock 

frequencies for the controller. Gate1[i].PhaseServoDir for the IC generating the system Phase 

and Servo clock signals must be set to 0 to tell it to use its internally generated signals and output 

them; it must be set to 3 on other ICs to tell them to use externally generated signals for these 

clocks. 

PMAC2-Style Servo IC Hardware Clock Frequency Control: Gate1[i].HardwareClockCtrl 

Gate1[i].HardwareClockCtrl determines the frequency of four hardware clock signals used for 

the machine interface channels on a PMAC2-style Servo IC. These can probably be left at the 

default values. The four hardware clock signals are SCLK (encoder sample clock), PFMCLK 

(pulse frequency modulator clock, DACCLK (digital-to-analog converter clock), and ADCCLK 

(analog-to-digital converter clock). 

(If the axes are being driven from a MACRO Station, MI903 on the Station controls the hardware 

clock frequencies of the first four channels on the Station according to the same equations; MI907 

does the same for the second four channels on the Station.) 

Only the ADCCLK signal is directly used with the digital current loop, to control the frequency 

of the serial data stream from the current-loop ADCs. The ADC clock frequency must be at least 

100 times higher than the PWM frequency, but it must be within the capability of the serial 
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ADCs. Refer to the Gate1[i].HardwareClockCtrl description for detailed information on setting 

these variables. 

PMAC2-Style Servo IC PWM Deadtime Control: Gate1[i].PwmDeadTime 

Gate1[i].PwmDeadTime determines the PWM deadtime between top and bottom signals for the 

machine interface channels on a PMAC2-style Servo IC. Gate1[i].PwmDeadTime has a range of 

0 to 255, and the deadtime is 0.135 µsec times the variable value. The deadtime should not be set 

smaller than the recommended minimum for the drive, or excessive drive heating could occur. 

Too large a deadtime value can cause unresponsive performance. The default value of 15, which 

produces a deadtime of 2.0 µsec, is large enough to protect most drives, and small enough not to 

create unresponsive performance unless PWM frequencies are extremely high. Some high-power 

drives operating from a 480VAC supply will require about 3 µsec of deadtime, for a 

Gate1[i].PwmDeadTime setting of about 23. 

While most direct-PWM drives enforce a minimum deadtime, it is recommended to specify the 

required deadtime here both for redundant protection of the drive, and to maintain the highest 

possible resolution, as most drives use a lower-frequency clock signal in their deadtime circuitry. 

Relying on the drive’s deadtime setting thus effectively reduces the resolution of the PWM 

command signal. 

(If the axes are being driven from a MACRO Station, MI904 on the Station controls the hardware 

clock frequencies of the first four channels on the Station according to the same equations; MI908 

does the same for the second four channels on the Station.) 

PMAC2-Style Servo IC ADC Strobe Word: Gate1[i].AdcStrobe 

Gate1[i].AdcStrobe defines the 24-bit “strobe word” for all of the A/D converters interfaced to 

the “DSPGATE1” PMAC2-style Servo IC. This word is shifted out, MSB first, each phase cycle 

to start the conversion of the A/D converters. 

The least-significant bit (LSB) of this element is a mode-control bit for formatting the serial data 

from the ADCs. If this bit is 0, all bits in the returned serial data stream are considered part of the 

numerical current value, with the first bit received ending up in the MSB of the current register in 

the IC. No “header bits” can be accepted in this mode. Older direct-PWM amplifiers, such as 

Delta Tau’s “Quad Amp”, operate in this mode. Gate1[i].AdcStrobe is usually set to $FFFFFE 

for this mode of operation. 

If the LSB is set to 1, the IC can accept up to 4 bits of “header” data on the data stream and “roll 

it over” to the lowest bits of the ADC register where numerical data is not expected. For an ADC 

with n header bits, the first (4 – n) bits of the strobe word should be set to 0 to delay the start of 

the strobe (if there are no delays in the data response). The ADCs in Delta Tau’s “Geo” family of 

direct-PWM drives have one bit of header data, and so require this last bit to be set. 

Gate1[i].AdcStrobe is set to $1FFFFF for ADCs with one header bit, or to $3FFFFF if there is a 

clock cycle delay in getting the data back. 

(If the axes are being driven from a MACRO Station, MI940 on the Station controls the ADC 

strobe word for the first four channels on the Station in this same way; MI941 does the same for 

the second four channels on the Station.) 
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PMAC2-Style Servo IC Channel Output Mode: Gate1[i].Chan[j].OutputMode 

Channel-specific element Gate1[i].Chan[j].OutputMode (node-specific variable MI916 on a 

MACRO Station) must be set to 0 to specify that all 3 outputs A, B, and C be in PWM format for 

a 3-phase motor. 

PMAC3-Style IC Interface 

PMAC3-style “DSPGATE3” ICs are used on ACC-24E3 axis interface boards for the UMAC 

rack-mounted control systems. These can be ordered with digital-amplifier “mezzanine” boards 

with three or four PWM phases per servo channel. They are also used in the Power PMAC 

“Brick” integrated controller/amplifier. 

PMAC3-Style IC Phase Clock Frequency Control: Gate3[i].PhaseFreq 

A DSPGATE3 IC can use its own internally generated phase-clock signal or accept an external 

signal (usually from another IC in the system), as determined by saved setup element 

Gate3[i].PhaseServoDir. If it is set to 0, it uses its own internally generated phase clock signal 

(and servo clock); if it is set to 3, it accepts an external signal (for servo clock as well). 

The frequency of the internally generated phase clock signal in a DSPGATE3 IC is determined 

by the value of saved setup element Gate3[i].PhaseFreq. This is a floating-point value, in units 

of Hertz (Hz). The default value is 9035.69, about 9 kHz. Even if an external phase clock signal is 

used by the IC, the IC’s own internally generated frequency set by this element should be set as 

close as possible to the frequency resulting from the external signal (as divided by 

Gate3[i].PhaseClockDiv + 1), to keep the internal circuitry optimally locked to the external 

signal. 

If an external phase-clock signal is used, its frequency can be divided down by a factor of up to 4 

before it is used internally, as determined by the setting of Gate3[i].PhaseClockDiv. This 

element can take a value of 0 to 3, and the resulting division factor is one greater than this value. 

It is rare that the value of this element is changed from its default value of 0 (divide by 1), but it 

can be used to provide a wider range of PWM frequencies (which are derived from the internal 

phase clock frequencies) across different ICs. 

PMAC3-Style IC PWM Frequency Control: Gate3[i].Chan[j].PwmFreqMult 

The PWM frequency for each channel on the DSPGATE3 IC is individually derived from the 

IC’s common internal phase-clock frequency, whether that frequency is internally generated or 

derived from an external signal and possibly divided down. 

The channel-specific element Gate3[i].Chan[j].PwmFreqMult determines the resulting PWM 

frequency for the channel according to the equation: 

IntPhasePWM f
tPwmFreqMul

f
2

1
  

Gate3[i].Chan[j].PwmFreqMult can take a value of 0 to 7, so channel PWM frequencies can 

range from 0.5 to 4 times the internal phase-clock frequency. 

PMAC3-Style IC PWM Deadtime Control: Gate3[i].Chan[j].PwmDeadTime 

The channel-specific element Gate3[i].Chan[j].PwmDeadTime determines the PWM deadtime 

between top and bottom signals for the specified channel on a PMAC3-style IC. 

Gate3[i].Chan[j].PwmDeadTime has a range of 0 to 255, and the deadtime is 0.053 µsec times 
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the variable value. The deadtime should not be set smaller than the recommended minimum for 

the drive, or excessive drive heating could occur. Too large a deadtime value can cause 

unresponsive performance. The default value of 15, which produces a deadtime of 0.8 µsec, is 

suitable for lower-power drives, but may be too small for many higher-power drives, which may 

require deadtimes of 1 to 3 µsec. For example, a 2 µsec deadtime requires a 

Gate1[i].Chan[j].PwmDeadTime setting of about 38. 

While most direct-PWM drives enforce a minimum deadtime, it is recommended to specify the 

required deadtime here both for redundant protection of the drive, and to maintain the highest 

possible resolution, as most drives use a lower-frequency clock signal in their deadtime circuitry. 

Relying on the drive’s deadtime setting thus effectively reduces the resolution of the PWM 

command signal. 

PMAC3-Style IC Amplifier ADC Clock Frequency Control: Gate3[i].AdcAmpClockDiv 

The multi-channel element Gate3[i].AdcAmpClockDiv determines the frequency of the clock 

signal that drives the serial analog-to-digital converters (ADCs) providing the current feedback on 

all channels, according to the equation: 

kDivAdcAmpClocAdcAmpClk

MHz
f

2

100
  

The default value of 5 produces a 3.125 MHz frequency, suitable for most direct-PWM 

amplifiers. In general, this should be set to the lowest value (producing the highest frequency) 

that does not exceed the maximum frequency of the ADCs. The ADC clock frequency must be at 

least 100 times as high as the PWM frequency in order to receive the complete ADC data in time 

for the software interrupt. At the default 3.125 MHz ADC clock frequency, this limits the PWM 

frequency to 31 kHz. 

PMAC3-Style IC Amplifier ADC Strobe Word: Gate3[i].AdcAmpStrobe 

The multi-channel element Gate3[i].AdcAmpStrobe defines the 24-bit “strobe word” for all of 

the current-feedback A/D converters interfaced to the IC. This word is shifted out, MSB first, 

each phase cycle to start the conversion of the A/D converters. This should be set according to the 

instructions of the particular amplifier(s) being driven. The default value of $FFFFFC is suitable 

for almost all direct-PWM amplifiers. 

PMAC3-Style IC Amplifier ADC Header Processing: Gate3[i].AdcAmpHeaderBits 

The multi-channel element Gate3[i].AdcAmpHeaderBits specifies how many “header” bits are 

returned from the current-feedback ADCs before the actual current data starts. This count 

includes any clock-cycle delays, which produce “null” header bits. This should be set according 

to the instructions of the particular amplifier(s) being driven. The default value of 2 is suitable for 

most Delta Tau amplifiers, whose ADCs have one true header bit and one clock cycle delay. 

Motor Software Setup 

Command Output Address: Motor[x].pDac 

Motor[x].pDac instructs Power PMAC where to place its output commands for the motor by 

specifying the address of the first register. (Despite the name of this element, these registers do 

not have to drive D/A converters.) Almost always in this mode, the registers specified are the 

PWM output registers in a Servo IC, or the matching registers in a MACRO IC that will send the 
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output information over the ring. In most configurations, these are the default settings for this 

setup element. 

If a PMAC2-style DSPGATE1 Servo IC is used for the direct interface, as in the ACC-24E2, the 

setting will be of the type: 

Motor[x].pDac=Gate1[i].Chan[j].Pwm[0].a 

where i is the IC number (4 to 19), and j is the channel index number (0 to 3) in the IC. 

If a PMAC2-style DSPGATE2 MACRO IC is used for the interface over the ring, as in the ACC-

5E, the setting will be of the type: 

Motor[x].pDac=Gate2[i].Macro[k][0].a 

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC. 

Register 0 for the specified node must be used to conform to the MACRO standard for this node. 

If a PMAC3-style DSPGATE3 IC is used for the direct interface, as in the ACC-24E3, the setting 

will be of the type: 

Motor[x].pDac=Gate3[i].Chan[j].Pwm[0].a 

where i is the IC number (0 to 15), and j is the channel index number (0 to 3) in the IC. 

If a PMAC3-style DSPGATE3 IC is used for the interface over the MACRO ring, as in the ACC-

5E3, the setting will be of the type: 

Motor[x].pDac=Gate3[i].MacroOutA[k][0].a 

or 

Motor[x].pDac=Gate3[i].MacroOutB[k][0].a 

where i is the IC number (0 to 15) and k is the MACRO node number (0 to 13) in the bank. 

Register 0 for the specified node must be used to conform to the MACRO standard for this node. 

Current Feedback Address: Motor[x].pAdc 

Motor[x].pAdc, if it is not set to 0, enables the digital current loop and instructs Power PMAC 

where to look for its current-feedback values for the motor. Almost always, the registers specified 

are the serial ADC shift registers in a Servo IC, or the matching registers in a MACRO IC that 

have brought the current information over the ring.  

The address specified is that of the first register (Phase A); the next register is automatically read 

for Phase B current information. (If Motor[x].PhaseCtrl bit 0 is set to 1 to specify the use of 

“packed” format, only a single 32-bit read is performed with Phase A and B feedback expected in 

the high and low 16 bits. This format is only supported in direct interface with the PMAC3-style 

DSPGATE3 ASIC. It is not supported in PMAC2-style ASICs, or in the MACRO interface in a 

PMAC3-style ASIC.) 
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If a PMAC2-style DSPGATE1 Servo IC is used for the direct interface, as in the ACC-24E2, the 

setting will be of the type: 

Motor[x].pAdc=Gate1[i].Chan[j].Adc[0].a 

where i is the IC number (4 to 19), and j is the channel index number (0 to 3) in the IC. 

If a PMAC2-style DSPGATE2 MACRO IC is used for the interface over the ring, as in the ACC-

5E, the setting will be of the type: 

Motor[x].pAdc=Gate2[i].Macro[k][1].a 

where i is the IC number (0 to 15), and k is the MACRO node number (0 to 13) in the IC. 

Register 1 for the specified node must be used to conform to the MACRO standard for this node. 

If a PMAC3-style DSPGATE3 IC is used for the direct interface, as in the ACC-24E3, the setting 

will be of the type: 

Motor[x].pAdc=Gate3[i].Chan[j].AdcAmp[0].a 

where i is the IC number (0 to 15), and j is the channel index number (0 to 3) in the IC. 

If a PMAC3-style DSPGATE3 IC is used for the interface over the MACRO ring, as in the ACC-

5E3, the setting will be of the type: 

Motor[x].pAdc=Gate3[i].MacroInA[k][1].a 

or 

Motor[x].pAdc=Gate3[i].MacroInB[k][1].a 

where i is the IC number (0 to 15) and k is the MACRO node number (0 to 13) in the bank. 

Register 1 for the specified node must be used to conform to the MACRO standard for this node. 

Current Feedback Mask Word: Motor[x].AdcMask 

Motor[x].AdcMask specifies a mask word to tell Power PMAC what bits of the register(s) 

specified by Motor[x].pAdc are to be used in the current-loop algorithm. This permits the use of 

ADCs of various resolutions; it also permits use of the rest of the ADC shift register for other 

information, such as fault codes. Motor[x].AdcMask is a 32-bit value that is combined with the 

feedback word in a bit-by-bit AND operation. The default value of $FFF00000 specifies that the 

top 12 bits of the 32-bit feedback word(s) are to be used. Most direct-PWM amplifiers use 12-bit 

ADCs, so $FFF00000 is the appropriate value for these amplifiers. If 14-bit feedback is used, 

Motor[x].AdcMask should be set to $FFFC0000. 

PWM Output Scale Factor: Motor[x].PwmSf 

Motor[x].PwmSf multiplies the normalized internal command values, scaling the output 

command values so that they use the PWM circuitry effectively. The result of the current-loop 

calculations is a fractional value between -1.0 and +1.0. This value is multiplied by 

Motor[x].PwmSf before being written to a PWM command register, where it is digitally 

compared to a PWM up/down counter. 
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If a PMAC2-style DSPGATE1 ASIC is being used for the output, the counter moves between 

Gate1[i].PwmPeriod + 1 and -Gate1[i].PwmPeriod - 2. To utilize the full dynamic range of the 

PWM circuitry well, Motor[x].PwmSf should be set slightly greater than Gate1[i].PwmPeriod. 

Typically a value 10% greater is used, permitting full-on conditions at maximum command 

values over about 1/6 of the commutation cycle. However, some amplifiers require that the PWM 

signals never reach the full-on or full-off condition in order to keep a charge-pump circuit active. 

For these amplifiers, Motor[x].PwmSf is typically set to 95% of Gate1[i]. PwmPeriod. Consult 

the amplifier manual for details. 

If a PMAC3-style DSPGATE3 ASIC is being used for the output, the counter moves between +/-

16,384, regardless of the PWM frequency. To utilize the full dynamic range of the PWM circuitry 

well, Motor[x].PwmSf should be set slightly greater than 16,384. Typically a value 10% greater 

is used, permitting full-on conditions at maximum command values over about 1/6 of the 

commutation cycle. However, some amplifiers require that the PWM signals never reach the full-

on or full-off condition in order to keep a charge-pump circuit active. For these amplifiers, 

Motor[x].PwmSf is typically set to 95% of 16,384. Consult the amplifier manual for details. 

Motor[x].PwmSf effectively acts as a voltage limit for the motor. If the amplifier is oversized for 

the motor, exceeding the maximum permitted voltage for the motor, Motor[x].PwmSf should be 

set proportionately less than the full useful range to limit the maximum possible voltage for the 

motor. Since Motor[x].PwmSf is a gain, if it is changed, the current loop must be tuned or 

retuned afterwards. 

Instantaneous Current Limit: Motor[x].MaxDac 

Motor[x].MaxDac is the limit of the output of the position/velocity servo loop, which is the 

torque (quadrature) current command input to the digital current loop. As such, it acts as an 

instantaneous current magnitude limit for the motor. Open-loop out commands are expressed as 

a percent of Motor[x].MaxDac. 

In most other modes, a value of 32,767 (215-1) for Motor[x].MaxDac for this parameter is full 

range. In 3-phase direct-PWM mode, however, the value of 32,767 corresponds to the full-range 

readings of the Phase A and Phase B A/D converters. The mathematics involved in the 

transformation from the phase currents to the direct and quadrature currents effectively multiplies 

the phase values by cos(30°), or 0.866. This means that the Motor[x].MaxDac value 

corresponding to the full-range ADC reading is 32,767 * 0.866 = 28,377. Therefore, 

Motor[x].MaxDac should never be set to a value greater than 28,377 in 3-phase direct-PWM 

mode. 

The amplifier manual should specify the level of current that provides full-range feedback from 

the ADCs. The user should then take the instantaneous current limit for the drive or for the motor, 

whichever is less, and set Motor[x].MaxDac according to the following relationship: 









 377,28*,377,28min

urrentFullRangeC

tLimitInstCurren
MaxDac  

If the drive outputs analog current readings and the ADCs are on the interface board, the full-

range current value must be calculated from the volts-per-amp gain of the current sensing in the 

drive and the full-range voltage into the interface board. 
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If a non-zero value of Motor[x].IdCmd magnetization current will be used, for induction motor 

control or for field weakening of a permanent-magnet brushless motor, then Motor[x].MaxDac 

should be replaced in the above equation by 22 IdCmdMaxDac  . 

In early testing, it may be desirable to set Motor[x].MaxDac to an artificially low value to 

prevent accidental overcurrent commands into the motor. 

For details on how to calculate the appropriate value for MaxDac, refer to the Current Limits 

section of the User’s Manual chapter Making Your Power PMAC Application Safe. 

Continuous Current Limit: Motor[x].I2tSet 

Motor[x].I2tSet specifies the magnitude of the continuous current limit for the motor/drive 

system for integrated-current algorithms for thermal protection. Power PMAC uses “I2T” 

protection, squaring the value of the current before integrating it. While this limit can be used to 

protect both the motor and the amplifier, most amplifiers will have this protection built in, so this 

parameter is typically set to protect the motor, where resistive losses are proportional to the 

square of the current. 

Almost always it is the continuous current rating of the motor that is used for this limit. 

Motor[x].I2tSet is calculated in a manner similar to Motor[x].MaxDac: 

377,28*2
urrentFullRangeC

tLimitContCurren
tSetI   

Note that in direct-PWM mode, the current values for the I2T calculations are the measured 

(actual) current values, instead of commanded current as in other operational modes. With 3-

phase direct PWM control, as with most brushless servo motors and induction motors, the full-

range current values are 32,767 * cos(30°), or 28,377, as used in the above equation. For 2-phase 

control, as with stepper motors, the value of 32,767 can be used instead. 

For details on how to calculate the appropriate value for I2tSet, refer to the Current Limits 

section of the User’s Manual chapter Making Your Power PMAC Application Safe. 

Integrated Current Limit: Motor[x].I2tTrip 

Motor[x].I2tTrip sets the permitted limit of the time-integrated current over the continuous 

current value. If the time-integrated current exceeds this threshold, Power PMAC will kill this 

axis as it would for an amplifier fault. Typically, this parameter is set by noting the drive 

specification for time permitted at the instantaneous current limit. If I2T protection is used, this 

specification is used in the following equation: 

  (sec)*22 222 imePermittedTtSetIIdCmdMaxDactTripI   

The following diagram illustrates how I2T protection works in 3-phase direct-PWM mode using a 

sample time history. 
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I2T Protection Example – Three-Phase Direct PWM 

For details on how to calculate the appropriate value for I2tTrip, refer to the Current Limits 

section of the User’s Manual chapter Making Your Power PMAC Application Safe. 

Commutation Phase Angle: Motor[x].PhaseOffset 

Motor[x].PhaseOffset controls the angular relationship between the phases of a multiphase 

motor. When Power PMAC is closing the current loop digitally for the motor, the proper setting 

of this variable is dependent on the polarity of the current measurements. 

!
Caution 

It is very important to set the value of Motor[x].PhaseOffset 

properly for your system; otherwise the current loop will have 

unstable positive feedback and want to saturate. This could 

cause damage to the motor, the drive, or both, if overcurrent 

shutdown features do not work properly. 

 

If the phase current sensors and ADCs in the amplifier are set up so that a positive PWM voltage 

command for a phase yields a negative current measurement value, Motor[x].PhaseOffset must 

be set to a value greater than 0: 683 for a 3-phase motor, or 512 for a 2-phase or DC brush motor. 

If these are set up so that a positive PWM voltage command yields a positive current 

measurement value, Motor[x].PhaseOffset must be set to a value less than 0: -683 for a 3-phase 

motor, or -512 for a 2-phase or DC brush motor. 

Note that for commutation with digital current loops, the proper setting of Motor[x].PhaseOffset 

is unrelated to the polarity of the encoder counter. This is different from commutation without 

digital current loops in the Power PMAC (“sine-wave” control), in which the polarity of 

Motor[x].PhaseOffset (less than or greater than 0) must match the encoder counter polarity. 

With the digital current loop, the polarity of the encoder counter must be set for proper servo 
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operation; with the analog current loop, once the Motor[x].PhaseOffset polarity match has been 

made for commutation, the servo loop polarity match is guaranteed. 

Current Loop Gains: Motor[x].IpfGain, IpbGain, IiGain 

Motor[x].IpfGain, Motor[x].IpbGain, and Motor[x].IiGain are the gains of the PI 

(proportional-integral) current-loop algorithm. The algorithm is the same for both current loops. 

Iigain is the integral gain term. There are two proportional gain terms: IpfGain is the “forward-

path” proportional gain, and IpbGain is the “back-path” proportional gain. IpfGain is multiplied 

by the current error (commanded minus actual) and the result is added to the output command. 

IpbGain is multiplied by the actual current value and the result is subtracted from the output 

command. 

IpfGain

IiGain

1-z-1

Ipbgain

PwmSf
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Current
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+

- -

+
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Power PMAC Digital Current Loop 

Setting the Current Loop Gains 

Most users will use the “current-loop autotune” feature of the IDE to set the current loop gains, 

possibly checked with the interactive-tuning step responses of that program. 

However, with some basic knowledge of motor and amplifier parameters, it is possible to 

calculate the current-loop gains directly. It is strongly advised that these computed gains be 

checked against the values determined through the auto-tuning or interactive tuning of the IDE. 

The motor parameters needed are: 

 Rd/q  Motor transformed d/q-phase resistance (Ohms) 

= Rpp / 3  (Motor phase-to-phase resistance / 3 for Y-wound 3-phase motors) 

 Ld/q  Motor transformed d/q-phase inductance (Henries) 

= Lpp / 3  (Motor phase-to-phase inductance / 3 for Y-wound 3-phase motors) 

The amplifier parameters needed are: 
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 Isat Maximum (saturated) current reading from phase-current A/D converter (Amps).   

This is a DC value, not an RMS AC value. 

This value can be derived from the current-sensor gain Kc (volts/amp) and the maximum 

voltage in volts that the A/D-converter can read Vcmax: Isat= Vcmax/Kc. 

 VDC DC bus voltage for the amplifier. 

This can be derived from the AC RMS supply voltage VAC: VDC=VAC*2. 

Finally, the Power PMAC parameter needed is: 

 TP Phase-update period (sec) 

This can be derived from the phase update frequency fP in kHz: TP=1/(1000*fP) 

Next, the following performance specifications for the current loop are required: 

 n Desired natural frequency of the closed current loop in radians/sec 

This can be derived from the desired natural frequency fn in Hz: n (rad/s) = 2fn (Hz). 

If the damping ratio (see below) is in the range 0.7 to 1.0, which it should be in most cases, 

the desired bandwidth of the current loop is basically equal to the natural frequency.  Usually 

values of 200 Hz to 400 Hz are used. 

  Desired damping ratio (dimensionless).  A value of 0.7 here yields a step-response 

overshoot of about 5%; a value of 1.0 here yields no overshoot. 

Now we can compute the proportional current-loop gain Kcp and the integral current-loop gain Kci 

according to the formulas: 

 

DC

qdqdn

satcp
V

RL
IK

//2 



 

DC

qdnP

satci
V

LT
IK

/
2

  

Finally, to compute the setup elements to represent these gains, we use the following formulas for 

PMAC2-style ICs: 

PwmSfxMotor

PwmPeriodiGateK
IpbGainIpfGain

cp

].[

].[1
  

PwmSfxMotor

PwmPeriodiGateK
IiGain ci

].[

].[1
  

For PMAC3-style ICs, we use these next formulas: 

PwmSfxMotor

K
IpbGainIpfGain

cp

].[

16384
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PwmSfxMotor

K
IiGain ci

].[

16384
  

Note that the proportional gain term is expressed as the sum of two I-variables. IpfGain is the 

“forward-path” proportional gain term, directly responding to changes in the command values; 

IpbGain is the “back-path” proportional gain term, directly responding only to the actual current 

values. When high position feedback resolution is used in the position/velocity loop, the 

quantization noise in the current command is low, and it is better to use IpfGain. When low 

position-feedback resolution is used, it is better to use IpbGain. Tradeoffs between 

responsiveness and smoothness can be obtained by varying the amount of the proportional gain 

term allocated to each of these two variables. 

Example 

The motor has a phase-to-phase resistance of 3.0 ohms, and a phase-to-phase-inductance of 39 

millihenries. The amplifier phase-current sensors provide their maximum 5-volt output for 17.5 

amps of current, and the ADCs provide their full-range value for an input of 5 volts. The 

amplifier operates from an AC supply voltage of 120Vrms. The Power PMAC is operating at the 

default phase update frequency of 9.03 kHz using a PMAC2-style IC. A current-loop natural 

frequency of 200 Hz with a damping ratio of 0.7 is desired. The Gate1[i].PwmPeriod variable is 

at the default value of 6527, and Motor[x].PwmSf is at the recommended value of 7181 (10% 

greater). 

Ld/q = Lpp / 3 = 0.039 / 1.732 = 0.0225 H 

Rd/q = Rpp / 3 = 3.0 / 1.732 = 1.732 ohms 

Isat = Vcmax/Kc = 5.0 / (5.0/17.5) = 17.5 amps 

VDC = VAC * 2 = 120 * 1.414 = 170 V 

TP = 1 / (1000*fP) = 1 / (1000*9.03) = 0.000110 sec 

n (rad/s) = 2  n (Hz) = 2 *  * 200 = 1256 rad/sec 

Kcp = Isat [(2  n Ld/q) – Rd/q] / VDC = 17.5 [(2 * 0.7 * 1256 * 0.0225)- 1.732] / 170 = 3.89 

Kci = Isat Tp n
2 Ld/q / VDC = 17.5 * 0.000110 * 12562 *0.0225 / 170 = 0.401 

IpfGain + IpbGain = (Kcp * PwmPeriod) / PwmSf = 3.89 / 1.1 = 3.536 

IiGain = (Kci * PwmPeriod) / PwmSf = 0.401 / 1.1 = 0.365 

Current Loop Offset Compensation: Motor[x].IaBias, IbBias 

Offsets in the current-measuring circuitry, and sometimes in the PWM voltage-command 

circuitry can create biases in the current loops. These biases can create torque and velocity ripple 

over the commutation cycle. To allow the user to compensate for these offsets, Power PMAC 

provides the saved setup elements Motor[x].IaBias and Motor[x].IbBias. Each phase cycle, 

these terms are automatically added to the raw measured values for the A and B phases, 

respectively. They have the units of 16-bit ADCs (+/-32,768 represents full range), regardless of 

the actual resolution of the ADCs. 



Power PMAC User’s Manual 

Setting up Power PMAC-Based Commutation and/or Current Loop 280 

In general, these bias terms should be set to the negative of the average raw measured value for 

the phase when no current should be flowing in the phase. To determine the values for these, a set 

of measurements of the actual phase current numerical values when the motor phase currents are 

zero should be taken. Multiple measurements are strongly recommended as there is inevitably 

noise in the measurements, and the averaging process will remove the noise. 

The raw measured phase current values can be read in the ASIC ADC registers: 

Gate1[i].Chan[j].Adc[0] and Adc[1] for a PMAC2-style Servo IC 

Gate3[i].Chan[j].AdcAmp[0] and AdcAmp[1] for a PMAC3-style Servo IC 

Gate2[i].Macro[j][1] and Macro[j][2] for a PMAC2-style MACRO IC 

Gate3[i].MacroInα[j][1] and MacroInα[j][2] for a PMAC3-style MACRO IC  

If the motor’s IaBias and IbBias terms are 0, these values are copied directly into 

Motor[x].IaMeas and Motor[x].IbMeas, but if these bias terms are non-zero, the bias values are 

added into these motor registers. 

Current Loop Offset Compensation Auto-Detection: Motor[x].CurrentNullPeriod 

The process of setting these bias terms can be automated through a built-in current auto-nulling 

process. If saved setup element Motor[x].CurrentNullPeriod is set to a non-zero value, a set of 

phase current measurements will be accumulated at the start of the standard motor enabling 

processes. These measurements are then averaged, and the negative of the averages is 

automatically written to the IaBias and IbBias elements before control is established. 

 

Note 

Some servo drives, such as those in the Power PMAC Brick, 

perform this auto-nulling function themselves, and report 

corrected current feedback levels to the controller. With these 

drives, the controller should not also perform this auto-nulling 

function. 

 

This auto-nulling is performed on motor enabling commands such as J/ (jog stop) and $ (phase 

finding – can also be started by setting Motor[x].PhaseFindingStep to 1), and on coordinate 

system enabling commands such as enable. If Motor[x].PhaseFindingStep is set to 8, the 

auto-nulling is performed without enabling the motor afterwards. 

The magnitude of CurrentNullPeriod determines the number of measurements of each phase to 

be taken and averaged, typically between 100 and 1000. The sign of CurrentNullPeriod 

determines the state of the amplifier when these measurements are taken. If it is positive, the 

measurements are taken with the amplifier disabled to prevent any current from flowing in the 

phases. If it is negative, the measurements are taken with the amplifier enabled but commanding 

zero voltage.  

In the first case, the bias measured is in the feedback circuits only (usually the dominant error 

source). In the second case, the bias measured is a combination of the feedback circuits and the 

voltage-command circuits. Typically, the bias in the feedback circuits is much larger than that in 

the voltage-command circuits. 
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The motor should fundamentally be still during this process, so there is no back-EMF to create 

current values. If Power PMAC detects any significant velocity during the auto-nulling 

(Motor[x].FltrVel > 0.1% of Motor[x].MaxSpeed), the auto-nulling process will fail. 

PWM Deadband Compensation: Motor[x].PwmDbComp, PwmDbI 

Due to the fact that the power transistors have a non-zero on/off switching time, and that because 

of this a “deadtime” is required between the “on” times of the top and bottom transistors of a half-

bridge, there is a resulting zero-crossing distortion in the current waveform for the phase, 

effectively producing a deadband in the phase. Power PMAC software permits you to compensate 

for this effect using the saved setup parameters Motor[x].PwmDbComp and 

Motor[x].PwmDbI. 

Motor[x].PwmDbComp specifies the size of the compensation added to the PWM phase voltage 

command values when it is applied, in units of the PWM command values (which have a full 

range of +/-Gate1[i].PwmPeriod for a PMAC2-style ASIC, and of +/-16,384 for a PMAC3-style 

ASIC). When the magnitude of commanded current for a phase is greater than 

Motor[x].PwmDbI, twice the value of PwmDbComp is added to the phase voltage command in 

the same direction sense as the sign of the current value, and the value of PwmDbComp is added 

to the other two phases in the opposite direction sense. These calculations are done for all three 

phases each cycle, with the effect of increasing the voltage difference across the phases to 

overcome the deadband effect. 

Typically, these parameters are set interactively with the goal of producing AC phase current 

waveforms with minimal zero-crossing distortion. This can be done on the analog signals with an 

oscilloscope with current probes, or using the IDE’s “scope” plotting feature from the digitized 

current values Motor[x].IaMeas and Motor[x].IbMeas. 

Voltage-Mode Direct-PWM Control 

In some very high-precision applications, it can be desirable to disable the current-loop operation 

so that the position/velocity servo output is a voltage, not a current command. This voltage-mode 

PWM control is typically used when even small current measurement noise leads to unacceptable 

roughness of operation. In these cases, the elimination of noise from disabling the current-loop 

closure can be more important than the dynamic improvement closure provides. Voltage-mode 

control is also useful for low-end systems that eliminate the cost of the current-sensing circuitry. 

 

Caution 

By eliminating the use of current feedback, voltage-mode 

PWM control removes some important protections. These 

protections typically are not necessary for operation at lower 

voltages (< 100 VDC). However, motors that can operate at 

higher voltages usually cannot tolerate full applied voltage at 

zero or low speeds, so great care must be taken in using voltage 

mode at higher voltages, especially during setup operation. 

 

To disable the current-loop closure, set bit 3 (value 8) of Motor[x].PhaseMode to 1. With this 

control bit set, actual current measurements are still made, and these measurements can be used 

for I2T integrated current protection, but these measured values are not compared to desired 

values in the “forward path” to drive closed current loops. 
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In this voltage mode, the desired current values Motor[x].IqCmd (from the position/velocity 

loop) and Motor[x].IdCmd are simply multiplied by the gain term Motor[x].IpfGain, acting 

simply as a scaling factor, to get the quadrature and direct voltage values. (Motor[x].IiGain is 

not used. Motor[x].IpbGain can be used in the “back path”, but seldom is in this mode, so 

usually it will be set to 0.0.) These field-coordinate voltage values are then converted to phase 

voltage values in the same way as when current loops are closed. 

The following diagram shows the topology of the current loops with and without the forward loop 

enabled. 
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Enabling and Disabling Forward Path Current Loop Closure 

Generally, Motor[x].IpfGain will be set to 1.0 to make this section a “pass-through”. Lower 

values for IpfGain will limit the maximum output command voltage and therefore maximum 

motor velocity. Higher values can lead to output saturation. 

In this mode of operation, servo loop proportional gain Motor[x].Servo.Kp, current-loop forward 

proportional gain Motor[x].IpfGain, and output scale factor Motor[x].PwmSf are all loop gain 

terms in series. However, there can be saturation on the output of the servo loop, as set by 

Motor[x].MaxDac, and on the output from the commutation algorithm. 

In voltage-mode PWM control, the motor’s uncompensated back-EMF acts as a moderate 

damping term for the position/velocity servo loop, so derivative gain term Motor[x].Servo.Kvfb 

(or Kvifb) will have a lower value than in current-mode PWM control for the same overall 

damping effect. 

When no forward-path current loop is closed, the current waveforms can significantly lag behind 

the voltage waveforms at high frequencies, significantly reducing the torque capabilities at high 

speeds unless compensated. Motor[x].AdvGain can be used to compensate for this lag, restoring 

high-speed capabilities. 

This voltage-mode direct-PWM control mode is new in V2.1 firmware, released 1st quarter 2016. 

In older firmware versions, this type of control could be created by setting Motor[x].AdcMask to 

$0, forcing the measured current values to 0, but this disabled I2T integrated current monitoring 

for the motor. 
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Direct PWM Control of Brush Motors 

Power PMAC supports direct PWM control of DC brush motors. Because the current-loop 

closure algorithm is part of Power PMAC’s commutation algorithm, the commutation algorithm 

must be activated for this control mode. However, because the actual commutation for these 

motors is performed in the motor, the effect of Power PMAC’s commutation algorithm must be 

disabled. The basic idea is to trick the commutation algorithm into thinking that the commutation 

angle is always stuck at 0 degrees, so current into the A phase is always “quadrature” (torque-

producing) current.  

The following block diagram shows how the standard direct PWM commutation and current loop 

action is modified for control of DC brush motors: 

Torque Command

from Position/

Velocity Servo

Magnetization

Current

PMAC Amplifier

PWM

PWM

PWM

Va

Vb

Vc

E

ADC

ADC

ia

ib

dq

to

abc

Quadrature

Current

Command

IaVolts

IbVolts

IcVolts

abc

to

dq

IaMeas

IbMeas

R=0

Direct Current

Command

PI

Direct Current Loop

+

-

+

-

P

IdCmd

Quadrature Current Loop

PI
+

-

+

-

P

IqCmd

IdVolts = 0

IqVolts

IdMeas

IqMeas

IpbGain

IpbGain

IpfGain

IiGain

IpfGain

IiGain

PhasePos

PhasePos 

= 0

(0)

PhaseMode bit 2 = 1

disables Id loop

Holding PhasePos at 0 means:

Ia/Va = +Iq/Vq

Ib/Vb = 0

Ic/Vc = -IqVq

 

Power PMAC Direct PWM Control of DC Brush Motors 

This section summarizes how the saved setup elements must be set for this particular control 

mode; many of these elements are discussed in more detail elsewhere. These instructions assume: 

 The brush motor’s stator magnetic field comes from permanent magnets or a wound field 

excited by a separate means; the field is not controlled by one of the phases of this 

channel. 

 The two leads of the brush motor’s armature are connected to amplifier phases (half-

bridges) that are driven by the A and C-phase PWM commands from the Power PMAC 

servo channel. (Often these amplifier phases are labeled U and W.) The amplifier may 

have an unused half-bridge (often labeled V) driven by the channel’s B-phase, but this 

does not need to be present. 
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Motor Settings Common with Brushless Motors 

The following settings are the same as for a permanent-magnet brushless motor with an absolute 

phase reference: 

 Motor[x].PhaseCtrl should be set to 4 to activate the commutation algorithm. (If 

“packing” of current-loop inputs and outputs is supported on a PMAC3-style interface – 

not true for Delta Tau amplifiers – PhaseCtrl can be set to 1.) 

 Motor[x].pDac should be set to Gaten[i].Chan[j].Pwm[0].a, where n is “1” for a 

PMAC2-style interface, or “3” for a PMAC3-style interface. If controlling over the 

MACRO ring, it should be set to Gate2[i].Macro[j][0].a for a PMAC2-style MACRO 

interface, or to Gate3[i].MacroOutα[j][0].a for a PMAC3-style MACRO interface, 

where α can be “A” or “B”. 

 Motor[x].pAdc should be set to Gate1[i].Chan[j].Adc[0].a for a PMAC2-style interface, 

or to Gate3[i].Chan[j].AdcAmp[0].a for a PMAC3-style interface. If controlling over 

the MACRO ring, it should be set to Gate2[i].Macro[j][1].a for a PMAC2-style 

MACRO interface, or to Gate3[i].MacroInα[j][1].a for a PMAC3-style MACRO 

interface, where α can be “A” or “B”. This enables the digital current loop for the motor 

and selects the proper register for the current feedback. 

 Motor[x].pAbsPhasePos must be set to a non-zero value to enable a power-on phase 

position read. Since the purpose of this read is simply to force the phase position to zero, 

it does not really matter what address this selects; it is fine to set this to 

Gaten[i].Chan[j].PhaseCapt.a or to a MACRO node register so it addresses an actual 

feedback encoder position register. 

 Motor[x].AdcMask should be set to $FFF00000 for 12-bit current feedback, or to 

$FFFC0000 for 14-bit current feedback, just as for brushless motors. 

 Motor[x].IdCmd should be set to the default value of 0.0 to command zero direct (field) 

current. 

 Motor[x].DtOverRotorTc should be set to the default value of 0.0 for zero “slip” in the 

commutation angle calculations. 

 Motor[x].PhaseFindingTime should be set to 0 to disable a phasing search move. 

 Motor[x].PowerOnMode is set as for a brushless motor. The most common value is 2, 

which causes the phase referencing to be done automatically on power-up/reset, but does 

not close the loop at this time, instead waiting for a command (e.g. j/ for a single motor, 

or enable for all the motors in a coordinate system). 

 

It can also be set to 1, which causes the position loop to be closed automatically when the 

phase referencing is done, but does not do this referencing immediately on power-

up/reset, instead waiting for a command (the on-line $ command or buffered 

Motor[x].PhaseFindingStep=1 command). 

 Digital current loop gain terms Motor[x].IpfGain, Motor[x].IpbGain, and 

Motor[x].IiGain will be set in the tuning process just as for brushless motors. Note that 
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the IDE’s automatic and interactive tuning routines inject “direct” current to monitor the 

response. To use these tools with brush motors, manually set Motor[x].PhaseTableBias 

to 512 (90°e) so that direct current corresponds to A-phase current. Remember to set 

Motor[x].PhaseTableBias back to 0 before actual operation. 

 Phase current offset term Motor[x].IaBias and can be set just as for brushless motors to 

compensate for offsets in the current value. Motor[x].IbBias is not used in this mode of 

control. 

Motor Settings Special for Brush Motors 

The following settings are unique to the direct-PWM control of brush motors, and will likely be 

different from the settings for brushless motors: 

 Motor[x].AbsPhasePosSf and Motor[x].AbsPhasePosOffset must both be set to 0.0 so 

no matter what value is read as the power-on commutation position feedback, the 

commutation angle is forced to zero. 

 Motor[x].PhasePosSf must be set to 0.0 so no matter what value is read as the ongoing 

commutation position feedback, the commutation angle will not change. 

 Motor[x].PhaseOffset must be set to 512 (+90°e) if voltage and current polarities are 

opposite (a positive voltage command in a phase produces negative current reading), or to 

-512 (-90°e) if voltage and current polarities are the same. This puts the A and C phases 

180° apart, so they will get “opposite” phase commands. This setting is the same as for 2-

phase brushless motors, but different from 3-phase motors. 

 Motor[x].PhaseMode should be set to 3. This setting disables the integrator for the 

direct current loop, so offset and noise on the unused B-phase current sensor cannot 

integrate into a substantial value. It also disables the algorithms for “third-harmonic 

injection”, which are not needed for brush motors. Note that for the IDE’s current-loop 

tuning, which uses the direct-current loop, PhaseMode should be set to 1 so that the 

integrator is enabled and the integral gain term can be set correctly. PhaseMode must be 

returned to a value of 3 after the tuning tests are completed. 

The following settings do not matter for direct-PWM control of brushless motors: 

 Motor[x].AbsPhasePosFormat does not matter, because the read value, however 

formatted, is always forced to zero. It can be left at its default value of $0. 

 Motor[x].pPhaseEnc does not matter, because whatever register is read for ongoing 

commutation feedback, the change in angle is always forced to zero. It is fine to leave 

this at the default of Gaten[i].Chan[j].PhaseCapt.a. 

Special Instructions for Tuning Current Loop 

In Power PMAC’s direct PWM control of brush DC motors, there is no “direct” current 

component. Quadrature current is always aligned with Phase A current in operation. However, the 

IDE’s current-loop tuning controls command direct current in order to minimize the movement of 

a brushless motor. This will not work for brush motors controlled this way. 
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To use the IDE’s current-loop tuning controls, whether automatic or interactive tuning, the 

motor’s “phase angle”, fixed at 0° for normal operation, must be set to 90° for the tuning. This is 

done by manually setting non-saved setup element Motor[x].PhaseTableBias to 512 (one-

quarter of a commutation cycle) before starting the tuning. With this bias, the direct current 

command is mapped to the Phase A current value.  

In addition, bit 1 (value 2) of saved setup element Motor[x].PhaseMode must be set to 0 for the 

test to enable the integrator for the direct current loop. This changes the value of PhaseMode 

from 3 to 1. Note that a direct current command will generate torque and possible movement 

during the test. 

The setting of Motor[x].PhaseTableBias must be returned to 0, and Motor[x].PhaseMode 

returned to 3 after the tuning is complete and before attempting to resume normal control. 
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Direct Microstepping with Direct PWM Control 

Power PMAC has the ability to perform the phase commutation and current-loop closure to 

control stepper motors in open-loop microstepping control, working off internally generated 

pseudo-feedback for both commutation and servo algorithms. This technique, called “direct 

microstepping”, is different from using Power PMAC with a pulse-and-direction output to 

command an external microstepping drive; that technique does not utilize Power PMAC’s 

commutation or current-loop algorithms at all, as those tasks are performed in the drive. 

Direct microstepping with direct PWM control is commonly used on the Power Brick LV 

controller, which has built-in amplifiers capable of driving both 2-phase and 3-phase motors. 

Product-specific instructions for direct microstepping with the Power Brick LV are included in its 

User’s Manual. 

When performing direct microstepping commutation with current-loop closure, Power PMAC 

calculates the voltage output commands for each phase, represented by PWM signals. 

This technique is most widely used to control motors that are marketed as “stepper motors”, but 

the principle of control for these motors – open-loop or closed-loop – is the same as for motors 

that are marketed as “brushless servo motors”, so the technique can be used for either type of 

motor.  

Also note that “stepper motors” overwhelmingly (but not universally) are 2-phase motors with 

electrically independent phases, whereas “brushless servo motors” are overwhelmingly (but not 

universally) 3-phase motors with electrically connected (Y or delta) phases. This direct-

microstepping/direct-PWM technique can be used with either 2-phase or 3-phase motors, 

although a couple of setup elements must be made differently, and there must be different power-

stage topologies for the two types of motors. 

The intent of this algorithm is to be able to provide position control of stepper motors without the 

use of any position sensor such as a shaft encoder. If there is a shaft encoder on the motor, 

superior control can be established by treating the motor as a (high pole-count) brushless servo 

motor with closed-loop commutation and servo algorithms.  

Principle of Operation 

This direct microstepping technique works by numerically integrating the servo loop’s command 

output value both for its own feedback and to advance the phase angle for the commutation 

algorithm. This permits both algorithms to operate without an actual position sensor on the motor, 

so open-loop control can be achieved. Both values are driven very directly from the commanded 

trajectory. 
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The following diagram shows the principle of operation for this technique, showing the typical 2-

phase motor configuration. 
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Power PMAC Direct Microstepping/Direct PWM Block Diagram 

Unlike in closed-loop servo control, the motor torque comes mostly from the “direct” current 

command value IdCmd, which is generally held constant in magnitude. In direct microstepping, 

the servo-loop output “quadrature” current command value IqCmd serves as a velocity, not a 

torque command; its main purpose is to rotate the commanded rotor angle, and it provides only a 

minimal contribution to the motor torque. 

This section summarizes how the saved setup elements must be set for this particular control 

mode; these elements are discussed in more detail elsewhere. 

Speed Limitations 

The direct microstepping technique has a maximum speed of 1024 microsteps per servo cycle. 

For a standard 100-pole (1.8°) stepper motor with a 5 kHz update rate, this yields a 3000-rpm 

maximum speed. There is also a limit of 512 microsteps (1 full step) per phase cycle. For the 

same motor with a 10 kHz phase update rate, there is also a 3000-rpm maximum speed. Few 

users will operate stepper motors at these speeds, but these limits should be calculated and update 

rates set high enough that desired speeds can be reached. 

Hardware Setup 

The hardware setup of the Servo ICs for direct microstepping with direct PWM is the same as for 

closed-loop servo control with direct PWM. Instructions for setting the IC configuration elements 

for direct PWM control are given earlier in this chapter. Tuning of the digital current loops for 

direct microstepping is also the same as for closed-loop servo control. 

Encoder Conversion Table Entry Setup 

This technique creates a simulated position sensor and feedback loop by numerically integrating 

the (velocity) command output from the servo loop. This requires a special entry in the encoder 

conversion table to read the double-precision floating-point commutation rotor-angle value for 

position feedback. The following settings must be made for the entry: 

 EncTable[n].type must be set to 11 to specify the reading of a floating-point register. 
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 EncTable[n].index6 must be set to 1 to specify that there is a double-precision floating-

point value at this register. 

 EncTable[n].pEnc must be set to Motor[x].PhasePos.a to read the commutation rotor 

angle register 

 EncTable[n].index5 should be set to 255 to provide a pre-scaling multiplication factor of 

256 to the floating-point input value to keep the maximum resolution from this register. 

 EncTable[n].index1 should be set to 5 to shift the intermediate data left 5 bits so it rolls 

over properly. 

 EncTable[n].index2, index3, and index4 should be left at their default values of 0 to 

disable any filtering or integration. 

 EncTable[n].ScaleFactor should be set to 1/2097152 (1/221) so the entry output has 

appropriate scaling for servo loop closure. With this scaling, one unit of output from the 

table entry is one microstep (1/512 of a full step, 1/1024 of a pole, or 1/2048 of a 

commutation cycle). 

Simulated Servo Loop Setup 

This processed data is used to close a simulated servo loop using the following settings: 

 Motor[x].pEnc should be set to EncTable[n].a to use the processed PhasePos value as a 

simulated position feedback. 

 Motor[x].pEnc2 should be set to EncTable[n].a as well for the inner-loop position. If 

the servo velocity feedback terms are set to 0.0, as is usual for this type of control, this 

position is not used in the simulated servo loop, but it is used in the actual-velocity 

calculations for velocity reporting and phase advance. 

 Motor[x].PosSf for the outer servo loop, and Motor[x].Pos2Sf for the inner loop should 

be set to 1.0 to scale the motor units as “microsteps”. (Other settings are possible, but 

these require rescaling many other servo and commutation elements as well.) With this 

scaling, there are 2048 motor units per commutation cycle (pole pair). For a common 

100-pole (1.8° full-step) stepper motor, this provides 102,400 motor units per revolution. 

 The servo-loop proportional gain term Motor[x].Servo.Kp should be set to a value of 1.0 

to create a high-performance simulated loop. 

 The servo-loop velocity feedback gain terms Motor[x].Servo.Kvfb and Kvifb should be 

set to 0.0 because no damping action is required in this simulated loop. 

 The servo-loop integral gain term Motor[x].Servo.Ki should be set to 0.0 because there 

are no steady-state errors to overcome in this simulated loop. 

 The servo-loop velocity feedforward gain term Motor[x].Servo.Kvff should be set to 1.0 

to eliminate velocity-dependent tracking errors. Motor[x].Servo.Kviff should be set to 

0.0. 
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 The servo-loop acceleration feedforward gain term Motor[x].Servo.Kaff should be set to 

1.0 to eliminate acceleration-dependent tracking errors. (These errors are very small.) 

 Other servo-loop gain terms should be set to 0.0, as their action is not needed in this 

simple simulated loop. 

Commutation and Current-Loop Setup 

The following settings are for the basic setup of commutation. Most are the same as for closed-

loop control of brushless motors: 

 Motor[x].PhaseCtrl must be set to 6 for a PMAC2-style interface. It can be set to 3 for a 

PMAC3-style interface when using the more efficient “packed” I/O, or to 6 when using 

“unpacked” I/O, to activate the commutation algorithm. Setting bit 1 (value 2) of this 

element to 1 means the “slip” calculations that are used to advance the commutation 

angle are based on commanded, not actual values. When using the Power Brick LV, it is 

generally suggested to use “unpacked” I/O, so status and error bits in the lower parts of 

the ADC current feedback words can be accessed. 

 Motor[x].pDac should be set to Gaten[i].Chan[j].Pwm[0].a, where n is “1” for a 

PMAC2-style interface, or “3” for a PMAC3-style interface. If controlling over the 

MACRO ring, it should be set to Gate2[i].Macro[j][0].a for a PMAC2-style MACRO 

interface, or to Gate3[i].MacroOutα[j][0].a for a PMAC3-style MACRO interface, 

where α can be “A” or “B”. 

 Motor[x].pAdc should be set to Gate1[i].Chan[j].Adc[0].a for a PMAC2-style interface, 

or to Gate3[i].Chan[j].AdcAmp[0].a for a PMAC3-style interface. If controlling over 

the MACRO ring, it should be set to Gate2[i].Macro[j][1].a for a PMAC2-style 

MACRO interface, or to Gate3[i].MacroInα[j][1].a for a PMAC3-style MACRO 

interface, where α can be “A” or “B”. This enables the digital current loop for the motor 

and selects the proper register for the current feedback. 

 Motor[x].AdcMask should be set to $FFF00000 for 12-bit current feedback, or to 

$FFFC0000 for 14-bit current feedback, just as for brushless motors. The Power Brick 

LV provides 14-bit current feedback. 

 For a 2-phase motor (which most stepper motors are), Motor[x].PhaseOffset should be 

set to 512 if voltage and current senses are opposite for the phases (true for Delta Tau 

drives), or to -512 if voltage and current senses are the same for the phases. For a 3-phase 

motor (which most brushless servo motors are), Motor[x].PhaseOffset should be set to 

683 if voltage and current senses are opposite for the phases, or to -683 if voltage and 

current senses are the same for the phases. Note that Delta Tau’s “LV” amplifiers are 

software-configurable to drive 2-phase or 3-phase motors; refer to those manuals for the 

required settings for your configuration. 

 Motor[x].PhaseMode should be set to 1 for a 2-phase motor to disable “third-harmonic 

injection”, or to 0 for a 3-phase motor to enable this feature. 

 Motor[x].DtOverRotorTc should be set to its default value of 0.0 so that slip is not a 

function of the rotor time constant. 
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 Motor[x].PhaseFindingTime should be set to 0 to disable a phasing search move. 

 Digital current-loop gain terms Motor[x].IpfGain, Motor[x].IpbGain, and 

Motor[x].Iigain will be set in the tuning process just as for closed-loop control of 

brushless motors. The IDE’s automatic and interactive tuning windows work very well 

for this purpose. 

 Phase current offset terms Motor[x].IaBias and Motor[x].IbBias can be set just as for 

closed-loop control of brushless motors to compensate for offsets in the current values. 

Motor[x].CurrentNullPeriod can be used to set these bias terms automatically each 

time the motor is enabled. 

The following settings are special to direct-microstepping/direct-PWM control, and will likely be 

different from closed-loop control of brushless motors: 

 Motor[x].pAbsPhasePos must be set to a non-zero value to enable a phasing read to 

force the initial phase position. It is fine to set this to Gaten[i].Chan[j].PhaseCapt.a 

(even though the value in this register will not really be used). 

 Motor[x].AbsPhasePosSf and Motor[x].AbsPhasePosOffset must both be set to 0.0, so 

that no matter what value is read as the power-on commutation feedback, the 

commutation angle is forced to 0. 

 The setting of Motor[x].AbsPhasePosFormat does not matter, because the value read, 

however, formatted, will always be scaled and offset to a zero result. It is fine to leave it 

at its default value of $0. 

 Motor[x].PhasePosSf must be set to 0.0 so no matter what value is read as the ongoing 

commutation position feedback, the resulting feedback phase position will not change. 

This will permit the entire phase angle to come from the simulated slip due to the 

integrated command velocity. 

 The setting of Motor[x].pPhaseEnc does not matter, because whatever register is read 

for ongoing commutation feedback, the resulting change in angle is always forced to 

zero. It is fine to leave this at the default of Gaten[i].Chan[j].PhaseCapt.a. 

 Motor[x].SlipGain must be set to 1 / (Phase cycles per servo cycle). If saved setup 

element Sys.PhaseOverServoPeriod has been set correctly, Motor[x].SlipGain can just 

be set to the value of Sys.PhaseOverServoPeriod. Each phase cycle, this value is 

multiplied by the IqCmd output value from the simulated servo loop and the 

commutation angle is advanced by the resulting product. This value properly matches the 

servo loop scaling so that one microstep advances the commutation angle one entry in the 

commutation table. At the default setting of 4 phase cycles per servo cycle, SlipGain 

should be set to 0.25. 

 Motor[x].IdCmd must be set to specify the desired current magnitude in the motor. It is 

scaled such that 32,768 represents the maximum current that can be read by the A/D 

converters in the drive. Remember that this amount of current is used constantly, so any 

value used more than momentarily must be within the steady-state current limit of both 

the drive and the motor. It is possible to change the value of IdCmd at any time; many 

users will lower the value at rest to reduce heating when higher currents are not needed. 
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 Motor[x].AdvGain should be set to a non-zero value if commutation frequencies over 

about 1000 Hz – corresponding to 1200 rpm on a standard 100-pole stepper motor – are 

desired. This compensates for the time delay between sampling the phase current and 

having the resulting PWM command take effect. For an N phase-cycle delay, 

Motor[x].AdvGain should be set to (N/16) * Sys.PhaseOverServoPeriod, where N is 

typically 2 to 3. Often the value of AdvGain is optimized experimentally. 

After power-on/reset, the motor is initialized with a phase referencing process. This can be done 

using the on-line motor-specific $ command, by setting Motor[x].PhaseFindingStep to 1 in a 

PLC program, or automatically if bit 1 (value 2) of saved setup element 

Motor[x].PowerOnMode is set to 1. If bit 0 (value 1) of PowerOnMode is set to 1, the motor is 

automatically enabled with the simulated loop closed at the end of the phase referencing. When 

the loop is closed, the motor will be commanded to the zero point in the commutation cycle. 

Limiting Parameters 

Many users will want to set a velocity limit that provides a safe and predictable shutdown if a 

higher commanded velocity is requested. The easiest way of doing this is to set the value of 

Motor[x].MaxDac, which acts as the velocity limit into the direct microstepping algorithm.  

With servo gains of 1.0 as suggested above, the units of Motor[x].MaxDac are effectively motor 

units per servo cycle. To calculate the parameter given a maximum RPM value, the following 

equation can be used: 

dServoPerioSys
vRePolesPerMaxRPM

MaxDacxMotor .*2048*
2

*
000,60

].[ 







  

For example, to set a maximum speed of 1500 rpm on a 100-pole motor at a 5 kHz servo update: 

5122.0*2048*
2

100
*

000,60

1500
].[ MaxDacxMotor  

If the magnitude of the commanded velocity exceeds this amount, the following error in the 

simulated servo loop will quickly grow, and will trip when it exceeds Motor[x].FatalFeLimit. 

Because the current magnitude in direct microstepping is essentially constant for long periods, 

Power PMAC’s “I2T” integrated current limiting is not nearly as important in direct 

microstepping as it is in closed-loop applications. Of course, the value of Motor[x].IdCmd used 

must be lower than the continuous current rating of the motor and amplifier. It can still be 

valuable to set the I2T parameters so that later changes to the value of Motor[x].IdCmd cannot 

damage the motor or amplifier. 
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Establishing a Phase Reference (Synchronous Motors) 

When commutating a synchronous multi-phase motor such as a permanent-magnet brushless 

servo motor, the commutation algorithm must know the absolute position of the rotor within a 

single commutation cycle so it knows the magnetic field orientation of the rotor. The process of 

establishing this absolute position sense is known as “phase referencing”. 

Fundamentally, there are two methods for establishing the phase reference. The first is a “phasing 

search”, in which some kind of excitation signal is applied to the motor, and the physical response 

of the motor is sensed in order to determine the phase angle. This does not require a sensor that is 

absolute over a full commutation cycle. 

The second method is an “absolute phasing read”, in which a sensor that is absolute (non-

repeating) over a full commutation cycle is read and the position value is used to set the 

commutation phase angle. Of course, this cannot be done with an incremental sensor such as a 

digital quadrature encoder or an analog sinusoidal encoder (although some of these devices have 

additional “tracks” that support these absolute phasing reads). 

However, even if there is a sensor that is absolute over at least a full commutation cycle and so 

can be used for an absolute phasing read, a phasing search move must be done initially to 

determine how the sensor is aligned relative to the motor’s commutation cycle. The section 

immediately below on phasing search moves, particularly the “stepper motor” phasing search, is 

therefore relevant for these applications as well. 

Power PMAC will not permit closing the loop on a synchronous (zero-slip) motor commutated by 

the controller until a successful phasing reference has been performed. The read-only status bit 

Motor[x].PhaseFound is automatically set to 0 at power-on/reset and at the beginning of any 

phasing-search move or absolute phase position read. It is only set to 1 if the Power PMAC 

judges the move or read to be successful. The servo loop cannot be closed on the motor unless 

this bit is 1. 

 

WARNING 

It is vital that a reliable method of accurately establishing a 

phase reference be implemented before the machine has 

the potential to cause damage or injury. A phase reference 

grossly in error has the potential to cause runaway 

conditions. Even moderate errors can cause overheating of 

the motor and amplifier due to sub-optimum utilization of 

current. Make sure that Motor[x].FatalFeLimit is set as 

small as practicable so any possible runaway condition is 

caught quickly. 

 

Power PMAC presently supports two built-in types of phasing search moves. These moves are 

specified and controlled by the settings of saved setup elements Motor[x].PhaseFindingTime 

and Motor[x].PhaseFindingDac. A value for Motor[x].PhaseFindingTime that is greater than 0 

specifies that a phasing search move is to be used for the phasing reference instead of an absolute 

position read. 

If bit 1 (value 2) of Motor[x].PowerOnMode is 1, a phasing reference is automatically 

commanded for the motor at power-on/reset. Regardless of the setting of 



Power PMAC User’s Manual 

Setting up Power PMAC-Based Commutation and/or Current Loop 294 

Motor[x].PowerOnMode, the on-line motor-specific $ command initiates a phasing reference. 

Setting (unsaved) element Motor[x].PhaseFindingStep to 1 in either an on-line command or a 

buffered program command also initiates a phasing-search move. 

Bit 0 (value 1) of Motor[x].PowerOnMode specifies the state of the motor after a successful 

phasing reference. If it is set to 0, the motor is “killed” (open-loop, zero output, amplifier 

disabled). If it is set to 1, the motor is enabled in a closed-loop zero-velocity state. In an actual 

application, a value of 1 is almost always desired. After an unsuccessful phasing reference, the 

motor is always killed, and the Power PMAC will not permit subsequent closed-loop enabling of 

the motor. 

“Stepper Motor” Phasing Search 

The “stepper motor” phasing search move is so called because it drives the brushless servo motor 

like a stepper motor to a known rotor angle orientation. It forces current into motor phases in a 

known pattern and waits for the motor to settle. With proper operation, this will be at a known 

position in the commutation cycle with reasonable precision. 

This method is specified if Motor[x].PhaseFindingTime is set to a value of 256 or greater. The 

value specifies the time, in real-time interrupt periods, that each of the two current settings is 

held. Motor[x].PhaseFindingDac specifies the peak commanded current magnitude for each 

step, in units of a 16-bit output (so 32,767 would be full range). 

At the start of a stepper-motor phasing search, Power PMAC ramps up the current to half of the 

amount specified in PhaseFindingDac over the time interval specified by PhaseFindingTime to 

force the motor to +90° of the commutation cycle (+512 commutation units). Note that there is a 

slight possibility the motor will be stuck in its “unstable equilibrium” position of -90°. 

Next, the current is ramped up to the full amount specified by PhaseFindingDac over another 

time interval of PhaseFindingTime to force the motor to 0° (0 commutation units) of the 

commutation cycle. At the end of this period, a value of 0 is forced into the commutation phase 

position register. 

For the phasing search to be successful, the motion between the ends of the first and second steps, 

expressed in commutation units (1/2048 of a commutation cycle) must be greater than the value 

in Motor[x].AbsPhasePosOffset. In an ideal phasing search, this distance would be 512 units. 

The distance that occurred in the most recent search can be found in Motor[x].New[0].Pos. 

Generally, a value of about 400 for AbsPhasePosOffset will catch true failures without rejecting 

slightly non-ideal searches. 

“Four Guess” Phasing Search 

The “four guess” phasing-search move is so called because it makes four separate guesses as to 

the phase position, separated by 90° of the commutation cycle, briefly applies a torque command 

using each guess, and observes the response of the motor to each command. Based on the 

magnitude and direction of these responses, Power PMAC calculates the rotor phase angle. 

This method is specified if Motor[x].PhaseFindingTime is set to a value from 4 to 255. The 

value specifies the time, in real-time interrupt periods, for each guess. The method is based on the 

idea that the torque generated per unit current is proportional to the cosine of the error in the 

phase angle used in the guess. While the method cannot measure the generated torque directly, it 

can calculate the resulting acceleration from reading the motor position sensor. If external loads 
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are not too high, this acceleration is a good proxy for torque. An arctangent calculation from the 

accelerations of the “sine” and “cosine” guesses can then determine the phase angle. 

This method is quicker than the stepper-motor search method and requires less movement. It is 

more sensitive to significant external loads. 

With very low external loads, two guesses 90° apart are sufficient to determine the phase angle, 

and earlier generations of PMAC used such a “two guess” method. With four guesses spaced 

around the commutation cycle, the ability to remove the effect of external loads is greatly 

improved, making the method significantly more robust. 

For the phasing search to be successful, the sum of the squares of the (load-adjusted) 

accelerations of the two pairs of guesses must be greater than the value in 

Motor[x].AbsPhasePosOffset. The value in the most recent search for the “sine” guesses can be 

found in Motor[x].New[0].Vel. The value in the most recent search for the “cosine” guesses can 

be found in Motor[x].New[0].Acc. Generally a value of about 80% of the typical sum of square 

for a search will catch true failure without rejecting slightly non-ideal searches. 

Absolute Phasing Reads 

Power PMAC can use a variety of absolute position sensors to determine the phase angle of the 

motor at power-on/reset. These include absolute encoders, resolvers, and Hall sensors, processed 

through a variety of interfaces. The saved setup elements used for absolute phase position reads 

are: 

 Motor[x].pAbsPhasePos 

 Motor[x]AbsPhasePosFormat 

 Motor[x].AbsPhasePosSf 

 Motor[x].AbsPhasePosOffset 
 

Power PMAC reads the data at the address specified by pAbsPhasePos, interprets it according to 

the rules specified by AbsPhasePosFormat, multiplies it by AbsPhasePosSf to convert it into 

commutation units, then adds AbsPhasePosOffset to incorporate the difference between the 

sensor zero position and the commutation zero angle. 

Note that the sensor used for absolute power-on phase position can be the same as that used for 

ongoing phase position, or it can be different – including having different resolution. 

Motor[x].pAbsPhasePos must be set to a non-zero value, and Motor[x].PhaseFindingTime 

must be set to zero, in order for an absolute phase position read to be used for the phasing 

reference. 

Hall Commutation Sensors 

Digital Hall commutation sensors (or their optical equivalents) are probably the most common 

power-on absolute phase position sensors used with the Power PMAC. With 6 states per 

commutation cycle, they provide rough phasing (+/-30° of the commutation cycle) that is good 

enough to obtain reasonably efficient controlled motion. Correction of the original rough phasing 

is required for optimal operation. 
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Hall Sensor Address 

With the 3 Hall sensor signals connected to the U, V, and W flag inputs for an ASIC servo 

channel, as is recommended, the signals can be read in the ASIC channel’s status register, or in 

the MACRO input flag register if passed through the MACRO ring. So Motor[x].pAbsPhasePos 

should be set to:  

 Gate1[i].Chan[j].Status.a for a PMAC2-style ASIC, as on an ACC-24E2x board 

 Gate3[i].Chan[j].Status.a for a PMAC3-style ASIC, as on an ACC-24E3 board 

 Gate2[i].Macro[k][3].a for a MACRO flag register on a PMAC2-style ASIC, as in the 

ACC-5E 

 Gate3[i].MacroInα[k][3].a for a MACRO flag register on a PMAC3-style ASIC, as in 

the ACC-5E3. 

This diagram shows the 3-phase Hall signals in the most common configuration, with the signals 

spaced by 120° of the commutation cycle. An alternate configuration has the signals spaced by 

60°; with the “V” signal inverted from what is shown in the diagram. The 120° spacing is 

generally recommended, as the common failure states of all 0’s or all 1’s are not legal states, and 

therefore easily detected. 

1

0

1

0

1

0

U

V

W

UVW 1 3 2 6 4 5

Degrees 330 30 90 150 210 270

State 11 1 3 5 7 9
 

Hall Sensor Commutation States 

Hall Sensor Data Format 

Motor[x].AbsPhasePosFormat tells Power PMAC how to use the data at this specified register. 

It is a 32-bit value organized as 4 byte fields. It is usually represented as a hexadecimal value, 

where the 4 byte fields can be shown as $aabbccdd. The $dd byte specifies the starting bit 

number to be used in the register. It should be set to $1C (28 decimal) for a PMAC2-style IC, or 

to $0C (12 decimal) for a PMAC3-style IC. The $cc byte specifies the number of bits to be used; 

it should be set to $03 for any Hall sensors. The $bb byte specifies how data in any subsequent 

registers is to be used; since that is not an issue here, it should be set to $00. 
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The $aa byte specifies the data format to be used. It should be set to $04 for Hall signals with 

120° spacing, or to $05 for Hall signals with 60° spacing.  

There are four common settings of Motor[x].AbsPhasePosFormat for Hall sensors. They are: 

Motor[x].AbsPhasePosFormat = $0400031C // 120° Halls thru PMAC2-style IC or MACRO 

Motor[x].AbsPhasePosFormat = $0500031C // 60° Halls thru PMAC2-style IC or MACRO 

Motor[x].AbsPhasePosFormat = $0400030C // 120° Halls thru PMAC3-style IC 

Motor[x].AbsPhasePosFormat = $0500030C // 60° Halls thru PMAC3-style IC 

 

Hall Sensor Scale Factor 

Motor[x].AbsPhasePosSf is used to convert the Hall signal reading into commutation units. Both 

its magnitude and sign are important. Because Power PMAC considers Hall sensors to have 12 

states per commutation cycle (6 states plus 6 edges) and it has 2048 commutation units per cycle, 

the magnitude of Motor[x].AbsPhasePosSf should be 2048/12 = 170.667. (Because this is for a 

one-time rough phasing, the fractional value does not need to be precise.) 

The proper sign of Motor[x].AbsPhasePosSf is determined by the direction sense of the Hall 

signals with respect to the commutation cycle. For 120° spacing, if W leads V and V leads U in 

the counting-up sense of the commutation cycle (as determined by the ongoing commutation 

sensor), the direction sense agrees, and Motor[x].AbsPhasePosSf should be positive: +170.667. 

However, if U leads V and V leads W in the counting-up sense, the direction sense does not 

agree, and Motor[x].AbsPhasePosSf should be negative: -170.667. 

Hall Sensor Offset 

Motor[x].AbsPhasePosOffset is used to compensate for the difference between the sensor’s zero 

position and the commutation cycle zero position. The value can be unique to the application. The 

zero position for the Hall cycle is the V-signal transition when U is low (0) and W is high (1). In 

general, this point will not be at the zero-point in the motor’s commutation cycle. 

To set the value of Motor[x].AbsPhasePosOffset “manually”, execute a “stepper-motor” 

phasing search to drive the motor to the zero point in the commutation and set 

Motor[x].PhasePos to zero. Then, while monitoring Motor[x].PhasePos and 

Gaten[i].Chan[j].UVW, best in the IDE’s “Watch” window, turn the motor slowly until you see 

this V-signal transition, where the UVW element will change between 1 and 3. It may be best to 

kill the motor and turn it by hand to do this. Note the value of PhasePos when this transition 

occurs. Assign this value to Motor[x].AbsPhasePosOffset.  

Note that this is only an approximate phase referencing; the computed phase angle here could be 

up to +/-30° of the commutation cycle off from the true angle, yielding a significant reduction in 

torque capability. See the section Correcting an Approximate Phase Reference, below, for 

directions on how to follow this step with a more precise referencing. 

Invalid Hall Sensor Read 

Only 6 of the 8 possible combinations of the 3 Hall signals are valid readings. For the 120° 

spacing, all signals at 0 and all signals at 1 are invalid combinations. For the 60° spacing, UVW 

patterns of 010 and 101 are invalid combinations. If Power PMAC detects an invalid combination 

when it performs an absolute phase-position read, it will consider the operation to have failed. 

The status bit Motor[x].PhaseFound will be left at 0, and closed-loop operation of the motor will 

be prohibited. 
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Absolute Encoders 

Absolute encoders are increasingly being used as the position sensors for both servo and 

commutation feedback. They can serve as the sensors for both power-on and ongoing 

commutation position. Note that a “single-turn” absolute encoder can be used for power-on 

commutation position, as it only needs to be absolute over one commutation cycle of the motor. 

Absolute Encoder Address 

The Power PMAC provides several possible interfaces for absolute encoders, with data received 

in both serial and parallel format. In either case, the position data can be found in memory-

mapped registers. Motor[x].pAbsPhasePos tells Power PMAC the address of the register to read 

for power-on absolute phase position. 

The most common absolute encoder interface used with the Power PMAC is the serial-encoder 

interface of the PMAC3-style ASIC, found on the ACC-24E3 UMAC servo interface board and 

on the Power Brick control board, with dedicated circuitry and registers for the interface. In this 

case, Motor[x].pAbsPhasePos should be set to Gate3[i].Chan[j].SerialEncDataA.a for the IC 

and channel used. This register contains the low 32 bits of data from the serial encoder. 

Parallel-format data can be brought in through the ACC-14E I/O board, which uses the IOGATE 

I/O interface IC. In this case, Motor[x].pAbsPhasePos should be set to GateIo[i].DataReg[j].a, 

where i specifies the index of the IC used, and j specifies which of the 6 byte-wide data registers 

(0 – 5) on the IC contains the least significant byte of the encoder position data. 

Other older serial-encoder interface boards exist for UMAC systems that do not have pre-defined 

data structures for the memory-mapped registers. For these boards, Motor[x].pAbsPhasePos 

should be set to the address directly, in the form of Sys.piom + {offset}, where Sys.piom is the 

base address of the memory-mapped I/O space for the Power PMAC (the user does not need to 

know the numerical value of this address), and {offset} is the numerical value of the address offset 

of the specified register in this I/O space. 

The user will calculate this offset in two parts. First is the offset of the base address of the board 

from the base address of the I/O space. This is determined by the DIP-switch setting of the board. 

For boards using the “general-purpose I/O” address space (all of the standard older serial-

interface boards), these offsets can be found in the following table: 

Index # 0 1 2 3 4 5 6 7 

IC Base 

Offset 

$A00000 $B00000 $C00000 $D00000 $A08000 $B08000 $C08000 $D08000 

Index # 8 9 10 11 12 13 14 15 

IC Base 

Offset 

$A10000 $B10000 $C10000 $D10000 $A18000 $B18000 $C18000 $D18000 

 

To this must be added the (small) offset of the register used in the IC from the base address of the 

IC. Remember that each consecutive register in the IC has an offset of 4 numerical addresses 

from the previous register. 

For example, to use the second register of an IC mapped to index 1 in the general-purpose I/O 

space of the Power PMAC, Motor[x].pAbsPhasePos would be set to Sys.piom + $B00004. 
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Absolute Encoder Data Format 

Motor[x].AbsPhasePosFormat tells Power PMAC how to use the data at this specified register. 

It is a 32-bit value organized as 4 byte fields. It is usually represented as a hexadecimal value, 

where the 4 byte fields can be shown as $aabbccdd.  

The $dd byte specifies the starting bit number to be used in the register. It should generally be set 

to $00 when reading data from Gate3[i].Chan[j].SerialEncDataA.a, as the LSB of the encoder 

data should be found in bit 0 of the 32-bit register. When reading data from 

GateIo[i].DataReg[j].a, it should generally be set to $08, as the LSB of the IOGATE IC registers 

is mapped into bit 8 of the 32-bit bus. Most of the older serial-encoder interface boards also map 

their LSBs into bit 8, so the $dd byte should be set to $08 for these as well. 

The $cc byte specifies the number of bits to be used; it should be set to the number of bits of 

encoder data that cover a single commutation cycle, even if the encoder provides more bits of 

data. For example, if the encoder provides a total of 27 bits of data with 65,536 LSBs per 

revolution of the motor, and the motor has 4 poles (2 commutation cycles per revolution), $cc 

should be set to $0F (15 decimal) because there are 215 (32,768) LSBs of the encoder per 

commutation cycle, so the low 15 bits of the encoder data should be used. 

If the size of the commutation cycle cannot be expressed as a power of 2 of the LSBs of the 

encoder, which will generally be the case for linear encoders, then a number of bits at least as big 

as that necessary to cover the entire travel of the motor must be used, not just enough to cover a 

single commutation cycle. If this requires more than 32 bits starting at the encoder LSB, then 

enough of the least significant bits of the encoder should not be used (done by increasing the 

value in byte dd) to reduce the total bits used to 32 or less. 

The $bb byte specifies how data in any subsequent registers is to be used. Most absolute encoder 

interfaces only use a single register, so this byte field is not used (it is recommended to set this to 

$00 for these cases). When reading byte-wide data from GateIo[i].DataReg[j].a, it should be set 

to $20 to specify that subsequent registers should be read starting at the same bit as the LSB of 

the data. 

The $aa byte specifies the data format to be used. It should be set to $00 if the data is provided in 

numerical binary format, so no conversion is required, or to $02 if the data is provided in Gray 

code, specifying that Power PMAC will automatically convert the data to numerical binary form 

before use.  

Absolute Encoder Scaling 

Motor[x].AbsPhasePosSf is used to convert the absolute encoder reading into commutation 

units. It multiplies the formatted value so far derived, with the result having 2048 units per 

commutation cycle. It therefore should be set to 2048 divided by the number of LSBs of the 

encoder per commutation cycle. 

For example, if the encoder provides 18 bits of resolution per motor revolution, and the motor has 

4 poles (2 commutation cycles) per revolution, there are 131,072 (217) LSBs of the encoder per 

commutation cycle, so Motor[x].AbsPhasePosSf should be set to 2048 / 131,072 = 0.015625. It 

is advisable to enter this value as an expression, and let Power PMAC compute the result 

precisely. 
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Absolute Encoder Offset 

Motor[x].AbsPhasePosOffset is used to compensate for the difference between the sensor’s zero 

position and the commutation cycle zero position. The value can be unique to the application. To 

set the value of Motor[x].AbsPhasePosOffset “manually”, execute a “stepper-motor” phasing 

search to drive the motor to the zero point in the commutation cycle. Read the value of the 

encoder position at this point, either from the hardware input register, or if you have already set 

up an encoder conversion table entry to process the data for servo use, from the 

EncTable[n].PrevEnc register (this is useful especially when the hardware registers are byte-

wide and would need to be combined, as on the ACC-14E). 

It is desirable for clarity (but not strictly necessary) to use only the number of bits of this 

information that cover a single commutation cycle – that is, the low n bits of data. 

Motor[x].AbsPhasePosOffset should be set to the negative of this value, multiplied by the value 

of Motor[x].AbsPhasePosSf. 

Resolvers 

Power PMAC provides two fundamental methods of processing absolute resolver feedback where 

the Power PMAC hardware provides a direct analog interface to the resolver. The first, using the 

ACC-58E UMAC Resolver-to-Digital (R/D) Converter board, relies on software processing of 

the converted analog feedback in the encoder conversion table (ECT). The second uses the 

hardware processing of the PMAC3-style “DSPGATE3” IC used on the ACC-24E3 with the 

analog feedback module and the Power PMAC Brick control board with the analog feedback 

module. The setup for using the resolver position for power-on absolute phase position is 

substantially different for these two cases. 

Resolver Address 

Motor[x].pAbsPhasePos tells Power PMAC the address of the register to read for power-on 

absolute phase position. If the resolver is processed through the ACC-58E and the ECT, the 

resulting position data is found in the “previous encoder position” register of the table, so 

Motor[x].pAbsPhasePos should be set to EncTable[n].PrevEnc.a for the entry n used to 

process the data. 

If the resolver is processed through the hardware of the PMAC3-style IC, the resulting data is 

found in the “arctangent” register of the IC channel, so Motor[x].pAbsPhasePos should be set to 

Gate3[i].Chan[j].Atan.a for the IC and channel used. 

Resolver Data Format 

Motor[x].AbsPhasePosFormat tells Power PMAC how to use the data at this specified register. 

It is a 32-bit value organized as 4 byte fields. It is usually represented as a hexadecimal value, 

where the 4 byte fields can be shown as $aabbccdd.  

The $dd byte specifies the starting bit number to be used in the register. It should generally be set 

to $00 when reading data from EncTable[n].PrevEnc.a, as with resolvers interfaced to the ACC-

58E, because the LSB of the data used is found in bit 0 of the register. When reading the data 

from Gate3[i].Chan[j].Atan.a, as with resolvers processed by the PMAC3-style IC, it is usually 

set to $10 (16 decimal) because the Atan element is found in the high 16 bits of the 32-bit 

register. It is also possible to set it to a higher value if the lowest of the 16 bits are considered 

spurious data due to noise in the analog circuitry. For example, if you only want to use the high 

14 bits of data, this byte should be set to $12 (18 decimal). 
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The $cc byte specifies the number of bits to be used; it should be set to the number of bits of 

resolver data that cover a single commutation cycle. The value depends on the number of bits of 

resolver data used in a resolver cycle, and the number of commutation cycles per resolver cycle. 

Most resolvers have a single cycle per motor revolution, and most motors have multiple 

commutation cycles per motor revolution. 

For example, if you are using 14 bits of feedback from a resolver that has one cycle per motor 

revolution, and the motor has 2 commutation cycles (4 poles) per revolution, there are 13 bits per 

commutation cycle, and the $cc should be set to $0D (13 decimal). 

The $bb byte specifies how data in any subsequent registers is to be used. Since resolver data is 

always found in a single register, this byte should always be set to $00. 

The $aa byte specifies the data format to be used. It should always be set to $00 for resolver data 

to specify that the data is expected in numerical binary format. 

Resolver Scaling 

Motor[x].AbsPhasePosSf is used to convert the resolver reading into commutation units. It 

multiplies the formatted value so far derived, with the result having 2048 units per commutation 

cycle. It therefore should be set to 2048 divided by the number of LSBs used from the resolver 

conversion per commutation cycle. 

For example, if the resolver conversion provides 14 bits of resolution per motor revolution, and 

the motor has 4 poles (2 commutation cycles) per revolution, there are 8192 (213) LSBs of the 

resolver per commutation cycle, so Motor[x].AbsPhasePosSf should be set to 2048 / 8192 = 

0.25. The value can be entered as an expression. 

Resolver Offset 

Motor[x].AbsPhasePosOffset is used to compensate for the difference between the sensor’s zero 

position and the commutation cycle zero position. The value can be unique to the application. To 

set the value of Motor[x].AbsPhasePosOffset “manually”, execute a “stepper-motor” phasing 

search to drive the motor to the zero point in the commutation cycle. Read the value of the 

resolver position at this point from the register specified by Motor[x].pAbsPhasePos. 

It is desirable for clarity (but not strictly necessary) to use only the number of bits of this 

information that cover a single commutation cycle – that is, the low n bits of data. 

Motor[x].AbsPhasePosOffset should be set to the negative of this value, multiplied by the value 

of Motor[x].AbsPhasePosSf. 

Correcting an Approximate Phase Reference 

Sometimes the initial phase referencing is sufficient to be able to generate reasonable torque/force 

in the desired direction of movement, but not to optimize the performance of the motor. In these 

cases, it is recommended to correct the phase position value when a known is reached. 

The motor’s generated torque per unit current is proportional to the cosine of the angle error (in 

terms of the commutation cycle) of the phase referencing. Significant errors both reduce the peak 

torque capability of the motor, and add significantly to motor heating. 
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A phase correction is essential when the initial phase referencing is done using Hall Sensors. 

With 60° between edges of the signals, the best accuracy that can be achieved is +30°, which can 

lead to a 14% reduction in peak torque, and a 20% increase in motor heating. 

A phase correction is recommended when the initial phase referencing is done with a phasing-

search move. Even if initial testing shows the search to perform very reliably, errors can creep in 

during the life of the machine, and a phase correction is good insurance. 

The most common method of phase correction is to perform a homing-search move, settle at the 

home position, and then write a pre-determined value into the Motor[x].PhasePos register. Saved 

setup element Motor[x].AbsPhasePosForce is a holding register for the value to be copied into 

the active Motor[x].PhasePos element. 

Generally, the best technique for determining the value of Motor[x].AbsPhasePosForce for this 

method is to perform a stepper-motor phasing search on the (unloaded) motor, then perform a 

homing-search move to the index pulse of the encoder. With the motor settled at this home 

position, the value of Motor[x].PhasePos is the value we want for 

Motor[x].AbsPhasePosForce. 

Then, in operation, after the initial rough phase referencing, a homing-search move is performed 

that includes the encoder index pulse as part of the trigger. After the motor has settled at the home 

position, Motor[x].PhasePos is set to Motor[x].AbsPhasePosForce. Sample PLC program code 

to accomplish this is: 

home3;        // Command homing-search move 

while (!(Motor[3].HomeComplete) && !(Motor[3].InPos)) {} // Done? 

Motor[3].PhasePos = Motor[3].AbsPhasePosForce;  // Correct phasing 
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Finishing Setting Up Power PMAC Commutation (Direct PWM or 
Sine Wave), Asynchronous (Induction) Motors 

Power PMAC commutation of an AC induction motor requires the setup of two I-variables that 

can be left at 0 for permanent-magnet brushless motors. One variable is the Motor[x].IdCmd 

magnetization-current parameter (which is usually left at 0 for permanent-magnet motors, but can 

be changed for them); the other variable is the Motor[x].DtOverRotorTc slip-constant parameter 

(which must be left at 0 for permanent-magnet motors). 

Typically, the Motor Setup program associated with the IDE can be used to set Motor[x].IdCmd 

and Motor[x].DtOverRotorTc automatically. The program stimulates the induction motor to 

infer its parameters, and sets these terms appropriately for the results it gets. This section explains 

analytical and experimental methods for setting these parameters. Note that these settings are 

independent of any mechanical load, so any tests can and should be done with an unloaded motor. 

Calculating Motor[x].DtOverRotorTc Slip Constant 

One of the most important aspects of field-oriented control of induction motors is the calculation 

of the “slip frequency” in each cycle that is necessary to obtain the desired torque. Under the 

constraints of field-oriented control, the slip frequency is proportional to the torque value, but the 

constant of proportionality is dependent on the motor and controller properties. 

The key parameter needed is the ratio between the update time of the control algorithm (“Dt”), 

which is Power PMAC’s phase update period, and the electrical time constant of the motor’s 

rotort (“RotorTc”). For this reason, the saved setup element in Power PMAC is called 

Motor[x].DtOverRotorTc. There are several ways to calculate this parameter, as explained 

below. 

Calculating from Name Plate Data 

The slip constant parameter Motor[x].DtOverRotorTc for an induction motor can be calculated 

simply from basic parameters for the motor and for the Power PMAC. You will need: 

 The rated speed for the motor, usually given in revolutions per minute (rpm). 

 The electrical line frequency given for this rated speed, usually given in Hertz (Hz), or 

cycles/sec. This is almost always 50 or 60 Hz. 

 The number of poles for the motor. 

 The Power PMAC’s phase update period, usually given in microseconds (μsec). 

The rated speed can be subtracted from the line frequency (after conversion to consistent units) to 

get the slip frequency. This can then be multiplied by the phase update period (again after 

conversion to consistent units) to get the Motor[x].DtOverRotorTc slip constant. The formula 

is: 

 
768,32

**
_ stdmag

pme

I
TrTcDtOverRoto    

where: 
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ωe is the electrical frequency given, in radians/sec. To calculate from frequency in Hertz, multiply 

by 2π (6.283). For 50 Hz, this is 314.3 radians/sec; for 60 Hz, this is 377.0 radians/sec. 

ωm is the rated mechanical pole frequency, in radians/sec. To calculate from motor rated speed in 

rpm and the number of poles, divide the speed in rpm by 60, multiply by 2π (6.283), then 

multiply by the number of poles and divide by 2. 

Tp is the Power PMAC’s phase update time in seconds. To convert from microseconds, divide by 

one million.  

If the phase update time is set by a PMAC2-style “DSPGATE1” IC, as on an ACC-24E2, the 

phase update time can be calculated as: 

   
800,964,117

1].[1*3].[1*2 


DivPhaseClockiGatePwmPeriodiGate
Tp  

If the phase update time is set by a PMAC3-style “DSPGATE3” IC, as on an ACC-24E3, the 

phase update time can be calculated as: 

PhaseFreqiGate
Tp

].[3

1
  

Imag_std is the value of the magnetization current parameter Motor[x].IdCmd that would produce 

the same rated speed/torque point as the direct operation off the AC lines. For a first calculation, 

you can use a value of 3500 here. It will almost always get you close enough. If you set your 

Motor[x].IdCmd value as explained in the next section for this type of operation, you can come 

back and adjust this calculation. 

Example 

A 4-pole induction motor has a rated speed of 1740 rpm at a 60 Hz electrical frequency.  It is 

being controlled from a Power PMAC with default clock source and frequency from a PMAC2-

style IC. The electrical frequency is:  
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The default value of Gate1[i].PwmPeriod is 6257, which produces a 4.517 kHz PWM frequency 

(222 µsec period) and a 9.035 kHz “MaxPhase” clock frequency (111 µsec period). The default 

value of Gate1[i].PhaseClockDiv is 0, for a “divide by 1” from “MaxPhase” to “Phase” clock, so 

the phase clock frequency is also 9.035 kHz (111 µsec period). Formally this can be calculated 

as: 
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sec000111.0

800,964,117

10*36527*2



pT  

Motor[x].DtOverRotorTc can now be calculated as: 

  000149.0
32768

3500
*000111.0*4.3640.377 rTcDtOverRoto  

Calculating from Rotor Time Constant 

Occasionally, you can get from the manufacturer the L/R electrical time constant of the induction 

motor’s squirrel-cage rotor (this is distinct from, and much larger than, the L/R electrical time 

constant of the stator windings). The Motor[x].DtOverRotorTc slip constant can easily be 

calculated from this value by the equation: 

r

p

T

T
rTcDtOverRoto   

where Tp is Power PMAC’s phase update time, and Tr is the rotor’s electrical time constant.  

Remember to use the same units for both times. 

Example 

You are running with a phase update frequency of 8 kHz, and you have a rotor time constant of 

0.75 seconds. You can calculate: 

000167.0
75.0

000125.0


r

p

T

T
rTcDtOverRoto  

Experimentally Optimizing Slip Constant 

For a given magnetization current, the optimum slip constant will maximize the acceleration 

capabilities of the motor. Changes from the optimum value of Motor[x].DtOverRotorTc in 

either direction will degrade performance. Simple tests employing data gathering while using a 

low-valued open-loop output command (e.g. out10) to accelerate the motor permit easy 

optimization or verification of optimization of the Motor[x].DtOverRotorTc value. If you have 

not yet selected your best value of Motor[x].IdCmd magnetization current, you can use a value 

of 3000 for these tests. 

Setting Motor[x].IdCmd Magnetization Current 

Once you have a good value for the Motor[x].DtOverRotorTc slip constant, you are ready to 

find your best value of the Motor[x].IdCmd magnetization-current parameter. Motor[x].IdCmd 

sets the commanded value for the “direct” current component in commutation, the component in 

phase with the rotor’s measured/estimated magnetic field orientation. Motor[x].IdCmd 

determines the rotor’s magnetic field strength and so the torque constant Kt and back-EMF 

constant Ke for the motor. If Motor[x].IdCmd is not so high that it magnetically saturates the 

rotor, torque and back-EMF constants will be proportional to Motor[x].IdCmd. 

The higher the value of Motor[x].IdCmd (before saturation), the more torque is produced per 

unit of “quadrature” current commanded from the servo loop, but the higher the back-EMF 

“generator” voltage produced per unit of motor velocity, so the lower the maximum velocity can 
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be achieved from a given supply voltage. The lower the value of Motor[x].IdCmd, the less 

torque is produced per unit of commanded “quadrature” current, but the lower the back-EMF 

voltage produced per unit of velocity, so the higher the velocity that can be achieved. 

In most applications, a single value of Motor[x].IdCmd will be set and left constant for the 

application. However, it is possible to change Motor[x].IdCmd dynamically as a function of 

speed, lowering it at high speeds so as to keep the back-EMF under the supply voltage, extending 

the motor’s speed range. This technique is generally known as “field weakening” and can be 

implemented in a PLC program. 

If you do not use the Motor Setup program to set the value of the Motor[x].IdCmd 

magnetization-current parameter, it is best to do so experimentally.  With a good value of 

Motor[x].DtOverRotorTc set, simply issue a low-valued open-loop output command (e.g. 

out10) at each of several settings of Motor[x].IdCmd and observe the end velocity the 

unloaded motor achieves. This can be done simply by watching the real-time velocity read-out in 

the IDE’s “position” window. If you use the data gathering feature, you can also note the rate of 

acceleration to that speed. 

This velocity is known as the “base speed” for the motor for that setting. Typically, a value of 

3200 to 3500 for Motor[x].IdCmd will achieve the approximately a base speed equivalent to the 

rated speed of the motor when run directly from a 50 Hz or 60 Hz line. 

If your test values of Motor[x].IdCmd are low enough that none of them magnetically saturate 

the rotor, the base speeds in the test will be approximately inversely proportional to the value of 

Motor[x].IdCmd (and the accelerations to that speed will be approximately proportional to 

Motor[x].IdCmd).  If you start increasing Motor[x].IdCmd into the range that causes magnetic 

saturation of the rotor, increases in Motor[x].IdCmd will not cause further lowering of base 

speed and further increase in rate of acceleration to that speed. 

Many users will want a value of Motor[x].IdCmd as high as possible without causing rotor 

saturation. These users will want to find values of Motor[x].IdCmd that do cause saturation, then 

reduce Motor[x].IdCmd just enough to bring it out of saturation.  
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SETTING UP THE SERVO LOOP 

Power PMAC can automatically close a digital servo loop for each activated motor. The purpose 

of the servo loop is to command an output (“control effort”) in such a way so as to try to make the 

actual position for the motor match the commanded position as closely as possible. How well it 

does this depends on the tuning of the servo loop filter – the setting of its parameters – and the 

dynamics of the physical system under control. 

Servo Update Rate 

As a digital servo controller, Power PMAC closes the motor servo loops at discrete time intervals, 

sampling the feedback once per interval, computing a new set point for the motor, and computing 

the servo command based on these values. The user can select this time interval (the “servo 

period”) for an application, but it should remain fixed for the application. The “servo frequency” 

or “servo update rate” is, of course, inversely proportional to the period. 

Choosing an Update Rate 

How fast should the servo loops be updated in your system? For many applications, the default 

setting of a 2.26 kHz (442 sec) update can be retained. There are two basic reasons to change 

this time. 

Reason to Increase Rate 

First, if you are not getting the dynamic performance you require, you should speed up the servo 

update rate (decrease the update time). In most systems, a faster update rate means that a stiffer 

and more responsive loop can be closed, resulting in smaller errors and lags. 

Reason to Decrease Rate 

Second, if your routines of lower priority than the servo loop are not executing fast enough, you 

should consider slowing down the servo update rate (increasing the update time). You may well 

be updating faster than is required for the dynamic performance you need. If so, you are just 

wasting processor time on needless extra updates. For example, doubling the servo update time 

from 442 sec to 885 sec (halving the update rate from 2.26 kHz to 1.13 kHz), virtually doubles 

the time available for motion and PLC program execution, allowing much faster motion block 

rates and PLC scan rates. 

There are some systems that get better performance with a slower servo update rate. Generally 

these are systems with relatively low encoder resolution, usually an encoder only on the load, 

where the derivative gain can not be raised enough to give adequate damping without causing an 

unstable “buzz” due to amplified quantization errors. In this case, slowing down the update rate 

(increasing the update time) can help to give adequate damping without excessive quantization 

noise. 

Ramifications of Changing the Rate 

If you change the servo update rate, many of the existing servo gain terms will behave differently. 

To retain equivalent servo performance, you will have to change these values. Refer to the 

detailed description of each gain term in the saved setup element descriptions of the Software 

Reference Manual to see how these change (or simply retune).   

Changing the servo update rate changes the percentage of processor time devoted to the servo 

tasks, which can have important implications for lower-priority tasks, such as motion-program 
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and PLC-program calculations. Refer to the Computational Features chapter for details on how to 

evaluate these changes. 

Setting the Servo Clock Frequency/Period 

The servo update rate is determined by the frequency of the servo clock signal from one of the 

Servo or MACRO ICs in the system. (If there are no Servo or MACRO ICs present, it can be 

generated from an internal timer in the processor.) This frequency is controlled by the values of 

saved setup elements for the “source” IC. Refer to the chapter Power PMAC System 

Configuration for details on selecting the source IC and the servo clock frequency it generates. 

Extending the Servo Update Period for a Motor 

It is possible to extend the servo update period for individual motors. If saved setup element 

Motor[x].Stime is set to a value greater than 0, this number of servo clock periods will be 

skipped between consecutive loop closures. For example, if it is set to 3, the servo loop will be 

closed every 4th servo clock period. Note that all other servo tasks for the motor, such as 

trajectory interpolation, are still executed every servo clock period. Only the actual loop closure is 

extended. 

Usually the period is extended because of very slow dynamics of the plant controlled by this 

motor, which make a long update period desirable. This is very common when the “motor” is not 

an actual physical motor but a process variable such as temperature or pressure. 

Closing the Servo Loop Under the Phase Interrupt for a Motor 

It is possible to close the servo loop for a motor under the phase interrupt, which can have a 

higher frequency than the servo interrupt. Generally, this is done for one or two very fast 

actuators (“fast-tool servos”) in a system that require high update rates to achieve the bandwidth 

that they are physically capable of. Typical actuators used in this manner are voice-coil motors, 

galvanometers, magnetostrictive actuators, and piezoelectric actuators. Closing these motors 

under a high-frequency phase interrupt and other motors under the lower frequency servo 

interrupt helps optimize the computational resources of the Power PMAC. 

Setting bit 3 (value 8) of saved setup element Motor[x].PhaseCtrl to 1 enables this mode of 

operation for the motor. While it is also possible to set other bits to 1 to enable the commutation 

algorithm for the motor, it is rare to require commutation for these fast actuators, so typically 

Motor[x].PhaseCtrl is simply set to 8. Motor[x].ServoCtrl must also be set to a non-zero value 

(usually 1), because many tasks for this motor will still be done under the servo interrupt. 

If Power PMAC is not closing the current loop for this motor, it is best to set Motor[x].pAdc to 0 

for the motor. Otherwise, Power PMAC will spend time reading the specified current feedback 

registers every phase cycle, even though the results are not used. 

Another use of this feature is for high-performance brushless motor control. In the standard 

control mode, the command output of the servo loop is held in memory until the next phase 

interrupt, when it is used as an input to the commutation/current-loop algorithm, and the 

command values from these phase algorithms are output to hardware half a phase cycle later. In 

very high performance systems, the added delay can hurt performance. 

However, if the servo loop is closed under the phase interrupt and phase algorithms are also 

active (Motor[x].PhaseCtrl = 9 or 12), the servo-loop command is immediately used by the 

phase algorithm in the same cycle, eliminating a full phase-cycle net delay. 
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Note 

It is not possible to use multi-motor servo algorithms, such as 

the standard GantryXCtrl two-motor algorithm, or custom 

multi-motor algorithms, when the servo loop is closed under 

the phase interrupt. 

 

Specifying Position Feedback 

Because the encoder conversion table executes under the servo interrupt, its pre-processing of 

feedback cannot be used when closing the servo loop under the phase interrupt. Instead, the 

motor’s position feedback for both inner (velocity) and outer (position) servo loops (as well as 

commutation feedback, if used) is determined by saved setup element Motor[x].pPhaseEnc, 

which should be set directly to the address of the hardware register used to process the feedback. 

However, if Motor[x].pPhaseLoadEnc is set to an address, it specifies the separate source of the 

outer (position) servo loop, with Motor[x].pPhaseEnc still specifying the source of the inner 

(velocity) loop and commutation position, if used. 

For an incremental encoder, it will be set to Gaten[i].PhaseCapt.a, which contains the encoder 

counter value latched on the phase interrupt. Note that with a PMAC3-style “DSPGATE3” IC, 

this register can include “1/T” timer-based sub-count extension for digital quadrature encoders, or 

arctangent-based sub-count extension for analog sinusoidal encoders. However, with the older 

PMAC2-style “DSPGATE1” IC, this register can only hold full quadrature counts. 

Because these actuators typically have a very short travel, it is often possible to use an analog 

feedback device as the position feedback through an A/D converter. It is important to choose an 

A/D converter that updates every phase cycle, as on the ACC-28E, the ACC-59E3 or the Power 

Brick control board. Multiplexed A/D converters, as on the ACC-36E, do not update individual 

readings often enough to be of use here. 

If serial encoders are used for feedback, as with the ACC-84E, the ACC-24E3, or the Power 

Brick control board, it is important to set them up to be read every phase cycle, not just every 

servo cycle. If parallel data is used for feedback, as with the ACC-14E, the data should be latched 

on the phase clock signal, not the servo clock signal. 
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Types of Amplifiers 

Power PMAC can interface to a variety of different types of amplifiers (drives). The type of 

amplifier used for a particular motor or hydraulic valve has important ramifications for the tuning 

of the servo loop. Each of the common types is explained below. The following block diagram 

shows where the split between controller and amplifier tasks can be made: 
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Motor Control Task Division Points 

Amplifiers for Which Servo Produces Position Command 

Sometimes Power PMAC will be used with an amplifier that expects a position command. In this 

case the Power PMAC’s own servo loop is effectively disabled, and the only task of the servo 

algorithm is to output the net commanded position (from programmed moves, position following, 

and position compensation tables) properly formatted. This mode of operation is enabled by 

setting saved setup element Motor[x].Ctrl to Sys.PosCtrl. 

The most common case for this mode involves the use of a smart networked drive (as on the 

EtherCAT network) that is run in “position mode”, accepting commanded position values over 

the network, and closing all feedback loops itself. 

In addition, some high-bandwidth but limited-travel actuator systems such as galvanometers 

expect an analog position command and close analog loops internally for the fastest possible 

response. 

Amplifiers for Which Servo Produces Velocity Command 

Several types of amplifiers expect a velocity command out of the Power PMAC servo loop. The 

main types of amplifiers in this class are: 

 Analog-input velocity-mode servo amplifiers 

 Pulse-and-direction-input amplifiers 

 Hydraulic-valve amplifiers 
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If the command value out of the Power PMAC servo loop, regardless of signal type, is a velocity 

command, no velocity loop needs to be closed in the Power PMAC. In general, this means that 

the velocity feedback (derivative) gain terms Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb 

can be set to 0. 

Analog-Input Velocity-Mode Amplifiers 

Analog-input velocity-mode servo amplifiers close a velocity loop in the amplifier using the 

signal from the Power PMAC as the commanded velocity and sensor feedback for the actual 

velocity. It is vital that the amplifier’s velocity loop be tuned properly before attempting to tune 

the Power PMAC’s position servo loop around it. 

Before tuning Power PMAC’s position loop, it is important that the velocity loop of a velocity-

mode amplifier be well tuned with the load that it will drive. Because the velocity-loop tuning is 

load dependent, the amplifier manufacturer cannot do the final tuning; the machine builder must 

tune the loop. The velocity step response must not have any significant overshoot or ringing; if it 

does, it will not be possible to close a good position loop around it with Power PMAC. The 

Power PMAC IDE’s tuning section has a function called “Open-Loop Tuning” that can be used to 

give velocity command steps to the amplifier and to observe the response plotted on the screen.  

This makes it easy to tune the amplifier, or simply to confirm that it has been well tuned. 

Pulse-and-Direction-Input Amplifiers 

Pulse-and-direction-input amplifiers interpret each pulse as a commanded position increment. To 

generate pulse-and-direction commands, the Power PMAC servo loop computes a pulse 

frequency value that is sent to “pulse-frequency modulation” circuitry. This frequency value is 

effectively a velocity command. The integrated pulse count received by the amplifier is a position 

command, but because the numerical command value calculated by the Power PMAC servo loop 

is a velocity command, this is considered to be a velocity-mode servo loop. 

Amplifiers with this style of interface are of two types. First there is the stepper drive, for which 

there is no position feedback to the drive. Usually, there is no encoder at all for these motors, so 

the Power PMAC must use the output pulse train as simulated feedback (this does require use of a 

separate encoder channel on a PMAC2-style Servo IC Power PMAC, even though no encoder is 

physically connected).  

If there is an encoder on the stepper motor, it can be used in either of two ways. It can be used as 

regular feedback to the Power PMAC, just as on a servo motor. In this method, the key issue is 

the resolution and phasing of the encoder edges relative to the steps or microsteps produced by 

the drive – some deadband may have to be created in the Power PMAC servo loop to prevent 

hunting at rest. Alternately, the encoder can just be used for position confirmation at the end of 

moves. However, this technique requires the use of two encoder channels on the Power PMAC if 

a PMAC2-style Servo IC is used: one for the simulated feedback of the pulse train, and one for 

the confirmation encoder. 

Next, there are the “stepper-replacement” servo amplifiers. These take position feedback from the 

servo motor and close all the loops inside the drive. While it is possible in this case to use the 

encoder signal from the drive for feedback into Power PMAC’s servo loop, this should not be 

done, because the position loops in the drive and the controller will end up fighting each other.  

With these drives, the commanded pulse train out of the Power PMAC should be used as 

simulated feedback. 
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When using simulated feedback, it is possible to set up the Power PMAC servo gains solely with 

analytic methods. See the section Setting Up Power PMAC for Pulse-and-Direction Control in 

the chapter Basic Motor Setup on Power PMAC for details. When using real encoder feedback, 

the servo loop should be tuned just as for an analog velocity-mode drive. 

Hydraulic-Valve Amplifiers 

Hydraulic-valve amplifiers, whether for servo valves or proportional valves, control a fluid-

volume flow proportional to their command input. Since fluid flow into or out of a hydraulic 

cylinder is proportional to the velocity of the moving member of the cylinder, the command into 

the valve’s amplifier is effectively a velocity command. With the less expensive proportional 

valves, there is usually some physical deadband when crossing through zero velocity; the effect 

of this can be reduced with the Power PMAC servo loop’s deadband compensation feature. 

Amplifiers for Which Servo Produces Torque/Force Command 

Several types of amplifiers require the Power PMAC servo loop to close the velocity loop as well, 

making the output of this servo loop a torque or force command. If Power PMAC is not 

performing the commutation for this motor, the torque/force command is output to the amplifier; 

if Power PMAC is performing the commutation, this command is an input to the commutation 

algorithm. The main types of amplifiers that require the controller to close the velocity loop are: 

 Analog-input “torque-mode” amplifiers 

 Sinusoidal-input amplifiers 

 Direct-PWM power-block amplifiers 

 

If the command value out of the Power PMAC servo loop, regardless of signal type, is a torque or 

force command, the Power PMAC servo must close the velocity loop for the motor. With the 

standard servo algorithms, this means that one or both of the velocity feedback (derivative) gain 

terms Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb must be set greater than zero. This 

derivative action is required to get the damping action needed for stability. Because motors 

produce a torque or force proportional to motor current, the torque/force command out of the 

servo can also be considered a current command. 

Because no velocity-loop closure is done in these types of amplifiers, there is no need to tune 

anything in the amplifier with the load attached to the motor. Any tuning that may be required is 

dependent only on motor properties, and can potentially even be done by the amplifier 

manufacturer. 

Analog-Input Torque-Mode Amplifiers 

Analog-input “torque-mode” amplifiers accept an analog voltage that represents a torque/force, 

and hence current, command. These amplifiers close a current loop inside, and if for brushless 

motors, perform the motor phase commutation as well. Another name occasionally used for these 

types of amplifiers is the “transconductance” amplifier, signifying that a voltage input results in a 

proportional current output. 

Sinusoidal-Input Amplifiers 

A sinusoidal-input amplifier accepts two phase-current commands that are sinusoidal functions of 

time in the steady state. This type of amplifier expects the controller to calculate the 

commutation, using the torque/force command out of the position/velocity-loop servo as the 

current-magnitude command into the commutation. The amplifier performs the current-loop 

closure in this style. 
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Direct-PWM Power-Block Amplifiers 

A direct-PWM “power-block” amplifier accepts phase voltage commands encoded as the actual 

pulse-width-modulated on-off commands for the power transistors. This type of amplifier expects 

the controller to calculate the commutation and current loop, using the torque/force command out 

of the position/velocity-loop servo as the current-magnitude command into the commutation and 

current loop. The amplifier performs no control functions in this style. 

Selecting a Servo Algorithm 

Power PMAC has multiple built-in servo algorithms, and it is possible for the user to install 

custom servo algorithms as well. The choice of servo algorithm to use is done on a motor-by-

motor basis. Saved setup element Motor[x].Ctrl is set to the address in memory of the start of the 

desired algorithm. The numerical value of this address does not need to be known (and can 

change between firmware versions). Instead, Motor[x].Ctrl is set to the name of one of the 

following elements that contain the starting address of the corresponding algorithm: 

 Sys.PosCtrl  Position-command output (no internal servo loop closed) 

 Sys.PidCtrl  Basic PID and feedforward servo control 

 Sys.ServoCtrl  Standard algorithm with non-linearities and polynomials 

 Sys.LegacyCtrl  Algorithm matching Turbo PMAC structure 

 Sys.GantryXCtrl Cross-coupled dual-motor gantry control 

 Sys.AdaptiveCtrl Automatic adaptation to system inertia changes 

 UserAlgo.ServoCtrlAddr[i] Specified user custom algorithm 
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Position Command Output Algorithm 

If Motor[x].Ctrl is set to Sys.PosCtrl, Power PMAC outputs the net commanded position for the 

motor. No actual servo-loop closure is performed by the Power PMAC for the motor with this 

setting; any actual servo control is performed by the device that is receiving the command 

position information. This mode is most commonly used to command networked drives that are 

operating in “position mode”, closing all loops themselves. It is also used for certain “fast-tool 

servos”, such as galvanometers, that close an analog position loop in the amplifier. 

Position Output Values 

The output value is the sum of the calculated trajectory position and the master position for the 

motor. If position compensation is active for the motor, the value of Motor[x].CompPos is 

subtracted from this net commanded position before it is output (when Power PMAC is closing 

an actual servo loop, this compensation value is added to the actual position instead), and the 

value of Motor[x].CompDesPos, as from a cam table, is added to this net commanded position. 

The resulting value is written to the register specified by saved setup element Motor[x].pDac as a 

signed 32-bit integer, in the motor position units as defined by the user. This value can roll over if 

necessary. 

It is not necessary for the Power PMAC to receive any actual position feedback data for the 

motor, but Power PMAC will still be computing following error as the difference between the 

commanded and actual position registers, and disabling the motor if this difference exceeds the 

value in saved setup element Motor[x].FatalFeLimit. If Power PMAC is not receiving actual 

position feedback data, Motor[x].FatalFeLimit should be set to 0 to disable this error checking. 

Using Actual Position 

While the action of the Sys.PosCtrl algorithm each servo cycle while enabled is not dependent on 

any actual position value read by the Power PMAC, it is usually still important to read an actual 

position value, particularly if the motor has substantial travel range. 

There are several reasons why reading an actual position value each servo cycle can be important. 

 Monitoring of the physical response of the motor: This can be very useful both in 

development and the actual application. Reading the measured position and processing it 

into motor actual position permits it to be queried and gathered just as for a motor where 

Power PMAC is actually closing the servo loop. 

 Ability to use Power PMAC’s warning and fatal following error limit parameters: While 

digital networked position-mode drives should have this capability internally, many 

analog fast-tool amplifiers that accept position command values do not. Even when the 

drive has this functionality, PMAC’s limits can be an important backup. Remember that 

with networked drives, delay in receiving the actual position from the drives can result in 

apparent large following errors at high speeds just due to the time delay between sending 

out a cycle’s commanded position and receiving the actual position for that cycle. 

 Elimination of a possible position jump on enabling: Whether enabling for the first time 

after power-on/reset, or after a fault, avoiding a position jump, particularly a large jump, 

can be very important. When the servo loop is disabled, Power PMAC internally sets the 

desired position value equal to the actual position value each servo cycle. When the drive 
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is (re-) enabled, it will actively command the motor to the position having this numerical 

value. If this value corresponds to the actual physical position, there will be not jump on 

enabling. 

Reading the measured position and processing it for motor actual position is done in exactly the 

same way as for a motor where Power PMAC is actually closing the servo loop. An encoder 

conversion table (ECT) entry reads the input register and processes it. The motor’s outer-loop 

position-feedback pointer Motor[x].pEnc is set to the address of the ECT entry. 

Synchronizing Desired and Actual Position Reporting 

Given the delays, often of multiple servo cycles, between the output of a desired position for a 

given servo cycle to the drive, and the input of the actual position from the drive for that same 

servo cycle, there can be some issues in comparing these values in Power PMAC. 

If you are using Power PMAC’s fatal following-error safety function, the error limit 

(Motor[x].FatalFeLimit) cannot be set as tightly as would be desirable. For example, if there is a 

net 3-cycle delay, and the motor is moving at 100 units per servo cycle, there would be a 300-unit 

following error from the reporting delay alone. 

Also, if you are using the auxiliary outputs for feedforward, it can be difficult to optimize the 

tuning of the feedforward terms because of the time offset between desired and actual position 

values. 

To compensate for the mismatch from this delay in reporting actual position, it is possible to 

buffer and delay the reporting of desired position to match the physical network delay. If 

Motor[x].Servo.SwPoly7 is set to a value greater than 0, it specifies the artificial delay in 

reporting desired position, in units of 1/32 of a servo cycle. 

For example, if the delay is 4.25 servo cycles, Motor[x].Servo.SwPoly7 should be set to 4.25 * 

32 = 136. Up to 7 cycles of delay can be specified. 

Usually, this value is set by jogging the (unloaded) motor with some integral gain active in the 

drive so the steady-state error in the drive is zero. Divide by the following error that PMAC 

reports due to the delay by the jogging speed to get the time delay. For example, jogging at 20 

units per servo cycle and seeing a 75-unit error in PMAC shows a 75 / 20 = 3.75-cycle delay, so 

the SwPoly7 term should be set to 3.75 * 32 = 120. 

In general, any trajectory filtering algorithms in the drive should be disabled, as they can 

introduce very large delays, and with Power PMAC’s own sophisticated trajectory generation, 

such filtering is not required. 

Note that the delay in reporting desired position does not delay the desired position that is output 

to the drive. The purpose of the delay is to permit the user to properly match the desired and 

actual position values in time for error calculations and feedforward optimization. 

Auxiliary Command Outputs 

When using the Sys.PosCtrl servo algorithm, it is also possible to provide one or two auxiliary 

feedforward command outputs in addition to the primary commanded position outputs. Some 

networked position-mode drives, notably EtherCAT drives in the DS-402 cyclic position mode, 

support cyclic “velocity offset” and “torque offset” command values in addition to the primary 

cyclic position command. 
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The option for auxiliary feedforward command outputs from the Sys.PosCtrl algorithm is new in 

V2.0 firmware, released 1st quarter 2015. 

These auxiliary command outputs are enabled by setting saved setup elements 

Motor[x].Servo.pVelOut and Motor[x].Servo.pAccOut to the addresses of the registers that 

will receive these commands. For EtherCAT drives, the setting will usually be of the form 

Motor[x].Servo.pVelOut = ECAT[i].IO[j].Data.a 

If these variables are set to their default values of 0, there will be no auxiliary command outputs 

from the algorithm. However, if they are set to addresses, Power PMAC will compute 

feedforward terms the same as in the default Sys.ServoCtrl algorithm, but instead of including 

the resulting feedforward values in the single command output, it will write them separately to the 

specified address(es). 

The following block diagram shows the terms that are used in each output of the Sys.PosCtrl 

servo algorithm: 
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Position Control Servo Algorithm with Auxiliary Outputs 

The terms included in the pVelOut command are: 

 Desired velocity multiplied by Kviff velocity feedforward gain 

 Sign of desired velocity multiplied by Kfff friction feedforward gain (if SwFffInt is set 

to 1) 

The terms included in the pAccOut command are: 
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 Desired velocity multiplied by Kvff velocity feedforward gain 

 Desired acceleration multiplied by Kaff acceleration feedforward gain 

 Sign of desired velocity multiplied by Kfff friction feedforward gain (if SwFffInt is set 

to 0) 

 The value in the Motor[x].CompDac register, usually from a torque compensation table 

(new in V2.1 firmware, released 1st quarter 2016). 

The desired velocity value can be filtered through the F(z) polynomial filter, which is useful as a 

low-pass filter when there is high-frequency noise in the desired trajectory, as when it is tracking 

a physical encoder signal (position following or external time base). This filtering smooths the 

desired acceleration value as well. (This capability is new in V2.1 firmware, released 1st quarter 

2016.)  

Delaying the Auxiliary Outputs 

Many position-mode network drives buffer one or more cyclic position commands from the 

controller in order to perform tasks such as sub-cycle interpolation or model-based anti-resonance 

control. These drives typically do not also delay the velocity and torque offset values, so when 

these registers are commanded every servo cycle from the feedforward auxiliary outputs from 

Power PMAC’s position-command algorithm, these command values will not be properly 

synchronized with the position commands. 

It is possible to delay in time the output of these command values from the Power PMAC to 

compensate for the drive’s delay in using the Power PMAC’s position command output so that 

the resulting action in the drive is re-synchronized. 

In the position-command output algorithm (Sys.PosCtrl), if the term Motor[x].Servo.SwZvInt is 

set to a value greater than zero, the transmitted values of the auxiliary velocity and acceleration 

outputs to the drive are delayed from the cycle in which they are calculated. The delay can be up 

to 7 servo cycles in time, and is specified in units of 1/32 of a servo cycle. 

If the specified delay time includes a fractional component in the number of servo cycles, the 

value output in a cycle is computed is a weighted average of the values computed in the whole 

cycles on each side of this delay. For example, if SwZvInt is set to 88 to specify a 2.75-cycle 

delay, the output in a given cycle is 0.75 times the value calculated 3 cycles ago plus 0.25 times 

the value calculated 2 cycles ago. 

This capability to use Motor[x].Servo.SwZvInt to delay the auxiliary outputs in the Sys.PosCtrl 

algorithm is new in V2.6.1 firmware, released 2nd quarter 2021. At the default value of 0, 

operation is compatible with older firmware versions. Its use in other servo algorithms is 

unaffected. 
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Basic PID Algorithm 

If Motor[x].Ctrl is set to Sys.PidCtrl, Power PMAC computes a very basic proportional + 

integral + derivative feedback algorithm with two feedforward terms. It does not include the 

polynomial filters and non-linearities of the standard servo algorithm. It executes significantly 

faster than the standard servo algorithm, so is typically selected when high update rates are 

required, but the plant dynamics are relatively simple. 
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Power PMAC Basic PID Servo Algorithm 

The basic PID algorithm uses the following gain terms, all saved setup elements: 

 Motor[x].Servo.Kp  Proportional gain 

 Motor[x].Servo.Ki  Integral gain 

 Motor[x].Servo.Kvfb  Velocity feedback (derivative) gain 

 Motor[x].Servo.Kvifb  Velocity feedback gain (before integrator) 

 Motor[x].Servo.Kvff  Velocity feedforward gain 

 Motor[x].Servo.Kviff  Velocity feedforward gain (before integrator) 

 Motor[x].Servo.Kaff  Acceleration feedforward gain 

 

It uses the following limiting terms, all saved setup elements: 

 Motor[x].Servo.MaxPosErr Maximum following error magnitude 

 Motor[x].Servo.MaxInt Maximum position-error integrator magnitude 

 Motor[x].MaxDac  Maximum command output magnitude 

 

Feedback Terms 

The PID feedback filter consists of proportional (“P”), integral (“I”), and derivative (“D”) terms, 

each with its own contribution to the control effort. They operate on position (following) error 
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and actual velocity values. The magnitude of the position error, computed as the difference 

between the net desired position and net actual position values, is limited to the value of 

Motor[x].Servo.MaxPosErr. 

Proportional Gain Term 

The proportional gain term Motor[x].Servo.Kp provides the basic corrective action for position 

errors, providing a control effort proportional to the size of the position (following) error to try to 

reduce the error. Proportional gain alone acts like a spring, and the magnitude of the proportional 

gain term is the “spring constant”; the higher this gain term, the stiffer the spring action. Note that 

without another term to provide a damping effect, either one of the velocity-feedback gains 

discussed below, or feedback terms within a velocity-mode drive, proportional gain alone cannot 

provide the required stability. 

Velocity Feedback (Derivative) Gain Terms 

The velocity feedback (derivative) gain terms Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb 

yield a “damping” effect by providing a contribution to the control effort proportional to the 

actual velocity acting against that velocity. In this respect they act much like a “dashpot” or the 

shock absorber of a vehicle’s suspension (and the proportional gain term acts as the suspension’s 

spring). The higher the derivative gain, the heavier the damping action. 

Some form of derivative action – effectively a velocity loop – is required for a stable position 

loop. If a velocity loop is closed in the amplifier, and tuned well, the derivative gain terms in 

Power PMAC can be set to 0. However, if there is no velocity loop closed externally, a positive 

value of one of these gain terms will be required for stable operation. 

Note that in the Power PMAC, this gain acts on the derivative of the actual position, not on the 

derivative of the position error, as in some other controllers. This permits the simple use of dual 

motor-and-load feedback with a separate sensor on the motor for derivative action (specified by 

Motor[x].pEnc2) from the sensor on the load for proportional and integral action (specified by 

Motor[x].pEnc). 

The difference between the Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb terms is in where 

their outputs go in the feedback loop. The result of the Motor[x].Servo.Kvfb term is subtracted 

from the result of the other feedback and feedforward terms at the output of the error integrator. 

This means that the integrator is acting only on the position error. The result of the 

Motor[x].Servo.Kvifb term is subtracted from the other terms at the input to the error integrator. 

This means that the integrator is acting on the velocity error. 

In most cases, only one of these gain terms will be set to a non-zero value. Which is to be chosen? 

Using Motor[x].Servo.Kvfb, which puts the integrator in the position loop, is generally better for 

tracking commanded trajectories with minimum following error. Using Motor[x].Servo.Kvifb, 

which puts the integrator inside the velocity loop, is generally better for good disturbance 

rejection. It is possible to use both of these terms. 

Integral Gain Term 

The integral gain term Motor[x].Servo.Ki provides for correction against steady-state errors 

caused by such effects as friction, gravitational loads, cutting loads, and analog offsets. The 

integral gain term controls how fast the position error integrator term “charges up” and 

“discharges”; the higher the gain, the faster it acts. 
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If the velocity feedback term Motor[x].Servo.Kvifb and the velocity feedforward term 

Motor[x].Servo.Kviff are both zero, the integrator acts purely on the position (following) error 

value. If either or both of these terms are non-zero, their results are added to the position error 

term at the input to the integrator. 

Each servo cycle, the input to the integrator is multiplied by Motor[x].Servo.Ki and the product 

is added into Motor[x].Servo.Integrator (unless the output has saturated at the 

Motor[x].Servo.MaxDac limit). If the magnitude of the value in the Integrator element exceeds 

that of Motor[x].Servo.MaxInt, it will be clamped at that limit. 

Note that in the basic filter of the PidCtrl algorithm, it is not possible to automatically turn off 

the error input to the integrator during commanded motion and just have it on during while 

stopped. This feature is implemented in the more extended filter of the ServoCtrl algorithm 

explained in the next section, by setting Motor[x].Servo.SwZvInt to 1. 

Feedforward Filter 

Because a feedback filter is error driven, it is necessary that there be an error between the 

commanded and actual positions before it takes any action. The actions of feedforward, on the 

other hand, are dependent only on the commanded trajectory, and therefore do not require errors 

to cause action. The basic idea of feedforward is to directly apply your best estimate of the 

control effort needed to execute the commanded trajectory, without waiting for position errors to 

build up. The feedback terms then only need to respond to the errors in this estimate, which are 

typically quite small. 

In a well-tuned system with low external loads, over 95% of the control effort can come from the 

feedforward terms, with the feedback terms just providing small corrections for disturbances and 

imperfections in the estimate. Power PMAC’s basic PID algorithm has velocity and acceleration 

feedforward terms. 

Velocity Feedforward Gain Terms 

The velocity feedforward gain terms Motor[x].Servo.Kvff and Motor[x].Servo.Kviff add an 

amount to the control effort that is directly proportional to the commanded velocity, to overcome 

potential position errors that would be proportional to velocity. These errors can come from 

several sources. The first source, and the dominant one, is from the velocity feedback term that 

provides the required damping for stability, whether done in the Power PMAC (the 

Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb terms) or externally. Other minor sources of 

velocity related errors include magnetic losses in the motor and actual viscous damping losses. 

Properly set velocity feedforward will essentially eliminate following error components that are 

proportional to velocity. If the Power PMAC is closing the velocity loop for the motor, the 

optimal Motor[x].Servo.Kvff and Motor[x].Servo.Kviff will typically be equal to, or slightly 

greater than the corresponding Motor[x].Servo.Kvfb and Motor[x].Servo.Kvifb. 

The difference between the Motor[x].Servo.Kvff and Motor[x].Servo.Kviff terms is in where 

their outputs go in the servo algorithm. The result of the Motor[x].Servo.Kvff term is added to 

the result of the other feedback and feedforward terms at the output of the error integrator. This 

means that the integrator is acting only on the position error. The result of the 

Motor[x].Servo.Kviff term is added to the other terms at the input to the error integrator. This 

means that the integrator is acting on the velocity error. 
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In most cases, only one of these gain terms will be set to a non-zero value. Which is to be chosen? 

Using Motor[x].Servo.Kvff, which puts the integrator in the position loop, is generally better for 

tracking commanded trajectories with minimum following error. Using Motor[x].Servo.Kviff, 

which puts the integrator inside the velocity loop, is generally better for good disturbance 

rejection. It is possible to use both of these terms. 

Acceleration Feedforward Gain Term 

The acceleration feedforward term Motor[x].Servo.Kaff adds an amount to the control effort that 

is directly proportional to the commanded acceleration, to overcome potential position errors that 

would be proportional to acceleration. These errors come from the fundamental tendency of 

inertia to resist acceleration. Without acceleration feedforward, there would be a component of 

the following error proportional to acceleration. 

Properly set acceleration feedforward will essentially eliminate following error components that 

are proportional to acceleration. The Motor[x].Servo.Kaff acceleration feedforward term is 

essentially an estimate of the inertia of the system, directly providing a force or torque 

proportional to it and the commanded acceleration. 

Auxiliary Command Output 

It is possible to have the feedforward components from the Kvff and Kaff gains output to a 

separate register instead of being added into the main servo output value. This is particularly 

useful when closing a servo loop over a network such as MACRO or EtherCAT, usually when the 

main servo command is a velocity value. 

If Motor[x].Servo.pAccOut is set to the address of a valid register (and not to 0), these 

feedforward components will be written to that register. Otherwise, these components will be 

added into the main servo command value, as shown in the diagram below. 
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Power PMAC Basic PID Servo Algorithm with Auxiliary Output  
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Standard Servo Algorithm 

If Motor[x].Ctrl is set to the default value of Sys.ServoCtrl, Power PMAC computes its 

“standard” servo algorithm, which includes all of the terms in the basic PID algorithm explained 

in the previous section, and adds many other useful terms. It adds six separate polynomial filters 

at various places in the algorithms, input and output deadband filters, and a “friction feedforward” 

term. 
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Power PMAC Standard Servo Algorithm 

Polynomial Filters 

The standard servo algorithm has six “polynomial filters” that can operate on values at various 

points in the servo algorithm. These filters are: 

 A: Net desired position, numerator 

 B: Outer loop actual position, numerator 

 C: Position error, numerator 

 D: Position error, denominator 

 E: Inner loop actual position, denominator 

 F: Net desired velocity, denominator 

 

With the factory default settings for the terms in these filters, they act as “pass-throughs”, where 

the output of the filter is always equivalent to the input. 

These filters can be used to implement functionality such as notch (band-reject) and low-pass 

filters. Setting up these filters manually requires some reasonable knowledge of digital filter and 

control theory. The auto-tuning functionality of the Integrated Development Environment (IDE) 

software can provide good settings for these filters without the need for such knowledge by the 

user. 



Power PMAC User’s Manual 

Setting Up the Servo Loop 323 

Note 

The location of the C and D polynomial filters in 

Sys.ServoCtrl is better for notch filters compensating for 

system resonances. The location of the C and D filters in the 

very similar Sys.LegacyCtrl algorithm is better for low-pass 

filters compensating for feedback measurement and 

quantization noise. 

 

Polynomial Order Control 

Filters A, B, C, and D are 7th-order polynomials. Few applications require filters greater than 2nd-

order, so if saved setup element Motor[x].Servo.SwPoly7 is set to its default value of 0, these 

only execute as 2nd-order polynomials, saving computation time. If this element is set to 1, these 

execute as full 7th-order polynomials. Filters E and F are always 2nd-order polynomials. 

How Polynomial Filters Work 

Digital polynomial filters operate on a series of samples of the quantity in question. They 

multiply the input and/or output values from present (input only) and past sample cycles to 

compute the present sample cycle’s output value.  

A digital polynomial filter is implemented by the execution of a “difference equation” (the 

discrete equivalent of a differential equation), but it is usually presented by the “transfer function” 

of the difference equation. In the transfer function, the z-k operator represents a value from k 

sample cycles previously. 

“Numerator” polynomial filters are so-called because their transfer functions have terms in the 

numerator, not the denominator. These polynomials act on the present and past inputs to the filter. 

These filters have the general transfer function: 
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This transfer function represents the difference equation: 
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That is, the filter output for sample cycle “k” is the sum of products of gain terms Ki and 

corresponding input values from sample cycles “k-i”, where i ranges from 0 to n for an nth-order 

polynomial. 

“Denominator” polynomial filters are so-called because their transfer functions have terms in the 

denominator, not the numerator. These polynomials act on past outputs from the filter. These 

filters have the general transfer function: 
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This transfer function represents the difference equation: 
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That is, the filter output for sample cycle “k” is the sum of products of gain terms Ki and 

corresponding output values from sample cycles “k-i”, where i ranges from 0 to n for an nth-order 

polynomial. 

The “A” Polynomial Filter 

The “A” polynomial filter acts on the net desired position into the servo algorithm. The transfer 

function of this polynomial is: 
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Each Kai term in this transfer function corresponds to saved setup element Motor[x].Servo.Kai. 

The “B” Polynomial Filter 

The “B” polynomial term acts on the net actual outer-loop position into the servo algorithm. The 

transfer function of this polynomial is: 
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Each Kbi term in this transfer function corresponds to saved setup element Motor[x].Servo.Kbi. 

The “C” Polynomial Filter 

The “C” polynomial term acts on the error in the outer (position) loop of the servo algorithm. The 

transfer function of this polynomial is: 
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Each Kci term in this transfer function corresponds to saved setup element Motor[x].Servo.Kci. 

The “D” Polynomial Filter 

The “D” polynomial term acts on the error in the outer (position) loop of the servo algorithm. The 

transfer function of this polynomial is: 
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Each Kdi term in this transfer function corresponds to saved setup element Motor[x].Servo.Kdi. 

The “E” Polynomial Filter 

The“E” polynomial term acts on the actual position in the inner (velocity) loop of the servo 

algorithm. The transfer function of this polynomial is: 
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Each Kei term in this transfer function corresponds to saved setup element Motor[x].Servo.Kei. 
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The “F” Polynomial Filter 

The “F” polynomial term acts on the net-desired velocity in the feedforward path of the servo 

algorithm. The transfer function of this polynomial is: 
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Each Kfi term in this transfer function corresponds to saved setup element Motor[x].Servo.Kfi. 

Calculating Filter Coefficients Manually 

It is most common to specify the characteristics of a continuous-time (“analog”) filter, then 

convert this to a sampled, or discrete-time (“digital”) filter. This is the design approach used here. 

To perform this conversion, we convert the continuous differential operator “s” to its discrete-

time equivalent. Here we use the simple backward-difference conversion: 
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where z is the digital delay operator, and Ts is the sample period in seconds. Other conversions, 

such as the more complex “bi-linear” transformation, are possible, but seldom needed in these 

applications. 

Calculating Notch Filter Coefficients 

In feedback controls, a notch filter is an anti-resonance filter used to counteract a physical 

resonance. While there are many different philosophies as to how to set up a notch filter, a 

common strategy is to use a lightly damped band-reject filter at about 90% of the resonant 

frequency, and a heavily damped band-pass filter at a frequency somewhat greater than the 

resonant frequency (to reduce the high-frequency gain of the filter itself). Often this is around 

150% of the resonant frequency. 

The band-reject filter is implemented in the numerator of the filter (N(s) or N(z) generically, C(z) 

in the Power PMAC), creating “zeros” in control terms; the band-pass filter is implemented in the 

denominator of the filter (P(s) or P(z) generically, D(z) in the Power PMAC), creating “poles” in 

control terms. 

Consider the continuous-time transfer function for a notch filter: 
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where: 

 nz  is the natural frequency of the zeros in radians/second (not in Hertz) 

 z  is the damping ratio of the zeros (unitless) 
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 np  is the natural frequency of the poles zeros in radians/second (not in Hertz) 

 p  is the damping ratio of the poles (unitless) 

Converting to digital form: 
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where Ts is the sample (servo) time in seconds (not msec or µsec). 

Rearranging to group by z terms: 
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Then rescaling so the “z0” term is equal to 1 so it can be used in Power PMAC’s C(z) and D(z) 

polynomials: 
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where (defining intermediate variables): 
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This K value cannot be part of the C(z)/D(z) filter itself, so must be included in the in-line 

Motor[x].Servo.Kp proportional gain term. 

These equations can be used to set the coefficients for the C(z) and D(z) polynomials: 
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Higher-order terms Motor[x].Servo.Kci and Kdi should be set to zero if this filter is not 

performing any other function as well. 

The DC gain of the C(z)/D(z) filter itself can be calculated by setting z to 1.  

 

 

   

   

2 2 2

22 2

2 1 2 2 11

1 2 1 2 2 1

nz s z nz s z nz s nz

npnp s p np s p np s

T T TC
DCgain

D T T T

     

    

    
  

    
 

For a notch filter of this type, this gain will be significantly less than 1.0. If you want the overall 

servo loop gain to be unchanged when you add this filter, you must change Motor[x].Servo.Kp 

by the inverse factor to compensate. 

So there are two reasons to change the value of the Kp proportional gain term when the notch 

filter is added. The first is to include the K value that could not be included in the C(z)/D(z) filter 

itself. The second is to compensate for the non-unity DC gain of the C(z)/D(z) filter. So we have: 

2

2
[ ]. . [ ]. .

np z
new old

nz p

Motor x Servo Kp Motor x Servo Kp
 

 
  

Example: Suppose we have identified a 55 Hz resonance in our mechanical coupling. To 

compensate for this, we decide to put a lightly damped band-reject filter (damping ratio 0.2) at 50 

Hz natural frequency, and a heavily damped band-pass filter (damping ratio 0.8) at 80 Hz natural 

frequency to limit the high-frequency gain of the filter. The servo update time is the default of 

0.442 milliseconds. 

sec000442.0
sec

sec
10sec*442 6  


sT  

sec2.31450*2 radHznz    

sec7.50280*2 radHznp    

2221 snzsnzzz TT    

22 000442.0*2.314000442.0*2.314*2.0*21   

0748.1  
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2221 snpsnppp TT    

22 000442.0*7.502000442.0*7.502*8.0*21   

4049.1  

Next, we compute the filter coefficients: 

   2 2 2*0.2*314.2*0.000442 2
[ ]. . 1 1.912

1.0748

z nz s

z

T
Motor x Servo Kc
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   2 2 2*0.8*502.7*0.000442 2
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Finally, we compute the DC gain adjustment, assuming for the example that our existing 

proportional gain term Motor[x].Servo.Kp had been 500: 

2 2

2 2

502.7 1.0748
[ ]. . [ ]. . 500 979.2

314.2 1.4049

np z
new old

nz p

Motor x Servo Kp Motor x Servo Kp
 

 
    

Calculating First-Order Low-Pass Filter Coefficients 

It is common to want to implement a simple low-pass filter to smooth noisy data, such as 

quantization noise in the velocity feedback path. 

To calculate a first-order low-pass filter, consider the continuous transfer function for the filter: 

 
1

/ 1
R s

s s



 
 

 
 

where  is the cutoff frequency in radians per second (equal to 2f, where f is the cutoff 

frequency in Hertz). This value  is equal to 1/, where  is the time constant of the filter. Note 

that the DC gain of this filter (value with s = 0) is 1.0. 

Next, convert this to a discrete-time transfer function using the approximation s = (1-z-1)/Ts, 

where Ts is the servo update time in seconds. 
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Note that the DC gain of this digital implementation of the overall filter (value with z = 1) is 1.0. 

Rearranging to group by z terms so it can be used in a generic 1/P(z) denominator polynomial 

with the first term equal to 1.0: 
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This K value cannot be part of the polynomial filter itself, so must be included in an in-line gain 

term. 

This filter can be implemented in any of Power PMAC’s “denominator” polynomial filters: D(z) 

acting on the position error, E(z) acting on the actual velocity, or F(z) acting on the desired 

velocity. We will show examples using the E(z) filter because that path is most likely to have 

high-frequency noise that should be filtered. 

The pole term uses the first-order denominator filter parameter such as Motor[x].Servo.Ke1 in 

the 1/E(z) filter in the velocity feedback path. The other filter parameters are set to zero if the 

filter is used only for this low-pass filter. 

1
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The DC gain of the 1/P(z) denominator filter itself can be calculated by setting z to 1. 
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This gain value is offset by the K value we pulled out of the equation, which is the reciprocal of 

this value. If you want the overall servo loop gain to be unchanged when you add this filter, you 

must change the in-line gain term, such as Motor[x].Servo.Kvfb, by the inverse factor to 

compensate. 
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Example: To implement a first-order low-pass filter in the velocity feedback path with a cutoff 

frequency of 50 Hz on a Power PMAC with a servo update time of 442 μsec, we compute: 

139.0000442.0*50**2   sT  

1 1
[ ]. . 1 0.877

1 1 0.139s

Motor x Servo Ke
T

     
 

 

[ ]. 2 0Motor x Ke   

Finally, we compute the DC gain adjustment, assuming for the example that our existing velocity 

feedback gain term Motor[x].Servo.Kvfb had been 500: 

0.139
[ ]. . [ ]. . 500 61.02

1 1.139

s
new old
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Calculating Second-Order Low-Pass Filter Coefficients 

To calculate a second-order low-pass filter, we consider the continuous transfer function for a 

generalized second-order filter: 
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where ωn is the cutoff frequency of the filter in radians per second, and ς is the damping ratio – a 

value of 0.707 produces a “Butterworth” filter here. Note that the DC gain of this filter (value 

with s = 0) is 1.0. 

Converting to digital form: 

 
   

2 2 2

2 1 2 1 2 21 1
2

1 2 2 11 1
2

n n s

n s n s

n n

s s

T
R z

z z T z Tz z

T T

 

 
 

   
 

        
    

   

 

where Ts is the sample (servo) time in seconds (not msec or µsec). 

Rearranging to group by z terms: 
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Then rescaling so the “z0” terms are equal to 1 so they can be used in a 1/P(z) Power PMAC 

denominator polynomial filter such as the 1/E(z) velocity feedback path filter: 
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Note that the DC gain of this digital implementation of the overall filter (value with z = 1) is 1.0. 

First, compute the following intermediate value:  

2 2 2 1n s n sT T      

Then compute coefficient values: 
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The DC gain of the 1/P(z) denominator filter itself can be calculated by setting z to 1. 
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This gain value is offset by the K value we pulled out of the equation, which is the reciprocal of 

this value. If you want the overall servo loop gain to be unchanged when you add this filter, you 

must change the in-line gain term, such as Motor[x].Servo.Kvfb, by the inverse factor to 

compensate. 
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Example: To implement a second-order low-pass filter in the velocity feedback path with a cutoff 

frequency of 60 Hz and a damping ratio of 0.707 on a Power PMAC with a servo update time of 

250 μsec and a velocity feedback gain Kvfb of 400, we compute the following: 

0942.0000250.0*60**2   snT  

146.10942.00942.0*707.0*21 2   

 2*0.707 *0.0942 2
[ ]. . 1 1.861

1.146
Motor x Servo Ke

 
    

1
[ ]. . 2 0.873

1.146
Motor x Servo Ke    

20.0942
[ ]. . [ ]. . 400*0.00774 3.096

1.146
new oldMotor x Servo Kvfb Motor x Servo Kvfb    

Integration Modes 

The standard servo algorithm has two control bits that affect how the integral gain term 

Motor[x].Servo.Ki operates. These permit the user to optimize performance for the particular 

application. 

When Integration Active 

If bit 0 (value 1) of Motor[x].Servo.SwZvInt (SwitchZeroVelocityIntegrator) is set to its default 

value of 0, the integrator is active both when motor desired velocity is zero and when it is not 

(that is, at all times except when the servo output is saturated). If this bit of 

Motor[x].Servo.SwZvInt is set to 1, the integrator is active only when motor desired velocity is 

zero (status bit Motor[x].DesVelZero is 1). When desired velocity is not zero, the input to the 

integrator is turned off, so the output value of the integrator that is added to the servo command 

value is constant. 

Having the integrator active only when the desired velocity is zero is the traditional choice, made 

because of concern that the integrator would “charge up” during the move as actual position fell 

behind command position, and then need to “discharge” at the end, causing overshoot at the 

destination of the move. However, if feedforward terms are used well to minimize tracking errors 

during moves, this effect is minimal, and it can be beneficial to have the integrator active during 

moves. 

Note that it is desirable to have the integrator off during moves when tuning the feedforward 

gains, so that the effect of the feedforward gains during commanded moves can be seen clearly. 

Even if it is then desired to have the integrator active at all times, bit 0 of 

Motor[x].Servo.SwZvInt should be set to 1 when doing the feedforward tuning. 

Endpoint Clearing of Integrator 

In many move-and-settle applications, a non-zero value in the integrator at the end of the 

commanded move, while initially helpful in moving the actual position toward the commanded 

position, will often cause significant overshoot because it still is commanding the motor further in 

the direction of the move even when the command position has been reached. 
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In the default integration mode, overshoot is necessary to “discharge” the integrator with the 

instantaneous following error having the opposite sign from the integrated error causing the 

integrator value to reduce in magnitude. 

However, if bit 1 (value 2) of Motor[x].Servo.SwZvInt is set to 1, then at the end of a 

commanded move (Motor[x].DesVelZero = 1) if the actual position passes the commanded 

position so that the sign of the following error is opposite that of the servo-loop integrator, the 

value in the integrator will immediately be cleared. This action minimizes the overshoot, as the 

integral action is no longer trying to drive the motor in the same direction. 

This clearing mode can be useful in move-and-settle applications that do not have significant net 

biases such as gravity loads or analog offsets. If the application does have large biases, this mode 

may not be appropriate, as a significant non-zero integrator value may be required to minimize 

error at the endpoint. 

Friction Feedforward 

Motor[x].Servo.Kfff is a non-linear “friction feedforward” gain term. It is multiplied by the sign 

(-1, 0, or 1) of the net desired velocity. If control bit Motor[x].Servo.SwFffInt is set to its default 

value of 0, the resulting product is added directly to the servo command output. If 

Motor[x].Servo.SwFffInt is set to 1, the resulting product is added to the input of the position-

error integrator instead. 

This term is meant to compensate for the effects of dry (Coulomb) friction, which creates a force 

opposing the direction of motion, but whose magnitude is independent of the magnitude of the 

velocity. 

Kfff

Ksff

-Kfff

-Ksff

Dry friction 
force

Velocity

 

Dry Friction Feedforward Terms 



Power PMAC User’s Manual 

Setting Up the Servo Loop 334 

Static Friction Feedforward 

In addition to running dry (Coulomb) friction, most mechanical systems exhibit a higher static 

dry friction (stiction). Motor[x].Servo.Ksff is a feedforward term intended to compensate for this 

static friction component. 

For the first several servo cycles in which the net desired velocity for the motor has a new non-

zero sign – positive or negative – the value of Motor[x].Servo.Ksff is added to the value of the 

(running) friction feedforward term Motor[x].Servo.Kfff. The sum is included in the feedforward 

component, added to the command output if Motor[x].Servo.SwFffInt is set to the default of 0 

or to the input of the integrator if SwFffInt is set to 1. 

The number of servo cycles this added component from Ksff is used is determined by the 

magnitude of Motor[x].Servo.SffCycles. The cycle count starts when the sign of the net desired 

velocity changes from zero to either non-zero value, or when it changes directly from one non-

zero value to the opposite.  

If SffCycles is a positive value, this component is always added for the specified number of servo 

cycles. If SffCycles is a negative value, it specifies the maximum number of servo cycles this 

component will be added, but if the sign of the actual velocity becomes the same as the sign of 

desired velocity before this, this component will no longer be added. 

Acceleration Feedback 

Motor[x].Servo.Kafb is an acceleration feedback term that subtracts an amount from the servo 

effort proportional to the actual acceleration detected. This can provide an “electronic flywheel” 

effect. However, because the derivation of acceleration values from position feedback can be 

noisy, it is strongly recommended to use the “E” polynomial that acts on the inner-loop feedback 

as a low-pass filter to reduce this noise if you want to use acceleration feedback. 

Input Deadband Compensation 

The input deadband compensation filter acts on the outer-loop position-error term (“following 

error”). It can be used to create a control deadband or to compensate for a physical deadband 

effect. It does this by proportionally modifying the following error value inside a zone of 

following error centered around zero, and therefore effectively modifying the servo gain in and 

around that zone. 
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Input Deadband Compensation Functionality 

This filter has two terms represented by saved setup elements. Motor[x].Servo.BreakPosErr 

specifies the size of the zone (“one-sided”), in motor units, of the proportionally modified 

following error. A setting of 0.0 disables this feature. Motor[x].Servo.Kbreak specifies the 

proportional modification factor inside this zone. It can be thought of as a relative gain 

(referenced to the Motor[x].Servo.Kp proportional gain term). Inside this zone, the net gain is 

the product of the Kp and Kbreak terms. Outside this zone, the net gain asymptotically 

approaches the value of Kp. 

If Motor[x].Servo.Kbreak is set to 0.0, a full control deadband is created within the defined 

zone, with no dynamic servo effort created from the Kp or Ki terms based on the position error. 

Such a deadband can be desirable if the user wants to be still with a small error rather than “hunt” 

trying to eliminate the error. Many users will want to create ½ or 1 “count” of control deadband if 

it is possible that the desired end position of a move can have a fractional count component. Note 

that this input deadband has no effect on the operation of the inner velocity loop, so there can still 

be servo output as a result of non-zero actual velocity within the deadband. 

Values of Motor[x].Servo.Kbreak between 0.0 and 1.0 provide a lower (but non-zero) control 

gain within the defined zone. Settings in this range are not commonly used. A value of 1.0 

provides a gain inside the zone equal to that outside of it, effectively disabling the feature. 

Values of Motor[x].Servo.Kbreak greater than 1.0 provide a higher control gain within the 

defined zone. This is commonly used if the physical system has a deadband or reduced gain near 

zero command values. For example, proportional hydraulic valves have a low gain near their zero 
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crossing, so increased gain from the controller can compensate for this. Other users prefer a 

higher gain in a small zone for high stiffness – but keeping the high gain outside the small zone 

would result in instability. Very high gains in a very small (<< 1 feedback count) error band can 

provide very tight control in the presence of friction. 

Output Hysteretic Deadband 

The output deadband can create zero servo output when the following error is smaller than a 

defined limit, no matter what the other servo gain terms command in either the outer or inner 

loops. It is only active when the desired velocity for the motor is exactly zero 

(Motor[x].DesVelZero status bit = 1). 

OutDbOff

OutDbOn

FE

Servo

Out

OutDbSeed

Kp

 

Output Hysteretic Deadband Functionality 

When the desired velocity is zero and the magnitude of the following error is less than 

Motor[x].OutDbOn, the servo command output value is forced to zero. In this state, status bit 

Motor[x].Servo.Status is set to 1. The servo output will stay at zero as long as the following 

error is less than Motor[x].Servo.OutDbOff, which should be greater than or equal to 

OutDbOn. 

When the motor exits the deadband, the value in the position-error integrator element 

Motor[x].Servo.Integrator is “seeded” with the value in saved setup element 

Motor[x].Servo.OutDbSeed. This value is added to the existing integrator value, giving the 

servo a “kick” to push the motor back towards zero error. As this happens, status bit 

Motor[x].Servo.Status is set to 0. The proportional gain effect here is just as if there were no 

deadband. 

The algorithm can be initialized in one of three ways at the end of a commanded move. When 

Motor[x].DesVelZero changes from 0 to 1 at the end of the commanded move, if the magnitude 

of the following error is greater than Motor[x].Servo.OutDbOff, the value of 

Motor[x].Servo.OutDbSeed is added to the integrator with all other servo terms remaining 

active. If the magnitude of the following error at this time is less than 

Motor[x].Servo.OutDbOff, but greater than Motor[x].Servo.OutDbOn, then the servo terms 
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remain active, but there is no seeding offset to the integrator. If the magnitude of the following 

error is less than Motor[x].Servo.OutDbOn, the servo output is forced to zero. 

The initial seeding of the integrator is very useful for improving the settling time at the 

destination position when there is substantial mechanical friction, particularly when the static 

friction is higher than the running friction. 

If Motor[x].Servo.OutDbOff is larger than Motor[x].Servo.OutDbOn, this causes a 

“hysteresis” in turning the deadband off and on. This feature is most commonly desired by users 

of specialty motors such as piezo-electric motors. Many users will want to set these two elements 

to the same value, eliminating the hysteresis. 

“Legacy” Servo Algorithm 

If Motor[x].Ctrl is set to Sys.LegacyCtrl, Power PMAC uses a “legacy” servo algorithm for the 

motor. This algorithm has all of the same components as the default servo algorithm selected by 

Sys.ServoCtrl, but with a few of the components in different order in the algorithm. 

The legacy servo control algorithm is designed to make the conversion of Turbo PMAC servo-

loop settings to Power PMAC as simple as possible by duplicating the topology of the Turbo 

PMAC servo algorithm. This algorithm is new in V2.0 firmware, released 1st quarter 2015. 

Algorithm Structure 

The following block diagram shows the structure of the LegacyCtrl algorithm: 
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Power PMAC “Legacy” Servo Algorithm 

The key difference in this algorithm from the default ServoCtrl algorithm is the location of the 

“C” and “D” polynomial filters. In the ServoCtrl algorithm, they are further to the left, right after 

the Kp proportional gain term and before the velocity-loop summing node. In that algorithm, 

these filters act on the (scaled) position error term. 
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Polynomial Filters 

In the LegacyCtrl algorithm, the “C” and “D” polynomial filters are located after the torque-

command summing node, just as the Turbo PMAC “notch” filter is. The first two gain terms of 

the “C” polynomial (Kc1 and Kc2) match the Ixx36 and Ixx37 numerator terms of the Turbo 

PMAC notch filter; the first two gain terms of the “D” polynomial (Kd1 and Kd2) match the 

Ixx38 and Ixx39 denominator terms. The same numerical values for these terms used in Turbo 

PMAC can be used in the Power PMAC for the same servo update rate. 

Note 

The location of the C and D filters in the Sys.LegacyCtrl 

algorithm is better for low-pass filters compensating for 

feedback measurement and quantization noise. The location of 

the C and D polynomial filters in Sys.ServoCtrl is better for 

notch filters compensating for system resonances.  

 

The “A”, “B”, “E”, and “F” polynomial filters in the LegacyCtrl algorithm are identical in 

function and location to the standard ServoCtrl algorithm. The SwPoly7 control bit determining 

whether the “A”, “B”, “C”, and “D” polynomials are limited to 2nd order or expanded to 7th order 

is identical in function to the ServoCtrl algorithm. Refer to the above section Standard Servo 

Algorithm for details.  

(Remember that if any of the “A”, “B”, “E”, or “F” polynomial filters is used, or if more than the 

first two terms of the “C” and “D” polynomial filters are used, it is no longer a direct port from 

the Turbo PMAC servo algorithm. In this case, it is recommended that the default ServoCtrl 

algorithm be used instead, with optimized tuning performed for that algorithm.) 

Conversion Details 

The selection of several feedback and feedforward terms to use in the LegacyCtrl algorithm for 

maximum compatibility of operation depends on the setting of Turbo PMAC’s Ixx96 bit 1 (value 

2). That control bit determines whether several feedback and feedforward terms are used after the 

integrator or before. 

If this bit is set to the default of 0 in Turbo PMAC, which is the most common case, the Kvfb 

velocity feedback gain term and the Kvff velocity feedforward gain term should be used to mimic 

the effects of Ixx31 and Ixx32 in the Turbo PMAC. The SwFffInt switch control bit should be set 

to the default value of 0 so that the friction feedforward gain term Kfff mimics the effect of Ixx68 

in the Turbo PMAC. In this case, the outputs from these gain terms are added into the torque 

summing node, after the integrator. 

However, if Ixx96 bit 1 is set to 1 (so Ixx96 = 2 or 3) in the Turbo PMAC, the Kvifb velocity 

feedback gain term and the Kviff velocity feedforward gain term should be used to mimic the 

effects of Ixx31 and Ixx32 in the Turbo PMAC. The SwFffInt switch control bit should be set to 

1 so that the friction feedforward gain term Kfff mimics the effect of Ixx68 in the Turbo PMAC. 

In this case, the outputs from these gain terms are added into the velocity summing node, before 

the integrator. 

If SwFffInt is set to 0, the output friction feedforward gain term is added to the input of the “C” 

and “D” polynomial filters, whereas in Turbo PMAC it is added to the output of the “notch” 

filter. This means that in Power PMAC, it is effectively multiplied by the DC gain of this pair of 
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polynomial filters. To get the identical effect in Power PMAC, the value of Kfff should be 

divided by the DC gain of these filters: 

37361

39381
*68.].[

IxxIxx

IxxIxx
IxxKfffServoxMotor




  

To compute the specific numerical values of Power PMAC gain terms to match Turbo PMAC 

gain terms, refer to the Software Reference Manual chapter Power PMAC Turbo I-Variable 

Equivalents for the appropriate formulas. 
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Adaptive Servo Control 

Power PMAC can provide sophisticated adaptive control servo capabilities that permit real-time 

identification of inertia changes in a system driven by a Power PMAC motor, and automatic 

compensation in the servo loop gain. The result is a consistent, and near constant, performance of 

the closed-loop system even in the face of significant inertia changes. 

The adaptive control algorithm continually computes the “plant gain” of the system that is driven 

by the Power PMAC in a recursive algorithm, compares this to a preset “reference gain” for the 

plant, and adjusts the servo loop gain for the motor so that the overall loop gain stays constant, 

maintaining the overall performance of the motor.  
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Adaptive Servo Control Algorithm Block Diagram 

The output of the servo loop must be a torque command, which means that the Power PMAC 

must be closing the velocity loop as well as the position loop for the motor. It does not matter 

whether the motor phase commutation is performed by the Power PMAC, by the amplifier, or in 

the motor itself. 

In this case, the “plant gain” includes everything between the numerical command output of the 

servo loop and the resulting physical acceleration as derived from the feedback position sensor. 

This includes any output-signal gain, amplifier gain, motor torque constant, combined motor and 

(reflected) load inertia gain, sensor resolution gain, and motor unit scaling gain. 

In a typical system, the only gain component with significant variation will be the inertia gain 

term (and the “inertia gain” is inversely proportional to the inertia). Note that this section uses the 

term “inertia” to represent either the inertial mass of a linear system, or the mass moment of 

inertia in a rotary system. The overall plant gain will vary in direct proportion to the inertia gain. 

Selecting the Adaptive Control Algorithm 

The adaptive control algorithm is selected for a motor by setting saved setup element 

Motor[x].Ctrl to Sys.AdaptiveCtrl, the address of the start of the algorithm. This algorithm uses 
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all of the same terms as the standard servo algorithm that is selected by setting Motor[x].Ctrl to 

the default value of Sys.ServoCtrl, but adds several estimation and adaptation terms that are 

discussed below. 

Establishing the Reference System 

The first step in implementing the adaptive control algorithm is to tune the servo loop for the 

nominal (reference) inertia. This reference inertia can be anywhere within the range of inertias 

expected in the system, but it is usually preferable to select a “standard” configuration for the 

system, such as an unloaded arm, or a retracted mechanism. It should be easy to perform tuning 

moves in this configuration. 

In this (fixed) configuration, tune the servo loop as you would for a non-adaptive system. Either 

the interactive tuning or the automatic tuning tools of the IDE program can be used, or both. Even 

if you choose not to use the automatic tuning to set your servo loop gains, execute the excitation 

pattern of the automatic tuning. The IDE will report the overall plant gain value that it measures 

as a result of the excitation as the “Estimated Gain”. Set saved setup parameter 

Motor[x].Servo.NominalGain to the reported value. 

Software Setup for Adaptive Control 

Once the reference system has been established, the estimation and adaptation parameters can be 

set. The first parameter to set, Motor[x].Servo.EstTime, establishes the “speed” of the 

estimation. It specifies the minimum number of servo cycles of data that will be used for plant 

gain estimation in a recursive algorithm before this estimation is used to change the servo loop 

gains to compensate. The algorithm must see this many consecutive servo cycles where the 

following conditions are met for valid plant gain estimation before actual servo loop adaptation 

will occur: 

1. The desired acceleration value for the motor must be non-zero. 

2. The magnitude of the command output from the servo loop must be greater than 

Motor[x].Servo.EstMinDac. 

 

These conditions are intended to ensure that the plant is being excited vigorously enough that a 

reasonable estimation of the inertial response of the plant can be made. 

Motor[x].Servo.EstMinDac is usually set to a value equal to a few percent of the maximum 

servo output magnitude that is set by Motor[x].MaxDac. 

The setting of Motor[x].Servo.EstTime is a tradeoff between the ability to respond quickly to 

changes in plant inertia and the necessity of taking enough measurements to get a valid estimation 

in the presence of noise and disturbances. Typically it is set to a value of 100 to 500 servo cycles. 

Setting this parameter to 0 disables the estimation and adaptation algorithm. 

Once enough consecutive servo cycles with valid measurements have been made, the estimated 

plant gain value in Motor[x].Servo.EstGain is used to calculate the servo-loop gain adjustment 

term Motor[x].Servo.GainFactor, which is inversely proportional to the estimated plant gain. 

The amount of variation of Motor[x].Servo.GainFactor, which is set to 1.0 when the estimated 

plant gain is equal to the nominal plant gain, can be limited by the settings of 

Motor[x].MinGainFactor and Motor[x].MaxGainFactor. These should be set to cover the 

greatest expected variations in plant inertia, so as not to permit further compensation outside of 

this range. 
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Gain Scheduled Adaptive Control 

The standard adaptive control routine attempts to maintain the same closed-loop natural 

frequency (ω) and damping ratio (ζ) across the entire adaptive range as was present at the 

nominal (reference) inertia. However, in some cases, this may not be the best strategy, as 

attempting to keep the same natural frequency and damping ratio at high inertias may require 

servo gains so high as to be problematic, causing saturation or limit cycling effects. Alternatively, 

the system may not be as responsive as it could be at lower inertias. 

It is possible to specify how the closed-loop natural frequency and damping ratio should vary 

across the range of system inertias. Generally, it will be desired to permit natural frequency to 

decline somewhat as inertia increases. Sometimes, the same is true of damping ratio. Four new 

saved setup elements are used to specify this variation. 

Motor[x].Servo.MinW specifies the desired closed-loop natural frequency at the maximum 

system inertia (minimum plant gain) of the adaptive range, in radians per second. The natural 

frequency can be considered as essentially identical to the system’s closed-loop bandwidth, 

although bandwidth is usually expressed in Hertz (cycles per second), so the numerical value of 

MinW in radians per second would be 2π times this number. 

Motor[x].Servo.MaxW specifies the desired closed-loop natural frequency at the minimum 

system inertia (maximum plant gain) of the adaptive range, in radians per second. The desired 

closed-loop natural frequency in between these extremes is varied linearly as a function of plant 

gain. 

Without any adaptation, the closed-loop natural frequency varies inversely with the square root of 

the system inertia, so if the system inertia increased by a factor of 4, the natural frequency would 

be reduced by a factor of 2. Standard adaptation attempts to keep natural frequency constant over 

the range of inertias. MinW and MaxW are usually chosen to obtain a variation in natural 

frequency in between these two cases. 

Motor[x].Servo.MinDR specifies the desired closed-loop damping ratio (a unitless number) at 

the maximum system inertia (minimum plant gain) of the adaptive range. Typically values in the 

range of 0.7 to 1.0 are used here, possibly to the lower end of the range at this extreme. 

Motor[x].Servo.MaxDR specifies the desired closed-loop damping ratio at the minimum system 

inertia (maximum plant gain) of the adaptive range. Often, values at the higher end of the 

common 0.7 to 1.0 range are used at this extreme. 

Motor[x].Servo.MinW and Motor[x].Servo.MinDR must both be set greater than their default 

values of 0.0 to enable the gain scheduling feature of the adaptive servo algorithm. When 

enabled, it is essential that Motor[x].Servo.MaxW and Motor[x].Servo.MaxDR not be left at 

their default values of 0.0, as these settings could lead to unsafe control conditions. 

Executing the Adaptive Control Algorithm 

Once the algorithm has been set up according to the above instructions, it will execute 

automatically and invisibly to the user. In testing the operation of the algorithm, the values of 

Motor[x].Servo.EstGain and Motor[x].Servo.GainFactor can be monitored, such as with the 

Watch Window in the IDE. 
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The following plots show the action of the adaptive filter. The first plot shows the response of the 

system to a parabolic-profile commanded move with low inertia (“unloaded”). Position errors are 

mostly within +/-10 counts of the encoder. 

 

The next plot shows the response to the same commanded move when the system has much 

higher inertia (“loaded”), with the same gains as for the unloaded system (no adaptation). Position 

errors grow to over +/-500 counts. 
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The next plot shows the response of the same “loaded” system whose saved gains produced the 

“unloaded” response shown in the first plot, but with the adaptation turned on. After an initial 

perturbation from the sudden change in load, it quickly settles down to a position error range of 

about +/-5 counts. 
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Cross-Coupled Gantry Control 

Power PMAC can provide the ability to “cross-couple” the servo control of two parallel gantry 

motors. In addition to having each motor compute its feedforward and feedback components 

based on its own position, it also computes components for each motor based on the difference in 

position (following) error between the motors. This cross-coupling control between the two 

motors helps to provide the tightest physical coordination between the motors. 

This block diagram shows how the cross-coupled control operates. The blocks ServoCtrlα and 

ServoCtrlβ are the feedback/feedforward algorithms for the individual motors, operating on their 

own command trajectories (which are generally identical, but are not required to be so) and 

measured feedback positions (which can and do differ). The blocks Xctrlα and Xctrlβ are the 

cross-coupled terms, which operate on the difference between the errors of the two motors. 
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Cross-Coupled Gantry Servo Algorithm Block Diagram 

Note 

The choice of the use of this type of servo control is 

independent of the choice of the method of commanding the 

two gantry motors. The “leader/follower” method, in which 

only one motor (the “leader”) actually computes the 

commanded trajectory, and the other motor (the “follower”) 

uses the leader-motor trajectory, is strongly recommended, but 

not required, for these systems. 

 

Note 

While the leader/follower trajectory-generation method can be 

used with more than two motors in a gantry, the cross-coupling 

algorithm can only be used with two motors. 
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Note 

As a multi-motor servo algorithm, this cross-coupled gantry 

algorithm cannot be used when the servo loop is executed 

under the phase interrupt (“servo in phase”). 

 

The output of the servo loops should be torque commands, which means that the Power PMAC 

must be closing the velocity loop as well as the position loop for the motors. It does not matter 

whether the motor phase commutation is performed by the Power PMAC, by the amplifier, or in 

the motor itself. 

Selecting the Cross-Coupled Control Algorithm 

The cross-coupled control algorithm is selected for a dual-motor pair by setting saved setup 

element Motor[x].Ctrl for the lower-numbered motor to Sys.GantryXCtrl, the address of the 

start of the algorithm. The second motor in the pair must be assigned to the next higher-numbered 

motor in Power PMAC. Motor[x].ExtraMotors for the lower-numbered motor must be set to 1 

to tell the Power PMAC task scheduler that this servo algorithm will be performing the servo loop 

closure for a second motor as well, and that the next higher-numbered motor will not be closing 

its own servo loop. It does not matter how Motor[x].Ctrl is set for the higher-numbered motor, 

as this value is not used. (You may want to set it to Sys.GantryXCtrl to make it obvious to 

someone reviewing the settings how the motor is controlled, but this is not required.) 

The cross-coupled algorithm uses all of the same terms for each motor as the standard servo 

algorithm that would be selected by setting Motor[x].Ctrl to the default value of Sys.ServoCtrl, 

but adds several cross-coupling terms that are discussed below. Each motor can use all of the 

terms of the adaptive control algorithm, which would be selected by setting Motor[x].Ctrl to 

Sys.AdaptiveCtrl, and is a superset of the standard servo algorithm. This permits each motor’s 

own gains to change as the cross axis moves, transferring inertia from the motor on one side to 

the motor on the other. 

Enabling the Gantry with Cross-Coupling 

Because the cross-coupled servo algorithm controls two motors (that are usually mechanically 

coupled) at once, special care must be taken in enabling the control of these motors, especially 

during initial configuration. It is possible for the two motors to be in different states (enabled 

closed-loop, enabled open-loop, disabled), but before attempting any positioning move 

commands, both motors should be in the enabled closed-loop state. 

The leader/follower configuration is almost always used with the cross-coupled servo, so it is 

important to understand the special actions of that configuration. Before a motor is put into 

follower mode (Motor[x].ServoCtrl=8), the motor should be in the disabled state and 

Motor[x].CmdMotor should be set to the number of the leader motor. Otherwise, unintended 

and possibly dangerous motion could occur. 

If either the leader motor or the follower motor has a killing (disabling) fault, the other motor will 

automatically be disabled as well. If the leader motor is disabled by command, the follower motor 

will automatically be disabled too. Both motors must be re-enabled with the loops closed before 

issuing any positioning move commands to the leader motor.  

When the motors are disabled, it is possible for the two motors to become skewed even if the 

skew had been removed on homing. If both motors have previously been homed with any skew 
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removed, then on the re-enabling of both motors, the skew will automatically be removed at the 

rate set by Motor[x].GantrySlewRate, with status bit Motor[x].GantryHomed getting set back 

to 1 when the skew removal is complete. 

Tuning the Non-Coupled Terms 

It is best to first tune each motor’s individual servo terms, which are the same as those for the 

default servo algorithm. This can be done with Motor[x].Ctrl set to the default value of 

Sys.ServoCtrl for both motors and Motor[x].ExtraMotors set to 0 for the first motor (the 

default settings), or it can be done with Motor[x].ServoCtrl set to Sys.GantryXCtrl and 

Motor[x].ExtraMotors set to 1 for the lower-numbered motor, and all of the cross-coupling 

gains set to 0 for both motors. 

This tuning is best done with the lower-numbered motor as the leader motor (standard setting of 

Motor[x].ServoCtrl = 1), and the higher-numbered motor as the follower motor 

(Motor[x].ServoCtrl = 8). The tuning control of the IDE software will automatically recognize 

this configuration as a leader/follower pair when you specify either interactive or automatic 

tuning for the leader motor. Any tuning move or excitation that can be done for a single motor 

can now be done for the motor pair. 

Whatever combination of automatic and interactive tuning steps is desired can be used to 

optimize the performance with the non-coupled terms. The performance of profiled moves similar 

to what will be used in the application should be evaluated. 

Note 

If satisfactory performance is obtained at this step of tuning the 

motors individually, it may not be necessary to implement the 

cross-coupling terms. 

 

Tuning the Cross-Coupled Terms 

When the servo control using just the standard non-coupled terms for both motors is optimized as 

much as is feasible, if further performance improvements are desired, the cross-coupling terms 

should be engaged. If not done so already, set Motor[x].Ctrl for the lower-numbered motor to 

Sys.GantryXCtrl and Motor[x].ExtraMotors for the lower-numbered motor to 1.  

The tuning control window in the IDE should recognize this configuration and show an option for 

cross-coupled tuning. If it does not, change the selected motor up and back, or right-click and 

select Refresh. In auto-tuning, there will be a check box marked “Use Cross-Coupled Gantry 

Control”. In interactive tuning, there will be a button marked “Set Cross-Coupling Gains”. 

Usually, the auto-tuning will be attempted first, as it should produce gain settings that are at least 

close to optimum. Some users will attempt to improve on the auto-tuned settings through 

subsequent interactive tuning procedures. 

There are three cross-coupled terms for each motor in the gantry pair. All three operate on the 

difference in the position errors of the two motors each servo cycle. The gains for a given motor 

contribute to the servo command output for that motor in the direction sense to attempt to drive 

the difference in errors between the two motors toward zero. 
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The three terms are the proportional, integral, and derivative (P, I, and D) gains. 

Motor[x].Servo.Kxpg is the proportional gain term operating directly on the difference in errors. 

Motor[x].Servo.Kxig is the integral gain term operating on the accumulated difference in errors. 

Motor[x].Servo.Kxvg is the derivative gain term operating on the rate of change in the difference 

in errors. Generally, these terms will be identical, or very similar, for both motors. 

The transfer function for each cross-coupling control block, from the difference-of-errors input to 

the output contribution to the servo command, is: 

   1
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Custom User Servo Algorithms 

Power PMAC facilitates the implementation of custom servo algorithms by the user. These 

algorithms are written in C, and can be designed in a graphical environment like MathWorks’ 

MatlabTM/SimulinkTM, which can generate the C code automatically. For more details on 

implementing custom servo algorithms in C, refer to the Writing C Functions and Programs in 

Power PMAC chapter of the User’s Manual. 
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Tuning the Servo Loop in the IDE 

The Integrated Development Environment (IDE) software on the PC provides powerful and easy-

to-use tools for tuning the servo loop for optimal performance. It features both “auto-tuning” and 

“interactive tuning” screens. The user can utilize either tool or both. It is common to start with 

auto-tuning to achieve reasonable performance levels, then proceed to interactive tuning to 

optimize performance. 

To use the IDE’s tuning features, click on “Tools” in the top menu bar, then select “Tune” from 

the pull-down menu. You will see a screen that looks something like this: 

 

IDE Interactive Tuning Window 

The buttons on the left allow you to select from the possible tuning options, both interactive and 

automatic. If the button is “grayed out”, your setup for the motor does not support that 

functionality. (The motor in this example does not have the adaptive control algorithm or digital 

current loop enabled, so the buttons selecting tuning options for those features are disabled.) 

Issues of tuning the digital current loop are only relevant if commutation and current-loop closure 

are enabled for the motor. These issues are covered in the Setting Up Power PMAC-Based 

Commutation and/or Current Loop chapter of the User’s Manual. 

Note the motor-select control in the lower left corner, and the “Kill” button below that can be 

used to disable the motor immediately if something goes wrong. 
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Automatic Tuning 

Most users will start the tuning process for a motor with automatic tuning by the IDE. This 

procedure is selected by clicking on the “Position Loop Auto Tune” button on the left side of the 

screen. You will then see a screen that looks like this: 

 

IDE Basic Automatic Tuning Window 

This is the “Basic Auto Tune” screen, which permits a very simple interface for obtaining 

reasonable servo tuning functionality. 

In Step 1, select the command output mode of the servo loop. Choose “Velocity Mode” for 

analog velocity-mode servo drives, “pulse and direction” drives, and hydraulic valve controls. 

Choose “Torque Mode” for analog torque (current) mode servo drives, “sinewave-input” servo 

amplifiers, and “power-block” amplifiers. 

In Step 2, select a location for the slider with the pointing device. The further to the right the 

slider is moved, the stiffer the servo loop the IDE will create for the motor, resulting in more 

responsive action, but increasing the possibility of vibration and instability due to overtuning. The 

user should either select or de-select the “Feedforward” check box. Most users will want this box 

selected, so that the IDE’s auto-tuning calculations implement the feedforward gains to optimize 

trajectory tracking. 

  



Power PMAC User’s Manual 

Setting Up the Servo Loop 351 

Clicking on “Auto Tune Motor” will cause Power PMAC to command an excitation sequence on 

the motor, measure the response, and recommend gain settings. You will see a screen with 

recommended settings such as the following: 

 

IDE Automatic Tuning Results Window 

To use the recommended gains, click on the “Implement” button. 
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In the “Basic Auto Tune” screen, you can click on the “Advanced Auto Tune” check box to get a 

screen that gives you some more control over the excitation and auto-tuning process. You will see 

a screen like this: 

 

IDE Advanced Automatic Tuning Window 

In Step 2, you can specify your desired results more directly. In Step 3, you can specify the 

parameters for the excitation move. 

Sample Interactive Tuning Process 

Interactive tuning of the position/velocity servo is performed from the screen selected by the 

“Position Loop Interactive Tuning” button. This is the first screen shown in this section. 

In this screen, you must select one of the radio buttons under “Trajectory Selection”. Typically, 

the first trajectory selected in the interactive tuning process is “Position Step”. This creates an 

instantaneous step in the commanded position of the motor, holds it for a time, and then steps 

back to the original position. The user can select the size of the step and the duration of the hold 

from the right side of the screen. Clicking on “Do a Step Move” causes Power PMAC to execute 

the step.  
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You will then see a plot of the step response in a screen like the following: 

 

You can change gains and repeat the step move until you get the response you desire: 
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Next, many users will select the “Parabolic Velocity” trajectory to optimize trajectory tracking 

with feedforward gains. This should be an aggressive move, especially to see the acceleration 

effects. There should be no integral action during the move, so these should be done either with 

the Ki gain set to 0, or preferably with SwZvInt set to 1 so the integrator is automatically turned 

back on between moves so there is no significant error at the start of a move. 

Here is a typical response with no feedforward gains: 

 

Note that the following error curve has the same shape as the commanded velocity curve. 

Mathematically speaking, the two curves are highly correlated. The screen reports that the 

correlation is virtually perfect, with a value of 1.000. Note also that the peak magnitude of the 

following error is about 200 motor units. 

First, eliminate the following error component that is proportional to the commanded velocity 

using the velocity feedforward term: 
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Here, we see a very different error profile, and one with a maximum magnitude of about 10 

counts. One aspect of the profile is V-shaped, related to the V-shaped acceleration profile. We 

will tackle this now by eliminating the error proportional to acceleration with the acceleration 

feedforward term. 
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The remaining error is of roughly constant magnitude during each half of the move, with the 

same sign as the velocity. This is due to Coulomb (dry) friction. We can eliminate this with the 

friction feedforward term: 

 

Finally, enable the integrator during the move by setting the SwZvInt integration mode parameter 

to 0: 
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Cascading Servo Loops 

The open structure of Power PMAC’s servo loops and the ability to specify which registers are 

used for its inputs and outputs provides the user with powerful capabilities such as the ability to 

“cascade” servo loops. In this technique, the output of one servo loop (one Power PMAC 

“motor”) is used as an input to another servo loop, bringing the capabilities of both loops to bear 

on a single actuator. The outer loop does not directly drive an actuator; instead, it dynamically 

modifies the set point of the inner loop in an effort to drive its own error to zero. 

This technique has many possible uses; the most common is to be able to close an auxiliary loop 

around a standard position loop. The auxiliary loop controls some quantity affected by the 

position loop’s motion, such as torque or force applied, or distance from a surface. The coupling 

of the loops can be turned on and off, permitting easy switching between control modes. 

Common uses of this technique include: 

 Web tensioning 

 Torque-limited screwdriving 

 Metal bending 

 Controlled-force part insertion 

 Height control over uneven surface (e.g. for auto-focus) 

 

The inner loop in these applications is typically a standard position loop driving a real actuator 

with a standard position feedback device such as an encoder or resolver. The first step in setting 

up such an application is to get this loop working in standard positioning mode (running at 

continuous velocity if appropriate). 

The outer loop in these applications uses a feedback sensor measuring whatever quantity the outer 

loop is to be controlled. Often these force or torque transducers such as strain gages or tensioning 

dancer arms, or distance (“gap”) transducers employing capacitive or ultrasonic mechanisms. 

By engaging and disengaging the outer loop, the user can switch between standard position 

control using just the inner loop, as when not meeting the resistance of a surface, and control of 

the auxiliary function, as when pushing with controlled force against a surface. The transition is 

simple to perform, and smooth in operation. 

In some cases, the outer-loop “motor” is also a position loop, with its feedback being a position 

sensor on the load. In this scenario, the inner-loop “motor” closes its position and velocity loops 

using the sensor on the back of the motor. The outer-loop motor is used to issue corrections to the 

inner-loop motor based on the load feedback. This technique is typically used when there is a 

huge amount of backlash due to multiple-stage gearing, as when driving multi-ton loads. In these 

cases, it is more effective than simply using the motor sensor for the velocity-loop feedback, and 

the load sensor for the position-loop feedback, of a single Power PMAC “motor”. 

Strategies for Coupling the Loops 

There are three basic strategies for coupling the outer loop to the inner loop. In the first strategy, 

the command output of the outer-loop motor is processed through an entry in the encoder 

conversion table, and the result is used as the source for the “master position” for the inner-loop 

motor. This method is very flexible, with its performance not dependent on the numbering of the 

Power PMAC motors used for the two loops, but there is always a one-servo-cycle delay between 
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the outer-loop closure and the inner-loop closure. This has the potential to limit performance of 

the outer loop in very high-bandwidth applications. 

The second strategy uses a special “zero-dimensional” (0D) compensation table to transfer the 

outer loop’s command output to the inner loop. This 0D table has a single data point that takes the 

command value from the outer loop each servo cycle and transfers it to a position offset register 

for the inner loop. It is possible to do this without a servo-cycle delay, but the outer-loop motor 

must be of a lower number than the inner-loop motor.  

In addition, the compensation tables must be set to execute in between the servo-loop closure of 

the outer-loop motor and that of the inner-loop motor by setting saved setup element 

Sys.CompMotor to a value greater than the number of the inner-loop motor, but not greater than 

that of the outer-loop motor. If you are also using compensation tables for other purposes, all 

motors using these tables should be numbered greater than or equal to the value of 

Sys.CompMotor. 

The third strategy is a direct coupling of the loops using Motor[x].pCascadeCmd of the outer-

loop motor. This can be used to write the output command of the outer-loop motor directly to one 

of the offset registers for the inner loop, without any intermediate steps. This method is new in 

V2.1 firmware, released 1st quarter 2016. 

To Integrate Outer Loop Command or Not 

In any of the coupling strategies, a decision must be made whether the servo-output command 

from the outer loop should be numerically integrated over time or not. If it is not integrated, the 

command acts as a position offset to the inner loop. If it is integrated, the command acts as a 

velocity offset to the inner loop. 

In general, if the maximum total position offset required by the inner loop to keep the outer-loop 

error at or near zero is within the range of the output value of the outer control loop, this value 

does not need to be integrated before it is used by the inner loop. This is typically the case in 

applications where the outer loop is only applying small corrections to the inner-loop, as in laser 

auto-focus corrections or flying height gauge corrections. In these cases, the “steady-state” 

condition is usually at zero velocity. 

However, if the maximum total position offset required by the inner loop can get very large, and 

potentially be unbounded, then the output value of the outer control loop must be integrated 

before it is used as a position offset into the inner loop. This act of integration makes the output of 

the outer loop effectively a velocity correction to the inner loop. Tensioning control of a 

constantly moving web is a typical application of this type. In these cases, the “steady-state” 

condition is usually at a non-zero velocity. 

The method used to determine whether this command is integrated or not is different for each of 

the strategies for coupling the loops together. The particular method for each strategy is explained 

in the section for that strategy. 

Note that when the output command from the outer loop is integrated, the gains of the outer servo 

loop should be extremely small. Generally, the proportional gain term of the outer-loop motor, 

Motor[β].Servo.Kp, will be much less than 1.0. 
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Inner Loop General Setup 

In hybrid control applications, first set up the inner loop as a standard positioning motor, get it 

well tuned and operating as you wish it to when controlling this actuator in its standard 

position/velocity mode. For the alternate control mode, we will simply add a command from the 

outer loop through the master position or compensation position input; otherwise, operation of 

this inner loop remains the same. 

Outer Loop General Setup 

Set up the outer-loop motor to use the alternate sensor, processed through an encoder conversion 

table entry, for both its “position” loop and its “velocity” loop, by setting Motor[β].pEnc and 

Motor[β].pEnc2 to the address of the ECT entry EncTable[ε].a that processes this feedback. 

Often, the control quantity of this loop will not actually be a position value, but since all Power 

PMAC terminology is in terms of position, you should be aware of possible confusion. 

Typically, the feedback from the ECT entry will be scaled in units of least-significant bits (LSBs) 

of the sensor. With the default motor feedback scale factor values of 1.0 for Motor[β].PosSf and 

Motor[β].Pos2Sf, the motor will use these same units. It is possible to scale the motor into 

engineering units (e.g. Newtons for force) with different values of PosSf and Pos2Sf; it is also 

possible to perform the scaling into engineering units for the axis assigned to this motor with the 

scaling coefficient of the axis definition statement. 

You will not be able to tune the outer loop until you have linked it with the inner loop. The next 

two sections describe the steps in the two methods of linking the loops. 

Joining the Loops through Position Following Function 

After you have the inner loop working properly, and have done the basic setup of the outer loop, 

you are ready to join the loops together. This section explains how to link the loops using Power 

PMAC’s position following function. Remember that in this technique, it does not matter what 

motor number is used for the inner loop and what motor number is used for the outer loop, but 

there will always be a one-servo-cycle delay in using the outer-loop command for the inner loop. 
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Cascaded Servo Loops Using Position Following Function 

Processing the Outer-Loop Command 

The servo command output for the outer-loop “motor” is found in status element 

Motor[β].IqCmd. This is a 32-bit floating-point element in units of a 16-bit output (range of 

±32,768). An entry in the encoder conversion table (ECT) can read this floating-point register 

directly to process it for use by the inner-loop motor’s position-following function. 

Note that using this internal memory register means that it does not matter where the outer-loop 

motor writes its servo command with Motor[β].pDac. It also does not matter if the register 

specified by pDac is overwritten by another motor (as would be the case if multiple motors wrote 

to the register at the address of Sys.pushm). 

EncTable[ζ].type should be set to 11 to specify read of a floating-point register. 

EncTable[ζ].pEnc should be set to Motor[β].IqCmd.a, where x is the number of the outer-loop 

motor, to specify the address of this command register. 

In most cases, EncTable[ζ].index1, index2, index3, and index5 will be left at their default 

values of 0. Non-zero values for these elements can be used for scaling and change-limiting 

functions, but these will rarely be used in this type of application. 

If the outer-loop command will not be integrated before use in the inner loop (i.e. it represents a 

position offset), then EncTable[ζ].index4 should be set to its default value of 0. If the outer-loop 

command will be integrated once before use in the inner loop (i.e. it represents a velocity offset), 

then EncTable[ζ].index4 should be set to 1. While it is possible to integrate twice, this has not 

been found to be useful in cascading servo loops. 
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EncTable[ζ].ScaleFactor allows you to scale the intermediate value for output. If you set it to 

1/256 (with no pre-scaling or shifting), the result will be in the same units as the source register, 

with a range of ±32,768. Of course, other scale factors can be used, but it is very important to 

remember that this element acts as a gain term in the outer servo loop, so changing it changes the 

outer loop’s overall gain. 

Note that it is also possible to use the value in the output register specified for the outer-loop 

motor with Motor[β].pDac. (In firmware versions older than V1.5, released 3rd quarter 2012, this 

is required, because the ECT method for using floating-point values did not exist yet.) In this 

case, pDac must contain the address of a valid register that can hold this value, and nothing can 

overwrite this value before it is used in the next servo cycle. In this case, EncTable[ζ].type = 1 

(single-register read), EncTable[ζ].pEnc contains the address of the same register as 

Motor[β].pDac, EncTable[ζ].index4 is set to 0 for no integration, or 1 for single integration, and 

EncTable[ζ].ScaleFactor is set to 1/65,536 to provide an output range of ±32,768, with other 

setup elements typically left at their default values of 0. 

Using the Outer-Loop Command as Inner-Loop Master Position 

Motor[α].pMasterEnc for the inner-loop motor should be set to EncTable[ζ].a to specify the 

address of the entry that has processed the outer loop command for the inner loop’s position 

following function. Note that specifying this address does not, by itself, enable the following. 

Inner-Loop Master Position Scale Factor 

Motor[α].MasterPosSf for the inner-loop motor specifies the “gear ratio” of the position 

following function for the motor, in motor units per unit of the selected master position. In 

cascaded servo loops, this floating-point element is usually left at the default value of 1.0. This 

can be changed, but it is very import to remember that this element acts as a gain term in the outer 

servo loop, so changing it changes the outer loop’s overall gain. 

Inner-Loop Following Enable and Mode 

Motor[α].MasterCtrl for the inner-loop motor controls whether the following function for the 

motor is enabled or not, and what mode it is in. When bit 0 of MasterCtrl is set to 0, the master 

following function is disabled, so the outer loop is not engaged with the inner loop. When bit 0 

(value 1) is set to 1, the master following function is enabled, engaging the outer loop with the 

inner loop, and its output will command a modification to the total commanded position of the 

inner loop. 

Motor[α].MasterCtrl for the inner-loop motor also controls how the outer loop’s corrections 

interact with trajectory commanded positions for the inner loop. When bit 1 of MasterCtrl is set 

to 0, the inner-loop motor’s trajectory commanded positions are relative to a fixed origin, and 

these commanded moves effectively cancel out whatever corrections have come in through the 

master position port. When bit 1 (value 2) is set to 1, the following is in “offset mode”, the 

corrections that come in through the master position port effectively offset the origin for 

programmed commanded moves, permitting commanded moves and master corrections to be 

superimposed. This distinction in mode is true even when following is disabled.  

Note that when the following is in offset mode, when the position for the motor is reported, the 

following component of this position is subtracted out, so the reported value is what the position 

would be without the following offset. To see the following component, you must query the value 

of the element containing it directly: Motor[α].ActiveMasterPos. 
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When the outer loop is engaged (bit 0 =1), the following almost always must be in offset mode 

(bit 1 = 1), making the required value of Motor[α].MasterCtrl be 3 for this operation. Even if 

there are not explicit commands in the motion program for the axis assigned to the inner loop’s 

motor at this time, any motion command for the coordinate system containing this motor 

implicitly commands that motor to its previous commanded position. If the following is not in 

offset mode, this will take out the corrections that have come in since the last programmed move 

or move segment. 

When the following is disabled (bit 0 = 0), if you wish to command the inner loop’s motor to a 

definite physical position, you must put the following in “normal mode” (bit 1 = 0), making the 

required value of Motor[α].MasterCtrl be 0 for this operation. 

Note that whenever the mode bit (bit 1) of Motor[α].MasterCtrl is changed, whether or not 

following is enabled, the programming origin for the motor is changed, which changes the 

relationship between motor and axis positions. This means that the “pmatch” position matching 

function must be executed before the next programmed axis move. This function is automatically 

implemented at the start of motion program execution, but if the mode change is made in the 

middle of execution of a motion program, or the next programmed axis move is executed in a 

PLC program, the function must be implemented through an explicit pmatch command (on-line 

or buffered program). 

Joining the Loops through Compensation Table 

This section describes the steps for linking the outer and inner loops through a “zero-

dimensional” (0D) compensation table. The advantage of this method is that the linking can occur 

without a servo-cycle delay, which can be advantageous if a high bandwidth is required of the 

outer loop. 
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Cascaded Servo Loops Using Compensation Table Function 
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Motor Numbering Considerations 

In order to eliminate the servo-cycle delay between outer and inner loop, the number of the outer-

loop motor must be less than the number of the inner-loop motor. In addition, the compensation 

table must be updated between the servo-loop closure of the outer-loop motor and the servo-loop 

closure of the inner-loop motor. To do this, saved setup element Sys.CompMotor must be set to 

a value greater than the number of the outer-loop motor, but not greater than the number of the 

inner-loop motor. 

All compensation tables are updated immediately before the servo-loop closure of the motor 

whose number is specified by Sys.CompMotor. When compensation tables are used for 

measurement corrections, it is best to have them updated before the servo-loop closure of the 

motor. Therefore, all motors using compensation tables for measurement corrections should have 

numbers equal to or higher than the value of Sys.CompMotor. 

If the application only uses a single cascaded servo loop, it is often easiest to utilize Motor 0 as 

the virtual motor for the outer loop. On re-initialization, Motor 0 is left as a “dummy motor”, with 

auto-identified hardware channels assigned to motors starting with Motor 1. Because the setup of 

the outer loop will not be able to rely on the auto-assignments in almost all cases, it will make 

sense to set up Motor 0 manually to implement the outer loop, set Sys.CompMotor to 1, and 

utilize the automatic setup as much as possible for the physical motors starting at Motor 1. 

Setting Up the Compensation Table 

The compensation table used for joining the outer and inner servo loops has a special “0D” 

configuration. (Tables used for true error compensation are 1D, 2D, or 3D.) This table 

configuration, which is declared to have zero data “zones” in each of the three possible 

dimensions, has a single data point. This data point will hold the correction from the outer loop 

each cycle. 

CompTable[ζ].Source[0] for this table must be set to the number of the Power PMAC motor that 

is executing the outer servo loop.  

CompTable[ζ].Ctrl for this table must be set to 3 to instruct the table to automatically pick up 

the servo command from this motor every servo cycle from its IqCmd register. 

CompTable[ζ].Nx[0], Nx[1], and Nx[2] must all be set to 0 to specify zero data zones in each of 

the three potential dimensions for the table, making this a “0D” table. 

CompTable[ζ].OutCtrl should be set to 0 if the outer-loop command is not to be integrated 

before use in the inner loop, or to 1 if this command is to be integrated first. 

CompTable[ζ].Sf[0] is typically set to 1.0 so that no rescaling of the command is done before it 

is used in the inner loop. Rescaling is possible, but it is important to remember that this scale 

factor acts as a gain term in the outer servo loop, and changing its value changes the loop gain. 

CompTable[ζ].Target[0] should be set to Motor[α].CompDesPos.a so the table writes its 

output to the compensation register for the net desired position node for the inner-loop motor, 

where it is automatically added to the trajectory commanded position for the motor. 

Sys.CompEnable must be to a value at least one greater than the index value ζ of the table in 

order for the table to be active. Note that this activates all compensation tables with index values 

from 0 to one less than the value of Sys.CompEnable. 
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If you want to be able to effectively disable this table alone, you can set the value of 

CompTable[ζ].Sf[0] to 0, which forces the correction to 0.0. Alternately, you can redirect the 

output of the table to an unused register by setting CompTable[ζ].Target[0] to something like 

Motor[255].CompDesPos.a, which leaves the last correction in place for the inner-loop motor. 

(This correction could then be overwritten manually.) 

When the position for the target motor is reported, the compensation component of this position is 

subtracted out, so the reported value is what the position would be without the compensation 

offset. To see the compensation component, you must query the value of the element containing it 

directly: Motor[α].CompDesPos. 

Joining the Loops Directly 

This section describes the steps for the technique of linking the outer and inner loops directly. 

This method is new in V2.1 firmware, released 1st quarter 2016. This method has no intermediate 

holding register or processing, as the outer loop’s servo command is written directly to an offset 

register for the inner loop. 

In this method, the linkage is accomplished through the use of Motor[x].pCascadeCmd for the 

outer-loop motor, which allows the servo command value for the motor to be written to one of 

several offset registers for the inner-loop motor. (The standard Motor[x].pDac, which is typically 

used for actual output of the servo command value, cannot be used for this purpose, because it 

must point to an integer register, and these offset registers are double-precision floating-point.) 

Motor[x].pCascadeCmd can be set to Motor[y].MasterPos.a to write the command value to the 

position-following offset register for the net desired position of inner-loop motor y. This is the 

most common setting, as it provides the greatest flexibility in implementation, especially for 

switching modes of operation. The inner-loop motor can be in “offset following” mode when the 

loops are linked, allowing superposition, then in “normal” mode when not linked, allowing for 

absolute positioning of the inner loop. It can also be set to Motor[y].ActiveMasterPos.a, but this 

does not permit rate-limiting during switching with Motor[y].MasterMaxSpeed and 

Motor[y].MasterMaxAccel, and this has the possibility of other tasks overwriting the cascaded 

command value. 

Motor[x].pCascadeCmd can also be set to Motor[y].CompDesPos.a to write the command 

value to the compensation-table offset register for the net desired position of inner-loop motor y. 

This can be used if position following is also used for the inner-loop motor. However, when using 

this register, the effect is always in “offset” mode; this cannot be changed as when using the 

master position register. 

Starting in V2.7 firmware, released 2nd quarter 2022, Motor[x].pCascadeCmd can also be set to 

Motor[y].CompPos.a to write the command value to the compensation-table offset register for 

the net actual position of inner-loop motor y. This has the advantage of eliminating a servo cycle 

delay in the cascading process (as long as motor y has a higher number). Note that the direction 

sense of this offset is opposite that of that using the other registers. 

Finally, Motor[x].pCascadeCmd can be set to Motor[y].CompDac.a to write the command 

value to the torque-compensation offset register of inner-loop motor y. In this case, the two loops 

are not really cascaded; instead they operate in parallel, with a single output that is the sum of the 

two. 
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This block diagram shows the principle of cascaded servo loops with direct linkage. 
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Cascaded Servo Loops Using Direct Linkage 

If you want to integrate the outer-loop command before writing it to the inner-loop offset register, 

set Motor[x].CascadeMode for the outer-loop motor to 1. If you do not want to integrate the 

command, set CascadeMode to its default value of 0. 

Tuning the Outer Loop 

In most cases of cascaded control, you will be able to establish basic control of the outer loop 

using only the proportional gain term Motor[β].Servo.Kp for the outer loop. Many applications 

will also utilize the integral gain term Motor[β].Servo.Ki to eliminate steady state errors. Most 

applications will not need any derivative (velocity feedback) gain terms, so 

Motor[β].Servo.Kvfb and Motor[β].Servo.Kvifb are typically set to 0.0. Because in most 

applications the outer loop is just trying to maintain a constant command value, the feedforward 

terms Motor[β].Servo.Kaff, Kvff, and Kviff are usually not important. 

If you are integrating the outer loop’s command value before using it in the inner loop, your 

proportional gain term will be extremely low. Start with values for Motor[β].Servo.Kp of 0.01 or 

so. 

It is possible to use the IDE’s standard tuning tools to tune the outer loop just as you would for a 

standard position loop. 
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Programming the Outer-Loop Motor 

With the outer loop engaged, commanding the “position” of the outer-loop motor will cause the 

outer loop’s feedback loop to calculate offsets into the inner loop command in an attempt to drive 

the outer-loop’s feedback device reading to the command value. This outer-loop command can be 

a motor jog command, or it can be a programmed axis command. If a program axis command, the 

axis to which the outer-loop motor is assigned can be in the same coordinate system as the inner-

loop motor, or in a different coordinate system. 

Most commonly, the outer-loop motor will be assigned to an axis in the same coordinate system 

as the inner-loop motor, and commanded in the same motion program for the coordinate system. 

Axis-naming conventions and standards (e.g. RS/EIA-267) consider these as “secondary axes” 

and suggest the name of U when matched with an X axis, V when matched with Y, and W when 

matched with Z. 

Setup Examples 

In these examples, Motors 1, 2, and 3 are the X, Y, and Z-axes, respectively, in Coordinate 

System 1 of a Cartesian stage. Each uses quadrature feedback with 0.1-micron resolution, and is 

programmed in millimeters. These are set up as for a standard positioning application. 

Motor 0 (which is not used in most applications) is used as a virtual motor to control the gap 

height of the vertical tool over the surface. It uses a capacitive gap sensor through an ACC-28E 

16-bit A/D converter, with the LSB of the ADC measuring 0.25 microns. It is assigned to the W-

axis in the same coordinate system, also programmed in millimeters (of gap). If we use the 

position-following technique to couple the loops, we could use Motor 4 instead for this, but if we 

use the compensation-table technique to couple the loops to eliminate the servo-cycle delay, we 

must use a lower-numbered motor for this outer-loop motor than for the inner-loop motor (#3). 

Conversion Table Processing of Analog Feedback 

We will use ECT entry 0 (which is typically not used) to process the analog feedback for Motor 

0. The entry will be set up something like this: 

EncTable[0].type=1   // Single-register read 

EncTable[0].pEnc=Acc28E[0].AdcSdata[0].a // Source data address 

EncTable[0].index1=0   // No left shift 

EncTable[0].index2=16   // Right shift 16 bits 

EncTable[0].ScaleFactor=1.0  // Result units are LSBs 

 

Outer-Loop Motor Setup 

The outer-loop motor must be activated, and use the processed analog feedback: 

Motor[0].ServoCtrl=1   // Activate motor 

Motor[0].PhaseCtrl=0   // No commutation by PMAC 

Motor[0].pEnc=EncTable[0].a  // Use result of ECT entry 0 

Motor[0].pEnc2=EncTable[0].a  // Use result of ECT entry 0 

Motor[0].pLimits=0   // No hardware position limits 

Motor[0].pAmpFault=0   // No amplifier fault input 

 

It does not matter where the servo output is written, for either method of coupling. 

Motor[0].pDac can be left at its default value of Sys.pushm, so the output is written to the first 

register of the user shared memory buffer. 
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Coordinate System Setup 

To assign all of the motors to axes in C.S. 1, with units of millimeters, the following definitions 

can be used. 

&1    // Address C.S. 1 

#1->10000X   // X-axis positioning in millimeters 

#2->10000Y   // Y-axis positioning in millimeters 

#3->10000Z   // Z-axis positioning in millimeters 

#0->4000W   // Vertical gap (W) in millimeters 

 

Coupling the Loops with Position Following 

To couple the outer and inner loops using the position-following technique, the outer loop’s servo 

command value must first be processed through the encoder conversion table. Because this 

application has a limited movement of the inner loop from the outer-loop command, the value 

will not be integrated. The ECT entry will look something like this: 

EncTable[4].type = 11    // Floating-point read 

EncTable[4].pEnc = Motor[0].IqCmd.a  // #0 servo cmd as source 

EncTable[4].index1 = 0    // No left shift 

EncTable[4].index2 = 0    // No right shift 

EncTable[4].index3 = 0    // No limiting 

EncTable[4].index4 = 0    // No integration 

EncTable[4].index5 = 0    // No pre-scaling 

EncTable[4].ScaleFactor = 1/256  // Scale to +/-32K range 

 

To be able to use the processed result of this entry as the master for the Z-axis motor (#3), the 

following setting should be made: 

Motor[3].pMasterEnc=EncTable[4].a  // Use ECT entry 4 result 

The actual following will be controlled with Motor[3].MasterCtrl. 

Coupling the Loops with Compensation Table 

To couple the outer and inner loops using the compensation-table technique, a 1-point “0D” table 

must be set up. The table setup would look like this: 

CompTable[0].Source[0]=0 // Use Motor 0 data for source 

CompTable[0].Ctrl=3  // Use source motor’s servo command 

CompTable[0].Nx[0]=0  // No data zones in 1st dimension 

CompTable[0].Nx[1]=0  // No data zones in 2nd dimension 

CompTable[0].Nx[2]=0  // No data zones in 3rd dimension 

CompTable[0].Data[0]=0  // Initialize single data point 

CompTable[0].OutCtrl=0  // No integration of result 

CompTable[0].Target[0]=Motor[3].CompDesPos.a // #3 desired pos 

CompTable[0].Sf[0]=1.0  // Unity scale factor (when active) 

 

Coupling the Loops Directly 

To couple the outer and inner loops directly, the following setting should be made: 

Motor[0].pCascadeCmd = Motor[3].ActiveMasterPos.a 

By writing directly to this register, the position-following function for Motor 3 does not need to 

be enabled, so bit 0 (value 1) of Motor[3].MasterCtrl should be left at its default value of 0. 
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However, to be able to superimpose this outer-loop command and an inner-loop trajectory value, 

bit 1 (value 2) of Motor[3].MasterCtrl should be set, so the resulting value of 

Motor[3].MasterCtrl in this mode should be 2. 

To integrate the outer-loop command value before writing it to the inner-loop offset register, as 

for the tensioning of a continuously moving web, Motor[0].CascadeMode should be set to 1. To 

write without integrating, CascadeMode should be set to 0. 

Changing the Operational Mode of Control 

In most of these applications, there will be times where the inner-loop motor will be operated as a 

normal positioning motor, commanded to specific positions relative to a fixed reference, and 

other times where it will effectively be commanded to whatever position is necessary to minimize 

the error in the outer loop. The transitions between these two modes must be handled properly for 

a successful application. 

Changing Operational Mode Using Position Following 

When using position following to couple the outer and inner loops, the value of 

Motor[x].MasterCtrl for the inner-loop motor determines which mode of control is used. 

Typically, only two of the four possible settings for MasterCtrl will be used. It is set to 0 

(following disabled, offset mode disabled) when the inner-loop motor is to be controlled by itself, 

relative to a fixed origin. It is set to 3 (following enabled, offset mode enabled) when it is to be 

controlled by the outer-loop motor. 

Enabling or disabling the following offset mode (whether the following function is enabled or 

not) changes the relationship between the motor position and its related axis position. When this 

relationship is changed, the “pmatch” position-matching function must be executed before the 

next programmed axis move. While this function is automatically executed when a “run” or 

“step” command is given to start a motion program, if the mode is changed in the middle of a 

motion program, it must be explicitly commanded with the pmatch command. 

The following motion program segment shows how the transition to engaging the outer loop can 

be accomplished in our example system. 

Z10    // Pure position move on inner loop motor 

dwell0   // Stop pre-calculation of moves 

Motor[3].MasterCtrl=3 // Engage following, put in offset mode 

pmatch   // Re-align motor and axis position 

W5    // Outer loop command 

 

The following motion program segment shows how the transition to disengaging the outer loop 

can be accomplished in our example system. 

W8    // Outer loop command 

dwell0   // Stop pre-calculation of moves 

Motor[3].MasterCtrl=0 // Disengage following, put in normal mode 

pmatch   // Re-align motor and axis position 

Z0    // Pure position move on inner loop motor 

 

Changing Operational Mode Using Compensation Table 

When using a compensation table to couple the outer and inner loops, changing the value of the 

table output scale factor CompTable[ζ].Sf[0] is usually the best way of changing the mode of 
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operation. It is set to 0.0 (table output always equal to 0) when the inner-loop motor is to be 

controlled by itself, relative to a fixed origin. It is set to 1.0 (table output equal to outer-loop servo 

command) when it is to be controlled by the outer-loop motor. 

It is not advised to change this scale factor instantly between 0.0 and 1.0, as this could cause a 

sudden jump in the position of the inner-loop motor. It is easy to change it gradually in a loop. 

The following motion program segment shows how the transition to engaging the outer loop can 

be accomplished in our example system. 

Z10     // Pure position move on inner loop motor 

dwell0    // Stop pre-calculation of moves 

while (CompTable[0].Sf[0] <= 1.0) {  // Loop until = 1.0 

  CompTable[0].Sf[0] += 0.01 // Small increase in scale factor 

  dwell5    // Delay to limit speed of increase 

} 

W5     // Outer loop command 

 

The following motion program segment shows how the transition to disengaging the outer loop 

can be accomplished in our example system. 

W8     // Outer loop command 

dwell0    // Stop pre-calculation of moves 

while (CompTable[0].Sf[0] >= 0.0) {  // Loop until = 0.0 

  CompTable[0].Sf[0] -= 0.01 // Small decrease in scale factor 

  dwell5    // Delay to limit speed of decrease 

} 

Z0     // Pure position move on inner loop motor 

 

Changing Operational Mode Using Direct Linkage 

When directly coupling the outer and inner loops, changing the value of 

Motor[x].pCascadeCmd for the outer-loop motor is usually the best way of changing the mode 

of operation. If it is set to 0, the two loops are unlinked, and the inner loop operates as a normal 

position loop. If it is set to the address of an inner-loop offset register (e.g. to 

Motor[y].ActiveMasterPos.a), the two loops are linked, and the outer loop effectively 

commands the inner loop. 

When the value of Motor[x].pCascadeCmd is changed from the address of the target register to 

0, unlinking the loops, the last value written to the target register remains there, keeping its 

offsetting effect on the inner loop. 

If it is desired to be able to command the inner loop directly to an absolute position, the motor 

should be taken out of “offset following” mode by setting Motor[y].MasterCtrl to 0. This does 

not cause motion of the motor, but allows the next programmed move for the axis assigned to the 

motor to remove the offset. 

When the value of Motor[x].pCascadeCmd is changed from 0 to the address of the target 

register, linking the loops, the outer loop will write its command value to the target register on the 

very next servo cycle. Care should be taken so that this will not create a significant jump in the 

position of the inner loop. 
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Switching between offset and normal mode using Motor[y].MasterCtrl, even if the following 

function itself is not enabled, changes the relationship between motor position and related axis 

position. When this relationship is changed, the “pmatch” position-matching function must be 

executed before the next programmed axis move. While this function is automatically executed 

when a “run” or “step” command is given to start a motion program, if the mode is changed in the 

middle of a motion program, it must be explicitly commanded with the pmatch command. 

The following motion program segment shows how the transition to engaging the outer loop can 

be accomplished in our example system. 

Z10    // Pure position move on inner loop motor 

dwell0   // Stop pre-calculation of moves 

Motor[0].pCascadeCmd=Motor[3].ActiveMasterPos.a // Link loops 

Motor[3].MasterCtrl=2 // Offset mode, following disabled 

pmatch   // Re-align motor and axis position 

W5    // Outer loop command 

 

The following motion program segment shows how the transition to disengaging the outer loop 

can be accomplished in our example system. 

W8    // Outer loop command 

dwell0   // Stop pre-calculation of moves 

Motor[0].pCascadeCmd=0 // Unlink loops 

Motor[3].MasterCtrl=0 // Normal mode, following disabled 

pmatch   // Re-align motor and axis position 

Z0    // Pure position move on inner loop motor 
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Trajectory Pre-Filter 

The motor’s trajectory pre-filter, while technically not part of the servo loop, is often treated as 

such. It acts on the motor’s net desired position, including the mathematically computed 

trajectory from programmed axis moves or independent motor moves such as jog moves, master 

following positions. and compensation positions. The resulting output of the filter is sent to the 

servo loop as a potentially modified net desired position. 

Typical Uses of the Pre-Filter 

There are several common uses for this polynomial pre-filter: 

1. Removal of a frequency or frequencies in the commanded trajectory signal that 

correspond to the resonant frequency of frequencies of the machine. This type of “band-

reject” filter on the commanded trajectory dramatically lessens oscillations at these 

frequencies by not exciting these frequencies. It is typically used to lessen the overall 

move-and-settle time for point-to-point moves. Note that this technique is somewhat 

different from the use of a “notch filter” inside the servo loop, which acts to quiet 

oscillations that have already occurred. 

2. Reducing the roughness in commanded paths with insufficient resolution. It is common in 

CNC-style applications to have an old part program where the programmed coordinates 

in each commanded move of a complex contour have a limited number of digits. On 

older machines with slow execution and a heavily filtered servo loop, execution would be 

smooth enough. However, trying to execute the same program on Power PMAC with fast 

execution and no tracking error in the servo loop can result in significant “quantization 

noise” from the limited resolution of the commanded points. Using the pre-filter to create 

a short low-pass filter can significantly reduce this roughness without significant effect 

on path accuracy. 

3. Mimicking the acceleration control of traditional CNC controllers. Traditional CNC 

controllers often use a polynomial low-pass filter on their commanded velocity profiles to 

effect acceleration control. While Power PMAC’s acceleration-control algorithms are 

generally superior, especially in holding tightly to the commanded path, a few users will 

want to implement acceleration control in the typical manner, and the trajectory pre-filter 

can be used to create this mode of operation. 

4. Implementing a “machine lock” (dry run) mode. Particularly in CNC-style applications, 

it is often desired to execute a motion program to evaluate the commanded trajectories 

without actually commanding motion of the motors, and to maintain control at the present 

position. The pre-filter can be used to “swallow” any changes in the commanded 

position, permitting this mode of operation. (Coefficient Pn0 is set to 1.0, Pd1 is set to  

-1.0, all other coefficients to 0.0, to implement this.) 

5. Implementing a pure “time delay” filter. In some applications, particularly those in which 

there is a time delay in transferring commanded positions to externally controlled axes 

for some PMAC motors, it is desirable to add a pure time delay to internally controlled 

axes. This can be done with the trajectory pre-filter. (For an added delay of x cycles of 

the filter, set Pn0 to 1.0, Pnx to -1.0, Pd1 to -1.0, and all others to 0.0. Remember that 

just setting Pn0 to 1.0, and all others to 0.0 creates a single-cycle delay.) 
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Overview 

The trajectory pre-filter is a sampled digital filter with 4th-order polynomials in the numerator and 

denominator. The sampling occurs every n servo cycles, where n is a positive integer. The input 

to the overall filter is the net command position, which is the sum of trajectory command 

position, master following position, and desired compensation position. 

The input to the core polynomial section of the filter is the difference between the present 

sample’s net command position and the previous sample’s net command position. (It operates on 

the difference so that no numerical resolution of the floating-point values is lost when the 

magnitude of the command position values gets very large.) 

The block diagram format of the filter is shown in the following diagram: 
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Motor Trajectory Pre-Filter Block Diagram 

The overall transfer function of the pre-filter can be expressed by the equation: 

     zPzzP  111  

The actual difference equation implemented each cycle k inside the P'(z) block itself is: 

44332211443322110 
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where the r values are the inputs to the filter block and the r' values are the outputs from the filter 

block. 

Saved Setup Elements 

The trajectory pre-filter for a motor is configured by several saved setup elements. 

Enabling and Sample Period 

Motor[x].PreFilterEna controls whether the filter is enabled or not and what the sampling 

period is. If it is set to its default value of 0, the filter is disabled. If it is set to a positive value, the 

filter is enabled with its value specifying the sampling period in servo cycles. Note that if the 

filter is intended to compensate for very low frequency dynamics, such as a few Hertz, when the 

servo update frequency is much higher (several kilohertz), the filter will operate better when its 

sample period is multiple servo update cycles. If the sample period is greater than 1 servo cycle, 

the commanded trajectory is reconstructed at the servo update rate with a cubic B-spline 

algorithm interpolating between filter output points. 
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If the motor servo loop is opened, either in the enabled or disabled (killed) state, Power PMAC 

will automatically set Motor[x].PreFilterEna to the negative of the closed-loop value (e.g. to -5 

when it is 5 when closed-loop). This permits the filter to be properly re-initialized when the loop 

is next closed. These transitions require no user intervention. 

Filter Coefficients 

Motor[x].Pn0, Pn1, Pn2, Pn3, and Pn4 are the “numerator” coefficients of the core filter box, 

with Pni multiplying the input value from i sample cycles previous. These coefficients are 

double-precision (64-bit) floating-point values. 

Motor[x].Pd1, Pd2, Pd3, and Pd4 are the “denominator” coefficients of the core filter box, with 

Pdi multiplying the output value from i sample cycles previous. These coefficients are double-

precision (64-bit) floating-point values. 

Filter DC Gain 

In almost all standard uses of the trajectory pre-filter, the filter should not add any scaling to the 

trajectory – that is, its “DC gain” should be exactly equal to 1.0, so that when the input is constant 

(DC), the value of the output equals the value of the input. The DC gain of a digital filter can be 

evaluated by calculating the value of the transfer function with the operator z value set to 1. 

Because of the topology of Power PMAC’s trajectory pre-filter, with the key filter block 

operating on the difference of the input, it is virtually guaranteed that the DC gain of the overall 

filter P(z) will be exactly equal to 1.0. This is due to the (1 – z-1) differencing term in front of the 

key filter block, which evaluates as exactly 0.0 when z is 1. So the DC gain of the total filter 

evaluates as: 

      101111
1




zPzP
z

 

(The exception to this rule occurs when the denominator of the P'(z) filter block has a factor of (1 

– z-1) in it, which cancels out this differencing term. This is the case for the “machine lock” filter, 

which has an overall DC gain of 0, preventing movement.) 

Spliner Reconstruction 

If Motor[x].PreFilterEna is set to a value n greater than 1, the filter itself is only sampling the 

trajectory every n servo interrupts, and producing a new output every n servo interrupts. In this 

case, the filtered output must be interpolated to provide a new set point for the servo loop every 

servo interrupt. 

This interpolation is done by the “spliner”, which interpolates between consecutive filter outputs 

using a cubic B-spline technique that guarantees that velocity and acceleration of the 

reconstructed trajectory are always continuous, even as the filter output points are passed. Not 

that this reconstruction delays the output by 2 periods of the filter. 

Automated Filter Setup 

The Integrated Development Environment (IDE) software for the PC permits easy interactive 

setup of the trajectory pre-filter. This functionality is selected from the IDE’s tuning control by 

clicking on the “Trajectory Prefilter Setup” button on the left side of the window. 
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The IDE software allows you to directly specify the performance attributes you want from the 

filter. From your specification, it will calculate the required coefficients for you. You do not need 

to understand digital filtering theory in order to use this feature. 

 

IDE Trajectory Pre-Filter Setup Window 

Manual Filter Calculations 

Some users will want to calculate their pre-filter parameters themselves, without the use of the 

IDE’s tools. This section provides guidelines for those users. Of course, basic familiarity with 

digital design theory is required. 

 

WARNING 

Improper filter design can lead to unstable filter output 

values, which are position commands for the motor. This 

can result in dangerous motion commands leading to 

equipment damage and/or personal injury. Confirm all 

filter designs in a situation that is well protected against 

damage and injury. 

 

Converting In-Line Filters to Difference Path 

Beyond standard filter design theory, the most important thing to realize is the fact that the 

trajectory filter lies in the “difference path” for numerical reasons. This is shown in the block 
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diagram above. Most analytic presentations of filter analysis deal with “in-line” filters, so the 

results of these standard analyses must be converted to Power PMAC’s “difference path” format. 

If the overall filter transfer function is P(z) and the Power PMAC difference-path filter transfer 

function is P’(z), the two can be related by the following equations. With the overall transfer 

function expressed as a function of the difference-path filter by: 

     zPzzP  111  

The difference-path filter can then be expressed as a function of the overall filter as: 
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This equation permits you to compute the Power PMAC filter block required to implement a filter 

designed in the standard analytic format. 

For example, consider a second-order in-line filter with the following transfer function: 
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This can be converted to Power PMAC’s difference-path filter as follows: 
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Note that the equivalent difference-path filter has an additional term in the denominator. This 

means that for an in-line filter to have a direct equivalent in the difference path, it is limited to 

third-order in the denominator. 

To implement this filter design, the following settings would be used: 

Motor[x].Pn0 = 1 – N0 

Motor[x].Pn1 = D1 – N1 

Motor[x].Pn2 = D2 – N2 

Motor[x].Pn3 = 0 

Motor[x].Pn4 = 0 

Motor[x].Pd1 = D1 – 1 

Motor[x].Pd2 = D2 – D1 

Motor[x].Pd3 = -D2 

Motor[x].Pd4 = 0 
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Sample Filter Design: Butterworth Filter 

A Butterworth filter is a common form of low-pass filter. A 2nd-order analog Butterworth filter 

has a transfer function: 
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where n  is the natural frequency (in radians per second), and   is the damping ratio (unitless). 

To implement this as a trajectory pre-filter, we must first convert it to digital form, then from the 

in-line path to the difference path. We will examine both the “backward-difference” and “bi-

linear” (Tustin) conversions to digital format. 

Backward-Difference Digital Conversion 

Converting to digital form using the backward-difference transform
sT

z
s

11 
 , where Ts is the 

filter sample time in seconds. Note that here, Ts is the product of the Power PMAC servo update 

time and the filter period as set by Motor[x].PreFilterEna. 
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Bi-Linear Digital Conversion 

Alternately, converting to digital form using the bi-linear (Tustin) transform: 
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Conversion to Difference-Path Format 

In both digital conversions of the analog filter, we obtained expressions for the digital coefficients 

of an in-line filter that were labeled N0, N1, N2, D1, and D2 in the above section. These can be 

converted to difference-path coefficients according the equations given in that section. 
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SETTING UP COMPENSATION TABLES 

Power PMAC provides very powerful and flexible generalized table-based compensation 

algorithms for functions such as “leadscrew compensation” and torque-ripple correction. The 

tables can be one-, two-, or three-dimensional, based on the desired positions of motors, and a 

variety of targets to be compensated – usually motor measured positions or motor commanded 

torque. 

Power PMAC can hold up to 256 compensation tables. Each table is individually controllable as 

to its source(s), target(s), dimensionality, size, spans, and activation control. Once entered, the 

tables operate transparently to the user. 

Important features of Power PMAC compensation tables include: 

 Compensation of position (inner and/or outer loop), backlash, or torque 

 1D, 2D, or 3D tables (linear, planar, or volumetric) 

 1st-order or 3rd-order interpolation between table entries in each dimension 

 Ability to perform “cross-axis” compensation (different source and target motors) 

 Ability to write to multiple “targets” from a single table 

 Ability to use multiple tables additively on a single “target” register 

 Ability to define the start point and span of the table arbitrarily in each dimension 

 Ability to repeat the span of the table indefinitely in “rollover” or “mirror” mode 

Table Data Structure 

Each compensation table is represented internally by the CompTable[m] data structure, where m 

is an integer value (represented by a constant or a local variable) from 0 to 255. Each table’s data 

structure has the following saved setup elements (summarized here, explained in more detail 

below): 

 Source[n]: The number(s) of the (up to) 3 source motors, whose desired position is read 

each servo cycle to determine the location in the table, where n is the “dimension index” 

 SourceCtrl: a 3-bit control value for the table, with each bit n specifying whether the 

desired position or the actual position of the source motor of dimension index n is used to 

calculate the compensation value. 

 Nx[n]: The number of data zones in each of the (up to) 3 dimensions 

 X0[n]: The starting location of the (up to) 3 sources; that is, the value of the source 

motor’s desired position that coincides with the first table entry in each dimension 

 Dx[n]: The span of the (up to) 3 sources; that is, the difference between the starting 

location and the ending values of the source register in each dimension 
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 Ctrl: A control byte for the table specifying the interpolation order and boundary mode in 

each dimension 

 Target[q]: The address(es) of the (up to) 8 target registers, where the table correction is 

written each servo cycle 

 Sf[q]: The output scale factor for the (up to) 8 target registers, by which the table’s 

correction is multiplied before being written to that target register. 

 OutCtrl: An 8-bit control value for the table, with each bit q specifying whether the 

result replaces the existing value in the Target[q] register, or is added to the existing 

value in the register. 

 Data[i]: The correction entries in a table with one active dimension, where i is the 

“location index” in this dimension 

 Data[j][i]: The correction entries in a table with two active dimensions, where i is the 

“location index” for the 1st dimension (“dimension index” n = 0) and j is the “location 

index” for the 2nd dimension (“dimension index” n = 1).  

 Data[k][j][i]: The correction entries in a table with three active dimensions, where i is the 

“location index” for the 1st dimension (“dimension index” n = 0), j is the “location index” 

for the 2nd dimension (“dimension index” n = 1), and k is the “location index” for the 3rd 

dimension (“dimension index” n = 2). 

Reserving Memory for the Tables 

The data entries for the compensation tables are stored in a specially defined buffer area of Power 

PMAC’s active memory, along with the data entries for cam tables. (The “header” entries for the 

tables, which define the structure of each table, are stored in fixed pre-defined areas of memory.) 

There must be sufficient memory reserved in this buffer for all of the tables used. Each data point 

in a compensation table is a single-precision floating-point value, using 4 bytes of memory. The 

memory required for the data entries of a table can be calculated as: 

Memory (bytes) = 4 * (Nx[0] + 1) (Nx[1] + 1) (Nx[2] + 1) 

where Nx[i] is the table header element (CompTable[m].Nx[i]) specifying the number of zones 

of the table in that dimension. 

Defining the Data Buffer Size 

The amount of RAM reserved for the data entries of the compensation and cam tables together is 

determined by a setting in the project file pp_proj.ini. The default setting is for 1 megabyte 

(1,048,576 bytes). Few applications will require changing this default memory allocation, either 

to reduce the amount of memory reserved to free it for other uses, or to increase it to support very 

large tables. 

The best way of changing this memory allocation is through the “Project Properties” control in 

the Integrated Development Environment (IDE) PC software, which allows you to set the “Table 

Buffer” size in megabytes. In the Power PMAC, the buffer memory allocation is set only at 

power-on/reset, so to change the allocation, you must change the setting the IDE project control, 
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download the project to the Power PMAC, issue the save command to store this value to flash 

memory, then reset the Power PMAC. 

Dynamic Allocation of Buffer Memory to Tables 

At power-on/reset, the table-buffer memory space is cleared completely, and the table memory 

pointers are all cleared. Then as the table information is loaded, whether from the saved project in 

flash memory, or from the host computer, Power PMAC allocates memory in the buffer for the 

individual compensation and cam tables. 

The memory for the entire table is allocated when the first data entry value is set in a Script 

command (e.g. CompTable[5].Data[0][0] = 3.5). The starting location is the first word past the 

last table already defined, and a memory space is allocated to the table according to the above 

equation. This means that the size of the table must be defined before any data points are entered. 

If all of the tables are defined just one time after power-on/reset, whether from flash memory or 

from project download, memory space is allocated to tables in the order they are defined, from 

the start of the buffer toward the end. As long as there is sufficient buffer space for all tables, this 

goes smoothly, with the details hidden from the user. 

However, if the user wishes to redefine the size of an already loaded table, the ramifications for 

memory allocation must be understood. Any time Power PMAC executes a Script command that 

changes the value of an existing table dimension CompTable[m].Nx[i], the pointer to the table 

data entries in the buffer is cleared. 

The pointer to the start of table data entries is not set again until the first Script command that sets 

a data entry value. At that time, the pointer is set to the address of the register in the buffer 

immediately following the last existing table. This means that if the table whose dimensions were 

changed was not the last table in the buffer, the memory that was allocated for the table data is 

lost until the next power-on/reset. 

Note that it is possible to set table dimension and table data values in C, but doing so does not 

trigger any of the memory management functions that the Script commands do. If defining or 

redefining tables in C, the commands to set the dimension values and the first data value should 

still be done with Script commands. This can be done from a C routine using the command"" 

function to execute the Script command within the quotes. Then the subsequent entry of data 

points, including possibly overwriting the first data point, can be done with much faster C 

commands. 
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Defining the Table Structure 

Before the correction values can be entered into the table, the structure of the table must be 

defined. This involves setting several elements for the table. 

Dimension Indices 

Each Power PMAC compensation table has the potential for using three dimensions. For the table 

definition elements Source[n], Nx[n], X0[n], and Dx[n], the dimension index n can take a value 

of 0, 1, or 2 for the 1st, 2nd, and 3rd dimensions, respectively. 

For the table data points, the index values for each point specify the location of the point along a 

dimension. For a 1D table, the value of the location index i for the point Data[i] indicates the 

location of the point along the 1st dimension (corresponding to dimension index n = 0). 

For a 2D table, the value of the location index i for the point Data[j][i] indicates the location of 

the point along the 1st dimension (corresponding to dimension index n = 0), and the value of the 

location index j indicates the location of the point along the 2nd dimension (corresponding to 

dimension index n = 1). 

For a 3D table, the value of the location index i for the point Data[k][j][i] indicates the location 

of the point along the 1st dimension (corresponding to dimension index n = 0), the value of the 

location index j indicates the location of the point along the 2nd dimension (corresponding to 

dimension index n = 1), and the value of the location index k indicates the location of the point 

along the 3rd dimension (corresponding to dimension index n = 2). 

Number of Active Dimensions: Nx[n] > 0 

Each table can have up to 3 active dimensions. The number of active dimensions used is specified 

by the number of table dimensions that have a number of data zones defined as being greater than 

zero. For each potential dimension, the number of data zones is defined by 

CompTable[m].Nx[n]. A zone is the space between two table entries in that dimension. 

One-Dimensional Tables 

To specify one active dimension (a “1D” table), CompTable[m].Nx[0] should be set greater than 

0, but CompTable[m].Nx[1] and CompTable[m].Nx[2] should be set to 0 to keep the 2nd and 3rd 

dimensions inactive.  

The most common type of 1D table corrects a motor’s position as a function of that same motor’s 

position (i.e. the “source” and “target” motors are the same). This type of table is commonly 

known as a “leadscrew compensation table”, as it is often used to correct for mechanical errors in 

the screw that converts rotary motor motion to linear travel. The concept of this type of table is 

shown in the following figure: 

Standard 1D Leadscrew Compensation Table 

ME

xxxxx
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If the source and target motors are different, a “cross-axis” table can be created. This type of table 

can be used to correct for “straightness errors”, as shown conceptually in the following figure: 

1D “Cross-Axis” Compensation Table 

y yyyyy
M

E

 

While the spatial effect of such a table can be multi-dimensional, the mathematical structure of 

the table is still “1D”. 

Two-Dimensional Tables 

To specify two active dimensions (a “2D”, or “planar”, table), CompTable[m].Nx[0] and 

CompTable[m].Nx[1] should be set greater than 0, but CompTable[m].Nx[2] should be set to 0 

to keep the 3rd dimension inactive.  

The entries of a 2D table form a rectangular grid in a Cartesian space, as shown in the following 

figure: 

2D “Planar” Compensation Table 

 

The figure shows the target motor as being a separate motor from either of the two sources, but it 

is common for the target motor to be the same as one of the source motors. 

Three-Dimensional Tables 

To specify three active dimensions (a “3D”, or “volumetric”, table), CompTable[m].Nx[0], 

CompTable[m].Nx[1], and CompTable[m].Nx[2] should all be set greater than 0 to activate all 

3 dimensions. 
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“Zero-Dimensional” Tables 

If Nx[0], Nx[1], and Nx[2] are all set to 0, the table still has a single entry (Data[0]), and the 

value of this entry can be written to target registers. This “0D” table can have some interesting 

uses, as explained below. 

Source Motors for Each Dimension: Source[n] 

The source motor for each active dimension is specified by setting CompTable[m].Source[n] for 

that dimension to the number of the motor to be used as the source motor for that dimension. For 

example, if Table 9 is a 2D table using Motor 5 as the source for its 1st dimension, and Motor 6 as 

the source for its 2nd dimension, CompTable[9].Source[0] should be set to 5, and 

CompTable[9].Source[1] should be set to 6. 

If a dimension is inactive (Nx[n] =0), it does not matter what the setting of Source[n] in that 

dimension is. Even if the specified source motor for an inactive dimension moves, it will not 

affect the calculations of the table. Typically, Source[n] is set to 0 for an inactive axis. 

Source Position Used for Each Dimension: SourceCtrl 

For each dimension, the user can choose between using the (net) desired position for the source 

motor, or the (raw) actual position, as the source position for the compensation calculations. 

Three-bit element CompTable[m].SourceCtrl controls this selection. If bit n is set to the default 

value of 0, the desired position of the source motor for dimension n of the table is used; if the bit 

is set to 1, the actual position is used. If a dimension is inactive (Nx[n] =0), it does not matter 

what the setting of SourceCtrl for that dimension is.  

The key advantage of using desired position, particularly when the target motor is the same as the 

source motor, is that there is not interaction of the compensations with the servo loop dynamics. 

In addition, there is much less quantization noise, and no measurement noise, in the desired 

position value, minimizing the numeric noise introduced into the target motor servo loop. 

However, the use of desired position means that if there is following error, the calculated 

compensation is not correct for the present physical position; the compensation in general 

converges toward the correct value over multiple servo cycles. Use of actual position can yield 

superior results when quantization noise is low (i.e. measurement resolution is high), 

measurement noise is low, and correction values are small. 

Number of Data Zones in Each Active Dimension: Nx[n] 

As noted above, if CompTable[m].Nx[n] is set to a value greater than 0 for a dimension of the 

table, that dimension will be active for the table. The value of Nx[n] specifies how many data 

“zones” there are for the table in that dimension. A “zone” is the space between two data points 

of the table in that dimension. Corrections in this zone will be interpolated using the values of 

these two data points. 

The first zone is the space between the data point with a location index of 0 in that dimension and 

the data point with a location index of 1 in that dimension. The second zone is the space between 

the data points with location indices of 1 and 2 in that dimension, and so on.  

The operation of the last zone in this dimension is dependent on the “boundary mode” for the 

dimension. The boundary mode, explained in detail below, determines what happens when the 

position of the source motor goes past the declared boundaries. If the boundary mode for the 
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dimension is “maintain last position” or “mirror”, then this last zone “p” (Nx[n] = p) is defined as 

the space between the data points with location indices of p-1 and p in that dimension. 

However, if the boundary mode for the dimension is “rollover”, then this last zone “p” is defined 

as the space between the data points with location indices of p-1 and 0. A data point with a 

location index of and p in that dimension may be entered, but it will not be used.  

So if the dimension has “rollover” boundary mode and Nx[n] = p, then p data points should be 

entered for each “line” in that dimension, with indices of 0 to p-1 for the dimension. If the 

dimension has “maintain-last-position” or “mirror” boundary mode and Nx[n] = p, then p+1 data 

points should be entered for each “line” in that dimension, with indices of 0 to p for the 

dimension. 

The following diagram illustrates how the zones relate to the data points both with rollover and 

without: 

Zone 1 Zone 3Zone 2 Zone 4 Zone 5

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

Nx[n] = 5, no rollover

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5(Zone 5) (Zone 1)

Nx[n] = 5, with rollover

Data[0] Data[1] Data[2] Data[3] Data[4] Data[0]

No rollover

Rollover

X0+Dx/NxX0 X0+2Dx/Nx X0+3Dx/Nx X0+4Dx/Nx X0+Dx

Corr

Data[1]Data[4]

X0-Dx/Nx

Source Pos

 

Zone Definition for Compensation Tables, With and Without Rollover 

Starting Source Location for Each Active Dimension: X0[n] 

CompTable[m].X0[n] contains the “starting” location of the table for the specified dimension, 

expressed in the units of the source motor for that dimension. It is only used if the dimension is 

active for the table. This value is the smallest (most negative) position of the source motor for 

which the table is defined. It corresponds to data points with a location index of 0 for that 

dimension. 

Source Span for Each Active Dimension: Dx[n] 

CompTable[m].Dx[n] contains the “span” of the table for the specified dimension, expressed in 

the units of the source motor for that dimension. It is only used if the dimension is active for the 

table. The table is defined in that dimension for source-motor positions from X0[n] to (X0[n] + 

Dx[n]). 

The spacing between table points in that dimension can be calculated as Dx[n] / Nx[n]. 
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Example 

For a dimension n, if X0[n] = -20000, Dx[n] = 180000, and Nx[n] = 36, then this dimension of 

the table starts at -20,000 units of the source motor specified by Source[n], and ends at -20,000 

+180,000 = +160,000 units of the this motor. The spacing between points is 180,000 / 36 = 5,000 

units of the source motor. 

The data point with location index 0 in this dimension is at -20,000 units of the source motor; the 

point with index 1 is at -15,000 units; the point with index 2 is at -10,000 units, and so on. The 

point with location index 34 in this dimension is at +150,000 units of the source motor, and the 

point with index 35 is at +155,000 units. If the boundary mode for this dimension is “maintain 

last correction”, a point with location index 36 in this dimension should be entered to specify the 

correction at +160,000 units of the source motor. 

Interpolation-Order and Boundary-Mode Control: Ctrl 

CompTable[m].Ctrl specifies how the table calculates its corrections. It is an 8-bit value 

comprised of four 2-bit components. The components determine the order of interpolation 

between points in each dimension, and the boundary mode in each dimension. 

Interpolation Order 

The table can use either 1st-order (linear) or 3rd-order (cubic) interpolation between data points, 

with somewhat independent specification by dimension. Of course, the interpolation order 

specified for an inactive dimension is not used. 

In 1st-order interpolation, Power PMAC computes a linear fit for the correction between adjacent 

data points in the dimension, using just one point on each side of the present location in the 

dimension. The correction is continuous as it passes a data point, but its derivative, in general, is 

not. The correction computed at a data point is exactly equal to the table entry at that point. 

In 3rd-order interpolation, Power PMAC computes a cubic fit for the correction between adjacent 

data points in the dimension, using two points on each side of the present location in that 

dimension. Both the correction and its derivative are continuous as it passes a data point. The 

correction computed at a data point is exactly equal to the table entry at that point. 

3rd-order interpolation therefore produces a smoother correction, but at the cost of increased 

calculation time. For most applications, the increased calculation time is not significant, so users 

are encouraged to select 3rd-order interpolation unless the application risks overloading the 

processor. 

Boundary Mode 

The “boundary mode” controls how corrections are calculated when the position of the source 

motor passes the defined ends of the table. The boundary mode is individually selectable by 

dimension. Three different boundary modes have been implemented: “maintain last correction”, 

“rollover”, and “mirror”. 

Maintain-Last-Correction Mode 

In “maintain-last-correction” mode, if the position of the source motor for the dimension passes a 

defined end for the table, the correction calculated is simply the value of the last table point 

passed. That is, for a dimension n of the table with Nx[n] = p, if the source motor position is less 

than X0[n], the correction will simply be the value of the data point with location index 0 for that 
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dimension, and if the source motor position is greater than (X0[n] + Dx[n]), the correction will 

simply be the value of the data point with location index p for that dimension. 

Rollover Mode 

In “rollover” mode, the table can be considered to repeat indefinitely in that dimension on both 

sides of the defined span for the table. If the source motor position goes outside the defined span 

of the table, its position is “rolled over” to within the defined span of the table before the 

correction is calculated. This mode is very useful for corrections that repeat periodically, such as 

sensor imperfections on a rotary motor which repeat every revolution of the motor, or even those 

that repeat for each line of a sinusoidal encoder. 

For example, if the span of the table is defined as being from -10,000 to +90,000 units of the 

source motor (a span of 100,000 units), the correction at +120,000 units will be the same as the 

correction at +20,000 units; the correction at -75,000 units will be the same as the correction at 

+25,000 units; the correction at +517,432 units will be the same as the correction at +17,432 

units, and so on. 

Mirror Mode 

In “mirror” mode, the table can be considered to repeat indefinitely in that dimension on both 

sides of the defined span for the table, but it is “flipped” each time it repeats. This mode can be 

useful for mirror-symmetrical corrections, so the size of the table can be kept small. An example 

of this type of application involves the use of two rotating mirrors to direct a laser beam around a 

target plane. Due to the geometry, the location of the beam on the axes of the plane is not quite 

proportional to the angles of the mirrors, and the difference is often corrected for with 

compensation tables. The corrections are mirror-symmetrical about both the X=0 and Y=0 lines. 

The mirror boundary mode permits the tables to be defined for only half (for a 1D table) or a 

quarter (for a 2D table) of the work area, saving considerable memory. 

For example, if the span of the table is defined as being from 0 to +100,000 units of the source 

motor, the correct at -15,000 units will be the same as the correction at +15,000 units; the 

correction at +125,000 units will be the same as the correction at +75,000 units, and so on. 

Assembling the Value of the Ctrl Element 

Bits 0 and 1 of Ctrl determine the order of interpolation in each dimension. This 2-bit component 

has four possible values: 

 0 (002): 1st-order interpolation in all dimensions 

 1 (012): 3rd-order interpolation in dimension 0 (n = 0); 1st-order in others 

 2 (102): 3rd-order interpolation in dimensions 0 & 1 (n = 0 & 1); 1st-order for n = 2 

 3 (112): 3rd-order interpolation in all dimensions 

 

Of course, settings for inactive dimensions do not matter. Most users should set this component to 

3 to select 3rd-order interpolation. 

Bits 2 and 3 of Ctrl determine the boundary mode for the dimension with index n = 0 (which uses 

the motor specified by Source[0]). This 2-bit component has four possible values: 

 0 (002): Rollover mode in this dimension 

 1 (012): Maintain-last-correction mode in this dimension 

 2 (102): Mirror mode in this dimension 
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 3 (112): (Reserved for future use) 

 

Bits 4 and 5 of Ctrl determine the boundary mode for the dimension with index n = 1 (which uses 

the motor specified by Source[1]). This 2-bit component has the possible values as for dimension 

n = 0. 

Bits 6 and 7 of Ctrl determine the boundary mode for the dimension with index n = 2 (which uses 

the motor specified by Source[2]). This 2-bit component has the possible values as for dimension 

n = 0. 

Examples 

For a 3D table with 3rd-order interpolation in all dimensions, and maintain-last-correction 

boundary mode in all dimensions, Ctrl should be set to 01010111 binary, which is $57 

hexadecimal, or 87 decimal. The value can be entered in decimal or hexadecimal form. It will be 

reported in decimal form. 

For a 1D table with 3rd-order interpolation and rollover boundary mode, Ctrl should be set to 

xxxx0001 binary, where x represents a “don’t-care” bit. Generally the don’t-care bits are set to 0, 

so the value is $01 hexadecimal, or 1 decimal. 

For a 2D table with 1st-order interpolation in both dimensions, and mirror boundary mode, Ctrl 

should be set to xx101000 binary. where x represents a “don’t-care” bit. Generally the don’t-care 

bits are set to 0, so the value is $28 hexadecimal, or 40 decimal. 

Target Register Addresses: Target[q] 

CompTable[m].Target[q] contains the address to which the correction computed by the table 

will be written. The target index q can take a value from 0 to 7, so a single table can have up to 8 

target registers. If the Target[q] element has a value of 0 (the default), no value will be written 

for that index.  

If all the Target[q] elements for a table have a value of 0, the table will have no effect, even if 

enabled (although processor time will still be devoted to the computation of corrections.) Setting 

these elements to 0 can be a simple way of temporarily disabling an individual table. However, in 

doing this, the last computed correction(s) will be left in the target register(s); it may be desirable 

to then set the register value to 0 by writing directly to the register. 

The target registers can be actual or command position-compensation, torque-compensation, or 

backlash-compensation registers for motors. The “target” motor or motors do not need to be the 

same motor(s) as the “source” motors, permitting “cross-axis” compensation for uses such as 

straightness correction. Other registers are not permitted as targets for compensation tables. 

Note that Turbo PMAC has separate classes of tables for position compensation, backlash 

compensation, and torque compensation. In Power PMAC, every table can provide each of these 

types of compensation, depending on which target register is specified. 
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The following diagram shows how the different target registers are used by the target motor: 
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Compensation Table Target Registers 

Position-Correction Compensation Tables 

For position-compensation tables that are used to correct for measurement errors, the target 

registers are Motor[x].CompPos for the outer (position) loop and Motor[x].CompPos2 for the 

inner (velocity) loop. The outer-loop compensation is necessary for position accuracy; the inner-

loop compensation can often be important for velocity smoothness, particularly for high-precision 

applications. Usually, both of these registers are used as targets for a position-compensation table. 

Note that the corrections are added to actual position values, not to command position values (as 

they were in Turbo PMAC). This means that the corrections do not affect the feedforward into the 

servo loop. (However, if Power PMAC is not actually closing the servo loop and instead is 

outputting command position with Motor[x].Ctrl set to Sys.PosCtrl, as for networked 

positioning drives, the position compensation values are subtracted from the command position 

value, and the difference is output.) The corrections do affect the reference position for software 

overtravel limits and compensation tables. 

Typical commands for this type of table are: 

CompTable[1].Target[0] = Motor[1].CompPos.a 

CompTable[1].Target[1] = Motor[1].CompPos2.a 

Cam-Command Compensation Tables 

When it is desired to command real motion from the table rather than just to correct for 

measurement errors, the target registers are Motor[x].CompDesPos. The value in this register for 

a motor is added to the trajectory command value and the master following command value to 

obtain the net motor command position Motor[x].DesPos.  



Power PMAC User’s Manual 

Setting Up Compensation Tables 389 

However, Power PMAC also has dedicated “cam” tables for this functionality. These dedicated 

cam tables have several features optimized for commanding true motion, such as slewing into 

synchronization with the master at a controlled rate on enabling, and the ability to have the final 

position in a cycle different from the starting position. Refer to the User’s Manual chapter on cam 

tables for details. 

When Motor[x].CompDesPos is the target register, the corrections do affect the feedforward into 

the servo loop. The corrections do not affect the reference position for software overtravel limits 

or position-correction compensation tables. The command values from cam command tables are 

superimposed on top of programmed calculated trajectory motion for the target motor. Note that 

the addition of this register into the net commanded position is done before the trajectory pre-

filter, so the filter acts on this component as well. 

Note that the direction of motion caused in the target motor for a table value of a given sign is the 

opposite of that for a position correction table. 

A typical command for this type of table is: 

CompTable[3].Target[0] = Motor[2].CompDesPos.a 

Torque Compensation Tables 

For torque-compensation tables, the target registers are Motor[x].CompDac. This value is added 

to the servo-loop command output-value before it is sent to an output register or used as the 

“quadrature current” command input to the commutation algorithm. 

Torque-compensation tables are most commonly used to correct for “cogging”, or reluctance-

torque variations in motors. They virtually always have the same source and target motors, and 

use “rollover” boundary mode, so they only have to be defined for a single revolution or electrical 

cycle of the motor. 

Correction values for torque-compensation tables can easily be determined by moving the 

unloaded motor to each point in the table, waiting for it to settle into position (with integral gain 

active) and reading the servo torque command required to hold position against the cogging 

torque. This value can then be put into the table entry for that point. 

A typical command for this type of table is: 

CompTable[5].Target[0] = Motor[1].CompDac.a 

Backlash Compensation Tables 

For backlash-compensation tables, the target registers are Motor[x].BlCompSize. This value is 

combined with the value of the setup element Motor[x].BlSize, which does not vary with motor 

position, and the sum is subtracted from the measured actual position when the motor is moving 

in the negative direction. 

Backlash-compensation tables are most often used to create bi-directional position compensation, 

when different corrections are required for positive and negative-going motion. Corrections for 

moving in the positive direction are contained in a standard position compensation table; the 

backlash-compensation table contains the difference between positive-going and negative-going 

corrections over the travel of the motor. 
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A typical command for this type of table is: 

CompTable[8].Target[0] = Motor[1].BlCompSize.a 

Target Output Scale Factors: Sf[q] 

Before the calculated table correction is written to the target register whose address is specified 

by Target[q], it is multiplied by a scale factor for that target Sf[q]. Different target registers can 

have different scale factors. Most commonly, the scale factor is simply set to 1.0, so the units of 

the table correction are simply those of the target register. 

This is true for both position compensation tables, for which a scale factor of 1.0 means the table 

entries are in the defined position units of the target motor, and for torque compensation tables, 

for which a scale factor of 1.0 means the table entries are in units of a signed 16-bit output device, 

the same scaling as the setup units for the servo output command setup elements. 

Overwriting vs. Additive Outputs: OutCtrl 

CompTable[m].OutCtrl determines whether the output of the table for each target register 

overwrites the pre-existing value in that target register or adds to it. It is an 8-bit value, with each 

bit q (q = 0 to 7) controlling the output for the register specified in Target[q]. If the bit value is 

set to 0, the table will overwrite the existing value; if it is set to 1, the table will add to the value 

in the target register. 

If the table is the only table writing to the Target[q] register, bit q of OutCtrl must be set to 0, so 

a new value is written to this register every servo cycle. If multiple tables write to the same target 

register (as with coarse and fine corrections), the lowest-numbered table (which executes first 

each servo cycle) writing to the Target[q] register must use bit q of OutCtrl = 0 to overwrite the 

previous cycle’s value, and any higher-numbered tables writing to this register must use bit q of 

OutCtrl = 1 so their corrections for this servo cycle are added to the first table’s correction. 

 

WARNING 

It is essential that a table set up to add its value to the target 

register be preceded each cycle by another table that 

overwrites the existing value (from the previous servo 

cycle). Otherwise, the adding table acts as a numerical 

integrator, potentially creating a dangerous runaway 

condition by continually incrementing the value of the 

target register in the same direction. 
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Entering the Table Data Points 

Once the structure of the table – number of active dimensions and number of data zones in each 

dimension – has been defined, the actual data points can be entered for the table. Each entry in the 

table is a data structure element, and the element can be set to a numerical constant or 

mathematical expression. The general form of this assignment is: 

CompTable[m].Data[i] = {expression}   // 1D table entry 

CompTable[m].Data[j][i] = {expression}  // 2D table entry 

CompTable[m].Data[k][j][i] = {expression}  // 3D table entry 

 

Note carefully that for a multi-dimensional table, the last location index, denoted by [i] here, is 

for the first dimension of the table, the one using the position of the motor specified by 

Source[0]. 

It is also possible to enter multiple consecutive points in a single command, with the last location 

index i incrementing for each value entered. For example, the command: 

CompTable[3].Data[4][0] = 17.2, 8.6, -3.9 

 

sets CompTable[3].Data[4][0] to 17.2, CompTable[3].Data[4][1] to 8.6, and 

CompTable[3].Data[4][2] to -3.9. 

If there is more than one active dimension, only the last location index i corresponding to 

dimension index n = 0 can be incremented in a single command. But it is possible to enter an 

entire “row” of the table in a single command. This can make the text file for the table compact 

and relatively easy to read. 

In a 1D table, constant values for the data-point index i can range from 0 to 16,777,215, and any 

L-variable can be used for the index. 

In a 2D table, constant values for the data-point indices i and j can range from 0 to 65,533. Only 

variable L0 can be used for the index i, and only L0 and L1 can be used for the index j. 

In a 3D table, constant values for the data-point index i can range from 0 to 65,533, and indices j 

and k can range from 0 to 252. Only variable L0 can be used for the index i, only L0 and L1 can 

be used for the index j, and only L0, L1, and L2 can be used for the index k. 

When using an L-variable for an index, the value of the variable can exceed the highest constant 

value permitted for that index. Whether a constant or a variable is used for the index, it is not 

possible to set a value for a data point outside the number of zones defined for the table. 

 

Note 

It is possible to use the data points of a compensation table 

simply to store points in an indexed array structure. This is 

particularly useful if 2D or 3D arrays are desired. The table 

does not need to be enabled (and probably should not be) in 

order to use a table structure in this manner. However, the 

table’s “form” does need to be defined with appropriate values 

of Nx[n] for each dimension. 
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Entering Table Data Points in C 

Some users may want to enter table data points from a C program, rather than with Script 

commands. This is much faster, particularly for very large tables. The table structure variables, 

especially those setting dimensions, should still be entered with Script commands. If any of the 

dimensions has been changed, the first data point should be entered with a Script command, as 

this reserves the buffer space for all the data points. (You can then overwrite this point in C if you 

like.) 

The table data points are accessed with a pointer variable that can be declared something like: 

float *CompDataPtr; 

This pointer can be set to the start of the data points for table m with a program line like: 

CompDataPtr = pshm->CompTable[m].Data + OffsetTblSHM; 

(The OffsetTblSHM term is not needed if executing from a user servo or user phase, but those 

tasks are not recommended for writing to table points.) 

In a 1D table, the data point CompTable[m].Data[i] can be assigned with: 

*(CompDataPtr + i) = MyVal; 

In a 2D table, the data point CompTable[m].Data[j][i] can be accessed with: 

MaxI = pshm->CompTable[m].Nx[0] + 1; 

*(CompDataPtr + j*MaxI + i) = MyVal; 

In a 3D table, the data point CompTable[m].Data[k][j][[i] can be accessed with: 

MaxI = pshm->CompTable[m].Nx[0] + 1; 

MaxJ = pshm->CompTable[m].Nx[1] + 1; 

*(CompDataPtr + k*j*MaxJ*MaxI + j*MaxI + i) = MyVal; 

 

Enabling Compensation Tables 

The global data structure element Sys.CompEnable specifies how many compensation tables are 

enabled on the Power PMAC. It can take a value from 0 (no tables enabled) to 256 (all possible 

tables enabled). For a given value of Sys.CompEnable, compensation tables CompTable[m], m 

= 0 to Sys.CompEnable - 1 are enabled. 

If the user wants to effectively disable a table in the enabled range of tables, there are a couple of 

options. The first is to set CompTable[m].Sf[q] to 0.0, which forces the correction to 0.0. If it is 

desired to reduce the correction gradually, the value of this element can be ramped down in a 

timed loop (and ramped back up to re-enable the table). 

The second method is to set CompTable[m].Target[q] to 0. This leaves the most recent 

correction in the target register. However, because this register is no longer being written to 

automatically, the user can overwrite this value manually to clear the correction. 
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Action of the Compensation Tables 

Once the specified compensation tables are enabled, their action is automatic and virtually 

invisible to the user. The correction for each enabled table is calculated every servo cycle based 

on the commanded position(s) of the source motor(s) for each active dimension. For each 

specified target register, this correction is multiplied by the scale factor for that target, and the 

result is written to the target register. 

To compute the correction, Power PMAC uses the table entries on both sides of the present 

desired position of the source motor in each active dimension of the table to calculate a weighted 

average of the entries. If 1st-order interpolation is selected in the dimension, just the single entry 

on each side of the present desired position is used. If 3rd-order interpolation is selected in the 

dimension, two entries on each side of the present desired position are used.  

In multi-dimensional tables, the entries used can be thought of a comprising a 2D or 3D “box” 

around the present desired position. For a 2D table with 1st-order interpolation in both 

dimensions, 4 entries (2 x 2) will be used in the calculations. For a 3D table with 3rd-order 

interpolation in all dimensions 64 entries (4 x 4 x 4) will be used in the calculations. 

When motor actual position, or the matching axis actual position, is queried with the p command, 

Power PMAC reports the corrected, not raw, position. The raw measured motor position can be 

read in the element Motor[x].Pos; the corrected motor position can be read in the element 

Motor[x].ActPos. The correction from the table can be monitored at any time by querying the 

value of the target register (e.g. Motor[x].CompPos). 

Note 

If the target register is the compensation position register for 

the same motor that is used as a source motor for the table, the 

compensation value at a corrected position p' will not in 

general be the same as the compensation value specified for 

raw position p. 

 

All of the compensation-table calculations are performed after the commanded trajectories for 

that servo cycle are updated to get the new net commanded position for the cycle. (This 

eliminates a servo cycle delay that was present in older controllers.) The calculations are 

performed immediately before the servo-loop closure for the motor whose number is contained in 

the saved setup element Sys.CompMotor, so after the servo-loop closure for any lower-

numbered motors. 

Unless a 0D compensation table is used to cascade servo loops, as explained in the next section, 

Sys.CompMotor should be left at the default value of 0, so all tables work without a cycle’s 

delay. 

Use of “0D” Compensation Tables 

A compensation table for which the number of zones Nx[n] in all three possible dimensions is set 

to 0 still contains a single data point Data[0]. The value in this data point can be written to any or 

all of the target registers for the table as specified by the Target[q] addresses. The value can be 

scaled as necessary for each target using the Sf[q] factors, and can either overwrite or add to the 

value in the target registers as specified by OutCtrl. 
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One use of this feature is to inject calculated offsets and/or corrections into multiple registers, 

providing an algorithmic, rather than table-based, compensation. 

Another use of this feature is to “cascade” multiple servo loops, writing the output of one loop 

into an input of another loop. This is commonly employed to close a “force loop” or “gap loop” 

around a standard position loop to provide multi-mode control. See the section on cascading 

servo loops in the Setting Up Servo Loops chapter of the User’s Manual for details. 

In a 0D table, if bits 0 and 1 of the Ctrl element are greater than 0, then the value of the servo-

loop output from the motor specified by Source[0] for the table is automatically used to write to 

the specified target registers, usually the CompDesPos register for the inner-loop motor. In this 

mode, the Data[0] value is not used, but this element must still contain a valid numerical value. It 

is suggested to set it to 0 in the configuration of the table. 

If the OutCtrl bit for the table is set to 0, the table overwrites the value of the target register each 

servo cycle. For cascaded loops, this is desirable when the modification of the inner loop is 

limited, as in gap-control applications. However, if OutCtrl is set to 1, the table adds to the 

existing value in the target register each servo cycle, performing a numerical integration. This is 

useful when the modification of the inner loop can be effectively unlimited, as in web-tensioning 

applications. Note, however, that this integration makes a runaway condition possible, so it is 

essential to get the outer loop tuning correct. 

For the highest performance in cascaded servo loops, the inner loop should use the command 

from the outer loop that was calculated in the same servo cycle. For this to occur, two things must 

be true. First, the outer loop must be closed in a motor whose number is less than that of the inner 

loop. 

Second, the transfer performed by the compensation table must occur between the inner-loop 

closure and the outer-loop closure of the same servo cycle. The timing of the compensation table 

calculations is controlled by saved setup element Sys.CompMotor, which specifies the number 

of the motor before whose servo loop closure all active compensation tables are updated. The 

default value for Sys.CompMotor is 0, which means the tables are updated before any motor 

servo loops are closed (but after the command trajectories for all motors are updated).  

Unless compensation tables are used for cascading servo loops, this value will probably be left at 

0. However, to optimize the performance of a cascaded servo loop, Sys.CompMotor should be 

set to a value higher than the number of the motor used for the outer loop, but not higher than that 

of the number of the motor used for the inner loop. 

Note that it is possible to cascade servo loops without a 0D compensation table, but with other 

techniques, there will always be a servo-cycle delay in the cascading process. 

Iterative Learning Control for Torque Compensation Tables 

Power PMAC can employ sophisticated “iterative learning control” (ILC) algorithms to reduce 

repetitive position errors of the target motor using a torque compensation table in all zones of the 

table. As the table executes over multiple cycles, the pattern of position errors in each zone of the 

table is noted. Based on the pattern of errors in the zone, the table entry CompTable[m].Data[i] 

for the zone is automatically adjusted to try to reduce this error. 

ILC algorithms for compensation tables are new in V2.1 firmware, released 1st quarter 2016. 



Power PMAC User’s Manual 

Setting Up Compensation Tables 395 

These algorithms can provide a quick and easy method to set the values for a torque 

compensation table when the resulting position errors are largely repeatable. 

The ILC algorithm for a table is only active if CompTable[m].DacEnable is set to a value 

greater than 0. In this case, the value of DacEnable specifies the number of the target motor 

whose servo loop output (“torque”) is corrected and whose position error values are evaluated. 

The number of the target motor does not have to be the same as that of the source motor 

(specified by CompTable[m].Source) for the table – the motor whose position values are used to 

determine what zone of the table is used for the correction. When the table is used to reduce 

errors from cogging torque in the motor, source and target motor will be the same. When the table 

is used to reduce errors in one motor from action/reaction effects from the imbalance of another 

motor, the source and target motors will be different. 

When CompTable[m].DacEnable is set to a value greater than 0, the table is always treated as a 

one-dimensional (1D) torque-compensation table. The correction from the table is always written 

only to the Motor[x].CompDac register for the motor specified by DacEnable, where it is added 

to the torque command from the servo algorithm for the motor. The scaling of the correction is 

specified by CompTable[m].Sf[0]. The table should be defined as a 1D table, with 

CompTable[m].Nx[1] and CompTable[m].Nx[2] both set to 0. 

The user must set three saved setup elements to specify how the ILC algorithm will work. 

CompTable[m].DacGain specifies how aggressively Power PMAC will change the correction 

for a given position error value. If it is set too low, corrections may take many cycles to reduce 

the error significantly. If it is set too high, overcorrection and limit-cycling about the ideal 

correction can occur. DacGain must be set greater than 0.0 in order for the ILC calculations to 

have any effect. Changing the value back to 0.0 can “freeze” the values currently in the table. 

CompTable[m].MaxDac specifies the magnitude of the maximum torque correction the ILC will 

use in any zone of the table. Even if the algorithm computes a larger value based on the detected 

position errors and the value of DacGain, no value with a larger magnitude than MaxDac will be 

written to any CompTable[m].Data[i] table point. 

CompTable[m].MinPosError specifies the magnitude of the position error for any table zone 

below which Power PMAC will not attempt to reduce further by adjustments to Data[i] for the 

element. 

Sample Compensation Tables 

Here we present some simple examples of compensation tables in Power PMAC to illustrate how 

they can be defined and entered. 

1D “Leadscrew Compensation” Table 

One-dimensional position compensation tables that have the same source and target motors (i.e. 

which correct a motor’s position based on that motor’s raw position) are the most commonly used 

type of compensation table. Often these are called “leadscrew compensation” tables because 

leadscrew imperfections can be a dominant source of error in many applications. 

This simple example seeks to accomplish the following: 

 Correct Motor 1’s position based on Motor 1’s raw position value 
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 Cover the span of -10,000 to +100,000 units of Motor 1, no rollover 

 Have a table entry every 10,000 units of Motor 1, with cubic interpolation in between 

 

This table can be defined with the following commands: 

CompTable[0].Source[0] = 1  // Use Motor 1 as 1st dim source 

CompTable[0].Nx[0] = 11   // 11 data zones in 1st dim 

CompTable[0].Nx[1] = 0   // No 2nd dimension 

CompTable[0].Nx[2] = 0   // No 3rd dimension 

CompTable[0].X0[0] = -10000  // Start at -10K units 

CompTable[0].Dx[0] = 110000  // Span of 110K units (to +100K) 

// Compensate both position and velocity loops 

CompTable[0].Target[0] = Motor[1].CompPos.a 

CompTable[0].Target[1] = Motor[1].CompPos2.a 

CompTable[0].Sf[0] = 1.0  // Unity scale factor for pos loop 

CompTable[0].Sf[1] = 1.0  // Unity scale factor for vel loop 

CompTable[0].Ctrl = 7   // No rollover, cubic interpolation 

CompTable[0].OutCtrl = 0  // Overwrite targets each cycle 

// Enter table correction data points 0 to 5 

CompTable[0].Data[0] = 0.0, 25.2, 12.1, -7.3, 8.1, -1.9 

// Enter table correction data points 6 to 11 

CompTable[0].Data[6] = 6.5, 13.4, -3.6, 2.9, -11.8, 4.7 

 

This table will be enabled if Sys.CompEnable is set greater than or equal to 1. 

2D “Planar” Position Compensation Table 

Two-dimensional position compensation tables are increasingly popular for precision Cartesian 

stages. In this example, a third motor’s position is compensated as a function of the position in 

the plane of two motors, but often the target motor is one of the two motors in the plane. This 

example seeks to accomplish the following: 

 Correct Motor 3’s position based on the positions of Motors 1 and 2 

 Cover the span of 0 to 40,000 units of Motor 1 

 Cover the span of 0 to 30,000 units of Motor 2 

 Have a table entry every 10,000 units of both source motors 

 

This table can be defined with the following commands: 

CompTable[1].Source[0] = 1  // Use Motor 1 as 1st dim source 

CompTable[1].Source[1] = 2  // Use Motor 2 as 2nd dim source 

CompTable[1].Nx[0] = 4   // 4 data zones in 1st dim 

CompTable[1].Nx[1] = 3   // 3 data zones in 2nd dim 

CompTable[1].Nx[2] = 0   // No 3rd dimension 

CompTable[1].X0[0] = 0   // Start at 0 units of 1st source 

CompTable[1].X0[1] = 0   // Start at 0 units of 2nd source 

CompTable[1].Dx[0] = 40000  // Span of 40K units of 1st source 

CompTable[1].Dx[0] = 30000  // Span of 30K units of 2nd source 

// Compensate both position and velocity loops of Motor 3 

CompTable[1].Target[0] = Motor[3].CompPos.a 

CompTable[1].Target[1] = Motor[3].CompPos2.a 

CompTable[1].Sf[0] = 1.0  // Unity scale factor for pos loop 

CompTable[1].Sf[1] = 1.0  // Unity scale factor for vel loop 

CompTable[1].Ctrl = $17   // No rollover, cubic interpolation 

CompTable[1].OutCtrl = 0  // Overwrite targets each cycle 



Power PMAC User’s Manual 

Setting Up Compensation Tables 397 

// Enter table correction data points for Motor 2 pos = 0 

CompTable[1].Data[0][0] = 0.0, 10.0, 20.0, 30.0, 40.0 

// Enter table correction data points for Motor 2 pos = 10,000 

CompTable[1].Data[1][0] = 11.0, 21.0, 31.0, 41.0, 51.0 

// Enter table correction data points for Motor 2 pos = 20,000 

CompTable[1].Data[2][0] = 22.0, 32.0, 42.0, 52.0, 62.0 

// Enter table correction data points for Motor 2 pos = 30,000 

CompTable[1].Data[3][0] = 33.0, 43.0, 53.0, 63.0, 73.0 

 

This table will be enabled if Sys.CompEnable is set greater than or equal to 2. 
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SETTING UP ELECTRONIC CAM TABLES 

Power PMAC provides sophisticated capabilities for table-based “electronic cams”. These permit 

customized cyclic motion of a motor as a function of another motor’s position (whether that 

motor is real or virtual). The tables are of a user-specified size, with virtually no limit on size. 

The resulting commanded position is computed every servo cycle, using a third-order 

interpolation between table points. 

In addition, a torque offset to the output of the target motor’s servo loop can be specified for each 

point in the table, with the commanded offset computed every servo cycle, also using a third-

order interpolation between table points. A set of digital outputs can be specified for each zone in 

the table as well. 

Note that Power PMAC compensation tables can be used for rudimentary electronic cam 

positioning capabilities, but the dedicated electronic cam tables are much more full-featured for 

this purpose. 

Uses of Electronic Cam Tables 

Electronic cam tables are typically used to specify cyclic motion of a motor as a function of 

another position, as by analogy with a mechanical cam.  

Position Commands 

The most common use of an electronic cam table is to specify the commanded position of a motor 

as a function of another position. Power PMAC’s cam tables can compute these commanded 

positions every servo cycle to create a rapid but smooth response to the “source” motor position. 

These table-based command positions can be superimposed on directly commanded (trajectory) 

motor positions from jogging moves and programmed axis moves; the directly commanded 

positions are often used to provide a reference (base) position for the table. 

Torque Offset Commands 

In many applications of electronic cam tables, the cammed motor is working against external load 

forces and torques that vary throughout the cycle but are highly repeatable at the same point in 

each cycle. If only positions are commanded from the table, the feedback of the servo loop must 

respond to the resulting errors to try to reduce these errors after some time. However, Power 

PMAC’s electronic cam tables can also compute offsets directly to the output of the motor’s 

servo loop, typically acting as torque/force offsets, with the aim of preventing these repeatable 

errors before they occur. 

Often these offsets are determined through techniques such as “iterative learning control”, which 

monitor the errors and resulting servo commands and converge on offsets that minimize the 

errors. Less formal methods can also be used. 

Direct Output Commands 

In many electronic-cam applications, it is desired that general-purpose outputs be controlled 

synchronously with the cam motion. Power PMAC’s electronic cam tables support this 

functionality with an output “word” that can be programmed for each zone (i.e. between each two 

points) of the cam table. Most commonly, this word will command a set of discrete digital 

outputs, but it can also be used to command a single continuously variable output such as a 

digital-to-analog converter (DAC), a pulse-width-modulated (PWM) output, or a pulse-
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frequency-modulated (PFM) output. Any number of consecutive bits in a single 32-bit register 

can be commanded from a table in this way. 

Comparison to External Time Base Techniques 

Some Power PMAC users employ the “external time base” feature to obtain electronic cam 

functionality by executing looping motion programs synchronized to an external encoder (real or 

virtual). The techniques of external time base and electronic cam tables each have their strengths 

and weaknesses; a careful evaluation of these techniques for your desired functionality is 

essential to choosing the best approach. 

 In external time base, the master position must be fundamentally uni-directional – 

increasing in value over time. (It is OK to have the master position oscillate slightly when 

stopped – the slave position will track it exactly – but the master has limited ability to 

move in the negative direction.) With electronic cam tables, the master position can be 

fully bi-directional, moving indefinitely in either direction. 

 In external time base, the motion of multiple motors relative to a single master can be 

described in a single structure by commanding multiple axes within the same motion 

program running in a coordinate system. With electronic cam tables, a separate table is 

required for each slave motor, but it is easy to keep these motors fully synchronized. 

 In external time base, the specified (programmed) points do not need to be evenly spaced, 

and several modes of interpolation between points are possible, with the interpolation 

function in most modes not passing exactly through the specified points. With electronic 

cam tables, the specified points must be evenly spaced, and there is always a cubic 

interpolation between the points, with the interpolation function passing exactly through 

the specified points. 

 It is easier to compute and re-compute point values in a motion program running under 

external time base than in a cam table, especially if values in the program use variables. 

A separate task must be used to re-compute point values in a cam table. 

 The electronic cam tables provide a “direct output” word that can be different for each 

small zone of the table, and that execute in a fully reversible manner. 

 The electronic cam tables provide a torque-offset value for each zone of the table that can 

directly compensate for repeatable angle-specific error-causing loads, executing in a fully 

reversible manner. 

In applications where both techniques are possible, many people will decide which approach to 

use based on a personal preference as to whether they prefer a program-based technique or a 

table-based technique. 
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Table Design Techniques 

Delta Tau provides a “Cam Sculptor” software tool for Windows PCs to provide interactive 

graphical design capabilities for creating electronic cam tables in Power PMAC. While this 

software greatly facilitates the creation and optimization of tables for most applications, it is not 

necessary to use this for the creation of cam tables in the Power PMAC. Some users may simply 

use a spreadsheet or similar computational tool to compute the points in the table. 

Here we see a sample screen shot of the Cam Sculptor software being used to design a cam table 

for the Power PMAC. 

 

Delta Tau “Cam Sculptor” Sample Design Session 
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Table Data Structure 

Each electronic cam table is represented internally by the CamTable[m] data structure, where m 

is an integer value in the range 0 through 255. Each table’s data structure has the following saved 

setup elements (summarized here, explained in more detail below): 

 Source: The number of the “source motor”, whose desired position is read each servo 

cycle to determine the location in the table 

 Nx: The number of data zones in the table. 

 X0: The desired starting position of the source motor for the table. 

 SlewX0: The rate of change (per servo cycle) of the starting position of the source motor 

for the table, if the desired starting position X0 is different from the present starting 

position. This permits controlled changes in the “phase” of the table. 

 Dx: The span of the table in units of the source motor. The spacing between points in the 

table is Dx/Nx. (It is doubtful that there would be a need for slew control on changes to 

this value.) 

 Target: The number of the “target motor”, where the table position and torque results are 

applied each servo cycle (to the CompDesPos and CompDac registers, respectively). 

 PosSf: The desired output scale factor for the position command, multiplying the 

calculated interpolated position value from the table. 

 PosBias: The user-set target motor position offset value that is added to the value 

calculated from the table itself and the value in non-saved setup element PosOffset. 

 SlewPosOffset: The rate of change (per servo cycle) of the output position offset for the 

table, which is used to bring the target motor into synchronization with the source motor 

on enabling of the table. 

 DacEnable: On/off control for the torque offset value for the table. 

 DacSf: The desired output scale factor for the torque command, multiplying the 

calculated interpolated torque value from the table. 

 pOut: The address of the register, if any, for the digital output word from the table. 

 pOutBuf: The address of the register for a buffered digital output word from the table. If 

the values written to the actual output register cannot be read back, a buffered register 

where the values can be read back should be used as well. 

 OutLeftShift: The number of bits the output data value is shifted left before being 

written to the specified register. Equal to the lowest bit number in the output register this 

table will control. 

 OutBits: The number of (consecutive) bits in the output word this table will control 
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 DacGain: For automatic adjustment of torque offset in iterative learning control, the gain 

factor used to try to reduce repeating following errors in each sector of the table by 

adjusting DacData[i] for the sector. 

 MaxDac: The magnitude of the maximum adjustment of torque offset that will be made 

in iterative learning control 

 MinPosError: The smallest magnitude of following error for which the iterative learning 

control algorithm will attempt to reduce further through automatic torque adjustment. 

 PosData[i]: The “ith” position data point for the table 

 DacData[i]: The “ith” torque data point for the table 

 OutData[i]: The “ith” digital output data point for the table 

Each table has the following non-saved setup elements: 

 Enable: Control for activation/de-activation of table operation. (This element is not 

saved, and is always set to 0 on power-on/reset of the Power PMAC.) 

 PosOffset: The value of this element is added to the interpolated result from the table. It 

is automatically set by Power PMAC on enabling of the table to the (signed) difference 

between the present location of the slaved motor and where the motor would be to be 

properly synchronized to the defined table. It is then incremented by SlewPosOffset each 

servo cycle until synchronized. The user can subsequently adjust this value to adjust the 

results of the entire table. 

Reserving Memory for the Tables 

The data entries for the cam tables are stored in a specially defined buffer area of Power PMAC’s 

active memory, along with the data entries for compensation tables. (The “header” entries for the 

tables, which define the structure of each table, are stored in fixed pre-defined areas of memory.) 

There must be sufficient memory reserved in this buffer for all of the tables used. Each location 

index for the table requires the storage of 3 32-bit values (2 single-precision floating-point and 1 

integer), which occupies a total of 12 bytes of memory. The memory required for the data entries 

of a table can be calculated as: 

Memory (bytes) = 12 * (Nx + 1)  

where Nx is the table header element (CamTable[m].Nx) specifying the number of zones of the 

table. 

Defining the Data Buffer Size 

The amount of RAM reserved for the data entries of the compensation and cam tables together is 

determined by a setting in the project file pp_proj.ini. The default setting is for 1 megabyte 

(1,048,576 bytes). Few applications will require changing this default memory allocation, either 

to reduce the amount of memory reserved to free it for other uses, or to increase it to support very 

large tables. 
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The best way of changing this memory allocation is through the “Project Properties” control in 

the Integrated Development Environment (IDE) PC software, which allows you to set the “Table 

Buffer” size in megabytes. In the Power PMAC, the buffer memory allocation is set only at 

power-on/reset, so to change the allocation, you must change the setting the IDE project control, 

download the project to the Power PMAC, issue the save command to store this value to flash 

memory, then reset the Power PMAC. 

Dynamic Allocation of Buffer Memory to Tables 

At power-on/reset, the table-buffer memory space is cleared completely, and the table memory 

pointers are all cleared. Then as the table information is loaded, whether from the saved project in 

flash memory, or from the host computer, Power PMAC allocates memory in the buffer for the 

individual compensation and cam tables. 

The memory for the entire table is allocated when the first data entry value is set in a Script 

command (e.g. CamTable[3].PosData[0] = -7.3). The starting location is the first word past the 

last table already defined, and a memory space is allocated to the table according to the above 

equation. This means that the size of the table must be defined before any data points are entered. 

If all of the tables are defined just one time after power-on/reset, whether from flash memory or 

from project download, memory space is allocated to tables in the order they are defined, from 

the start of the buffer toward the end. As long as there is sufficient buffer space for all tables, this 

goes smoothly, with the details hidden from the user. 

However, if the user wishes to redefine the size of an already loaded table, the ramifications for 

memory allocation must be understood. Any time Power PMAC executes a Script command that 

changes the value of an existing table dimension CamTable[m].Nx, the pointer to the table data 

entries in the buffer is cleared. 

The pointer to the start of table data entries is not set again until the first Script command that sets 

a data entry value. At that time, the pointer is set to the address of the register in the buffer 

immediately following the last existing table. This means that if the table whose dimensions were 

changed was not the last table in the buffer, the memory that was allocated for the table data is 

lost until the next power-on/reset. 

Note that it is possible to set table dimension and table data values in C, but doing so does not 

trigger any of the memory management functions that the Script commands do. If defining or 

redefining tables in C, the commands to set the dimension values and the first data value should 

still be done with Script commands. This can be done from a C routine using the command"" 

function to execute the Script command within the quotes. Then the subsequent entry of data 

points, including possibly overwriting the first data point, can be done with much faster C 

commands. 

Defining the Table Structure 

Before the actual cam data points can be entered into the table, the structure of the table must be 

defined. This involves setting several saved data structure elements for the table. 

Source Motor Number: Source 

Unlike compensation tables, which can be 1D, 2D, or 3D, electronic cam tables are always one-

dimensional. That is, the table outputs are a function of the net desired position of a single 
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“source” motor alone. This source motor is specified by setting CamTable[m].Source to the 

number of the motor that is to be used as the source for the table. 

This “source motor” can be a physical motor that is under the control of the Power PMAC, or it 

can be a Power PMAC “virtual motor” that is reading the position sensor that is the master 

driving the table. This virtual motor should be activated (Motor[x].ServoCtrl = 1) so it is 

monitoring its actual position source, but not enabled, so it is not trying to compute its own 

desired position values, instead just copying its actual position values into the desired position 

registers. 

Alternatively, it can be a completely virtual motor with no actual feedback sensor that is 

generating its own positions mathematically. It is best to make sure that a virtual motor, whether 

with a real or synthesized position sensor, is not in a coordinate system with any physical motors, 

so the enabling, disabling, and faulting of the real motors does not affect the behavior of the 

virtual motor. 

In many applications, a virtual motor, whether with a physical sensor or mathematically 

generated position, can use Power PMAC Motor 0 in Coordinate System 0. By default, Motor 0 is 

assigned to Coordinate System 0 with the “null” axis definition. 

Number of Data Zones: Nx 

CamTable[m].Nx specifies the number of data “zones” in the table. A zone is the space between 

two data points of the table, as a function of the source motor position. Each zone in a table 

covers the same distance of the source motor. Position commands and torque offsets (if any) in 

this zone will be interpolated using the values of the data points on both sides of the zone. 

The first zone is the space between the data point with a location index of 0 and the data point 

with a location index of 1. The second zone is the space between the data points with location 

indices of 1 and 2, and so on. 

The discrete outputs for a zone use the output words with a location index matching the position 

and torque values on the negative end of the zone. That is, the first zone uses the output word 

with location index 0, the second zone uses the output word with location index 1, and so on. 

Power PMAC’s CamTable structure supports up to 16,777,216 (224) zones in a table, provided 

sufficient memory is reserved for the table. A typical table will have several hundred to several 

thousand zones. 

Note that cam tables are often designed with a tool such as Delta Tau’s “Cam Sculptor” that 

breaks the full cam into several “sections”, each with its own equation. These sections do not 

have to be evenly spaced, and a typical cam will have 6 to 20 sections. To implement the table in 

Power PMAC from the design, the section equations are solved at even intervals to compute the 

position data points that will be entered into the table.  

The choice of number of zones is usually determined by assigning a tolerance for the cubic 

interpolation’s approximation of the desired cam function and spacing the table points close 

enough together that the error in the approximation from the cubic interpolation between points is 

always less than the required tolerance. 
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Starting Source Location: X0, SlewX0 

CamTable[m].X0 specifies the desired “starting”, or reference, location of the table, expressed in 

the units of the source motor. This value is the smallest (most negative) position of the source 

motor for which the table is directly defined. It corresponds to data points with a location index of 

0. 

This reference location can easily be changed in a controlled fashion. Saved setup element 

CamTable[m].SlewX0 specifies the rate at which the actual reference location used for table 

computations, CamTable[m].ActiveX0, changes when the user sets a new value for 

CamTable[m].X0. This permits smooth phase adjustments of the table operation. 

Source Span: Dx 

CamTable[m].Dx specifies the “span” of the table, expressed in units of the source motor. The 

table is directly defined for source-motor positions from X0 to (X0 + Dx). The spacing between 

adjacent table points can be calculated as (Dx / Nx). 

Target Motor Number: Target 

CamTable[m].Target specifies the number of the motor that is the “target” of the table, whose 

motion is controlled by the action of the table. Position commands from the table will be written 

to Motor[x].CompDesPos for the specified target motor, and torque offsets (if any) will be 

written to Motor[x].CompDac for this motor. Note that the CompDesPos value is added into the 

net desired position before the trajectory pre-filter, so is acted on by this filter. 

Target Position Scale Factor: PosSf 

Before the interpolated table position value calculated from table position entries is written to the 

CompDesPos element of the target motor, it is multiplied by a scale factor. CamTable[m].PosSf 

specifies the desired position scale factor for the table. Most commonly, it is set to 1.0, so the 

units of the table correction are simply those of the target register, which are the motor position 

units for the target motor. 

Target Position Offset Slew: SlewPosOffset 

The “offset” in the target position – the value that is added to the interpolated value from the table 

entries before it is written to the target motor’s CompDesPos register – can be changed in a 

continuous fashion, at a rate set by CamTable[m].SlewPosOffset. This is mainly used when the 

table is enabled, to bring the target motor into synchronization with the source motor position at a 

controlled speed. It is also possible for the user to change the desired offset value 

CamTable[m].PosOffset while the table is enabled, and this element controls the rate of change 

in that case as well. 

Target Torque Offset Enable Control: DacEnable 

Many cam table applications will not use table-based torque offsets. If CamTable[m].DacEnable 

is set to the default value of 0, Power PMAC will not calculated a torque offset value from the 

table, saving processor time, and it will not write to the CompDac register of the target motor, 

permitting that motor to use a torque compensation table instead. If DacEnable is set to 1, the 

torque offset value is calculated and written each servo cycle. In this case, the target motor should 

not be executing a torque compensation table as well. 
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Target Torque Scale Factor: DacSf 

Before the interpolated table torque offset value calculated from table torque entries is written to 

the CompDac element of the target motor, it is multiplied by a scale factor. CamTable[m].DacSf 

specifies the desired torque scale factor for the table. Most commonly, it is set to 1.0, so the table 

entries can be in units of a 16-bit output, just as the servo-loop outputs are. 

Output Address: pOut 

CamTable[m].pOut specifies the address of the register to which the table’s present output word 

is written. It is most commonly set to the address of a digital output card register (e.g. 

GateIo[i].DataReg[j].a) so a whole set of discrete outputs can be commanded at once. It can also 

be set to the address of an analog output register (e.g. Gate3[i].Chan[j].Dac[k].a) so a single 

analog output can be commanded. Alternatively, it can be set to the address of a holding register 

in memory (e.g. Sys.Udata[i].a) where further operations can be done on the output word by 

another software task. If CamTable[m].pOut is set to its default value of 0, no direct outputs are 

set by the table, regardless of the direct output table values. 

Buffered Output Address: pOutBuf 

If it is not possible in the actual output register addressed by pOut to read back the values written 

to the register (and the table is only using part of the register), it will be necessary to use a 

buffering register, usually in RAM, where the written value can be read back. This is done by 

setting CamTable[m].pOutBuf to the address of this buffering register. If 

CamTable[m].pOutBuf is set to its default value of 0, there is no buffering register, and the cam 

table will write directly to the register specified by CamTable[m].pOut, using a 

read/modify/write operation to set its specified part of the word. 

The most common output registers where the written registers cannot necessarily be read back are 

the general-purpose I/O registers of the DSPGATE3 IC (Gate3[i].GpioData[j]) or the MACRO-

ring output registers of the DSPGATE2 IC (Gate3[i].Macro[j][k]). It is also possible to set up a 

register of an IOGATE IC (GateIo[i].DatReg[j]) so that written values cannot be read back, but 

by default they can. 

The buffered output register is treated as a 32-bit integer. It is almost always a memory register. 

When used, this buffered register is changed by the table using a read/modify/write sequence, and 

then the entire 32-bit value is copied to the register specified by CamTable[m].pOut each servo 

cycle. This means that no other task, whether another cam table or PLC program, should be 

writing directly to the output register. 

Output Shifting:OutLeftShift 

CamTable[m].OutLeftShift specifies how many bits the masked output data is shifted left 

before being written to the specified register. This permits the user to specify the output word for 

each zone of the table starting in bit 0, regardless of where on the 32-bit bus these outputs are 

actually written. 

Output Masking: OutBits 

CamTable[m].OutBits specifies the number of (consecutive) bits in the specified output word 

this table will control. These bits will start at the bit number (on the full 32-bit data bus) specified 

by OutLeftShift. 
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Entering the Table Data Points 

Once the structure of the table – especially the number of data zones – has been defined, the 

actual data points can be entered for the table. Each entry in the table is a data structure element, 

and the element can be set to a numerical constant or mathematical expression. The general form 

of these assignments is: 

CamTable[m].PosData[i] = {expression}  // Position data entry 

CamTable[m].DacData[i] = {expression}  // Torque data entry 

CamTable[m].OutData[i] = {expression}  // Output data entry 

Valid location index values i are integers ranging from 0 to Nx, inclusive. Commands to set 

points out of this range will be rejected with an error. Multiple consecutive data points of a 

particular type with increasing location indices may be entered in a single command. 

With Nx zones defined for a table, there are (Nx + 1) data points of each type. PosData[Nx] is 

used by the table, through its difference from PosData[0], to define the target motor offset, if any, 

from cycle to cycle, determining whether it is a “returning” or “non-returning” table (see next 

section). DacData[Nx] and OutData[Nx], while they can be set by the user without error, are not 

used in the operation of the table. 

PosData[i] and DacData[i] values are stored as single-precision (32-bit) floating-point values. 

OutData[i] values are stored as 32-bit integers and reported back in unsigned format (although 

they can be used to output signed values). 

The default value for all data points of all types is 0. If you want to leave the points at zero, it is 

not necessary to command values for those points. For example, if you only want to use the 

position function of a cam table, there is no need to set every DacData[i] and OutData[i] value 

to 0. 

Returning vs. Non-Returning Position Tables 

Power PMAC cam tables support both “returning” position outputs and “non-returning” position 

outputs. With returning position outputs, each cycle of the table commands the same range of 

positions. This is typically used for linear motion, providing reciprocating action. With non-

returning position outputs, each cycle of the table commands a range of positions offset from the 

previous cycle. This is typically used for rotary motion, with each cycle of the table providing one 

revolution of the motion. 

Torque offset commands are always “returning” commands, repeating each table cycle without 

offset. Data outputs are also “returning”, with no offsets between cycles. 

Returning Position Tables 

To define returning position outputs, table entry CamTable[m].PosData[Nx] must be set to 

exactly the same value as CamTable[m].PosData[0]. In this case, the position of the target motor 

repeats every cycle, as shown in the following diagram. 
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Non-Returning Position Tables 

To define non-returning position outputs, CamTable[m].PosData[Nx] must be set to a different 

value from CamTable[m].PosData[0], with the difference being the offset between adjacent 

cycles. In this case, for each cycle of the cam, the target motor position is offset from the adjacent 

cycle of the table, as shown in the following diagram. 
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Note that, unlike the returning cam, there are many possible “instances” of the cam profile, all in 

parallel with each other. The “reference” profile is the one that includes the cycle of the directly 

defined table. Each other instance of the profile is offset from the reference profile by a multiple 

of (PosData[Nx] - PosData[0]). The actual profile used will be one of the two on either side of 

the position at the enabling of the table. (Which of these two is selected is dependent on the 

enabling mode.) 

Enabling the Cam Tables 

Action of cam tables is only permitted if global saved setup element Sys.CamEnable is set to a 

value greater than 0. If it is greater than zero, then every servo cycle Power PMAC will check 

tables with indices from 0 through (Sys.CamEnable - 1). If CamTable[m].Enable for that table 

is set by the user to a value greater than 0, Power PMAC will compute and apply the results of 

that table. All CamTable[m].Enable elements are non-saved setup elements with a default at 

power-up/reset of 0. This means that any cam table must be explicitly enabled after power-

up/reset. 

When a table is enabled, the target motor position will, in general, not be in the position specified 

by the table for the present source motor position. Power PMAC will bring the motor into the 

proper position at a controlled rate specified by the saved setup element 

CamTable[m].SlewPosOffset. This slewing into synchronization can be accomplished while the 

master motor is in motion. 

If the table is “non-returning”, the user has the choice as to which “instance” of the table (see 

diagram above) to approach on enabling by the setting of CamTable[m].Enable. A value of 1 

always moves in the positive direction to the next instance; a value of 2 always moves in the 

negative direction to the next instance; a value of 3 moves in the direction of the closest instance. 

Any torque-offset or output-word values from the table are applied immediately upon enabling, 

without any slew control. 

Action of the Cam Tables 

Once the specified cam tables are enabled, their action is automatic and virtually invisible to the 

user. The position, torque, and output values for each enabled table are calculated every servo 

cycle based on the commanded position of the source motor. Torque values are only computed if 

CamTable[m].DacEnable is set to 1. 

In the servo cycle, the cam table updates are calculated after the new desired positions for all of 

the motors have been calculated, and if Sys.CompMotor is set to its default value of 0, before 

any of the servo loops have been closed. (If Sys.CompMotor is set to a value greater than 0, the 

tables will update immediately before the servo loop of that motor number is closed.) Cam tables 

are updated each servo cycle before compensation tables are updated. 

To compute the position and torque output values, Power PMAC uses the two table entries on 

each side of the present zone of the source motor to compute the values using 3rd-order 

interpolation. For example, if the source motor is in the 7th zone of the table, the PosData[i] and 

DacData[i] entries with location indices 5, 6, 7, and 8 will be used. The 3rd-order interpolation 

ensures that both the commanded values and their rate of change are always continuous, even as 

table points are passed, changing into different zones of the table. 
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For the direct output values, Power PMAC simply selects the output word matching the present 

zone of operation. For example, if the source motor is in the 7th zone of the table, the OutData[6] 

entry will be used. Only the first (lowest) N bits of this word (where N is equal to 

CamTable[m].OutBits) are used. These bits are shifted left by CamTable[m].OutLeftShift bits 

before being applied to the output register whose address is specified by CamTable[m].pOut. If 

pOut is set to the default value of 0, no direct outputs are written. 

If CamTable[m].pOutBuf is set to the address of a buffered holding register, the specified bits 

are set and cleared within this holding register, and the resulting full-word value is copied to the 

output register specified by CamTable[m].pOut. This two-stage process should be used when it 

is not possible to read back the value written to the actual output register. 

If CamTable[m].pOutBuf is set to the default value of 0, there is no holding register, and the 

specified bits are set and cleared within the output register itself in a single-stage process. 

The values for position, torque, and direct output always overwrite the existing values in their 

target registers. There is not an option to add to the existing value as compensation tables can do. 

The position and torque values are written to motor registers that can also be written to by 

compensation tables. It is the user’s responsibility to avoid conflicts when using both types of 

tables. 

Adjusting of the Table Action 

It is possible to adjust the action of a cam table either along the source-motor axis or the target 

motor axis in a controlled fashion while the table is enabled. This permits the use of some 

information that was not available before the table was enabled to refine or correct the action of 

the table. This adjustment can come from sensor-based algorithms, either in the Power PMAC or 

from another device in communication with the Power PMAC, or from interactive adjustment 

commands from the operator. 

Adjusting on Source Motor Position 

Adjusting the cam table action along the source-motor axis is accomplished by changing the 

value of CamTable[m].X0, the source motor reference position for the table. This has the effect 

of changing the “phase” of the cam table cycle with respect to the master. When this X0 element 

is changed, the actual reference position used each servo cycle in table operation 

CamTable[m].ActiveX0 is changed by the amount set in saved setup element 

CamTable[m].SlewX0. This permits the phase to be changed in a controlled fashion. 

Adjusting on Target Motor Position 

Adjusting the cam table action along the target-motor axis can be done either outside of the cam 

table function or within it. Since the cam table position command is superimposed on trajectory 

position commands, this adjustment can be accomplished by commanding an incremental motor 

trajectory move, either a jog move for the motor itself, or a programmed axis move for the axis 

assigned to the motor. 

It is also possible to adjust the cam table action along the target-motor axis by changing the value 

of CamTable[m].PosBias. When this PosBias element is changed, the actual offset added to the 

value interpolated from table points each servo cycle CamTable[m].ActivePosOffset is changed 

by the amount set in saved setup element CamTable[m].SlewPosOffset. This permits the offset 

to be changed in a controlled fashion. 



Power PMAC User’s Manual 

Setting up Electric Cam Tables 411 

A similar element CamTable[m].PosOffset is automatically set by Power PMAC in the servo 

cycle when the table is enabled – to 0 in the case of a returning table, or to a multiple of the 

length of the table in the case of a non-returning table. ActivePosOffset is automatically set in the 

same servo cycle based on the present position of the motor, then slewed at the rate set by 

SlewPosOffset until the value of the sum of PosOffset and PosBias is reached. 

In the case of a returning position cam table, adjusting the target motor reference position has a 

fundamentally different effect from adjusting the source motor reference position. However, in 

the case of a non-returning cam table, adjustments to the target motor reference position and 

source motor reference position ultimately have the same type of effect. 

Phasing the Cam Cycle on a Source Motor Trigger 

In many applications, users will want to adjust the “phasing” of the cam cycle based on the 

position of the source motor at a trigger event. In some applications, this will just be done once at 

the start of the cam functionality; in others, it may be done every cycle of the cam to eliminate 

errors due to effects like slippage and drift. 

Using the Position Capture Monitoring Function 

Power PMAC’s monitored position capture function makes it easy to implement this capability. 

Setting source motor non-saved setup element Motor[x].CapturePos to 1 tells Power PMAC to 

look for a capture trigger event on the motor. When it sees the event, it will read the captured 

sensor position and convert it to motor position, storing this calculated value in status element 

Motor[x].CapturedPos. 

The user can then calculate where this value is within the cam cycle and compare it to where it 

should ideally be. The source motor desired reference position CamTable[m].X0 can then be 

adjusted by this difference. The rate of change in the actual reference position used each servo 

cycle Motor[x].ActiveX0 is set by saved setup element Motor[x].SlewX0, permitting a smooth 

adjustment. 

The method of position capture for this monitoring function is the same as for triggered moves 

such as homing-search moves. A variety of different methods can be used. Note, however, that 

unlike in triggered moves, the monitoring function has no effect on the motion of the motor. This 

means it can even be used when the motor is simply a Power PMAC software construct used to 

process the sensor position, as is often the case with a cam table master “source motor”. 

The position-capture monitoring function is discussed in more detail in the User’s Manual chapter 

Synchronizing Power PMAC to External Events, in the section on position capture. The various 

methods of setting up position capture for a motor are described in the User’s Manual chapter 

Basic Motor Moves, in the section on triggered moves. Both sections will refer to specific data 

structure elements described in detail in the Software Reference Manual. 
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Sample Phase Adjustment Algorithm 

In an application, the phase adjustment will most likely be implemented in a PLC program. The 

key part of the program will look something like this: 

 Motor[x].CapturePos = 1;    // Enable capture monitoring 

 while (Motor[x].CapturePos == 1) {}   // Wait for trigger 

 TrigPhase = Motor[x].CapturedPos – CamTable[m].X0; 

 PhaseError = DesTrigPhase – TrigPhase;  // Error before rollover 

 PhaseError -= rint(PhaseError / Dx) * Dx;  // Subtract rollover cycles 

 CamTable[m].X0 -= PhaseError;    // Adjust table phase 

 

In this example, Motor “x” is the source motor for cam table “m”, which has a span of Dx units of 

the source motor. The user variable DesTrigPhase contains the location in the span where the 

trigger would ideally occur (0 <= DesTrigPhase < Dx). We calculate the actual location in user 

variable TrigPhase by subtracting the present source motor reference X0.  

We next compute user variable PhaseError by first taking the difference between desired and 

actual and then reducing this difference to with one cycle by dividing by the cycle span Dx, 

rounding to the nearest integer number of cycles with the rint function, and multiplying again by 

Dx to return to motor units. Once the error is processed this way, we change the value of X0 by 

this amount. Note that we change X0 in the negative direction for a positive phase error (desired 

minus actual). 

By using the rint (round to nearest integer) function, we ensured that the correction would be in 

the “shortest” direction, always less than one-half cycle in length. If we instead used the floor 

(round negative) or ceil (round positive) function, we would always correct in the same direction, 

with a correction up to a full cycle in length. 

Alternative Strategies for Non-Returning Cams 

If the cam table is “non-returning”, we can also adjust the phase by offsetting the target motor 

position. To do this, we need to calculate the average “slope” of the table using the starting and 

ending positions of the target motor and the starting and ending positions of the source motor: 

DxmCamTable

PosDatamCamTableNxPosDatamCamTable
Slope

].[

]0[].[][].[ 
  

The adjustment to the target motor offset for a value of PhaseError would be Slope * 

PhaseError. This adjustment could be performed in two ways. First, it can be done by changing 

the value of CamTable[m].PosOffset by this amount: 

 CamTable[m].PosOffset += Slope * PhaseError; 

 

(This program line would simply replace the last line in the above example.) Note that we change 

the target position offset in the positive direction for a positive phase error (desired minus actual). 

The rate of change of this adjustment is controlled by CamTable[m].SlewPosOffset, so this is a 

constant-velocity adjustment (without acceleration control) superimposed on whatever motion is 

commanded by the cam. 



Power PMAC User’s Manual 

Setting up Electric Cam Tables 413 

In a second method, a trajectory commanded move could be superimposed on top of the cam 

motion. For this adjustment, an incremental jog command is appropriate. It could be commanded 

out of the PLC program with a command like: 

 jog6:(Slope * PhaseError); 

 

(Once again, this program line would replace the last line in the above example.) The advantage 

of using a jog command like this is that it would have controlled acceleration and jerk as well as 

controlled velocity, so it would be a very smooth adjustment. 

Rollover of the Table 

All cam tables in Power PMAC are capable of cyclic operation, and so “roll over” when the 

position of the source motor goes beyond the defined range of the table in either direction. The 

table is directly defined in the domain of source-motor positions from ActiveX0 to (ActiveX0 + 

Dx). But operation of the table will be the same in the domain (ActiveX0 + Dx) to (ActiveX0 + 

2*Dx), in the domain (ActiveX0 – Dx) to ActiveX0, and so on. 

Position Output at Rollover 

Near the ends of the defined table, table points from both ends of the table (e.g. PosData[Nx-1], 

PosData[Nx], PosData[0], and PosData[1]) will be used in the interpolation function to create 

the position command. If the position table is a returning table (PosData[Nx] = PosData[0]), 

each cycle of the table is identical to the adjacent cycle. If the position table is a non-returning 

table (PosData[Nx] ≠ PosData[0]), each cycle of the table is offset from the adjacent cycle by 

the difference between these defined endpoints. 

Torque Offset Output at Rollover 

The torque offset outputs from a cam table are always “returning”, so the torque offset command 

from the table is the same at identical points in each cycle of the table. Table entry 

CamTable[m].DacData[Nx] is not used, even if entered, although it is advised to assign it the 

same value as CamTable[m].DacData[0] to prevent confusion. Entries 

CamTable[m].DacData[0] through CamTable[m].PosData[Nx-1] are used in the computation 

of torque offsets from the table. 

General Purpose Outputs at Rollover 

Table entries CamTable[m].OutData[0] through CamTable[m].OutData[Nx-1] specify the 

general-purpose output words for the Nx zones of the table. (CamTable[m].OutData[Nx] is not 

used.) When the source motor is in the “last” zone of the table, OutData[Nx-1] is used to 

generate the outputs. When the source motor position rolls over into the “first” zone of the table, 

OutData[0] is used to generate the outputs. 

Iterative Learning Control 

Power PMAC can employ sophisticated “iterative learning control” (ILC) algorithms to reduce 

repetitive errors in any section of the table. As the table executes over multiple cycles, the pattern 

of position errors in each zone of the table is noted. Based on the pattern of errors in the zone, the 

torque offset parameter DacData[i] for the zone is automatically adjusted to try to reduce this 

error. 

The user must set three saved setup elements for the table to activate this feature. 

CamTable[m].DacGain specifies how aggressively Power PMAC will change the offset for a 
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given position error value. If it is set too low, corrections take many cycles to reduce the error 

significantly. If it is set too high, overcorrection and limit-cycling about the ideal correction can 

occur. DacGain must be set greater than 0.0 for the ILC calculations to be active. (In addition, 

the table itself must be activated and the torque offsets activated with CamTable[m].DacEnable 

= 1.) 

CamTable[m].MaxDac specifies the magnitude of the maximum torque offset the ILC will use 

in any zone of the table. Even if the algorithm computes a larger value based on the detected 

position errors and the value of DacGain, no value with a larger magnitude than MaxDac will be 

written to DacData[i]. 

CamTable[m].MinPosError specifies the magnitude of the position error for any table zone 

below which Power PMAC will not attempt to reduce further by adjustments to DacData[i] for 

the zone. 

Combining Cam Motion with Other Motion 

The motion of the target motor from a cam table is superimposed on top of trajectory motion 

from commanded motor and axis moves, and slave motion from position following. While it is 

possible to use two, or even all three of these sources of commanded motion simultaneously, it is 

rarely done. 

However, it is very common to use trajectory motion or position following to put the motor in a 

reference position for the operation of the cam table. Commanded positions from the cam table 

are added on top of this reference position. For example, if the motor is jogged to a position of 

1200, and the cam table commands 250 units of the target motor, the net position command for 

this motor will be 1450, not 250. 

It is possible to alter the trajectory command position or the master following position while the 

cam table is enabled, even when the cam table source motor is in motion. This provides the 

capability for the operator to adjust the “location” of the target motor interactively. (This is 

usually a better technique than adjusting CamTable[m].PosOffset while the table is enabled.) 

Reporting Motor Position with Cam Table Motion 

Because the cam table position commands are added onto the trajectory position commands in 

“offset mode”, so they are capable of being superimposed, care must be taken in understanding 

how the motor position is reported.  

If saved setup element Motor[x].PosReportMode is set to its default value of 0, the component 

of motion from the cam table is not reported when motor position is queried with an on-line p or 

d command or a buffered pread or dread command. Continuing the above example where the 

motor is jogged to 1200 units before the cam table is enabled, a d command would always return 

a value of 1200, no matter how much added motion the cam table was commanding. This value is 

important if you want to know the distance another trajectory command would cause. 

If Motor[x].PosReportMode is set to 1, the component of motion from the cam table is reported 

when motor position is queried. If the motor had been jogged to 1200 units and the cam table 

were commanding a further 250 units, the desired position would report as 1450 units. This value 

is important to if you want to know the net physical position of the motor. 
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If the target motor is assigned to an axis, and the axis position is queried, the component of 

motion from the cam table is never reported in response to the query, regardless of the setting of 

Motor[x].PosReportMode. 

Disabling the Cam Tables 

If an enabled cam table is disabled by setting CamTable[m].Enable to 0, all outputs of the table 

– position, torque, and general-purpose outputs – are left in their state from the final servo cycle 

the table was enabled. The net commanded position of the target motor does not change, so no 

motion is commanded. 

However, if an enabled cam table is disabled by setting CamTable[m].Disable to a value greater 

than 0, the magnitude of the position output from the table (in Motor[x].CompDesPos for the 

target motor) is reduced by the amount of CamTable[m].SlewPosOffset each servo cycle until it 

reaches 0.0. This commands actual motion of the target motor. 

After this table position output reaches 0.0, the value of CamTable[m].Disable is decremented 

by 1 each servo cycle until it reaches 0. At this point, CamTable[m].Enable is automatically set 

to 0. The intent of this second stage is to allow time for the motor to settle at this new position 

before it is commanded to take some other action. 

In both disabling methods, the table’s torque output and general-purpose outputs are left in their 

final state from before the disabling process started. If it is desired to change these, the user must 

write to the target registers for these values directly. 

Switching Between Cam Tables 

As one of the important advantages of electronic cam functionality is the ability to change the 

cam function programmatically, it is common to select different cam tables for a target motor at 

different times in an application. This should be accomplished by first disabling the previously 

selected cam table, then enabling the newly selected table. 

In most of these applications, multiple tables will be pre-loaded into Power PMAC memory, then 

at most one per motor enabled at any given time. Note that if more than one table is enabled with 

the same target motor, only the higher-numbered table will have any effect, as it will overwrite 

the results of any lower-numbered table. 

While it is possible to change the values in table data points at any time, it is not recommended to 

do so when the table is enabled. 
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MAKING YOUR POWER PMAC APPLICATION SAFE 

This chapter describes the built-in safety features provided with Power PMAC controllers. Proper 

setup of these features is extremely important in the creation of a safe machine system. 

 

WARNING 

Delta Tau Data Systems has provided many safety features 

on the Power PMAC controller, and invested many 

resources to make Power PMAC a safe product. However, 

the ultimate responsibility for the safety of a control 

system using Power PMAC must lie with the system 

designer, utilizing the safety features on Power PMAC and 

in other parts of the system. 

 

Watchdog Timer 

Power PMAC systems provide “watchdog timer” functionality to verify fundamental operation of 

hardware and software. If the timer’s monitoring does not verify that this operation is occurring, 

it will shut down the operation in a fail-safe manner. There are both “software” and “hardware” 

watchdog timers.  

All Power PMACs have the software watchdog timer functionality. Power PMACs with local 

interface circuitry have on-board hardware watchdog timer circuitry. The EtherCAT-only Power 

PMAC configurations (e.g. µPowerPMAC [CK3E] and IPC) do not provide a hardware watchdog 

timer, but the EtherCAT network provides similar automatic shutdown capabilities. 

The hardware watchdog timer provides a fail-safe shutdown to guard against many types of 

software and hardware malfunction. To keep it from tripping, the hardware circuit for the 

watchdog timer requires that two base conditions be met. First, the nominal 5-volt DC power 

supply must be greater than approximately 4.75V. If the supply voltage is below this value, the 

circuit will trip and the Power PMAC system will go into a “hard” watchdog failure. This feature 

is intended to prevent corruption of registers due to insufficient supply voltage. 

The second necessary condition is that the timer must see a square-wave input (provided by the 

Power PMAC software) of a frequency greater than approximately 20 Hz, which means the 

digital signal must be toggled more than 40 times per second. In the foreground, the real-time 

interrupt routine decrements a counter (as long as the counter value is greater than zero), causing 

the least significant bit of the timer to toggle. This bit is fed to the timer itself. 

At the end of each background cycle, after one scan of one active background Script PLC 

program and one scan of all active background C PLC programs, the background software resets 

the counter to the value specified by saved setup element Sys.WDTReset. (If this is set to a value 

less than 100, the counter is reset to 5000 each background cycle.) 

Soft Watchdog Trips 

If the processor is able to detect certain failures of the routines that support the watchdog timer, it 

will execute a “soft” watchdog trip. In a soft watchdog trip, all programmed motions are aborted, 

all motors are killed, and all interface hardware is locked into its reset state, which forces discrete 

outputs to their “off” state and continuous outputs (e.g. DAC, PWM, PFM) to their zero state. 

However, the processor continues to operate, and it can still communicate with a host computer. 
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The hardware of the watchdog timer circuit is disabled so it cannot shut down the processor 

completely. A $$$ reset command or $$$*** re-initialization command must be given, or the 

electrical power to the system must be removed and re-applied, in order to (try to) clear a soft 

watchdog trip. 

The purpose of a soft watchdog trip is to detect certain conditions that would likely lead to a hard 

watchdog trip and provide a safe shutdown of the system while keeping the processor alive so it 

is easier to figure out what the underlying problem is and to fix it. Soft watchdog trips are usually 

caused by user configurations that do not permit all tasks to execute in a timely fashion. 

Soft Trip from Background Failure 

The first condition that causes the execution of a soft watchdog trip occurs if the processor sees 

that the counter decremented by the real-time interrupt routine has reached a value of zero. In this 

case, it will set global status element Sys.WDTFault to 1. A failure of this type typically means 

that there is inadequate processor time remaining for background tasks, so the time between 

background cycles is too large. The threshold time for this type of failure can be adjusted by 

changing the setting of Sys.WDTReset. 

This diagram shows a sample soft watchdog timer trip due to a failure of background tasks to 

reset the watchdog timer value before it reaches zero. 
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Soft Watchdog Timer Trip from Background Failure 

Soft Trip from Foreground Failure 

The second condition that causes the execution of a soft watchdog trip occurs if several 

consecutive background cycles execute without a real-time interrupt occurring in between to 

decrement the counter value. In this case, it will set global status element Sys.WDTFault to 2. A 

failure of this type typically means that the interrupts have failed or been set with too large a 

period (too low a frequency). Saved setup element Sys.BgWDTReset specifies the number of 

background cycles that can execute without an intervening real-time interrupt before a trip. Note 
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that if it is set too large, it may not be able to detect this type of condition before a hard trip 

occurs. 

This diagram shows a sample soft watchdog timer trip due to a failure of foreground tasks to 

decrement the watchdog timer value through several background cycles. 
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Soft Watchdog Timer Trip from Foreground Failure 

Note that if no phase or servo clock interrupt signals are detected by the processor during power-

up/reset, Power PMAC goes into a special “stay alive” mode executing background software 

only. In this case, global status bit Sys.NoClocks is set to 1. This mode is similar to, but distinct 

from, a soft watchdog trip. No motors may be enabled in this mode, but the interface hardware is 

still active, permitting the user to configure the clock signal sources correctly. However, if the 

clock signal interrupts were present at power-up/reset and subsequently lost, a soft watchdog trip 

would occur because no real-time interrupt algorithms would execute to decrement the counter. 

Hard Watchdog Trips 

If the hardware watchdog timer circuit detects either an under-voltage or an under-frequency 

condition (which means that the software algorithms could not anticipate the condition and cause 

a soft trip), a “hard” watchdog trip will occur. In a hard watchdog trip, all interface hardware is 

locked in its reset state, which forces discrete outputs to their “off” state and continuous outputs 

(e.g. DAC, PWM, and PFM) to their zero state. In addition, the processor itself is completely shut 

down, so no communications is possible. 

The industrial PC (IPC) configurations of Power PMAC do not have a hardware watchdog timer 

circuit. They can provide a software watchdog timer trip. 

In the event of a hard watchdog trip, the solid-state watchdog relay on the Power PMAC CPU 

board toggles. The “normally open” contact opens (as it does when no power is present) and the 

“normally closed” contact closes (again, as it does when no power is present). The system 
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designer can make use of this relay output as part of a “safety string” to make sure output devices 

are properly disabled on a watchdog trip. 

The CK3E configurations of the Power PMAC do not have a watchdog relay output. They do 

have a hardware watchdog timer circuit that can provide a full shutdown, and can have a soft 

watchdog trip. 

A hard watchdog trip is usually caused by a fundamental hardware problem that permits neither 

foreground (interrupt) nor background tasks to operate properly, so a soft trip is not possible. The 

electrical power to the system must be removed and re-applied in order to (try to) clear a hard 

watchdog trip. 

Global Abort-All Input 

Power PMAC permits the user to specify an “abort-all” input, which when triggered will cause all 

axes on the Power PMAC to be commanded to a controlled stop, with all motion program 

execution stopped.  

The Power Brick has a fail-safe input intended for this purpose. When a Power Brick is re-

initialized, the software is automatically configured to use this input. If 24-volt DC power is not 

supplied to this input, it will trip, and with the software left in its default configuration, a global 

abort will be issued to the Power PMAC. 

Software Setup 

Sys.pAbortAll is set to the address of the register containing the “global abort” input. For the 

Power Brick’s dedicated input, the setting is Gate3[i].GpioData[0].a. If Sys.pAbortAll is set to 

0 (which is the default for Power PMAC configurations other than the Brick), this functionality is 

not enabled. 

Sys.AbortAllBit specifies the bit number on the 32-bit bus will be used for the input. For the 

Power Brick’s dedicated input, the setting is 31. Sys.AbortAllLimit specifies the maximum 

number of accumulated scans the Power PMAC can find this input in the abort state before 

commanding the global abort. Power PMAC will check the input every real-time interrupt (RTI) 

period. Values greater than 0 permit protection against false trips due to electrical noise. 

There is no software polarity control of the input. A value of “1” in the bit is always considered a 

fault. With common circuitry, including the dedicated circuitry in the Power Brick, a circuit 

failure will almost certainly leave the bit in a “1” state, so this is the failsafe polarity. 

Action on Trip 

When the specified bit is found in the “1” state for the required cumulative number of scans, each 

coordinate system reacts as determined by the setting of saved setup element 

Coord[x].AbortAllMode. 

If Coord[x].AbortAllMode is set to the default value of 0, all motors in the coordinate system 

are immediately commanded to come to a controlled stop as if an abort command had been 

issued, with deceleration profiles determined by Motor[x].AbortTa and Motor[x].AbortTs. 

This provides a “Category 2” controlled safe stop under the IEC-61800-5-2 machine safety 

standard. 
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If Coord[x].AbortAllMode is set to 1, all motors in the coordinate system are immediately 

“killed” (open-loop, zero output command, amplifier disabled) as if a disable command had 

been issued. There is no delay for brake engagement, even if Motor[x].BrakeOnDelay is greater 

than 0. 

If Coord[x].AbortAllMode is set to 2, all motors in the coordinate system are first commanded 

to come to a controlled stop as if an abort command had been issued, then as each motor 

reaches its “desired-velocity-zero” state, a “delayed kill” is commanded for the motor ” (open-

loop, zero output command, amplifier disabled) as if a ddisable command had been issued, 

with a delay for brake engagement if Motor[x].BrakeOnDelay is greater than 0.  

The action in this mode is similar to that of a “Category 1” safe stop under the IEC-61800-5-2 

machine safety standard, with a controlled stop followed by disabling of the motor. However, that 

standard requires that power be removed from the motor or circuits necessary to drive the motor. 

To be compliant with this standard, the same action that toggles this input should also start a 

qualified time-delay relay which will then drop out power from a key circuit (usually either bus 

power or gate-driver power). 

If Coord[x].AbortAllMode is set to 3, the coordinate system does not react to the “abort all” 

input. 

Note 

This “global abort” function is not suitable by itself in cases 

where power must be removed from the motor (such as 

Category 0 or 1 under the IEC-61800-5-2 machine safety 

standard) is required. However, it may be used in conjunction 

with circuits that do remove power in conformance with the 

standard. 

 

Voltage Interlock Circuits 

Many Power PMAC circuits that provide analog voltage servo command outputs, such as the 

UMAC ACC-24E2A analog axis-interface module and the analog output option of the ACC-

24E3 axis-interface module, provide a “voltage interlock” circuit as a protective mechanism. This 

circuit must detect the presence of both the positive and negative analog supply voltages. These 

voltages are supposed to be at +/-12V or +/-15V levels. If either supply drops below a magnitude 

of 10.8V (12V - 10%), the interlock circuit will remove power from the analog outputs and the 

amplifier-enable signals. Without this circuit, the loss of one of the supplies would cause the 

analog outputs to pull to the level of the other supply, potentially causing a dangerous runaway 

condition. 

In addition, the interlock circuit must detect the presence of the high-frequency “DAC clock” 

signal coming from the digital circuitry. If this signal is not present, whether due to loss of digital 

power, having the ASIC channel configured for PWM instead of DAC outputs, or hardware 

malfunction, the interlock circuit will remove power from the analog outputs and the amplifier-

enable signals. This will keep the analog circuitry from creating spurious output voltages from 

erroneous or missing signals. 
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Following Error Limits 

“Following error” is simply the difference between a motor’s net commanded position and its net 

actual position at any given time. All applications will have non-zero following error on their 

motors some (or most) of the time. The purpose of the servo loop is to try to drive this error to 

zero, but it will not succeed perfectly. 

While some following error is always to be expected in an application, sufficiently large 

following errors can be indicative of serious, and often very dangerous problems, such as loss of 

feedback, reversed feedback, or mechanical failure. 

Fatal Following Error Limit 

If the magnitude of a motor’s following error exceeds the limit set by Motor[x].FatalFeLimit, 

Power PMAC will automatically “kill” that motor. When a motor is “killed”, its servo loop is 

opened, the servo output is forced to zero, and the amplifier is disabled. The status bit 

Motor[x].FeFatal is set to 1 on this event; this bit is not cleared until the motor is disabled. 

On detecting a fatal following-error condition, if bit 0 of Motor[x].FaultMode is set to the 

default value of 0, other motors in the coordinate system (even if they just have the “null” 

definition – #x->0 – in that coordinate system) are automatically “aborted” (controlled 

deceleration to enabled, closed-loop stop). If bit 0 of Motor[x].FaultMode is set to 1, other 

motors in the coordinate system are automatically “killed” as well. 

The coordinate system status bit Coord[x].FeFatal is set to 1 if the comparable motor status bit is 

set to 1 for any motor in the coordinate system. Motors in other coordinate systems are not 

affected. 

If the coordinate system was executing a motion program at the time, the program execution 

would be aborted as well. Aborting a motion program stops program calculations, resets the 

program counter to the beginning, and discards any already computed motion equations from the 

queue. Execution cannot simply be resumed at the aborted point (this point in the program can be 

determined by use of the list apc on-line query command). 

Motor[x].FatalFeLimit is expressed in the user’s motor units. The magnitude of these units is 

determined by the feedback resolution, the encoder table entry’s scaling factor 

EncTable[i].ScaleFactor, and the motor’s position-loop scaling factor Motor[x].PosSf. Most 

users will scale the motor to units of “counts” or “LSBs” of the feedback sensor. However, others 

may wish to use (much larger) engineering units such as millimeters, inches, or degrees. If the 

user changes the definition of the motor units, the physical size of the fatal following error limit is 

automatically changed. When changing from small to large motor units, the limit may be 

increased so much as to be ineffective. 

  



Power PMAC User’s Manual 

Making Your Power PMAC Application Safe 422 

 

 

WARNING 

The fatal following error limit may be disabled by setting 

Motor[x].FatalFeLimit to zero, or effectively disabled by 

setting it very large, but this is strongly discouraged in any 

application that has the potential to kill or injure people, or 

even to cause property damage. Disabling the fatal limit 

removes an important protection against serious fault 

conditions that can cause runaway situations, bringing the 

system to full power output faster than anybody could 

react. 

It is particularly important to have this limit set when the 

machine is still in development, as this is often the most 

dangerous state for the machine. Moving parts are often not 

protected, people are working on many parts of the machine, 

and mistakes are being made. 

 

Good tuning of your motor’s servo loop is important for safety reasons as well as performance 

reasons. The smaller you can make your true following errors during proper operation, the tighter 

you can set your fatal following error limits without getting nuisance trips. Particularly important 

in this regard are the feedforward terms that can dramatically reduce the errors at high speeds and 

accelerations. It is common practice to set this limit to about twice the maximum error expected 

in normal operation. 

Warning Following Error Limit 

If the magnitude of a motor’s following error exceeds the limit set by Motor[x].WarnFeLimit, 

Power PMAC will automatically set the motor status bit Motor[x].FeWarn and the coordinate-

system status bit Coord[x].FeWarn. These are “transparent” status bits; as soon as the magnitude 

of the motor’s following error falls below the limit, the motor status bit is cleared. (The 

coordinate system status bit is simply the logical “or” of all of the motor status bits in the 

coordinate system.) Power PMAC takes no automatic safety action when one of these status bits 

is set, but the user application may take note of this condition and take appropriate action. It is 

common practice to set this limit to a value just slightly larger than the maximum error expected 

in normal operation. 

If Motor[x].CaptureMode is set to 2, the status bit Motor[x].FeWarn will be used as the trigger 

flag for Power PMAC’s automatic triggered moves (homing-search moves, jog-until-trigger, 

programmed rapid-mode move-until-trigger) instead of the default input trigger. This permits 

easy implementation of tasks such as homing into a hard stop, torque-limited screwdriving, etc. 
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Position (Overtravel) Limits 

Power PMAC has both software and hardware “overtravel” position limit features. These are 

intended to prevent motion accidentally commanded out of the legal range of positions. 

Software Overtravel Limit Parameters 

Power PMAC has positive and negative software limit parameters for each motor. These can be 

used to complement or replace the hardware limits. Saved setup elements Motor[x].MaxPos and 

Motor[x].MinPos define the positive and negative software position limits, respectively, in 

motor units, for each motor. These limits are referenced to the motor’s zero (home) position, and 

do not change if the programming origin for the associated axis is offset.  

 
Caution 

The value of Motor[x].MaxPos must be greater than that of 

Motor[x].MinPos for these software limits to be active. By 

default, both are set to 0.0, disabling them. 

 

When the software limits are active, Power PMAC uses these limits at both move calculation time 

and move execution time. The checks at move calculation time are made directly against the 

limits at Motor[x].MaxPos and Motor[x].MinPos. The ongoing checks made at move execution 

time can be made against positions offset from these, using saved setup element 

Motor[x].SoftLimitOffset. Checks at the positive end of travel are made against 

(Motor[x].MaxPos + Motor[x].SoftLimitOffset). Checks at the negative end of travel are made 

against (Motor[x].MinPos - Motor[x].SoftLimitOffset). 

Checks at Move Calculation Time 

When the software limits are active for a motor, as Power PMAC calculates a commanded move 

for the motor, it compares the move destination position against Motor[x].MaxPos and 

Motor[x].MinPos. If the destination position for the move is past the limit, the action taken 

depends on the move type and the setting of Coord[x].SoftLimitStopDis. 

Jogging Moves 

For jog moves, if the commanded destination position is past the software limit in the direction of 

motion, the destination position is changed to that software limit position. Note that the 

“destination” position of an indefinite jog command (j+ or j-) is always past the software limit 

in that direction, so this command is changed to a definite jog to a software limit. Note that this 

checking at move calculation time permits the motor to come to a controlled stop at the software 

limit, not begin to decelerate as the motor passes the limit. The Motor[x].SoftLimit status bit is 

set to 1 at the beginning of a jog move whose destination has been altered due to a software limit. 

Other status bits can be set when and if the limit is actually reached – see below. 

Homing Search Moves 

For homing-search moves, the software limit is disabled while the motor is searching for the 

trigger. The destination of the post-trigger move is checked against the software limits and can be 

modified to end at the software limit if past a limit. Note that this endpoint modification does not 

change where the motor zero position is considered to be. (Most post-trigger moves involve a 

reversal, and it is possible that some point in the middle of the post-trigger move exceeds a limit 

even if the destination does not; this would be caught at move execution time.) 
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Motion Program Moves: Stop or Saturate 

Moves commanded of the motor from a motion program are checked against active software 

limits at calculation time. The action taken if a destination is found to exceed a software limit 

depends on the setting of Coord[x].SoftLimitStopDis. If Coord[x].SoftLimitStopDis is set to 

its default value of 0, execution of the motion program is stopped when this is detected. The 

move that would pass the limit is not executed at all, so the stop can be well before the limit 

position. 

When the program is stopped because a move would have exceeded a software limit, 

Coord[x].SoftLimit is set to 1 (Coord[x].ErrorStatus = 32). 

However, if Coord[x].SoftLimitStopDis is set to 1, the software limit simply acts as a 

“saturation point” for the motor. Motion program execution continues without error. As long as 

the commanded position for the motor is past the software limit, it will stay at the software limit. 

Other motors in the coordinate system not at their software limits will continue to move. When 

the commanded position of the motor is no longer past the software limit, its motion will resume. 

Non-Segmented Program Moves 

Programmed moves that are not segmented – rapid and spline mode moves always, plus 

linear and pvt mode moves when Coord[x].SegMoveTime = 0 – are checked against the 

software limits when the move itself is calculated. With Coord[x].SoftLimitStopDis at 0, if the 

destination position for a motor in the move is past the software limit, the move will not be 

executed at all, and the motion program will stop operation. With Coord[x].SoftLimitStopDis at 

1, the destination position of any offending motor will be changed to the motor’s software limit, 

the move will execute, and the program will proceed. Note that in a multi-axis move, the path 

from start to end of the move can change due to this endpoint limiting. 

Segmented Program Moves 

Programmed moves that are segmented – linear, circle, and pvt mode moves when 

Coord[x].SegMoveTime > 0 – are checked against the software limits as each segment derived 

from the programmed move is calculated. With Coord[x].SoftLimitStopDis at 0, if the 

segment’s destination position for a motor in the move is past the software limit, all motors in the 

coordinate system are aborted at this time, and brought to a controlled stop according to the 

settings of Motor[x].AbortTa and Motor[x].AbortTs. With Coord[x].SoftLimitStopDis at 1, if 

the segment’s destination position for a motor in the move is past the software limit, that position 

is changed to equal the software limit position, motion will continue, and the program will 

proceed. Note that in a multi-axis move, the path from the start of the move until a motor reaches 

its limit is unchanged. When a motor reaches its limit, it stays at that limit while other motors 

continue to move, until its programmed position is no longer outside the software limit. 

With the special lookahead buffer active (lookahead buffer defined, Coord[x].LHDistance > 0), 

then for segmented moves in the coordinate system, these checks of segment destination positions 

can be performed well in advance of the segment actually executing. With 

Coord[x].SoftLimitStopDis at 0, the stop can occur well within the software limit. With 

Coord[x].SoftLimitStopDis at 1, this advance calculation provides time to compute a controlled 

deceleration to a stop at the limit for the offending motor. 

Checks at Move Execution Time 

When the software limits are active for a motor, Power PMAC also checks the instantaneous net 

desired position of the motor against the execution-time software limits every real-time interrupt. 
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When the motor is in closed-loop mode, the net desired position is the sum of the trajectory 

command position, the master following position, and the table-based desired position (from an 

“electronic cam” table). When the motor is in open-loop mode, the net desired position is simply 

copied from the actual position for the motor. 

Position Following (Electronic Gearing) 

If the position-following function for a motor is enabled (Motor[x].MasterCtrl bit 0 [value 1] = 

1) while the motor is in a software limit, Power PMAC will not permit any following in the 

direction that would take it further into the limit. It will permit following in the direction that 

would take it out of the limit. 

Gantry Leader/Follower Operation 

If the motor is enabled as a gantry-follower motor (Motor[x].ServoCtrl = 8), it does not generate 

its own trajectory, so it is important to understand how the soft limit functionality works in this 

case. If the gantry follower motor’s net desired position exceeds either execution-time software 

limit position, this triggers an “abort” action for all standard motors (Motor[x].ServoCtrl = 1) in 

the coordinate system (even if none of them have exceeded their own limits), causing them all to 

decelerate to a controlled stop. The gantry follower motor will also stop by tracking its leader 

motor’s deceleration. 

However, subsequently if the leader motor has still not exceeded its own software limit position, 

it can be commanded further in the same direction, and the gantry follower will attempt to track 

the leader, even if it is still past its own software limit. Note that this configuration is not an 

intended use of the gantry leader/follower functionality. In the intended use, both leader and 

follower motors will have very similar ranges of travel, and so would exceed any software 

overtravel limits at approximately the same time. 

Difference Between Calculation and Execution Limits 

If Motor[x].SoftLimitOffset is set to zero or a positive value, making the execution-time limit 

outside the calculation-time limit, if the net desired position of a closed-loop motor is outside the 

execution-time software limit, all motors in the coordinate system are aborted, brought to a stop 

according to the settings of Motor[x].AbortTa and Motor[x].AbortTs. This would be a rare 

occurrence, because calculation-time checks will generally prevent the instantaneous desired 

position from exceeding this limit. 

If Motor[x].SoftLimitOffset is set to a negative value, making the execution-time limit inside 

the calculation-time limit, if the net desired position of a closed-loop motor is outside the 

execution-time software limit, no modification of the motion for any motor in the coordinate 

system is made. However, the status bit Motor[x].SoftPlusLimit or Motor[x].SoftMinusLimit 

is set while the motor is in this state. Typically, this motor will stop at the calculation-time limit 

as already calculated. Many users will want to set Motor[x].SoftLimitOffset to a very small 

negative value (around -1 feedback count) to be able to see the appropriate status bit set. 

The following diagram shows typical relative positions of software limits at calculation time, 

software limits at execution time, and hardware limits. 
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Power PMAC Overtravel Limits with Status Bits 

Open-Loop Move Action 

During an open-loop move, if the position of the motor exceeds the legal range set by the 

execution-time limits, the action is dependent on the setting of saved setup element 

Motor[x].FaultMode. If bit 1 (value 2) is set to the default value of 0, Power PMAC “aborts” the 

motor and all other motors in the coordinate system. This closes the servo loop with the initial 

commanded velocity being equal to the present actual velocity, and causes a controlled 

deceleration to a stop, just as if the loop were closed when the limit switch was encountered.  

However, if bit 1 of Motor[x].FaultMode is set to 1 when the motor passes a software limit in 

open-loop mode, Power PMAC “kills” (disables) the motor. This immediately causes a zero 

output command and disables the amplifier. Other motors in the coordinate system are not 

affected in this mode. 

Hardware Overtravel Limit Switches 

The axis-interface circuitry associated with each servo interface channel in a Power PMAC 

system has positive and negative hardware overtravel limit switch inputs. The exact nature of this 

input circuitry and instructions for connecting the limit switches are described in the Hardware 

Reference manual for each Power PMAC and axis-interface accessory. 

Limit Switch Interface Circuitry 

Generally, these inputs are optically isolated, with a failsafe circuit design. The limit switches 

must be “normally closed”, conducting current through the opto-isolator when the axis is not in 

the limit. (Usually these are “AC optos” that can conduct current in either direction, permitting 

sinking or sourcing limit switches.) This conducting condition produces a “zero” state in the flag 

register for the channel in the Servo IC; the processor must read this zero to permit motion in that 

direction. To ensure failsafe operation, this polarity cannot be changed by the user. 

Anything that stops current from flowing through the opto-isolator, whether from actually hitting 

the limit, from cable disconnection, or from loss of power supply for the limit circuit, produces a 

“1” state in the Servo IC. When the processor sees this, it will not permit motion in that direction. 

Specifying the Limit Inputs 

Saved setup element Motor[x].pLimits for the motor must contain the address of the flag register 

for the channel into which these limit switches are wired (usually Gaten[i].Chan[j].Status.a). If 

Motor[x].pLimits is set to 0, the hardware overtravel limit function for the motor is disabled. 
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Some users will want to do this permanently, as for a continuously rotating rotary axis; others 

will want to do this temporarily, as when homing into a limit switch. 

Standard PMAC Configuration 

Saved setup element Motor[x].LimitBits specifies which bit(s) of the 32-bit register are read for 

the status of the limit inputs. In the standard range of 0 to 30, its value specifies the bit number of 

the positive limit input, with the negative limit input mapped into the next higher bit. This range 

should be appropriate for all standard Delta Tau hardware interfaces.  

Motor[x].LimitBits should be set to 24 when using a PMAC2-style “DSPGATE1” IC, as on an 

ACC-24E2x UMAC board, or to 25 when using the standard MACRO-ring protocol. It should be 

set to 9 when using a PMAC3-style “DSPGATE3” IC, as on an ACC-24E3 UMAC board, a 

Power Clipper board, or a Power Brick system. 

Single Limit Input Configuration 

If Motor[x].LimitBits is in the range of 32 to 63, (LimitBits – 32) specifies the bit number of the 

single input that is triggered by either the positive or negative limit switch. This configuration is 

not recommended, but occasionally must be used, particularly on retrofit systems. Note that with 

this setting, it is not possible to command a move out of either limit without first disabling the 

limit functionality by setting Motor[x].pLimits to 0. 

Reverse-Order Limit Input Configuration 

If Motor[x].LimitBits is in the range of 64 to 94, (LimitBits – 64) specifies the bit number of the 

negative limit input, with the positive limit input mapped into the next higher bit. This setting can 

be useful for some networked drives with the limit switches wired into the drives. 

Limit Inputs in Separate Registers Configuration 

If Motor[x].LimitBits is in the range of 96 to 127, (LimitBits – 96) specifies the bit number of 

the positive limit in the register specified by Motor[x].pLimits. In this case, 

Motor[x].pAuxFault specifies the register for the negative limit input, with 

Motor[x].AuxFaultBit setting the bit number for that input in the register. This range permits the 

use of separate registers, or non-adjacent bits in the same register, for the two limit input bits, 

particularly valuable when the limits are wired into general-purpose I/O points on a fieldbus or 

network. 

Alternate Polarity of Limit Inputs 

If bit 7 (value 128) of Motor[x].LimitBits is also set, a value of “0” in a specified limit input bit 

signifies that the motor is into that limit, rather than a “1” if this control bit is not set. The use of 

normally closed limit switches is strongly recommended, and usually these report a “1” when 

open (on the limit), so this control bit is rarely set. However, some devices, particularly when 

using a fieldbus or network, will have the opposite polarity, requiring the use of the control bit to 

configure the system. 

Settings of 32 or greater for Motor[x].LimitBits are new in V2.1 firmware, released 1st quarter 

2016. 

Optional Software Filtering of Inputs 

In some applications, it will be desirable to require multiple scans in which the specified input bit 

reports that it is into the limit before it will trip the motor. This can prevent brief noise spikes 

from causing an undesired trip. 
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Saved setup element Motor[x].LimitLimit specifies how many accumulated scans are required 

before a limit fault is declared, tripping the motor. Each real-time input scan, Power PMAC 

checks the specified input bits. If a bit is in the fault state, Motor[x].LimitPlusCount or 

Motor[x].LimitMinusCount is incremented by 1. If it is not in its fault state, the count element 

is decremented by 1 (but will never go below 0). 

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only 

true for very high block rate applications), this check for the motor will not occur every RTI, but 

rather every few RTI periods; this could possibly alter the optimal value for 

Motor[x].LimitLimit. 

If the value of Motor[x].LimitPlusCount or Motor[x].LimitMinusCount ever exceeds that of 

Motor[x].LimitLimit, a transparent hardware limit fault will be generated, setting status bit 

Motor[x].PlusLimit or Motor[x].MinusLimit to 1. With Motor[x].LimitLimit at its default 

value of 0, a single detection of the limit state will cause a trip. (Motor[x].LimitLimit is new in 

V2.4 firmware, released 1st quarter 2018. At its default value of 0, operation is compatible with 

older firmware versions.) 

Action on Closed-Loop Trip 

The limit input signals are direction sensitive for closed-loop moves: the positive-end limit pin 

only stops positive direction moves (those coming at it from the negative side), and the negative-

end limit pin only stops negative direction moves (those coming at it from the positive side). This 

makes it possible to command a move out of the limit that you have run into. However, this also 

makes it essential to have your limit switches wired into the proper inputs, or they will be useless. 

The Motor[x].MinusLimit and Motor[x].PlusLimit software status bits reflect the present state 

of the specified limit hardware inputs (0 is not into limit; 1 is into limit). The 

Motor[x].LimitStop software status bit indicates that motion has stopped due to a limit (even if 

the motor is not presently in the limit. 

Controlled Stop 

When a motor hits a limit when the servo loop is closed, the action is dependent on the setting of 

bit 2 (value 4) of Motor[x].FaultMode. If this bit is set to its default value of 0, Power PMAC 

automatically “aborts” the motor. Aborting a motor causes a controlled deceleration to a closed-

loop zero-velocity state, using the saved setup elements Motor[x].AbortTa and 

Motor[x].AbortTs. If these values are positive, they represent the overall deceleration time and 

the S-curve time, respectively, in milliseconds. If these values are negative they represent the 

inverse of the deceleration rate (in msec2 / motor unit) and inverse of the S-curve jerk rate (in 

msec3 / motor unit).  

If the motor hit the limit during a motor move such as a jog move, the other motors in the 

coordinate system are not affected. However, if the motor hit the limit during a motion program 

commanded move, the motion program is stopped and all of the motors in the coordinate are 

aborted as well. Note that if the coordinate system has been executing a path move, this 

deceleration will not necessarily be along that path. Motors in other coordinate systems are not 

affected in either case. 

Disabled Stop 

However, if bit 2 (value 4) of Motor[x].FaultMode is set to 1, then this motor is “killed” (open-

loop, zero command output, amplifier disabled) on hitting a hardware limit. (Note, however, that 
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if the motor is already in an “abort” deceleration from exceeding a software overtravel limit, no 

further action will be taken when the hardware limit is hit.) Other motors are affected just as for 

an “abort” stop of this motor. 

The behavior of this mode of operation is based on the idea that the software limits should be 

used to catch controlled excursions out of the intended range of operation, as when too large a 

position is commanded. In this case, a controlled stop is quicker, covers a shorter distance, and is 

easier to recover from. The hardware limit switches, which should be set just outside the software 

limit positions, are used to catch uncontrolled excursions out of the intended range of operation, 

when there is a problem with feedback so the software limits do not work. 

Action on Open-Loop Trip 

The limit input signals are still direction sensitive for open-loop moves: hitting the positive limit 

switch only causes a limit fault for a positive open-loop command, and hitting the negative limit 

switch only causes a limit fault for a negative open-loop command. 

Controlled Stop 

The user has a choice for what happens when a motor hits a limit switch when the servo loop is 

open. If bit 1 (value 2) of saved setup element Motor[x].FaultMode is set to the default value of 

0, Power PMAC “aborts” the motor. This closes the servo loop with the initial commanded 

velocity being equal to the present actual velocity, and causes a controlled deceleration to a stop, 

just as if the loop were closed when the limit switch was encountered. 

Disabled Stop 

However, if bit 1 (value 2) of Motor[x].FaultMode is set to 1 when the motor hits a limit switch 

in open-loop mode, Power PMAC “kills” (disables) the motor. This immediately causes a zero 

output command and disables the amplifier. 

In either case, other motors, whether in the same coordinate system or in a different coordinate 

system, are not affected. 

Software Motor Interlocks 

In some applications, it is desirable to be able to “lock out” motion of a particular motor or 

motors, while permitting motion of other motors. In Power PMAC, this can be done through the 

non-saved setup elements Motor[x].MinusInterlock and Motor[x].PlusInterlock. 

If Motor[x].MinusInterlock is set to 1, negative-direction moves for the motor are prevented, 

whether commanded directly as motor moves (jogging or homing) or from related axis moves in 

a motion program. Similarly, if Motor[x].PlusInterlock is set to 1, positive-direction moves for 

the motor are prevented. 

If a move for the motor has been prevented by either interlock bit, the status bit 

Motor[x].InterlockStop is set to 1. If this bit is set for any motor in a coordinate system, the 

status bit Coord[x].InterlockStop is set to 1. 

If the move that has been prevented comes from a motion program move command, the program 

is aborted, stopping all motors in the coordinate system. In this case, Coord[x].ErrorStatus is set 

to 23, a value unique to this failure mode. 

Software motor interlocks are new in V2.5 firmware, released 3rd quarter 2018.  
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Encoder Loss Detection 

Loss of the feedback sensor signal is potentially a very dangerous condition in closed-loop 

control, because the servo loop no longer has any idea what the true physical position of the 

system is – usually it thinks it is “stuck” – and it can react wildly, often causing a runaway 

condition. Many of the safety checks performed, such as fatal following error limits, integrated 

current limits, overtravel limit switches, and amplifier fault signals, may be ineffective in this 

type of situation, reacting too late, or not at all. For this reason, many people want the capability 

to directly monitor the presence of the feedback signal. 

Many of Power PMAC’s servo interfaces have circuitry dedicated to monitoring the presence of a 

proper feedback signal. In addition, Power PMAC can automatically check these circuits for loss 

of sensor signal and take appropriate shutdown action. 

Signal Loss Detection Circuits 

Different types of feedback sensors require different circuits to monitor for loss of the signal, or 

at least loss of a valid signal. Power PMAC interfaces provide circuits for several of the most 

common types of feedback sensors. 

Digital Quadrature Encoders 

Digital quadrature encoders are one of the most common types of feedback sensors used in 

motion control systems. Almost always, the individual channel signals are differential pairs at 5V 

levels. Most Power PMAC interfaces for these encoders have circuitry that checks for the 

presence of a proper differential signal pair on each signal channel, utilizing “exclusive-OR” 

(XOR) logic gates, which output a high level for a proper differential signal, when the two inputs 

to the gate are at different logical levels. 

This diagram shows the XOR encoder-loss circuitry for a phase of a quadrature encoder. 
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Digital Quadrature Encoder Input Circuitry with Loss Detection 
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When there is no longer a proper signal driving the inputs on the interface, both lines are pulled to 

a high logical level internally (with proper configuration of the particular interface circuitry), so 

the XOR gate outputs a low level indicating encoder loss. These gate outputs from the A and B 

encoder channels are logically combined to create a single present/lost signal for the encoder (if 

either channel is invalid, it will indicate “lost”).  

For interfaces using the PMAC2-style DSPGATE1 ASIC, such as the ACC-24E2x UMAC axis-

interface boards, this flag is found in the low-true element Gate1[i].Chan[j].EncLossN. For 

interfaces using the PMAC3-style DSPGATE3 ASIC, such as the ACC-24E3 UMAC axis-

interface boards and the Power Brick products, this flag is found in the high-true element 

Gate3[i].Chan[j].LossStatus. 

In the DSPGATE3 ASIC, the initially detected loss signal is passed through a multi-stage digital 

delay filter driven by a special “filter clock” before it reaches the register. This clock signal is 

divided down from the encoder sampling clock (SCLK) as specified by saved setup element 

Gate3[i].FiltClockDiv. Lowering the frequency of the filter clock can help prevent spurious 

faults due to noise or other anomalies.  

The DSPGATE3 ASIC also a status bit Gate3[i].Chan[j].LossCapt, which latches at a value of 1 

if the transparent LossStatus bit ever goes to 1. This bit can be useful in setting up the system to 

identify potential signal problems. 

Analog Sinusoidal Encoders and Resolvers 

Analog sinusoidal encoders and resolvers provide simultaneous “sine” and “cosine” signals into 

the analog-to-digital converters of the Power PMAC interface circuitry for these devices. In 

proper operation, the sum of the squares of the converted values for these two signals should be 

roughly constant, and significantly different from zero. The PMAC3-style DSPGATE3 ASIC 

used on the ACC-24E3 UMAC axis-interface board and in the Power Brick products 

automatically computes this sum-of-squares value every sample cycle. The latest value is always 

available in the 16-bit element Gate3[i].Chan[j].SumOfSquares. In addition, if all of the highest 

3 active bits of this element are zero, so the value is less than 1/8 of full range (so the signal 

magnitude is less than 1/√8, or about 40%, of maximum), the status bit 

Gate3[i].Chan[j].SosError is automatically set to 1.  

If a different threshold is desired, the encoder-loss check can be configured to look for the state 

where all of the high “n” bits of SumOfSquares are zero, as is explained below. 

This diagram shows the “Lissajous pattern” for a sinusoidal sensor, plotting the sine signal 

against the cosine signal. The radius from the center is the overall magnitude of the sensor 

signals, the square root of the sum of the squares of the individual signal magnitudes. When this 

gets too small, the signal can be considered to be lost. 



Power PMAC User’s Manual 

Making Your Power PMAC Application Safe 432 

B(cos)

A(sin)

θsig

Rsig

Rmax

Rmin

 

Sinusoidal Sensor Lissajous Plot 

Serial Encoders 

Power PMAC provides interfaces for many of the most popular serial encoder protocols. For 

most of these interfaces, the receiving logic can detect that no data has been received in response 

to the cycle’s “position request” output, and set a “timeout error” flag that can be read by the 

processor. This flag bit can be used to detect encoder loss. Note that the SSI and SPI protocols 

cannot provide this detection. 

If the serial-encoder interface of the PMAC3-style DSPGATE3 ASIC used on the ACC-24E3 

UMAC axis-interface board and in the Power Brick products is used, this “timeout error” flag is 

bit 31 of the element Gate3[i].Chan[j].SerialEncDataB. If the FPGA-based ACC-84E UMAC 

serial-encoder-interface board is used, this flag is bit 31 of the element 

Acc84E[i].Chan[j].SerialEncDataB. 

It is also possible to utilize an error-checking mechanism in the data such as parity or cyclic 

redundancy check (CRC) bits. The Power PMAC interfaces for serial encoders can evaluate these 

mechanisms and determine whether the data set was valid or not. This is particularly 

recommended for the SSI and SPI protocols, where the data patterns cannot be used to detect a 

timeout error. Typically, multiple consecutive cycles with an error should be required in this case 

to create a fault; this is done by setting a relatively high value of Motor[x].EncLossCount (see 

below). 

For the SSI protocol, the parity error flag is bit 31 of Gate3[i].Chan[j].SerialEncDataB or 

Acc84E[i].Chan[j].SerialEncDataB. For the SPI protocol, any error reporting is vendor specific, 

but would be found (if it exists) in a high bit of one of these registers. 

Software Setup for Loss Detection 

Power PMAC permits automatic checking for sensor loss on each motor, and if loss is detected, 

an immediate shutdown action. There are four saved setup elements for each motor to configure 

this functionality: 
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 Motor[x].pEncLoss  Address of register with sensor loss flag 

 Motor[x].EncLossBit  Bit number of sensor-loss bit in pEncLoss register 

 Motor[x].EncLossLevel Sensor-loss logical state 

 Motor[x].EncLossLimit Sensor-loss maximum number of fault detections 

 

Note that if Motor[x].pEncLoss is set to its default value of 0, loss detection is disabled for the 

motor. Therefore, there is no automatic sensor-loss detection by default. The user must explicitly 

configure it in an application. 

It is recommended to set Motor[x].EncLossLimit to a value greater than 0, so multiple 

accumulated scans in the fault state are required to confirm a loss, so a momentary transient will 

not cause a nuisance trip. 

Typical settings of these elements for the common types of feedbacks are discussed below. 

Digital Quadrature Encoders 

For digital quadrature encoders connected to an ACC-24E2x UMAC axis-interface board with a 

PMAC2-style DSPGATE1 ASIC, the following settings should be used. 

Motor[x].pEncLoss = Gate1[i].Chan[j].EncLossN.a // Encoder-loss register 

Motor[x].EncLossBit = 13    // Loss bit number 

Motor[x].EncLossLevel = 0    // Low-true fault 

 

Note that instead of the Gate1[i] structure name, it is also possible to use the alias name for the 

particular board: Acc24E2[i], Acc24E2A[i], or ACC24E2S[i]. Socketed resistor packs on the 

circuit boards must be reversed from their default orientation to enable the creation of the loss 

signal in the accessory. Consult the Hardware Reference Manual for the accessory for details. 

For digital quadrature encoders connected to an ACC-24E3 UMAC axis-interface board with a 

PMAC3-style DSPGATE3 ASIC, or to a Power Brick control board, the following settings 

should be used: 

Motor[x].pEncLoss = Gate3[i].Chan[j].LossStatus.a // Encoder-loss register 

Motor[x].EncLossBit = 28    // “Transparent” loss bit number 

Motor[x].EncLossLevel = 1    // High-true fault 

 

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the 

particular board: Acc24E3[i] or PowerBrick[i]. 

Analog Sinusoidal Encoders and Resolvers 

For analog sinusoidal encoders and resolvers connected to an ACC-24E3 UMAC axis-interface 

board with a PMAC3-style DSPGATE3 ASIC, or to a Power Brick control board, the following 

settings should be used: 

Motor[x].pEncLoss = Gate3[i].Chan[j].SosError.a // Sum-of-squares error register 

Motor[x].EncLossBit = 31    // Sum-of-squares error bit number 

Motor[x].EncLossLevel = 1    // High-true fault 

 

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the 

particular board: Acc24E3[i] or PowerBrick[i]. 
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The magnitude threshold at which the channel’s SosError bit is automatically set to 1 by the 

ASIC is suitable for many applications, eliminating both false positives and false negatives. 

However, in some cases it may not be appropriate, particularly if the signal magnitude decreases 

significantly at higher frequencies. In these cases, a user PLC program should directly monitor 

the value of Gate3[i].Chan[j].SumOfSquares and kill the motor if it falls below a different 

(usually lower) threshold. 

It is also possible to look at the register containing the sum-of-squares magnitude to see if it has 

fallen below a certain threshold. The register addressed by Motor[x].pEncLoss can either be the 

hardware register in the DSPGATE3 ASIC – Gate3[i].Chan[j].SumOfSquares – if the 

interpolation was performed in the ASIC, or the software register in the encoder conversion table 

– EncTable[n].SumOfSqr – if the interpolation was performed in software (EncTable[n].type = 

4, 6, or 7).  

If Motor[x].EncLossBit is set to n = 224 to 255, then the values of the high (256 – n) bits of the 

32-bit register are all evaluated instead of just that of a single bit. This setting is appropriate for 

evaluating the EncTable[n].SumOfSqr magnitude. This capability is new in V2.4 firmware, 

released 1st quarter 2018. 

If Motor[x].EncLossBit is set to n = 208 to 223, (new in V2.6 firmware, released 3rd quarter 

2020) then the values of the high (224 – n) bits of the low 16-bit field of the 32-bit register are all 

evaluated instead of just that of a single bit. This setting is appropriate for evaluating the 

Gate3[i].Chan[j].SumOfSquares magnitude. 

If Motor[x].EncLossLevel is set to 0, then if all n high bits of the source register are 0, the 

encoder will be considered “lost” for that scan. This permits the user to determine what 

magnitude of signal will be the threshold for “loss”, particularly allowing more flexibility for 

encoders whose signal magnitudes decrease significantly at high frequencies. 

When the analog signals into the interpolator just reach their maximum voltage (+/-1.2Vpp for 

most Delta Tau interpolators), the digital signal values will have a range of +/-215 (+/-32,768). In 

this case, the sum-of-squares magnitude will be 230, and the high 2 bits of the 32-bit register will 

always be zero. 

If the signal magnitude is half of the maximum range for the ADCs, the digital signal values will 

have a range of +/-214, the sum-of-squares magnitude will be 228, and the high 4 bits of the 32-bit 

register will always be 0. 

If the signal magnitude is one-quarter of the maximum range for the ADCs, the digital signal 

values will have a range of +/-213, the sum-of-squares magnitude will be 226, and the high 6 bits of 

the 32-bit register will always be 0. 

To set up the motor to trip on encoder loss when all 6 of the high bits of the 16-bit hardware 

magnitude element in the DSPGATE3 are 0, the following settings should be used: 

Motor[x].pEncLoss = Gate3[i].Chan[j].SumOfSquares.a // Hardware magnitude register 

Motor[x].EncLossBit = 218    // Look at 224 – 218 = 6 highest bits 

Motor[x].EncLossLevel = 0    // Loss state is all 6 bits = 0 

 

To set up the motor to trip on encoder loss when all 8 of the high bits of the software magnitude 

register in the ECT entry are 0, the following settings should be used: 
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Motor[x].pEncLoss = EncTable[n]. SumOfSqr.a // Software magnitude register 

Motor[x].EncLossBit = 248    // Look at 256-248=8 highest bits 

Motor[x].EncLossLevel = 0    // Loss state is all 8 bits = 0 

 

Serial Encoders 

For serial encoders connected to an ACC-24E3 UMAC axis-interface board or to a Power Brick 

control board with a PMAC3-style DSPGATE3 ASIC, the following settings should be used for 

encoder protocols with a “timeout error” flag (EnDat, Hiperface, Sigma I, Sigma II/III/V, 

Tamagawa, Panasonic, Mitutoyo, and Kawasaki): 

Motor[x].pEncLoss = Gate3[i].Chan[j].SerialEncDataB.a // Status & error register 

Motor[x].EncLossBit = 31    // Timeout error bit number 

Motor[x].EncLossLevel = 1    // High-true fault 

 

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the 

particular board: Acc24E3[i] or PowerBrick[i]. 

The same settings are valid for an SSI encoder with parity checking to use the parity-error bit. 

For serial encoders connected to an ACC-84E UMAC FPGA-based serial-encoder interface 

board, the following settings should be used for encoder protocols with a “timeout error” flag 

(presently implemented protocols are EnDat, Hiperface, Sigma I, Sigma II/III/V, Tamagawa, 

Panasonic, and BiSS): 

Motor[x].pEncLoss = Acc84E[i].Chan[j].SerialEncDataB.a // Status & error register 

Motor[x].EncLossBit = 31    // Timeout error bit number 

Motor[x].EncLossLevel = 1    // High-true fault 

 

It is also possible to consider the high n bits of an encoder status word collectively, and if any of 

them is set to 1, consider this a loss state. This capability is new in V2.4 firmware, released 1st 

quarter 2018. 

If Motor[x].EncLossBit is set to n = 224 to 255, then the values of the high (256 – n) bits of the 

32-bit register are all evaluated instead of just that of a single bit. Note that it is possible to 

command the setting of EncLossBit to a negative number (n), but the value will be stored and 

reported as (256 – n). 

If Motor[x].EncLossLevel is set to 1, then if any of the (256 – n) high bits of the source register 

is 1, the encoder will be considered “lost” for that scan. This permits the user to look at multiple 

error bits collectively and consider any of them to indicate “loss” of proper feedback. 

To set up the motor to trip on encoder loss when any of the 3 high bits of the serial encoder status 

register in the DSPGATE3 is 1, the following settings should be used: 

Motor[x].pEncLoss = Gate3[i].Chan[j].SerialEncDataB.a // Encoder status register 

Motor[x].EncLossBit = 253    // Look at 256 - 253 = 3 highest bits 

Motor[x].EncLossLevel = 1    // Loss state is any of 3 bits = 1 

 

To set up the motor to trip on encoder loss when any of the 4 high bits of the serial encoder status 

register in an ACC-84x is 1, the following settings should be used: 
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Motor[x].pEncLoss = Acc84E[i].Chan[j].SerialEncDataB.a // Encoder status register 

Motor[x].EncLossBit = 252    // Look at 256 – 252 = 4 highest bits 

Motor[x].EncLossLevel = 1    // Loss state is any of 4 bits = 1 

 

Setting the Encoder Loss Limit Value 

It is possible with these loss-detection circuits that a brief transient electrical condition can 

momentarily cause the circuit to indicate a sensor loss when none has actually occurred. For this 

reason, Power PMAC permits you to specify the number of occurrences of the loss detection 

before tripping on an error condition. This is done with saved setup element 

Motor[x].EncLossLimit. 

Each real-time interrupt (RTI) period, Power PMAC will check for encoder loss on each motor 

with this functionality enabled. If the specified bit is in its “loss” state, Power PMAC will 

increment the status element Motor[x].EncLossCount by 1. If the specified bit is not in its “loss” 

state, Power PMAC will decrement this element by 1 (but never take it below 0). 

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only 

true for very high block rate applications), this check for the motor will not occur every RTI, but 

rather every few RTI periods; this could possibly alter the optimal value for 

Motor[x].EncLossLimit. 

If the value of Motor[x].EncLossCount ever exceeds that of Motor[x].EncLossLimit, an 

encoder-loss error will be generated. With Motor[x].EncLossLimit at its default value of 0, a 

single detection of the loss state will cause a trip. 

The optimal setting of Motor[x].EncLossLimit must balance quick response to a true error while 

robustly avoiding any nuisance trips. Typically a setting of 3 or 4 will provide this balance. 

Action on Encoder-Loss Error 

When Motor[x].EncLossCount becomes greater than Motor[x].EncLossLimit and Power 

PMAC generates an “encoder-loss” error, it automatically “kills” the motor, putting it in open-

loop mode with zero command output and amplifier disabled. It also aborts any motion program 

presently running in the motor’s coordinate system. The status bit Motor[x].EncLoss is set to 1 

to indicate this error. 

If bit 0 (value 1) of Motor[x].FaultMode is set to its default value of 0, any other motors in the 

coordinate system will be “aborted” (decelerated to a closed-loop enabled stop according to 

Motor[x].AbortTa and Motor[x].AbortTs). If this bit is set to 1, any other motors in the 

coordinate system are also “killed”. Motors in other coordinate systems are not affected in either 

case. Note that the action on an encoder-loss fault is identical to that for a fatal following error 

fault, amplifier fault, or I2T fault.  

Auxiliary Fault Detection 

Each motor has a secondary fault detection capability that works in the same manner as the 

encoder loss detection. This can be used to detect the loss of a second position sensor, if dual 

feedback is used, for motor thermal fault detection using the Power Brick’s dedicated circuitry, or 

some other user-specified fault bit. 
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Software Setup for Auxiliary Fault Detection 

There are four saved setup elements for each motor to configure this functionality: 

 Motor[x].pAuxFault  Address of register with auxiliary fault flag 

 Motor[x].AuxFaultBit  Bit number of sensor-loss bit in pAuxFault register 

 Motor[x].AuxFaultLevel Fault logical state 

 Motor[x].AuxFaultLimit Maximum number of fault detections 

 

Note that if Motor[x].pAuxFault is set to its default value of 0, this fault detection is disabled for 

the motor. Therefore, there is no automatic auxiliary-fault detection by default. The user must 

explicitly configure it in an application. 

Most commonly, the auxiliary-fault detection function looks at a single bit in the specified 

register. This is the case if Motor[x].AuxFaultBit is set in the range 0 – 31. If the value of this 

bit matches the value of Motor[x].AuxFaultLevel, it is considered to be in the fault state. 

However, if Motor[x].AuxFaultBit is in the range 224 – 255 (new in V2.4 firmware, released 1st 

quarter 2018), the detection function looks at the high (256 – AuxFaultBit) bits of the register. If 

Motor[x].AuxFaultLevel is 0, then if all of these bits are 0, this is the fault state. If 

Motor[x].AuxFaultLevel is 1, then if any of these bits is 1, this is the fault state. These two 

configurations are commonly used for sinusoidal encoder signal loss and serial encoder 

transmission errors, respectively. More details can be found in the description of encoder-loss 

detection, above. 

If Motor[x].AuxFaultBit is set to n = 208 to 223, (new in V2.6 firmware, released 3rd quarter 

2020) then the values of the high (224 – n) bits of the low 16-bit field of the 32-bit register are all 

evaluated instead of just that of a single bit. If Motor[x].AuxFaultLevel is 1, then if any of these 

bits is 1, this is the fault state. 

Secondary Encoder Loss Detection 

If the auxiliary fault function is used to detect the loss of a secondary encoder for a motor, the 

software setup is exactly as for the main encoder loss detection, described in the previous section. 

Motor Thermal Fault Detection (Power Brick) 

The Power Brick family of controllers has circuitry for each channel designed to interface to 

standard motor thermal sensors. When the motor temperature exceeds its safe limits, this circuitry 

will provide a fault bit that can be used to provide a quick shutdown to protect the motor. 

To use this circuitry, set Motor[x].pAuxFault to Gate3[i].Chan[j].Status.a to specify the IC’s 

input status register, Motor[x].AuxFaultBit to 15 to specify the T flag input bit, and 

Motor[x].AuxFaultLevel to 1 to specify a high-true fault condition. 

Setting the Auxiliary Fault Limit Value 

It is possible with these fault circuits that a brief transient electrical condition can momentarily 

cause the circuit to indicate a fault when none has actually occurred. For this reason, Power 

PMAC permits you to specify the number of occurrences of the fault state before tripping on an 

error condition. This is done with saved setup element Motor[x].AuxFaultLimit. 

Each real-time interrupt (RTI) period, Power PMAC will check for auxiliary on each motor with 

this functionality enabled. If the specified bit is in its “loss” state, Power PMAC will increment 
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the status element Motor[x].AuxFaultCount by 1. If the specified bit is not in its “loss” state, 

Power PMAC will decrement this element by 1 (but never take it below 0). 

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only 

true for very high block rate applications), this check for the motor will not occur every RTI, but 

rather every few RTI periods; this could possibly alter the optimal value for 

Motor[x].AuxFaultLimit. 

If the value of Motor[x].AuxFaultCount ever exceeds that of Motor[x].AuxFaultLimit, an 

auxiliary-fault error will be generated. With Motor[x].AuxFaultLimit at its default value of 0, a 

single detection of the loss state will cause a trip. 

The optimal setting of Motor[x].AuxFaultLimit must balance quick response to a true error 

while robustly avoiding any nuisance trips. Typically a setting of 3 or 4 will provide this balance. 

Action on Auxiliary-Fault Error 

When Motor[x].AuxFaultCount becomes greater than Motor[x].AuxFaultLimit and Power 

PMAC generates an “auxiliary fault” error, it automatically “kills” the motor, putting it in open-

loop mode with zero command output and amplifier disabled. It also aborts any motion program 

presently running in the motor’s coordinate system. The status bit Motor[x].AuxFault is set to 1 

to indicate this error. 

If bit 0 (value 1) of Motor[x].FaultMode is set to its default value of 0, any other motors in the 

coordinate system will be “aborted” (decelerated to a closed-loop enabled stop according to 

Motor[x].AbortTa and Motor[x].AbortTs). If this bit is set to 1, any other motors in the 

coordinate system are also “killed”. Motors in other coordinate systems are not affected in either 

case. Note that the action on an auxiliary-fault error is identical to that for a fatal following error 

fault, encoder-loss fault, amplifier fault, or I2T fault.  

Separate Negative Position Limit Detection 

If Motor[x].LimitBits is in the range of 96 to 127 or 224 to 255, then the register specified by 

Motor[x].pLimits is only used for the positive position limit input. In this case, 

Motor[x].pAuxFault specifies the register for the negative position limit input, and 

Motor[x].AuxFaultBit specifies the bit number for this input. 

In this mode of operation, Motor[x].AuxFaultLevel and Motor[x].AuxFaultLimit are not used. 

The level of the limit fault is specified by bit 7 (value 128) of Motor[x].LimitBits, and a single 

scan in the fault state will always trigger the fault. The action on a fault is treated as an overtravel 

limit fault, not as an auxiliary fault. 

This capability is new in V2.1 firmware (released 1st quarter 2016). 

Automatic Brake Control 

Power PMAC provides the capability for automatic brake control on the motors it controls. The 

user can specify a digital output to be used to enable and disable a brake on the motor with 

configurable timing on the release and engagement of the brake as the motor is enabled and 

disabled. This is particularly useful for motors with a net load offset such as a gravity load on a 

vertical axis. Only a few saved setup elements must be configured to enable this functionality; no 

user algorithm is required. 
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Specifying the Brake Control Output 

The brake control functionality is enabled by setting Motor[x].pBrakeOut to the address of the 

register containing the output bit. If this register (or the bit in the register) has an element name, 

the address can be specified using the “.a” suffix on the element name. For example: 

Motor[4].pBrakeOut = Acc24E3[1].Chan[0].OutFlagB.a 

Motor[5].pBrakeOut = Acc68E[0].DataReg[5].a 

If there is no element name for the register, as with an ACC-11E UMAC I/O board, the address 

can be specified directly. For example: 

Motor[6].pBrakeOut = Sys.piom + $A0000C 

If Motor[x].pBrakeOut is left at its default value of 0, the automatic brake-control functionality 

for the motor is disabled. 

Motor[x].BrakeOutBit specifies which bit in this 32-bit register is to be used for the output 

control. It is the location on the 32-bit data bus, not necessarily the offset from the lowest bit with 

an output. For example, I/O boards using the IOGATE IC have outputs only in bits 8 – 15 of the 

32-bit bus, so a value from 8 to 15 should be used to specify one of these outputs. 

Note that there is no software polarity control of the brake output bit. The bit is always set to 0 to 

engage the brake, and to 1 to release the brake. This is to encourage “fail-safe” implementations 

of the brake control, because a 0 typically sets a non-conducting output state, and most failure 

modes are non-conducting. In additions, output bits are forced to zero on controller reset 

(including watchdog timer trip) or shutdown. 

Specifying the Brake Timing 

Two saved setup elements control the timing for releasing and engaging the brake on the enabling 

and disabling of the motor. Motor[x].BrakeOffDelay specifies the delay in milliseconds from 

the time the motor is enabled (open-loop or closed-loop) and the specified brake-control output is 

set to 1 to release the brake. The purpose of the delay is to give the system enough time to ensure 

that proper control is established before brake release. 

Motor[x].BrakeOnDelay specifies the delay in milliseconds from the time the specified brake-

control output is set to 0 to engage the brake to the time the motor is disabled on a controlled 

(delayed) disabling. The purpose of the delay is to provide enough time for the brake to engage 

fully before servo control is removed. Delayed disabling is performed using the motor dkill 

command or the coordinate-system ddisable command; both of these can be given as on-line 

commands or buffered program commands. 
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If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only 

true for very high block rate applications), this check for the motor will not occur every RTI, but 

rather every few RTI periods; this will alter the scaling of these delay parameters. 

There is no delay if standard disabling commands (k, kill, disable) are used, or if the motor 

is disabled due to a fault condition (fatal following error, amplifier fault, encoder loss). In these 

cases, the motor is killed at the same time the brake engagement is commanded. 

Amplifier Enable and Fault Lines 

The use of the amplifier-enable (AENAn) output and the amplifier-fault (FAULTn) input lines 

for each motor are important for safe operation. Without the use of the enable line, disabling the 

amplifier relies on precise zero offsets in Power PMAC’s outputs and the amplifier’s inputs.  

Amplifier Enable Output Configuration 

The amplifier-enable line used for the motor is specified by the address in saved setup element 

Motor[x].pAmpEnable (usually Gate1[i].Chan[j].Ctrl.a or Gate3[i].Chan[j].OutCtrl.a). It is 

usually part of the same ASIC channel as the other flags used for the motor. 

Saved setup element Motor[x].AmpEnableBit specifies which bit of the 32-bit register specified 

is written to for the control of the amplifier-enable output. This should be set to 22 when using a 

PMAC2-style “DSPGATE2” IC, as on an ACC-24E2x UMAC board, or when using the standard 

MACRO-ring protocol. It should be set to 8 when using a PMAC3-style “DSPGATE3” IC, as on 

an ACC-24E3 UMAC board. 

The enable/disable polarity of the amplifier-enable line cannot be changed in software. From the 

software viewpoint, a 0 in the bit controlling the line means “disable”, and a 1 means “enable”. 

Failures such as watchdog-timer trips use hardware circuits to force the output to a “disable” (0) 

state (which is why software polarity control is not permitted). 
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Amplifier Fault Input Configuration 

Without the use of the fault line, Power PMAC may not know when an amplifier has shut down 

and may not take appropriate action. The amplifier-fault line used for the motor is specified by 

the address in Motor[x].pAmpFault (usually Gaten[i].Chan[j].Status.a). This is usually part of 

the same ASIC channel as the other flags used for the motor. 

Saved setup element Motor[x].AmpFaultBit specifies which bit of the 32-bit register specified is 

read for the status of the amplifier-fault input. This should be set to 23 when using a PMAC2-

style “DSPGATE1” IC, as on an ACC-24E2x UMAC board, or when using the standard 

MACRO-ring protocol. It should be set to 7 when using a PMAC3-style “DSPGATE3” IC, as on 

an ACC-24E3 UMAC board. 

Polarity Control 

The fault/no-fault polarity of the amplifier-fault input is determined by bit 0 (value 1) of saved 

setup element Motor[x].AmpFaultLevel. If set to the default value of 1, the input state that 

produces a 1 in the bit read by the processor is viewed as a fault condition. If set to 0, the input 

state that produces a 0 in the bit read by the processor is viewed as a fault condition. 

Optional Specification of Multiple Scans for Fault 

In some applications, it will be desirable to require multiple scans in which the specified input bit 

reports that it is in the fault state before it will trip the motor. This can prevent brief noise spikes 

or delay in clearing a previous from causing an undesired trip. 

If bit 1 (value 2) of Motor[x].AmpFaultLevel is set to 1, two consecutive scans in the fault state 

are required to cause an amplifier fault trip. 

If more scans are desired before a trip, saved setup element Motor[x].AmpFaultLimit can be set 

greater than 0, specifying how many accumulated scans are required before an amplifier fault is 

declared, tripping the motor. Each real-time input scan, Power PMAC checks the specified input 

bit. If the bit is in the fault state, Motor[x].AmpFaultCount is incremented by 1. If it is not in its 

fault state, the count element is decremented by 1 (but will never go below 0). 

If saved setup element Sys.MotorsPerRtInt is set to a value greater than zero (generally only 

true for very high block rate applications), this check for the motor will not occur every RTI, but 

rather every few RTI periods; this could possibly alter the optimal value for 

Motor[x].AmpFaultLimit. 

If the value of Motor[x].AmpFaultCount ever exceeds that of Motor[x].AmpFaultLimit, an 

amplifier fault will be generated. With Motor[x].AmpFaultLimit at its default value of 0, then 

one or two detections of the fault state will cause a trip. (Motor[x].AmpFaultLimit is new in 

V2.4 firmware, released 1st quarter 2018. At its default value of 0, operation is compatible with 

older firmware versions.) 

Action on Fault 

On detecting an amplifier fault condition, the motor is automatically “killed” (open-loop, zero-

output, amplifier disabled). If bit 0 (value 1) of Motor[x].FaultMode is set to the default value of 

0, other motors in the coordinate system (even if they just have the “null” definition – #x->0 – 

in that coordinate system) are automatically “aborted” (controlled deceleration to enabled, closed-

loop stop). If bit 0 (value 1) of Motor[x].FaultMode is set to 1, other motors in the coordinate 

system are automatically “killed” as well. 
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Current Limits 

Power PMAC provides the capability for checking for both intermittent and time-integrated 

current limits in the most common control modes to protect the motor and/or the amplifier. 

However, if Power PMAC is outputting either position or velocity commands from the servo 

algorithm, it has no access to either commanded or measured current values, and so cannot 

provide any current protection. 

Intermittent Current Limits 

Both amplifiers and motors will have an “intermittent” (a.k.a. “instantaneous) current limit rating, 

which, if exceeded even for a small fraction of a second, could cause permanent damage. 

Amplifiers with commanded-current inputs, either torque-mode or sinewave-mode, are typically 

designed so they can use the maximum input command magnitude properly for at least a few 

seconds, so do not need special protection for this. Most of these amplifiers will monitor actual 

current levels as well and shut themselves down immediately if the detected current level is too 

high. 

Direct-PWM “power block” amplifiers accept phase voltage commands, so only have access to 

measured current values. Most of these do have the capability to shut down immediately if the 

measured current exceeds its intermittent threshold, but this should be confirmed with the 

amplifier manual. 

Servo motors have an intermittent current limit rating as well. If the current exceeds this limit 

even for a few milliseconds, the permanent magnets can suffer a permanent reduction in strength. 

Winding wire insulation could also be damaged. Since motors cannot protect themselves, this 

protection must be done in the amplifier or controller. Sometimes, particularly with a matched 

amplifier/motor pair, this protection comes automatically in the amplifier. Other times, amplifier 

limits can be set lower as needed to protect a lower-rated motor. Many users will want to put this 

protection in the controller, either because the amplifier cannot do it, or as redundant protection. 

Saved setup element Motor[x].MaxDac sets the maximum “torque” (quadrature) current 

magnitude value that the Power PMAC can command for the motor (or sometimes the amplifier). 

It is scaled in the internal units of the Power PMAC, with a maximum possible range of ±32,768. 

The method for converting these units to physical current units is dependent on the mode of 

operation and is covered separately for each mode in the following sections. 

Setting MaxDac to a value less than 32,768 limits the command output range further. If the 

position/velocity servo loop computes a command value of a magnitude greater than MaxDac for 

the servo cycle, the command magnitude is reduced to that of MaxDac. When MaxDac is set for 

protective purposes, it is set to the lesser value of the motor’s intermittent limit or the amplifier’s. 

In a servo cycle where the command magnitude has been limited by MaxDac, the error integrator 

from the integral gain term Motor[x].Servo.Ki in the servo loop is not active. This functionality, 

known as “anti-windup” protection, keeps the integrator value from increasing too much while 

the servo is saturated, for the purpose of preventing instability when the servo comes out of 

saturation. 

When Power PMAC is performing commutation for a motor in either sinewave or direct-PWM 

output mode, it also commands the “field” (direct) current magnitude for the motor with the value 

of Motor[x].IdCmd. While this element is almost always set to 0 for brushless servo motor 

control, it must be set greater than 0 for induction motor control. 
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This current component is orthogonal to the “torque” (quadrature) current component output from 

the servo loop. The total current magnitude is the vector sum of these two components. As such, 

the more general constraint for MaxDac is given by the equation: 

768,3222  IdCmdMaxDac  

In terms of MaxDac, this becomes: 

22768,32 IdCmdMaxDac   

Note 

MaxDac is always a limit on commanded current in all modes 

of operation. It is up to the operation of the current-loop 

closure, whether done in the amplifier or the controller, to keep 

the actual current levels close to the commanded current 

levels. 

 

Time-Integrated Current Limits 

Both amplifiers and motors also have a (lower) continuous current limit. This is the maximum 

current magnitude that can be used on an indefinite basis without overheating. In other words, the 

device can dissipate the generated heat fast enough at this current level to maintain an acceptably 

low temperature. 

When implementing time-integrated current limiting, saved setup element Motor[x].I2tSet 

should be set to this continuous current limit, the lesser value of the motor’s continuous limit or 

the amplifier’s. As with Motor[x].MaxDac, it is scaled in the internal units of the Power PMAC, 

with a maximum possible range of ±32,768, and the method for converting these units to physical 

current units is dependent on the mode of operation. 

Both amplifiers and motors can operate at levels above this continuous limit for short periods of 

time without excessive heating. In a typical application, this capability will be used, notably for 

accelerations and decelerations. The greater the level above the continuous limit, the shorter the 

time permitted. Proper thermal protection requires evaluating both the levels and times of currents 

on an ongoing basis. 

Power PMAC implements the most common type of this protection, called “I2T” (Eye-Squared-

Tee). It uses the square of the current value, because resistive heat generation is proportional to 

the square of current. Each cycle, the algorithm squares the present current value, subtracts from 

this the square of the continuous current limit Motor[x].I2tSet, and adds the difference (which 

could be negative) multiplied by the cycle time to the previous cycle’s integrated value. It then 

compares this integrated sum to the integrated limit value you have set in the saved setup element 

Motor[x].I2tTrip, and if the sum, found in status element Motor[x].I2tSum, is greater than this 

limit, the motor is disabled with a fault. 
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Note 

I2T protection uses a simple and approximate thermal model of 

heat dissipation. It is not optimized for any individual 

application, each of which will have unique aspects of heat 

dissipation. However, it is an approach that has stood the test 

of time well for providing reasonable protection without 

requiring complex and time-consuming analysis and 

implementation. Settings should be verified experimentally in 

any application by running close to expected limits and 

checking that temperatures remain in a valid range. 

 

In torque mode and sinewave mode, Power PMAC performs these calculations based on 

commanded current levels, as it does not have access to the measured actual current levels. In 

direct-PWM mode, Power PMAC performs these calculations based on measured current levels. 

The following diagram shows this process graphically: 
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I2T Protection Sample Operation 

When the current level is above the continuous limit, the integrated value “charges up”, and when 

it is below the continuous limit, the integrated value “discharges”. The integrated value is 

represented in this diagram by the net area above the continuous limit minus the net area below. 

Under I2T protection, when the level of squared current above the continuous level is doubled 

(the current itself is increased by a factor of sqrt(2), or about 1.4), the time permitted at this level 

is halved. In other words, the square of the current level above continuous and the time permitted 

at that level are inversely proportional. The following diagram shows this relationship for a 

sample case where the motor is specified for peak current operation for 2 seconds: 
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Sample Current Level Permitted vs. Time at Level 

The integrated current limit Motor[x].I2tTrip is expressed in units of the square of current 

multiplied by time. The current is expressed in the same internal PMAC units that have a full 

range of ±32,768, and time is expressed in seconds (not in servo cycles, as in Power PMAC). 

Proper calculation of the integrated current values depends on a correct setting of saved setup 

element Sys.ServoPeriod, which specifies the time per servo cycle. 

The most common way that users specify the value of I2tTrip is to use the data sheet value for 

the motor or amplifier being protected for time permitted at the maximum momentary current 

value. In many cases, this value will be 2 or 3 seconds. This value can be used along with the 

values for MaxDac and I2tSet to compute the value of I2tTrip according to the following 

equation: 

  (sec)*22 22 tedTimePermittSetIMaxDactTripI   

If Motor[x].IdCmd is set greater than zero, as for Power PMAC computation of induction 

motors, the above equation becomes: 

  (sec)*22 222 tedTimePermittSetIIdCmdMaxDactTripI   

Note 

Power PMAC’s I2T calculations use the value of 

Sys.ServoPeriod to compute the time in seconds that has 

elapsed each servo cycle. Therefore, the value of 

Sys.ServoPeriod must correctly match the physical time 

elapsed in a servo cycle for the I2T calculations to be accurate. 
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Special Case: Extending the Monitoring Interval 

If saved setup element Sys.MotorsPerRtInt is set to a non-zero number so that individual motor 

status updates are not performed every real-time interrupt, the scaling of Motor[x].I2tTrip is 

different from when it is set to the default value of zero, or from older firmware versions for 

which there was no parameter Sys.MotorsPerRtInt. 

The time extension factor N required to modify Motor[x].I2tTrip if Sys.MotorsPerRtInt > 0 is 

given by the equation: 








 


tIntMotorsPerRSys

sServoMotorSys
ceilN

.
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where “ceil” is the “ceiling” function, indicating a rounding up to the next integer (if necessary) 

and status element Sys.ServoMotors is the highest-numbered active motor. The value of 

Motor[x].I2tTrip should be divided by N compared to cases where motor status updates are 

performed every real-time interrupt. 

Comparison to Older PMAC Scaling 

In the older PMAC and Turbo PMAC controllers, the equivalent parameter to Power PMAC’s 

Motor[x].I2tTrip is Ixx58. The scaling of both the current values and the time in Ixx58 is 

different from I2tTrip. The equation for setting Ixx58 in these older controllers is: 
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where Ixx69 is the equivalent of MaxDac, Ixx77 is the equivalent of IdCmd, and Ixx57 is the 

equivalent of I2tSet, all with the same units in both controllers. 

If you have a setting of Ixx58 in an older PMAC controller and you want to set I2tTrip in Power 

PMAC for the same functionality, use the following equation to determine I2tTrip: 

1000

.
*768,32*582 2 dServoPerioSys

IxxtTripI   

RMS Current Calculations 

The magnitude of AC electrical waveforms is often described in terms of the RMS value. RMS, 

which stands for (square) Root of the Mean of the Squares of the quantity (current or voltage) is 

very useful for power calculations, because multiplying the RMS current magnitude of an AC 

waveform by the RMS voltage magnitude gives the power in that waveform, the same as DC 

current and voltage values of the same numerical magnitudes. It is important to understand the 

relationship between the peak value of a waveform and its RMS value. 

AC Waveform RMS Calculations 

Consider a sinusoidal current waveform with the equation: 

   tIti peak sin*  
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The square can be computed as: 

     t
II

tIti
peakpeak

peak  2cos*
22

sin*

22

222   

Taking the mean value of this signal over one or more full cycles simply leaves the first term of 

the expression: 

2

2

2 peakI
i   

Next, taking the square root of this mean gives us: 

peakrms II
2

1
  

So the RMS magnitude of a sinusoidal waveform is 0.707 times the peak magnitude. Conversely, 

the peak magnitude can be calculated as 1.414 times the RMS magnitude. So if a motor is rated as 

having a 10Arms continuous current capability, the peak current value of each AC waveform can 

be just above 14A. 

Motion Profile RMS Calculations 

The current requirements for motion profiles are also often calculated using RMS values, and this 

can lead to confusion for the user who does not distinguish these calculations from AC waveform 

RMS calculations. While motion profile RMS calculations are not directly used in setting Power 

PMAC, they are often important in sizing a motor and amplifier for a particular application by 

determining the needed continuous current rating. 

In a simple example, our application motion profile consists of indefinite repetitions of the 

following sequence of a trapezoidal move and dwell: 

 Acceleration at 20A for 0.5 seconds 

 Constant velocity at 2A for 5 seconds 

 Deceleration at 16A for 0.5 seconds 

 Dwell at ~0A for 2 seconds 

 

The “average” current for this profile is computed using the root of the mean of the squares of the 

sections: 

       
A

AAAA
I avg 6.6

8

012820200

25.055.0

02165.025205.0
2222








  

The motor and amplifier selected for this application must each have a continuous current rating 

of at least 6.6A. 

The following diagram shows this application motion profile, required current levels, square of 

current levels, and the resulting average squared-current value with the associated RMS current 

level. 
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Sample Application Move Profile and Resulting RMS Current 

The potential confusion comes from the fact that for brushless motors, the individual current 

requirements for each section of the profile are themselves RMS values of the AC waveforms 

during that section. So these calculations can be computing RMS values of RMS values! 

It is very important for the user to distinguish between the two types of RMS calculations. The 

terminology used by different suppliers is not always consistent, so the context must always be 

taken into account. This chapter uses “intermittent” to describe short-term sections of motion 

profiles, such as high-current accelerations and decelerations. The Motor[x].MaxDac 

“intermittent current limit” must be high enough to cover these. “Instantaneous” in this chapter 

refers to the individual current samples taken at high frequencies, such as the phase current 

readings, and “peak” is the maximum instantaneous reading of a waveform. 

Reference Frame Conversions 

When working with control of AC motors, including brushless servo motors and AC induction 

motors, two frames of reference are useful, and control algorithms often must convert between 

them. One reference frame is the “phase” frame, which is tied to the physical phases on the stator. 

The other reference frame is the “field” frame, which is tied to the magnetic field on the rotor. In 

brushless servo motors, this frame is fixed with respect to the mechanical structure of the rotor 

and the permanent magnets in it. In AC induction motors, this frame “slips” with regard to the 

mechanical structure of the motor by an amount proportional to the torque producing current. 
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Field-Frame Current Commands 

Power PMAC always initially computes its current commands in the field frame. There are two 

components to the net current value in the field frame. The quadrature, or torque-producing, 

current component is the component perpendicular to the rotor magnetic field. The output of 

Power PMAC’s position-velocity servo loop is the commanded quadrature current. If Power 

PMAC is in torque-control mode, this value is sent directly to the amplifier, which performs any 

reference-frame conversions itself. 

If Power PMAC is performing commutation for the motor, the quadrature-current command from 

the servo loop is one of two current-command inputs to the commutation algorithm. The other is 

the direct, or field-producing, component. In Power PMAC, the direct current command input to 

the commutation algorithm is the value of saved setup element Motor[x].IdCmd. For brushless 

servo motors, IdCmd is almost always set to 0. For AC induction motors, IdCmd must be set to 

a value greater than 0 to induce a magnetic field in the rotor. Common values of IdCmd for 

induction motors are around 3,000. 

Sinewave Mode Current Output Conversion 

In Power PMAC’s sinewave output mode, the quadrature and direct current command values are 

converted to two phase current command values, and these phase current commands are sent to 

the amplifier, usually as analog voltages. Analytically, this conversion is known as the “inverse 

Park-Clarke transformation”. In amplifiers of this class, the current loops are closed in the phase 

frame directly from phase current measurements. 

Because all of the limits discussed in this note use commanded current values in the field frame, 

the user does not need to consider the reference frame conversion in this mode. 

Direct PWM Mode Current Input Conversion 

In Power PMAC’s direct-PWM output mode, the two phase current measurement values are 

converted from the phase frame to the field frame before they are compared to the commanded 

field-frame current values to close the current loops. Analytically, this conversion is known as the 

“Park-Clarke transformation”. For 3-phase motors, this transformation starts with phase values 

separated by 120° and produces field values separated by 90°. 

In standard “academic” presentations of this transformation for 3-phase systems, the overall 

vector magnitude of the combined values is conserved during the transformation, but this requires 

additional multiplications to achieve. Since Power PMAC is performing this transformation 

10,000 or more times per second, in order to save computation time, these scaling multiplications 

are not used, and the magnitude of the transformed quantity is somewhat reduced 

In Power PMAC, the resulting magnitude in field coordinates has a magnitude of cos(120°-90°) = 

0.866 times that of the peak values in the phase current coordinates. For example, if the phase 

current measurements were sine waves with peak values of the full range ±32,768, the resulting 

magnitude of the field-frame current values would be 32,768*cos(30°) = 28,377. Note that while 

these phase-frame measurements are AC waveforms in the steady state, the conversion to field-

frame coordinates create DC values. Phase-current sine waves with peak measurements of 

±32,768 would convert to constant DC field-frame current values of 28,377. 

Remember that the peak values of the phase current measurements are sqrt(2) = 1.414 times the 

RMS values of the sine waves. Phase-current sine waves with peak measurements of ±32,768 
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would have RMS current magnitudes of 32,768 / 1.414 = 23,174 in the same converter units. This 

is what would result from current commands with a magnitude in the field frame of 28,377. 

Note that for 2-phase motors, as with most stepper motors, the magnitude of the current after the 

transformation is the same as before, because cos(90°-90°) = 1.0. 

Torque Control Mode 

In torque control mode, the result of the position-velocity servo loop in Power PMAC is output to 

the amplifier, typically through a D/A converter circuit with an output range of ±10V, 

corresponding to the full numeric range of ±32,768. The output circuitry can therefore be 

considered to have a “gain” of 10 / 32,768 (Volts / LSB). 

Intermittent Current Limit 

Motor[x].MaxDac can be used to limit the torque command outputs to a smaller range. The 

output voltage range is given as: 

768,32
*10max

MaxDac
V   

At the default value for MaxDac of 20,480, the output range is limited to ±6.25V. 

Note that these calculations refer to the voltage of the DAC+ output relative to the reference 

voltage signal AGND (0V). If you are using the DAC+ and DAC- outputs, the output range is 

±20V, and the effective gain of the output circuitry is 20 / 32,768 (Volts / LSB). If the amplifier 

can only tolerate ±10V, the value of MaxDac should not be greater than 16,384. 

A torque-mode amplifier with an analog input has a “transconductance gain” expressed in 

amperes per volt. For a DC brush-motor amplifier, the amperes in this term are DC values. For a 

brushless-motor amplifier, the amperes in this term a usually, but not always, expressed as the 

RMS value of the AC current. In either type of amplifier, the data sheet may not provide a gain 

value, but simply a maximum intermittent current value. For an amplifier with a ±10V input, 

simply divide this value by 10 to get the amperes per volt. For example, if the amplifier lists a 

25A maximum intermittent current, the amplifier’s gain is 2.5A/V. 

Motor[x].MaxDac can be set to limit the intermittent current output magnitude to protect either 

the amplifier or the motor. Note, however, that virtually all amplifiers of this type can safely take 

the full-range command of ±10V for at least a few seconds, so there is almost never a need to 

reduce the value of MaxDac for amplifier protection. (There can be reasons other than motor or 

amplifier protection to reduce the value of MaxDac.) 

It is quite common that the motor will have a lower intermittent current rating than the amplifier. 

In this case, MaxDac should be set to a value lower than its largest possible value. The equation 

for MaxDac can be given as: 

ImaxAmp

ItopMtr
MaxDac *768,32  

This equation assumes that the intermittent current rating for the motor (ItopMtr) is expressed in 

the same type of units as the maximum intermittent current value for the amplifier (ImaxAmp). 
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For brushless motors and amplifiers, these are typically both expressed as RMS quantities. If you 

are limiting the intermittent current command output from the Power PMAC for reasons other 

than motor protection, simply substitute your current limit in place of ItopMtr in the above 

equation. 

For example, if the brushless-motor amplifier has a 25Arms maximum intermittent current 

capability (i.e. a ±10V input commands a ±25Arms current), but the brushless motor itself has a 

20Arms intermittent current limit, MaxDac is calculated as: 

214,26
25

20
*768,32 

rms

rms

A

A
MaxDac  

Continuous Current Limit 

When implementing I2T thermal protection, Motor[x].I2tSet specifies the continuous current 

limit, the highest current level the device can use on an ongoing basis without overheating. It is 

expressed in the same units as Motor[x].MaxDac, and so can be calculated with the same type of 

equation. 

Continuing our example, if the brushless motor has a 10Arms continuous current rating, and is 

used with an amplifier that has a peak current capability of 25Arms, I2tSet is calculated as: 

107,13
25

10
*768,322 

rms

rms

A

A
tSetI  

Integrated Current Limit 

Most commonly, the I2T shutdown threshold is set by using the maximum time permitted at the 

intermittent current limit. In our example of a brushless motor with a 10Arms continuous limit and 

a 20Arms intermittent limit used with an amplifier that has a peak current capability of 25Arms, if 

the maximum time permitted for 20Arms operation is 2 seconds, Motor[x].I2tTrip can be 

calculated as: 

  922 1003.12*107,13214,262 tTripI  

In torque output mode, it is important that Motor[x].IdCmd be set to its default value of 0 so 

proper I2T calculations will be done. A non-zero value would not affect the control calculations, 

but it would be used as a real commanded current value in the I2T calculations. 

Sinewave Output Mode 

In sinewave-output control mode, the result of the position-velocity servo loop in Power PMAC, 

with a possible numerical range of ±32,768, is used as the “torque” (quadrature) current input to 

Power PMAC’s commutation algorithm. Based on the rotor angle θ as detected by the rotor 

position feedback sensor, Power PMAC computes two phase current commands for the motor, 

multiplying the servo command value by sin(θ) and sin(θ-φ), where φ is the angle difference 

between phases as set by Motor[x].PhaseOffset.  

Each phase command value is then multiplied by Motor[x].PwmSf / 32,768, and the results are 

written to two D/A converters, each with an output range of ±10V, corresponding to the full 

numeric range of ±32,768. (The default value of PwmSf is +32,767, making this second scaling 
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effectively equal to 1.0. The magnitude of PwmSf is seldom changed from the default in this 

mode, but changing the sign has the same effect as swapping two motor leads.) The output 

circuitry can therefore be considered to have a “gain” of 10 / 32,768 (Volts / LSB). 

When used to control a 3-phase motor – the most common configuration – the amplifier controls 

the third phase with a “balance loop”, commanding it so its current will be equal to the negative 

of the sum of the two phases commanded from the Power PMAC. 

Intermittent Current Limit 

Motor[x].MaxDac, by limiting the range of the servo-loop output, can be used to limit the 

outputs to a smaller range. The output voltage range is given as: 

768,32
*

768,32
*10max

PwmSfMaxDac
V   

At the default value for MaxDac of 20,480 and for PwmSf of 32,767, the output range is limited 

to ±6.25V for each DAC. 

Note that these calculations refer to the voltage of the DAC+ output relative to the reference 

voltage signal AGND (0V). If you are using the DAC+ and DAC- outputs, the output range is 

±20V, and the effective gain of the output circuitry is 20 / 32,768 (Volts / LSB). If the amplifier 

can only tolerate ±10V, the value of MaxDac should not be greater than 16,384. 

A sinewave-input amplifier with two analog inputs has a “transconductance gain” expressed in 

amperes per volt. Since this style of amplifier simply produces an instantaneous phase current 

that is proportional to the instantaneous voltage of the phase command signal, this gain can be 

thought of either in terms of instantaneous or RMS current. In terms of peak current for a phase: 

 
768,32

*
768,32

*10*max

PwmSfMaxDac

V

A
KAI amp 








  

However, if the motor ratings are in terms of RMS currents, as they usually are for electronically 

commutated brushless motors, the conversion from instantaneous current values in Power PMAC 

to RMS motor current values must be performed at some point. For RMS current: 

 
768,32

*
768,32

*10**
2

1
max

PwmSfMaxDac

V

A
KAI amprms 








  

Solving for MaxDac: 

 rms

amp

AI
KPwmSf

MaxDac max*
2

*
768,32

*
10

768,32
  

For example, a sine-wave input amplifier with a transconductance gain for each phase of 4 

amps/volt could produce a current output of 40A (peak) on each phase from a full-range (±10V) 

sinewave command from a Power PMAC with PwmSf at the default setting of 32,767. This 

corresponds to an RMS magnitude of 40/sqrt(2) = 28.3Arms. If the motor has an intermittent 

current limit of 20Arms, MaxDac can be set by the following equation: 
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170,2320*
4

2
*

767,32

768,32
*

10

768,32
MaxDac  

For the case of an AC induction motor driven by this sinewave amplifier (not common!) with a 

20Arms intermittent current limit and a value of Motor[x].IdCmd of 3,000, the calculation 

becomes: 

170,2320*
4

2
*

767,32

768,32
*

10

768,3222  IdCmdMaxDac  

975,22000,3170,23170,23 2222  IdCmdMaxDac  

Continuous Current Limit 

As in other modes, Motor[x].I2tSet can be used to specify the continuous current limit in 

sinewave output mode, specifying the highest current level the device can use on an ongoing 

basis without overheating. It is expressed in the same units as Motor[x].MaxDac, and so can be 

calculated with the same type of equation. 

Continuing our above example, if the brushless motor has a continuous current limit of 10Arms, 

I2tSet is calculated as: 

585,1110*
4

2
*

767,32

768,32
*

10

768,32
2 tSetI  

If the AC induction motor operated with a value of 3,000 for IdCmd has a continuous current 

limit of 10Arms, I2Set is calculated as: 

585,1110*
4

2
*

767,32

768,32
*

10

768,32
2 22  IdCmdtSetI  

190,11000,3585,11585,112 2222  IdCmdtSetI  

Integrated Current Limit 

Typically, the integrated current limit is set by using the maximum time permitted at the 

intermittent current limit. In our present example of a brushless motor with a 10Arms continuous 

current limit and a 20Arms intermittent current limit used with a sinewave amplifier that has a gain 

of 4A/V, if the maximum time permitted at the intermittent limit is 3 seconds, Motor[x].I2tTrip 

can be calculated as: 

  922 1021.13*585,11170,232 tTripI  

The calculations for the AC induction motor with the same current ratings come out the same. 

Direct PWM Output Mode 

In direct-PWM output control mode, the result of the position-velocity servo loop in Power 

PMAC, with a possible numerical range of ±32,768, is used as the “torque” current command to 
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Power PMAC’s commutation algorithm. Instantaneous readings of two phase-current A/D 

converters (ADCs), each treated as having a possible numerical range of ±32,768 (regardless of 

the actual resolution of the ADCs), are used as the actual current measurements to close the 

current loops with respect to the command. 

The “gain” of the ADCs, in LSBs/Ampere, is the factor that ties the numerical current values in 

the Power PMAC to physical current units. Each direct-PWM “power block” amplifier provides 

this value, either directly as a gain term, or as a full-range current value representing a 

measurement of 32,768 LSBs. Typically, this full-range measured current value is somewhat 

greater than the true maximum current (even at the peak of the largest intermittent-duty sinewave) 

ever expected in normal operation, to aid in the detection of overcurrent fault conditions. 

The full-range measurements of instantaneous phase currents (and the associated ADC “gains”) 

in several Delta Tau power-block amplifiers are listed below: 

 Geo Brick AC 5Armscont/10Armsint:  15.62A (Kadc = 32,768 LSBs / 15.62A) 

 Geo Brick AC 8Armscont/16Armsint:  25.00A (Kadc = 32,768 LSBs / 25.00A) 

 Geo Brick AC 15Armscont/30Armsint:  46.88A (Kadc = 32,768 LSBs / 46.88A) 

 Geo Brick LV 0.25Armscont/0.75Armsint:  1.692A (Kadc = 32,768 LSBs / 1.692A) 

 Geo Brick LV 1Armscont/3Armsint:  6.770A (Kadc = 32,768 LSBs / 6.770A) 

 Geo Brick LV 5Armscont/15Armsint:  33.85A (Kadc = 32,768 LSBs / 33.85A) 

 Geo Book 1.5Armscont/4.5Armsint:  8.00A (Kadc = 32,768 LSBs / 8.00A) 

 Geo Book 3Armscont/9Armsint:   14.6A (Kadc = 32,768 LSBs / 14.6A) 

 Geo Book 5Armscont/10Armsint:   16.2A (Kadc = 32,768 LSBs / 16.2A) 

 Geo Book 10Armscont/20Armsint:   32.5A (Kadc = 32,768 LSBs / 32.5A) 

 Geo Book 15Armscont/30Armsint:   48.8A (Kadc = 32,768 LSBs / 48.8A) 

 Geo Book 20Armscont/40Armsint:   65.0A (Kadc = 32,768 LSBs / 65.0A) 

 Geo Book 30Armscont/60Armsint:   97.6A (Kadc = 32,768 LSBs / 97.6A) 

 Geo 3U 4Armscont/8Armsint:   13.01A (Kadc =32,768 LSBs / 13.01A) 

 

The Geo Book amplifiers listed include both the Geo PWM amplifiers and the Geo MACRO 

amplifiers. 

In Power PMAC’s direct-PWM mode, the phase current numbers produced by the ADCs are 

converted to field-frame current values. The resulting vector magnitude of the field-frame (direct 

and quadrature) current values includes a multiplication by cos(φ-90°), where φ is the electrical 

angle between phases, as set by Motor[x].PhaseOffset. For 3-phase motors, where PhaseOffset 

is set to ±683 (out of a cycle of 2048), φ is 120°, and cos(φ-90°) is 0.866. 

DC brush motors can be controlled by Power PMAC in direct-PWM output mode by forcing the 

commutation angle to 0 at all times. In this case, there is no need for conversion between RMS 

and peak values, or between phase and field reference frames. 

Intermittent Current Limit 

Motor[x].MaxDac sets the magnitude of the maximum quadrature (torque) current command 

that can be issued from the position-velocity servo loop. The maximum magnitude of the net 

current command into the commutation algorithm is the vector sum of MaxDac and IdCmd: 

22
max IdCmdMaxDacI dq   
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For brushless servo motors, IdCmd is virtually always set to 0, so MaxDac itself sets the 

maximum net current command magnitude for these motors. 

Several stages of calculation must be used to convert the intermittent current limit of a motor, 

usually given in RMS amperes, to the units of MaxDac.  

 The RMS value must be multiplied by sqrt(2) to convert to a peak current value in 

amperes. 

 The peak value must be multiplied by the “gain” of the ADC (Kadc) for the amplifier to 

convert into (16-bit) LSBs of the ADC. 

 The ADC value must be converted to field-coordinate magnitude by multiplying by 

cos(φ-90°). 

 

When IdCmd is set to 0, the equation for MaxDac becomes: 

  90cos**2*max adcrms KIMaxDac  

For a 3-phase brushless servo motor with an 8Arms intermittent current limit controlled by a Geo 

Brick AC 5A/10A amplifier, MaxDac can be computed as: 

  553,2030cos*
62.15

768,32
*2*8 MaxDac  

For a 2-phase stepper motor with a 2.5Arms intermittent current limit controlled by a Geo Brick 

LV 1A/3A amplifier, MaxDac can be computed as: 

  112,170cos*
770.6

768,32
*2*5.2 MaxDac  

For a 3-phase induction motor with a 25Arms intermittent current limit controlled by a Geo Book 

15A/30A amplifier, with IdCmd set to 2,800, MaxDac can be computed as: 

  558,2030cos*
8.48

768,32
*2*2522  IdCmdMaxDac  

366,20800,2558,20558,20 2222  IdCmdMaxDac  

For a DC brush motor with a 2.75A intermittent current limit controlled by a Geo Brick LV 

1A/3A amplifier, no RMS or frame conversions are required, so MaxDac can be computed as: 

310,13
770.6

768,32
*75.2 MaxDac  

Continuous Current Limit 

As in other modes, Motor[x].I2tSet can be used to specify the continuous current limit in direct-

PWM output mode, specifying the highest current level the device can use on an ongoing basis 

without overheating. It is calculated with the same type of equation. With IdCmd equal to 0, the 

equation becomes: 
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  90cos**2*2 adcrmscont KItSetI  

Continuing with our above examples: 

For a 3-phase brushless servo motor with a 4Arms continuous current limit controlled by a Geo 

Brick AC 5A/10A amplifier, I2tSet can be computed as: 

  277,1030cos*
62.15

768,32
*2*42 tSetI  

For a 2-phase brushless motor with a 1.0Arms continuous current limit controlled by a Geo Brick 

LV 1A/3A amplifier, I2tSet can be computed as: 

  845,60cos*
770.6

768,32
*2*0.12 tSetI  

Note that if this motor is driven as an open-loop stepper in “direct microstepping” mode, where 

the motor current comes from IdCmd, this equation determines the maximum magnitude of 

IdCmd that should be used. 

For a 3-phase induction motor with a 10Arms continuous current limit controlled by a Geo Book 

15A/30A amplifier, with IdCmd set to 2,800, I2tSet can be computed as: 

  223,830cos*
8.48

768,32
*2*102 22  IdCmdtSetI  

732,7800,2223,8223,82 2222  IdCmdtSetI  

For a DC brush motor with a 1.25A continuous current limit controlled by a Geo Brick LV 

1A/3A amplifier, no RMS or frame conversions are required, so I2tSet can be computed as: 

050,6
770.6

768,32
*25.12 tSetI  

Integrated Current Limit 

As in the other modes, the integrated current limit is usually set by using the specified maximum 

time permitted at the intermittent current limit. Once values for MaxDac, IdCmd, and I2tSet 

have been determined, the value of the integrated current limit element Motor[x].I2tTrip is 

straightforward to compute, as all unit conversions have already been done. The same equation as 

in other modes can be used: 

  (sec)*22 222 tedTimePermittSetIIdCmdMaxDactTripI   

Continuing with the above examples: 

For a 3-phase brushless servo motor with a 4Arms continuous current limit and an 8Arms 

intermittent current limit for 3 seconds controlled by a Geo Brick AC 5A/10A amplifier, I2tTrip 

can be computed as: 
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  8222 1050.93*277,100553,202 tTripI  

For a 2-phase brushless motor with a 1.0Arms continuous current limit and a 2.5Arms intermittent 

current limit for 2 seconds controlled by a Geo Brick LV 1A/3A amplifier, I2tTrip can be 

computed as: 

  8222 1092.42*845,60112,172 tTripI  

For a 3-phase induction motor with a 10Arms continuous current limit and a 25Arms intermittent 

current limit for 5 seconds controlled by a Geo Book 15A/30A amplifier, with IdCmd set to 

2,800, I2tTrip can be computed as: 

  9222 1081.15*732,7800,2366,202 tTripI  

For a DC brush motor with a 1.25A continuous current limit and a 2.75A intermittent current 

limit for 2 seconds controlled by a Geo Brick LV 1A/3A amplifier, I2tTrip can be computed as: 

  8222 1081.25*050,60310,132 tTripI  

Velocity Limits 

Power PMAC provides several limits on the velocities that can be commanded of axes and 

motors. 

Programmed Vector Velocity Limit 

Each coordinate system has a vector velocity limit in Coord[x].MaxFeedrate, expressed in axis 

units per time unit. (The time unit is set by Coord[x].FeedTime, in milliseconds.) If a move is 

specified by vector velocity (linear or circle mode move specified with F instead of tm), the 

specified vector velocity (feedrate) is compared to this parameter. If the value is greater than the 

limit, the limit value is used for the move instead. 

Programmed Motor Velocity Limit 

Each motor has a programmable velocity limit in Motor[x].MaxSpeed, expressed in motor units 

per millisecond. This limit has several functions. First, it serves as the commanded velocity for 

the motor in rapid-mode moves if the Motor[x].RapidSpeedSel is set to the default value of 0. 

Second, for linear-mode moves (with or without move segmentation enabled), 

Motor[x].MaxSpeed serves as the maximum velocity permitted, calculated on a move-by-move 

basis. If the commanded velocity requested of a motor for a move exceeds the limit for the motor, 

the move is slowed so that the velocity limit is not exceeded. In a multi-axis programmed move, 

all axes in the coordinate system are slowed proportionally so that no change in path occurs and 

coordination is maintained. 

In addition, for linear, circle and PVT-mode moves executed with segmentation enabled 

(Coord[x].SegMoveTime > 0) and the special lookahead buffer active (lookahead buffer defined, 

Coord[x].LHDistance > 0), it serves as the maximum velocity for each segment of the motion. 

This can be particularly valuable for non-Cartesian coordinate systems defined with Power 

PMAC’s kinematic equations; very high motor velocities can inadvertently be commanded near 

“singularities”. The lookahead algorithm can detect these problems beforehand, and slow the 
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motion down along the path into the problem point, observing the Motor[x].InvAmax motor 

acceleration limits for all axes in the coordinate system. 

Velocities are compared to these limits assuming the % value for the coordinate system is 100 

(real time), as the % value is used after this limit check. This means that other % values will 

result in different effective limits. However, for segmented moves, this limit check occurs after 

the segmentation override value Coord[x].SegOverride is used, so the effective limit remains the 

same regardless of what segmentation override value is used. 

Position-Following Velocity Limit 

Each motor can specify the maximum velocity magnitude that can result from the position-

following function. If Motor[x].MasterMaxSpeed is greater than zero, it specifies this limit in 

motor units per servo cycle. If the speed of the master and the following ratio in 

Motor[x].MasterPosSf request a higher speed in any servo cycle, the resulting speed will be 

limited to this magnitude. Note that if this following is superimposed on programmed moves, 

only the component of speed from the following is limited by this parameter; total speed could be 

greater. For more detail on this feature, refer to position-following section of the chapter 

Synchronizing Power PMAC to External Events. 

Acceleration Limits 

Power PMAC provides several limits on the accelerations that can be commanded of axes and 

motors. 

Programmed Vector Acceleration Limits 

Each coordinate system has two vector acceleration limits that act at move computation time. 

They are intended for path-based applications, and are calculated in the plane in XYZ Cartesian 

space that is defined by the normal command. By default, the XY-plane is used.  

Coord[x].MaxCirAccel limits the V2/R centripetal acceleration from a programmed circle-mode 

move. If the programmed velocity would produce a centripetal acceleration higher than this limit, 

the velocity is automatically slowed at the move computation time so that this limit is not 

violated. This is done independently of any motor acceleration limiting. 

Coord[x].CornerAccel specifies the acceleration in blending between any two linear and/or 

circle-mode moves, calculated based on the corner angle in the specified plane and the 

programmed speed of the moves. It calculates the blending time necessary to achieve this 

acceleration without exceeding it, ignoring the value in Coord[x].Ta, but will not use a time less 

than Coord[x].Td. 

Programmed Motor Acceleration Limits 

Each motor has a programmable acceleration limit set by Motor[x].InvAmax, expressed in 

milliseconds2 per motor unit. As the name implies, this is the inverse of the maximum rate of 

acceleration. This limit has multiple functions. 

First, for simple linear-mode moves with move segmentation disabled (Coord[x].SegMoveTime 

= 0), Motor[x].InvAmax specifies the magnitude of the maximum acceleration permitted, 

calculated on a move-by-move basis. If the commanded acceleration requested of a motor for a 

move by the change in velocity and the acceleration times exceeds the limit for the motor, the 

acceleration times are extended so that the acceleration limit is not exceeded. In a multi-axis 
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programmed move, the times for all axes in the coordinate system are identically extended so that 

full coordination is maintained. 

Motor[x].InvDmax specifies the magnitude of the maximum final deceleration permitted for a 

linear move sequence. Motor[x].InvAmax specifies the maximum magnitude for all blending 

between moves in a sequence, regardless of whether this blending causes an acceleration or 

deceleration. 

Note 

The linear-mode move must have a non-zero acceleration time 

(Ta, Td, or Ts > 0.0) for this check to be made at move 

calculation time, as it is the acceleration section that is checked 

against the limit. 

Note that in blending linear-mode moves, the acceleration time occurs half in the incoming move 

and half in the outgoing move. Extending the acceleration time of a blend therefore causes the 

blend to occupy more time in both the incoming and outgoing moves. It is not possible to extend 

the acceleration time past the start of the constant-speed portion of the incoming move. In this 

mode of operation, if observing the acceleration limit requires that the blend time be extended 

past this point, the blend time will only be extended to this point, and the acceleration limit will 

be violated. (If your application requires more sophisticated acceleration limiting than this, you 

will need to use the special buffered lookahead function that can spread acceleration over 

multiple moves. This is discussed below.) 

Second, for linear, circle, and PVT-mode moves executed with segmentation enabled 

(Coord[x].SegMoveTime > 0) and the special lookahead buffer active (lookahead buffer defined, 

Coord[x].LHDistance > 0), it serves as the maximum acceleration for each segment of the 

motion. The lookahead algorithm can detect these problems beforehand, and slow the motion 

down along the path into the problem point, observing the Motor[x].InvAmax motor 

acceleration limits for all axes in the coordinate system. 

Accelerations are compared to these limits assuming the % value for the coordinate system is 100 

(real time), as the % value is used after this limit check. This means that other % values will 

result in different effective limits. However, for segmented moves, this limit check occurs after 

the segmentation override value Coord[x].SegOverride is used, so the effective limit remains the 

same regardless of what segmentation override value is used. 

Motor Move Acceleration Command 

In motor jogging and homing-search moves, it is possible to command the acceleration value 

directly in order to limit the rate of change of velocity. If Motor[x].JogTa is set to a negative 

value, its magnitude expresses the inverse of the magnitude of the acceleration rate used in 

computing the motor trajectory, expressed in milliseconds2 per motor unit. 

Position-Following Acceleration Limit 

Each motor can specify the maximum acceleration magnitude that can result from the position-

following function. If Motor[x].MasterMaxAccel is greater than zero, it specifies this limit in 

motor units per servo cycle per servo cycle. If the motion of the master and the following ratio in 

Motor[x].MasterPosSf request a higher acceleration magnitude in any servo cycle, the resulting 

acceleration will be limited to this magnitude. Note that if this following is superimposed on 
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programmed moves, only the component of acceleration from the following is limited by this 

parameter; total acceleration could be greater. For more detail on this feature, refer to position-

following section of the chapter Synchronizing Power PMAC to External Events. 

Jerk Limits 

Power PMAC provides a limit on the commanded “jerk” (rate of change of acceleration) that can 

be commanded of axes and motors in some classes of moves. The jerk level can be commanded 

or limited in the “S-curve” acceleration sections of moves that start or stop at zero acceleration. 

Note that there is no jerk limiting in the buffered lookahead function. 

Programmed Motor Jerk Limit 

Each motor has a programmable jerk limit set by Motor[x].InvJmax, expressed in milliseconds3 

per motor unit. As the name implies, this is the inverse of the maximum rate of jerk. For simple 

linear-mode moves with move segmentation disabled (Coord[x].SegMoveTime = 0), 

Motor[x].InvAmax specifies as the maximum acceleration permitted, calculated on a move-by-

move basis. If the commanded acceleration requested of a motor for a move by the change in 

velocity and the acceleration times exceeds the limit for the motor, the acceleration times are 

extended so that the acceleration limit is not exceeded. In a multi-axis programmed move, the 

times for all axes in the coordinate system are identically extended so that full coordination is 

maintained. 

Note 

The linear-mode move must have a non-zero “S-curve” time 

(Ts > 0.0) for this check to be made at move calculation time, 

as it is the S-curve section that is checked against the limit. 

 

Motor Move Jerk Command 

In motor jogging and homing-search moves, it is possible to command the jerk value directly in 

order to limit the rate of change of acceleration. If Motor[x].JogTs is set to a negative value, its 

magnitude expresses the inverse of the magnitude of the jerk rate used in computing the motor 

trajectory, expressed in milliseconds3 per motor unit. 

Commanded Safety Stops 

Power PMAC has many commands that stop commanded motion in some manner. These are all 

covered in the chapter Writing and Executing Script Programs under the heading “Stopping 

Script Motion Program Execution”. Most of these commands permit interactive stopping and 

restarting of motion programs and moves that are not necessarily for safety reasons. 

In this section, we cover the stopping commands and modes that are usually used for safety 

reasons, considered “emergency” stops. It is not possible simply to resume a motion program 

after issuing one of these commands. 

Abort: Controlled Stop 

The coordinate-system “abort” command (a or abort on-line, abort programmed) causes the 

Power PMAC to break into the present trajectory of each motor in the coordinate system and 

immediately begin a commanded deceleration to a controlled stop according to the values of that 
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motor’s Motor[x].AbortTa and Motor[x].AbortTs saved setup elements. These elements can 

specify deceleration and S-curve times, or more commonly, deceleration and jerk rates. 

This type of commanded stop qualifies as a “Category 2” safe stop under the IEC-61800-5-2 

machine safety standard. Since it does rely on the servo loop to keep the motor’s actual position 

close to the commanded deceleration profile, it should only be used as a safety stop in those cases 

where reasonable servo control is present. 

Disable: Uncontrolled Stop 

The coordinate-system “disable” command (disable on-line, disable programmed) causes 

the Power PMAC to immediately “kill” every motor in the coordinate system, which consists of 

opening the servo loop, zeroing the servo output command, and disabling the amplifier for each 

motor. If there is a brake output specified for the motor (Motor[x].pBrakeOut > 0), the brake is 

engaged starting immediately, but the disabling of motors is not delayed until the brake has 

finished engaging. 

This type of commanded stop is similar in action to a “Category 0” safe stop under the IEC-

61800-5-2 machine safety standard. However, under the standard, there must be an actual 

removal of power from the motor or a circuit needed to drive the motor, usually either bus power 

or gate-driver power. This command is still useful for this category of safe stop because it puts 

the Power PMAC in a state consistent with the removal of power. Many users will have the same 

signal that causes the removal of power also to issue this command. 

The similar coordinate-system “delayed disable” command (ddisable on-line, ddisable 

programmed) immediately starts brake engagement, but delays the actual motor disabling for 

Motor[x].BrakeOnDelay milliseconds. This command is appropriate for a standard shut down, 

but the delay means that it is usually not appropriate for an emergency stop. 

The motor “kill” command (k on-line, kill programmed) performs the same action for each 

commanded motor, but it cannot be used if the motor is in a coordinate system that is executing a 

motion program. 

Hybrid Abort/Disable 

The coordinate-system “abort/disable” command (adisable on-line, adisable programmed) 

causes the Power PMAC to break into the present trajectory of each motor in the coordinate 

system and immediately begin a commanded deceleration to a controlled stop, just as it would for 

an “abort” command. However, as each motor reaches its “desired velocity zero” state, it 

automatically executes a “delayed kill” command, where brake engagement is started 

immediately, and the motor is killed (open-loop, zero-output, amplifier-enable) after a delay of 

Motor[x].BrakeOnDelay milliseconds. 

This type of commanded stop is similar in action to a “Category 1” safe stop under the IEC-

61800-5-2 machine safety standard. However, under the standard, there must be an actual 

removal of power from the motor or a circuit needed to drive the motor, usually either bus power 

or gate-driver power, after the controlled stop is complete. This command is still useful for this 

category of safe stop because it puts the Power PMAC in a state consistent with the removal of 

power. Many users will have the same signal that issues this command also to cause the removal 

of power using a time-delay relay. 
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EXECUTING INDIVIDUAL MOTOR MOVES 

Once you have your motor defined and basically working with reasonable gains, you will want to 

command some basic moves for the motor. Jogging commands allow you to make simple moves 

for the motor, independent of other motors, without writing a motion program. You might just use 

these moves for development, diagnostics, and debugging, but you may also use them in your 

actual application. 

Another type of simple motor move is the homing-search move. This is basically a “jog-until-

trigger” type of move, where Power PMAC commands the motor to move until it sees a pre-

defined trigger. It then brings the motor to a stop and returns to the trigger position (possibly with 

an offset), and sets the motor position to zero. 

A homing-search move should be performed when you do not know where home position is. If 

you have an incremental position sensor, you do not know where you are on power-up; therefore, 

the homing search move is typically the first move done in this type of system. However, if you 

already know where the home position is, but just wish to return to that position, there is no need 

to do a homing search move; simply command a move to the zero position (e.g. J=0 or X0). 

The trajectories for jogging and homing moves are essentially the same as for rapid-mode 

program moves. However, these moves are specified directly to the motor, specified by number, 

rather than the axis, specified by letter. The moves are described in basic motor units, not axis 

units. 

Jogging Move Control 

The characteristics of jogging moves are specified by a small number of saved setup data-

structure elements for each motor, described below. When a jog command is issued, Power 

PMAC uses the present values of these elements to compute the desired trajectory for the jog 

move specified by the command. The value of one of these elements can be changed at any time, 

but the new value is not used until the next jog command is executed. 

Jog Speed Control 

Motor[x].JogSpeed specifies the magnitude of the maximum velocity for jog moves, in motor 

units per millisecond. The sign (direction) of the velocity is dependent on the jog command used. 

This speed is only attained if the move distance is great enough, given the acceleration-profile 

parameters, to reach this peak velocity. 

For example, to command a jog speed of 30 meters per minute with motor units of 5 microns, 

calculate: 
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Jog Acceleration Control 

The acceleration and deceleration characteristics of jog moves are determined by saved setup 

elements Motor[x].JogTa and Motor[x].JogTs. These can be set up to specify the acceleration 

profiles by time or rate, as explained below. Both should be set either to specify times or rates. 
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Acceleration Time Control 

If Motor[x].JogTa is greater than zero, it specifies the jog acceleration time in milliseconds. This 

time is used regardless of the change in speed due to a jog command, so the rate of acceleration 

will be different for different changes in speed. 

If Motor[x].JogTs is greater than zero, it specifies the jog “S-curve” time (the time in each half 

of the “S”) in milliseconds. During the “S-curve” portion of the profile, the acceleration is 

increasing or decreasing at a constant rate (so these sections of the profile have a constant “jerk”). 

This time is used regardless of the value of the peak acceleration, so the rate of jerk will be 

different for different peak accelerations. If it is set to 0, there are no S-curve sections in the 

acceleration profiles. 

If Motor[x].JogTa is greater than Motor[x].JogTs, the total acceleration time is JogTa + JogTs. 

(Note that this is different from PMAC and Turbo PMAC.) If Motor[x].JogTa is less than 

Motor[x].JogTs, the total acceleration time is 2 * JogTs, and JogTa is not used. The profiles for 

both cases are shown in the figure below. 
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Jog Move Acceleration Profiles, Time Specification 
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Acceleration Rate Control 

Most users will want to specify their acceleration profiles by rate rather than time, and this is 

easily supported in Power PMAC. Specifying the profile by rate permits shorter-time moves 

when the distances are too short to reach maximum velocity, and it permits more seamless 

blending into a newly commanded jog move if the new command occurs while the present move 

is accelerating or decelerating. 

These parameters are specified as inverse rates, which permits Power PMAC to use them in its 

move calculations by multiplication instead of division. This provides significant improvements 

in computational efficiency. 

If Motor[x].JogTa is less than zero, it specifies the inverse of the peak acceleration magnitude, in 

msec2 / motor unit. This rate is used regardless of the change in speed due to a jog command, so 

the acceleration time will be different for different changes in speed. Note that, depending on the 

speed and jerk values specified, this acceleration value may not be reached. 

For example, to set a maximum acceleration of 5 m/s2 (~0.5g) with motor units of 10 μm, 

calculate: 
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If Motor[x].JogTs is less than zero, it specifies the inverse of the jerk (rate of change of 

acceleration) magnitude during each half of the “S-curve” portion of the acceleration profile, in 

msec3 / motor unit. This rate is used regardless of the value of the peak acceleration, so the S-

curve time will be different for different peak accelerations. If it is set to 0, there are no S-curve 

sections in the acceleration profiles. Note that if JogTs is less than 0, JogTa must also be set less 

than 0. 

For example, to reach the peak acceleration of 5 m/s2 in 50 msec (but lower peak accelerations in 

proportionally less time), calculate: 
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The following figure shows the acceleration profiles for these rate specifications of acceleration 

and jerk, both for the case where the specified maximum acceleration is reached, and where this 

acceleration is not reached before it must start returning to 0. 
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Jog Move Acceleration Profiles, Rate Specification 
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Example Jog Move Profile 

This plot shows the commanded velocity and acceleration move profiles for a simple jog move. 

 

Velocity and Acceleration Profiles of a Simple Jog Move 

Jog Commands 

Jog moves can be commanded using either on-line commands or buffered program direct 

commands. In this section, the on-line commands will be shown first, followed by the equivalent 

buffered program direct commands in square brackets. 

Generally, the buffered program commands will be issued from PLC programs. A motion 

program should not attempt to jog a motor that is assigned to the coordinate system running the 

program. 

When a jog command is issued to a motor, if the motor is not enabled and in closed-loop mode, it 

will be put in enabled and closed-loop mode at the start of the action from the command. The 

starting speed for the jog move will be the actual velocity at the time of the command (which will 

usually, but not always, be zero). 

Indefinite Jog Commands 

The jog commands j+ [jog+] and j- [jog-] cause “indefinite” motion in the positive or 

negative directions, respectively, if the software overtravel limits for the motor are disabled 

(Motor[x].MaxPos <= Motor[x].MinPos). Jogging motion will continue until another motor 

motion command is given or an error condition occurs.  

However, if the software overtravel limits for the motor are enabled (Motor[x].MaxPos > 

Motor[x].MinPos), these commands are executed as “definite” jogs to the software limit 

position: a j+ [jog+] command is executed as a jog to Motor[x].MaxPos; a j- [jog-] 

command is executed as a jog to Motor[x].MinPos. Note that these moves will stop at the 

overtravel limit position, not just begin to decelerate as the overtravel limit position is passed. 
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The on-line jog command (no program command equivalent) will take a motor that is open-loop 

and close the loop using a command velocity for an indefinite jog move that is equal to the actual 

velocity at the time of the command. 

The j/ [jog/] jog stop command brings the motor to a closed-loop zero-velocity state. If the 

motor was executing a motor move (jog or homing-search) at the time of the command, it will use 

the instantaneous desired velocity and acceleration values at the time of the command as the 

starting states and compute a deceleration to a stop based on the values of Motor[x].JogTa and 

Motor[x].JogTs. If the motor was open loop at the time of the command, it will use the 

instantaneous actual velocity (often zero) and zero acceleration as the starting states and compute 

a deceleration to a stop based on the values of these parameters. 

Note 

If saved setup element Sys.NoShortCmds is set to 1, then on-

line jog commands cannot use just the letter “j”; instead they 

must use the full word “jog” (e.g. jog+, jog-, jog/), as the 

buffered program jog commands always must do. This mode 

of operation is intended to prevent the accidental entry of 

action commands. 

 

Definite Jog Commands 

Power PMAC provides multiple “definite” jog commands that permit jogging to a specified 

position or a specified distance. In the on-line commands, the position or distance can either be 

specified by a constant (e.g. j=2500), or written to Motor[x].ProgJogPos and specified by an 

asterisk (*) character (e.g. Motor[x].ProgJogPos = P1 + 500; j:*). In the program 

commands the position or distance can be specified by a constant without parentheses (e.g. 

jog=2500) or by a mathematical expression in parentheses (e.g. jog(p1+500) ). 

Absolute Jog Commands 

The on-line commands for an “absolute” jog to position are j={constant} and j=*. The 

destination position is specified by the numerical constant in the command in the first case (e.g. 

j=-7632), and the present value of Motor[x].ProgJogPos in the second case, both in motor 

units relative to the motor zero (home) position. The direct program command equivalent for both 

cases is jog={data} , where {data} can be a constant without parentheses (e.g. 

jog=97431) or a mathematical expression in parentheses (e.g. jog=(1000*cosd(P10)) ).  

If a double equals sign is used in the above commands (j=={constant} , j==*), the move 

executes exactly the same as with the single equals sign, but the motor’s “pre-jog” position (for 

j= [jogret] commands) is set to the endpoint of the move. 

Relative (Incremental) Jog Commands 

The on-line commands for a “relative” jog from the present desired position are 

j:{constant} and j:*. The destination distance is specified by the numerical constant in the 

command in the first case (e.g. j:-92.35), and the present value of Motor[x].ProgJogPos in 

the second case, both in motor units relative to the present motor desired position. The direct 

program command equivalent for both cases is jog:{data}, where {data} can be a constant 

without parentheses (e.g. jog:25400) or a mathematical expression in parentheses (e.g. 

jog:(500*sind(P10)) ).  
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The on-line commands for a “relative” jog from the present actual position are j^{constant} 

and j^*. The destination distance is specified by the numerical constant in the command in the 

first case (e.g. j:-4300), and the present value of Motor[x].ProgJogPos in the second case, 

both in motor units relative to the present motor actual position. The direct program command 

equivalent for both cases is jog^{data}, where {data} can be a constant without parentheses 

(e.g. jog^-2.75) or a mathematical expression in parentheses (e.g. 

jog^(125*tand(P10)) ). Note that because these commands are relative to the actual 

position, their destination position is dependent on the value of the following error at the instant 

of the command. 

Return Jog Command 

The j= [jogret] command causes a jog move to the most recent programmed position for the 

motor. This command is particularly useful during pauses in machining applications, after the 

tool has been jogged away from the paused program point to check the material. In order to 

resume, all motors must be returned to the programmed point, and this command provides an 

easy way of doing that. 

Triggered Jog Commands 

Power PMAC provides multiple “triggered” jog commands that cause compound moves with a 

pre-trigger and a post-trigger section blended together automatically. These commands are 

discussed in the next section, under “Triggered Motor Moves”. 

Jog Command Processing 

When Power PMAC receives a jog command, it processes it in the next servo cycle, computing 

the desired motor trajectory as specified by the command and the jog parameters. It is possible for 

the Power PMAC to process a new jog command for a motor up to every servo cycle. (Note that 

this is a significant improvement over the capabilities of PMAC and Turbo PMAC.) 

If the motor is closed loop when the jog command is received, Power PMAC uses the present 

commanded position, velocity, acceleration, and jerk of the motor trajectory as the starting state 

for its trajectory calculations resulting from the command. This can produce seamless blending 

into the new move, particularly when the acceleration profile is specified by rate and not time. 

If the motor is open loop when the jog command is received, Power PMAC uses the present 

actual position and velocity of the motor (and assumes zero acceleration and jerk) as the starting 

state for its (closed loop) trajectory calculations resulting from the command. 
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Triggered Motor Moves 

“Triggered moves” in Power PMAC are compound moves, with a pre-trigger portion and a post-

trigger portion. Upon the trigger event, Power PMAC will break into the trajectory of the pre-

trigger move and calculate a post-trigger move ending at a pre-specified distance from the 

position captured at the trigger. 

Types of Triggered Moves 

Power PMAC has three types of triggered motor moves: 

1. Homing-search moves 

2. Jog-until-trigger moves 

3. Program rapid-mode move-until trigger 

 

These three types of moves all work in basically the same manner, but in different contexts. 

Triggering and position-capture functions are the same in all three move types. Each will be 

described in detail below. 

Trigger Conditions 

There are fundamentally two types of triggers for these triggered moves: input triggers and 

following-error triggers. If Motor[x].CaptureMode is set to 0, 1, or 3, input triggering is used. If 

Motor[x].CaptureMode is set to 2, following-error triggering is used. 

Input Triggering 

If Motor[x].CaptureMode is set to 0 or 1, Power PMAC will look for an individual trigger bit in 

the register whose address is specified in Motor[x].pCaptFlag at the bit number specified by 

Motor[x].CaptFlagBit. When this bit value becomes 1 during the pre-trigger move, Power 

PMAC knows that the trigger has occurred, and it will read and process the captured position so it 

can compute the trajectory for the post-trigger move. 

Most commonly, this specified trigger bit is the “position captured” bit in the flag status register 

for a servo channel of a Servo IC, or in the input flag register of a MACRO node. The value of 

this bit is typically from a user-specified input choice of signal(s) and edge(s), permitting great 

flexibility in the choice of trigger condition. 

PMAC2-Style Interface 

In a PMAC2-style “DSPGATE1” Servo IC, as used in the ACC-24E2x and ACC-51E UMAC 

accessories, the position-captured trigger bit is found in bit 19 of the channel status register, so 

Motor[x].pCaptFlag = Gate1[i].Chan[j].Status.a and Motor[x].CaptFlagBit = 19.  

The element Gate1[i].Chan[j].CaptCtrl specifies whether the trigger bit uses a channel input 

flag or not, the encoder index channel or not, and which edge of the selected signal(s) create the 

trigger. Gate1[i].Chan[j].CaptFlagSel determines which of the four input flags for the channel 

(HOME, PLIM, MLIM, USER) is selected if flag use is specified by CaptCtrl. 
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The following diagram shows the trigger signals selected by the CaptCtrl element for the 

PMAC2-style ICs. For the PMAC3-style ICs, the settings for 3 and 15 are reversed, as are the 

settings for 7 and 11. 
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Trigger Signal Selection by Gaten[i].Chan[j].CaptCtrl 

If the encoder index pulse is used, a further refinement is possible. Typically the index pulse is a 

full encoder line wide, spanning 4 quadrature counts. It is possible to “gate” this logically to a 

single quadrature state width before its use in the trigger signal by setting 

Gate1[i].Chan[j].GatedIndexSel to 1. This quadrature state will be the “high-high” state (A = 1 

B = 1) if Gate1[i].Chan[j].IndexGateState is 1; it will be the “low-low” state (A = 0 B = 0) if 

Gate1[i].Chan[j].IndexGateState is 0. Gating the index pulse makes the count at the trigger 

edge more repeatable and ensures that the captured count is the same in both directions. 
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The following diagram shows how this “gating” process works for the “high-high” state. 
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“Gating” of the Encoder Index Pulse for Capture Trigger 

The position capture in a PMAC2-style IC is level-triggered. For most purposes, the difference 

between level-triggered and edge-triggered captures is not important. However, there are a couple 

of issues that could be important. First, if a triggered move is started when the inputs are already 

in the trigger-causing state, the trigger will occur before the move even starts, and there will be no 

actual move commanded, with the move considered to have completed successfully. Second, if 

the inputs are still in the trigger-causing state when the Power PMAC reads the captured position 

(which re-arms the trigger), there will be an immediate re-trigger and a new captured position. 

This will not affect the functionality of the triggered move, but if another software task reads the 

captured-position register, it may get the position at the re-trigger. 

PMAC3-Style Interface 

In a PMAC3-style “DSPGATE3” IC, as used in the ACC-24E3 UMAC accessory family, the 

Power Clipper, and the Power Brick, the position-captured trigger bit is found in bit 20 of the 

channel status register, so Motor[x].pCaptFlag = Gate3[i].Chan[j].Status.a and 

Motor[x].CaptFlagBit = 20.  

Note 

The saved setup elements for the DSPGATE3 IC described in 

this section require the proper “write protect key” be set in 

order to change their values. Before attempting to change the 

values of these elements, set Sys.WpKey to $AAAAAAAA to 

enable changes. 

 

The element Gate3[i].Chan[j].CaptCtrl specifies whether the trigger bit uses a channel input 

flag or not, the encoder index channel or not, and which edge of the selected signal(s) create the 

trigger. Gate3[i].Chan[j].CaptFlagChan specifies which of the four servo channels on the IC 

the flag used (if used) will come from. Gate3[i].Chan[j].CaptFlagSel determines which of the 

four input flags (HOME, PLIM, MLIM, USER) for the specified channel is selected if flag use is 

specified by CaptCtrl. 

If the encoder index pulse is used, a further refinement is possible. Typically the index pulse is a 

full encoder line wide, spanning 4 quadrature counts. It is possible to “gate” this logically to a 
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single quadrature state width before its use in the trigger signal by setting 

Gate3[i].Chan[j].GatedIndexSel to 1. This quadrature state will be the “high-high” state (A = 1 

B = 1) if Gate3[i].Chan[j].IndexGateState is 1; it will be the “low-low” state (A = 0 B = 0) if 

Gate3[i].Chan[j].IndexGateState is 0. Gating the index pulse makes the count at the trigger 

edge more repeatable and ensures that the captured count is the same in both directions. 

The position capture in a PMAC3-style IC is edge-triggered. For most purposes, the difference 

between edge-triggered and level-triggered captures is not important. However, there are issues 

that could be important. First, if a triggered move is started when the inputs are already in the 

trigger-causing state, there will be no edge to cause the trigger, and the move will likely fail, and 

possibly not end until a fault condition such as an overtravel limit is reached. For this reason, it is 

important to check to see if the inputs could be in the trigger-causing state before a triggered 

move is commanded. 

MACRO Interface 

In a MACRO interface, the position-captured trigger bit is found in bit 19 of Register 3 for the 

node, so Motor[x].pCaptFlag = Gate2[i].Macro[j][3].a for a PMAC2-style “DSPGATE2” IC, 

as on the ACC-5E, or Gate3[i].MacroIn[j][3].a for a PMAC3-style “DSPGATE3” IC, as on the 

ACC-5E3 or the Power PMAC Brick MACRO option. Motor[x].CaptFlagBit should be set to 

19 in both cases. 

It is also necessary in a MACRO interface to set Motor[x].pEncCtrl to the address of the 

“control flag” register for the MACRO node. This register is used to perform the necessary 

handshaking across the ring to set up the capture process. For a PMAC2-style MACRO IC, it 

should be set to Gate2[i].Macro[j][3].a; for a PMAC3-style IC, it should be set to 

Gate3[i].MacroOutα[j][3].a. 

Following-Error Triggering 

Sometimes it is desired that a trigger occur when an obstruction such as a hard stop is 

encountered, as when using an end stop for the homing reference. To support this type of 

functionality, Power PMAC permits triggering on a warning-following-error condition instead of 

an input flag. This is sometimes called “torque-mode” triggering, because it effectively triggers 

on a torque level (except for velocity-mode amplifiers), as output torque command is generally 

proportional to following error. It is also called a “torque-limited” mode, because it provides an 

easy way to create moves that are limited in torque, and that stop when the torque limit is reached 

(as in torque-limited screw driving). 

To enable this torque-mode triggering for a motor, set Motor[x].CaptureMode to 2, specifying 

both following-error trigger and software capture (there is no hardware signal to trigger the 

hardware capture). In this mode, the trigger for a move-until-trigger is a true state of the warning 

following-error status bit for the motor. Motor[x].WarnFeLimit sets the warning following-error 

threshold for the motor, in motor units. When Power PMAC detects that the magnitude of the 

following error has exceeded this value, it will read the present servo-feedback position as the 

trigger position, then move relative to this position.  

When using torque-mode triggering, it is a good idea to set the integral gain term 

Motor[x].Servo.Ki to 0 to prevent a large “charge-up” of the integrator when it hits the hard 

stop. It may also be desirable to set the Motor[x].MaxDac output limit lower to limit the possible 

torque directly when the obstruction is reached. 
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Note that if the warning following error status bit is true at the start of the move, the trigger will 

occur almost immediately. 

Capturing the Position at Trigger 

Because the post-trigger move ends at a commanded position expressed relative to the position at 

the time of the trigger, it is necessary for Power PMAC to “capture” the position at the time of the 

trigger. Fundamentally, there are two ways of doing this: hardware capture and software capture. 

Hardware Capture 

The Servo ICs of a Power PMAC have dedicated registers to latch the encoder counter instantly 

upon receipt of the pre-specified input trigger state. The latching action occurs entirely in the IC 

hardware, requiring no software action, so the captured position is accurate to the exact count 

regardless of motor speed. This means that there is no need to slow down the move to get an 

accurate capture. 

Hardware capture is selected for the motor’s triggered moves by setting Motor[x].CaptureMode 

to the default value of 0, specifying both hardware capture and input triggering. If hardware 

capture is selected, the position-loop servo feedback as selected by Motor[x].pEnc must come 

through the encoder counter of a Servo IC. It must use the same hardware channel as the flag set 

selected by Motor[x].pCaptFlag. This means that if you are using dual feedback on the motor, 

the flag set specified by Motor[x].pCaptFlag should be the same channel as your position-loop 

feedback, not your velocity-loop feedback. 

When hardware capture is selected, the hardware register where the captured position is to be 

found must be specified by Motor[x].pCaptPos, which should contain the address of the register 

in the Servo IC where the position at the time of the trigger was latched. 

PMAC2-Style Interface 

In a PMAC2-style “DSPGATE1” Servo IC, as used in the ACC-24E2x and ACC-51E UMAC 

accessories, the trigger-captured position is found in the “home capture” register for the channel 

of the IC used for the encoder interface, so Motor[x].pCaptPos should be set to 

Gate1[i].Chan[j].HomeCapt.a. This must be the same channel of the IC as for the trigger input. 

PMAC3-Style Interface 

In a PMAC3-style “DSPGATE3” IC, as used in the ACC-24E3 UMAC accessory family, the 

Power Clipper, and the Power Brick, the trigger-captured position can be found in the “home 

capture” register of the IC used for the encoder interface, and if saved setup variable for the 

channel Gate3[i].Chan[j].TimerMode is set to its default value of 0, it can also be found in the 

“timer B” register for the channel. 

To use the “home capture” register, which has whole-count data in the high 24 bits and fractional-

count data in the low 8 bits (so units of 1/256 of a count), Motor[x].pCaptPos should be set to 

Gate3[i].Chan[j].HomeCapt.a. If TimerMode for the channel is set to 0, timer-based fractional 

count estimation is present in the low 8 bits. If TimerMode is greater than 0, the fractional count 

value is always ½ of a count. The resolution of this register matches that of the servo-captured 

register for digital quadrature feedback, so its value will not have to be adjusted through shift 

operations to create the match (see Processing the Hardware-Captured Position, below). 

To use the “timer B” register, which has whole-count data in the high 20 bits and fractional-count 

data in the low 12 bits (so units of 1/4096 of a count), Motor[x].pCaptPos should be set to 
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Gate3[i].Chan[j].TimerB.a. Saved setup element TimerMode for the channel must be set to the 

default value of 0 for this register to contain the trigger-captured position for the channel. The 

resolution of this register matches that of the servo-captured register for sinusoidal feedback 

processed with Gate3[i].Chan[j].AtanEna set to 1, so its value will not have to be adjusted 

through shift operations to create the match (see Processing the Hardware-Captured Position, 

below). 

With AtanEna set to 1, the 12 bits of fractional count data in the servo-captured position comes 

from the arctangent of the “sine” and “cosine” ADCs. The 12 bits of fractional count data in the 

trigger-captured position comes from the timers for the channel. 

Software Capture 

The use of hardware capture requires that the position-loop servo feedback be processed through 

the counter circuitry of an IC channel, because it is the counter value at the instant of the trigger 

that the hardware “captures” (latches). If this is not the case, as with serial encoders, parallel 

encoders, directly-converted resolvers, LVDTs, MLDTs, etc., then hardware capture cannot be 

used, and software capture must be used instead. 

Software capture is specified for a motor by setting Motor[x].CaptureMode to 1 (with input 

trigger) or 2 (error trigger). If software capture has been selected, Power PMAC software uses the 

most recent servo cycle’s motor actual position as the trigger position, regardless of the source, 

when the software notices that the trigger has occurred. 

When software capture is used, there is a potential delay between the actual trigger and Power 

PMAC’s position capture of one real-time interrupt (Sys.RtIntPeriod + 1 servo interrupts). This 

delay can lead to inaccuracies in the captured position; the speed of the motor at the time of the 

trigger must be kept low enough to achieve an accurate enough capture. For homing, a two-step 

procedure can often be used: a fast, inaccurate capture followed by a slow, accurate capture. 

The following diagram shows a sample trajectory for triggered moves such as homing search 

moves, and highlights the difference in captured position accuracy between hardware and 

software capture techniques. 
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Triggered Move Trajectory with Hardware and Software Position Capture 
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Timer-Assisted Software Capture 

With the PMAC3-style DSPGATE3 interface ASIC used on the ACC-24E3 UMAC axis-

interface board, the Power Clipper, and the Power Brick control board, it is possible to use the 

ASIC timer circuits for significant improvement of the capture accuracy when software position 

capture is used. This technique provides accuracy close to that of the hardware capture of the 

encoder counter, even for feedback types not processed through an encoder counter. 

Specifying This Capture Mode 

This timer-assisted software capture technique is selected for triggered motor moves when 

Motor[x].CaptureMode is set to 3. With this setting, Power PMAC will use the recent history of 

the motor servo actual position values, whatever their source, to compute the captured position, 

with the ASIC timer value latched by the trigger used to interpolate between values latched on 

each servo cycle. 

Setting Up the ASIC Hardware 

This technique uses the ASIC channel’s pulse-frequency-modulation (PFM) circuitry to drive the 

timer circuits with a known fixed frequency. The circuitry must be set up to generate 16 pulses 

per servo cycle. It generates pulses at a frequency proportional to the 32-bit command value in 

Gate3[i].Chan[j].Pfm by adding this command value to an internal accumulator in hardware 

every cycle of the high-frequency PFMCLK clock signal. Every time the accumulator rolls over, 

it generates a pulse. The pulse frequency can be calculated from the following equation: 

PFMCLKPFM f
PfmjChaniGate

f 
322

].[].[3
 

The frequency of the PFMCLK clock signal is determined by saved setup element 

Gate3[i].PfmClockDiv. The default value of 5 for this element, which specifies a frequency of 

3.125 MHz (3125 kHz), should always be satisfactory for this use. 

Rearranging this equation to solve for the value of the Pfm element in order to generate a pulse 

frequency 16 times the servo frequency, we get: 
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With the default servo frequency of 2.259 kHz, and the default PFMCLK frequency of 3125 kHz 

(it is important to use consistent units!) we calculate: 

935,675,49
3125

259.2
2].[].[3 36 PfmjChaniGate  

This value can be saved into non-volatile flash memory so it is automatically loaded into the 

active register on power-up/reset. 

To feed this pulse signal into the channel’s encoder counter, saved setup element 

Gate3[i].Chan[j].EncCtrl is set to 8, which causes a connection inside the ASIC. No external 

wiring is required, and it does not matter what is connected to the channel’s encoder inputs. Also, 

it does not matter what mode the channel’s Phase D output signal is configured for, so this will 

work regardless of the setting of Gate3[i].Chan[j].OutputMode. 
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However, it is necessary that the Phase D command register for the Pfm element be accessed 

individually, in “unpacked” mode, so Gate3[i].Chan[j].PackOutData be set to 0. If this ASIC 

channel is used for direct-PWM control, the commutation I/O must be done in this “unpacked” 

mode, so Motor[x].PhaseCtrl must be set to 4 instead of 1, and Gate3[i].Chan[j].PackInData 

must also be set to 0. 

Gate3[i].Chan[j].TimerMode must be set to the default value of 0 to enable the timer-based 

extension of the counter values latched on the trigger and the servo interrupt. This is essential to 

get the best possible resolution in the estimation of the trigger position. 

The ASIC channel’s trigger condition is set up as for any other trigger capture mode, with saved 

setup elements Gate3[i].Chan[j].CaptCtrl, Gate3[i].CaptFlagSel, and 

Gate3[i].Chan[j].CaptFlagChan specifying the signals and edges used for the capture. 

Motor Setup 

For the motor to use the channel’s trigger flag, Motor[x].pCaptFlag must be set to 

Gate3[i].Chan[j].Status.a and Motor[x].CaptFlagBit must be set to 21. These will probably be 

the default settings from the auto-configuration process done on system re-initialization. 

Motor[x].pCaptPos must be set to Gate3[i].Chan[j].HomeCapt.a to use the trigger-captured 

timer value from the channel’s encoder counter. This value is used to determine when during the 

servo interrupt period the trigger occurred, so a properly weighted interpolation between the servo 

positions before and after can be performed to estimate the position at the time of the trigger 

accurately. 

For proper interpolation, Power PMAC needs to know when during the servo interrupt period the 

servo position sensor is sampled (e.g. latched or strobed). Ideally, the sensor would be sampled 

right at the servo interrupt for minimum servo delay, but often this is not possible, as there can be 

conversion and transport delays, particularly for the serial data transfers common with absolute 

encoders and analog-to-digital converters. 

Motor[x].ServoCaptTimeOffset tells this algorithm what the delay is from the time the sensor is 

sampled for servo feedback and the following servo algorithm. It is scaled in units of 1/65,536 of 

a servo cycle. For example, if the delay is ¼ of a servo cycle (that is, it is sampled ¾ of the way 

through the cycle), this element should be set to 65,536/4, or 16,384. 

Commonly, analog-to-digital converter interfaces for Power PMAC are strobed on the rising edge 

of the phase clock signal so the data can be transferred by the falling edge interrupt. With this 

type of interface, the delay is ½ of a phase cycle, and since the phase frequency is n times the 

servo frequency, Motor[x].ServoCaptTimeOffset would be set to 65,536 / (2*n). 

Serial encoder interfaces for Power PMAC can be strobed on the rising or falling edge of either 

the phase clock or the servo clock. Generally, the clock edge that produces the minimum delay to 

the start of the servo interrupt is chosen, given the servo frequency and the required response 

time. 
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The figure below shows how Power PMAC performs the timer-based interpolation for this 

capture mode. 
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Timer-Assisted Software Capture 

Processing the Hardware-Captured Position 

The hardware-captured position value in the counter register must in general be processed to 

ensure that any unwanted bits read over the 32-bit data bus are eliminated and that the final result 

is scaled the same as the position-loop servo feedback. The default setup on a $$$*** re-

initialization automatically sets up the proper processing for “whole-count” hardware capture 

with servo feedback of 1/T extension from quadrature encoders. Also, setting the value of 

Motor[x].EncType through the Script environment (but not from internal C programs) 

automatically sets up the proper processing for interpolated sine encoders, quadrature encoders, 

and capture over the MACRO ring. 

Potential mismatch in scaling comes about because the servo-loop feedback position may have 

sub-count resolution due to 1/T extension of quadrature encoders or arctangent extension of 

sinusoidal encoders, and the hardware-captured position does not. Alternatively, the servo-loop 

feedback position may use a high-resolution arctangent extension (12 fractional bits per count) 

but the hardware-captured position uses a lower-resolution extension (8 fractional bits per count). 

There are other possibilities as well. 

Note that software capture always uses already-scaled motor position values, so none of these 

processing steps is necessary when software capture is used. The settings of the processing-

control elements are not used in that case. 
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Processing Steps 

Power PMAC employs three discrete processing steps after it reads the hardware-captured 

counter position over the 32-bit bus and before it uses it as the motor’s position at the trigger for 

the purposes of computing the post-trigger offset move. 

Right-Shift Operation 

First, it takes the 32-bit read value and shifts it right (toward the least significant end) by the 

number of bits specified in Motor[x].CaptPosRightShift. This is done to eliminate any 

unwanted bits at the low end of the 32-bit value read, either because the bits did not come from 

real hardware (as in the case of the 24-bit PMAC2-style ICs) or because the captured data 

included sub-count estimated data that we do not wish to use, or both. 

Left-Shift Operation 

Next, it takes the right-shifted result and shifts it left (toward the most significant end) by the 

number of bits specified in Motor[x].CaptPosLeftShift. This is done to make the resulting value 

have the same scaling as the position-loop feedback value. 

Half-Count-Offset Operation 

Finally, it can optionally offset the captured position one-half count to match the servo feedback, 

if necessary. When Power PMAC performs sub-count extension of position data, either through 

the “1/T” timer data, or from arctangent calculations of sine/cosine readings, it offsets the 

position data by a half count to put the integer count value halfway in between the whole-count 

edges, eliminating offset between directions. Simple whole-count data from the hardware counter 

does not have this offset, so to match the two data types properly, it can be necessary to offset the 

captured data by half a count. 

So if the position-loop servo feedback utilizes sub-count extension, whether done in hardware or 

software, and the hardware-captured position does not (or, in theory, vice versa), the captured 

position value should be offset a half count before being used as motor trigger position. If 

Motor[x].CaptPosRound is set to 1, Power PMAC will provide this offset. If it is set to 0, no 

offset will be performed. 

PMAC2-Style Interface for Quadrature Encoders 

When a PMAC2-style interface with the “DSPGATE1” IC is used to process digital quadrature 

encoders, as with the ACC-24E2, ACC-24E2A, and ACC-24E2S UMAC boards, the servo-loop 

feedback usually uses a position value with 1/T sub-count extension computed in the encoder 

conversion table (conversion method Type = 3). This conversion provides 9 bits of sub-count 

extension. 

The hardware-captured position register of the IC (Gate1[i].Chan[j].HomeCapt) has 24 bits, 

present in the high 24 bits of the 32-bit Power PMAC data bus. With 

Motor[x].CaptPosRightShift = 8, the captured position value is shifted right so that a “count” is 

moved from bit 8 to bit 0, and all of the bits of indeterminate value are eliminated. Then, with 

Motor[x].CaptPosLeftShift = 9, the intermediate value is shifted left 9 bits so that a “count” 

matches the scaling of the 1/T-extended position-loop servo feedback, with zeros in the low 9 

bits. Finally, with Motor[x].CaptPosRound = 1, this value is offset by one-half count (by setting 

the “half-count” bit to 1) to match the offset of the extended position-loop feedback. 
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The following diagram shows how this process is done for this setup: 
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Captured Position Processing for Quadrature Encoder into PMAC2 IC 

With Servo Using Software 1/T Extension 

However, if this IC type is used for quadrature feedback when the servo loop is closed in the 

phase interrupt, only the whole-count position value in Gate1[i].Chan[j].PhaseCapt is used for 

servo-loop feedback. This is a 24-bit value, present in the high 24 bits of the 32-bit Power PMAC 

bus, just as for the hardware captured position. In this case Motor[x].CaptPosRightShift should 

be set to 8 to eliminate the indeterminate low 8 bits, Motor[x].CaptPosLeftShift should be set to 

8 to match the resolution of the servo-loop feedback, and Motor[x].CaptPosRound should be set 

to 0, because no half-count offset is needed. 

The following diagram shows how this process is done for this setup: 
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Captured Position Processing for Quadrature Encoder into PMAC2 IC 

With Servo Using No Extension 

PMAC2-Style Interface for Sinusoidal Encoders 

When a PMAC2-style interface with the “DSPGATE1” IC is used to process sinusoidal encoders, 

as with the ACC-51E UMAC board, the servo-loop feedback usually uses a position value with 

arctangent sub-count extension computed in the encoder conversion table (conversion method 
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Type = 4). This conversion provides 10 bits of sub-count extension (12 bits per cycle, for 4096x 

interpolation). 

The hardware-captured position register of the IC (Gate1[i].Chan[j].HomeCapt) has 24 bits, 

present in the high 24 bits of the 32-bit Power PMAC data bus. With 

Motor[x].CaptPosRightShift = 8, the captured position value is shifted right so that a “count” is 

moved from bit 8 to bit 0, and all of the bits of indeterminate value are eliminated. Then, with 

Motor[x].CaptPosLeftShift = 10, the intermediate value is shifted left 10 bits so that a “count” 

matches the scaling of the 1/T-extended position-loop servo feedback, with zeros in the low 10 

bits. Finally, with Motor[x].CaptPosRound = 1, this value is offset by one-half count to match 

the offset of the extended position-loop feedback. 

The following diagram shows how this process is done for this setup: 
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Captured Position Processing for Sinusoidal Encoder into PMAC2 IC 

With Servo Using Software Arctangent Extension 

PMAC3-Style Interface for Quadrature Encoders 

When a PMAC3-style interface with the “DSPGATE3” IC is used to process digital quadrature 

encoders, as with the ACC-24E3 UMAC board and its digital-feedback mezzanine board, the 

servo-loop feedback usually uses a position value with 1/T sub-count extension computed directly 

in the IC, found in Gate3[i].Chan[j].ServoCapt (or PhaseCapt if the servo loop is closed in the 

phase interrupt). This processing, enabled if Gate3[i].Chan[j].TimerMode = 0 (the default) 

provides 8 bits of sub-count extension. 

The hardware-captured position register of the IC (Gate3[i].Chan[j].HomeCapt) has the same 

format as the servo-loop position, 32 bits, with the low 8 bits being 1/T sub-count extension when 

Gate3[i].Chan[j].TimerMode = 0. The user must decide whether he wants to use the captured 

sub-count value or not.  

Not Using Sub-Count Captured Data 

Most users will not want to use the sub-count estimation for homing-search moves, as they will 

want their position reference to be on an exact count. These users should set 

Motor[x].CaptPosRightShift to 8 to eliminate the sub-count bits, Motor[x].CaptPosLeftShift 

to 8 to return the value to the same scaling as the servo-loop position (but with all the sub-count 

bits set to 0), and Motor[x].CaptPosRound to 1, because the right shift of the captured position 

eliminated its half-count offset, and it must be put back here. 
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The following diagram shows how this process is done for this case, where the fractional-count 

value is not used, even if captured: 
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Captured Position Processing for Quadrature Encoder into PMAC3 IC 

Whole Count Only, With Servo Using Hardware 1/T Extension 

Using Sub-Count Captured Data 

Some users will want to use the captured sub-count value on other triggered moves to obtain 

more resolution in the captured position, as in probing and registration moves. These users should 

set Motor[x].CaptPosRightShift and Motor[x].CaptPosLeftShift to 0, because no shift 

processing is required, and Motor[x].CaptPosRound to 0, because both servo and captured 

position already have the same offset. 

The following diagram shows how the process is done for this case, where the fractional-count 

value is used. In this case, there is no net processing of the captured data. 

8 bits fraction24 bits captured counter data

24 bits captured counter data

0

0

0

7831

31

731 8

24 bits captured counter data 8 bits fraction

8 bits fraction

0

0

 

Captured Position Processing for Quadrature Encoder into PMAC3 IC 

Whole and Fractional Count, With Servo Using Hardware 1/T Extension 

PMAC3-Style Interface for Sinusoidal Encoders 

When a PMAC3-style interface with the “DSPGATE3” IC is used to process sinusoidal encoders, 

as with the ACC-24E3 UMAC board and its analog-feedback mezzanine board, the servo-loop 

feedback usually uses a position value with arctangent sub-count extension computed directly in 
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the IC, found in Gate3[i].Chan[j].ServoCapt (or PhaseCapt if the servo loop is closed in the 

phase interrupt). This processing, enabled if Gate3[i].Chan[j].TimerMode = 0 (the default) 

provides 12 bits of sub-count extension (14 bits per cycle, for 16,384x interpolation). 

In this case, the hardware-captured position register of the IC (Gate3[i].Chan[j].HomeCapt) has 

different resolution from the servo-loop position, 32 bits, with the low 8 bits being 1/T sub-count 

extension if Gate3[i].Chan[j].TimerMode = 0 (the default). The user must decide whether he 

wants to use the captured sub-count value or not. 

Using Sub-Count Captured Data 

Most users will want to use the captured sub-count value on triggered moves to obtain more 

resolution in the captured position, as in probing and registration moves. These users should set 

Motor[x].CaptPosRightShift to 0 to keep all of the sub-count extension bits, 

Motor[x].CaptPosLeftShift to 4 to match the resolution of the servo-loop position, and 

Motor[x].CaptPosRound to 0, because both servo and captured position already have the same 

offset. 

The following diagram shows how the process is done for this case: 
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Captured Position Processing for Sinusoidal Encoder into PMAC3 IC 

Whole and Fractional Count, With Servo Using Hardware Arctangent Extension 

If the extended arctangent interpolation conversion is used for servo feedback (EncTable[n].type 

= 7), as is appropriate with the Auto-Correcting Interpolator, this conversion provides 14 bits of 

sub-count interpolation (16 bits per cycle, for 65,536x interpolation), then 

Motor[x].CaptPosLeftShift should be set to 6 instead of 4 here to account for the extra two bits 

of interpolation. The same is true if the software extension (EncTable[n].type = 4) is used with a 

PMAC3-style IC, which also provides 14 bits of sub-count interpolation. 
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The following diagram shows how the process is done for this case: 
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Captured Position Processing for Sinusoidal Encoder into PMAC3 IC 

Whole and Fractional Count, With Servo Using Extended Arctangent Interpolation 

Not Using Sub-Count Captured Data 

Some users will not want to use the sub-count estimation for homing-search moves, as they will 

want their position reference to be on an exact count (the zero crossing of the sine or cosine 

signal). These users should set Motor[x].CaptPosRightShift to 8 to eliminate the sub-count bits, 

Motor[x].CaptPosLeftShift to 12 to make the value the same scaling as the servo-loop position 

(but with all the sub-count bits set to 0), and Motor[x].CaptPosRound to 1, because eliminating 

the fractional bits in the captured position removed its offset, so it must be put back in here. 

The following diagram shows how this process is done for this case, where the fractional-count 

value is not used, even if captured: 

8 bits fraction24 bits captured counter data

24 bits captured counter data(sign extend)
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Captured Position Processing for Sinusoidal Encoder into PMAC3 IC 

Whole Count Only, With Servo Using Hardware Arctangent Extension 

If the extended arctangent interpolation conversion is used for servo feedback (EncTable[n].type 

= 7), as is appropriate with the Auto-Correcting Interpolator, this conversion provides 14 bits of 

sub-count interpolation (16 bits per cycle, for 65,536x interpolation), then 

Motor[x].CaptPosLeftShift should be set to 14 instead of 12 here to account for the extra two 
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bits of interpolation. The same is true if the software extension (EncTable[n].type = 4) is used 

with a PMAC3-style IC, which also provides 14 bits of sub-count interpolation. 

The following diagram shows how the process is done for this case: 

8 bits fraction24 bits captured counter data

24 bits captured counter data(sign extend)

(zeros)18 bits captured counter data

0

0

0

7831

232431

1331
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14

- - - - - -
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Captured Position Processing for Sinusoidal Encoder into PMAC3 IC 

Whole Count Only, With Servo Using Extended Arctangent Interpolation 

MACRO Interface with Quadrature Encoders 

When the motor’s servo interface is through the MACRO ring, digital quadrature feedback data 

appears in the MACRO node’s Register 0, a 24-bit register in the high 24 bits of Power PMAC’s 

32-bit data bus. The hardware-captured position is acquired through a special software request 

over the ring. The resulting value is in whole counts, with a single count residing in bit 0 of the 

32-bit word. 

Extended Servo Feedback 

Typically with Delta Tau MACRO hardware, the 24-bit servo feedback value already has 5 bits 

of 1/T sub-count extension performed at the remote MACRO station, so a whole count is found in 

bit 13 of the 32-bit word. In this case, users should set Motor[x].CaptPosRightShift to 0 to keep 

all of the whole-count information, Motor[x].CaptPosLeftShift to 13 to match the resolution of 

the servo-loop position, and Motor[x].CaptPosRound to 1 to match the half-count offset of the 

interpolated servo-loop position. 
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The following diagram shows how the process is done for this case: 
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Captured Position Processing for Quadrature Encoder into Remote MACRO Node 

Whole Count Only, With Servo Using 5-Bit Software 1/T Extension 

Non-Extended Servo Feedback 

With most third-party MACRO hardware, no sub-count interpolation is performed. In these cases, 

the feedback data appearing in the MACRO node’s Register 0 in the high 24 bits of the Power 

PMAC’s 32-bit bus is in units of whole counts, so a whole count is found in bit 8 of the 32-bit 

word. . In this case, users should set Motor[x].CaptPosRightShift to 0 to keep all of the whole-

count information, Motor[x].CaptPosLeftShift to 8 to match the resolution of the servo-loop 

position, and Motor[x].CaptPosRound to 0 because there is no offsetting in either servo or  

The following diagram shows how the process is done for this case: 

(sign extend) 24 bits captured counter data
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Captured Position Processing for Quadrature Encoder into Remote MACRO Node 

Whole Count Only, With Servo Using No Extension 

MACRO Interface with Sinusoidal Encoders 

When the motor’s servo interface is through the MACRO ring, sinusoidal feedback data appears 

in the MACRO node’s Register 0, a 24-bit register in the high 24 bits of Power PMAC’s 32-bit 

data bus. Typically, this 24-bit value already has 10 bits of arctangent sub-count extension 

performed at the remote MACRO station, so a whole count is found in bit 18 of the 32 bit word. 
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In this case, the hardware-captured position is acquired through a special software request over 

the ring. The resulting value is in whole counts, with a single count residing in bit 0 of the 32-bit 

word. In this case, users should set Motor[x].CaptPosRightShift to 0 to keep all of the whole-

count information, Motor[x].CaptPosLeftShift to 18 to match the resolution of the servo-loop 

position, and Motor[x].CaptPosRound to 1 to match the half-count offset of the interpolated 

servo feedback. 

The following diagram shows how the process is done for this case: 
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Captured Position Processing for Quadrature Encoder into Remote MACRO Node 

Whole Count Only, With Servo Using 10-Bit Software Arctangent Extension 

Processing the Software-Captured Position 

If software-captured position is used, the most recent servo-feedback position for the motor is 

used as the trigger position. This has already been processed into the units of the motor, so no 

further processing is required. 

In the case of timer-assisted software capture, Power PMAC automatically interpolates between 

two recent servo-feedback positions for the motor based on the trigger-captured time stamp. Since 

these positions have already been processed into the units of the motor, there is nothing for the 

user to specify on this processing. 

Post-Trigger Move 

Once the trigger position has been found and processed into a motor position, Power PMAC can 

compute the post-trigger move. The post-trigger move ends at a commanded position that is a pre-

specified distance from the actual position captured at the trigger. This signed distance value is 

specified by a saved setup element in the case of homing-search moves, and by the last value in 

the command in the case of triggered jog moves and programmed trigger moves. 

The post-trigger move, including the blending from the pre-trigger move, is governed by the same 

velocity and acceleration parameters as the pre-trigger move. Usually, the post-trigger move will 

involve a reversal from the pre-trigger move, but this is not necessarily the case. 

Homing-Search Moves 

The purpose of a homing-search move is to establish an absolute position reference when an 

incremental position feedback sensor is used. The “move until trigger” construct is ideal for 

finding the sensor that establishes the home position and automatically returning to this position. 
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Note the important distinction between a homing-search move, in which the home location is not 

known at the start of the move, and a move to the already-known home position, which can be 

accomplished with a motor command such as j=0 or an axis command such as X0. 

Home Commands 

A homing-search move can be executed either from an on-line hm command (e.g. #5hm, 

#6..8hm), or from a buffered program home command (e.g. home5, home6..8). The 

buffered program command can be used in either a motion or a PLC program. 

When commanding homing-search moves from an on-line command or a PLC program, the 

command simply starts the homing-search move, and other action must be taken to monitor for 

the end of the move and possible error conditions. 

When commanding a homing-search move from a motion program, program execution is 

suspended until all motors in the command successfully complete their homing-search moves, 

including the post-trigger move section. If a motor’s move ends in a fault condition, motion 

program execution is aborted. Note that for homing multiple motors from a motion program, 

unless the motors are commanded to start their homing-search moves simultaneously in a single 

command, it is necessary to wait for one motor’s homing-search move to finish before another 

motor’s can be started. 

Note 

If saved setup element Sys.NoShortCmds is set to 1, then on-

line homing commands cannot use just the letters “hm”; 

instead they must use the full word “home”, as the buffered 

program homing commands always must do. This mode of 

operation is intended to prevent the accidental entry of action 

commands. 

 

Homing Speed Control 

Motor[x].HomeVel specifies both the direction and magnitude of the top velocity for homing-

search moves, in motor units / msec. If it is greater than zero, the pre-trigger move will be in the 

positive direction. If it is less than zero, the pre-trigger move will be in the negative direction. The 

magnitude of Motor[x].HomeVel controls the top speed of both the pre-trigger and post-trigger 

moves (should they be long enough to get to this speed). 

Homing Acceleration Control 

The acceleration and deceleration characteristics of homing-search moves are determined by 

saved setup elements Motor[x].JogTa and Motor[x].JogTs. These can be set up to specify the 

acceleration profiles by time or rate. Both should be set either to specify times or rates. These 

elements are discussed in detail in the Jog Acceleration Control section, above. 

Home Trigger Condition 

The trigger condition for homing-search moves, as for other triggered moves, is specified by 

several motor and IC saved setup elements, as described above in detail. If no trigger is found, the 

pre-trigger move will continue indefinitely, or until stopped by an error condition such as hitting 

overtravel limits. 
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In homing-search moves, it is common practice to use a combination of a homing switch and the 

index channel as the home trigger condition. The index channel of an encoder, while precise and 

repeatable, is not unique in most applications, because the motor can travel more than one 

revolution. The homing switch, while unique, is typically not extremely precise or repeatable. By 

using a logical combination of the two, you can get uniqueness from the switch, and precision and 

repeatability from the index channel. The IC setup element Gaten[i].Chan[j].CaptCtrl can set 

up the trigger circuitry to perform this logical combination automatically in the IC hardware. In 

this scheme, the homing switch is effectively used to select which index channel pulse is used as 

the home trigger. 

Although the homing switch does not need to be placed extremely accurately in this type of 

application, it is important that its triggering edge remain safely between the same two index 

channel pulses. Also, the homing switch pulse must be wide enough to always contain at least one 

index channel pulse. 

Post-Trigger Move 

Motor[x].HomeOffset specifies the (signed) distance from the trigger-captured position to the 

end of the post-trigger move, in motor units. The endpoint of the commanded post-trigger move 

is the new motor position zero (the motor’s “home” position). The change of the motor’s reported 

position reference occurs at the beginning of the post-trigger move. As soon as this is done, 

reported positions are referenced to this new zero position. Also at this point, the motor’s “home 

search in progress” status bit is cleared, and the “home complete” status bit is set. 

If the post-trigger move fails with an error condition, it is not necessary to re-home the motor, as 

the home position is already known. A command such as j=0 can move the motor to the home 

position once the source of the problem has been cleared up. 

If software overtravel limits are used (Motor[x].MaxPos > Motor[x].MinPos), they are re-

enabled at the beginning of the pre-trigger move after having been automatically disabled during 

the search for the trigger. The trajectory to this new zero position is then calculated, including 

deceleration and reversal if necessary. Note that if a software limit is too close to zero, the motor 

may not be able to stop and reverse before it hits the limit. In normal termination, the motor will 

stop under position control with its commanded position equal to the home position. If there is a 

following error, the actual position will be different by the amount of the following error. 
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Example Homing Search Plot 

This plot shows the commanded velocity and acceleration move profiles for a simple homing 

search move. 

 

Velocity and Acceleration Profiles of a Typical Homing Search Move 

Failure to Find Trigger 

The pre-trigger move of a homing search will continue indefinitely if it fails to find the trigger 

condition it is looking for. Typically, it will be stopped by an overtravel position limit switch or 

fatal following error limit at the end of travel in this case. If you want a programmed limit to the 

length of the pre-trigger move, you should use an incremental jog-until-trigger command or 

programmed move-until-trigger, with the first value specifying the distance to move in the 

absence of a trigger, and the second the distance from the trigger to the end of the post-trigger 

move (replacing Motor[x].HomeOffset). Once the post-trigger move is finished, a hmz [homez] 

command (see below) can be used to set this position to be the motor zero position. 

Monitoring the Move 

If you are monitoring the motor from the host or from a PLC program to see if it has finished the 

homing-search move, it is best to look at the Motor[x].HomeInProgress and the 

Motor[x].DesVelZero status bits. The “home in progress” bit is set to 1 at the beginning of a 

homing search move, and then to 0 as soon as the trigger is found in a homing-search move, 

before the motor has come to a stop. So to check for the end of the post-trigger move, the 

“desired velocity zero” bit should be monitored to see when the commanded motion ends. 

The following code section shows a simple example of commanding a homing-search move from 

a PLC program and monitoring for proper finish: 

home3;     // Start homing move for Motor 3 

while (Motor[3].HomeInProgress == 0) { }  // Wait for start 

while (Motor[3].DesVelZero == 0) { }  // Wait for end 
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A robust monitoring algorithm will also look for the possibility that the homing search move 

could end in an error condition. Often this is just part of the general error monitoring that is done 

at all times, looking for overtravel limits, fatal following errors, and amplifier faults. If an error 

does occur during the homing move, it is important to distinguish between one that occurs before 

the trigger has been found, and one that occurs after. If the error occurs after, Power PMAC 

knows where the home position is, and the homing search does not need to be repeated. Once the 

error cause has been fixed, the motor can simply be moved to the home position with a command 

such as j=0. 

Homing Gantry Leader/Follower Motors 

Power PMAC has special functionality for homing search moves with gantry leader/follower 

motor sets. This functionality makes it very easy to perform this operation with multiple motors, 

automatically removing any power-on skew between the motors in the process. 

In this gantry leader/follower mode, the leader motor is set up as a “normal” motor, with 

Motor[x].ServoCtrl set to 1, so it generates its own commanded position trajectory, as well as 

performing its own servo-loop closure, and commutation if specified. One or more “follower” 

motors are set up with Motor[x].ServoCtrl set to 8, so they do not generate their own 

commanded position trajectories (but still perform their own servo-loop closure, and 

commutation if specified). Instead, they use the commanded trajectory of the motor specified by 

Motor[x].CmdMotor, which is set to the number of the “leader” motor. 

To perform a homing search move sequence for this set of motors, all of the motors in the set 

should be commanded to perform a homing search move simultaneously. For example, if Motor 5 

is the leader motor, and Motor 6 is the follower motor, an on-line #5..6hm or a program 

home5..6 command could be used. 

Leader Motor

Follower Motor

Power-On

Skew

Skew

Removed

On

Homing

 

Gantry Leader/Follower Motor System Skew Removal on Homing 

During the pre-trigger portion of the move, any follower motors will simply track the trajectory of 

the leader motor, so the power-on skew will remain during this part of the sequence. But as soon 

as the home triggers have been found for both leader and follower motors, the difference between 
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the trigger positions and therefore the skew will be calculated, and the process of removing it will 

be started. 

It does not matter which trigger is found first, and while it is strongly recommended that the 

deceleration distance for the leader motor after its own trigger is found be long enough that it will 

always cause the follower motor trigger to be hit, it is possible to find the follower motor trigger 

even after the leader’s post-trigger move is finished if some other move is then commanded. 

Once both triggers have been found, the skew of a follower motor is removed at a rate set by 

saved setup element Motor[x].GantrySlewRate in motor units per servo cycle. Note that the 

factory default value for this element is 0.0, which does not permit the skew to be removed. The 

skew removal offset is written into Motor[x].MasterPos for the follower motor, accumulating at 

this slew rate until it compensated for the power-on skew. At this time, status bit 

Motor[x].GantryHomed for the follower motor is set to 1. 

The skew is determined by the difference in the captured positions for the two motors and by the 

difference in the saved setup elements Motor[x].HomeOffset for the motors. The user can 

calibrate the difference in physical location between the home triggers for the motor by setting 

different values for these elements – the difference between the two values should correspond to 

the physical difference. 

Jog-Until-Trigger Moves 

The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by 

a move relative to the position at the time of the trigger. It is very similar to a homing search 

move, except that the motor zero position is not altered, and there is a specific destination in the 

absence of a trigger. 

Jog-Until-Trigger Commands 

The “jog-until-trigger” function for a motor is specified by adding a ^{constant} or ^* 

specifier to the end of a regular on-line “definite” jog command for the motor, or a ^{data} 

specifier to the end of a regular program “definite” jog command for the motor. In all three cases, 

this added syntax specifies the signed distance from the actual position captured at the trigger to 

the desired position at the end of the programmed move, in motor units. 

In the case of the on-line command with ^{constant}, it must be a numerical constant value. 

In the case of the on-line command with ^*, the post-trigger distance comes from the value of 

Motor[x].JogOffset. In the case of the program command with ^{data}, this distance can be a 

numerical constant without parentheses, or a mathematical expression in parentheses. 

The jog-until-trigger function cannot be used with the j+ and j- indefinite jog commands. 

Trigger Condition 

The trigger condition for the motor is set up just as for homing search moves, explained above. 

Position Capture Method 

The method for capturing position – hardware or software – and any subsequent processing of 

hardware-capture position is set up just as for homing search moves, explained above. 
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Acceleration and Speed Control 

Power PMAC will use the jog acceleration and velocity parameters in force at the time of the 

command for the pre-trigger move, and the values of these parameters in force at the time of the 

trigger for the post-trigger move. 

Monitoring the Move 

If the pre-trigger move ends without seeing the trigger condition, the 

Motor[x].TriggerNotFound status bit is set to 1 at the end of the move (when 

Motor[x].DesVelZero becomes 1). This bit can be used to decide the appropriate action at this 

point. 

Program Move-Until-Trigger 

The move-until-trigger construct can be used from within a motion program. In this version it is a 

variant of the rapid move mode, commanding motors through the axes they are assigned to. 

These moves execute exactly like on-line jog-until-trigger moves, but they are described a little 

differently. 

A program move-until trigger is commanded with the {axis}{data}^{data} syntax. Basic 

examples are X50^-2 and Y(P1)^(P2). The first value is the destination of the axis if no 

trigger is found, expressed in the engineering units for the axis. This value can be a position or a 

distance, depending on whether the axis is in absolute or incremental mode, respectively. The 

second value is the distance from the trigger-captured position to the end of the post-trigger 

move, expressed in the engineering units for the axis. The coordinate system must be in rapid 

mode for the triggering to operate; otherwise just the pre-trigger move will be executed to the 

specified endpoint. 

The commanded acceleration for the move is specified by Motor[x].JogTa and Motor[x].JogTs, 

as for other trigger moves. The magnitude of the peak velocity for the move is specified by 

Motor[x].MaxSpeed if Motor[x].RapidSpeedSel is at the default value of 0, or by 

Motor[x].JogSpeed if Motor[x].RapidSpeedSel is set to 1. The trigger conditions and capture 

methods are specified as for other triggered moves, as described above. Status bits are set as for 

on-line jog-until-trigger moves. 

Note 

Program move-until-trigger commands cannot be used in a 

coordinate system for which the motor/axis relationship is 

defined with kinematic subroutines instead of axis definition 

statements. 
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Open-Loop Moves 

The on-line motor command out{constant} and the program direct motor command 

cout:{data} specify “open-loop moves” for the motor. The position/velocity servo loop is 

opened, and a fixed value is placed in the servo loop output. The signed numerical value at the 

end of the command specifies this output value as a percentage of Motor[x].MaxDac, the largest 

permitted magnitude for the servo loop output. If Power PMAC does not commutate the motor, 

this command creates a constant signal on the single output for the motor. If Power PMAC does 

commutate the motor, this command sets the sign and magnitude of the torque (quadrature) 

command input to the commutation algorithm for the motor. 

In the on-line command, the output value must be specified as a numerical constant (e.g. out-

50, #2out75.3) in the +/-100 range. In the program command, it may be specified as a 

numerical constant without parentheses (e.g. cout:-50, cout2:75.3), or as a mathematical 

expression in parentheses (e.g. cout:(P1), cout5,6:(sind(Q700) ). 

These commands are typically used for diagnostic purposes, but they can also be used in the 

actual applications. 

If a motor is assigned to a positioning or follower axis in a coordinate system that is executing a 

motion program, it may not be commanded to do an open-loop move. 

If the Sys.PosCtrl position-output servo algorithm is selected for the motor, the position loop is 

not closed in the PMAC, so there is no open-versus-closed-loop distinction. The open-loop output 

command is not appropriate in this case. It can enable a disabled motor, but the output magnitude 

is not used, and it does not change the open/closed-loop mode of the drive. 
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SETTING UP COORDINATE SYSTEMS 

Once you have set up your motors, gotten them well tuned, and doing controlled jogging and 

homing search moves, you will want to assemble one or more coordinate systems from the 

motors so that you can run motion programs. 

What is a Coordinate System? 

A coordinate system in Power PMAC is a grouping of one or more motors for the purpose of 

synchronizing movements. A coordinate system (even with only one motor) can run a motion 

program; a motor by itself cannot.  

Number of Coordinate Systems 

Power PMAC can have multiple coordinate systems, up to 128. The user can set the largest 

number of potentially active coordinate systems with the global saved setup element 

Sys.MaxCoords. A coordinate system is not actually “active” until one or more motors has been 

assigned to it. 

The coordinate systems, which take numbers from 0 to (Sys.MaxCoords – 1), can be addressed 

in on-line commands with the &x command, where x is the number of the coordinate system. 

Each coordinate system has its own independent data structure Coord[x] with control and status 

variables for that coordinate system, with x again being the number of the coordinate system. 

It is expected that most Power PMAC users will not have an active C.S. 0 (&0), with motors 

assigned to axes in that coordinate system. Motors that have not been assigned to an axis in any 

coordinate system automatically use the “time base” (% override value) of C.S. 0. At power-

on/reset, Power PMAC is automatically addressing C.S. 0, and an explicit &x command is 

required to address another coordinate system in any communications thread.  

Strategy for Assigning Coordinate Systems 

In general, if you want certain motors to move in a coordinated fashion – starting, stopping and 

changing speeds at the same time – put them in the same coordinate system. If you want them to 

move independently of each other, put them in separate coordinate systems. Different coordinate 

systems can run separate programs at different times (including overlapping times), or even run 

the same program at different (or overlapping) times. 

It is possible to put all of your active motors in a single coordinate system for completely 

coordinated action; it is also possible to put each motor in a separate coordinate system (up to the 

limit of the number of possible coordinate systems) for completely independent action. 

A coordinate system must first be established by assigning motors to axes in that coordinate 

system. For simple relationships between motors (actuators) and axes (tool coordinates), this is 

done with on-line commands called “axis-definition statements” (see below). For more complex 

relationships, this is done by writing special “kinematic subroutines” that describe the 

relationship (covered in a following section).  

If a coordinate system has no motors assigned to axes in it, it can only execute motion programs 

in a fast “simulation” mode. In this mode, the moves take no time, and the program is executed as 

fast as Power PMAC can perform the calculations. This can be useful for certain “dry run” 

capabilities to evaluate a program.  
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When a program is written for a coordinate system, if simultaneous motions are desired of 

multiple motors, their move commands are simply put on the same line, and the moves will be 

coordinated. 

Fault Sharing 

All of the motors in a coordinate system react to an automatic fault of any motor in the coordinate 

system during a program move, including fatal following error, amplifier fault, integrated current 

limit, hardware or software overtravel limit, and encoder loss fault. This is true for motors 

assigned to position axes, spindle axes, or even the “null definition”. The specific reaction – 

enabled stop or disabled state – for various types of faults is determined by the value of saved 

setup element Motor[x].FaultMode for each motor. 

However,, if a motor in a coordinate system faults during an independent motor move (e.g. jog, 

home, open-loop) instead of coordinated program move, other motors in the coordinate system 

will not react. 

Motors do not automatically react to faults of motors in other coordinate systems. If you wish 

motors to react to these faults, you must implement this feature in your own routine, probably in a 

PLC program. 

What is an Axis? 

An axis is an element of a coordinate system. It can be thought of as one of the coordinates of the 

tool, or of the mechanics relative to the tool. An axis in Power PMAC is often similar to a motor, 

but not the same thing. An axis is referred to by letter. There can be up to 32 independent axes in 

a coordinate system, selected from the X, Y, Z, A, B, C, U, V, and W single letters, plus the AA 

through HH, and LL through ZZ double letters.  

Axes, and their relationships to motors, are established either through on-line “axis-definition” 

commands, which set up a mathematically linear relationship between axis positions and motor 

positions, or through “kinematic subroutines” which permit these relationships to be defined 

algorithmically, with extensive math and logic. Both methods are covered below. 

Single-Motor Axes 

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes. 

That is, a single motor is assigned to a single axis in a coordinate system. Even when this is the 

case, however, the matching motor and axis are not completely synonymous. The axis is scaled 

into engineering units, and deals only with commanded positions. Except for the pmatch 

function and axis query commands, calculations go only from axis commanded positions to motor 

commanded positions, not the other way around. 

Multiple-Motor Axes 

More than one motor may be assigned to the same axis in a coordinate system. This is common in 

gantry systems, where motors on opposite ends of the cross-piece are always trying to do the 

same movement. By assigning multiple motors to the same axis (e.g. #1->X, #2->X), a single 

programmed axis move in a program causes identical commanded moves in multiple motors. This 

is commonly done with two motors, but it is possible to assign even more motors to a single axis 

in Power PMAC. Remember that the motors still have independent servo loops, and that the 

actual motor positions will not necessarily be exactly the same. 
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Coordinating parallel gantry motors in this fashion is in general superior to using a master/slave 

technique (which can be done on Power PMAC with the “position following” feature). In the 

master/slave technique, the actual trajectory of the master as measured at the encoder, with all of 

the disturbances and quantization errors, becomes the commanded trajectory for the slave, whose 

actual trajectory will have even more errors. The roughness in the slave motor’s commanded 

trajectory makes it difficult or impossible to use feedforward properly, which introduces a lag.  

True, if the master gets a disturbance, the slave will see it and attempt to match it, but if the slave 

gets a disturbance, the master will not see it. 

Special Gantry Leader/Follower Mode 

Note that Power PMAC also has a new technique for implementing gantry systems called 

“leader/follower”. In this technique, one motor is designated the “leader”. This motor is activated 

normally (Motor[x].ServoCtrl is set to 1) and assigned to the axis in the coordinate system so it 

will use axis trajectories directly.  

Other motor(s) mechanically linked to this motor are designated “follower” motors. These motors 

are activated in a special follower mode by setting Motor[x].ServoCtrl to 8. In this mode, the 

motors close their own servo loops, but do not calculate their own trajectories. Instead, they use 

the trajectory calculated by the motor whose number is specified in Motor[x].CmdMotor, which 

should be that of the gantry leader motor.  

These follower motors are then assigned to the “null” definition (#x->0) in the same coordinate 

system as the leader motor, which is assigned to the desired axis. Note that by default, all motors 

have the null definition in Coordinate System 0. It is important that the follower motors be moved 

the working coordinate system, even though they are not directly assigned to an axis in that 

coordinate system. 

This mode of operation provides fundamentally equivalent motion to the technique of assigning 

multiple motors to the same axis, in that the motors use the same commanded trajectory, but close 

servo loops individually. However, it provides several important advantages. First, calculation 

time is reduced, because only one motor needs to calculate the commanded trajectory. Second, it 

makes it possible to move the motors together interactively just by jogging the leader motor. 

Finally, it makes the initial homing and “de-skewing” easier, because the follower motors can 

find their home triggers when the leader motor is homed, and have the skew (difference in 

position of their home trigger from the leader motor’s home trigger) automatically removed at the 

programmed rate set by Motor[x].GantrySlewRate. 

Phantom Axes 

An axis in a coordinate system can have no motors attached to it (a “phantom” axis), in which 

case programmed moves for that axis cause no movement, although the fact that a move was 

programmed for that axis can affect the moves of other axes and motors. For instance, if 

sinusoidal profiles are desired on a single axis, the easiest way to do this is to have a second, 

“phantom” axis and program circularly interpolated moves. 

Axis Definition Statements 

Most commonly, a coordinate system is established by using on-line axis definition statements. 

An axis is defined by matching a motor (which is numbered) to one or more axes (which are 

specified by letter).  
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Matching Motor to Axis 

The simplest axis definition statement is something like #1->X.  This simply assigns motor #1 to 

the X-axis of the currently addressed coordinate system, with the axis units equal to the motor 

units. When an X-axis move is executed in this coordinate system, motor #1 will make the move.  

Scaling and Offset 

The axis definition statement also defines the scaling of the axis’ user units. For instance, the 

definition #1->10000X also matches Motor #1 to the X axis, but this statement sets 10,000 

motor units (typically encoder counts) to one X-axis user unit (e.g. millimeters, inches, or 

degrees). This scaling feature is almost universally used. Once the scaling has been defined in this 

statement, the user can program the axis in engineering units without ever needing to deal with 

the scaling again. If no scale factor is used in the statement, a value of 1.0 is used. 

Note: Some users will set the motor units to a value other than the basic “counts” or “LSBs” of 

the feedback device by setting Motor[x].PosSf to a value other than its default value of 1.0. This 

is typically done to make the motor units as common engineering units. In most cases where this 

is done, the scale factor in the axis definition statement will be 1.0, so the motor and the axis have 

the same units. 

In addition the axis definition statement can provide for a fixed offset between the motor zero 

position (the “home position”) and the axis zero position. The statement #1->10000X+20000 

also sets the axis zero at 20,000-count (2-axis-unit) distance from the motor zero (home position). 

This offset is rarely used, as most people who desire offsets will want to change them 

dynamically, which can be done with the axis matrix transformations (see below).  

The Null Definition 

A motor can be given the “null” definition in a coordinate system with the axis definition 

statement #x->0. With this definition, the motor does not directly respond to any axis move 

commands (although it can indirectly respond as a “follower” in a gantry system as explained 

above). However, it does use the coordinate system’s “time base” override value, even for its own 

motor moves (jogging and homing), and shares fault response with other motors in the coordinate 

system. 

In addition, a motor with a null definition in one coordinate system can be redefined to another 

coordinate system, whereas a motor with a true axis definition cannot. Therefore, the null 

definition is used as an intermediate step in the process of transferring a motor to a different 

coordinate system. 

For example, if Motor 4 were assigned to the C-axis in C.S. 1, and it was desired to re-assign it to 

the C-axis in C.S. 2, the following commands would be used: 

&1 #4->0 

&2 #4->C 

 

Defining a Motor to Multiple Axes 

A single motor may be defined to multiple axes in a single axis-definition statement. In these 

cases the statements will be of the type: 
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#1->8660.25X-5000Y 

#2->5000X+8660.25Y 

 

Mathematically speaking, this makes the motor’s axis definition a linear combination of the 

multiple axes. It is even possible to make the motor’s axis definition a combination of all 32 

possible axes, although it will be very rare that there will be a combination of more than 3 axes. 

There are two common uses of these linear axis combinations. One is to create a rotation of the 

axis coordinates in a Cartesian reference frame relative to the underlying motors. The above 

example provides a 30° rotation from the motors to the axes. The second, and more common, use 

is to create a correction for a physical squareness error. Examples of both of these cases are 

shown in the following diagram, along with a more standard definition. 
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Technically, the relationship between motors and axes in a coordinate system is defined in a giant 

matrix, as shown below. 
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The data structure elements Motor[i].CoordSf[j] contain the axis definition scale factors for 

Motor i with regard to the “jth” axis. “j” is 0 for the A-axis, 1 for the B-axis, and so on. 

Motor[i].CoordSf[32] is the offset term for the motor’s axis definition. For example, the axis-

definition statement #3->5000Z-2000 will set Motor[3].CoordSf[8] to 5000, 

Motor[3].CoordSf[32] to -2000, and all other Motor[3].CoordSf[j] to 0. In almost all 

applications, the vast majority of these elements will be equal to zero. 

Cartesian Axis Sets 

Each Power PMAC coordinate system has two 3-D Cartesian axis sets: the X, Y, and Z primary 

Cartesian axis set and the XX, YY, and ZZ secondary Cartesian axis set. Axes in a Cartesian set 

have two capabilities that other axes do not. First, they can be used in circular interpolation. 

Second, they can be involved in tool (cutter) radius compensation (X/Y/Z set only). 

Each Cartesian axis set has three vector components associated with it. For the X/Y/Z set, the 

vector components are I, J, and K. For the XX/YY/ZZ set, the vector components are II, JJ, and 

KK. 

Circular interpolation and 2D cutter radius compensation can be performed on any plane within 

the 3-D Cartesian space (and not just the three primary planes). The plane for both functions is 
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defined by the buffered program normal command. The I, J, and K components, or the II, JJ, 

and KK components, declared in the command define the vector perpendicular to the plane, and 

therefore the orientation of the plane. 

The plane defined by the normal command for the X/Y/Z Cartesian axis set is also used when 

calculating corner angles for decisions on blending, dwell addition, and 2D cutter radius 

compensation outside corner arc addition. It is the angle of the corner projected into this plane 

that is calculated for the purposes of making these decisions. 

In a move command in circular interpolation mode, the I, J, and K components, or the II, JJ, and 

KK components declared in the command define the vector from the starting point of the move to 

the center of the circular arc, and therefore the location of the center. 

Rotary Axes with Rollover Capability 

Each Power PMAC coordinate system has six axes that support rotary axis rollover capabilities: 

the A, B, C, AA, BB, and CC axes. This capability permits ease of programming for continuously 

rotatable axes. 

Each of these axes has a saved setup element Coord[x].PosRollover[i] (i = 0 to 5 for the A, B, C, 

AA, BB, CC axis, respectively) that specifies its rollover behavior. If this element for the axis is 

set to its default value of 0.0, the axis has no rollover capability and is commanded just as for a 

linear axis. 

However, if Coord[x].PosRollover[i] is set to a non-zero value, rollover is enabled for the axis, 

with the magnitude specifying the rollover range. This magnitude is almost always set to 360, 

specifying a full rotation for an axis programmed in degrees. Rollover affects how abs mode 

moves for the axis are processed. It does not affect inc mode moves. 

If Coord[x].PosRollover[i] is set to a value greater than zero (usually +360), the “short-

direction” rollover mode is enabled. In this mode, Power PMAC computes the shortest distance to 

the specified destination angle, so no abs mode move is longer than ½-cycle in length. 

If Coord[x].PosRollover[i] is set to a value less than zero (usually -360), the “sign-is-direction” 

rollover mode is enabled. In this mode, the sign of the abs mode move destination value is the 

direction taken in the move. 

If saved setup element Coord[x].SignIsDirType (new in V2.6 firmware, released 3rd quarter 

2020) is set to its default value of 0, or for earlier versions without this element, the sign in the 

command is also the sign of the destination angle. For example, the abs mode move command 

B-25 causes a move in the negative direction to -25, which is equal to +335 for a 360-unit cycle. 

If Coord[x].SignIsDirType is set to 1, the destination angle is always considered positive, even 

if the sign in the command is negative. In this case, the abs mode move command B-25 causes 

a move in the negative direction to +25. 

In both types, a positive value in the move command causes a move in the positive direction to a 

destination specified as a positive value. The abs mode move command B25 causes a move in 

the positive direction to +25. 
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In the older PMAC and Turbo PMAC controllers, rollover was handled by the motor assigned to 

the rotary axis. The Power PMAC method of processing rollover on the programmed axis 

provides more flexibility, permitting rollover capability when motors are assigned to axes through 

kinematic subroutines. 

The following diagram illustrates how the rollover modes work for zero values of 

Coord[x].PosRollover[i], positive values, and negative values with Coord[x].SignIsDirType = 

1: 

315o 45o

0o

2

1

 (Starting point in program)
ABS // Absolute mode

A315        // Previous move

 Coord[x].PosRollover[0]=0.0
(rollover disabled)
A45 // Takes Path 1

 Coord[x].PosRollover[0]=360.0
(short-direction rollover enabled)
A45 // Takes Path 2

 Coord[x].PosRollover[0]=-360
(sign-is-direction rollover enabled)
A45 // Takes Path 2

 Coord[x].PosRollover[0]=-360
(sign-is-direction rollover enabled)
A-45 // Takes Path 1

 

Rotary Axis Rollover Mode Examples 

The Spindle Axis Definition 

It is possible to assign a motor as a “spindle” axis in a coordinate system. This definition is 

similar to a null definition in that the motor does not respond directly to any axis move 

commands. However, a “slot” is still reserved for this motor in the coordinate system’s 

“lookahead buffer”, so that the definition of this motor can be changed to a positioning axis 

without having to delete and redefine the lookahead buffer. This facilitates CNC-style 

applications where a rotary axis is sometimes used in velocity mode (as a “spindle”) and other 

times as a positioning axis. 

Note 

If a motor will always be used as a non-positioning spindle in 

an application, it is not necessary to define it as a spindle axis, 

and doing so will waste memory by reserving a slot for it in the 

coordinate system’s lookahead buffer that is never used. 

 

There are three forms of the spindle axis definition, each with its own rule for the motor’s “time 

base”. With a definition of the form #x->S, the motor uses the time-base value of the coordinate 

system it is defined in, so it speeds up and slows down along with the positioning axes of the 

coordinate system. (It does not obey the segmentation override value in this or any of the other 

spindle modes.) 
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With a definition of the form #x->S0, the motor uses the time-base value of Coordinate System 

0 instead of the coordinate system it is defined in. This mode provides independent override 

control for the spindle. 

With a definition of the form #x->S1, the motor uses a fixed 100% time-base value, so it is not 

affected by the time-base value of any coordinate system. 

Note 

The buffered move data in a lookahead buffer must be fully 

used or purged (using the lhpurge program command) 

before changing a motor’s definition between a position and 

spindle axis. Otherwise, unintended motion could occur. 

 

Conversion from Axis to Motor Position 

Technically, the conversion from axis (tool-tip) positions to motor (joint, or actuator) positions is 

known as the “inverse-kinematic” conversion. Power PMAC automatically converts from the 

programmed axis positions (in axis user units) to motor positions (in motor units) every 

programmed move, or in the case of “segmented moves”, every segment of the move. 

In the case of axes defined with axis-definition statements, Power PMAC simply “plugs” the axis 

values into the equation of the definition statement, and computes the resulting motor position. 

(The axis-definition statement is therefore an inverse-kinematic equation.) In the case of axes 

defined using kinematic subroutines, Power PMAC executes the user-written inverse-kinematic 

subroutine to compute these (see the next section of the manual). 

Axis Definition 

Statements

Inverse Kinematic 

Subroutine

Automatically Inverted 

Axis Definitions

Forward Kinematic 

Subroutine

Axis Positions Motor Positions

Calculate resulting motor positions 

from each programmed move/segment

Calculate starting axis positions, 

report axis position data
 

Conversion Between Axis and Motor Positions in a Coordinate System 



Power PMAC User’s Manual 

Setting Up Coordinate Systems 503 

Conversion from Motor to Axis Positions 

Technically, the conversion from motor (joint, or actuator) positions to axis (tool-tip) positions is 

known as the “forward-kinematic” conversion. Power PMAC automatically performs these 

forward-kinematic calculations is in the pmatch (position-match) function, which converts from 

commanded motor positions to commanded axis positions. This is needed in only a few cases. 

First, when a motion program is started with an r (run) or s (step) command, Power PMAC 

automatically executes a pmatch command internally to compute the starting axis position(s) for 

the first move calculations. Within a motion program, it normally assumes that the endpoint of 

the previous move is the starting point for the subsequent move, and so does not do these 

calculations each move. However, when a program is started, it does these calculations because 

there is a good chance that motors may have been moved independently (e.g. jog moves, open-

loop moves, stopping on an error condition); in other words, the axes do not know where the 

motors have gone and motor and axis positions may not match properly. 

Second, if you do anything to change the relationship between motor and axis positions inside a 

motion program (e.g. changing position-following offset mode, directly writing to the position-

bias or axis scaling registers), you must explicitly issue a pmatch command before the next 

programmed move. Otherwise, the next move will not execute properly. 

For axes defined with a simple definition statement, the pmatch function effectively inverts the 

equations contained in the axis-definition statements for the coordinate system, using motor 

commanded positions, and solves for axis commanded positions. If there is a one-to-one 

assignment of motors to axes, each axis definition statement can be inverted individually. If there 

is a cross-coupling of motors and axes through longer axis definitions, a matrix inversion must be 

performed for these calculations.  

If a proper matrix inversion cannot be done, Power PMAC cannot compute the starting axis 

positions, and it will not permit programmed moves in the coordinate system. The coordinate 

system Boolean data structure status element Coord[x].Csolve indicates whether a valid solution 

can be found for the coordinate system when set up by axis definitions and not kinematic 

subroutines. If it is 1, the starting axis positions can be computed, and motion programs can 

execute. 

If more than one motor is assigned to the same axis (e.g. #1->10000X, #2->10000X), the 

commanded position of the lower-numbered motor is used in the pmatch calculations. The 

motor Boolean data structure status element Motor[x].Csolve indicates whether that motor is 

used in these calculations (yes if 1). 

For axes in a coordinate system with a user-written forward-kinematic subroutine (see below), 

this subroutine is automatically executed for the pmatch function. 

The pmatch function assumes that the position referencing – either a homing search move or an 

absolute position-sensor read – has been done for each motor in the coordinate system. Each 

motor has a “home complete” status bit that is set true if either has been done, but if the user 

wants to check for this, this must be done at the application level. 

The same motor-to-axis conversion is automatically performed (if possible) when the positions, 

velocities, or following errors of the axes are queried with the on-line coordinate-system 
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commands &xp (actual position query), &xd (desired position query), &xv (actual velocity 

query), or &xf (following-error query). 
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Coordinate-System Kinematic Subroutines 

Power PMAC provides software structures to enable the user to easily implement and execute 

complex kinematic calculations. Kinematic calculations are required when there is a non-linear 

mathematical relationship between the tool-tip coordinates and the matching positions of the 

actuators (joints) of the mechanism, typical in non-Cartesian geometries. They are most 

commonly used in robotic applications, but can be used with other types of actuators that are not 

considered “robotic”. For example, in 4-axis or 5-axis machine tools with one or two rotary axes, 

it is desirable to program the cutter-tip path and let the controller compute the necessary motor 

positions. 

This capability permits the motion for the machine to be programmed in the natural coordinates 

of the tool-tip, usually Cartesian coordinates, whatever the underlying geometry of the machine. 

The kinematic routines are embedded in the controller by the integrator, and operate invisibly to 

the people programming paths and the machine operators. These routines can be unchanging for 

the machines, but with parameterization and/or logic, they can adapt to normal changes such as 

tool lengths and different end-effectors. 

In Power PMAC terminology, the tool-tip coordinates are for “axes”, which are specified by 

letter, and have user-specified engineering units. The joint coordinates are for “motors”, which 

are specified by numbers, and may have the raw units of “counts”. 

Note 

Power PMAC’s standard “axis-definition” statements handle 

linear mathematical relationships between joint “motors” and 

tool-tip “axes”. This section pertains to the more difficult case 

of the non-linear relationships. 

 

The “forward-kinematic” calculations use the joint positions as input, and convert them to tool-tip 

coordinates. These calculations are required at the beginning of a sequence of moves programmed 

in tool-tip coordinates to establish the starting coordinates for the first programmed move. The 

same calculations can also be used to report the actual position, velocity, and following error of 

the actuator in tool-tip coordinates, converting from the sensor positions on the joints. 

The “inverse-kinematic” calculations use the tool-tip positions as input, and convert them to joint 

coordinates. These calculations are required for the end-point of every move that is programmed 

in tool-tip coordinates, and if the path to the end-point is important, they must be done at periodic 

intervals during the move as well. 
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Note 

Formal robotic analysis makes a distinction between “joint” 

position, and the “actuator” position(s) required for that “joint” 

position. While the two positions are usually the same, there are 

cases, such as when two motors drive a joint differentially, where 

there is an important difference. If your system has a distinction 

between joint and actuator positions, your kinematic calculations 

must include this distinction, to go all the way between “actuator” 

positions and “tool-tip” positions, with “joint” positions as an 

intermediate step. This documentation will just refer to “joint” 

positions, although this could technically refer to “actuator” 

positions in some applications. 

 

Creating the Kinematic Program Buffers 

Power PMAC implements the execution of kinematic calculations through special forward-

kinematic and inverse-kinematic Script program buffers. Each coordinate system can have one of 

each of these program buffers, and the algorithms in them can be executed automatically at the 

required times, called automatically as subroutines from the motion-program execution engine or 

the on-line command execution engine. 

Creating the Forward-Kinematic Program 

The on-line open forward command opens the forward-kinematic buffer for the addressed 

coordinate system for entry and clears any existing contents. Buffered program commands 

implementing the forward-kinematic transformation can then be entered into this open buffer. 

The on-line close command stops entry into the buffer. 

Kinematic Motor and Axis Position Variables 

Before any execution of the forward-kinematic program, Power PMAC will automatically place 

the present commanded motor positions for each Motor x in the coordinate system into local 

variable Lx for the coordinate system or communications thread. These are floating-point values, 

in motor units. The program can then use these variables as the “inputs” to the calculations. 

After any execution of the forward-kinematic program, Power PMAC will take the values in local 

variables C0 – C31 for the coordinate system or communications thread (which are the same as 

L(MAX_MOTORS) to L(MAX_MOTORS+31) for the C.S. or thread, where 

MAX_MOTORS is the largest permitted value for Sys.MaxMotors in the Power PMAC, 

usually 256), as masked by 32 bits of local variable D0 (bit i of D0 set to 1 tells Power PMAC to 

use Ci), and use them as the resulting axis positions in the user’s engineering units. For the 

pmatch function, it will copy the specified values into the axis target position registers to be 

used as starting positions for the next programmed move. For on-line query commands, it will use 

the values for the specified axes in its response to the query. 

When working in the Integrated Development Environment (IDE) on the PC, the 

editor/downloader of the Project Manager automatically provides user names for these variables: 

KinPosMotorx for Lx, KinPosAxisα for the α-axis variable Ci, and KinAxisUsed for the axis-

mask output variable D0. This permits the programmer to use meaningful names for the 

kinematic motor and axis position variables. 
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The following table shows for each axis name the variable where the position is expected to be 

found and the value of the D0 bit that tells Power PMAC to use the axis position value. 

Axis 

Name 

Var. IDE Var. Name D0 Bit 

Value 

Axis 

Name 

Var. IDE Var. Name D0 Bit 

Value 

A C0 KinPosAxisA $1 HH C16 KinPosAxisHH $10000 

B C1 KinPosAxisB $2 LL C17 KinPosAxisLL $20000 

C C2 KinPosAxisC $4 MM C18 KinPosAxisMM $40000 

U C3 KinPosAxisU $8 NN C19 KinPosAxisNN $80000 

V C4 KinPosAxisV $10 OO C20 KinPosAxisOO $100000 

W C5 KinPosAxisW $20 PP C21 KinPosAxisPP $200000 

X C6 KinPosAxisX $40 QQ C22 KinPosAxisQQ $400000 

Y C7 KinPosAxisY $80 RR C23 KinPosAxisRR $800000 

Z C8 KinPosAxisZ $100 SS C24 KinPosAxisSS $1000000 

AA C9 KinPosAxisAA $200 TT C25 KinPosAxisTT $2000000 

BB C10 KinPosAxisBB $400 UU C26 KinPosAxisUU $4000000 

CC C11 KinPosAxisCC $800 VV C27 KinPosAxisVV $8000000 

DD C12 KinPosAxisDD $1000 WW C28 KinPosAxisWW $10000000 

EE C13 KinPosAxisEE $2000 XX C29 KinPosAxisXX $20000000 

FF C14 KinPosAxisFF $4000 YY C30 KinPosAxisYY $40000000 

GG C15 KinPosAxisGG $8000 ZZ C31 KinPosAxisZZ $80000000 

 

For example, if the X, Y, Z, and C-axis values were calculated and placed in C6, C7, C8, and C2, 

respectively, D0 should be set to $40 + $80 + $100 + $4 = $1C4. 

It is the responsibility of the user writing the forward kinematic program to place the calculated 

axis values in the proper variables and ensure that the proper bits of D0 are set before exiting the 

program. 

 
Note 

If the appropriate bits of D0 are not set when the forward 

kinematic routine finishes, Power PMAC will not use the axis 

position values, even if they have been calculated and placed in 

the proper variables. 

 

The basic purpose of the forward-kinematic program, then, is to take the joint-position values 

found in Lx for the motors used in the coordinate system, compute the matching tip-coordinate 

values, and place them in variables in the C0 – C31 range. 

Double-Pass Option 

If the forward-kinematic routine is to be used for computing axis velocities using the &xv 

command or axis following errors using the &xf command, it is necessary to permit a second 

pass through the computations using a callsub statement. On calling this routine, the Power 

PMAC will automatically set the local variable D0 (used as an input) greater than 0 in these 

cases, so the callsub statement is contingent on this condition. Note that D0 is also used as an 

output to specify which axis positions have been calculated, so it must be set explicitly in the 

routine every time. In the IDE, the declared name KinVelEna can be used for D0 here. 

The recommended program structure is: 
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open forward 

if (KinVelEna > 0) callsub 100; 

KinAxisUsed = {axis mask} 

n100:  

{kinematic calculations} 

return; 

close 

 

Distinguishing Motion-Program Calls from Query-Command Calls 

The forward-kinematic routine can be called both from a motion program (to compute starting 

axis positions) and from a query command (to compute reported positions, velocities, or 

following errors). For some purposes, it may be necessary to know which task is calling the 

subroutine. 

If the routine has been called from a motion program, bit 6 (value $40) of the local data element 

Ldata.Status will be set to 1. If the routine has been called from a query command, this bit will 

be zero. So the routine can use the following logic: 

if (Ldata.Status & $40) { 

  {tasks when called from motion program} 

} 

else { 

  {tasks when called from query command} 

} 

 

Stopping Program Execution from a Kinematic Routine 

Sometimes a kinematic subroutine will detect a condition that should not permit further program 

execution. A forward-kinematic subroutine may find that one or more of the motors in the 

coordinate system have not yet established a position reference, either by a homing search more 

or an absolute position read. An inverse-kinematic subroutine may be given a position that is not 

in the workspace of the mechanism. 

In this type of case, the subroutine should prevent further motion program execution. It can do 

this by issuing a program-direct abort command, or preferably by setting 

Coord[x].ErrorStatus to 255, a value reserved for errors detected by the user’s application, not 

the automatic firmware. 

Since the forward-kinematic subroutine can also be called by axis query commands, this aborting 

action should only be taken when the routine is called from a motion program. When called from 

an axis query command, it is recommended that some illegal value be returned. For example: 

if (Ldata.Status & $40) { // Called from motion program 

  Coord[1].ErrorStatus = 255; 

} 

else {     // Called from query command 

  KinPosAxisX = sqrt(-1); // Return "not-a-number" 

  KinPosAxisY = sqrt(-1);  // Return "not-a-number" 

} 
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Example 

(X,Y)
Y

X

B

A

L1

L2

 

Take the example of a 2-axis “shoulder-elbow” robot, with an upper-arm length (L1) of 400mm, 

and a lower-arm length (L2) of 300mm. Both the shoulder joint (A) and the elbow joint (B) have 

resolutions of 1000 counts per degree. When both joints are at their zero-degree positions, the two 

links are both extended along the X-axis. The forward-kinematic equations are: 

)cos()cos( 21 BALALX   

)sin()sin( 21 BALALY   

To implement these equations in a Power PMAC forward-kinematic program for Coordinate 

System 1 that converts the shoulder angle in Motor 1 and the elbow angle in Motor 2 (offset by 

90°) to the X and Y tip coordinates in millimeters, the following setup and program could be 

used: 

// Setup for program 

// Auto-assigned variable declarations 

 

csglobal Len1, Len2;  // Link length variables 

csglobal CtsPerDeg;  // Resolution of both joints 

csglobal FwdKinErr;  // Error flag for routine 

 

&1 

Len1 = 400    // Upper-arm link of 400mm 

Len2 = 300    // Lower-arm link of 300mm 

CtsPerDeg = 1000   // Counts per degree for A and B 

 

// Variable name substitutions (automatically made by IDE) 

//#define KinPosMotor1 L1 

//#define KinPosMotor2 L2 

//#define KinPosAxisX C6 

//#define KinPosAxisY C7 

//#define KinAxisUsed D0 

 

// Forward-kinematic program buffer for repeated execution 

&1  

open forward 

if (KinVelEna) callsub 100; 



Power PMAC User’s Manual 

Setting Up Coordinate Systems 510 

KinAxisUsed = $C0   // X and Y axis results 

N100: if (Coord[1].HomeComplete) {  // OK? 

  KinPosAxisX = Len1 * cosd(KinPosMotor1 / CtsPerDeg) + 

      Len2 * cosd((KinPosMotor1 + KinPosMotor2) / CtsPerDeg - 90); 

  KinPosAxisY = Len1 * sind(KinPosMotor1 / CtsPerDeg)+ 

      Len2 * sind((KinPosMotor1 + KinPosMotor2) / CtsPerDeg - 90); 

} 

else {    // Not valid; halt operation 

  if (Ldata.Status & 40) { // Called from motion program? 

    Coord[1].ErrorStatus = 255; // User-set aborting error 

  } 

  else {    // Called from axis query  

    KinPosAxisX = sqrt(-1); // Return "not-a-number" 

    KinPosAxisY = sqrt(-1); // Return "not-a-number" 

  } 

} 

return; 

close 

 

This example explicitly checks to see that all motors in the coordinate system have performed a 

position referencing (homing search or absolute position read) by looking at the 

Coord[x].HomeComplete status bit. If this bit is not set, the routine sets an error flag and aborts 

the program.  

Setting saved setup element Coord[x].HomeRequired to 1 can perform this functionality 

automatically when the routine is used to start a program. However, if the routine is also used for 

axis data reporting, the user may still want logic in the routine to note that the transformation is 

not valid because position references have not yet been established. 

The forward-kinematic program must calculate the axis positions for all of the axes in the 

coordinate system whether or not all of the motor positions are calculated in the inverse-

kinematic program (see below). For instance, if this arm had a perpendicular vertical axis at the 

tip with a normal axis definition statement in C.S. 1 of #3->100Z (100 counts per millimeter – a 

linear relationship between motor and axis, independent of other positions), the above program 

would still need to perform the forward-kinematic calculation for this motor/axis with a line such 

as KinPosAxisZ = KinPosMotor3 / 100. 

!
Caution 

If the forward-kinematic algorithm is not correct, and does not 

yield a true mathematical inverse of the inverse-kinematic 

algorithm, there will be a sudden and potentially dangerous 

jump at the beginning of the first move executed after the 

forward kinematic algorithm is executed. Make sure early in 

development that you have your fatal following error limits set 

as tight as possible to ensure that any large errors will cause a 

quick trip and not result in violent motion. 

 

Iterative Solutions 

Some systems, particularly parallel-link mechanisms such as Stewart platforms (“hexapods”), do 

not have reasonable closed-form solutions for the forward-kinematic equations, and require 

iterative numerical solutions. These cases are typically handled by a looping do…while 
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construct in the forward-kinematic program. The user should not permit indefinite looping – if the 

solution does not converge in the expected number of cycles, the program should be stopped (see 

the inverse-kinematic equations, below, for examples of how to stop the program). 

The number of loops (“jumps back”) in the forward-kinematic subroutine that can be executed 

before automatically creating an automatic abort on an error condition is set by the local variable 

Ldata.GoBack. This is not a saved element, and it has a default value of 10. If you wish to use a 

different value, it should be set explicitly at the top of the subroutine. It is strongly recommended 

that you explicitly trap a convergence failure in your own code before the automatic limit is 

tripped. 

Creating the Inverse-Kinematic Program 

The on-line open inverse command opens the inverse-kinematic buffer for the addressed 

coordinate system for entry and clears any existing contents. Buffered program commands 

implementing the inverse-kinematic transformation can then be entered into this open buffer. The 

on-line close command stops entry into the buffer. 

Before any execution of the inverse-kinematic program, Power PMAC will automatically place 

the present axis target positions for each axis in the coordinate system into local variables C0 – 

C31 for the coordinate system. For PVT-mode moves, it will also automatically place the present 

commanded axis velocities for each axis in the coordinate system into local variables C32 – C63 

(numbered 32 greater than the position variable for the same axis) for the coordinate system. 

These are floating-point values, in engineering units. The program can then use these variables as 

the “inputs” to the calculations. The table in the forward-kinematic section above shows the 

position variables for each axis. 

After any execution of the inverse-kinematic program, Power PMAC will take the values in those 

variables Lx that correspond to Motors x in the coordinate system with axis-definition statements 

of #x->I. These are floating-point values, and Power PMAC expects to find them in the motor 

units. Power PMAC will automatically use these values as the target position values for the next 

segment or move for these motors. 

There can be other motors in the coordinate system that are not defined as inverse-kinematic 

axes; these motors get their position values directly from the axis-definition statement and are not 

affected by the inverse-kinematic program. (This is generally not recommended, as it makes it 

hard for others to understand the complete transformation.) 

The basic purpose of the inverse-kinematic program, then, is to take the tip-position values found 

in C0 – C31 for the axes used in the coordinate system, compute the matching joint-coordinate 

values, and place them in variables Lx for the Motors x defined to inverse-kinematic axes in the 

coordinate system. 

(Do not assume that L-variable values computed in the previous cycle of the I.K. subroutine will 

still be valid on entering a new cycle. Other tasks, particularly query commands that use the F.K. 

subroutine, could have overwritten these values. Any values to be retained should use user-

declared variables. 
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Example 

Continuing with our example of the two-axis “shoulder-elbow” robot, and for simplicity’s sake 

limiting ourselves to positive values of elbow angle B (the “right-armed” case), we can write our 

inverse-kinematic equations as follows: 

(X,Y)
Y

X

B
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L2
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To implement these equations in a Power PMAC inverse-kinematic program for Coordinate 

System 1 that converts the X and Y tip coordinates in millimeters to the shoulder angle in Motor 

1 and the elbow angle in Motor 2, the following program could be used. The kinematic motor and 

axis position variables are the same as those used for the forward kinematic routine above. 

// Setup for program 

&1  // Address CS1 for axis definitions 

#1->I  // Motor 1 assigned to inverse kinematic axis in CS 1 

#2->I  // Motor 2 assigned to inverse kinematic axis in CS 1 

 

// Auto-assigned variable declarations 

// (Also uses variables declared in forward-kinematic example) 

csglobal SumLenSqrd   // Len1^2 + Len2^2 

csglobal ProdOfLens   // 2*Len1*Len2 

csglobal DifLenSqrd   // Len1^2 – Len2^2 

csglobal InvKinErr    // Error flag for routine 

 

// Pre-compute additional system constants 

&1 

SumLenSqrd = Len1 * Len1 + Len2 * Len2 

ProdOfLens = 2 * Len1 * Len2 

DifLenSqrd = Len1 * Len1 - Len2 * Len2 

 

// Inverse-kinematic algorithm to be executed repeatedly 

&1  

open inverse    // Open buffer, clear contents 

 

// Declare local variables for routine 

local X2Y2     // X^2 + Y^2 

local Bcos     // cos(Elbow) 

local Bangle    // Elbow angle (deg) 

local AplusC    // Sum of A and C angles (deg) 

local Cangle    // Angle C in triangle (deg) 

local Aangle    // Shoulder angle (deg) 
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X2Y2 = KinPosAxisX * KinPosAxisX + KinPosAxisY * KinPosAxisY; 

Bcos = (X2Y2 - SumLenSqrd) / ProdOfLens; 

If (abs(Bcos) < 0.9998) {  // Valid solution w/ 1 deg margin? 

    Bangle = acosd(Bcos); 

    AplusC = atan2d(KinPosAxisY, KinPosAxisX); 

    Cangle = acosd((X2Y2 + DifLenSqrd) / (2 * Len1 * sqrt(X2Y2))); 

    Aangle = AplusC - Cangle; 

    KinPosMotor1 = Aangle * CtsPerDeg; 

    KinPosMotor2 = (Bangle + 90) * CtsPerDeg; 

    InvKinErr = 0; 

} 

else {     // Not valid, halt operation 

    InvKinErr = 1;   // Set flag for external use 

    Coord[1].ErrorStatus = 255; // Stop execution 

} 

close 

 

Notes on the example: 

 By choosing the positive arc-cosine solutions, we are automatically selecting the “right-

armed” case. In a more general solution, we would have to choose whether the positive or 

negative solution is used, based on some criterion. 

 Increased computational efficiency could be obtained by combining more operations into 

single assignment statements. Calculations were split out here for clarity’s sake. 

 This example stops the program for cases where no inverse kinematic solution is possible. It 

does this by setting Coord[x].ErrorStatus to 255. Other strategies may be used to cope with 

this problem. 

 The “additional system constants” (SumLenSqrd, ProdOfLens, DifLenSqrd) that are 

derived from the basic constants Len1 and Len2 can be computed in a variety of places. 

They can be set to constant values just as Len1 and Len2 are, but any change to Len1 or 

Len2 is not automatically passed through to these variables. They can be computed from 

Len1 and Len2 in “power-on PLC”, but the Power PMAC must be reset to effect a change. 

Computing them in the inverse-kinematic routine is robust, but adds calculation time to every 

segment. Some users prefer to compute them in the forward-kinematic routine, which 

guarantees they will be correct for the inverse-kinematic routine where they are used, but 

without as much computational overhead. 

If this robot had a vertical axis at the tip, the relationship between motor and axis could be 

defined with a normal linear axis-definition statement (e.g. #3->100Z for 100 counts per 

millimeter), and the motor position would be calculated without the special inverse-kinematic 

program. Alternately, the motor could be defined as an inverse-kinematic axis (#3->I) and the 

motor position could be calculated in the inverse-kinematic program (e.g. 

KinPosMotor3=KinPosAxisZ*100 to set Motor 3 position from the Z-axis with 100 

counts per unit). 

Rotary Axis Rollover 

Position rollover of a programmed rotary axis (A, B, C, AA, BB, or CC) can be handled 

automatically when using kinematics subroutines, just as it can when axis-definition statements 
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are used. (This is unlike Turbo PMAC, where it had to be handled “manually” when kinematics 

subroutines were used.) Coord[x].PosRollOver[i] for the axis must be set (usually to 360) to 

enable the rollover capability for the specific rotary axis. 

It is important to understand how and when the rotary axis rollover works in conjunction with 

inverse kinematics. The axis rollover calculations are performed and the appropriate axis overall 

move trajectory is calculated before any inverse-kinematic calculations are made for the move. 

For example, if the C-axis position at the start of the move were 350 degrees and the commanded 

move destination were 10 degrees, then with the “short move” rollover mode, Power PMAC 

would calculate an axis move to 370 degrees, a 20-degree move in the positive direction. Multiple 

move segments with C-axis intermediate positions increasing from 350 to 370 degrees would be 

passed to the inverse-kinematic subroutine as the move is executed. 

Inverse-Kinematic Program for PVT Mode, No Segmentation 

The Power PMAC can also support the conversion of velocities from tip space to joint space in 

the inverse-kinematic program to enable the direct use of PVT mode with kinematic calculations.  

Note 

If the coordinate system is in “segmentation mode” 

(Coord[x].SegMoveTime > 0), the inverse-kinematic routine 

operates on segment positions (but not velocities) derived from 

the programmed PVT moves, not from the programmed moves 

themselves. 

 

With PVT-mode moves sent directly to the inverse-kinematic routine (no segmentation), the 

position calculations are done just as for any other move mode. An additional set of velocity-

conversion calculations must also be done. 

When executing PVT-mode moves with inverse-kinematic axes (#x->I) and no segmentation 

(Coord[x].SegMoveTime = 0), Power PMAC will automatically place the commanded axis 

velocity values from the PVT statements into local variables C32 – C63 (numbered 32 greater 

than the corresponding C-variable for position) for the coordinate system before each execution 

of the inverse-kinematic program. These are signed floating-point values in the engineering 

velocity units defined by the engineering length/angle units and the coordinate system’s 

Coord[x].FeedTime time units (e.g. mm/min or deg/sec). The following table shows the variable 

used for each axis: 

Axis Vel. Var. Axis Vel. Var. Axis Vel. Var. Axis Vel. Var. 

A C32 Z C40 HH C48 SS C56 

B C33 AA C41 LL C49 TT C57 

C C34 BB C42 MM C50 UU C58 

U C35 CC C43 NN C51 VV C59 

V C36 DD C44 OO C52 WW C60 

W C37 EE C45 PP C53 XX C61 

X C38 FF C46 QQ C54 YY C62 

Y C39 GG C47 RR C55 ZZ C63 

 

The IDE program permits you to use the variable name KinVelAxisα for the α-axis velocity 

variable to make the code more understandable. 
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Power PMAC will also set coordinate system local variable D0 (which can be substituted in the 

IDE with KinVelEna) to 1 in this mode as a flag to the inverse-kinematic program that it should 

use these axis (tip) velocity values to compute motor (joint) velocity values. 

In this mode, after any execution of the inverse-kinematic program, Power PMAC will read the 

values in those variables Rx for each Motor x (which can be substituted in the IDE with 

KinVelMotorx) in the coordinate system defined as an inverse-kinematic axis. These are 

floating-point values, and Power PMAC expects to find them scaled in motor units of counts per 

(Coord[x].FeedTime milliseconds). Power PMAC will use them as motor (joint) velocity values 

along with the position values in Lx to create a PVT move for the motor. 

For PVT moves, then, the inverse-kinematic program must not only take the axis (tip) position 

values in C0 – C31 and convert them to motor (joint) position values in Lx; it must also take the 

axis (tip) velocity values in C32 – C63 and convert them to motor (joint) velocity values in Rx. 

Technically, the velocity conversion consists of the solution of the “inverse Jacobian matrix” for 

the mechanism. 

Example 

Continuing with the “shoulder-elbow” robot of the above examples, the equations for joint 

velocities as a function of tip velocities are: 

 

The angles A and B have been computed in the position portion of the inverse-kinematic 

program. Note that the velocities become infinite as the angle B approaches 0 degrees or 180 

degrees. Since in our example we are limiting ourselves to positive values for B, we will trap any 

solution with a value of B less than 1° or greater than 179° (sin B < 0.0175) as an error. 

// Variable name substitutions (automatically assigned by IDE) 

//#define KinVelAxisX C38 

//#define KinVelAxisY C39 

//#define KinVelMotor1 R1 

//#define KinVelMotor2 R2 

 

&1  

open inverse 

 

// Auto-assigned variable declarations (in addition to above) 

local Bsin;     // Sine of elbow angle 

local LenBsin;    // L1*L2*sinB 

local ABcos;    // cos(A+B) 

local ABsin;    // sin(A+B) 

local Avel;     // dA/dt 

local Bvel;     // dB/dt 

 

//{Position calculations from above} 

 

if (KinVelEna && !(InvKinErr)) { // PVT mode, valid position? 
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  Bsin = sind(Bangle);   // sin(B) 

  if (Bsin > 0.0175) {   // Not near singularity? 

    LenBsin = Len1 * Len2 * Bsin; // L1*L2*sinB 

    ABcos = cosd(Aangle + Bangle); // cos(A+B) 

    ABsin = sind(Aangle + Bangle); // sin(A+B) 

    Avel = Len2 * (ABCos*KinVelAxisX + ABsin*KinVelAxisY) / LenBsin; 

    Bvel = -(KinPosAxisX*KinVelAxisX+KinPosAxisY*KinVelAxisY)/LenBsin; 

    KinVelMotor1 = Avel * CtsPerDeg; // #1 speed in user units 

    KinVelMotor2 = Bvel * CtsPerDeg; // #2 speed in user units 

  } 

  else {     // Near singularity 

    Coord[1].ErrorStatus = 255 // Stop program and motion 

  } 

} 

close 

 

Note that in this case the check to see if B is near 0° or 180° is redundant because we have 

already done this check in the position portion of the inverse-kinematic algorithm. This check is 

shown here to illustrate the principle of the method. In this example, the program is aborted if too 

near a singularity; other strategies are possible. 

Iterative Solutions 

Some systems do not have reasonable closed-form solutions for the inverse-kinematic equations, 

and require iterative numerical solutions. These cases are typically handled by a looping 

do…while construct in the inverse-kinematic program. The user should not permit indefinite 

looping – if the solution does not converge in the expected number of cycles, the program should 

be stopped. 

The number of loops (“jumps back”) in the inverse-kinematic subroutine that can be executed 

before automatically creating an error condition is set by the local variable Ldata.GoBack. This 

is not a saved element, and it has a default value of 10. If you wish to use a different value, it 

should be set explicitly at the top of the subroutine. . It is strongly recommended that you 

explicitly trap a convergence failure in your own code before the automatic limit is tripped. 

Implementing Kinematic Calculations in C 

A few users with very intensive kinematic calculations may want to implement most or all of 

those calculations in compiled C code, which can execute over 10 times faster than comparable 

interpreted Script code. This can be done using the special “CfromScript” subroutine, called 

from the Script forward and/or inverse kinematic subroutines. Power PMAC still calls these 

Script routines automatically at the appropriate times, but the ability to call a C function from 

these Script programs permits most or all of the computation to be done in C. 

The Script call of this C function is of the form: 

MyVar = CfromScript(Arg1,Arg2,Arg3,Arg4,Arg5,Arg6,Arg7); 

The CfromScript subroutine is discussed in detail in the User’s Manual chapter “Writing C 

Functions and Programs in Power PMAC”. 

Generalizing the Routines to Multiple Coordinate Systems 

Some users will want kinematics subroutines for multiple coordinate systems that are identical 

except for the motors used in each coordinate system. For these users, while it is necessary to 
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have separate forward and inverse kinematic subroutines for each coordinate system, it is possible 

to make these “instances” of the routines identical for each coordinate system. 

This can be implemented by using a subroutine called by the kinematics routines that returns the 

motor numbers used in that coordinate system. An example subroutine (with IDE substitutions) 

for a system with three coordinate systems of two motors each could be: 

open subprog GetMotorNums (CSNum, &FirstMotor, &SecondMotor) 

 

switch (CSNum) 

{ 

case 1: 

  FirstMotor = 1; 

  SecondMotor = 2; 

  break; 

 case 2: 

  FirstMotor = 3; 

  SecondMotor = 4; 

  break; 

 case 3: 

  FirstMotor = 5; 

  SecondMotor = 6; 

  break; 

} 

return; 

close 

 

To use these values in the kinematics routines, it is useful to provide meaningful names for the 

variables that will be used: 

#define KinPos1stMotor Ldata.L[FirstMotorNum] 

#define KinPos2ndMotor Ldata.L[SecondMotorNum] 

 

Then the kinematics routines can use this information with the proper local variable definitions. 

This example is for the same serial-link two-joint arm as above. 

open forward (1)   // Repeated for each CS# 

local FirstMotorNum; 

local SecondMotorNum; 

 

call GetMotorNums (Ldata.Coord, &FirstMotorNum, &SecondMotorNum); 

 

KinPosAxisX = Len1 * cosd(KinPos1stMotor / CtsPerDeg) + 

  Len2 * cosd((KinPos1stMotor + KinPos2ndMotor) / CtsPerDeg – 90); 

KinPosAxisY = Len1 * sind(KinPos1stMotor / CtsPerDeg) + 

  Len2 * sind((KinPos1stMotor + KinPos2ndMotor) / CtsPerDeg – 90); 

… 

close 

 

open inverse (1)   // Repeated for each CS# 

local FirstMotorNum; 

local SecondMotorNum; 

local ThisCs; 

… 

call GetMotorNums (Ldata.Coord, &FirstMotorNum, &SecondMotorNum); 
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ThisCs = Ldata.Coord; 

 

X2Y2 = KinPosAxisX * KinPosAxisX + KinPosAxisY * KinPosAxisY; 

Bcos = (X2Y2 - SumLenSqrd) / ProdOfLens; 

if (abs(Bcos) < 0.9998) {  // Valid solution w/ 1 deg margin? 

    Bangle = acosd(Bcos); 

    AplusC = atan2d(KinPosAxisY, KinPosAxisX); 

    Cangle = acosd((X2Y2 + DifLenSqrd) / (2 * Len1 * sqrt(X2Y2))); 

    Aangle = AplusC - Cangle; 

    KinPosMotor1 = Aangle * CtsPerDeg; 

    KinPosMotor2 = (Bangle + 90) * CtsPerDeg; 

} 

else {      // Not valid, halt operation 

    Coord[ThisCs].ErrorStatus = 255; // Stop execution 

} 

close 
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Axis Transformation Matrices 

Power PMAC provides the capability to perform matrix transformation operations on the axes of 

a coordinate system. These operations provide much of the same mathematical functionality as 

the matrix forms of the axis definition equations, but these can be changed in the middle of 

programs as long as there is a momentary stop; the axis definition statements are usually fixed for 

a given application. 

For most axes, the matrix transformations permit only additional scaling and offset terms. 

However for four 3-axis sets (X/Y/Z, U/V/W, XX/YY/ZZ, and UU/VV/WW), they also permit 

transformations such as rotations, mirroring, and skewing by providing full 3-by-3 matrix terms. 

The transformations can be visualized as a giant matrix, as shown below: 
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ZZLBLALdmBiasiTdata
mL  3110 ,...,,,][].[  

ZZLBLALkmDiagiTdata
mL  3110 ,...,,,][].[  

WVSWUSVWSVUSUWSUVSkmUVWiTdata
mS  543210 ,,,,,,][].[  

ZYSZXSYZSYXSXZSXYSkmXYZiTdata
mS  543210 ,,,,,,][].[  

WWVVSWWUUSVVWWSVVUUSUUWWSUUVVSkmUUVVWWiTdata
mS  543210 ,,,,,,][].[

ZZYYSZZXXSYYZZSYYXXSXXZZSXXYYSkmXXYYZZiTdata
mS  543210 ,,,,,,][].[  

The column vector of axes on the left contains the “base” axis coordinates (e.g. A) as established 

by the axis-definition statements or the kinematic subroutines. The column vector of axes on the 

right contains the “transformed” axis coordinates (e.g. A') that will be programmed. 

This matrix is similar to the axis definition matrix shown earlier in the chapter, but there are some 

important differences. First, while the axis definition matrix is “full”, with all of the off-diagonal 

elements capable of being set to non-zero values, only a few off-diagonal elements can be set to 
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non-zero values in the transformation matrix. Second, while the axis definition matrix relates 

motors to axes, the transformation matrix relates the base axes to the transformed axes. 

The following diagram shows how and when Power PMAC converts between transformed axes, 

base axes, and motors: 

Axis Definition 

Statements

Inverse Kinematic 

Subroutine

Automatically Inverted 

Axis Definitions

Forward Kinematic 

Subroutine

Base Axis 

Positions
Motor Positions

Calculate resulting motor positions 

from each programmed move/segment

Calculate starting axis positions, 

report axis position data

Selected 

Transformation Matrix

Automatically Inverted 

Transformation Matrix

Transformed 

Axis Positions

 

Conversion Between Transformed Axis, Base Axis, and Motor Positions 

Transformation matrices can be used regardless of whether the underlying axes are established 

with axis definition statements or with kinematic subroutines. 

Transformation Matrix Data Structures 

The axis transformation matrices are stored as data structures in Power PMAC. The base structure 

name for a transformation matrix is Tdata[i], where i can take a value from 0 to 255. Each matrix 

has 32 diagonal elements Tdata[i].Diag[j] (j = 0 to 31), where j is the axis index (0 for A, 1 for 

B, 8 for Z, 9 for AA, and so on, to 31 for ZZ). The diagonal elements are primarily scale factors. 

Each matrix has 32 offset elements Tdata[i].Bias[j] (j = 0 to 31), where j is the axis index. These 

elements are primarily to create offsets between the base axis origin and the transformed axis 

origin. 

The four 3-axis sets that have off-diagonal terms permit other transformation operations besides 

scaling and offsets. Rotations (about arbitrary points), mirrorings (about arbitrary lines), and 

skewing are all possible. 

Looking at the portion of an axis transformation matrix that operates on the X/Y/Z axis triplet, we 

have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following elements: 
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Looking at the portion of an axis transformation matrix that operates on the U/V/W axis triplet, 

we have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following elements: 
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Looking at the portion of an axis transformation matrix that operates on the XX/YY/ZZ axis 

triplet, we have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following 

elements: 
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Looking at the portion of an axis transformation matrix that operates on the UU/VV/WW axis 

triplet, we have a 3x3 “rotation matrix” and a 1x3 “offset vector” comprised of the following 

elements: 
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Using the Matrices 

A given transformation matrix Tdata[i] is selected for the coordinate system with the program 

command tseli. The command tsel-1 deselects all transformation matrices for the 

coordinate system, and no transformation calculations are performed in that coordinate system. 

The presently selected matrix for a coordinate system can be read at any time in the data structure 

element Coord[x].Tsel. A value of -1 indicates that no matrix is selected. This is the power-up 

default value. 

Values can be assigned directly to any transformation matrix element, for a selected or unselected 

matrix, with on-line or program assignment commands (e.g. Tdata[1].Diag[6]=25.4). In 

addition there are two functions in the script language that act on an entire matrix. 

Initializing a Transformation Matrix 

The tinit function initializes a transformation matrix, setting all of the diagonal terms to 1.0, 

and all of the off-diagonal and offset terms to 0.0. This makes the transformation matrix an 
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“identity matrix, so all of the transformed axis positions using the matrix are equal to the 

untransformed axis positions. 

The tinit function returns the determinant of the resulting matrix. This, of course, should be 

1.0 for a valid initialization. It will return 0.0 for an invalid initialization (e.g. an illegal matrix 

number). A typical use of this function will be: 

Tdet = tinit(2); 

where Tdet has been declared as a local or global variable. It is possible to check Tdet to 

ensure that a valid initialization has been performed. 

Propagating Transformations 

The tprop function permits the “propagation” of one matrix transformation by another. In this 

propagation, the square rotation matrix of the first transformation is multiplied by the square 

rotation matrix of the second transformation, yielding the square rotation matrix of the resulting 

transformation. The square rotation matrix of the first transformation matrix is then multiplied by 

the column offset vector of the second transformation matrix, and the resulting column matrix is 

added to the first transformation’s column offset vector, yielding the column offset vector of the 

resulting transformation matrix. The returned value of the function is the determinant of the 

resulting transformation’s rotation matrix. It will be 0.0 for an invalid operation.  

A typical use of this function will be: 

Tdet = tprop(1,3,4); 

where Tdata[3] is the first transformation, Tdata[4] is the second transformation, Tdata[1] is the 

resulting transformation. Tdet has been declared as a local or global variable. It is possible to 

check Tdet to ensure that a valid operation has been performed. 

Re-Establishing Motor/Axis Relationships 

When the active transformation is changed, either by selecting a new matrix (or deselecting all), 

or by changing values in the selected matrix, the relationship between programmed axis values 

and underlying motor values has been changed as well. This means that the starting axis values 

for the present motor positions must be re-computed with the “position-match” function before 

the next commanded axis move is performed. This is done automatically if an r (run) or s (step) 

command is given to cause the next move(s) to executed. However, if the change is done during 

the execution of a motion program, a pmatch command must be executed explicitly before the 

next move command in the program. 

Examples 

Often the second transformation is used as an “operator” to modify the first transformation. The 

resulting transformation can be the same as one of the first two transformations. The following 

section of code shows the simple example of using this principle to perform an incremental 

rotation in the XY plane about the origin on top of an existing transformation. 

tsel1;     // Transform 1 selected as active 

Tdet = tinit(2);    // Initialize Transform 2 

Tdata[2].Diag[6] = cosd(DTheta); // Set X diagonal term 

Tdata[2].XYZ[0] = -sind(DTheta); // Set XY off-diagonal term 

Tdata[2].XYZ[2] = sind(DTheta); // Set YX off-diagonal term 



Power PMAC User’s Manual 

Setting Up Coordinate Systems 523 

Tdata[2].Diag[7] = cosd(DTheta); // Set Y diagonal term 

Tdet = tprop(1,1,2);   // Rotate Xform 1 using Xform 2 

pmatch;     // Re-compute axis positions 

 

The next section of code rescales the XYZ space whose axis definitions have specified 

millimeters to inches. 

tsel1;     // Transform 1 selected as active 

Tdet = tinit(2);    // Initialize Transform 2 

Tdata[2].Diag[6] = 25.4;  // Set X diagonal term 

Tdata[2].Diag[7] = 25.4;  // Set Y diagonal term 

Tdata[2].Diag[8] = 25.4;  // Set Z diagonal term 

Tdet = tprop(1,1,2);   // Scale Xform 1 using Xform 2 

pmatch;     // Re-compute axis positions 

 

The next section of code offsets the XYZ space incrementally by 3 user-specified variable values. 

tsel1;     // Transform 1 selected as active 

Tdet = tinit(2);    // Initialize Transform 2 

Tdata[2].Bias[6] = XdOffset;  // Set X offset term 

Tdata[2].Bias[7] = YdOffset;  // Set Y offset term 

Tdata[2].Bias[8] = ZdOffset;  // Set Z offset term 

Tdet = tprop(1,1,2);   // Offset Xform 1 using Xform 2 

pmatch;     // Re-compute axis positions 

 

 

Rescaling Feedrate and Tool Radius 

If a transformation matrix is used to rescale the XYZ Cartesian space, then by default the vector 

feedrate and 2D tool-radius compensation offset values are rescaled by the same amount. For 

example, if the XYZ space is scaled up by a factor of 2, so that 1 mm programmed is 2 mm in 

action, then a programmed vector feedrate of 500 mm/min would result in a physical vector 

feedrate of 1000 mm/min, and a programmed tool-radius offset of 8 mm would result in a 

physical tool-radius offset of 16 mm. 

However, starting in V1.6 firmware, released 1st quarter 2014, it is possible to compensate for the 

scaling of the XYZ space by the value of status element Coord[x].TxyzScale. When it is changed 

from its power-on default value of 0.0, the programmed vector feedrate and tool-radius offset 

values are divided by the value of TxyzScale. (Of course, a value of 1.0 means no change.) 

Continuing the above example, with the XYZ space scaled up by a fact of 2, a value of 2.0 for 

TxyzScale would rescale the vector feedrate and tool-radius offset back to the physical units for 

the axes, even though all moves would be twice as long. 

Coord[x].TxyzScale cannot be written to directly in the Script environment, but it can be 

changed using the buffered program command txyzscale{data} , where {data} is a 

constant without parentheses (e.g. txyzscale2.0) or an expression in parentheses (e.g. 

txyzscale(D16)). 

It is also possible to have this rescaling done automatically. If saved setup element 

Coord[x].AutoTxyzScale is set to 1, then Coord[x].TxyzScale is calculated automatically to 

compensate for the scaling of XYZ space done by the selected transformation matrix for the 

coordinate system when the buffered program command tsel{data} is executed. Technically, 

TxyzScale is computed as the cube root of the determinant of the 3x3 XYZ portion of the 

transformation matrix. Note that all 3 axes must be scaled to the same extent for this to be useful. 
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Segmentation Mode 

Each coordinate system can be put into “segmentation mode” or not. If the coordinate system is 

in segmentation mode, most programmed path-based motion trajectories are computed using a 

two-stage interpolation process. In the first stage, the equations of motion that were derived from 

the programmed move command are solved at a coarse-interpolation (segmentation) interval. 

Then a fine-interpolation stage executing at the servo update rate computes intermediate points 

between the coarsely interpolated points using the computationally efficient cubic B-spline 

algorithm (employing the same equations as the programmed spline move mode). 

The reason for this two-stage process is that there are many types of calculations that need to be 

done more than once per programmed move, but doing them at the servo update rate would 

overload the processor without performing much better than at a somewhat slower update rate. In 

Power PMAC, the segmentation interval specifies the intermediate rate at which these 

calculations are done. 

Segmentation mode in a coordinate system is enabled by setting saved setup element 

Coord[x].SegMoveTime to a value greater than its default of 0.0. The non-zero value specifies 

the segmentation interval in milliseconds. The following calculations are done at the 

segmentation rate: 

 Exact circular interpolation calculations: The time-intensive trigonometric calculations 

for circular interpolation mode are done once per segmentation interval, with a simpler 

fine interpolation algorithm updating the commanded position each servo cycle. This 

includes added-arc moves in cutter-radius compensation mode, so the coordinate system 

must be in segmentation mode for this compensation to be active. 

 Inverse-kinematic calculations: In order to get an accurate path in a non-Cartesian 

geometry, the inverse-kinematic transformation from tool-tip (axis) positions to 

underlying joint (motor) positions must be done at many points along the path, not just at 

the programmed move endpoints. These calculations can be very time intensive, and 

executing them at the servo rate would be prohibitive, so these are done at the 

segmentation rate as well. 

 Special lookahead for dynamic limiting: The lookahead algorithm scans ahead in the 

planned trajectory looking for possible violations of dynamic limits. In order to optimize 

the resulting trajectories properly, this needs to be done more than once per programmed 

move, but doing this at the servo rate would probably overload the processor. So these 

calculations are done segment by segment, checking each for position, velocity, and 

acceleration violations. 

 Segmentation override: Performing “feedrate override” calculations at the segmentation 

stage, before lookahead acceleration limiting, permits the override to affect velocities 

without affecting accelerations, unlike override at the servo update rate. However, 

changes in override still take effect quickly, unlike override performed at the 

programmed move calculation time. 

There is a trade-off between the computational load of a small segmentation time (high 

segmentation frequency) and greater resulting path errors of a large segmentation time (low 

segmentation frequency). The path error in a Cartesian space resulting from the cubic B-spline 

fine-interpolation algorithm approximating the true path can be expressed as: 
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where E is the (perpendicular) path error, V is the path velocity, T is the segmentation time, and R 

is the local radius of curvature of the path. In virtually all applications, a satisfactory compromise 

between computational load and path accuracy can be achieved easily. In most applications, the 

segmentation time will be set to a value equivalent to 10 to 20 servo cycles. 

Segmentation mode must be enabled to execute circle mode moves, cutter radius compensation, 

inverse kinematics, and the mode where programmed linear moves are executed as PVT moves. 

Standard linear and PVT mode moves can be executed as segmented moves or not. Rapid and 

spline mode programmed moves, and jogging and homing-search motor moves, are never 

segmented, even if segmentation mode is enabled for the coordinate system. 

Time-Base Control and Override Techniques 

Power PMAC provides several methods for executing moves for the axes and motors in a 

coordinate system at other than the programmed speeds, without modification to the programs or 

move parameters. These methods are often called “override” techniques, because they allow the 

programmed speeds to be overridden. The methods work by changing the numerical value for 

time used in interpolation so it no longer represents the true physical time elapsed during the 

interpolation interval. 

Time-Base Control 

Fundamentally, time-base control works by varying the numerical value for the time elapsed in a 

single servo cycle by the “fine interpolation” algorithms that generate a new commanded 

trajectory position for input to the servo loop each servo cycle. Note that the physical time 

between servo cycles remains constant, so servo-loop dynamics are not affected. 

The fundamental interpolation equation solved every servo cycle is: 

nnnn tCVCPCP   *1  

CPn is the commanded position for the present servo cycle n, CPn-1 is the commanded position for 

the previous servo cycle, CVn is the commanded velocity for the present servo cycle, and Δtn is 

the numerical value for time elapsed in the present servo cycle. 

The global saved setup element Sys.ServoPeriod should contain the true time elapsed in one 

servo cycle, expressed in milliseconds. If the Δtn value used in the fine-interpolation equation 

deviates from this value, the move will execute at other than the programmed speed. For example, 

if Δtn is only half of the true value, the move will execute at half of the programmed speed. 

Each coordinate system has a saved setup element Coord[x].pDesTimeBase (pointer to desired 

time base) that contains the address of the register that Power PMAC reads for the coordinate 

system’s desired Δtn value each servo cycle. It expects to find a double-precision floating-point 

value at this register, with units of milliseconds. Depending on what register this is, various 

interesting effects can be produced. 

The actual Δtn value used each servo cycle in the fine-interpolation equations is found in the data 

structure element Coord[x].TimeBase, also a double-precision floating-point value with units of 
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milliseconds. This value tracks the desired value in the register specified by 

Coord[x].pDesTimeBase, but its rate of change is limited by the saved setup element 

Coord[x].TimeBaseSlew, which specifies how much the actual Δtn value can change each servo 

cycle. 

“%” Override Commands 

If Coord[x].pDesTimeBase is set to the default value of Coord[x].DesTimeBase.a (the address 

of the command desired time base register), then the coordinate system will get its Δtn value from 

a register that responds to on-line %{constant} commands. A %{constant} command 

causes the value in Coord[x].DesTimeBase to be set to Sys.ServoPeriod*{constant}/100. The 

actual time-base value used tracks this command value in a slew-rate limited fashion, as 

explained above. Because instantaneous steps can (and will) be commanded here, and these steps 

can lead to corresponding steps in the true commanded velocity,  it is important to set 

Coord[x].TimeBaseSlew low enough to get a properly controlled rate of change. 

This functionality makes it easy to override the programmed speeds without changing the 

programmed motion parameters or sequences. Many people will use this command to try out 

motion sequences slowly at first to examine their safety and effectiveness. Some will also use it 

to implement “feedrate override” in CNC-style applications, although the “segmentation 

override” technique explained below is probably better for that application. 

Effect on Speed and Acceleration 

Move speeds will be proportional to the % value used (move times and acceleration times will be 

inversely proportional). Acceleration rates will be proportional to the square of the % value used 

– at a 50% override, the acceleration rate will be one-quarter of what it would be at 100%. 

Commanding from within a Program 

To get the equivalent effect from within a Power PMAC motion or PLC program, a value can be 

directly assigned to the element Coord[x].DesTimeBase. For example: 

Coord[1].DesTimeBase = Sys.ServoPeriod * 0.5; 

External Time Base Control 

The time-base value for a coordinate system can be set up to be proportional the frequency of an 

input signal each servo cycle. When this frequency comes from the position sensor on a master 

axis, this provides a powerful master/slave technique that creates “electronic cam” functionality. 

By making the coordinate system’s numerical Δtn value for the servo cycle proportional to the 

change in master position ΔMPn in the servo cycle, the programmed trajectory becomes a 

function of master position instead of time. 

This technique is described in detail in the User’s Manual chapter Synchronizing Power PMAC to 

External Events. 

Negative Time Base Values 

It is possible for the Power PMAC interpolation to use negative values of Δt in its interpolation 

equation, so that “time goes backwards”. This can happen from a commanded “internal” time 

base, or from an “external” time base with the master reversed. (In external time base, this 

functionality can be important to stay “locked” to the master encoder if it stops and oscillates 

about a position.) However, there are several important issues raised by this capability. 
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Within a motion section or segment with a given (cubic) equation of motion, it is just as easy to 

interpolate in the negative direction as in the positive direction. However, if the accumulated 

negative time increment causes the motion to go back past the beginning of this section or 

segment in the negative direction, then things get more complicated. 

Reversal through Motor Trace Buffers 

Power PMAC has the capability to store equations for already-executed sections or segments in a 

“trace buffer” for each motor. If Motor[x].TraceSize is set to a value greater than zero, the 

equations for up to this number of previously executed motion sections or segments can be stored 

in the buffer.  

If this buffer exists for a motor, if a negatively incrementing time base for the motor’s coordinate 

system causes the time value to pass the beginning of the presently executing section or segment, 

the equations for the previous section or segment are loaded from the trace buffer, enabling 

motion to continue properly in the reverse direction. 

Of course, for proper extended reversal of coordinated motion, all motors in the coordinate 

system should have equivalently sized trace buffers defined. With these buffers, fully coordinated 

motion along a path can proceed as well in the reverse direction as in the forward direction. 

Comparison to Lookahead Buffer Reversal 

Trajectory reversal by negative time base can be used whether or not the dynamic lookahead 

buffer was used to originally compute the trajectories. Note that negative time base reversal 

through motor trace buffers is distinct from reversal through an oversized lookahead buffer (and 

the two should not be used simultaneously, as the results could be unpredictable). 

Reversal of trajectory through the lookahead buffer using the on-line < command or buffered 

lh< command is appropriate for modal state changes, as when an operator presses a “retrace” 

button. Reversal of the trajectory through the trace buffer using negative time base values is 

appropriate for continuously variable changes, uniting both speed and direction on a continuum. 

Preventing Unintended Extended Negative Time Base 

Alternately, if it is desired to protect against the possibility of extended reverse operation due to 

negative time base, new saved setup element Sys.MaxTimedUnderflow can be used. With no 

trace buffer defined for a motor, if Sys.MaxTimedUnderflow is set to a value greater than 0.0, if 

a negative time base causes the time value to go past the beginning of the present section or 

segment by more than this number of milliseconds, motion will be aborted automatically in an 

error condition. 

Acceleration Limiting with Changing Time Base 

Because changing the time base value by itself can cause acceleration or deceleration of a motor, 

it is possible that changing time base while the motor is executing acceleration or deceleration 

from its equations of motion for a fixed time base can cause excessive resulting physical 

accelerations or decelerations. 

Many users will simply keep the rate of time base change small by setting low values of 

Coord[x].TimeBaseSlew and Coord[x].FeedHoldSlew, so that any increase in acceleration or 

deceleration due to time base changes will be negligible. However, this can lead to sluggish 

response to desired time base changes. 
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It is possible to set Coord[x].TimeBaseSlew and Coord[x].FeedHoldSlew to negative values. 

When negative, the magnitude has the same fundamental meaning as when positive, but if 

changing the time base value at this magnitude would cause any motor in the coordinate system 

to accelerate or decelerate in that servo cycle at a magnitude greater than the limit set by 

Motor[x].InvAmax, the rate of time base change for that servo cycle will be reduced so that the 

limit is not violated. 

If the commanded motion was computed so that this acceleration limit was not violated at 

standard time base (%100), and the time base values are changed within the +/-%100 range, this 

algorithm will ensure that acceleration limits are not violated due to time base changes. This can 

permit higher magnitudes of the set slew rates, providing quicker response in most cases, while 

guaranteeing that excessive acceleration magnitudes will not be commanded. 

!
Caution 

If the trajectory was originally computed so that motor 

acceleration limits as set by Motor[x].InvAmax were not 

observed, or the magnitude of the time base value exceeds 

±100%, use of negative values for these slew rate parameters 

could mean that no time base changes will occur at all in some 

sections of the move. 

 

Segmentation Override 

A newer technique for overriding the programmed speed, called “segmentation override”, 

overcomes limitations of older methods such as PMAC’s time base control and the traditional 

CNC method of generating acceleration profiles with low-pass filters after override. In 

conjunction with Power PMAC’s trajectory profiles and segmented lookahead buffer, 

segmentation override permits the rate of acceleration to be maintained over the entire range of 

override values, while still maintaining the path precisely. 

Segmentation Process 

For several move modes (linear, circle, and pvt), Power PMAC can perform a two-stage 

interpolation process. At the first, coarse, interpolation stage, called segmentation, the complex 

calculations such as the circle trigonometric calculations, inverse-kinematic transformations, and 

lookahead acceleration-control calculations are performed. Then a simple fine-interpolation 

algorithm (using a cubic B-spline for smoothness) is performed at the servo-cycle rate to generate 

the instantaneous commanded positions for each servo update. 

The segmentation period for these moves is set by the saved data structure element 

Coord[x].SegMoveTime, expressed in milliseconds. That is, every SegMoveTime milliseconds 

(without override), Power PMAC will perform coarse interpolation calculations to compute an 

intermediate segment point for each axis in the coordinate system, advancing SegMoveTime 

milliseconds in the move equations. 

With override control at the segmentation stage, the numerical value of the time update, does not 

have to match the physical time elapsed per segment. For example, if SegMoveTime were set to 

5 to define a physical segment time of 5 milliseconds, but a value of 3 milliseconds were used for 

the time-update calculations in the segmentation algorithms, an override of 60% would be 

produced. 



Power PMAC User’s Manual 

Setting Up Coordinate Systems 529 

Effect on Acceleration 

Because this override function is performed before the acceleration-control function of the special 

lookahead buffer, the combination of segmentation override and lookahead acceleration control 

yields an override capability that controls velocity but maintains acceleration. For this reason, this 

technique is generally used for “feedrate override” functionality in CNC-style applications. 

Segmentation override control occurs after acceleration profiles determined by Coord[x].Ta and 

Coord[x].Ts times are created in the generation of the basic move equations. Therefore, these 

acceleration times vary inversely with the override (and the acceleration rates they produce vary 

inversely with the square of the override). However, in applications utilizing segmentation 

override and lookahead override control, these times are usually set very small (because the 

lookahead is used to control rates of acceleration), and used mainly to define the size of corner 

blends in the path. Significantly, the operation of the segmentation override and lookahead 

acceleration control functions do not change the size or shape of these corner blends. 

Specifying the Override 

Data structure element Coord[x].SegOverride determines the commanded segmentation override 

for the coordinate system. It is a “normalized” value, not a percentage. A value of 1.0 produces 

“real-time” motion. On power-up/reset, it is initialized to 1.0; a different value cannot be saved to 

flash memory. Saved data structure element Coord[x].SegOverrideSlew controls the rate of 

change of the internal value Coord[x].ActSegOverride by limiting how much it can change each 

segmentation period. 

Optimizing the Response to Changes 

Because segmentation override affects the speed of segments going into the lookahead buffer, the 

effect of changes to the override value is delayed by the number of segments pending in the 

buffer. To get maximum responsiveness, this number should be no bigger than is necessary to 

ensure proper acceleration limiting at the maximum speed.  

The number of pending segments is determined by the saved setup element 

Coord[x].LHDistance. In many applications, this value is left at a single value. However, if 

quick responsiveness to changes in override is desired, this value should be changed as the 

override value is changed, in proportion to the override value. 

The section on buffered lookahead in the User’s Manual chapter “Power PMAC Move Mode 

Trajectories” provides details on calculating the value of Coord[x].LHDistance (at 100% 

override). Fundamentally, the equation for the optimal lookahead distance is: 

eSegMoveTimA

V
segmentsLHDist

*3

2
)(

max

max  

As the top velocity changes with override, this optimal lookahead distance should change as well. 

This can be incorporated easily into the algorithm that sets the override value. 
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Examples 

The plot below shows a simple move position and velocity profiles executed at 100% and 50% 

using time-base control in Power PMAC. At 50% override, the acceleration takes twice the time 

to achieve half the speed, so the rate of acceleration is 25% of what it is without override. 

 

Point-to-Point Move at 50% and 100% Time-Base Override 

The next plot shows the same simple move position and velocity profiles executed at 100% and 

50% using segmentation override. Note that the rate of acceleration is the same at both override 

values, so that acceleration at 50% override occurs in half the time as the 100% case. 

 

Point-to-Point Move at 50% and 100% Segmentation Override 
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The following plot shows the velocity profiles for one axis at 100% and 50% for a three move 

sequence, with a linear move blending smoothly into a semi-circle move, blending smoothly into 

another linear move. (The path including a second axis is that of the letter “U”.) Note that the 

rates of initial acceleration and final deceleration are the same in both cases. 

At 50% override, the centripetal acceleration of the semi-circle move does not violate 

acceleration constraints and so can execute at the programmed speed multiplied by the override 

percentage. However, at 100% override, the semi-circle move cannot move at the programmed 

speed without violating acceleration limits, so the lookahead algorithm slows the arc down. It also 

decelerates the end of the incoming linear move and accelerates the beginning of the outgoing 

linear move so the transition can be made within constraints. In this way, the segmentation 

override technique combined with lookahead acceleration control produces the minimum-time 

profile for any override value that stays within machine constraints. 

 

Line/Arc/Line Axis Velocity Profile at 50% and 100% Segmentation Override 

Axis Target Position and Distance-to-Go Reporting 

In many applications, particularly those providing a CNC-style operator interface, it is desirable 

to display the programmed “target” (move-end) positions for the axes, and/or the “distance to go” 

(target minus present position) for the axes in the presently executing move. However, if features 

like move blending and splining, dynamic buffered lookahead, and cutter radius compensation are 

enabled, the axis target positions are calculated well ahead of the presently executing move, so 

these positions must be buffered from the move calculation time until the move execution time. 

Setting Up the Target Position Buffer 

To enable this reporting for a coordinate system in Power PMAC, a target-position buffer must be 

established for the coordinate system. This is done by setting saved setup element 

Coord[x].TPSize to a value greater than zero. The value specifies the number of moves whose 

target positions can be buffered at any given time. It must be large enough to cover the largest 

“gap” possible in the application between move calculation and move execution. Basic blending 
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and splining require move calculations 2 moves ahead of the presently executing move, so 

Coord[x].TPSize must be set at least to 3 to cover this simple case.  

If special lookahead control for acceleration, velocity, and position limiting is enabled by 

defining a lookahead buffer and setting Coord[x].LHDistance greater than 0, the “gap” between 

calculation and execution can be much larger. The lookahead distance is specified in terms of 

intermediate segments each of Coord[x].SegMoveTime milliseconds, not of programmed moves, 

so the number of extra moves whose target positions need to be buffered must be calculated by 

dividing the number of segments of lookahead by the minimum number of segments per 

programmed move. 

If move reversal/retrace using the lookahead buffer is utilized, then the target position buffer must 

be sized large enough to cover the largest possible “gap” between the calculated move and the 

furthest extent of reversal. In this case, the number of extra moves whose target position need to 

be buffered must be calculated by dividing the number of segments defined for the lookahead 

buffer, not the number of segments in Coord[x].LHDistance, by the minimum number of 

segments per programmed move. 

If 2D cutter radius compensation is enabled, this will require additional moves to be buffered 

from calculation to execution time. The most basic compensation requires the buffering of one 

additional move because the direction of that move must be known to calculate the compensated 

end position of the previous move. Additional moves must be pre-computed if interference 

checking is desired, and/or if there could be any moves with zero distance in the plane of 

compensation. The user specifies how many moves can be buffered for 2D compensation in the 

saved setup element Coord[x].CCSize. This value should be added to the value of 

Coord[x].TPSize. 

Querying the Target Position Data 

There are several methods of querying the information from the target position buffer. The 

method chosen will probably depend on where and how the data is to be used. 

For querying the target positions themselves, the user must specify which axes’ positions will be 

reported. This is done by setting the value of saved setup element Coord[x].TPCoords. This is a 

32-bit “mask” element, with one bit per axis. If a bit is set to 1, that axis’ target position will be 

reported; if it is set to 0, the target position will not be reported. Bit 0 (value 1) is for the A-axis; 

bit 1 (value 2) is for the B-axis, and so on. The following table shows the complete list of bits i 

and the axes they control: 

Axis i Axis i Axis i Axis i Axis i Axis i Axis i Axis i 

A 0 V 4 Z 8 DD 12 HH 16 OO 20 SS 24 WW 28 

B 1 W 5 AA 9 EE 13 LL 17 PP 21 TT 25 XX 29 

C 2 X 6 BB 10 FF 14 MM 18 QQ 22 UU 26 YY 30 

U 3 Y 7 CC 11 GG 15 NN 19 RR 23 VV 27 ZZ 31 

 

Each bit i that is set to 1 adds a value of 2i to Coord[x].TPCoords. This element is usually 

specified as a hexadecimal value so it is easy to see which bits are set. 

Note that values for “distance to go” are reported for all defined axes in the coordinate system, 

regardless of the setting of Coord[x].TPCoords. 
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On-Line Query Commands 

There are two on-line commands that can be used to query data from the buffered target position 

data for the presently executing move. The t command causes Power PMAC to report the target 

positions for axes specified by Coord[x].TPCoords in the addressed coordinate system. The g 

command causes Power PMAC to report the distances to go from the present desired positions to 

the target positions for all defined axes in the addressed coordinate system. 

Both commands report data in text form back over the communications port to the computer 

issuing the query command. This is probably the most efficient way to get data to the host 

computer for display purposes. For each of the specified axes, the axis letter name is returned, 

followed by the queried value for the axes (e.g. X37.5 Y-21.23). 

In the target position reporting, if cutter compensation is enabled for the move, a double value 

will be reported for the X, Y, and Z axes if the compensated target position for the axis differs 

from the programmed target position. First the programmed target position is reported, then a 

colon character followed by the signed offset distance from compensation for that axis (e.g. 

X21.2:-0.047 Y-17.45:0.139). If compensation is enabled, but the axis does not have an 

offset due to compensation at the move end, no second value is reported. 

In the distance-to-go reporting, Power PMAC computes the present desired axis positions from 

the present desired motor positions, using the coordinate system definition information. Either the 

equations in the axis definition statements are automatically inverted to do this, or if a forward 

kinematic subroutine exists for the coordinate system, this subroutine is called to compute these 

positions. In either case, the calculations are the same as if the d desired-position query command 

were used for the coordinate system. These desired position values are then subtracted from the 

target position values for the axes, and the differences are reported.  

The distance values reported as signed quantities; if only magnitudes of distances are desired, 

absolute values should be taken. If cutter compensation is active, the compensated target 

positions for the X, Y, and Z axes are used in these calculations. The distances reported are 

simple differences between present and target positions; in a Cartesian geometry, their vector sum 

reflects the linear distance between the present desired point and the move target point, even if 

the path to the target point is not a straight line, as with a circle mode move. 

For blended moves, as soon as blending from one move to the next begins, the target positions 

used are those of the new moves. Because the blending starts before the programmed target 

position is reached, this means that the reported distance to go will in general not go all the way 

to zero in any move that is blended into another move. 

If reverse execution is performed using the “retrace” feature of the special lookahead buffer, the 

target positions reported, and used for distance-to-go calculations, are those of the end of the 

furthest “forward” move so far executed, even if reverse execution has transitioned into a 

previous move. This remains true for all reverse execution and for subsequent forward “recovery” 

motion of already executed trajectory. 

Buffered Query Commands 

There are two buffered program commands that can be used to query data from the buffered 

target position data for the presently executing move. The tread command causes Power 

PMAC to report the target positions for axes specified by Coord[x].TPCoords in the addressed 

coordinate system. The dtgread command causes Power PMAC to report the distances to go 
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from the present desired positions to the target positions for all defined axes in the addressed 

coordinate system. These commands are generally used by PLC programs; they are not very 

useful in motion programs because of the lookahead and calculation sequencing of the motion 

programs. The commands query the values of the coordinate system selected by the value of 

Ldata.Coord for the program. 

Both commands cause Power PMAC to place the queried values into local D-variables in the D0 

– D31 range for the program using the query command. The D-variable used to report an axis 

value has a number equivalent to the bit number of Coord[x].TPCoords that specified reporting 

for that axis: D0 for the A-axis, D1 for the B-axis, and so on. In addition, local variable D32 is 

used to report which axes’ values have been calculated. It is a 32-bit mask word, with the bit 

matching the bit of Coord[x].TPCoords set to 1 when that axis’ value is calculated. 

The values returned into these D-variables should immediately be used for any subsequent 

calculations, as the values in these local variables can be lost if the program context changes, or if 

another function that utilizes these variables is called. 

The calculations to produce these values are identical to those used for the comparable on-line 

query commands discussed above. That section describes details of these calculations. 

Note that the similar buffered program querying commands dread (for desired position), 

pread (for actual position), vread (for actual velocity) and fread (for following error) do not 

require buffering of the axis target positions. However, they do also return their values into the 

same local D-variables for the program. 

Data Structure Elements 

Target position values for the presently executing move can be found directly in special data 

structure elements for the coordinate system. The elements Coord[x].TPExec.Pos[i] with index i 

(0 to 31) matching the bits of Coord[x].TPCoords that are set to 1 contain the programmed 

target position values for the presently executing move. The elements 

Coord[x].TPExec.XYZPos[i] (i = 0 to 2) contain the compensated target position values for the 

X, Y, and Z axes, respectively, if cutter compensation is active for the move. 

There are no comparable elements for the immediate (servo cycle by servo cycle) axis desired 

positions. Immediate motor desired position values are calculated every servo cycle, and can be 

found in Motor[x].DesPos. In some cases, especially with simple axis definitions, it is easy to 

convert the motor values to matching axis values, but this is not done automatically. 
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Path Vector Speed and Angle Reporting 

Power PMAC can automatically compute the instantaneous 2D or 3D vector speed and distance, 

and 2D or 3D directed angles for the path, in a Cartesian coordinate system. These values can be 

utilized by user applications for purposes such as modulating laser intensity as a function of speed 

along the path, or orienting a cutter tangent to the path. When this functionality is enabled, these 

values are calculated every servo cycle. 

Enabling the Path Calculations 

These calculations are only performed if saved setup element Coord[x].PathCalcEna is set to a 

value greater than 0. A setting of 1 enables 2D calculations, usually involving the “XY” plane of 

a machine. A setting of 2 or 3 also enables 3D calculations, typically an “XYZ” Cartesian space. 

Configuring the 2D Path Calculations 

The user must specify the numbers of the two motors to be used in the 2D calculations with saved 

setup elements Coord[x].CosMotor and Coord[x].SinMotor. The instantaneous commanded 

velocities for these motors are used in the vector sum calculations for the speed along the path in 

this plane. The resulting vector speed is stored in Coord[x].PathSpeed, and the accumulated 

vector distance is stored in Coord[x].PathDistance. 

This instantaneous commanded vector speed can differ from the programmed speed (“feedrate”) 

due to acceleration, deceleration, or blending profiles, feedrate override, lookahead limiting, or 

other factors. Note that this value is the commanded speed at move execution time, not at the 

earlier move calculation time. 

These commanded motor velocities are also used as the “cosine” and “sine” terms, respectively, 

for the arctangent function that computes the path angle in the plane they define. The vector path 

angle calculations in a cycle are only performed if the vector speed for the cycle is greater than 

saved setup element Coord[x].MinAtanSpeed, with the value stored in Coord[x].PathAngleC. 

(Typically, a machine’s “C” axis is used for orientation in this plane.) 

CosMotor Pos

SinMotor 
Pos

vCosMotor

vSinMotor

PathSpeed

PathAngleC

Command 
Path

 

2D Path Speed and Angle Calculations 

If MinAtanSpeed is set to 0.0, the angle is calculated for any non-zero speed, no matter how 

small. If the vector speed for the cycle is not greater than this threshold, the previous cycle’s 

angle value is retained, and Coord[x].ValidAngle bit 0 is set to 0 to indicate this situation. 
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Note that at the end of a programmed move sequence, there can be a tiny adjustment for a single 

servo cycle to make the ending commanded motor positions exactly correct. This adjustment can 

be in the opposite direction from the programmed direction of the move. The non-zero default 

value of Coord[x].MinAtanSpeed should be large enough to prevent this adjustment from 

yielding a reversal in the calculated direction. 

The reported speed value in Coord[x].PathSpeed and the threshold value in 

Coord[x].MinAtanSpeed are scaled in position by Coord[x].PathPosSf (in reporting units per 

motor unit). They are scaled in time by Coord[x].PathReportTime (= 1000 to specify per 

second, or 60,000 to specify per minute). 

The reported distance value in Coord[x].PathDistance is scaled by Coord[x].PathPosSf. 

The reported angle value in Coord[x].PathAngleC is scaled in degrees. It is always in the range 

of -180 to +180. If a rotary axis is commanded to use this as a destination position, 

Coord[x].PosRollover[i] should be set to 360 so it can handle the +/- transition properly. 

However, Coord[x].ExtPathAngleC extends the reported angle past a single rotation, handling 

the +/- transition itself. (Typically, a machine’s “C” axis is used for orientation in this plane.) 

Additionally Configuring the 3D Path Calculations 

If 3D vector speed and distance calculations are also enabled by setting Coord[x].PathCalcEna 

to 2 or 3, Coord[x].NormMotor must specify the number of the motor perpendicular to the plane 

specified by Coord[x].CosMotor and Coord[x].SinMotor. In this case, Coord[x].PathSpeed 

and Coord[x].PathDistance also include the component from the motor specified by 

Coord[x].NormMotor. 

If 3D vector angle calculations are also enabled by setting Coord[x].PathCalcEna to 3, the path 

angle in the plane defined by Coord[x].NormMotor and Coord[x].CosMotor (commonly the 

“ZX” plane) is calculated and stored in Coord[x].PathAngleB, with the multi-turn value stored 

in Coord[x].ExtPathAngleB. (Typically, a machine’s “B” axis is used for orientation in this 

plane.) 

In addition, the path angle in the plane defined by Coord[x].SinMotor and 

Coord[x].NormMotor (commonly the “YZ” plane) is calculated and stored in 

Coord[x].PathAngleA, with the multi-turn value stored in Coord[x].ExtPathAngleA. 

(Typically, a machine’s “A” axis is used for orientation in this plane.) 
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3D Path Angle Calculations 

Using With Non-Cartesian Systems 

These vector path calculations are only meaningful if the motors used create motion in directions 

perpendicular to each other. If the system does not have this physical configuration, as is common 

with complex kinematic mechanisms, the kinematic subroutines in Power PMAC can be 

expanded to include virtual motors that simulate perpendicular axes, in addition to the non-

Cartesian physical motors. These virtual motors can then be used for this functionality. 

Using the Reported Results 

Activating this functionality simply provides values in status elements that are available for use in 

the application. There are many ways the values can be used. Note that even though Power 

PMAC updates these values every servo cycle, there is no requirement that the application use 

every cycle’s values. This section explains some of the common application uses. 

In almost all cases, the intent is to permit standard programming of the Cartesian mechanism 

itself, without it needing to consider the control of actions dependent on vector path speed and/or 

direction. This allows the use of commercially available CAM programs to generate the Cartesian 

path programs. All of the actions depending on vector path characteristics can be written in the 

Power PMAC independently of the part program. 

Using the Vector Path Speed 

There are many applications, particularly for various forms of machining, where some variable 

(e.g. spindle speed, laser intensity) needs to be controlled as a function of instantaneous speed 

along the path. Typically, a user’s PLC program (Script or C) reads the value of 

Coord[x].PathSpeed each scan and computes the control variable value as a function of this 

speed. 

Using the Vector Path Distance 

In a common class of applications, the accumulated distance along a multi-dimensional path is an 

important variable for some processes. For example, a sewing machine may want to start a stitch 

every “X” millimeters. The value in Coord[x].PathDistance is very useful in these applications. 
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Transferring Through the Encoder Table 

It is possible to use Coord[x].PathDistance as the master position for a real or virtual motor. 

First, it must be processed through an Encoder Conversion Table entry (EncTable[n].type = 11 

to specify a floating-point source, EncTable[n].index6 = 1 to specify a double-precision source, 

and EncTable[n].pEnc = Coord[x].PathDistance.a to specify the source itself). 

This motor then specifies the ECT entry result as its master position by setting 

Motor[x].pMasterEnc = EncTable[n].a and enables the following of this master by setting 

Motor[x].MasterCtrl = 1. If Motor[x].MasterPosSf is set to its default value of 1.0, the units of 

this motor will be the same as those of the Cartesian motors. 

Note that this motor should not be assigned to an axis in the same coordinate system as the 

physical motors whose path it tracks. It should either be given the null definition (#x->0) in this 

coordinate system, which allows for automatic fault sharing, or defined in a different coordinate 

system. 

At this point, the motor commanded position tracks the value in Coord[x].PathDistance, 

automatically updated every servo cycle. There are many possible ways to use this. In one use, a 

virtual motor position could, in turn, be used as the master for a cyclic cam table whose operation 

repeats along the path at even intervals. 

In another use, a virtual motor could be used with a Gate1 or Gate3 ASIC hardware channel, set 

up as if to command an external pulse-and-direction open-loop stepper drive with simulated 

feedback. This simulated feedback can be used like real encoder feedback with the ASIC’s 

encoder hardware capture and compare circuitry. The compare circuitry with its auto-increment 

functionality can generate precise output pulses at even intervals along the path. 

Transferring Directly to Target Motor 

It is also possible (starting in V2.7 firmware, released 2nd quarter 2022), to use the value of 

Coord[x].PathDistance to write directly to the Motor[x].MasterPos register of a specified 

motor, bypassing the encoder conversion table processing and the standard master position 

following mode. This functionality is enabled if Coord[x].PathDistMotor is set to a value 

greater than 0, with the value specifying the number of the target motor. 

Most commonly, the target motor is a virtual motor. Often this virtual motor is configured as if to 

command a pulse-and-direction stepper drive, with the pulse train internally wrapped back into 

the ASIC channel’s encoder interface circuitry. This permits the ASIC’s hardware capture and 

compare circuits to be used as a function of the position along the path. 

However, the target motor can also be a physical motor whose travel distance needs to match the 

vector path distance, as in automated sewing applications. 

When this function is enabled, then each servo cycle, Power PMAC computes the change in 

Coord[x].PathDistance in user motor units, multiplies it by Motor[x].MasterPosSf for the 

target motor, and increments the value of Motor[x].MasterPos by the result. This incremental 

approach permits the function to be enabled and disabled as needed without causing sudden 

jumps in the position of the tracking motor. 

It is possible to limit the dynamics of the tracking motor with Motor[x].MasterMaxSpeed and 

Motor[x].MasterMaxAccel, but the user must carefully evaluate the resulting loss of 

synchronicity, temporary and possibly lasting. 
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Using the Vector Path Angle(s) 

Many applications require a tool to be kept at a constant, or at least known, angle with respect to 

the path angle. (Most commonly, the requirement is to keep it tangent to the path.) The most 

usual method for accomplishing this is to command the rotary axis for the tool in a separate 

coordinate system from the Cartesian axes. 

This coordinate system executes a motion program whose core functionality loops rapidly with a 

single programmed move inside the loop commanding the rotary axis to an angle equal to, or at 

least a function of, the value in Coord[x].PathAngleC. Generally, this rotary axis should be 

programmed to handle rollover by setting Coord[y].PosRollover[i] for the axis in its own 

coordinate system (“y”) to 360. 

Transferring Through the Encoder Conversion Table 

It is also possible to use the path angle value as the master position for a virtual motor. In this 

case, the extended value in Coord[x].ExtPathAngleC should be used to handle possible rollover 

issues. The method for using this value as a virtual motor master are the same as for using 

Coord[x].PathDistance this way, as explained above. 

A few applications can make use of the path angle values in the “secondary planes” that are 

perpendicular to the “primary plane” used for Coord[x].PathAngleC. The values in 

Coord[x].PathAngleA and Coord[x].PathAngleB, and their extended versions, can be used in 

the same manner as for Coord[x].PathAngleC. 

Transferring Directly to Target Motor 

It is also possible (starting in V2.7 firmware, released 2nd quarter 2022), to use the value of 

Coord[x].ExtPathAngleC to write directly to the Motor[x].MasterPos register of a specified 

motor, bypassing the encoder conversion table processing and the standard master position 

following mode. This functionality is enabled if Coord[x].PathAngleCMotor is set to a value 

greater than 0, with the value specifying the number of the target motor. 

Often, the target motor is a physical motor that keeps the tool at a known angle to the path (e.g. 

tangent to the path). For this to be useful in most cases, the motor must be capable of an indefinite 

number of revolutions. In applications where this is not the case, a more programmatic approach 

will be needed to command this motor. 

When this function is enabled, then each servo cycle, Power PMAC computes the change in 

Coord[x].ExtPathAngleC in degrees, multiplies it by Motor[x].MasterPosSf for the target 

motor, and increments the value of Motor[x].MasterPos by the result. This incremental approach 

permits the function to be enabled and disabled as needed without causing sudden jumps in the 

position of the tracking motor. 

It is possible to limit the dynamics of the tracking motor with Motor[x].MasterMaxSpeed and 

Motor[x].MasterMaxAccel, but the user must carefully evaluate the resulting loss of 

synchronicity, temporary and possibly lasting. 

Pre-Orienting the Tangent Tool 

In some applications, it is useful to orient the tangent cutter at the start of a move before the move 

actually begins, as at the beginning of a move sequence or at a sharp corner. In this situation, a 

tiny override percentage can be given (e.g. %0.001) to the Cartesian coordinate system so that 
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the move has technically begun, but the distance from the start is a fraction of a feedback count 

for several seconds. 

Even in this state, the Coord[x].PathAngleC value computed here is an accurate representation 

of the starting angle of motion. (Coord[x].MinAtanSpeed should be set to a value small enough 

to permit angle calculations at this point in this type of application.) This provides time for the 

cutter to be oriented in the new direction of motion, possibly including a full lift/turn/lower 

sequence. The Cartesian coordinate system can then be commanded to standard override 

percentage. 

Commonly, there will be a dwell at the corner, often automatically added due to the setting of 

Coord[x].CornerBlendBp and Coord[x].CornerDwellBp, with a time specified by 

Coord[x],AddedDwellTime. The program that determines the action of the tangent cutter can 

detect the Coord[x].SharpCornerStop status bit set to 1 (during the incoming move) and the 

Coord[x].DesVelZero status bits set to 1 (when the corner is reached), then set a very small 

override value (e.g. Coord[x].DesTimeBase=Sys.ServoPeriod*0.00001). Since the dwell itself 

always executes at 100%, the dwell will complete normally, and the new move will technically 

begin, but without real movement. 

All of this can be done with a standard part program, often generated automatically by CAM 

software, that just commands the Cartesian axes. This part program does not need to do anything 

special to allow the vector path functionality to be implemented by other routines in the Power 

PMAC. 
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POWER PMAC COMPUTATIONAL FEATURES 

Power PMAC provides many advanced computation features, both in built-in algorithms and for 

user application code. These permit many operations that formerly had to be done off-line or in a 

host computer to be done in the controller, often in real-time. 

Computational Priorities 

As a multitasking, real-time computer, Power PMAC has an elaborate prioritization scheme to 

ensure that vital tasks get accomplished when needed, and that all tasks get executed reasonably 

quickly. The scheme was designed to hide its complexity from the user as much as possible, but 

also to give the user some flexibility in optimizing the controller for his particular needs. The 

tasks at the different priority levels are: 

Phase (Commutation) Update 

The phase, or commutation, update is the highest priority in most Power PMAC applications. 

Every cycle of the system phase clock, the processor will compute the “phase tasks” for each 

motor configured to do so (Motor[x].PhaseCtrl > 0). The phase tasks can include commutation 

of multi-phase motors, current-loop closure, and for motors specially configured to do so, a 

special fast servo update (this is intended for very high-response actuators such as “fast-tool” 

servos and galvanometers). 

If the system phase clock comes from a PMAC2-style “DSPGATE1” Servo IC, the phase clock 

frequency is determined by the settings of Gate1[i].PwmPeriod and Gate1[i].PhaseClockDiv. 

If the system phase clock comes from a PMAC2-style “DSPGATE2” MACRO IC, the phase 

clock frequency is determined by the settings of Gate2[i].PwmPeriod and 

Gate2[i].PhaseClockDiv. 

If the system phase clock comes from a PMAC3-style “DSPGATE3” machine-interface IC, the 

phase-clock frequency is determined by the setting of Gate3[i].PhaseFreq. 

If there are no ICs providing system clocks, as with CKE3 and IPC configurations, no phase tasks 

are performed. 

Servo Update 

The servo update is the next highest priority after the phase update. Every cycle of the system 

servo clock, the processor will compute the “servo tasks”. First it processes each active entry of 

the “encoder conversion table” to prepare feedback and master data for use in subsequent servo 

tasks. Then it computes the servo update calculations for each active motor (Motor[x].ServoCtrl 

> 0). This update consists of the interpolation calculations to compute the next instantaneous 

commanded position, and the servo-loop closure calculations that use this value, the actual 

position value, and the servo gain terms to compute the commanded output. (The servo-loop 

closure algorithms for a motor can skip cycles if Motor[x].Stime > 0.) 

If the system phase clock comes from a PMAC2-style “DSPGATE1” Servo IC, the servo-clock 

frequency is determined by the phase-clock frequency and the setting of Gate1[i].ServoClockDiv 

for the same IC. 
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If the system phase clock comes from a PMAC2-style “DSPGATE2” MACRO IC, the servo-

clock frequency is determined by the phase-clock frequency and the setting of 

Gate2[i].ServoClockDiv for the same IC. 

If the system phase clock comes from a PMAC3-style “DSPGATE3” machine-interface IC, the 

servo-clock frequency is determined by the phase-clock frequency and the setting of 

Gate3[i].ServoClockDiv. 

If there are no ICs providing system clocks, as with CKE3 and IPC configurations, the servo-

clock frequency is determined by the setting of Sys.ServoPeriod. 

Real-Time Interrupt Tasks 

The real-time interrupt (RTI) tasks are the next highest priority after the servo update. They occur 

immediately after the servo tasks every Sys.RtIntPeriod + 1 servo-clock cycles. The two most 

significant tasks that occur at this priority level are motion program move planning and the 

“foreground PLC” programs. 

Motion Program Move Planning 

Motion program move planning consists of working through the lines of a motion program until 

the next move or dwell command is encountered, and computing the equations of motion for this 

next part of the move sequence. Every time Power PMAC starts executing a new programmed 

move or move segment derived from the programmed move, it sets an internal flag indicating that 

it is time to plan the next move or derived move segment in the program. This planning occurs at 

the next RTI. 

Foreground PLC Programs 

Of the 32 Script PLC programs that can be resident in Power PMAC, 1 to 4 of them can be 

executed under the real-time interrupt. Setup data-structure element Sys.MaxRtPlc, which can 

take a value from 0 to 3, specifies the highest-numbered Script PLC program that will be 

executed in the RTI. For example, if it is set to 1, PLC programs 0 and 1 will be executed in the 

RTI, and PLC programs 2 – 31 will be executed in background. 

In addition, a single compiled C PLC program can be scheduled to run in the real-time interrupt. 

Background Tasks 

In the time not taken by any of the higher-priority tasks, Power PMAC will be executing 

background tasks. These include the Script PLC programs numbered higher than Sys.MaxRtPlc,  

background C PLCs, plus C applications executing under the general-purpose operating system 

(GPOS). 

Monitoring Processing Time 

Power PMAC’s Integrated Development Environment (IDE) software for the PC has a window 

that displays the times and percentages of time spent at each priority level. It can be selected by 

clicking on “Tools” on the top menu bar, then on “Task Manager” from the pull-down menu. 

When the resulting window appears, select the “Tasks” tab. You will see a display like the 

following: 
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Power PMAC IDE Task Manager CPU Task Time Display 

Numerical Values 

Power PMAC can receive, send, store, and process numerical values in many forms, with both 

fixed-point and floating-point values. The Power PMAC’s CPU is a floating-point processor with 

built-in 32-bit and 64-bit arithmetic capability. 

Internal Formats 

Power PMAC uses standard formats to store and process numerical values internally, both 

floating-point and fixed-point (integer). 

Double-Precision Floating-Point Values 

Power PMAC can use the 64-bit double-precision floating-point format defined in the IEEE-754 

standard. Most general-purpose user variables, including P, Q, L, R, and D variables are of this 

format. It is the “intermediate working format” that is used to process mathematical expressions 

in the Power PMAC script language, regardless of the format of the variables used in the 

expressions. 

The Power PMAC processor contains a hardware engine for processing this data format very 

efficiently. The format is organized in this fashion: 

 

Double-Precision Floating-Point Format 

http://en.wikipedia.org/wiki/Image:General_double_precision_float.PNG
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The smallest magnitude values that can be represented are +2-1074 ≈ +5 x 10-324. This requires 

“denormalization” of the mantissa, which uses less than the full range of the mantissa. Without 

denormalization, the smallest-magnitude numbers that can be represented are +2-1022 ≈ +2.22 x 

10-308. 

The largest (finite) magnitude numbers that can be represented are +21024 ≈ +1.80 x 10308. 

Single-Precision Floating-Point Values 

Power PMAC can also use the 32-bit single-precision floating-point format defined in the IEEE-

754 standard. Very few of the built-in algorithms such as servo and phase use the single-precision 

format. User C functions and applications can use this format by declaring float variables. 

The single-precision format has a 23-bit fractional mantissa (the most significant bit is not 

stored), an 8-bit exponent, and a sign bit. 

The smallest magnitude values that can be represented are +2-149 ≈ +1.4 x 10-45. This requires 

“denormalization” of the mantissa, which uses less than the full range of the mantissa. Without 

denormalization, the smallest-magnitude numbers that can be represented are  +2-128  ≈  +1.22 x 

10-38. 

The largest (finite) magnitude numbers that can be represented are +2128 ≈ +3.4 x 1038. 

Special Floating-Point Representations 

Power PMAC supports several special floating-point representations that deserve special 

consideration. These representations are part of the IEEE-754 standard. 

Plus/Minus Zero: There are separate representations for “+0” and “-0”. In general, the only 

operations that produce “-0” involve underflow or modulo of a negative value. Mathematically, 

“+0” and “-0” behave identically. In the evaluation of any conditional comparison, “+0” is equal 

to “-0”. Note, however, that 1/0 equals “plus infinity”, and 1/-0 equals “minus infinity” (see 

below), so this operation could be used to distinguish between the two cases. 

Plus/Minus Infinity: Power PMAC’s industry-standard floating-point format has special 

representations for “plus infinity” (∞) and “minus infinity” (-∞). These values typically result 

from a division by 0, with the sign of the division process retained. Plus infinity reports as “inf”; 

minus infinity reports as “-inf”. Subsequent mathematical operations on a value of plus or minus 

infinity will yield unpredictable results. 

It is possible to set a variable directly equal to +infinity, and to compare it directly to +infinity in 

a condition. In a conditional comparison, plus infinity evaluates as equal to plus infinity and as 

greater than any true numerical value or minus infinity; minus infinity evaluates as equal to minus 

infinity, and as less than any true numerical value or plus infinity.  

However, it is better programming practice to check for the conditions that could create an “inf” 

result before the calculation is performed in the first place. 

Not-A-Number: Power PMAC’s industry-standard floating-point format has a special 

representation for “not-a-number”. This “value” is typically obtained when there is a “domain 

error” for a mathematical function, such as taking the square root of a negative number. “Not-a-

number” reports as “nan”. Subsequent mathematical operations on a variable with a “not-a-

number” representation will yield unpredictable results. 
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Power PMAC also uses the “not-a-number” representation when the value of a hardware element 

that is not present in the system is read, as in a query command. For example: 

Gate3[14].Chan[0].ServoCapt 

nan 

 

It is not possible to set a variable directly equal to “not-a-number”. In a conditional comparison, 

“not-a-number” will never evaluate as equal to anything, including another “not-a-number”. Note 

that “not-a-number” will not evaluate as less than infinity or greater than -infinity; this fact can be 

used to test whether a variable is “not-a-number”. For example: 

if (!(Var < inf)) abort1; // Bad calculation, stop program 

 

Another method of checking involves the Boolean isnan (is not-a-number) function in the 

Power PMAC script language. For example: 

if (isnan(Var)) abort1; // Bad calculation, stop program 

 

However, it is better programming practice to check for the conditions that could create a “nan” 

result before the calculation is performed in the first place. 

Integer Values 

Most input-output registers are encoded as integer values of varying widths, up to 32 bits. (There 

is no 64-bit integer format in the Power PMAC script environment.) Some internal memory 

registers (e.g. control and status words) are also encoded as integers. These are accessed with 

either pre-defined data structures or user-defined pointer variables. It is also possible to define 

general-purpose pointer variables as integers. 

Receiving Numerical Values 

Constant values sent from the host as part of command lines are sent as ASCII text, either as 

decimal values or hexadecimal values. Hexadecimal values must be preceded by a $ character; 

they must be unsigned (non-negative), and they cannot include fractional values. 

Decimal values can be positive or negative, and can include fractional values. The Power PMAC 

value interpreter can accept both standard decimal notation and exponential notation. In 

exponential notation, the mantissa must immediately be followed (no spaces) by the letter “E” 

(upper or lower case), with the power of 10 immediately following the “E”. The mantissa does 

not need to be normalized. The exponent value must be an integer constant. If it has a decimal 

point, it will be treated as an E-axis command. 

Power PMAC can accept numerical values to the full range of what can be stored in a particular 

variable type. For floating-point variables, values of too great a magnitude result in the variable 

taking a value of +infinity; values of too small a magnitude result in the variable taking a value of 

+zero. 

Examples 

1234 

3 

03             (leading zeros OK) 

-27.656 

0.001 

.001           (integer zero not required) 
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$ff00          (interpreted as hex, equal to 65280) 

3.456E5        (value of 345600) 

-7.26e-7       (value of -0.000000726) 

256e3          (value of 256000) 

 

Reporting Numerical Values 

Power PMAC reports numerical values to the host computer as part of response lines in decimal 

ASCII text form. It can report values to the full numerical range of what can be stored. Many 

fractional values do not have an exact floating-point binary representation, so a value assigned to 

a floating-point variable may report back slightly differently than it was assigned. For example, 

P1=1.1 

P1 

1.10000000000000009 

 

If it is desired to display reported values to a fixed number of decimal digits, user software will 

need to perform the required formatting, potentially rounding or truncating the reported value. 

Pre-Defined Data Structures 

Power PMAC controllers permit user access to virtually all memory and I/O registers through 

pre-defined data structures – the same structures that are used in its embedded firmware. This 

gives the user easy access to most of the hardware and software registers he will need to use, and 

without the need to define the assignments himself.  

Data-structure elements include both “control” and “status” registers. Many of the control register 

values – those considered part of the basic system setup – are retained in non-volatile flash 

memory on a save command, and copied back into the active element registers on the next 

power-up/reset. 

The elements of these data structures are defined in detail in the Software Reference manual. This 

section gives a quick overview. 

The most important structures a user will access are: 

 Sys.   System global data structure 

 Motor[x].  Indexed motor data structure 

 Motor[x].Servo. Servo algorithm data structure for indexed motor 

 Coord[x].  Indexed coordinate system data structure 

 Gate1[i].  Indexed DSPGATE1 Servo ASIC data structure 

 Gate2[i].  Indexed DSPGATE2 MACRO ASIC data structure 

 Gate3[i].  Indexed DSPGATE3 all-purpose ASIC data structure 

 Gather.  Data gathering function data structure 

 CompTable[m]. Indexed compensation table data structure 

 CamTable[m].  Indexed cam table data structure 

 EncTable[n].  Indexed encoder conversion table data structure 

 

Note that the index numbers start a 0 for each indexable structure. 

Individual elements within these structures can be used as variables in user commands and 

programs. The elements are of different formats, integer and floating-point, and of varying sizes. 
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Because the Power PMAC script language performs automatic type matching when accessing 

these elements, the formatting is not a serious issue in the script environment. However, when 

structure elements are accessed in user C programs through the provided header file, the 

programmer must be aware of the data type of each element. 

Specifying Data Structure Indices 

The index values are inside square brackets (not parentheses). In the Script environment, the 

index value must be specified as a non-negative integer constant or as a local variable for the 

program or communications thread. No fractional values are permitted if a constant is used. If the 

value of a local variable is not exactly equal to an integer, it will be rounded down to the next (not 

necessarily nearest) integer. 

If a local variable is used to specify the index, it must be used by itself. No mathematical 

expressions are permitted in the index specifier. The value of the local variable must be set prior 

to its use as a data structure index. A typical example is: 

L0 = Ldata.Motor + 1; 

Motor[L0].JogSpeed = 100; 

 

Of course, under the IDE project manager, declared or defined user names for the local variables 

may be used. 

In any indexed structure, the valid index values start at 0 and go to a value one less than the 

possible numbers of that structure. The index ranges for the most commonly used structures are 

shown here: 

 Motor[x]  x = 0 to 255  // Motor[x] for #x motor 

 Coord[x]  x = 0 to 127  // Coord[x] for &x coordinate system 

 EncTable[n]  n = 0 to 767 

 CompTable[m]  m = 0 to 255 

 CamTable[m]  m = 0 to 255 

 Gate1[i].Chan[j] i = 0 to 19, j = 0 to 3 // Chan[j] for hardware channel j+1 

 Gate2[i].Chan[j] i = 0 to 15, j = 0 to 3 // Chan[j] for hardware channel j+1 

 Gate3[i].Chan[j] i = 0 to 15, j = 0 to 3 // Chan[j] for hardware channel j+1 

 GateIo[i]  i = 0 to 15 

When local variables are used to specify an index value, only the variables in the range L0 to 

L(1022 – MaxConstantIndex) can be used. For example, for motors, L0 to L767 (1022 – 255 = 

767) can be used. 

In many applications, some of the data structures with index value of 0 will not be used. Servo 

hardware interface channels are auto-assigned to motors and encoder conversion table entries 

starting with index values of 1. Coordinate System 0 is typically used just to “park” motors that 

have not been assigned to axes in active coordinate system. 
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User Variables 

The Power PMAC script environment provides programmers with large numbers of user 

variables of several types with multiple methods of access, providing both flexibility and ease of 

use. These variables are held in shared memory in the Power PMAC, providing access from both 

tasks running under the real-time kernel and the general-purpose operating system, and both 

Power PMAC script programs and compiled C programs. 

The variable types are: 

 System global (“P”) variables: user variables accessible to any task in Power PMAC 

 Coordinate-system global (“Q”) variables: user variables accessible to multiple tasks 

operating in the same coordinate system 

 Pointer (“M”) variables: global variables that have been assigned by the user to specific 

addresses or data structure elements 

 Legacy setup (“I”) variables: global variables that have been pre-assigned to specific data 

structure elements that are useful for system setup and are stored to flash memory. 

Intended as a shortcut for experienced Turbo PMAC users. 

 Local (“L”) stack variables: user variables local to a given program or “command 

processor” (communications stream) 

 Stack/return (“R”) variables: local user variables for passing and returning arguments to 

subroutines and subprograms; equivalent to differently numbered L-variables 

 Coordinate-system axis (“C”) variables: local user variables for passing axis positions 

and velocities to or from kinematic subroutines; equivalent to differently numbered L-

variables 

 Non-stack local (“D”) variables: local user variables for creating subroutine arguments 

from the letter/number format of the RS-274 “G-code” syntax, for kinematic routine 

flags, for axis data queries. 

 User shared memory buffer (“Sys.Xdata”) variables: global user array variables in a user-

defined buffer space; several variable formats can be used. 

Each variable type is documented in more detail below. There is a fixed number of each of these 

variables, documented under the specific variable type, with reserved memory locations for each; 

there is no dynamic memory allocation. 

Direct Access to User Variables 

A variable can be accessed directly by specifying the letter that denotes the variable type 

followed by the number of the variable of that type. The number can be expressed as an integer 

constant immediately following the letter type – e.g. P100 and L55 – or as a mathematical 

expression in parentheses – e.g. Q(L1) and R(P5+P6-2). The range of number values for each 

variable type is from 0 to the maximum index value for that type (the number of variables of that 

type minus 1). 
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If the constant specifier of the variable number is not in the valid range (or not an integer), the 

statement using this variable specification will be rejected with an error when it is sent to Power 

PMAC. If the expression specifying the variable number evaluates to an out-of-range number at 

run time, the results will be unpredictable, but no error will be generated. It is the programmer’s 

responsibility to ensure that such an expression always evaluates in the proper range. If the 

expression does not evaluate exactly to an integer value, it is rounded down to the next integer 

(not necessarily the closest integer: 27.9999999 is rounded to 27). If the calculations only involve 

integers in the range of possible variable numbers, this is not a concern, but if any floating-point 

operations are used to calculate the variable number, the user should force a proper rounding to 

the nearest integer before using the resulting value to specify a variable number. 

Array Function Access 

Note that using a mathematical expression to specify the variable number technically implements 

a function call to evaluate the expression and calculate the appropriate variable number, so the 

expression is placed inside parentheses, not square brackets. While this capability can be used to 

implement array-type functionality, these should strictly be thought of as “array functions”, not 

actual arrays. This is in contrast to the indexing of elements in the pre-defined data structures, 

which are true arrays and use square brackets to contain the array index value. 

User-Specified Variable Names Through IDE 

When setting up a Power PMAC project through the Integrated Development Environment (IDE) 

on a PC, the user has the capability to assign his own names to user variables. This is strongly 

encouraged, as it permits the use of meaningful names, generating easy-to-understand programs.  

Automatically Assigned Declared Variables 

The programmer establishes user names for variables with “variable declaration statements”, as in 

virtually any high-level programming language. The declaration statement starts with the variable 

type, followed by a list of one or more of the user names for variables of this type. For pointer 

variables, in addition to the name of the variable, the definition of the register(s) to which the 

variable points is included (see the section on pointer variables below). 

The IDE will then automatically assign the user name to a particular variable in the Power 

PMAC. In normal use, it is not necessary for the user to know which variable the name has been 

assigned to. The IDE and the Power PMAC keep coordinated and synchronized “symbol tables” 

containing the full mapping of user names to Power PMAC variables. 

For example, with the declaration 

global CycleCount; 

 

the IDE will reserve a system global (“P”) variable for the user’s CycleCount variable. In 

subsequent use of the variable in user programs, the IDE will replace the user’s variable name 

with the reserved internal variable name. If the IDE reserved variable P517 for CycleCount, it 

would replace CycleCount with P517 every time it was used in the entire project. 

The IDE will start assigning the underlying variables of each type to user-specified names at the 

variable number determined by the xVARSTART directive in the automatically generated 

pp_proj.ini file, where “x” is the letter representing the variable type, and the following 

number represents the starting variable number used for automatic assignments. Variables with 

numbers below this value are safe for “direct” usage. For example, with the PVARSTART 256 
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directive, system global variables P0 – P255 can be used directly or with manually defined 

variable names; P256 and up will be allocated to user-specified variable names. 

The default values of the xVARSTART directives in the pp_proj.ini file are: 

PVARSTART=8192 

QVARSTART=1024 

MVARSTART=8192 

 

These can be changed in the “Project Properties” window of the IDE’s project manager. 

Through use of the symbol tables, the user can utilize the custom variable names in all windows 

of the IDE – the editor, the terminal window, the “watch” window, and more. 

User-Specified Array Names 

Working in the IDE, the user can also assign an array name and size. The IDE will automatically 

assign a consecutively numbered group of variables of the type declared to the array. For 

example, with the declaration 

global IncrementDist(512); 

 

the IDE will reserve 512 consecutive system global (“P”) variables for the IncrementDist 

array. In subsequent use of the array in user programs, the IDE will add the “base number” of the 

array to the user’s specified array index. For example, if the IDE assigned variables starting at 

P860 to this array, if the program used IncrementDist(CycleNum) in the program, the IDE 

would replace this with P(860+CycleNum). 

!
Caution 

It is the programmer’s responsibility to ensure that index 

numbers used for these arrays do not go out of the declared 

range. Power PMAC provides no range-checking functionality. 

 

With a declared array name, the name can be used in vector or matrix function calls that require 

the starting variable number as an argument. With the above declaration, the following could be 

used: 

MyTotalDist = sum(&IncrementDist(0), 512, 1) 

 

instead of: 

 
MyTotalDist = sum(860, 512, 1) 

 

to calculate the sum of all values in the array. This means the programmer does not need to know 

which numbered variables are assigned to the array. 

  



Power PMAC User’s Manual 

Power PMAC Computational Features 551 

Note 

Arrays with user variables are fundamentally one-dimensional 

(although they can be used in 2D matrix functions). Users who 

want 2D or 3D arrays can use the data points for 2D or 3D 

compensation tables (CompTable[m].Data[j][i] or 

CompTable[m].Data[k][j][i]). The table does not have to be 

enabled, and probably should not be, but its structure must be 

defined, for this use. 

 

Manually Defined Variable Names 

It is also possible to assign user names directly to specific Power PMAC variables in the IDE 

through the #define directive. This is most commonly used when converting projects from 

Turbo PMAC environment, which did not have the capability for automatically assigned 

(declared) variable names, but which did permit these manually assigned names. Sample 

assignments include: 

#define TargetPressure  P100 

#define CornerRadius  Q53 

#define SolenoidOn  M233 

 

It is strongly recommended that any of these manual definitions be assigned to variables with 

numbers below the start of the automatically assigned (declared) definitions. If this practice is 

maintained, it will not be possible for “declared” variable names to use the same underlying 

variable numbers as “defined” variable names. 

Accessing User Variable Names 

When communicating to the Power PMAC controller through the on-board “gpascii” 

communications application, user variable names, declared or defined, can be used instead of the 

underlying numbered variable names provided the application is started with the “-2” argument – 

that is, the application is run with the command gpascii -2. 

When this is done, the communications application will check command lines against the 

automatically generated “symbol table” for variable names and substitute the underlying 

numbered variable name. This process is invisible to the user. It does add some computational 

overhead to communications, but in most applications, this is not noticeable. 

System Global (“P”) Variables 

Power PMAC has a large set of system global “P” variables. These variables can be accessed by 

any task on the Power PMAC, so they are ideal for sharing data between tasks. These system 

global variables are 64-bit floating-point values, but can also be used for integer-type 

calculations. Power PMAC provides 65,536 of these system global variables (P0 – P65535). 

In most applications, use of these variables will be managed through the IDE. In the IDE, the user 

will declare a variable as “global”, followed by the user’s name for the variable. As a global 

variable, the declaration must be outside of any program in the project. Sample declarations 

include: 

global RunLength, CycleCount; 

global LineSpeed; 

global PartWidth(1000); 
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The IDE will automatically assign a unique system global variable (or consecutive set of 

variables in the case of an array declaration) to that user name, and no programmer or operator 

will need to know which internal variable register is used for that name. 

It is also possible to access these variables directly. With direct access, these are known as “P” 

variables, and an individual variable is specified by the letter “P” followed by a numerical value. 

The numerical value can either be specified as an integer constant immediately following the 

letter “P”, or as a mathematical expression in parentheses. Examples include: 

P17=3.14159; 

P200=P100+1; 

P(P1)=7; 

P2=L(Q13+Q14-1); 

 

It is also possible in the Script environment to access numbered P-variables through the 

corresponding data structure elements: Sys.P[i] for variable Pi. In the C environment, these can 

be accessed through the pointer to shared memory: pshm->P[i] for variable Pi. 

Coordinate System Global (“Q”) Variables 

Power PMAC has a large set of coordinate-system-specific global variables. These variables can 

be shared between multiple tasks working in the same coordinate system on the Power PMAC, 

but they are unique to each coordinate system. Since a motion program can be executed by 

multiple coordinate systems, these variables permit independent operation of the program in each 

coordinate system. 

These system global variables are 64-bit floating-point values, but can also be used for integer-

type calculations. Power PMAC provides 8,192 of these coordinate-system-specific global 

variables per coordinate system, without any overlap (so all 8,192 are available for every 

coordinate system, no matter how many coordinate systems are active). 

In most applications, use of these variables will be managed through the Integrated Development 

Environment (IDE). In the IDE, the user will declare a variable as “csglobal”, followed by the 

user’s name for the variable. As a global variable, the declaration must be outside of any program 

in the project. Sample declarations include: 

csglobal RunLength, CycleCount; 

csglobal LineSpeed; 

 

The IDE will automatically assign a set of unique coordinate-system-specific global variables – 

one for each coordinate system – to that user name, and no programmer or operator will need to 

know which internal variable registers are used for that name. 

It is also possible to access these variables directly. With direct access, these are known as “Q” 

variables, and an individual variable is specified by the letter “Q” followed by a numerical value. 

The numerical value can either be specified as an integer constant immediately following the 

letter “Q”, or as a mathematical expression in parentheses. Examples include: 

Q17=3.14159; 

Q200=Q100+1; 

Q(Q1)=7; 

Q2=P(L13+L14-1); 
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In an on-line command, the presently addressed coordinate system (from the most recent &n 

command) determines which set of Q-variables the command accesses. In a motion program, the 

number of the coordinate system running the program determines which set of Q-variables the 

command accesses. In a PLC program, the coordinate system specified by the data structure 

element Ldata.Coord determines which set of Q-variables the command accesses. 

It is also possible in the Script environment to access numbered Q-variables through the 

corresponding data structure elements: Coord[x].Q[i] for variable Qi in Coordinate System x. In 

the C environment, these can be accessed through the pointer to shared memory:  

pshm->Coord[x].Q[i] for variable Qi in Coordinate System x. 

User Pointer (“M”) Variables 

While the pre-defined data structures of the Power PMAC eliminate much of the need in earlier 

PMAC controllers for user-assigned pointer variables, these variables are still available and will 

provide good functionality for many users. These system global pointer variables can be assigned 

to data structure elements, user memory locations, user I/O locations, or “self-defined” to part of 

their own definition word. Power PMAC provides 16,384 M-variables (M0 – M16383). 

In most applications, use of these variables will be managed through the IDE. In the IDE, the user 

will declare a variable as “ptr”, followed by the user’s name for the variable, the “->” pointing 

symbol, and the assignment of the pointer. As a global variable, the declaration must be outside 

of any program in the project. Sample declarations include: 

ptr LaserOn->u.io.$A00000.8.1 

ptr LaserMag->Gate1[4].Chan[3].Dac[1] 

 

It is also possible in the Script environment to access numbered M-variables through the 

corresponding data structure elements: Sys.M[i] for variable Mi. It is not possible to access M-

variables (which are actually functions) directly in the C environment. They must be accessed 

instead through API function calls. 

Pre-Defined Setup Pointer (“I”) Variables 

Users of PMAC and Turbo PMAC systems will remember that numbered “I” variables are used 

in those controllers to customize the setup for a particular application. While these have been 

superseded in Power PMAC by the saved control elements of pre-defined data structures, those 

control elements that match a Turbo PMAC I-variable can also be accessed by the same 

numbered I-variable as used on the Turbo PMAC. This is intended as a convenient shortcut for 

those users who have experience with Turbo PMAC. 

For example, the Power PMAC structure element Motor[x].HomeVel sets the commanded 

velocity of a homing search move for the specified motor. This same function was accomplished 

by variable Ixx23 in Turbo PMAC. So Motor[1].HomeVel (for Motor 1 in Power PMAC) can 

alternately be accessed as I123. 

To see which structure element is addressed by a given I-variable, the Power PMAC can be 

queried with the I{data}-> on-line command. For example, the command 

I123-> 

 

causes Power PMAC to return: 
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Motor[1].HomeVel 

 

Similarly, for coordinate systems, structure elements whose functions are the same as for Turbo 

PMAC controllers can also be accessed through those I-variable names. The command: 

I5198-> 

 

causes Power PMAC to return: 

Coord[1].MaxFeedRate 

 

Note that Power PMAC motor and coordinate-system numbering start with zero, although Motor 

0 and C.S. 0 are seldom used. I0 – I99 are reserved for the setup variables of Motor 0; I5000 – 

I5099 are reserved for the setup variables of C.S. 0. For example I23 is the homing velocity for 

Motor 0; I5098 is the maximum feedrate for C.S. 0.  

Existing global setup variable numbers have been moved to the I8000 – I8099 range For example, 

the old I10 is now I8010, and the command: 

I8010-> 

 

causes Power PMAC to return: 

Sys.ServoPeriod 

 

Saved control elements for newly added functions or for additional items (e.g. increased numbers 

of motors and coordinate systems) do not have I-variables assigned to them. However, they 

function exactly the same as those that do have I-variables assigned to them. 

I-variables that are not assigned to a Power PMAC data structure element (their assignment is 

reported as “*”) can be used as general-purpose double-precision floating-point variables. All I-

variables from I8192 through I16383 can be used this way. 

Local (“L”) Variables 

In addition to global variables that can be shared between programs, the Power PMAC script 

language provides a large set of variables that are local to a specific program or task set. Each 

top-level program and each communications thread has its own independent set of these 

variables. 

These local variables are 64-bit floating-point values, but can also be used for integer-type 

calculations. The standard software configuration of the Power PMAC provides 8192 of these 

local variables per top-level program or communications thread, but alternate configurations may 

provide a different number of these. 

In most applications, use of these variables will be managed through the Integrated Development 

Environment (IDE). In the IDE, the user will declare a variable as “local”, followed by the user’s 

name for the variable. As a local variable, the declaration must be inside of any program in the 

project. Sample declarations include: 

local RunLength, CycleCount; 

local LineSpeed; 
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The IDE will automatically assign a unique local variable to that user name, and no programmer 

or operator will need to know which internal variable registers are used for that name. 

It is also possible to access these variables directly. With direct access, these are known as “L” 

variables, and an individual variable is specified by the letter “L” followed by a numerical value. 

The numerical value can either be specified as an integer constant immediately following the 

letter “L”, or as a mathematical expression in parentheses. Examples include: 

L17=3.14159; 

L200=L100+1; 

L(L1)=7; 

L2=L(P13+P14-1); 

 

In a subprogram called with a call statement, or a subroutine in the same program called with a 

callsub statement, variable L0 of the called subprogram/subroutine is the same variable as R0 

in the calling program/routine, L1 in the called is the same as R1 in the calling, and so on. This 

permits true argument passing and returning in subprograms and subroutines.  

Variable R0 in the calling program/routine is the same as L(StackOffset) in the same 

program/routine, where StackOffset is declared for the program in the open command that 

precedes the downloading of program text. If no value is explicitly declared, Power PMAC sets 

StackOffset to 256. If the program is downloaded through the IDE project manager, the IDE 

automatically calculates and declares the smallest value of StackOffset needed to support the 

number of local variables used in that program. 

The following diagram shows the relationships between local variables in the calling and called 

routines for the default stack offset. 

Top Level Sub 1 Sub 2

L0

L255

R0/L256

R255/L511

L0

L255

R0/L256

R255/L511

L0

L255

R0/L256

R255/L511
 

Local Variable Subroutine Stack Example 
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It is possible to access these local L-variables from outside the routine, a capability that is mainly 

used for debugging purposes. Status elements Coord[x].Ldata.Lindex or Plc[i].Ldata.Lindex 

contain the number of L0 for the presently executing (or suspended) routine relative to the “base” 

L0 for the coordinate system or PLC program. Coord[x].Ldata.L[n] or Plc[i].Ldata.L[n] 

contain the value of Ln for the presently executing (or suspended) routine. 

Return/Stack (“R”) Variables 

To facilitate argument passing and returning with subprograms and subroutines, Power PMAC 

supports a stack structure of local variables and an alternate naming of local variables on the stack 

with “R-variable” names. 

Variable Ri of a calling program or routine is the same as variable Li in the called subprogram or 

subroutine. Within the calling program or routine, Ri is the same as L(StackOffset+i), where 

StackOffset is declared for the program in the open command that precedes the downloading of 

program text. If no value is explicitly declared, Power PMAC sets StackOffset to 256. If the 

program is downloaded through the IDE project manager, the IDE automatically calculates and 

declares the smallest value of StackOffset needed to support the number of local variables used in 

that program. 

This scheme permits the use of generic subprograms that can be called from many different 

higher-level programs with true independent argument passing and returning. As a simple 

example, we will look at a subprogram that uses the Pythagorean Theorem to compute and return 

a “diagonal” value from two “perpendicular values passed to it. In “raw” Power PMAC code, 

without variable declarations and substitutions, the code for this subprogram could be: 

open subprog 100 

L2=sqrt(L0*L0+L1*L1); 

close 

 

This subprogram could then be invoked with Power PMAC code (again without variable 

declarations and substitutions) like: 

R0=3; R1=4; 

call 100; 

// Returned result is available in R2 

 

The IDE project manager supports user names for the variables and subprogram/subroutine 

names, so the subprogram could be written in the IDE as: 

open subprog Pythag (Run, Rise, &Hypot) 

Hypot=sqrt(Run*Run+Rise*Rise); 

close 

 

This would result in actual Power PMAC code like that shown above. 

In the IDE, this subprogram would be invoked with a program statement like: 

call Pythag (Xvelocity, Yvelocity, &VectorVel); 

 

This would result in actual Power PMAC code like: 

R0=P8207; R1=P8208; call 100; P8215=R2; 
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where P8207, P8208, and P8215 are the auto-assigned (global) variables for Xvelocity, 

Yvelocity, and VectorVel, respectively. 

It is possible to access these local R-variables from outside the routine, a capability that is mainly 

used for debugging purposes. Coord[x].Ldata.R[n] or Plc[i].Ldata.R[n] contain the value of Rn 

for the presently executing (or suspended) routine for the coordinate system or PLC program. 

Coordinate System Kinematic Axis (“C”) Variables 

When using forward and inverse kinematic subroutines to convert between motor (“joint”) and 

axis (“tool-tip”) coordinates for complex geometries, the subroutines use local variables for the 

kinematic motor and axis values. Motor positions use variables L0 to L(Sys.MaxMotors - 1) for 

Motor 0 to Motor (Sys.MaxMotors - 1), respectively. Axis positions use variables C0 to C31 for 

the 32 potential axis positions for the coordinate system. Axis velocities use variables C32 to C63 

for the 32 potential axis velocities (needed only for PVT-mode velocity calculations). 

C-variables are simply renamed L-variables for the coordinate system. C0 is the same as 

L(MAX_MOTORS), C1 is the same as L(MAX_MOTORS + 1), and so on, where 

MAX_MOTORS is the largest permitted value for Sys.MaxMotors (256 in most Power PMAC 

implementations). 

The IDE project manager automatically provides user names for these C-variables: KinPosAxisA 

for C0, KinPosAxisB for C1, and so on. For more details on C-variables, refer to the section on 

kinematic subroutines in the Coordinate System chapter of the User’s Manual. 

It is possible to access these local C-variables from outside the routine, a capability that is mainly 

used for debugging purposes. Coord[x].Ldata.C[n] or Plc[i].Ldata.C[n] contain the value of Cn 

for the presently executing (or suspended) routine for the coordinate system or PLC program. 

Non-Stack Local (“D”) Variables 

Local D-variables for a coordinate system, PLC program, or communications thread are used for 

some specific passing of data. These variables are not on a stack, so repeated use of them can 

cause overwriting of existing values. 

If a subroutine or a subprogram executes a read command, the values associated with the 

specified single or double letters are automatically assigned to D-variables for the coordinate 

system executing the motion program, or the top-level PLC program. The main purpose of this 

functionality is to provide arguments for subroutines while keeping the top-level program in the 

traditional letter/number format of RS-274 “G-codes”. 

Values associated with single letters A – Z are assigned to D1 – D26, respectively. Values 

associated with double letters AA – ZZ are assigned to D27 – D52, respectively. Bit n-1 of D0 is 

set to 1 if the most recent read command assigned a value to Dn; it is 0 otherwise. 

D-variables are also used to hold the responses to axis query commands, including the buffered 

program commands dread, dtogread, fread, pread, tread, and vread, plus the on-line 

commands (when immediately preceded by an &x coordinate-system specifier) d, f, g, p, t, and 

v. In this case, D0 – D31 are used for the values for the A – ZZ axes, respectively. 
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Variable D0 for a coordinate system has several uses with the kinematic subroutines. Power 

PMAC will automatically set D0 on the entry to the forward-kinematic routine to denote whether 

it wants one or two passes through the routine (two passes are needed to compute velocities and 

following errors.) The user’s forward kinematic code must set D0 on exiting the routine to tell 

Power PMAC which axis values have been computed, with bits 0 – 31 used for the A – ZZ axes, 

respectively. 

Power PMAC will automatically set D0 on the entry to the inverse-kinematic routine to denote 

whether it wants to compute motor velocities from axis velocities (as well as motor positions 

from axis positions) or not. Velocity calculations are only used for PVT-mode moves when the 

coordinate system is not in segmentation mode. 

It is possible to access these local D-variables from outside the routine. Coord[x].Ldata.D[n] or 

Plc[i].Ldata.D[n] contain the value of Dn for the presently executing (or suspended) routine for 

the coordinate system or PLC program. 

User Shared Memory Buffer Variables 

Power PMAC has a “user shared memory” (ushm) buffer that can be used to store and share large 

numbers of variable values, accessible by all programs and communications threads in a variety 

of different ways. This buffer is particularly useful if there are not enough provided global 

variables for the application. 

By default, Power PMAC reserves 1 Mbyte of memory for the user shared memory buffer. This 

can be changed by the user as part of his project management. In the IDE’s Project Manager 

“Properties” control window, the “User Buffer” size can be defined (in Mbytes). The resulting 

size is stored in the “ppproj.ini” project configuration file. 

The base address of this buffer can be found in the global status element Sys.pushm. It is seldom 

needed to know the numerical value of this address, but this element can be useful to derive the 

address of specific registers without the need to specify the absolute address of a register. 

Buffer Data Structure Elements 

Registers in the user shared memory buffer can be accessed using data structure elements, 

interpreting the register contents in a variety of different ways. The possible data structure 

elements are: 

 Sys.Ddata[i]  Double-precision (64-bit, 8-byte) floating-point format 

 Sys.Fdata[i]  Single-precision (32-bit, 4-byte) floating-point format 

 Sys.Idata[i]  Signed integer (32-bit, 4-byte) format 

 Sys.Udata[i]  Unsigned integer (32-bit, 4-byte) format 

 Sys.Cdata[i]  Character (8-bit, 1-byte) format 

 

The index value i for the element can be an integer constant (e.g. Sys.Ddata[3975]) or a local 

variable (e.g. Sys.Udata[L43]). Expressions cannot be used directly for the index number; 

instead, their value must first be assigned to a local variable (e.g. L43=P92*P93-1). 

It is important to note that all of these data structures access the same registers in the buffer. If the 

user wishes to employ multiple formats in the buffer, it is his responsibility to make sure there are 

no conflicts.  



Power PMAC User’s Manual 

Power PMAC Computational Features 559 

The following table shows how the first 16 bytes of the buffer can be accessed in the different 

formats: 

Sys.pushm + Ddata Fdata Idata Udata Cdata 

     [0] 

0  [0] [0] [0] [1] 

     [2] 

 [0]    [3] 

     [4] 

4  [1] [1] [1] [5] 

     [6] 

     [7] 

     [8] 

8  [2] [2] [2] [9] 

     [10] 

 [1]    [11] 

     [12] 

12  [3] [3] [3] [13] 

     [14] 

     [15] 

 

User Shared Memory Buffer Data Structure Organization 

Note 

It is not recommended to use the 8 bytes starting at Sys.pushm 

for application purposes. At re-initialization, Power PMAC 

motors that do not have any interface hardware assigned to 

them have their output pointers assigned to Sys.pushm. If any 

of these motors is activated before the pointers are changed, 

any values in these bytes will be overwritten. 

 

M-Variable Access 

In some applications, it may be useful to access user shared memory buffer registers through 

Power PMAC’s M-variable pointers. This is particularly valuable in conjunction with the IDE 

Project Manager’s facility for declared variable names. For example, the declaration: 

ptr LineSpeed->Sys.Fdata[4096]; 

permits the use of the declared variable name in programs and commands. 

The M-variable can also declared with a local variable for the index in brackets, permitting access 

to an entire array with a declared variable name. For example, with the declaration: 

ptr CycleTime->Sys.Fdata[L100]; 

the following code is possible: 

TotalTime = 0.0; 

L100=5000; 

while (L100 < 10000) TotalTime += CycleTime; L100++; 
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Alternatively, an M-variable can be declared to an element or part of an element by offset from 

the base address using the syntax: 

Mn->{format}.user:{byte offset}.[{bit offset}.{width}] 

For example: 

ptr InsertionComplete->u.user:$3000.7.1 

Access from C Routines 

Elements in the user shared memory buffer can be accessed from C routines using pointer 

variables. For example, with the variable declarations: 

int *MyUshmIntVar; 

double *MyUshmDarray; 

 

the pointers can be assigned with commands such as: 

MyUshmIntVar = (int *) pushm + 9;  // Sys.Idata[9] 

MyUshmDarray = (double *) pushm + 8192 // Sys.Ddata[8192] 

 

Operators 

Power PMAC Script operators work like those in any computer language: they combine values to 

produce new values. Detailed descriptions of the operators are given in the Software Reference 

manual; overviews are given here. 

Arithmetic Operators 

Power PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic 

precedence rules are used: multiply and divide are executed before add and subtract, operations of 

equal precedence are executed left to right, and operations inside parentheses are executed first. 

Modulo Operator 

Power PMAC Script also has the % modulo operator, which produces the resulting remainder 

when the value in front of the operator is divided by the value after the operator. Values may be 

integer or floating-point. This operator is particularly useful for dealing with counters and timers 

that roll over. The modulo operation has equal precedence with multiplication and division 

operations. 

When the modulo operation is done by a positive value x, the results can range from 0 to x (not 

including x itself). When the modulo operation is done by a negative value x, the results can range 

from -x to 0 (not including -x itself). Note that operation with a negative divisor works differently 

from in PMAC and Turbo PMAC, but is consistent with the C standard. The “rem” remainder 

function can be used to obtain results like those with the negative modulo divisor in PMAC and 

Turbo PMAC. 

Bit-Wise Operators 

Power PMAC Script has three logical operators that do bit-by-bit operations: & (bit-by-bit AND), 

| (bit-by-bit OR), and ^ (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the 

operation works on the fractional as well as the integer bits. & has the same precedence as * and 
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/; | and ^ have the same precedence as + and -.  Use of parentheses can override these default 

precedence levels.  

Power PMAC also provides the << “shift-left” operator, where the value preceding the operator is 

shifted left by the number of bits specified by the value to the right of the operator, and the >> 

“shift-right” operator, where the value preceding the operator is shifted right by the number of 

bits specified by the value to the right of the operator. 

In addition, Power PMAC provides the unary ~ “complement” operator, which logically inverts 

the bits of the value following it. 

Standard Assignment Operators 

Power PMAC has a significant set of assignment operators, which cause the Power PMAC to 

write a value into the variable(s) immediately preceding it in the command. Many of the 

assignment operators combine a mathematical or logical operation with the assignment, 

permitting compact and efficient code. 

Only the basic “=” assignment operator can be used in on-line commands. All of the compound 

operators can only be used in motion and PLC program commands. 

This set of assignment operators is “standard” in that the value is written to the variable(s) as 

soon as it is computed in the normal program flow. This is different from the “synchronous” 

assignment operators, for which the actual value assignment is delayed until the start of actual 

execution of the next programmed move. 

The standard assignment operators provided are: =, +=, -=, *=, /=, %=, &=, |=, ^=, >>=, <<=, 

++, and --. 

Synchronous Assignment Operators 

Power PMAC has a matching set of “synchronous” assignment operators comparable to the 

standard operators. The synchronous assignment operator adds an additional “=” character to the 

comparable standard assignment operator. 

These can only be used in buffered program commands, not in on-line commands. With a 

synchronous assignment operator, the actual assignment to the variable is delayed until the start 

of actual execution of the next commanded move in the program. 

The basic synchronous operator is ==. It can be used to assign a value to either an integer or a 

floating-point variable. 

The arithmetic synchronous operators are +==, -==, *==, /==, %==, ++=, and --=. The *==, 

/==, and %== can only be used to assign values to floating-point variables. 

The logical synchronous operators are &==, |==, and ^==. They can only assign values to 

integer variables. 

For more details on the use of these operators, refer to Synchronous Variable Value Assignment, 

below. 
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Functions 

Power PMAC provides a full set of mathematical functions operating on scalar, vector, and 

matrix operands. These make sophisticated mathematical operations simple, compact, and 

efficient. 

Scalar Functions 

The Power PMAC script language provides an extensive set of “scalar” functions, which return a 

single numeric value. Each function is documented in detail in the Software Reference Manual. 

 Trigonometric functions (using radians): sin, cos, tan, sincos 

 Inverse trigonometric functions (using radians): asin, acos, atan, atan2 

 Trigonometric functions (using degrees): sind, cosd, tand, sincosd 

 Inverse trigonometric functions (using degrees): asind, acosd, atand, atan2d 

 Hyperbolic functions: sinh, cosh, tanh 

 Inverse hyperbolic functions: asinh, acosh, atanh 

 Log/exponent functions: log (or ln), log2, log10, exp, exp2, exp10, pow 

 Root functions: sqrt, cbrt, qrrt, qnrt 

 Random number generation: rnd, randx, seed 

 General functions: abs, sgn, rem, isnan, madd (combined multiply and add) 

Note 

Trigonometric functions in PMAC and Turbo PMAC could use 

radians or degrees as determined by setup variable I15. In 

Power PMAC, the distinction is made by the function used 

(e.g. sin uses radians, sind uses degrees). 

 

Vector Functions 

The Power PMAC script language provides several functions that operate on entire vectors, 

where a set of continuously numbered system global (“P”) variables or local (“L”) variables is 

treated as a vector. Since a 2D matrix is also formed by a set of continuously numbered system 

global variables, these operations can also be used on matrices. 

If it is desired to use P-variables in the vectors, non-saved setup element Ldata.Control for the 

program or thread should be set to its power-on default value of 0. If it is desired to use L-

variables in the vectors, Ldata.Control should be set to 1. If it is desired to use Sys.Ddata[i] 

elements in the vectors, Ldata.Control should be set to 2. 
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Functions that produce new vectors (the returned value is a Boolean flag indicating whether the 

function operated successfully; lack of “success” would usually be to an out-of-range argument, 

such as a negative number of elements) are: 

 vadd: Adds two vectors/matrices together to produce a third vector/matrix. 

 vcopy: Copies the contents of one vector/matrix into a second vector/matrix. 

 vscale: Multiplies each element of the vector/matrix by a common factor, putting the 

results into a second vector/matrix. 

Functions that produce scalar quantities (as the returned value) only are: 

 sum: Adds a number of evenly spaced elements of the vector/matrix together, returns the 

sum. Useful for calculating trace of a matrix. 

 sumprod: Multiplies pairs of elements of two vectors/matrices together, with 

independently specified spacing in each vector matrix. Adds the products together, 

returns the sum. Useful for calculating dot products. 

These functions require as an argument the variable number to be used as the start of a vector. If 

the vector has been declared in the IDE project manager as an array with a user variable name, 

then the user variable name, preceded by the “&” character, can be used instead of the variable 

number. For example, with the following declarations: 

global SurfaceNormal(3); 

global ToolNormal(3); 

 

the following command could be used: 

AngleCosine = sumprod(&SurfaceNormal, &ToolNormal, 3, 1, 1) 

This will take the dot product of these two vectors without needing to know what the underlying 

variable numbers are. 

Matrix Functions 

The Power PMAC script language provides multiple matrix functions. These operate on entire 2D 

matrices, where a set of continuously numbered system global (“P”) variables or local (“L”) 

variables is treated as a matrix organized into rows and columns. 

If it is desired to use P-variables in the matrices, non-saved setup element Ldata.Control for the 

program or thread should be set to its power-on default value of 0. If it is desired to use L-

variables in the matrices, Ldata.Control should be set to 1. If it is desired to use Sys.Ddata[i] 

elements in the matrices, Ldata.Control should be set to 2 (new in V1.5 firmware, released 2nd 

quarter 2012). 

Functions that produce new matrices (the returned value is either a Boolean flag indicating 

whether the function operated successfully; lack of “success” would usually be to an out-of-range 

argument, such as a negative number of elements, or the determinant of an input matrix to the 

function; in either case, a returned value of 0 means the operation did not produce a valid result) 

are: 
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 mmul: Multiplies two matrices together to create a third matrix 

 mmadd: Multiplies two matrices together and adds the product matrix to a third matrix 

 minv: Inverts a square matrix to create a second matrix 

 mtrans: Transposes a matrix to create a second matrix 

 msolve: Solves the simultaneous set(s) of equations represented by a square 

(coefficient) matrix and a second (constant) vector/matrix, overwriting this second 

vector/matrix with the solutions 

Functions that produce scalar quantities (as the returned value) only are: 

 mdet: Calculates the determinant of a square matrix 

 mminor: Calculates the minor determinant of a square matrix with the specified row and 

column removed 

These functions require as an argument the variable number to be used as the start of a matrix. If 

the matrix has been declared in the IDE project manager as an array with a user variable name, 

then the user variable name, preceded by the “&” character, can be used instead of the variable 

number. For example, with the following declarations: 

global RotationA(9); 

global RotationB(9); 

global NetRotation(9); 

global NetRotDet; 

 

the following command could be used: 

NetRotDet = mmul(&NetRotation, &RotationA, &RotationB, 3, 3, 3) 

This will multiply these two 3x3 matrices without needing to know what the underlying variable 

numbers are. 

Expressions 

A Power PMAC script-language expression is a mathematical construct consisting of constants, 

variables, and functions, connected by operators. Expressions can be used to assign a value to a 

variable, to determine a motion-program parameter, or as part of a condition. A constant alone 

can be an expression, so if the syntax calls for {expression}, a constant may be used as well 

as a more complicated expression. In this case, no extra parentheses are required for more 

complicated expressions, unlike the case where the {data} syntax is specified (see below). 

Examples of Power PMAC expressions (using unsubstituted variable names) are: 

512 

P1 

P1+512 

1000*cosd(Q25*3.14159/180) 

I100*abs(M347)/atand(P(Q3+1)/6.28)+5 



Power PMAC User’s Manual 

Power PMAC Computational Features 565 

 

The {data} Syntax 

For Power PMAC script language purposes, if the command syntax calls for {data}, the user 

can utilize either a constant that is not surrounded by parentheses, or an expression that is 

surrounded by parentheses. (Since a constant alone is a valid expression, it is legal to put a 

constant in parentheses in these cases, but this takes more calculation time and storage.) 

For example, if the listed command syntax is R{data}, it is legal to use R100, 

R(P1+250*P2), or R(100) (which is legal but inefficient). 

Standard Variable Value Assignment 

The standard variable assignment statement calculates and assigns a value to a variable. The 

“standard” assignment (as opposed to delayed “synchronous” assignment covered in the next 

section) with the basic “=” assignment operator can be used either as an on-line command or a 

buffered program command (in a motion program or PLC program). The compound standard 

assignment operators can only be used in buffered program commands. 

The standard assignment syntax is: 

{variable} {standard assignment operator} {expression} 

where {variable} specifies which variable is to be given a value, {standard 

assignment operator} specifies how the expression value is to be used in the assignment, 

and {expression} represents the value to be used in the assignment to the variable.  

In program execution, the expression value is calculated and used in the assignment to the 

variable, immediately as the statement is encountered in the program flow. This can occur 

significantly before the actual execution of moves commanded from the program immediately 

following in the program flow, as the move execution can be delayed for various reasons. 

The standard assignment operators are: 

   =    (value of expression assigned to variable) 

   +=   (value of expression added to variable value) 

   -=   (value of expression subtracted from variable value) 

   *=   (value of expression multiplied with variable value) 

   /=   (value of expression divided into variable value) 

   %=   (value of expression divided into variable value for remainder) 

   |=   (value of expression bit-by-bit ORed with variable value) 

   &=   (value of expression bit-by-bit ANDed with variable value) 

   ^=   (value of expression bit-by-bit XORed with variable value) 

   >>=   (variable value shifted right by value of expression) 

   <<=   (variable value shifted left by value of expression) 

   ++   (increment variable value by 1) 

   --   (decrement variable value by 1) 
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Synchronous Variable Value Assignment 

The synchronous variable assignment statement calculates an expression value and uses it to 

assign a value to a variable, but delays the assignment until the start of actual execution of the 

next move commanded from the program. This type of statement can only be used in a motion or 

PLC program; it cannot be used in an on-line command. 

The synchronous assignment syntax is: 

{variable} {synchronous assignment operator} {expression} 

where {variable} specifies which variable is to be given a value, {synchronous 

assignment operator} specifies how the expression value is to be used in the assignment, 

and {expression} represents the value to be used in the assignment to the variable.  

When this type of statement is encountered during program execution flow, the value of the 

expression is evaluated immediately. Then this value and the assignment operator are placed in a 

dedicated assignment queue. When the next move commanded from the program actually 

commences execution, the value and assignment operator are pulled from the queue and used for 

the actual assignment to the specified variable. This assignment is done at the real-time interrupt 

(RTI) priority level. 

For segmented moves (linear, circle, or pvt with Coord[x].SegMoveTime > 0), the assignment is 

done at the beginning of the first segment to start within the new programmed move. 

Note carefully that for synchronous assignments other than the == direct assignment, the value of 

the target variable is read at the delayed “synchronous” time and combined with the value of the 

expression that was evaluated at the earlier “lookahead” time. 

The synchronous assignment operators are: 

   ==   (value of expression assigned to variable) 

   +==  (value of expression added to variable value) 

   -==  (value of expression subtracted from variable value) 

   *==  (value of expression multiplied with variable value) 

   /==  (value of expression divided into variable value) 

   |==  (value of expression bit-by-bit ORed with variable value) 

   &==  (value of expression bit-by-bit ANDed with variable value) 

   ^==  (value of expression bit-by-bit XORed with variable value) 

   ++=  (increment variable value by 1) 

   --=  (decrement variable value by 1) 

 

Variables That Can Be Assigned Synchronously 

Most variable types can have a value synchronously assigned to them through this feature. (This 

is unlike the older PMAC and Turbo PMAC controllers, where only the M-variable pointers 

could have values synchronously assigned.) However, local variables (L, R, C, and D) cannot 

have values synchronously assigned, as the “context” in which that variable was used could 

change between calculation and assignment.  

Also, “self-defined” M-variables, which use part of their definition to store a value, cannot have 

values synchronously assigned. In older PMACs, synchronous assignment to self-defined M-
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variables was a way of using the functionality for effective general-purpose variables. In Power 

PMAC, the assignment can be made directly to general-purpose user variables. 

The multiplication and division synchronous assignments *== and /== can only be made to 

floating-point variables. The logical AND, OR, and XOR synchronous assignments &==, |==, 

and ^== can only be made to integer variables. 

Why Needed in Motion Programs 

In a motion program, when Power PMAC is blending or splining moves together, it must be 

calculating in the program ahead of the actual point of movement. This is necessary in order to be 

able to blend moves together at all, and also to be able to do reasonable velocity and acceleration 

limiting. Depending on the mode of movement, calculations while blending may occur one, two, 

or more moves ahead of the actual movement. 

When assigning values to variables is part of the program calculation, the variables will get their 

new values ahead of their place in the program when looking at actual move execution. For many 

internal variables, this is generally not a problem, because they exist only to aid further motion 

calculations. However, for some variables, particularly those representing physical outputs, this 

can be a problem, because with a normal variable value assignment statement, the action will take 

place sooner than is expected, looking at the statement’s place in the program. 

Consider the motion program segment: 

X10;  // Move X-axis to 10 

X20;  // Move X-axis to 20 

Q1 = 30; // Set Q1 to 30 

M1 = 1; // Turn on Output 1 

M2 == 1; // Turn on Output 2 

X(Q1); // Move X-axis to Q1 

 

Assume that the motion program is calculating 

one move ahead of the resulting move execution 

to permit blending, but other advanced functions 

such as the lookahead buffer are not enabled. 

Power PMAC will calculate the moves specified 

by X10 and X20, including the blending 

between them, and start executing the move to 

X10. When the move execution progresses into 

the blend to the X20 move, Power PMAC will 

resume motion program calculations to be able 

to blend the X20 move into the next move (if 

any). 

The command Q1=30 is a standard assignment, 

and so executed immediately. This is 

appropriate, because this value will be needed to 

calculate the next move in the program. 

The command M1=1, which turns on Output 1, is also a standard assignment that is executed 

immediately. Even though this assignment occurs after the X20 move command in the program, 
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it will be executed before the execution of this move. Generally, this is not the desired behavior 

for setting outputs during motion. 

The command M2==1, which turns on Output 2, is a synchronous assignment. When it is 

encountered in the program, the value (1) and the assignment operator (==) are put in the 

assignment queue, but the actual assignment to M2 is not made yet. Next, the move command 

X(Q1) is evaluated, and the resulting equations of commanded motion are placed in the motion 

queue. Later, when the execution of this move begins, and these equations are pulled from the 

motion queue for execution, the pending assignment of M2 to 1 is pulled from the assignment 

queue and executed. This means that the setting of M2 occurs at the beginning of the actual 

execution of the following move commanded from the program, which is typically the desired 

behavior for setting outputs during motion. 

Why Needed in PLC Programs 

Synchronous assignments are also useful in PLC programs, but for a different reason. Unlike 

motion programs, the execution of a PLC program is not suspended after it commands a move. 

Therefore, if the user wants to check to see when the commanded move is finished, he must do 

this explicitly in the program – there is no “sequencer” working underneath as in motion 

programs. 

Conceptually, the following logic is often desired: 

X10;      // Move X-axis to 10 

while (Motor[1].DesVel != 0) {} // Wait for move over 

M3 = 1;     // Turn on Output 3 at destination 

 

However, if the PLC code were implemented like this, there is a good chance that the condition 

would be evaluated before the move execution actually started, because that move execution 

could not begin until the next servo cycle at the earliest. This means that the output could get set 

at the beginning, not the end of the move. 

In addition, in many applications of this type, there is a possibility that the commanded move 

could be of zero distance, and therefore never create any actual motion. In these cases, it can be 

very difficult to create general logic to cover both zero and non-zero-distance moves. 

Synchronous assignments permit a good general solution. The following PLC code is robust for 

starting a move and waiting until it is finished. 

Ldata.Coord = 1;    // Use CS1’s sync buffer 

MyMoveStarted = 0;   // Clear flag immediately 

MyMoveStarted == 1;   // Set flag on move execution start 

X10;      // Command X-axis to 10 

while (MyMoveStarted == 0 || Motor[1].DesVel != 0) {} 

      // Wait for move started and over 

M3 = 1;     // Turn on Output 3 at destination 

 

Note that synchronous assignment buffers are a coordinate-system function. The PLC program 

must be addressing the same coordinate system as the motor executing the move with which the 

output is to be synchronous, whether an axis move or a motor move (e.g. jog or home). 



Power PMAC User’s Manual 

Power PMAC Computational Features 569 

The Synchronous Assignment Buffer 

The queue of pending synchronous assignments is held in a dedicated buffer for the coordinate 

system. The number of assignments that can be stored at any given time (between calculation and 

execution) is set by the saved setup element Coord[x].SyncOps. The default value of 8192 of 

this element for each coordinate system is large enough for almost all conceivable applications. 

Most applications will only need a handful of synchronous assignments buffered at any given 

time. However, if a motion program is looking many moves ahead using dynamic lookahead, and 

many assignments can be made each move, the required buffer size can be quite large. 

To change the buffer size for a coordinate system, it is necessary to change the value of 

Coord[x].SyncOps, issue a save command, and reset the Power PMAC. Only on power-

up/reset does Power PMAC re-organize the synchronous assignment buffers. 

Execution Details 

With linear and circle-mode blended moves, the actual synchronous assignment is performed 

where the blending to the new move begins, which is generally ahead of the programmed point. 

This blending occurs V*Ta/2 distance ahead of the specified intermediate point, where V is the 

commanded velocity of the axis, and Ta is the acceleration (blending) time. 

Also, note that the assignment is synchronous with the commanded position, not necessarily the 

actual position. It is the responsibility of the servo loop to make the commanded and actual 

positions match closely. (The hardware position-compare function can be used to set outputs on 

actual position values.) 

In applications where Power PMAC is executing segmented moves (Coord[x].SegMoveTime > 

0), the synchronous variable assignments are executed at the start of the first segment after the 

start of blending into the programmed move. 

Power PMAC checks to see whether it is time to pull synchronous assignments out of the queue 

and execute them every real-time interrupt (every Sys.RtIntPeriod + 1 servo cycles). The smaller 

Sys.RtIntPeriod is, and the smaller the servo cycle time is, the tighter the timing control of the 

synchronous outputs is. 

Synchronous assignments after the last move or dwell in the program do not execute when the 

program ends or temporarily stops. Use a dwell as the last statement of the program to execute 

these statements. 

Comparators 

A comparator evaluates the relationship between two values (constants or expressions). It is used 

to determine the truth of a condition in a motion or PLC program. The valid comparators for 

Power PMAC are: 

     ==   (equal to) 

     !=   (not equal to) 

     >    (greater than) 

     >=   (greater than or equal to) 

     <    (less than) 

     <=   (less than or equal to) 

     ~    (approximately equal to -- within one) 

     !~   (not approximately equal to -- at least one apart) 
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Note that the single equals sign = is not a valid comparator in Power PMAC, although it was in 

PMAC and Turbo PMAC. Outside of a condition, the double equals sign == is the synchronous 

assignment operator. 

Power PMAC can accept three alternate comparators, but these are stored and reported back in 

standard form. The comparator <> will be stored and reported as !=; !< will be stored and 

reported as >=; !> will be stored and reported as <=. 

These are described in detail in the Software Reference manual under Mathematical Features. 

Conditions 

Power PMAC conditional statements (if branching statements or while looping statements) 

can use either explicit comparisons or mathematical expressions. If just a mathematical 

expression is used, it must evaluate exactly to 0.0 (with full floating-point resolution) to be 

“false” – a value of 0.0000000000001 evaluates as “true”. 

Explicit Comparisons 

An explicit comparison consists of three parts: 

     {expression} {comparator} {expression} 

 

If the relationship between the two expressions defined by the comparator is valid, then the 

condition is true; otherwise, the condition is false.  Examples of simple conditions in commands 

are: 

while (1 < 2)              // (always true) 

 

if (P1 > 5000) 

 

while (sind(P2-P1) <= P300/1000) 

 

Note that parentheses are required around the condition itself. 

Explicit comparisons may not be used outside of conditional parentheses (e.g. P3=P2>1 is not 

legal syntax). Comparisons result in a logical value (true or false), distinct from a numerical 

value. 

Compound Conditions 

A compound condition is a series of simple conditions connected by the logical combinatorial 

operators && and ||. The compound condition is evaluated from the values of the simple 

conditions by the rules of Boolean algebra. In the Power PMAC, && (AND) has execution 

precedence over || (OR); that is, ORs operate on blocks of ANDed simple conditions. Power 

PMAC will stop evaluating compound AND conditions once one false simple condition has been 

found. Examples of compound conditions in command lines are: 

if (P1 > -20 && P1 < 20) 

 

while (P80 == 0 || I120 > 300 && I120 < 400) 
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if (Q16 >= Q17 && Q16 <= Q18 || M136 < 256 && M137 < 256) 

 

Unlike the older PMAC and Turbo PMAC, Power PMAC does not permit compound conditions 

across multiple program lines (but individual program lines can be very long). 

Condition Negation 

The ! conditional negation operator can be useful in conditions. It logically negates the explicit 

comparison or mathematical value inside the parentheses immediately following. If the 

comparison yields a true condition, the negation results in a false condition; if the comparison 

yields a false condition, the negation results in a true condition. If the mathematical value has any 

non-zero value, the negation yields a false condition; if the mathematical value is exactly equal to 

0.0, the negation yields a true condition. 

Examples: 

while (!(Coord[1].InPos)) {} // Wait for CS1 in position 

 

if (!(Motor[3].SoftLimit)) // True if not in software limit 
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USING GENERAL PURPOSE DIGITAL I/O WITH POWER 
PMAC 

Virtually all Power PMAC applications will employ “general-purpose” inputs and outputs in 

addition to the I/O dedicated to motion. These inputs and outputs can be both analog and digital. 

This chapter summarizes the general-purpose digital I/O capabilities of the Power PMAC family. 

Another chapter does the same for general-purpose analog I/O. More details can be found in the 

manuals for specific controllers and I/O accessories. The chapter is organized as follows: 

 I/O Hardware and Configuration 

 Software Configuration for Use 

 Accessing I/O Points in the Script Environment 

 Accessing I/O Points in the C Environment 

 

Note on Using “Dedicated” I/O for General Purpose Use 

In Power PMAC systems, it is possible (and quite common) to use digital I/O points that are 

primarily intended for dedicated use in motor servo functions as general-purpose I/O. The process 

for configuration and access is similar to that described in this chapter for I/O points that are 

primarily intended for general-purpose use. 

Refer to the manual for the particular hardware configuration to see how to set up and access 

these dedicated I/O points. Remember that no active motor should be using any of these dedicated 

outputs, or servo tasks could overwrite the general-purpose use of these points. It is generally 

recommended that even the inputs should not be accessed by any active motor, because the 

automatic motor status and safety checks could lead to unintended consequences. 

Digital I/O Hardware and Configuration 

Power PMAC provides a broad variety of digital I/O ports and accessories. The most common 

ones are described here. For each of these, and others, more detailed descriptions can be found in 

the particular manuals for the hardware. 

UMAC Digital I/O Boards 

The Power UMAC modular rack-mounted controller has a family of digital I/O boards that are 

commonly used for general-purpose I/O. These include: 

 ACC-14E: 48 I/O points at 5V TTL levels, direction user-selectable by byte 

 ACC-65E: 24 inputs, sinking/sourcing at 12-24V, 24 sourcing outputs at 5-24V 

 ACC-66E: 48 inputs, sinking/sourcing at 12-24V 

 ACC-67E: 48 sourcing outputs at 5-24V 

 ACC-68E: 24 inputs, sinking/sourcing at 12-24V, 24 sinking outputs at 5-24V 

 

On all of these boards except the ACC-14E, the inputs and outputs are optically isolated from the 

core UMAC digital circuitry. 
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Note 

While older UMAC digital I/O boards, such as the ACC-11E, 

can be used with the Power PMAC, they cannot use the data 

structure elements covered in this section without special 

“manual” identification of the board in the system (a feature 

new in V2.0 firmware, released 4th quarter 2014).  

 

These boards are mapped as “I/O” boards on the UMAC backplane. They share an addressing 

space with other UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E), ACC-28E ADC 

boards, ACC-36E and ACC-59E boards, and serial-encoder interface boards such as ACC-84E. 

Each board in this class has a 4-point DIP switch SW1 that sets its address location in this space 

and its IC index i. No two boards in this class can have the same setting, or there will be an 

addressing conflict.  

The following table shows the IC index numbers and base address offset (from the start of I/O 

space at Sys.piom) of the board for UMAC I/O-type boards for all of the SW1 switch settings: 

SW1-1 

(CS10 / 

12) 

SW1-2 

(CS10 / 

14) 

SW1-3 

(Address 

bit 15) 

SW1-4 

(Address 

bit 16) 

Power 

PMAC 

“GateIO

” Index # 

Power 

PMAC I/O 

Base 

Address 

Offset 

ON (0) ON(0) ON(0) ON(0) 0 $A00000 

OFF(1) ON(0) ON(0) ON(0) 1 $B00000 

ON (0) OFF(1) ON(0) ON(0) 2 $C00000 

OFF(1) OFF(1) ON(0) ON(0) 3 $D00000 

ON (0) ON(0) OFF(1) ON(0) 4 $A08000 

OFF(1) ON(0) OFF(1) ON(0) 5 $B08000 

ON (0) OFF(1) OFF(1) ON(0) 6 $C08000 

OFF(1) OFF(1) OFF(1) ON(0) 7 $D08000 

ON (0) ON(0) ON(0) OFF(1) 8 $A10000 

OFF(1) ON(0) ON(0) OFF(1) 9 $B10000 

ON (0) OFF(1) ON(0) OFF(1) 10 $C10000 

OFF(1) OFF(1) ON(0) OFF(1) 11 $D10000 

ON (0) ON(0) OFF(1) OFF(1) 12 $A18000 

OFF(1) ON(0) OFF(1) OFF(1) 13 $B18000 

ON (0) OFF(1) OFF(1) OFF(1) 14 $C18000 

OFF(1) OFF(1) OFF(1) OFF(1) 15 $D18000 

Note: ON = Closed, OFF = Open. 

 

Power PMAC UMAC I/O Board Indices and Addresses 

Compact UMAC ACC-11C Digital I/O 

The Compact UMAC ACC-11C digital I/O board provides 24 inputs at 12 – 24V levels, sinking 

or sourcing by user connection, and 24 outputs at 5 – 24V levels, sinking or sourcing by factory 

configuration. Optionally, a mezzanine board with 24 additional inputs and 24 additional outputs 

of the same type can be added. 



Power PMAC User’s Manual 

Using General Purpose Digital I/O with Power PMAC 574 

Addressing 

These boards are mapped as “I/O” boards on the Compact UMAC backplane. They share an 

addressing space with other Compact UMAC ACC-11C digital I/O boards, and ACC-84C serial-

encoder interface boards. Each board in this class has a 4-point DIP switch SW1 that sets its 

address location in this space and its IC index i. No two boards in this class can have the same 

setting, or there will be an addressing conflict. 

Refer to the table “Power PMAC UMAC I/O Board Indices and Addresses” in the section 

above on UMAC I/O boards to see how the switch settings correspond to IC index numbers and 

I/O address offsets. 

UMAC ACC-5E Digital I/O 

The UMAC ACC-5E, which is often used for its MACRO ring interface, provides 48 general-

purpose I/O points at 5V CMOS levels, with direction user-selectable by byte in software. They 

are not optically isolated. Commonly, two bytes of the I/O are used to interface to the external 

multiplexed I/O of ACC-34 family boards. 

Addressing 

These boards are mapped as “MACRO” boards on the UMAC backplane. Each board in this class 

has a 4-point DIP switch SW1 that sets its address location in this space. No two boards in this 

class can have the same setting, or there will be an addressing conflict.  

On re-initialization, Power PMAC automatically maps the “DSPGATE2” ICs on the detected 

ACC-5E boards based on the order of SW1 settings for the boards. The first IC on the ACC-5E 

with the lowest SW1 setting is assigned to Acc5E[0]. If the optional second IC is present on this 

board, it is assigned to Acc5E[1]. Note that the digital I/O on an ACC-5E only uses the first IC. 

If there are additional ACC-5E boards detected, the ICs on these boards are assigned Acc5E[i] 

index values in consecutive order, whether one or two ICs are present per board. 

UMAC ACC-5E3 Digital I/O 

The UMAC ACC-5E3, which is primarily used for its MACRO ring interface, provides 16 

general-purpose I/O points at 5V CMOS levels, with direction user-selectable by byte. They are 

not optically isolated. Commonly, these I/O points are used to interface to the external 

multiplexed I/O of ACC-34 I/O points. 

Direction Selection 

On the ACC-5E3, if jumper E1 connects pins 1 and 2, the buffer IC is configured so that GPIO00 

– GPIO07 can be used as outputs. If E1 connects pins 2 and 3, the buffer IC is configured so that 

GPIO00 – GPIO07 can be used as inputs.  

If jumper E2 connects pins 1 and 2, the buffer IC is configured so that GPIO08 – GPIO15 can be 

used as outputs. If E2 connects pins 2 and 3, the buffer IC is configured so that GPIO08 – 

GPIO15 can be used as inputs. (Software configuration for direction control in the ASIC is 

required as well. This is covered in the next section.) 

Addressing 

The UMAC ACC-5E3 board is mapped as a “PMAC3” board on the UMAC backplane. It shares 

an addressing space with other ACC-5E3 boards, ACC-24E3 servo interface boards and ACC-

59E3 ADC/DAC boards. Each board in this class has a 4-point DIP switch SW1 that sets its 
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address location in this space and its IC index i. No two boards in this class can have the same 

setting, or there will be an addressing conflict. 

The following table lists the possible switch settings for UMAC boards based on the PMAC3-

style “DSPGATE3” ASIC such as the ACC-5E3, along with the IC index numbers and base 

address offsets (from the start of I/O space) they select. The ON/OFF polarity of the switches for 

index number selection is the opposite of older boards. 

SW1-1 
(Address 

bit 11) 

SW1-2 
(Address 

bit 12) 

SW1-3 
(Address 

bit 13) 

SW1-4 
(Address 

bit 14) 

Power 

PMAC 

“Gate3” 

Index # 

Power 

PMAC I/O 

Base 

Address 

Offset 
OFF(0) OFF(0) OFF(0) OFF(0) 0 $900000 
ON(1) OFF(0) OFF(0) OFF(0) 1 $904000 
OFF(0) ON(1) OFF(0) OFF(0) 2 $908000 
ON(1) ON(1) OFF(0) OFF(0) 3 $90C000 
OFF(0) OFF(0) ON(1) OFF(0) 4 $910000 
ON(1) OFF(0) ON(1) OFF(0) 5 $914000 
OFF(0) ON(1) ON(1) OFF(0) 6 $918000 
ON(1) ON(1) ON(1) OFF(0) 7 $91C000 
OFF(0) OFF(0) OFF(0) ON(1) 8 $920000 
ON(1) OFF(0) OFF(0) ON(1) 9 $924000 
OFF(0) ON(1) OFF(0) ON(1) 10 $928000 
ON(1) ON(1) OFF(0) ON(1) 11 $92C000 
OFF(0) OFF(0) ON(1) ON(1) 12 $930000 
ON(1) OFF(0) ON(1) ON(1) 13 $934000 
OFF(0) ON(1) ON(1) ON(1) 14 $938000 
ON(1) ON(1) ON(1) ON(1) 15 $93C000 

Note: ON = Closed, OFF = Open. 

 

Power PMAC UMAC “Gate3” Board Indices and Addresses 

Power Brick Digital I/O 

The Power Brick family of controllers and amplifiers provides a set of 16 inputs and 8 outputs in 

the basic 4-axis configuration, or 2 sets each with 16 inputs and 8 outputs in the 6- and 8-axis 

configuration. Both the inputs and the outputs can be used as sinking or sourcing by user 

connection choice, and are rated to 24V levels. All of these I/O points are optically isolated from 

the core digital circuitry. 

The element indices and addresses of the I/O points are fixed on the Power Brick. No hardware 

addressing setup is required. 

Power Clipper Digital I/O 

Each Power Clipper board, base (with CPU) or optional piggyback board (without CPU), 

provides 32 general-purpose digital I/O points at 5V CMOS levels, direction selectable by byte. 

They are not optically isolated on the Clipper board. Commonly, two bytes of the I/O (on the 

JTHW port) are used to interface to the external multiplexed I/O of ACC-34 family boards. 

Jumpers E14 – E17 on the Power Clipper specify the direction of the 4 byte-wide buffers. If the 

jumper is ON, the buffer is configured for inputs; if it is OFF, the buffer is configured for outputs. 
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In addition, there is software setup of the ASIC required as well to set the directions at the ASIC. 

(This is explained in the next section.) The jumpers and the I/O points they affect are: 

 E14: DAT0 – DAT7 (Default ON for inputs) 

 E15: SEL0 – SEL7 (Default OFF for outputs) 

 E16: MO1 – MO8 (Default OFF for outputs) 

 E17: MI1 – MI8 (Default ON for inputs) 

 

If Delta Tau’s Clipper Interface board is used, these 32 I/O points can be used as 16 inputs and 16 

outputs, all isolated, all sinking or sourcing by user connection choice. The E14 – E17 jumpers 

must be in their default settings in this case. 

The element indices and addresses of the I/O points are fixed on the Power Clipper, with separate 

indices and addresses for the base and piggyback boards. 

ACC-34 Family Multiplexed Digital I/O 

The ACC-34 family of I/O boards provides 32 inputs and 32 outputs per board. The ACC-34AA 

provides 32 inputs at 12 – 24V levels, sinking or sourcing by user connection, and 32 outputs at 5 

– 24V levels, sinking or sourcing by factory configuration. The ACC-34B provides 32 inputs and 

32 outputs at 5V CMOS levels. It is meant to connect to Opto-22TM, GrayhillTM, or similar I/O 

modules. 

The ACC-34 boards connect to the Power PMAC system through an 8-input/8-output 5V 

CMOS/TTL-level I/O port, with the I/O points on the ACC-34(s) accessed in a serial multiplexed 

fashion. Up to 32 ACC-34 boards can be daisychain-connected on a single Power PMAC port. 

Each board on a chain must have a separate address on that chain as set by the 5-point DIP-

switch, which specifies the board’s multiplexing index n, where n = 0 to 31. 

ACC-34 boards are accessed serially through a background software task. They should not be 

used for any I/O that requires a quick (low-latency) response time. 

 

Note 

The addressing of ACC-34 and comparable boards on the 

multiplexer port described here is distinct from the addressing 

of the multiplexer port in Power PMAC’s I/O space. 
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The following table shows how SW1 on the ACC-34x should be set for one or more ACC-34x 

boards connected to the same PMAC. 

 

SW1-5 SW1-4 SW1-3 SW1-2 SW1-1 Board Index n 

ON(0) ON(0) ON(0) ON(0) ON(0) 0 

ON(0) ON(0) ON(0) ON(0) OFF(1) 1 

ON(0) ON(0) ON(0) OFF(1) ON(0) 2 

ON(0) ON(0) ON(0) OFF(1) OFF(1) 3 

ON(0) ON(0) OFF(1) ON(0) ON(0) 4 

ON(0) ON(0) OFF(1) ON(0) OFF(1) 5 

ON(0) ON(0) OFF(1) OFF(1) ON(0) 6 

ON(0) ON(0) OFF(1) OFF(1) OFF(1) 7 

ON(0) OFF(1) ON(0) ON(0) ON(0) 8 

ON(0) OFF(1) ON(0) ON(0) OFF(1) 9 

ON(0) OFF(1) ON(0) OFF(1) ON(0) 10 

ON(0) OFF(1) ON(0) OFF(1) OFF(1) 11 

ON(0) OFF(1) OFF(1) ON(0) ON(0) 12 

ON(0) OFF(1) OFF(1) ON(0) OFF(1) 13 

ON(0) OFF(1) OFF(1) OFF(1) ON(0) 14 

ON(0) OFF(1) OFF(1) OFF(1) OFF(1) 15 

OFF(1) ON(0) ON(0) ON(0) ON(0) 16 

OFF(1) ON(0) ON(0) ON(0) OFF(1) 17 

OFF(1) ON(0) ON(0) OFF(1) ON(0) 18 

OFF(1) ON(0) ON(0) OFF(1) OFF(1) 19 

OFF(1) ON(0) OFF(1) ON(0) ON(0) 20 

OFF(1) ON(0) OFF(1) ON(0) OFF(1) 21 

OFF(1) ON(0) OFF(1) OFF(1) ON(0) 22 

OFF(1) ON(0) OFF(1) OFF(1) OFF(1) 23 

OFF(1) OFF(1) ON(0) ON(0) ON(0) 24 

OFF(1) OFF(1) ON(0) ON(0) OFF(1) 25 

OFF(1) OFF(1) ON(0) OFF(1) ON(0) 26 

OFF(1) OFF(1) ON(0) OFF(1) OFF(1) 27 

OFF(1) OFF(1) OFF(1) ON(0) ON(0) 28 

OFF(1) OFF(1) OFF(1) ON(0) OFF(1) 29 

OFF(1) OFF(1) OFF(1) OFF(1) ON(0) 30 

OFF(1) OFF(1) OFF(1) OFF(1) OFF(1) 31 

Note: ON = Closed, OFF = Open. 

 

ACC-34 Board Multiplexer Port Addressing 

The JTHW ports on the UMAC ACC-5E board and on the Power Clipper boards can be used 

with a direct flat-cable connection to an ACC-34 board. Other ports can be used as well with 

custom cabling. 
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Software Configuration for Digital I/O Use 

Many of the general-purpose digital I/O ports require some software configuration before they 

can be used in an application. This section describes the configuration process. 

UMAC Digital I/O Boards 

The “IOGATE” ASIC used in the UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E) 

is software-configurable for a variety of I/O functionality. While the initialization values set by 

the auto-detection function will usually set the board up properly for an application, the user 

should check these values to ensure proper configuration of the card for the particular purpose. 

These boards have 48 I/O points organized as two hardware ports (A and B) and 6 byte-wide 

software data registers (indices j = 0 to 5). Port A, brought out on the top edge of the card, uses 

data registers with indices 0 to 2. Port B, brought out on the bottom edge of the card, uses data 

registers with indices 3 to 5. 

Each UMAC I/O board has a saved initialization sub-structure GateIo[i].Init (or AccxxE[i].Init). 

The values in this sub-structure are automatically copied to the active control registers in the 

ASIC on power-on/reset. If the value of an element in this sub-structure is changed, save and 

reset operations must be performed before the value takes effect in the active registers. 

The following are the suggested settings for the UMAC general-purpose I/O boards. 

Direction Control 

GateIo[i].Init.CtrlReg should be set to $3F to disable outputs on all 6 byte-wide registers (both 

Ports A and B) for the ACC-66E 48-input board, and for an ACC-14E being used for all inputs. 

This is the re-initialization default value for the ACC66E and ACC-14E. (It is not absolutely 

necessary to disable outputs on pins used for inputs, but if the outputs are not disabled, a write 

operation that turns on an output will “override” the input value on that pin.) 

GateIo[i].Init.CtrlReg should be set to $07 to disable outputs the first three byte-wide registers 

(just Port A) for the ACC-65E and ACC-68E 24-input/24-output boards, and for an ACC-14E 

being used for inputs on Port A and outputs on Port B. This is the re-initialization default value 

for the ACC-65E and ACC-68E, but not for the ACC-14E. 

GateIo[i].Init.CtrlReg should be set to $00 to enable outputs on all 6 byte-wide registers (both 

Ports A and B) for the ACC-67E 48-output board, and for an ACC-14E being used for all outputs. 

This is the re-initialization default value for the ACC-67E, but not for the ACC-14E. 

Initial Output Values 

GateIo[i].Init.DataReg0[j] (j = 0 to 5) sets the power-on/reset output value for byte-wide register 

GateIo[i].DataReg[j], effective if outputs are enabled for that register. It is recommended that 

this value be $00 so that the outputs are off at power-on/reset and would require an explicit 

command to turn on. 

Inversion Control 

GateIo[i].Init.DataReg64[j] (j = 0 to 5) sets the inversion-control value for each bit of the byte-

wide register GateIo[i].DataReg[j], whether the I/O point is used as an input or an output. The 

default value of 0 in the control bit sets the I/O point as “inverting” into or out of the ASIC itself. 
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In this setting, if the input to the IC is pulled low, the processor will read a 1 in the input bit. If the 

open-collector output on the line is commanded by a value of 1, it will turn on and pull low. 

On the ACC-65E, 66E, 67E, and 68E, where there is isolation and buffering between the IC and 

the outside world, the “inverting” setting means that a 0 represents a non-conducting state on the 

input or output, and a 1 represents a conducting state. That is, writing a 1 to an output bit causes 

the output transistor, whether sinking or sourcing, to turn on and conduct. Similarly, when a 

circuit driving an input causes current to conduct in the opto-isolator in either direction, the 

processor will read a 1 in the input bit. 

This “inverting” setting is strongly recommended for these I/O cards, both because it matches the 

intuitive sense of most users that a logical “1” means “ON” – that is, conducting, and because it is 

more fail-safe, in that a failure of the Power PMAC such as a watchdog timer trip will turn 

outputs off. For this setting, GateIo[i].Init.DataReg64[j] (j = 0 to 5) should be set to $00. 

On the ACC-14E, the I/O points of the IOGATE ASIC are directly exposed to the outside world, 

each with a 3.3-kohm pull-up resistor to +5V. In the “inverting” setting, the input must actively 

be pulled low for the processor to read a 1; if it is not, the pull-up resistor will bring the input to a 

high state and the processor will read a 0. A command value of 1 will turn on the open-collector 

output, pulling the output voltage low; a command value of 0 will turn off the open-collector 

output, allowing the pull-up resistor to bring the output to a high state. 

On the ACC-14E, this default “inverting” setting is strongly recommended if the accessory is 

used with Opto-22, Grayhill, or similar I/O modules. 

(When using the ACC-14E for direct interface to TTL logic, as with parallel-data servo feedback, 

often the non-inverting setting will be used. For the non-inverting setting, 

GateIo[i].Init.DataReg64[j] (j = 0 to 5) should be set to $FF for the byte.) 

Read Control 

GateIo[i].Init.DataReg128[j] (j = 0 to 5) determines what state is reported for each bit when the 

byte-wide register is read by the processor. Its action is dependent on the setting of the matching 

bit in GateIo[i].Init.DataReg192[j] (see below).  

If the matching bit of DataReg192[j] is 0 (no latching), as is typical for general-purpose I/O use, 

when the bit of DataReg128[j] is set to 0, the state reported comes from the voltage of the pin at 

that moment. This is the setting that should be used for any general-purpose input point. For a 

general-purpose output point, this setting allows the user to confirm whether the commanded 

output level has actually occurred. 

If the matching bit of DataReg192[j] is 0, when the bit of DataReg128[j] is set to 1, the state 

reported comes from the last value written to the bit. This is not desirable for an input point, but 

for an output point, it allows the user to confirm what the last software action was. 

If the matching bit of DataReg192[j] is 1 (latched inputs), when the bit of DataReg128[j] is set 

to 0, the state reported is that of the input at the most recent falling edge of the selected clock 

(phase or servo). If you want to read latched inputs for general-purpose I/O, you should use this 

setting. 

If the matching bit of DataReg192[j] is 1, when the bit of DataReg128[j] is set to 1, the state 

reported is that derived from the input word at the most recent falling edge of the selected clock 
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(phase or servo as selected by jumper E2 on the board), passed through a Gray-code-to-binary 

conversion. This is extremely rare for general-purpose inputs. 

Latch Control 

GateIo[i].Init.DataReg192[j] (j = 0 to 5) determines what value is reported for each bit when the 

byte-wide register is read by the processor. If the bit is set to 0, the “transparent” value at the 

moment of the read operation is reported. If the bit is set to 1, the value latched at the most recent 

falling edge of the selected clock (phase or servo as selected by jumper E2 on the board) is read. 

For each setting of DataReg192[j], the setting of DataReg128[j] determines which transparent or 

latched value is read, as described in the preceding section. 

Compact UMAC ACC-11C Digital I/O 

The configuration of the Compact UMAC ACC-11C board is the same as for the UMAC ACC-

65E or 68E I/O boards documented in the above section. The generic GateIo[i].Init data structure 

can be used, or the Acc11C[i].Init alias. The recommended settings are: 

Acc11C[i].Init.CtrlReg = $07 

Acc11C[i].Init.DataReg0 = $00 

Acc11C[i].Init.DataReg64 = $00 

Acc11C[i].Init.DataReg128 = $00 

Acc11C[i].Init.DataReg192 = $00 

UMAC ACC-5E Digital I/O 

The “DSPGATE2” ASIC used in the UMAC ACC-5E is software-configurable for a variety of 

I/O functionality. Each byte of I/O also has a buffer IC whose direction is set by a control bit. 

General-Purpose I/O Use 

Most of the general-purpose digital I/O pins on the DSPGATE2 ASIC can also be used for 

dedicated servo purposes. There are saved setup elements in the Gate2[i] (or its alias Acc5E[i]) 

to control the mode of use of these pins. To select for general-purpose I/O use, the following 

settings should be made: 

Acc5E[i].LowIoMode=$FFFFFF // I/O00–23 as GP I/O 

Acc5E[i].HighIoMode=$FF  // I/O24–31 as GP I/O 

Acc5E[i].MuxMode=$FFFF  // DAT0–7, SEL0–7 as GP I/O 

Acc5E[i].DispMode=$FF  // DISP0–7 as GP I/O 

The I/O24 – I/O31 and DISP0 – DISP7 lines are always configured as general-purpose outputs, 

so the settings for these groups are not actually necessary. 

Buffer Direction Control 

The buffer direction-control bits are found in an auxiliary identification IC on the ACC-5E, not in 

the main ASIC. The registers for these bits can be accessed through the Cid[j].PartCtrl[0], 

Cid[j].PartData[0] and Cid[j].PartData[1] non-saved data structure elements. They must be 

configured after each power-up/reset. If the control bit is set to 0, the buffer is configured for 

input; if it is set to 1, the buffer is configured for output. 

The index j for the Cid[j] data structure can be found in the “UMAC Addressing Summary” table 

in the “Power PMAC I/O Address Offsets” chapter of the Software Reference Manual.  
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For Acc5E[0], by far the most common setting used, Cid[4] is used. For Acc5E[1], Cid[20] is 

used. For Acc5E[2], Cid[36] is used. For Acc5E[3], Cid[52] is used. 

The buffer direction-control bits are found in these elements as follows: 

 Cid[j].PartCtrl[0] bit 7 (value $80): For I/O00 – I/O07 

 Cid[j].PartData[0] bit 0 (value $1): For I/O07 – I/O15 

 Cid[j].PartData[0] bit 1 (value $2): For I/O16 – I/O23 

 Cid[j].PartData[0] bit 2 (value $4): For I/O24 – I/O31 

 Cid[j].PartData[0] bit 3 (value $8): For DAT0 – DAT7 

 Cid[j].PartData[1] bit 0 (value $1): For SEL0 – SEL7 

 Cid[j].PartData[1] bit 1 (value $2): For DISP0 – DISP7 

For example, on Acc5E[0], to set I/O00 – I/O15 buffers for inputs, I/O16 – I/O31 buffers for 

outputs, DAT0 – DAT7 buffer for inputs, SEL0 – SEL7 buffer for outputs, and DISP0 – DISP7 

for outputs, the following command lines could be used (on-line or Script program): 

Cid[4].PartCtrl[0]=0  // I/O00–07 inputs (low 7 bits read-only) 

Cid[4].PartData[0]=6  // Binary 0110 

Cid[4].PartData[1]=3  // Binary 0011 

I/O Point Direction Control 

Each I/O point in the DSPGATE2 ASIC can be set individually for input or output. But because 

of the byte-wide buffers on the ACC-5E, directions must be set in groups of 8. There are saved 

setup elements in the Gate2[i] (or its alias Acc5E[i]) to control the directions of the I/O points. 

 Acc5E[i].LowIoDir bits 0 to 23: For I/O00 – 23 

 Acc5E[i].HighIoDir bits 0 to 7:  For I/O24 – 31 

 Acc5E[i].MuxDir bits 0 to 15:  For DAT0 – 7, SEL0 – 7 

 Acc5E[i].DispDir bits 0 to 7:  For DISP0 – 7 

A value of 0 in the bit sets the point for input; a value of 1 in the bit sets the point for output. 

To continue the above example, on Acc5E[0], to set I/O00 – I/O15 as inputs, I/O16 – I/O31 as 

outputs, DAT0 – DAT7 as inputs, SEL0 – SEL7 as outputs, and DISP0 – DISP7 as outputs, the 

following settings should be made: 

Acc5E[0].LowIoDir=$FF0000 

Acc5E[0].HighIoDir=$FF 

Acc5E[0].MuxDir=$FF00 

Acc5E[0].DispDir=$FF 

To use the JTHW port with DAT0 – DAT7 and SEL0 – SEL7 to interface to one or more ACC-

34 family boards through a standard flat cable, Acc5E[0].MuxDir should be set to $FF00 as in 

this example. 

I/O Point Polarity Control 

Each I/O point in the DSPGATE2 ASIC can be set individually for inverting or non-inverting, 

whether it is used as an input or an output. There are saved setup elements in the Gate2[i] (or its 

alias Acc5E[i]) to control the polarities of the I/O points. 



Power PMAC User’s Manual 

Using General Purpose Digital I/O with Power PMAC 582 

 Acc5E[i].LowIoPol bits 0 to 23: For I/O00 – 23 

 Acc5E[i].HighIoPol bits 0 to 7:  For I/O24 – 31 

 Acc5E[i].MuxPol bits 0 to 15:  For DAT0 – 7, SEL0 – 7 

 Acc5E[i].DispPol bits 0 to 7:  For DISP0 – 7 

If the control bit is 0, the point is non-inverting, and a value of 1 corresponds to a high voltage at 

the I/O point on the ASIC. If the control bit is 1, the point is inverting and a value of 1 

corresponds to a low voltage at the I/O point on the ASIC. 

To set I/O00 – I/O31 as inverting, DAT0 – DAT7 and SEL0 – SEL7 as non-inverting, and DISP0 

– DISP7 as inverting, the following settings should be made: 

Acc5E[0].LowIoPol=$FFFFFF 

Acc5E[0].HighIoPol=$FF 

Acc5E[0].MuxPol=$0000 

Acc5E[0].DispPol=$FF 

 

To use the JTHW port with DAT0 – DAT7 and SEL0 – SEL7 to interface to one or more ACC-

34 family boards through a standard flat cable, Acc5E[0].MuxPol should be set to $0000 as in 

this example. 

UMAC ACC-5E3 Digital I/O 

The DSPGATE3 ASIC used in the UMAC ACC-5E3 has configurable 32-bit “banks” of digital 

I/O. The ACC-5E3 uses the low 16 bits of Bank 0, which has signal pins dedicated to general-

purpose I/O. These can be configured through saved setup elements in the Gate3[i] data structure, 

or its alias of Acc5E3[i]. These elements are write-protected; to change their values with Script 

commands, Sys.WpKey should first be set to $AAAAAAAA. 

Direction Control 

Bit n of Acc5E3[i].GpioDir[0] sets the direction of I/O point GPIOn at the ASIC. Although each 

I/O point in the ASIC is individually selectable as to direction, because the buffer ICs are jumper-

selectable as to direction, the direction of ASIC I/O points must be specified in groups of 8. The 

directions are set with Acc5E3[i].GpioDir[0]. The useful settings are: 

 Acc5E3[i].GpioDir[0] = $0000  (GPIO00 – 15 all inputs) 

 Acc5E3[i].GpioDir[0] = $00FF  (GPIO00 – 07 inputs, GPIO08 – 15 outputs) 

 Acc5E3[i].GpioDir[0] = $FF00  (GPIO00 – 07 outputs, GPIO08 – 15 inputs) 

 Acc5E3[i].GpioDir[0] = $FFFF  (GPIO00 – 15 all outputs) 

The setting of $FF00 permits this I/O port to be used to interface to one or more ACC-34 

multiplexed I/O boards. The setting of the high 16 bits of this 32-bit element does not matter here. 

Polarity Control 

Bit n of Acc5E3[i].GpioPol[0] sets the polarity of I/O point GPIOn, whether it is used as an input 

or an output. If the bit is 0, non-inverting I/O is selected, so that a 0 value corresponds to a low 

voltage at the port, and a 1 value corresponds to a high voltage. If the bit is 1, inverting I/O is 

selected, so that a 0 value corresponds to a high voltage at the port, and a 1 value corresponds to a 

low voltage. 
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To use this port to interface to ACC-34 multiplexed I/O port, all input and output points should be 

non-inverting, so Acc5E3[i].GpioPol[0] should be set to $0000. 

Power Brick Digital I/O 

The DSPGATE3 ASIC used in the Power Brick controllers and amplifiers has configurable 

“banks” of digital I/O. The Power Brick products use Bank 0, which has signal pins dedicated to 

general-purpose I/O. The first set of 16 inputs and 8 outputs uses Bank 0 of Gate3[0]. The second 

set of 16 inputs and 8 outputs uses Bank 0 of Gate3[1], which comes with the 8-axis 

configuration. The PowerBrick[0] and PowerBrick[1] aliases can be used for these structures. 

The I/O bank is configured with several saved setup elements for the ASIC. These elements are 

write-protected; to change their values with Script commands, Sys.WpKey should first be set to 

$AAAAAAAA. 

Direction Control 

For each set of I/O, PowerBrick[i].GpioDir[0] must be set to $00FF0000 to set the low 16 bits 

of the associated data word as inputs and the next 8 bits as outputs. (The highest 8 bits of the 32-

bit bank are set as inputs for other purposes.) This is the default value set at re-initialization. 

Polarity Control 

For each set of I/O, PowerBrick[i].GpioPol[0] should be set to $00000000 to select non-

inverting I/O so that a 0 value represents an OFF (non-conducting) state, and a 1 represents an 

ON (conducting) state, whether the I/O point is used in a sinking or sourcing mode. In the non-

inverting mode, the outputs will automatically be turned off if the controller goes into a reset or 

watchdog state. This is the default value set at re-initialization. 

Input Mode Control 

For the inputs, PowerBrick[i].GpioCtrl is usually set to $00000000 to specify transparent (as 

opposed to latched), unfiltered, and unconverted (not converted Gray code) inputs. Other settings 

are possible; refer to the detailed description of this setup element for details. 

(PowerBrick[i].GpioCtrl is saved and restored through its alternate name of 

PowerBrick[i].GpioMode[0].) This is the default value set at re-initialization. 

Power Clipper Digital I/O 

The DSPGATE3 ASIC used in the Power Clipper has configurable “banks” of digital I/O. The 

Power Clipper uses Bank 0, which has signal pins dedicated to general-purpose I/O. All 32 bits of 

Bank 0 are used as general-purpose digital I/O points on the Power Clipper, 16 for the JTHW 

multiplexer port and 16 for the JOPT I/O port. The I/O points on the base Clipper board use Bank 

0 of Gate3[0]. The I/O points on the optional expansion board use Bank 0 of Gate3[1]. The 

Clipper[0] and Clipper[1] aliases can be used for these structures. 

The I/O bank is configured with several saved setup elements for the ASIC. These elements are 

write-protected; to change their values with Script commands, Sys.WpKey should first be set to 

$AAAAAAAA. 

Direction Control 

While the direction of the I/O points is selectable by bit from the ASIC itself, the direction of the 

buffer ICs is only selectable in byte-wide sections using jumpers E14 – E17 (ON for inputs, OFF 

for outputs). If Delta Tau’s Clipper breakout board is used, two of these byte-wide sections must 

be used as inputs and two as outputs. 
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The 32-bit saved setup element Clipper[i].GpioDir[0] sets the direction of the 32 general 

purpose I/O points. The element is organized as follows: 

 Clipper[i].GpioDir[0] bits 0 – 7: For DAT0 – DAT7 (E14) 

 Clipper[i].GpioDir[0] bits 8 – 15: For SEL0 – SEL7 (E15) 

 Clipper[i].GpioDir[0] bits 16 – 23: For MO1 – MO8 (E16) 

 Clipper[i].GpioDir[0] bits 24 – 31: For MI1 – MI8 (E17) 

For the case where Delta Tau’s Clipper Breakout board is used, Clipper[i].GpioDir[0] must be 

set to $00FFFF00. The last two hex digits at $00 set the DAT0 – DAT7 lines as inputs. The 

preceding two hex digits at $FF set the SEL0 – SEL7 lines as outputs. The earlier two hex digits 

at $FF set the MO1 – MO8 lines as outputs. The first two hex digits at $00 set the MI1 – MI8 

lines as inputs. 

Polarity Control 

The 32-bit saved setup element Clipper[i].GpioPol[0] sets the polarity of the 32 general-purpose 

I/O points, whether they are used as inputs or outputs. The bits of the element are organized in the 

same way as the direction control documented immediately above. If the bit is 0, non-inverting 

I/O is selected, so that a 0 value corresponds to a low voltage at the port of the Clipper, and a 1 

value corresponds to a high voltage. If the bit is 1, inverting I/O is selected, so that a 0 value 

corresponds to a high voltage at the port of the Clipper, and a 1 value corresponds to a low 

voltage. 

For the case where Delta Tau’s Clipper Breakout board is used, Clipper[i].GpioPol[0] should be 

set to $00000000 to select non-inverting I/O, whether the I/O point is used in a sinking or 

sourcing mode. This means that a 0 corresponds to a non-conducting state, and a 1 corresponds to 

a conducting state. In the non-inverting mode, the outputs will automatically be turned off if the 

controller goes into a reset or watchdog state. 

Input Mode Control 

For the inputs, Clipper[i].GpioCtrl is usually set to $00000000 to specify transparent (as 

opposed to latched), unfiltered, and unconverted (not converted Gray code) inputs. Other settings 

are possible; refer to the detailed description of this setup element for details. 

(Clipper[i].GpioCtrl is saved and restored through its alternate name of 

Clipper[i].GpioMode[0].) 

ACC-34 Family Multiplexed Digital I/O 

The interface to one or more ACC-34 family boards is configured through the saved setup 

elements of the MuxIo data structure. These elements specify the Power PMAC I/O port(s) to use 

for the interface, the time periods for the interface, the ACC-34 ports to use, their directions, and 

whether automatic parity checking is performed. 

Power PMAC Interface Port Specification 

The address of the byte-wide Power PMAC port to use for outputs to ACC-34 boards is specified 

by MuxIo.pOut. The starting bit of this byte on the 32-bit data bus is specified by 

MuxIo.OutBit. This Power PMAC port must be set up for non-inverting outputs. 

The address of the Power PMAC port to use for inputs from ACC-34 boards is specified by 

MuxIo.pIn. The bit of this register on the 32-bit data bus on which the input data is transferred 
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serially is specified by MuxIo.InBit. This Power PMAC port must be set up for non-inverting 

inputs. 

UMAC ACC-5E JTHW Port 

To use the JTHW port on the UMAC ACC-5E for ACC-34 interface, with SEL0 – SEL7 for the 

output signals to the ACC-34(s), and DAT0 for the input signals from ACC-34(s), the following 

settings would be made: 

MuxIo.pOut = Acc5E[i].MuxData.a  // Register w/ SEL lines 

MuxIo.OutBit = 16     // Use SEL0 line 

MuxIo.pIn = Acc5E[i].MuxData.a  // Register w/ DAT lines 

MuxIo.InBit = 8     // Use DAT0 line 

Acc5E[i].MuxMode = $FFFF   // GPIO mode for these lines 

Acc5E[i].MuxDir = $FF00    // DATn inputs, SELn outputs 

Acc5E[i].MuxPol = $0000    // All non-inverting I/O 

 

If ACC-34AA boards are (all) jumpered to use DAT7 for transferring input data to the controller 

(which reduces crosstalk with the clock on the flat cable), MuxIo.InBit should be set to 15 

instead. This hardware and software configuration can only be used if there are only ACC-34AA 

boards on the port. 

UMAC ACC-5E3 JIO Port 

To use the JIO port on the on the UMAC ACC-5E3 for ACC-34 interface, with GPIO08 – 

GPIO15 for the output signals to the ACC-34(s) and GPIO00 for the input signals from the ACC-

34(s), the following settings would be made: 

MuxIo.pOut = Acc5E3[i].GpioData[0].a // Register w/ GPIO lines 

MuxIo.OutBit = 8     // Use GPIO08 line 

MuxIo.pIn = Acc5E3[i].GpioData[0].a  // Register w/ GPIO lines 

MuxIo.InBit = 0     // Use GPIO00 line 

Acc5E3[i].GpioDir[0] = $FF00   // 0-7 inputs, 8-15 outputs 

Acc5E3[i].GpioPol[0] = $0000   // All non-inverting I/O 

 

If ACC-34AA boards are (all) jumpered to use DAT7 for transferring input data to the controller, 

MuxIo.InBit should be set to 7 instead. This hardware and software configuration can only be 

used if there are only ACC-34AA boards on the port. 

Power Clipper JTHW Port 

To use the JTHW port on the Power Clipper for ACC-34 interface, with SEL0 – SEL7 for the 

output signals to the ACC-34(s), and DAT0 for the input signals from ACC-34(s), the following 

settings would be made: 

MuxIo.pOut = Clipper[i].GpioData[0].a // Register w/ SEL lines 

MuxIo.OutBit = 8     // Use SEL0 line 

MuxIo.pIn = Clipper[i].GpioData[0].a // Register w/ DAT lines 

MuxIo.InBit = 0     // Use DAT0 line 

Clipper[i].GpioDir[0] = $FF00   // DATn inputs, SELn outputs 

Clipper[i].GpioPol[0] = $0000   // All non-inverting I/O 

 

If ACC-34AA boards are (all) jumpered to use DAT7 for transferring input data to the controller 

(which reduces crosstalk with the clock on the flat cable), MuxIo.InBit should be set to 7 instead. 

This hardware and software configuration can only be used if there are only ACC-34AA boards 

on the port. 
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ACC-34 Port Enabling and Direction Control 

For each ACC-34 board connected to this Power PMAC port, the Power PMAC must be told to 

enable both the board’s “Port A” and “Port B” and the direction, input or output, of each 32-bit 

port. 

Port A on an ACC-34 is enabled by setting MuxIo.PortA[n].Enable, where n (= 0 to 31) is 

specified by the 5-point DIP-switch on the ACC-34, to 1. Port B on the board is enabled by 

setting MuxIo.PortB[n].Enable to 1. 

Port A on an ACC-34 board is specified as an input port by setting MuxIo.PortA[n].Dir to 0. On 

all Delta Tau ACC-34 boards, Port A must be used as an input port. Port B on an ACC-34 board 

is specified as an output port by setting MuxIo.PortB[n].Dir to 1. On all Delta Tau ACC-34 

boards, Port B must be used as an output port. 

ACC-34 Input Port Parity Check Control 

For each input port on an ACC-34 board, it is possible to enable automatic parity checking on 

input data transfers from the port. This function is enabled by setting 

MuxIo.PortA[n].AutoParityCheck to 1. (If a 3rd-party device that provides inputs on Port B is 

used, the same can be done for Port B.) 

If the parity checking is enabled and a parity error is detected in a transfer, the 32-bit input value 

received is not copied into its image word in Power PMAC memory (MuxIo.PortA[n].Data), 

and the last scan’s value will remain in the image word. Whether or not this software function is 

enabled, the hardware parity check is performed, and the result of the check can be found in 

status bit MuxIo.PortA[n].ParityStatus, where 0 indicates a parity error. 

On the Delta Tau ACC-34 boards, hardware parity checking is automatically performed on the 

enabled output ports, and the 32-bit output value received by the board is not latched into the 

actual output circuits if a parity error is detected. No special software setup is required for this. 

Status bit MuxIo.PortB[n].ParityStatus is 0 if a parity error has been detected on the most 

recent transfer. 

ACC-34 Port Timing 

The bit clock rate for the serial transfers between Power PMAC and ACC-34 boards can be 

controlled using saved setup element MuxIo.ClockPeriod. If it is left at its default value of 0, the 

bit clock frequency is not specially limited, and can be as high as 1/800 of the CPU clock 

frequency (e.g. 1.25 MHz for a 1 GHz CPU). This setting is typically fine for short (less than 1 

meter) cables to only a few ACC-34 boards in a low-noise environment. 

If MuxIo.ClockPeriod is set to a value greater than 0, it specifies the minimum period, in 

microseconds, between consecutive bit-clock cycles. For example, if it is set to 4, the maximum 

bit clock frequency will be 250 kHz. 

Saved setup element MuxIo.UpdatePeriod specifies how often Power PMAC communicates 

with enabled ACC-34 ports. If it is set to 0, communications is in “one-shot” mode. In this mode, 

after communicating with each enabled port, the Enable element for that port is automatically 

cleared to 0. 
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Note 

Delta Tau ACC-34 boards have on-board watchdog timer 

circuits that will automatically turn off all outputs if no 

communications has been received for 1.5 seconds. 

 

If MuxIo.UpdatePeriod is set to a value greater than 0, communications is in cyclic mode, with 

this element specifying the time between consecutive scans, in milliseconds. In this mode, the 

Enable elements for the ports are not automatically cleared after communications with that port. 

If MuxIo.UpdatePeriod is set to a value too small to be possible given the specified 

MuxIo.ClockPeriod value, Power PMAC will automatically increase the value of 

MuxIo.UpdatePeriod to a possible value. 

ACC-34 Communications Enabling 

Saved setup element MuxIo.Enable specifies whether the multiplexed communications with 

ACC-34 boards as configured according to the above instructions will be active or not. If it is set 

to 0, no multiplexed communications will occur, and none of the configuration variables are used. 

If it is set to 1, the multiplexed communications will occur as specified by the configuration 

elements explained above. 

The overall activation element MuxIo.Enable should not be confused with the individual board 

port activation elements MuxIo.PortA[n].Enable and MuxIo.PortB[n].Enable. 
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Accessing Digital I/O Points in the Script Environment 

In Power PMAC’s Script environment, the digital I/O points can be accessed either using the pre-

defined data structure element names, or with user-defined “pointer” (M) variables. There are two 

advantages to using the user-defined pointer variables. First, they can access just the relevant part 

of the element if the entire element is not of use. Second, they can be assigned an application-

specific name using the IDE’s project manager. 

Accessing Output Points at Different Priority Levels 

Great care must be taken if it is desired to access output points in the same register from multiple 

priority levels. Whenever it is desired to change only part of an output register (or a holding 

register for that output register), the processor must perform a non-atomic “read/modify/write” 

operation. 

If a lower-priority task has started this multi-step operation, but is interrupted by a higher-priority 

task that executes this multi-step operation on the same register, when the lower-priority task 

resumes, it will undo the changes made by the higher-priority task. The chances of this occurring 

on any given interrupt are small, but given the thousands of interrupts occurring per second, the 

chances of this happening eventually (if not protected against) are very large, and the intermittent 

nature of the problem can make it very hard to track down. 

In the Script environment, whenever a “partial-word” element or variable is written to, the Script 

execution engine automatically performs this read/modify/write sequence invisibly to the user. In 

the C environment, the user code must perform this sequence explicitly. 

Power PMAC Priority Levels 

The priority levels, from lowest to highest, and the tasks at each level that might write to general-

purpose digital outputs, are listed below. At an individual priority level, there is no danger of this 

type of conflict. 

 Background: background Script PLCs, background C PLCs, independent C applications 

 Real-time interrupt: RTI Script PLCs, RTI C PLC, motion programs, synchronous 

variable assignments 

 Servo interrupt: custom servo algorithms 

 Phase interrupt: custom phase algorithms 

 Capture/compare interrupt: Capture/compare ISRs 

Different tasks operating at the same priority level cannot interrupt each other, and so do not 

present this problem. 

If the application needs to write to outputs at multiple priority levels, the best solution is to use 

different output registers for different priority levels. This will avoid the problem altogether. If 

this is not feasible, the user application must protect against this problem explicitly. 
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Process-Locking Mechanism 

The Power PMAC Script environment has a special process-locking mechanism for this purpose. 

It supports 32 separate processes, permitting the user application to transfer control of each 

process robustly between tasks at different priority levels. 

When a Script command reads the Boolean element Sys.Lock[i] (i = 0 to 31), if it reads a 1 value, 

it knows that the process is “locked” by another task. If it reads a 0, it knows that the process is 

not locked, and so is available to it. But the very act of reading the element this way and seeing a 

0 value also sets the bit to 1 in an uninterruptible “atomic” operation, automatically giving this 

routine control of the process. 

One common way this can be used is shown in the following Script code example: 

while (Sys.Lock[7] == 1) {}  // Wait until process 7 free 

GateIo[0].DataReg[4].3 = 1;  // Set output bit 

Sys.Lock[7] = 0;    // Release process 7 control 

It is possible to monitor the status of a process without the possibility of taking control of it by 

reading 32-bit status element Sys.Lock and evaluating the state of bit i for process i. 

UMAC Digital I/O Boards 

For the UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E), the byte-wide data 

registers can be accessed for either read or write purposes with the data structure elements 

GateIo[i].DataReg[j] (j = 0 to 5). Individual I/O points can be accessed with 

GateIo[i].DataReg[j].k (k = 0 to 7). Of course, in place of the generic GateIo[i] structure name, 

the alias name for the particular card (e.g. Acc68E[i]) can be used. 

The following table shows how each 8-bit element corresponds to the signal pins on each of the 

UMAC digital I/O boards: 

Element Address 

Offset 

ACC-14E ACC-65E 

ACC-68E 

ACC-66E ACC-67E 

GateIo[i].DataReg[0] $000 I/O00 – 07 IN00 – 07 IN00 – 07 OUT00 – 07 

GateIo[i].DataReg[1] $004 I/O08 – 15 IN08 – 15 IN08 – 15 OUT08 – 15 

GateIo[i].DataReg[2] $008 I/O16 – 23 IN16 – 23 IN16 – 23 OUT16 – 23 

GateIo[i].DataReg[3] $00C I/O24 – 31 OUT00 – 07 IN24 – 31 OUT24 – 31 

GateIo[i].DataReg[4] $010 I/O32 – 39 OUT08 – 15 IN32 – 39 OUT32 – 39 

GateIo[i].DataReg[5] $014 I/O40 – 47 OUT16 – 23 IN40 – 47 OUT40 – 47 

 

An M-variable can be assigned to an individual bit of an element, to a consecutive set of bits, or 

to the full byte. When the assignment is made through the IDE, an application-specific name can 

be given to the variable. For example: 

ptr ClampSolenoidOn->Acc68E[2].DataReg[5].4 // 1-bit value 

ptr PartTypeCode->GateIo[0].DataReg[1].1.3 // 3-bit value 

ptr LightCurtainArray->Acc66E[1].DataReg[2] // 8-bit value 

Once the assignment is made, the application can use the declared variable name in the 

application. 
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It is also possible to assign an M-variable to a bit or bits of the 32-bit register using the address of 

the register rather than the element name. For the standard digital I/O boards, this does not 

provide additional capabilities, but for older I/O boards such as the ACC-11E, this is the only way 

of accessing the registers in the board. The byte-wide data registers are found in bits 8 – 15 of the 

32-bit bus. 

To replicate the above definitions in this method, the assignments would be: 

ptr ClampSolenoidOn->u.io:$C00014.12  // 1-bit value 

ptr PartTypeCode->u.io:$A00004.9.3   // 3-bit value 

ptr LightCurtainArray->u.io:$B00014.8.8  // 8-bit value 

These declare that the variable is an unsigned integer (u) in I/O (io) space. In this assignment, 

the six-digit hexadecimal value is the offset of the register address from the start of I/O. (It is not 

necessary to know the starting I/O address, but it can be found at Sys.piom.) This offset can be 

computed using the values found in the Software Reference chapter “Power PMAC I/O Address 

Offsets”. 

The first three hex digits, $C00 in the first example, are dependent on the accessory index alone, 

as the base address offset of the I/O IC with index 2 is $C00000. The last three hex digits are 

dependent on the offset of the register from the IC base index ($014 for DataReg[5]). 

The first digit after the address is the starting bit number of the variable on the 32-bit bus. Note 

that this value is 8 greater than the value of the starting bit in the pre-defined data structure 

element, because the element itself starts at bit 8 on the 32-bit bus. 

The second digit after the address specifies the number of bits to use in the variable. If there is no 

second digit, the declaration is for a 1-bit variable. 

Compact UMAC ACC-11C Digital I/O 

For the Compact UMAC ACC-11C digital I/O board, the byte-wide data registers can be 

accessed with the data structure elements Acc11C[i].DataReg[j] (j = 0 to 5). Individual I/O 

points can be accessed with Acc11C[i].DataReg[j].k (k = 0 to 7). In place of the Acc11C[i] 

structure name, the generic GateIo[i] structure name can be used instead. 

Refer to the above section on UMAC digital I/O boards to see how each 8-bit element 

corresponds to the signal pins on the ACC-11C. The Compact UMAC ACC-11C correspondence 

is the same as the ACC-65E and 68E UMAC boards. 

UMAC ACC-5E Digital I/O 

For the UMAC ACC-5E board, the data on the JTHW multiplexer port can be accessed through 

the 16-bit Acc5E[i].MuxData element. Individual bits on the port can be accessed with 

Acc5E[i].MuxData.k (k = 0 to 15). Bits 0 to 7 correspond to DAT0 – DAT7 lines, respectively. 

Bits 8 to 15 correspond to SEL0 – SEL7 lines, respectively. 

 

Note 

When accessing external multiplexed I/O on a port such as the 

JTHW port with the MuxIo data structure, do not write 

directly to the port or bits on the port. The multiplexing 
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algorithm will automatically be writing to the port on a regular 

basis. 

 

On the JIO port, the 24 lines I/O00 – I/O23 can be accessed through the Acc5E[i].LowIoData 

element. Individual bits on the port can be accessed with Acc5E[i].LowIoData.k (k = 0 to 23). 

Bits 0 to 23 correspond to I/O00 – I/O23 lines, respectively. 

Also on the JIO port, the 8 lines I/O24 – I/O31 can be accessed through the 

Acc5E[i].HighIoData element. Individual bits on the port can be accessed with 

Acc5E[i].HighIoData.k (k = 0 to 7). Bits 0 to 7 correspond to I/O24 – I/O31 lines, respectively. 

On the JDISP port, the 8 lines DISP0 – DISP7 can be accessed through the Acc5E[i].DispData 

element. Individual bits on the port can be accessed with Acc5E[i].DispData.k (k = 0 to 7). Bits 0 

to 7 correspond to DISP0 – DISP7 lines, respectively. 

An M-variable can be assigned to an element, an individual bit of an element, or to a consecutive 

set of bits. When the assignment is made through the IDE, an application-specific name can be 

given to the variable. For example: 

ptr ProductCode->Acc5E[0].MuxData   // 16-bit element 

ptr CoolantOn->Acc5E[0].HighIoData.2  // 1-bit value 

ptr ProcessState->Acc5E[0].LowIoData.4.4  // 4-bit value 

Once the assignment is made, the application can use the declared variable name in the 

application. 

UMAC ACC-5E3 Digital I/O 

For the UMAC ACC-5E3 board, the data on the 16-bit JIO port can be accessed through the low 

16 bits of the 32-bit Acc5E3[i].GpioData[0] element. Individual bits on the port can be accessed 

with Acc5E3[i].GpioData[0].k (k = 0 to 15). Bits 0 to 15 correspond to I/O00 – I/O15 lines, 

respectively. 

 

Note 

When accessing external multiplexed I/O on a port such as the 

JTHW port with the MuxIo data structure, do not write 

directly to the port or bits on the port. The multiplexing 

algorithm will automatically be writing to the port on a regular 

basis. 

 

An M-variable can be assigned to an element, an individual bit of an element, or to a consecutive 

set of bits. When the assignment is made through the IDE, an application-specific name can be 

given to the variable. For example: 

ptr ProductCode->Acc5E3[0].GpioData[0]  // 32-bit element 

ptr CoolantOn->Acc5E3[0].GpioData[0].2  // 1-bit value 

ptr ProcessState->Acc5E3[0].GpioData[0].8.4 // 4-bit value 

Once the assignment is made, the application can use the declared variable name in the 

application. 
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Power Brick Digital I/O 

For the Power Brick, the set of 16 general-purpose digital inputs and 8 general-purpose digital 

outputs that comes with each set of 4 axes can be accessed through the 32-bit 

Gate3[i].GpioData[0] data structure element. Individual I/O points can be accessed with 

Gate3[i].GpioData[0].k. Of course, in place of the generic Gate3[i] structure name, the alias 

name PowerBrick[i] can be used. 

The IC index i is 0 for the first set of I/O points, which comes with the first four axes. It is 1 for 

the second set of I/O points, which comes with the second four axes. The bit index k is 0 to 15 for 

the 16 inputs, and 16 to 23 for the 8 outputs, of a set. 

So for the first set of I/O points, inputs GPIN01 to GPIN16 correspond to 

PowerBrick[0].GpioData[0].0 to .15, respectively. (Note that the bit number is one less than the 

hardware channel number.) In this set, GPOUT01 to GPOUT08 correspond to 

PowerBrick[0].GpioData[0].16 to .23, respectively. 

For the second set of I/O points, inputs GPIN17 to GPIN32 correspond to 

PowerBrick[1].GpioData[0].0 to .15, respectively. In this set, GPOUT09 to GPOUT16 

correspond to PowerBrick[1].GpioData[0].16 to .23, respectively. 

An M-variable can be assigned to an individual bit of an element, or to a consecutive set of bits. 

(The high 8 bits of the 32-bit element are used for internal functions, so it is generally not 

appropriate to write to the entire 32-bit element.) When the assignment is made through the IDE, 

an application-specific name can be given to the variable. For example: 

ptr LaserOn->PowerBrick[0].GpioData[0].21  // 1-bit value 

ptr OverrideKnob->PowerBrick[1].GpioData[0].8.4 // 4-bit value 

Once the assignment is made, the application can use the declared variable name in the 

application. 

Power Clipper Digital I/O 

For the Power Clipper, the set of 32 general-purpose digital inputs outputs that comes with each 

4-axis board can be accessed through the 32-bit Gate3[i].GpioData[0] data structure element. 

Individual I/O points can be accessed with Gate3[i].GpioData[0].k. Of course, in place of the 

generic Gate3[i] structure name, the alias name Clipper[i] can be used. 

The IC index i is 0 for the set of I/O points on the base board. It is 1 for the set of I/O points on 

the piggyback board.  

The bit index k is 0 to 7 for the DAT0 – DAT7 lines, respectively. It is 8 to 15 for the SEL0 – 

SEL7 lines, respectively. It is 16 to 23 for the MO1 – MO8 lines, respectively. It is 24 to 31 for 

the MI1 – MI8 lines, respectively. 

 

Note 

When accessing external multiplexed I/O on a port such as the 

JTHW port with the MuxIo data structure, do not write 

directly to the port or bits on the port. The multiplexing 

algorithm will automatically be writing to the port on a regular 

basis. 
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An M-variable can be assigned to an individual bit of an element, or to a consecutive set of bits. 

When the assignment is made through the IDE, an application-specific name can be given to the 

variable. For example: 

ptr LaserOn->Clipper[0].GpioData[0].21  // 1-bit value 

ptr OverrideKnob->Clipper[1].GpioData[0].8.4 // 4-bit value 

Once the assignment is made, the application can use the declared variable name in the 

application. 

ACC-34 Family Multiplexed Digital I/O 

For the multiplexed digital I/O on ACC-34 boards, the application will access the I/O points 

through their image words in Power PMAC memory. The values in the image words for output 

ports are automatically copied to the actual outputs on the ACC-34 boards, and the values in the 

image words for input ports are automatically copied from the actual inputs on the ACC-34 

boards. 

The data structure elements for these image words are MuxIo.PortA[n].Data and 

MuxIo.PortB[n].Data, where n (= 0 to 31) is the index for the board as set by the DIP switches 

on the board. With standard ACC-34 boards, Port A is always an input port and Port B is always 

an output port, but it is possible to use boards where this is not the case. 

These elements are 32-bit unsigned integers, with their bits 0 to 31 corresponding to I/O points 0 

to 31 on the matching hardware point. Individual bits of the element, and so matching individual 

I/O points, can be accessed with MuxIo.PortA[n].Data.k and MuxIo.PortB[n].Data.k, where k 

is the bit number. Consecutive sets of bits can be accessed with MuxIo.PortA[n].Data.k.l and 

MuxIo.PortB[n].Data.k.l, where k is the starting bit number and l is the number of bits to access. 

An M-variable can be assigned to the entire element, an individual bit of the element, or to a 

consecutive set of bits. When the assignment is made through the IDE, an application-specific 

name can be given to the variable. For example: 

ptr PartClamp->MuxIo.PortB[1].Data.17  // 1-bit value 

ptr LocatorArray->MuxIo.PortA[0].Data.8.12 // 12-bit value 
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Using Cyclic Scanned Buffered Inputs and Outputs 

Power PMAC supports the use of “PLC-style” buffered inputs and outputs that are automatically 

scanned on a cyclic basis. This is particularly convenient for those users who are accustomed to 

dealing with I/O as traditional PLCs access them. 

The user is not required to use this functionality to work with inputs and outputs. It is possible to 

access the actual input and output registers directly at any time, which can be done instead of this 

buffered process, or in addition to it. 

With this functionality, up to 64 user-specified input registers can be read at the beginning of 

each scan and copied into input holding registers. Input bits can be digitally filtered for 

“debouncing” purposes, so that multiple consecutive scans in the new state are required before 

the corresponding bit in the holding register changes. 

When the bit in the holding register does change in a scan, a corresponding bit in a “rise” or “fall” 

register is automatically set to make it easy for user algorithms to act on the edge. Bit values in 

the input register can be overridden by values in “forcing” registers, allowing for easy simulation 

and debugging. 

Up to 64 user-specified output registers can be written to at the end of each scan, copied from 

output holding registers. 

I/O can be scanned each real-time interrupt (RTI) cycle for use in foreground Script PLC 

programs, or each background cycle for use in background Script PLC programs. It is possible to 

scan some I/O in the RTI and some in background. The timing of this I/O scanning may not be 

useful for C PLC programs, either foreground or background, particularly with regard to the 

rising and falling edge detection. 

This diagram shows a block diagram for the process of using buffered I/O in the Power PMAC: 
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Cyclic Scanned Buffered I/O Process 

This buffered I/O functionality is new in V2.1 firmware, released 1st quarter 2016. 

Enabling Cyclic Scanned I/O 

This scanned I/O functionality is enabled by setting saved setup element Sys.BufIoEnable to 1. If 

it is set to its default value of 0, this functionality is not enabled. 
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Specifying Scanned Input Registers 

The input registers to be read are specified by the settings of saved setup elements BufIo[i].pIn. 

Index values i can range from 0 to 63. Elements with index values less than Sys.MaxRtBufIn can 

be read each RTI scan. These are intended for use in Script PLCs numbered from 0 to 

Sys.MaxRtPlc. Elements with index values greater or equal to than Sys.MaxRtBufIn can be 

read each background scan. These are intended for use in Script PLCs numbered from 

(Sys.MaxRtPlc + 1) to 31. 

If an element BufIo[i].pIn is set to its default value of 0, no input register is read for that index 

value. Furthermore, no input register is read for any higher index value for that scan. Note, 

however, that a value of 0 for a BufIo[i].pIn in the RTI scan range (i < Sys.MaxRtBufIn) does 

not inhibit the use of elements with higher index values in the background scan range (i >= 

Sys.MaxRtBufIn). 

To specify the read of an input register, BufIo[i].pIn is set to the address of that register. This is 

usually done by specifying the name of that element, followed by the “.a” (address of) suffix. For 

example: 

BufIo[1].pIn = Acc65E[2].Data[1].a 

With an address specified and the function enabled, Power PMAC will copy the 32-bit value read 

at this address into memory for further processing, with the end result in holding register 

BufIo[i].In. This is a full 32-bit operation, even if there is not “real” data in all 32 bits. In the 

above example, there is only input data in bits 8 to 15 of the ACC-65E data register, so there will 

only be real data in bits 8 to 15 of the 32-bit holding register. 

As an example, consider the following configuration: 

Sys.BufIoEnable = 1    // Enable cyclic buffered I/O transfers 

Sys.MaxRtBufIn = 6    // Index values 0 to 5 can be RTI transfers 

BufIo[0].pIn = Acc65E[0].Data[0].a 

BufIo[1].pIn = Acc65E[0].Data[1].a 

BufIo[2].pIn = Acc65E[0].Data[2].a 

BufIo[3].pIn = 0    // Stop RTI reads here 

BufIo[4].pIn = ECAT[0].IO[20].Data.a // Not used 

BufIo[5].pIn = ECAT[0].IO[21].Data.a // Not used 

BufIo[6].pIn = MuxIo.PortA[8].Data.a // Start background reads here 

BufIo[7].pIn = MuxIo.PortA[16].Data.a 

BufIo[8].pIn = 0    // Stop background reads here 

BufIo[9].pIn = ECAT[0].LPIO[40].Data.a // Not used 

... 

 

With this configuration, the registers specified by BufIo[0].pIn, BufIo[1].pIn, and BufIo[2].pIn 

would be read at the start of each RTI scan. Since BufIo[3].pIn is set to 0, the RTI scan inputs 

stop here. BufIo[4].pIn and BufIo[5].pIn are not used, even though Sys.MaxRtBufIn is set to 6. 

With Sys.MaxRtBufIn set to 6, background scan inputs start with index value 6. So the registers 

specified by BufIo[6].pIn and BufIo[7].pIn are read at the start of each background scan. Since 

BufIo[8].pIn is set to 0, the background scan inputs stop here. BufIo[9].pIn and higher are not 

used, even if set to non-zero values. 
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Most commonly, the input registers specified are those of actual hardware inputs. However, it is 

also possible to specify a few classes of memory registers: motor, coordinate-system, and global 

status registers, or mapped network input registers, such as EtherCAT data registers and MuxIo 

data registers. 

Note that all enabled input registers are read every scan, regardless of whether the PLC programs 

use any data in those registers. If these are hardware registers, which have a much longer access 

time than memory registers, it is possible that unneeded reads can add significant computational 

time. However, using a single read of the entire hardware input register, followed by multiple 

reads of the holding register in memory to access individual bits, can provide a significant time 

savings. 

Override “Forcing” of Inputs 

It is possible to override the bit values of the specified input registers with user-set 32-bit 

elements BufIo[i].ForceInOn and BufIo[i].ForceInOff. If a bit of BufIo[i].ForceInOn is set to 

1, the value of the corresponding bit in the holding register BufIo[i].In will be 1 regardless of the 

state of the bit in the actual input register. If a bit of BufIo[i].ForceInOff is set to 1, the value of 

the corresponding bit in the holding register BufIo[i].In will be 0 regardless of the state of the bit 

in the actual input register. 

This forcing capability is useful for simulation, testing, and debugging purposes. It will not often 

be used in the actual application execution. 

Because leaving an input forced to an “on” or “off” state at the end of a debugging session can 

prevent proper normal operation of a machine, Power PMAC provides special status words that 

permit a quick and easy check to see if any input bits remain forced. Sys.FgForceInOr contains 

the logical OR of all of the forcing words for the buffered inputs scanned each foreground cycle. 

Sys.BgForceInOr contains the logical OR of all of the forcing words for the buffered inputs 

scanned each background cycle. If either of these is non-zero, one or more input bits is being 

forced. 

Sys.ForceOr contains the logical OR of all of the forcing words for both inputs and outputs, 

whether scanned in foreground or background. In normal operation, this should generally be zero. 

The on-line command bufioforceclear clears all forcing bits for both buffered inputs and 

outputs. Its use is strongly recommended after a debugging session to return to normal operation. 

Resetting the Power PMAC also clears all forcing bits. 

Filtering of Inputs 

Sometimes electrical noise or pushbutton “bounce” creates a false edge, and it can be difficult for 

users to distinguish these false transitions from real ones. Power PMAC’s scanned cyclic input 

function provides an automatic function that makes it easy to filter out most of these false 

transitions. 

If BufIo[i].InScans is set to a value greater than 0, then a bit in the input register specified by 

BufIo[i].pIn must be in its new state for multiple (InScans + 1) scans before that change is 

reflected in the corresponding bit of resulting holding register BufIo[i].In. If BufIo[i].InScans is 

set to it maximum value of 4, 5 consecutive scans of the new state are required. 
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This filtering function does not require any additional code in the application algorithms that use 

the resulting bit value in BufIo[i].In. They do let the user have much greater confidence that their 

algorithm is reacting to a real transition in the input instead of a spurious one. The user must be 

aware of the delay in responding to a real transition that this filtering introduces, but in most 

cases, this delay is not significant to the application. 

All 32 bits in a single input word will have the same delay from the requirement for multiple 

scans of this filtering function, but separate input words can have differing delays. 

Resulting Registers 

The 32-bit value at the address specified by BufIo[i].pIn will be transferred, possibly with 

filtering, and possibly with some bits “forced”, into the shared memory holding register 

BufIo[i].In. Bits of BufIo[i].In can be used directly in user Script PLC programs. 

In addition to the “state” input bits in BufIo[i].In, Power PMAC automatically computes “edge” 

bits for each input state bit, both transparent and latched. These bits make it easier to take action 

on a transition of an input bit. Some users will prefer the transparent bits; others the latched bits. 

If a bit of BufIo[i].In has changed from 0 to 1 in the most recent scan, Power PMAC will 

automatically set the corresponding bit of transparent edge element BufIo[i].RiseIn to 1 for the 

scan. If a bit of BufIo[i].In has changed from 1 to 0 in the most recent scan, Power PMAC will 

automatically set the corresponding bit of BufIo[i].FallIn to 1 for the scan. Note that bits in these 

elements are only true for a single scan, so the user algorithms must be checking these elements 

every scan to be able to detect the edges. 

The bits in latched edge elements BufIo[i].RiseInLatch and BufIo[i].FallInLatch are 

automatically set to 1 on the appropriate edge of the input, but they will remain at 1 until cleared 

by user commands. These bits do not need to be checked every scan, but the application code 

may need to clear the bit before it starts looking for the edge, after the edge is found, or both. 

Using the Resulting Values 

Most commonly, the user will access the resulting values in BufIo[i].In, BufIo[i].RiseIn, 

BufIo[i].RiseInLatch, BufIo[i].FallIn, and BufIo[i].FallInLatch with user pointer (M) 

variables. These variables can access the entire 32-bit element, but more commonly will access a 

single bit, or possibly a consecutive set of bits. 

When the assignment is made through the IDE, an application-specific name can be given to the 

variable. For example: 

ptr HoldButtonState->BufIo[2].In.9   // Single-bit state 

ptr HoldButtonPressed->BufIo[2].FallIn.9  // Just pressed 

ptr HoldButtonReleased->BufIo[2].RiseIn.9  // Just released 

 

Writing to Outputs Using Holding Registers 

In this scheme, the user’s PLC programs will write to bits of the output holding registers 

BufIo[i].Out, not the actual output registers. This is usually done with user pointer (M) variables. 

These variables can access the entire 32-bit element, but more commonly will access a single bit, 

or possibly a consecutive set of bits. 

When the assignment is made through the IDE, an application-specific name can be given to the 

variable. For example: 
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ptr ClampSolenoidOn->BufIo[4].Out.14  // Single-bit state 

ptr BlowerSpeedSelect->BufIo[6].Out.8.3  // 8 possible states 

 

Override “Forcing” of Outputs 

It is possible to override the computed bit values for the specified output registers with user-set 

32-bit elements BufIo[i].ForceOutOn and BufIo[i].ForceOutOff. If a bit of 

BufIo[i].ForceOutOn is set to 1, the value of the corresponding bit in the actual output register 

addressed by BufIo[i].pOut will be 1 regardless of the state of the bit in the computed output 

holding register BufIo[i].Out. If a bit of BufIo[i].ForceOutOff is set to 1, the value of the 

corresponding bit in the actual output register addressed by BufIo[i].pOut will be 0 regardless of 

the state of the bit in the computed output holding register BufIo[i].Out. 

This forcing capability is useful for simulation, testing, and debugging purposes. It will not often 

be used in the actual application execution. 

Because leaving an output forced to an “on” or “off” state at the end of a debugging session can 

prevent proper normal operation of a machine, Power PMAC provides special status words that 

permit a quick and easy check to see if any output bits remain forced. Sys.FgForceOutOr 

contains the logical OR of all of the forcing words for the buffered outputs scanned each 

foreground cycle. Sys.BgForceOutOr contains the logical OR of all of the forcing words for the 

buffered outputs scanned each background cycle. If either of these is non-zero, one or more 

output bits is being forced. 

Sys.ForceOr contains the logical OR of all of the forcing words for both inputs and outputs, 

whether scanned in foreground or background. In normal operation, this should generally be zero. 

The on-line command bufioforceclear clears all forcing bits for both buffered inputs and 

outputs. Its use is strongly recommended after a debugging session to return to normal operation. 

Resetting the Power PMAC also clears all forcing bits. 

Specifying Scanned Output Registers 

The output registers to be written to are specified by the settings of saved setup elements 

BufIo[i].pOut. Index values i can range from 0 to 63. Elements with index values less than 

Sys.MaxRtBufOut can be written to each RTI scan. These are intended for use in Script PLCs 

numbered from 0 to Sys.MaxRtPlc. Elements with index values greater than or equal to 

Sys.MaxRtBufOut can be written to each background scan. These are intended for use in Script 

PLCs numbered from (Sys.MaxRtPlc + 1) to 31. 

If an element BufIo[i].pOut is set to its default value of 0, no output register is written to for that 

index value. Furthermore, no output register is written to for any higher index value for that scan. 

Note, however, that a value of 0 for a BufIo[i].pOut in the RTI scan range (i < 

Sys.MaxRtBufOut) does not inhibit the use of elements with higher index values in the 

background scan range (i >= Sys.MaxRtBufOut). 

To specify the writing of an output register, BufIo[i].pOut is set to the address of that register. 

This is usually done by specifying the name of that element, followed by the “.a” (address of) 

suffix. For example: 

BufIo[i].pOut = Acc68E[1].Data[5].a 
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With an address specified and the function enabled, Power PMAC will copy the 32-bit value 

result in holding register BufIo[i].Out to the register specified at this address at the end of each 

scan. This is a full 32-bit operation, even if there is not “real” data in all 32 bits. In the above 

example, there is only output circuitry in bits 8 to 15 of the ACC-68E data register, so there will 

only be useful data in bits 8 to 15 of the 32-bit holding register. 

 

Note 

The entire target register specified by BufIo[i].pOut is written 

to each scan that there is a change in the holding register. This 

will overwrite anything another task has written to the target 

register. 

 

As an example, consider the following configuration: 

Sys.BufIoEnable = 1    // Enable cyclic buffered I/O transfers 

Sys.MaxRtBufOut = 6    // Index values 0 to 5 can be RTI transfers 

BufIo[0].pOut = Acc65E[0].Data[3].a 

BufIo[1].pOut = Acc65E[0].Data[4].a 

BufIo[2].pOut = Acc65E[0].Data[5].a 

BufIo[3].pOut = 0    // Stop RTI writes here 

BufIo[4].pOut = ECAT[0].IO[60].Data.a // Not used 

BufIo[5].pOut = ECAT[0].IO[61].Data.a // Not used 

BufIo[6].pOut = MuxIo.PortB[12].Data.a // Start background writes here 

BufIo[7].pOut = MuxIo.PortB[20].Data.a 

BufIo[8].pOut = 0    // Stop background writes here 

BufIo[9].pOut = ECAT[0].LPIO[80].Data.a // Not used 

... 

 

With this configuration, the registers specified by BufIo[0].pOut, BufIo[1].pOut, and 

BufIo[2].pOut would be written to at the end of each RTI scan. Since BufIo[3].pOut is set to 0, 

the RTI scan outputs stop here. BufIo[4].pOut and BufIo[5].pOut are not used, even though 

Sys.MaxRtBufOut is set to 6. 

With Sys.MaxRtBufOut set to 6, background scan outputs start with index value 6. So the 

registers specified by BufIo[6].pOut and BufIo[7].pOut are written to at the end of each 

background scan. Since BufIo[8].pOut is set to 0, the background scan outputs stop here. 

BufIo[9].pOut and higher are not used, even if set to non-zero values. 
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Accessing Digital I/O Points in the C Environment 

General-purpose I/O points can be accessed in C functions and applications running in the Power 

PMAC. However, I/O read and write operations in C can only access full 32-bit registers. In order 

to isolate parts of the register, such as individual digital I/O points or DAC and ADC values, the 

C code must explicitly perform the required masking and shifting operations. (In the Script 

environment, these operations are performed automatically by the Script execution engine.) 

Accessing Output Points at Different Priority Levels 

If you wish to set individual output points in the same register from multiple tasks at different 

priority levels, you will have the potential for one task to undo what another task has just done. 

This issue is covered under this same heading in the above section “Accessing Digital I/O Points 

in the Script Environment”. Note, however, that C code cannot employ the same process locking 

mechanism that the Script environment uses, so it is strongly recommended not to write to 

outputs in the same output register from multiple priority levels. 

Volatile Variable Declarations 

It is best to declare the C variables that access the actual I/O registers as “volatile” variables, 

particularly for input registers. This tells the compiler that each reference to the variable requires 

an actual read of the register, instead of permitting it to use a “remembered” value from a 

previous access. 

If you need to access the same input word multiple times for different tasks and need to make 

sure the same word value is used each time, you should read the actual input register only once, 

copying it to an image in a software variable, then access this software variable multiple times. 

This is both more robust and faster to execute. 

Using Data Structures 

The most common method of access to digital I/O registers in C is to use Power PMAC’s pre-

defined data structures. This provides an approach that is similar to that used in Script programs. 

In this approach, structure variables are declared for each IC using the references in RtGpShm.h 

and then mapped to particular ICs with function calls from RtPmacApi.h. 

The variable declarations for general-purpose digital I/O will look like: 

volatile GateArray2 *MyFirstGate2IC; // ACC-5E 

volatile GateArray3 *MySecondGate3IC; // ACC-5E3, 59E3 

volatile GateIOStruct *MyFourthIOIC; // ACC-65E, 68E, 11C, etc. 

 

These declared variables can then be assigned to particular ICs with function calls in program 

statements like the following. These must be executed every time the Power PMAC is started up. 

MyFirstGate2IC = GetGate2MemPtr(0);  // For Gate2[0] 

MySecondGate3IC = GetGate3MemPtr(1); // For Gate3[1] 

MyFourthIOIC = GetGateIOMemPtr(3);  // For GateIo[3] 

 

The returned value of the function is the base address of the IC (whose numerical value does not 

usually need to be known by the user). If the IC is not found, a NULL value is returned. 
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Using Direct Pointer Variables 

It is also possible to use pointer variables assigned directly to the ASIC registers by address, 

without using the pre-defined structures and elements. This is a little more efficient, but also more 

difficult to use and document. 

Using this technique, the variable declarations for the base IC pointers will look like: 

int MyFirstGate2Adr; 

int MySecondGate3Adr; 

int MyFourthIOICAdr; 

 

The variable declarations for individual registers will look like: 

volatile int *MyGate2MuxDataReg; 

volatile int *MyGate3GpioReg; 

volatile int *MyFourthIODataReg3; 

 

The base IC pointer variables are then assigned to the ICs using Power PMAC’s address auto-

detection elements. This can be done with program statements like the following. For global 

variables, these must be executed once each time the Power PMAC is started up. For local 

variables, these must be executed every time the routine is entered. 

MyFirstGate2Adr = pshm->OffsetGate2[0]; // Gate2[0] 

MySecondGate3Adr = pshm->OffsetGate3[1]; // Gate3[1] 

MyFourthIOICAdr = pshm->OffsetCardIO[3]; // GateIo[3] 

 

These variables will contain the non-zero base address offset of the IC if it has been detected. 

They will contain a zero value if it has not been detected. 

Next, the address of each individual register must be computed as the sum of the pointer to I/O 

memory (piom), the base address offset of the IC computed above, and the offset of the register 

in the IC from its base. These offsets are given for all ICs in the Software Reference Manual 

chapter “Power PMAC ASIC Register Element Addresses”. Register offsets for specific general 

purpose I/O are given in sections below. 

The register pointer variables can be computed with program statements like the following. For 

global variables, these must be executed once each time the Power PMAC is started up. For local 

variables, these must be executed each time the routine is entered. 

MyGate2MuxDataReg = (int *) piom + ((MyFirstGate2Adr + 0x08) >> 2); 

MyGate3GpioReg = (int *) piom + (MySecondGate3Adr + 0x250) >> 2); 

MyFourthIODataReg3 = (int *) piom + ((MyFourthIOICAdr + 0x0C) >> 2); 

 

The “shift-right 2” (>> 2) operation converts the “byte addressing” of the offset values into the 

“word addressing” that the program requires. This effective division by 4 reflects the fact that 

there are 4 bytes per 32-bit word. 

Once these pointer variables are properly assigned to addresses, the values in them can be 

accessed. 
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UMAC Digital I/O Boards 

For the UMAC digital I/O boards (ACC-14E, 65E, 66E, 67E, and 68E), the data registers can be 

accessed either with data structures or with direct pointer variables. The actual data is found in 

bits 8 – 15 of the 32-bit bus. 

Data Structure Method 

Using the data structures as shown above, once the structure variable has been initialized with the 

GetGateIOMemPtr(i) API function, individual elements of the structure can be directly 

accessed. Remember that in C, these are 32-bit elements, not 8-bit elements as in the Script 

environment. 

So a data structure to the I/O card can be defined as shown above: 

volatile GateIOStruct *MyFourthIOIC; 

... 

MyFourthIOIC = GetGateIoMemPtr(3); 

 

To copy the 3 8-bit input values from the first three data registers of the I/O card defined above 

into the low 24 bits of a 32-bit integer software variable, the following code could be used. 

My24BitInputBank = MyFourthIOIC->DataReg[0] & 0xff00 >> 8; 

My24BitInputBank |= MyFourthIOIC->DataReg[1] & 0xff00; 

My24BitInputBank |= MyFourthIOIC->DataReg[2] & 0xff00 << 8; 

 

To copy the low 24 bits of a 32-bit integer software variable into 3 8-bit output values of the last 

three data registers of the I/O card defined above, the following code could be used. 

MyFourthIOIC->DataReg[3] = My24BitOutputBank & 0x0000ff << 8; 

MyFourthIOIC->DataReg[4] = My24BitOutputBank & 0x00ff00; 

MyFourthIOIC->DataReg[5] = My24BitOutputBank & 0xff0000 >> 8; 

 

Direct Pointer Method 

In the direct pointer variable, typically a separate pointer variable is defined for each of the 6 data 

registers, although it is also possible to redefine a single pointer variable as needed. 

The following table shows the byte address offset of each data register in the UMAC I/O boards. 

Port A Register Byte Offset Port B Register Byte Offset 

DataReg[0] 0x00 DataReg[3] 0x0C 

DataReg[1] 0x04 DataReg[4] 0x10 

DataReg[2] 0x08 DataReg[5] 0x14 

 

So pointers to the 6 data registers of a single UMAC card could be defined as follows: 

int MyFourthIOICAdr; 

volatile int *MyFourthIODataReg0; 

volatile int *MyFourthIODataReg1; 

volatile int *MyFourthIODataReg2; 

volatile int *MyFourthIODataReg3; 

volatile int *MyFourthIODataReg4; 

volatile int *MyFourthIODataReg5; 

... 
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MyFourthIOICAdr = pshm->OffsetCardIO[3]; // GateIo[3] 

MyFourthIODataReg0 = (int *) piom + (MyFourthIOICAdr >> 2); 

MyFourthIODataReg1 = (int *) piom + ((MyFourthIOICAdr + 0x04) >> 2); 

MyFourthIODataReg2 = (int *) piom + ((MyFourthIOICAdr + 0x08) >> 2); 

MyFourthIODataReg3 = (int *) piom + ((MyFourthIOICAdr + 0x0C) >> 2); 

MyFourthIODataReg4 = (int *) piom + ((MyFourthIOICAdr + 0x10) >> 2); 

MyFourthIODataReg5 = (int *) piom + ((MyFourthIOICAdr + 0x14) >> 2); 

 

To copy the 3 8-bit input values from the first three data registers of the I/O card defined above 

into the low 24 bits of a 32-bit integer software variable, the following code could be used. 

My24BitInputBank = *MyFourthIODataReg0 & 0xff00 >> 8; 

My24BitInputBank |= *MyFourthIODataReg1 & 0xff00; 

My24BitInputBank |= *MyFourthIODataReg2 & 0xff00 << 8; 

 

To copy the low 24 bits of a 32-bit integer software variable into 3 8-bit output values of the last 

three data registers of the I/O card defined above, the following code could be used. 

MyFourthIODataReg3 = My24BitOutputBank & 0x0000ff << 8; 

MyFourthIODataReg4 = My24BitOutputBank & 0x00ff00; 

MyFourthIODataReg5 = My24BitOutputBank & 0xff0000 >> 8; 

 

Compact UMAC ACC-11C Digital I/O  

Accessing the I/O in a Compact UMAC ACC-11C board is exactly the same as in a UMAC 

digital I/O board. Refer to the above section for details. 

UMAC ACC-5E Digital I/O 

The UMAC ACC-5E board has digital I/O points in four registers. They can be accessed either 

with data structures or with direct pointer variables. 

Data Structure Method 

Using the data structures as shown above, once the structure variable has been initialized with the 

GetGate2MemPtr(i) API function, individual elements of the structure can be directly 

accessed. 

So a data structure to the I/O card can be defined as shown above: 

volatile GateArray2 *MyFirstGate2IC; 

... 

MyFirstGate2IC = GetGate2MemPtr(3); 

 

The element MyFirstGate2IC->LowIoData has real data in bits 08 – 31 of the 32-bit bus, 

corresponding to signals I/O00 – I/O23, respectively. 

To isolate the value of the bit corresponding to signal I/O02 (bit 10) in the LowIoData register 

into a software variable, the following code could be used: 

Io02Value = (MyFirstGate2IC->LowIoData & 0x0400) >> 10; 

 

The element MyFirstGate2IC->HighIoData has real data in bits 08 – 15 of the 32-bit bus, 

corresponding to signals I/O24 – I/O31, respectively. 
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To set the bit of the HighIoData register corresponding to signal I/O30 (bit 14), the following 

code could be used: 

MyFirstGate2IC->HighIoData |= 0x4000; 

 

The element MyFirstGate2IC->MuxData has real data in bits 8 – 23 of the 32-bit bus, 

corresponding to signals DAT0 – DAT7 and SEL0 – SEL7, respectively. 

To copy the value of a Boolean variable into the bit of the MuxData register corresponding to 

signal SEL1 (bit 17), the following code could be used: 

Temp = MyFirstGate2IC->MuxData | (0x020000 & (MyBool << 17)); 

MyFirstGate2IC->MuxData = Temp & (0xFDFFFF | (MyBool << 17)); 

 

The element MyFirstGate2IC->DispData has real data in bits 08 – 15 of the 32-bit bus, 

corresponding to signals DISP0 – DISP7, respectively. 

To copy the value of a full byte to the bits of the DispData register corresponding to signals 

DISP0 – DISP7 (bits 8 – 15), the following code could be used: 

MyFirstGate2IC->DispData = MyChar << 8; 

 

Direct Pointer Method 

In the direct pointer method, typically a separate pointer variable is defined for each of the 4 data 

registers, although it is also possible to redefine a single pointer variable as needed. 

The following table shows the byte address offset of each data register in the ACC-5E. 

Register Byte Offset Register Byte Offset 

LowIoData 0x00 MuxData 0x08 

HighIoData 0x04 DispData 0x0C 

 

So pointers to the 4 data registers of a single ACC-5E card could be defined as follows: 

int MyFirstGate2Adr; 

volatile int *MyFirst5ELowIoData; 

volatile int *MyFirst5EHighIoData; 

volatile int *MyFirst5EMuxData; 

volatile int *MyFirst5EDispData; 

 

... 

MyFirstGate2Adr = pshm->OffsetGate2[0]; // Gate2[0] 

MyFirst5ELowIoData = (int *) piom + (MyFirstGate2Adr >> 2); 

MyFirst5EHighIoData = (int *) piom + ((MyFirstGate2Adr + 0x04) >> 2); 

MyFirst5EMuxData = (int *) piom + ((MyFirstGate2Adr + 0x08) >> 2); 

MyFirst5EDispData = (int *) piom + ((MyFirstGate2Adr + 0x0C) >> 2); 

 

To isolate the value of the bit corresponding to signal I/O02 (bit 10) in the LowIoData register 

into a software variable, the following code could be used: 

Io02Value = *MyFirst5ELowIoData & 0x400 >> 10; 
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To set the bit of the HighIoData register corresponding to signal I/O30 (bit 14), the following 

code could be used: 

*MyFirst5EHighIoData |= 0x4000; 

 

To copy the value of a Boolean variable into the bit of the MuxData register corresponding to 

signal SEL1 (bit 17), the following code could be used: 

Temp = *MyFirst5EMuxData | (MyBool << 17); 

*MyFirst5EMuxData = Temp & (0xFFFFFF ^ ((MyBool ^ 1) << 17)); 

 

To copy the value of a full byte to the bits of the DispData register corresponding to signals 

DISP0 – DISP7 (bits 8 – 15), the following code could be used: 

*MyFirst5EDispData = MyChar << 8; 

 

UMAC ACC-5E3 Digital I/O 

The UMAC ACC-5E3 board has a 16-bit general-purpose digital I/O port mapped into the low 16 

bits (bits 0 – 15) of the Gate3[i].GpioData[0] element of the first IC on the board, corresponding 

to signals I/O00 – I/O15, respectively. 

For I/O points in this hardware element set up as outputs, it is not possible to read back the values 

that have been written to the element. For this reason, there is a matching software element 

Gate3PartData[i].GpioOutData[0] (Gate3[i].GpioOutData[0] in the Script environment) that 

can contain an image of the outputs in the hardware element. Because values written to this 

element can be read back, it can be used for manipulation of individual output points through 

read/modify/write operations, with the entire element value then copied to the hardware element. 

(This does not affect the reported value of inputs in the hardware register.) The Script 

environment does this automatically; it can be done through explicit program statements in C. 

Data Structure Method 

Using the data structures as shown above, once the structure variable has been initialized with the 

GetGate3MemPtr(i) API function, individual elements of the structure can be directly 

accessed. 

So a data structure to the ACC-5E3 card can be defined as shown above: 

volatile GateArray3 *MySecondGate3IC; 

... 

MySecondGate3IC = GetGate3MemPtr(1); 

 

The element MySecondGate3IC->GpioData[0] has real data for the ACC-5E3 JIO port in 

bits 0 – 15 of the 32-bit bus. 

To set the bit in the GpioData[0] register corresponding to I/O12 (bit 12), the following code 

could be used: 

pshm->Gate3PartData[1].GpioOutData[0] |= 0x1000;  // Modify SW image 

MySecondGate3IC->GpioData[0] = pshm->Gate3PartData[1].GpioOutData[0]; 

 

To isolate the value of the bit corresponding to signal I/O05 (bit 5) in the GpioData[0] register 

into a software variable, the following code could be used: 
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Io05Value = (MySecondGate3IC->GpioData[0] & 0x20) >> 5; 

 

Direct Pointer Method 

In the direct pointer method, a pointer variable is defined to the IC’s GpioData[0] register. The 

byte offset of this register is 0x250. 

So pointers to the I/O data register of an ACC-5E3 card could be defined as follows: 

int MySecondGate3Adr; 

volatile int *MySecond5E3GpioData; 

 

... 

MySecondGate3Adr = pshm->OffsetGate3[1]; // Gate3[1] 

MySecond5E3GpioData = (int *) piom + ((MySecondGate3Adr + 0x250) >> 2); 

 

To clear the bits in the GpioData[0] register corresponding to I/O08 and I/O09 (bits 8 and 9), the 

following code could be used: 

pshm->Gate3PartData[1].GpioOutData[0] &= 0xFCFF;  // Modify SW image 

*MySecond5E3GpioData = pshm->Gate3PartData[1].GpioOutData[0]; 

 

To isolate the value of the bit corresponding to signal I/O03 (bit 3) in the GpioData[0] register 

into a software variable, the following code could be used: 

Io05Value = (*MySecond5E3GpioData & 0x08) >> 3; 

 

Power Brick Digital I/O 

The 4-axis Power Brick has a 24-bit general-purpose digital I/O port that is mapped into the 

Gate3[0].GpioData[0] element. The 16 inputs, GPIN01 – GPIN16 for the first IC, and GPIN17 – 

GPIN32 for the second IC, are mapped into the low 16 bits (00 – 15) of the element; the 8 

outputs, GPOUT01 – GPOUT08 for the first IC, and GPOUT09 – GPOUT16 for the second IC, 

are mapped into the next 8 bits (16 – 23) of the element. 

The 8-axis Power Brick has a second 24-bit general-purpose digital I/O port that is mapped into 

the Gate3[1].GpioData[0] element. The 16 inputs are mapped into the low 16 bits (00 – 15) of 

the element; the 8 outputs are mapped into the next 8 bits (16 – 23). 

 

Note 

Bits 24 – 31 of the 32-bit elements Gate3[i].GpioData[0] in 

the Power Brick are used for other purposes. Access to the low 

24 bits of these elements for general-purpose I/O should not 

change the values of those high 8 bits. 

 

For I/O points in this hardware element set up as outputs, it is not possible to read back the values 

that have been written to the element. For this reason, there is a matching software element 

Gate3PartData[i].GpioOutData[0] (Gate3[i].GpioOutData[0] in the Script environment) that 

can contain an image of the outputs in the hardware element. Because values written to this 

element can be read back, it can be used for manipulation of individual output points through 

read/modify/write operations, with the entire element value then copied to the hardware element. 

(This does not affect the reported value of inputs in the hardware register.) The Script 

environment does this automatically; it can be done through explicit program statements in C. 
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Data Structure Method 

Using the data structures as shown above, once the structure variable has been initialized with the 

GetGate3MemPtr(i) API function, individual elements of the structure can be directly 

accessed. 

So data structures for the ICs in an 8-axis Power Brick can be defined as shown above: 

volatile GateArray3 *MyFirstBrickIC, *MySecondBrickIC; 

... 

MyFirstBrickIC = GetGate3MemPtr(0); 

MySecondBrickIC = GetGate3MemPtr(1); 

 

The hardware elements MyFirstBrickIC->GpioData[0] and  

MySecondBrickIC->GpioData[0]each have real data for a 24-bit I/O port with inputs in 

bits 00 – 15 and outputs in bits 16 – 23 of the 32-bit bus. 

To set the bit in the first IC’s GpioData[0] register corresponding to GPOUT07 (bit 22), the 

following code could be used: 

pshm->Gate3PartData[0].GpioOutData[0] |= 0x400000;  // Modify SW image 

MyFirstBrickIC->GpioData[0] = pshm->Gate3PartData[0].GpioOutData[0]; 

 

To isolate the value of the bit corresponding to signal GPIN27 (bit 10) in the second IC into a 

software variable, the following code could be used: 

Gpin27Value = (MySecondBrickIC->GpioData[0] & 0x000400) >> 10; 

Direct Pointer Method 

In the direct pointer method, a pointer variable is defined to the IC’s GpioData[0] register. The 

byte offset of this register is 0x250. 

So pointers to the I/O data register of Power Brick ICs could be defined as follows: 

int MyFirstICAdr, MySecondICAdr; 

volatile int *MyFirstICGpioData, *MySecondICGpioData; 

 

... 

MyFirstICAdr = pshm->OffsetGate3[0]; // Gate3[0] 

MyFirstICGpioData = (int *) piom + ((MyFirstICAdr + 0x250) >> 2); 

MySecondICAdr = pshm->OffsetGate3[1]; // Gate3[1] 

MySecondICGpioData = (int *) piom + ((MySecondICAdr + 0x250) >> 2); 

 

To clear the bits in the GpioData[0] register corresponding to GPOUT02 and GPOUT03 (bits 17 

and 18) in the first IC, the following code could be used: 

pshm->Gate3PartData[0].GpioOutData[0] &= 0xF9FFFF;  // Modify SW image 

*MyFirstICGpioData = pshm->Gate3PartData[0].GpioOutData[0]; 

 

To isolate the value of the bit corresponding to signal GPIN28 (bit 11) in the second IC into a 

software variable, the following code could be used: 

Gpin28Value = (*MySecondICGpioData & 0x800) >> 11; 
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Power Clipper Digital I/O 

The 4-axis Power Clipper base board has two 16-bit general-purpose digital I/O ports that are 

mapped into the 32-bit Gate3[0].GpioData[0] element. On the JTHW port, the DAT0 – DAT7 

lines are mapped into bits 0 – 7 of the element, and the SEL0 – SEL7 lines are mapped into bits 8 

– 15 of the element. On the JIO port, the MO1 – MO8 lines are mapped into bits 16 – 23 of the 

element, and the MI1 – MI8 lines are mapped into bits 24 – 31 of the element. 

The optional 4-axis Power Clipper piggyback board has identical mapping of general-purpose 

digital I/O ports and lines into the 32-bit Gate3[1].GpioData[0] element. 

For I/O points in this hardware element set up as outputs, it is not possible to read back the values 

that have been written to the element. For this reason, there is a matching software element 

Gate3PartData[i].GpioOutData[0] (Gate3[i].GpioOutData[0] in the Script environment) that 

can contain an image of the outputs in the hardware element. Because values written to this 

element can be read back, it can be used for manipulation of individual output points through 

read/modify/write operations, with the entire element value then copied to the hardware element. 

(This does not affect the reported value of inputs in the hardware register.) The Script 

environment does this automatically; it can be done through explicit program statements in C. 

Data Structure Method 

Using the data structures as shown above, once the structure variable has been initialized with the 

GetGate3MemPtr(i) API function, individual elements of the structure can be directly 

accessed. 

So data structures to the ICs in an 8-axis Power Clipper stack can be defined as shown above: 

volatile GateArray3 *MyBaseClipperIC, *MyOptClipperIC; 

... 

MyBaseClipperIC = GetGate3MemPtr(0); 

MyOptClipperIC = GetGate3MemPtr(1); 

 

The hardware elements MyBaseClipperIC->GpioData[0] and  

MyOptClipperIC->GpioData[0]each have real data for two 16-bit I/O ports on the 32-bit 

bus, with the direction user-selectable by byte as described in an above section. 

To set the bit in the first IC’s GpioData[0] register corresponding to SEL1 (bit 9) used as an 

output, the following code could be used: 

pshm->Gate3PartData[0].GpioOutData[0] |= 0x0200;  // Modify SW image 

MyBaseClipperIC->GpioData[0] = pshm->Gate3PartData[0].GpioOutData[0]; 

 

To isolate the value of the bit corresponding to signal MI3 (bit 26) in the second IC into a 

software variable, the following code could be used: 

MI3Value = (MyOptClipperIC->GpioData[0] & 0x04000000) >> 26; 

Direct Pointer Method 

In the direct pointer method, a pointer variable is defined to the IC’s GpioData[0] register. The 

byte offset of this register is 0x250. 

So pointers to the I/O data register of Power Clipper ICs could be defined as follows: 
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int MyFirstICAdr, MySecondICAdr; 

volatile int *MyFirstICGpioData, *MySecondICGpioData; 

 

... 

MyFirstICAdr = pshm->OffsetGate3[0]; // Gate3[0] 

MyFirstICGpioData = (int *) piom + ((MyFirstICAdr + 0x250) >> 2); 

MySecondICAdr = pshm->OffsetGate3[1]; // Gate3[1] 

MySecondICGpioData = (int *) piom + ((MySecondICAdr + 0x250) >> 2); 

 

To clear the bits in the GpioData[0] register corresponding to MO05 and MO06 (bits 20 and 21) 

in the IC on the base Clipper board, the following code could be used: 

pshm->Gate3PartData[0].GpioOutData[0] &= 0xCFFFFF;  // Modify SW image 

*MyFirstICGpioData = pshm->Gate3PartData[0].GpioOutData[0]; 

 

To isolate the value of the bit corresponding to signal MI2 (bit 25) in the piggyback Clipper board 

into a software variable, the following code could be used: 

MI2Value = (*MySecondICGpioData & 0x02000000) >> 25; 

ACC-34 Family Multiplexed Digital I/O 

For the multiplexed digital I/O on ACC-34 boards, the application will access the I/O points 

through their image words in Power PMAC memory. The values in the image words for output 

ports are automatically copied to the actual outputs on the ACC-34 boards, and the values in the 

image words for input ports are automatically copied from the actual inputs on the ACC-34 

boards. 

In C, these are best accessed through their data structure element names:  

pshm->MuxIo.PortA[n].Data and pshm->MuxIo.PortB[n].Data, where n (= 0 to 

31) is the index for the board as set by the DIP switches on the board. With standard ACC-34 

boards, Port A is always an input port and Port B is always an output port, but it is possible to use 

boards where this is not the case. These elements are 32-bit unsigned integers, with their bits 0 to 

31 corresponding to I/O points 0 to 31 on the matching hardware point.  

To isolate the value of the bit corresponding to IN19 (bit 19) in the PortA[1].Data element into a 

separate variable, the following code could be used: 

MyIn19Value = pshm->MuxIo.PortB[1].Data & 0x00080000 >> 19; 

To set the bit of the PortB[0].Data element corresponding to signal OUT10 (bit 10), the 

following code could be used: 

pshm->MuxIo.PortB[1].Data |= 0x00000400; 
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WRITING AND EXECUTING SCRIPT PROGRAMS IN THE 
POWER PMAC 

The Script programming language of the Power PMAC provides an easy-to-use, yet powerful and 

flexible software environment to implement motion and other machine control tasks. While this 

interpreted language does not execute as quickly as compiled C code, and does not have all the 

general-purpose programming features of a language like C, it makes the programming of many 

machine-control tasks substantially easier, especially for users who are not experienced in 

advanced programming techniques. 

Classes of Script Programs 

There are five separate classes of Script programs in the Power PMAC: (fixed) motion programs, 

“rotary” motion programs, “PLC” programs, subprograms, and kinematic subroutines. All share 

the same Script language, but each executes the language according to different rules. Each class 

of program is explained below. 

Motion Programs 

Power PMAC motion programs allow for the automatic sequenced execution of axis moves, with 

associated input/ output operations and mathematical/logical calculations. While a motion 

program is executed by a coordinate system, it does not “belong” to a coordinate system. Any 

active coordinate system can execute any motion program, and multiple coordinate systems can 

execute the same motion program at the same time. 

Power PMAC can have up to 1023 of these “fixed” motion programs at any one time, each taking 

a number from 1 to 4,294,967,295 (232-1). There is no need for the numbers to be consecutive, or 

to have any pattern. There is no execution priority for lower or higher-numbered programs. The 

program numbers simply act as numeric identifying labels. 

Rotary Motion Programs 

Unlike “fixed” motion programs (prog), commands in “rotary” motion programs can be 

downloaded to the Power PMAC while the program is executing. This permits extremely large 

programs – programs too big to be stored in Power PMAC memory in their entirety – to be 

executed continuously, and it permits the contents of motion programs to be generated “on the 

fly” while earlier parts of the program are executing. 

Each coordinate system in Power PMAC can have one (and only one) rotary program buffer. The 

rotary program buffer is automatically motion program 0 for the coordinate system. 

PLC Programs 

Power PMAC “PLC” programs, while commonly used for the type of logical response and 

input/output control of traditional Programmable Logic Controllers, are capable of managing 

many other tasks. Unlike motion programs, they are not sequenced by the programmed move, so 

they can be used for many tasks that are asynchronous to the programmed motion.  

The Script PLC programs provide a general computing capability, executing much more like 

traditional high-level programming languages than the motion programs do. (For this reason, 

many users will find it better to implement this type of functionality in “CPLCs”, using the C 

programming language.) 
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Power PMAC can have up to 32 Script PLC programs, numbered 0 to 31. Up to 4 of these can 

execute in foreground, under the real-time interrupt; the remainder will execute in “round robin” 

fashion as background tasks. At a given priority level, lower-numbered PLC programs execute 

before higher-numbered PLC programs. 

Subprograms 

Power PMAC Script subprograms are not executed directly; instead they are called from other 

Script programs. A subprogram can be called from a “fixed” motion program, a rotary motion 

program, a PLC program, or a subprogram. 

Power PMAC can have up to 1023 of these subprograms at any one time, each taking a number 

from 1 to 4,294,967,295 (232-1). There is no need for the numbers to be consecutive, or to have 

any pattern. The program numbers simply act as numeric identifying labels. 

Kinematic Subroutines 

Each coordinate system in Power PMAC can have a forward-kinematic subroutine (forward) 

and an inverse-kinematic subroutine (inverse), defining the relationship between motor 

coordinates and axis coordinates. These subroutines permit more complex relationships between 

motors and axes than the mathematically linear relationships defined by the more common (and 

simpler) axis-definition statements.  

The forward-kinematic subroutine, which converts motor coordinates to axis coordinates, is 

automatically called at the start of execution of a motion program (no calling command is 

required) to compute the starting positions of the axes for the first programmed move. It is also 

called by a pmatch command, either on-line or program, by the on-line axis-query commands 

&xp, &xd, &xv, &xf, and &xg, and by the program axis-query commands pread, dread, 

vread, fread, and dtogread, to compute the present axis coordinates for the query response. 

The inverse-kinematic subroutine, which converts axis coordinates to motor coordinates, is 

automatically called (with no calling command required) once per programmed move for non-

segmented moves, and once per move segment for segmented moves, to compute the commanded 

motor positions required to implement the programmed axis positions for the move or segment of 

a move. 

Implementation of the kinematic subroutines is discussed in detail in the Setting Up a Coordinate 

System chapter of the User’s Manual. 

Script Language Syntax Features 

The Power PMAC Script language provides a powerful and flexible, but easy-to-use syntax 

structure that facilitates straightforward implementation of sophisticated programming constructs. 

Mathematical Capabilities 

The Power PMAC Script language provides a full set of mathematical capabilities, with 

constants, variables, operators, and functions. These are explained in detail in the Power PMAC 

Computation Features chapter of the User’s Manual, and in the Power PMAC Script 

Mathematical Feature Specification chapter of the Software Reference Manual. 

A very important feature of the Script language is its automatic “type matching” of different 

variable formats. The user can mix and match different formats together in any mathematical 
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expression, fixed-point and floating-point, from Boolean to 64-bit width, without any explicit 

type conversions. This makes working with the multiple data types present in a system, 

particularly when dealing with input and output registers, very simple. 

Program Flow Control 

The Power PMAC Script language provides multiple means of controlling program flow, 

including branching structures, looping structures, and subroutine/subprogram calls. 

Branching Structures 

The Script language provides several branching structures for conditional execution of certain 

program commands or sections. 

“If/Else” Branching 

In the if({condition}) structure, when the condition evaluates as “true”, the command(s) 

immediately following are executed. If this structure is not immediately followed by a “left curly 

bracket” (“{”), only the single command following is conditionally executed in this way. If this 

structure is immediately followed by a “left curly bracket” (“{”), all the commands up to the next 

“right curly bracket” (“}”) are conditionally executed in this way. 

If the command or bracketed set of commands immediately after the if({condition}) 

command is followed by an else command, the command or bracketed set of commands 

immediately after the else command will be conditionally executed when the condition in the if 

command evaluates as “false”. An else branch is not required. 

In a rotary motion program, all actions to be executed on a true “if” condition must be on the 

same line as the condition, and no “else” branch is permitted. 

“Switch/Case” Branching 

In the switch({expression}) structure, the expression value is evaluated (and truncated to 

an integer value if necessary). Program execution is transferred to the case command below that 

specifies the matching integer value, if such a case command exists. Execution continues from 

this command until a break command is encountered, even if this continues execution into a 

subsequent case branch. When the break command is encountered, execution jumps to the 

program command immediately following the end of the entire switch structure.  

If no break command is encountered after starting a case branch, execution continues to the end 

of the entire switch structure, then on to the commands following. If no case command 

matching the evaluated switch expression value exists, program execution will jump to the 

default branch, if it exists, or to the program command immediately following the entire 

switch structure if a default branch is not present. 

In a rotary motion program, no switch/case structures are permitted. 

Conditional Execution Branching 

Power PMAC provides two single-line conditional execution structures. If a program line begins 

with cexecn, the rest of the program line is only executed if bit n of 32-bit element 

Coord[x].Cflags is set to 1. If a program line begins with cskipn, the rest of the program line is 

only executed if bit n of Coord[x].Cflags is set to 0. Individual bits of Coord[x].Cflags can be 
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set with the program command csetn, and cleared with the buffered program command cclrn. 

This element can also be manipulated directly (e.g. Coord[1].Cflags |= $40 performs the 

same action as cset6, and more generally, Coord[1].Cflags |= exp2(BitNum) sets 

the flag at the specified bit number) . 

These structures are mainly intended to implement conditional execution functions in CNC-style 

motion programs, especially those using the rotary motion program buffer, in which the single-

line nature of these functions is essential. 

Looping Structures 

Script programs in Power PMAC are capable of conditional looping structures, with the condition 

evaluated either at the beginning or end of the loop. 

In a rotary motion program, only single-line loops can be used. 

“While” Loops 

In the while({condition}) structure, when the condition evaluates as “true”, the 

command(s) immediately following are executed. If this structure is not immediately followed by 

a “left curly bracket” (“{”), only the single command following is conditionally executed in this 

way. If this structure is immediately followed by a “left curly bracket” (“{”), all the commands 

up to the next “right curly bracket” (“}”) are conditionally executed in this way. When the 

command or bracketed command set is finished executing, program execution automatically 

jumps back to the while command to complete the loop. 

If the condition in the while command evaluates as “false”, the command or bracketed 

command set immediately following the while command is skipped over, and program 

execution jumps to the command immediately following. 

“Do/While” Loops 

In the do..while({condition}) structure, the command or bracketed command set 

immediately following the do command is always executed once. If the condition in the while 

command after this command or command set evaluates as true, program execution automatically 

jumps back to the do command to complete the loop. If the condition evaluates as false, program 

execution continues with the command immediately following. 

Nesting of Loops 

While and do/while loops can be nested within each other, and there is no inherent limit to the 

“depth” of the nesting, as there is no stack that must be kept, so no potential for “stack overflow”. 

“Continue” and “Break” Commands in Loops 

If program execution encounters a continue command inside a loop, execution jumps 

immediately to the while command, whether at the beginning or end of the loop, and evaluates 

the condition in this command to determine its next action. 

If program execution encounters a break command inside a loop, execution jumps immediately to 

the command following the end of the loop (i.e. it exits the loop), and continues from there. 
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Subroutine and Subprogram Calls 

Script programs in Power PMAC are capable of subroutine and subprogram calls, permitting 

common and repeated tasks to be embedded in these Script subroutines and subprograms, 

enhancing programming style and saving memory. Note that rotary motion programs cannot use 

the gosub and callsub commands to create subroutines within the program, but they can use 

calls to subprograms. 

Subroutine and subprogram calls in the Script environment can be nested 255 levels deep, as 

there is a 256-level stack (including the top level). Indefinite recursion should not be used, as it 

could overflow the stack. Attempting to go more than 255 levels deep will stop execution of the 

program thread, and the low 4 bits of Coord[x].Ldata.Status (for a top-level motion program) or 

Plc[i].Ldata.Status (for a top-level PLC program) will contain a value of 5 to indicate this error. 

Power PMAC can have a single C function, called CfromScript, that can be called from any 

of the Script programs in Power PMAC. This function and its uses are documented in the User’s 

Manual chapter on C programs. 

“Jump” Line Labels 

If you want to be able to transfer execution unconditionally (“jump”) to a specific line of a 

program, you must start that program line with a “jump label”. This consists of the letter “N” 

followed by a non-negative constant integer value and a “:” colon character (e.g. N3270:). 

Program execution can be transferred to a program line that begins with a jump label using the 

buffered program commands goto, gosub, callsub, call, G, M, T, and D. Note that the 

calling commands can use variables and expressions as well as constants, but the jump labels 

must use constants. 

These “jump labels” should not be confused with the similar “synchronizing labels”, which do 

not end with a colon. Those labels simply cause Power PMAC to set the values of coordinate 

system status elements as motion program execution encounters the program line and executes a 

move resulting from that line. A program line can have either type of label, both, or neither. 

By default, there is an implicit N0: at the beginning of each program buffer. However, if an 

explicit N0: is used elsewhere in the buffer, this jump label will override the effect of the default 

implicit label (this is not recommended). 

Jump line labels cannot be used in a rotary motion program. 

“Gosub” Commands 

The gosub{data} command causes program execution to transfer to the program line in the 

same program whose “jump label” number matches the value of {data}. On the next return 

command encountered after this, program execution will transfer back to the command 

immediately following the gosub command. This permits the creation of subroutines within the 

same program. No argument passing using local stack variables is permitted with the gosub 

command. 

In a rotary motion program, gosub commands cannot be used. 
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“Callsub” Commands 

The callsub{data} command causes program execution to transfer to the program line in the 

same program whose “jump label” number matches the value of {data}. On the next return 

command encountered after this, program execution will transfer back to the command 

immediately following the callsub command. Like the gosub command, this permits the 

creation of subroutines within the same program. However, the callsub command permits the 

use of argument passing to the subroutine using local stack variables. 

In a rotary motion program, callsub commands cannot be used. 

“Call” Commands 

The call{data} command causes program execution to transfer to the subprogram whose 

number matches the value of the integer part of {data}, and to the line within that program 

whose “jump label” number matches the fractional part of {data} multiplied by 1,000,000. For 

example, the command call123.456 causes program execution to transfer to subprog123 

at jump label N456000:. 

On the next return command encountered after this, program execution will transfer back to 

the command immediately following the call command. The call command permits the use 

of argument passing to the subprogram using local stack variables. 

Note that call commands can be used in rotary motion programs, just as in other program types. 

G, M, T, and D-Code Commands 

In the RS-274 standard for programming that is widely used in the CNC and CAD/CAM worlds, 

every component of the program is in letter/number format. This is a loose standard, with 

hundreds of “dialects”, and thousands of machine-specific implementation issues, so an execution 

implementation must be flexible enough to accept the particular dialect selected and execute it on 

the particular hardware used. 

To facilitate this implementation, Power PMAC treats several of the letter codes as specialized 

subprogram call commands. The G, M, T, and D-codes provide a subprogram call as shown in the 

following table. 

Letter Code Type Subprogram # Called Jump Line Label Called 

G Preparatory code Coord[x].Gprog 
(1000 by default) 

Code# * 1000 

M Machine output code Coord[x].Mprog 
(1001 by default) 

Code# * 1000 

T Tool select code Coord[x].Tprog 
(1002 by default) 

Code# * 1000 

D Tool data code Coord[x].Dprog 
(1003 by default) 

Code# * 1000 

 

With the default subprograms used, a G17 command is a call to subprog 1000 at line jump 

label N17000:. An M125 command is a call to subprog 1001 at line jump label N125000:. 

A T3 or T03 command is a call to subprogram 1002 at line jump label N3000:. A D7.25 

command is a call to subprog 1003 at line jump label N7250:. 
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For more details on the use of these codes, refer to the section Implementing an RS-274 Style 

Motion Program, below. 

“Return” Commands 

When a return command is encountered in the execution of a program, execution is transferred 

back to the calling routine or program, immediately after the calling command. If a return 

command is encountered in a top-level program, execution is halted, but ready to resume at the 

beginning of the program buffer. If the top-level program is a PLC program, execution will 

automatically resume on the next scan. If the top-level program is a motion program (fixed or 

rotary), a command is required to restart execution of the program. 

There is an implicit return command at the end of every Script program buffer. If program 

execution reaches the end of the buffer, the action taken is exactly as if there were an explicit 

return command at the end. Adding an explicit return command at the end of a subprogram 

does not change the execution, but may make its functionality more clear. 

Conditional Subprogram Calls 

Power PMAC provides a condition subprogram-call execution structure. In a program line, a 

ccalln command executes the subprogram call (if any) specified in the most recent cdefn 

command of the same n value. If no cdefn command has been executed since power-on/reset, 

or a cundefn command has been executed since the most recent cdefn command, the 

ccalln command is a “no-op”. 

These commands are mainly intended to implement “implied” calls in CNC-style motion 

programs for functions such as canned cycles. In common use, the canned-cycle G-code is only 

explicitly invoked on the first line it is used. On following lines, only the parameters for the 

canned cycle are typically used, not the G-code specifying the cycle itself. 

Since Power PMAC executes G-codes as subprogram calls, it needs to implement a subprogram 

call on each line of the motion program to execute the canned cycle for that program line. Simply 

adding a ccalln command to the beginning of each line of the motion program as it is sent to 

the Power PMAC can provide this functionality. (This can be easier than detecting when a 

particular G-code call needs to be added to individual lines.) 

Inside the canned-cycle G-code subroutine, the cdefn command can then be used to cause 

subsequent lines of the motion program to call the subroutine again with the ccalln command. 

For example, a G87 canned-cycle subroutine could use a cdef1 G87 command so the ccall1 

command on the next line of the top-level motion program would call the same subroutine. 

In this style of programming, another G-code is typically used to cancel the modal G-code. For 

canned cycles in the G81 – G89 range, G80 is often used to cancel any of these cycles. So the 

G80 subroutine could use a cundef1 command to “undefine” the subprogram call that was 

being used. 

Note that if the top-level motion program has a ccalln command before the G80 “cancel” 

command, the previously selected canned-cycle subroutine will be called before the G80 cycle 

cancel subroutine is called. However, the program line will have no parameters for the cycle, so if 

the canned-cycle subroutine will bypass any action if no parameters are passed to it, this will not 

be an issue. 
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Jump commands 

The goto{data} command causes program execution to transfer to the program line in the 

same program whose “jump label” number matches the value of {data}. Unlike the 

gosub{data} command, program execution will not transfer back on encountering a return 

command or end of buffer. In general, modern views of good programming practice discourage 

the use of goto commands. 

Motion Specification 

Commands for specifying motion in the Power PMAC Script language are of two types: the 

actual move commands, and the modal commands that specify the rules according to which the 

move commands are to be interpreted. When a move command is encountered during the 

execution of the Script program, Power PMAC generates the equations of commanded motion 

that are necessary to implement the move according the specified rules. The coefficients of these 

equations are placed in a queue for subsequent execution by other automatic tasks in the Power 

PMAC. 

The end result of the programmed move specification is a series of commanded positions in a 

trajectory for each motor assigned to the coordinate system executing the coordinate system. The 

nature of that trajectory for each move mode is explained in detail in the User’s Manual chapter 

Power PMAC Move Mode Trajectories. This section explains how the logic of the Script 

language is used to command moves. 

Modal Move Type and Parameter Specification 

Commands that specify the rules for interpreting an actual move command are modal. That is, 

they affect all subsequent move commands until another modal command overrides it. This way, 

multiple moves can be commanded without the need for re-declaration before each move 

command of the modes and parameters that govern the move generation. 

Move Mode Declaration 

Power PMAC has five fundamental move modes, each declared by a command invoking the 

name of that mode. When that command is executed, the coordinate system is placed in that move 

mode. In a motion program (or its subprograms), all subsequent moves are executed according to 

the rules of this move mode until another move mode is declared. 

In a PLC program (or its subprograms) the only type of move that can be commanded is a rapid-

mode move. Commanding the move itself automatically puts the addressed coordinate system in 

rapid move mode, even if it has just declared a different mode. For example the program 

commands linear X10, when executed in a PLC program or its subprograms, would both 

execute a rapid-mode move and leave the addressed coordinate system in rapid move mode. 

The move mode declarations commands are: 

 rapid   Rapid move mode; minimum-time point-to-point moves 

 linear  Linear move mode, straight-line path in Cartesian space 

 circlen  Circular move mode, arc path in Cartesian space 

 spline{data} Spline move mode of specified time, cubic B-spline path  

 pvt{data}  Position/velocity/time mode of specified time, Hermite-spline  

   path 
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Axis Mode Declaration 

In any of the move modes, the axes can be specified to be in “absolute” or “incremental” mode. 

The abs program command puts all axes in the coordinate system into absolute mode. In this 

mode, the commanded destination for the axis for each move is specified as a position relative to 

the present programming origin for that axis. The inc program command puts all axes in the 

coordinate system into incremental mode. In this mode, the commanded destination for the axis 

for each move is specified as a distance from the most recent commanded position for that axis. 

At power-on/reset, all axes are in absolute mode. 

It is possible, but less common, to have some axes in a coordinate system in absolute mode and 

others in incremental mode. The abs and inc commands using axis lists change the mode of 

only the specified axes, leaving all other axes in the coordinate system in their present mode. For 

example, the command abs(x,y) changes the X and Y axes into absolute mode; other axes 

could be left in incremental mode. 

For linear and circle-mode moves specified by “feedrate” (F) instead of move time (tm), the user 

must specify which axes are involved in the vector feedrate calculations. These axes are known as 

the “feedrate axes”. For each move of this type, Power PMAC automatically computes the vector 

distance as the vector sum (using the Pythagorean theorem) of the move distances for all of the 

feedrate axes, and the move time as this vector distance divided by the feedrate. Any “non-

feedrate” axes complete the move in this same time. 

At power-on/reset, the X, Y, and Z axes are the only feedrate axes. The program frax command 

can be used to change this. The axes specified in the axis list for the command become feedrate 

axes, all axes not in the list become non-feedrate axes. The command frax(XX,YY) makes the 

XX and YY axes feedrate axes; all others, including the ZZ, X, Y, and Z axes, become non-

feedrate axes. The program nofrax command makes all of the axes non-feedrate axes. 

For more detail on feedrate axes and vector feedrate calculations, refer to the Power PMAC Move 

Mode Trajectories chapter of the User’s Manual. 

Move Parameters 

There are several numerical parameters that govern the moves in each move mode. This section 

lists the parameters; details of what the parameters do are explained in the User’s Manual chapter 

Power PMAC Move Mode Trajectories. 

In the rapid move mode, the parameters are saved setup elements for the motors in the coordinate 

system. These parameters are set by assigning values to the elements, often outside the program 

itself. Acceleration and deceleration are governed by Motor[x].JogTa and Motor[x].JogTs. Top 

speed is governed by Motor[x].MaxSpeed or Motor[x].JogSpeed, depending on the setting of 

Motor[x].RapidSpeedSel. Coord[x].RapidVelCtrl governs whether all axes move at their 

programmed speed, or only the axis with the greatest distance-to-speed ratio does, with the others 

slowed to match this ratio (this gives a closer-to-straight-line path). 

In the linear and circle move modes, the parameters are saved setup elements for the coordinate 

system. These parameters can be set by assigning values directly to the elements, but they are 

often set by matching program commands. The ta{data} program command sets the value of 

Coord[x].Ta, specifying the acceleration time for these moves. The ts{data} program 

command sets the value of Coord[x].Ts, specifying the “S-curve” portion of the acceleration 

time for these moves. The tm{data} and F{data} commands set the value of Coord[x].Tm, 
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specifying the move time or vector “feedrate” (speed) for these moves. These two commands also 

specify whether the moves are specified by time or speed. 

In the spline move mode, the spline move times are determined by the value or values specified in 

the spline mode command itself. There are no other modal parameters governing the moves. The 

times are changed with another spline mode command. 

In the PVT move mode, the move time is determined by the value specified in the PVT mode 

command itself. There are no other modal parameters governing the moves. The time is changed 

with another PVT mode command. 

Move Commands 

The actual move commands in the Script language simply specify the letter name of each axis to 

be moved immediately followed by a quantity specifying the destination of that move. In some 

modes, there can be a secondary quantity specified as well, as described below. If multiple axes 

are specified on the same program line, these axes will move together in a coordinated fashion. 

Moves resulting from commands on separate program lines are executed sequentially. 

Basic Axis Move Command 

The basic axis move command has the form: 

{axis}{data}[{axis}{data}…] 

Here, {axis} is the single-letter or double-letter name for the axis to be moved, and {data} is 

the move-end position or distance for the axis, depending on whether the axis is in absolute or 

incremental mode. 

For example, the command X10 Y20 Z30 tells the X, Y, and Z axes in the coordinate system 

running the motion program, or in the coordinate system addressed by the PLC program to start a 

move simultaneously according to the modal move rules in place at the time the program line is 

encountered. 

This basic axis move command is used for standard rapid-mode moves, linear-mode moves, and 

spline-mode moves. 

Move-Until-Trigger Command 

A program move-until-trigger is a variant of the rapid move mode. The move-until-trigger 

command has the form: 

{axis}{data}^{data}[{axis}{data}^{data}…] 

The first {data} after the axis name is the move-end position or distance in the absence of a 

trigger. The second {data} is the signed distance from the trigger position to the end of the 

post-trigger move. 

For example, the command A500^-50 tells the A-axis in the coordinate system to start 

execution of a rapid-mode move to a destination of 500 axis units (if in ABS mode) or a length of 

+500 axis units (if in INC mode), but if the specified trigger is found, change the destination to a 

point a distance of -50 axis units from the position at the trigger. 
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Circle-Mode Move Command 

A circle-mode move command must provide information about the center of the arc for the move, 

either specifying a vector from the start point to the center, or a radius magnitude. A command 

with the vector has the form: 

{axis}{data}[{axis}{data}…][{vector}{data}...] 

Here, {vector} is the letter I, J, or K for the vector component along the X, Y, or Z axis, 

respectively, or the double letter II, JJ, or KK for the vector component along the XX, YY, or ZZ 

axis, respectively. For example, the command X2000 Y3000 Z1000 I500 J300 K500 

specifies an arc move in the X/Y/Z Cartesian space. 

A command with the radius magnitude has the form: 

{axis}{data}[{axis}{data}…] R{data} 

The value after the R specifies the radius magnitude. If it is a positive value, the arc move covers 

an angle less than 180°; if it is a negative value, the arc move covers an angle greater than 180°. 

This command form can only be used with the X/Y/Z axis set. 

PVT Mode Move Command 

A PVT-mode move command must specify the end velocity for each axis as well as the end 

position/distance. Such a command has the form: 

{axis}{data}:{data}[{axis}{data}:{data}…] 

The first value following each axis name is the move-end position or distance for the axis. The 

second value, following the colon is the move-end velocity for the axis. Note that this is a signed 

velocity value, so if the move is to end going in the negative direction, this must be a negative 

number. 

Program Direct Commands 

The “program direct commands” in the Power PMAC Script language permit Script programs to 

issue commands that are the equivalent of on-line commands from the host computer, and to do 

so without the need to assemble a text string that is passed through a separate background parser. 

These are more commonly used in PLC programs, but can also be used in motion programs. 

When used in motion programs, they generally should only command other coordinate systems 

and motors assigned to other coordinate systems. Even when used from a motion program, none 

of these commands causes program execution to suspend. 

These commands are generally just longer versions of the equivalent on-line commands – e.g. 

jog for j. They can act on the “listed” motor(s) or coordinate system(s) – e.g. jog+7, 

abort1,2 – or if there is no motor or coordinate system list, on the modally addressed motor or 

coordinate system, as determined by the present value of Ldata.motor or Ldata.coord. 

Motor Program Direct Commands 

The program direct commands for motors are: 

cout{data} – Set open-loop command output of specified magnitude  

dkill – Delayed kill (disable servo control), providing time for brakes to engage fully 
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home – Do homing-search move 

homez – Do zero-move home, or read absolute position sensor to establish position reference 

jog+ – Jog indefinitely in positive direction 

jog- – Jog indefinitely in negative direction 

jog/ – Stop jogging; or restore to closed-loop control 

jogret – Jog to last programmed (pre-jog) position 

jog={data} – Jog to specified position 

jogret={data} – Jog to specified position, making that position the new “pre-jog” position 

jog:{data} – Jog specified distance from present commanded position 

jog^{data} – Jog specified distance from present actual position 

jog={data}^{data} – Jog to specified position; if trigger occurs, jog instead to specified 

distance from trigger position 

jog:{data}^{data} – Jog specified distance from present commanded position; if trigger 

occurs, jog instead to specified distance from trigger position 

jog^{data}^{data} – Jog specified distance from present actual position; if trigger occurs, 

jog instead to specified distance from trigger position 

kill – Kill (disable servo control) immediately 

 

Coordinate System Program Direct Commands 

The program direct commands for coordinate systems are: 

abort – Stop calculation of motion program from presently selected point, commencing 

immediate deceleration of all axes in the coordinate system 

begin[:{data}] – Point program counter to beginning of present [or specified] motion 

program 

ddisable – Delayed disable (kill) of servo control for all motors assigned to coordinate system, 

providing time for brakes to engage fully 

disable – Disable (kill) of servo control of all motors assigned to coordinate system 

enable – Enable servo control of all motors assigned to coordinate system 

hold – Execute feed hold by ramping coordinate system time base value to 0, ready to resume 

on R or S command 

lh\ – (Quick stop) Execute fastest stop in lookahead buffer that does not violate acceleration 

constraints  

lh< – (Reverse) Start reverse execution in lookahead buffer  

lh> – (Forward) Resume forward execution in lookahead buffer  

pause – Stop calculation of motion program[s] at presently selected point, ready to resume at 

that point 

resume – Restart continuous of motion program[s] from paused point 

run – Begin continuous of motion program[s] in addressed [or listed] coordinate system[s] from 

presently selected point 

start[:{data}] – Start running present [or specified] motion program from beginning 

step – Execute single command of motion program[s] from presently selected point 

stop – Stop calculation of motion program[s] at presently selected point and make the selected 

point the beginning of the present program 
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Downloading Rules for Script Programs 

This section explains the rules for directly downloading the different types of Script programs to 

the Power PMAC. The following section explains how the downloading is managed from the IDE 

program’s Project Manager. Note that in many applications, all programs are downloaded at once 

from the IDE. However, in some applications, particularly those with “part programs”, while a 

significant fraction of the programs will be downloaded from the IDE and stay resident, other 

programs will be downloaded during the application and then cleared. 

Motion Programs 

A new top-level motion program can be downloaded to the Power PMAC at any time, even while 

other motion programs are executing. For a motion program buffer that is already present in 

Power PMAC, the buffer can be opened for downloading new contents unless that program (or a 

subprogram called from it) is presently executing, or suspended (e.g. with a hold, step, or quit 

command) such that it is possible to resume execution at the suspended point. An abort (a) 

command can be used to take a program out of either executing or suspended mode so that the 

buffer can be opened to download new contents. 

When the open prog n command is sent to prepare the motion program buffer for 

downloading of new contents, all existing contents of that buffer are automatically erased. There 

is no need to use a clear command to do this as in older types of PMAC controllers. As long as 

the buffer is open, the motion program cannot be executed; a close command must be sent first. 

If the open prog n command is immediately followed by a close command, with no 

intervening buffered program commands, the program ceases to exist; it does not count against 

the limit for the number of motion programs that can be stored in the Power PMAC at one time. 

Rotary Motion Programs 

The rules governing rotary motion program buffers are substantially different from those for the 

other types of Script program buffers. A pre-determined amount of memory must be reserved for 

a rotary buffer before any contents are downloaded. Program lines can be entered into the buffer 

even while the program is executing. When the end of the buffer is reached, the storage of 

subsequent program lines wraps around to the beginning of the buffer – hence the name “rotary”. 

The define rotary command causes Power PMAC to reserve memory for a rotary motion 

program buffer in the addressed coordinate system. The first argument of this command specifies 

the number of bytes of memory to be reserved; it has a minimum value of 2048 bytes and is 

usually much larger. It is recommended to size this buffer generously, as larger buffers make the 

process of downloading contents during execution easier to manage for robust operation. The 

optional second argument for this command specifies the size of the “line buffer” each program 

line is momentarily held in before being copied to the rotary buffer itself. If no second argument 

is specified, this line buffer is 1024 bytes, and this value is satisfactory for virtually all 

applications. 

The open rotary command causes Power PMAC to open the rotary motion program buffer 

for the addressed coordinate system for entry. Unlike other types of buffers, this command does 

not cause the existing contents of the buffer to be erased. Subsequent program lines are appended 

to the end of the existing contents.  
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Note that the open rotary command can be issued at any time, including while the rotary 

motion program buffer (or a subprogram called from it) is executing or suspended. This 

capability for the rotary motion program buffers gives them their unique flexibility to stream new 

contents to the Power PMAC while existing contents are being executed. 

If it is desired to erase the existing contents of the buffer, the coordinate-system-specific clear 

rotary command must be used. This leaves the structure of the buffer itself intact. To erase the 

rotary buffers themselves, the global clear all buffers command must be issued. If there 

are multiple buffers, it is not possible to erase a single buffer structure. 

PLC Programs 

A new top-level PLC program can be downloaded to the Power PMAC at any time, even while 

other PLC programs are executing. For a PLC program buffer that is already present in Power 

PMAC, the buffer can be opened for downloading new contents unless that program (or a 

subprogram called from it) is presently executing, or suspended (e.g. with a pause plc 

command) such that it is possible to resume execution at the suspended point. A disable plc 

command can be used to take a program out of either executing or suspended mode so that the 

buffer can be opened to download new contents. 

When the open plc n command is sent to prepare the PLC program buffer for downloading of 

new contents, all existing contents of that buffer are automatically erased. There is no need to use 

a clear command to do this as in older types of PMAC controllers. As long as the buffer is 

open, the PLC program cannot be executed; a close command must be sent first. 

If the open plc n command is immediately followed by a close command, with no 

intervening buffered program commands, the program ceases to exist; it does not count against 

the limit for the number of PLC programs that can be stored in the Power PMAC at one time. 

Subprograms 

A new subprogram can be downloaded to the Power PMAC at any time, even while other 

programs are executing. For a subprogram buffer that is already present in Power PMAC, the 

buffer can be opened for downloading new contents unless that program (or a subprogram called 

from it) is presently executing, or suspended (e.g. with a hold, step, quit, or pause command) such 

that it is possible to resume execution at the suspended point. An abort (a) command, if the top-

level program is a motion program, or a pause plc command, if the top-level program is a 

PLC program can be used to take a program out of either executing or suspended mode so that the 

buffer can be opened to download new contents. 

When the open subprog n command is sent to prepare the subprogram buffer for 

downloading of new contents, all existing contents of that buffer are automatically erased. There 

is no need to use a clear command to do this as in older types of PMAC controllers. As long as 

the buffer is open, the subprogram cannot be executed; a close command must be sent first. If 

another program tries to call this subprogram while its buffer is open, that program will stop with 

an error. 

If the open subprog n command is immediately followed by a close command, with no 

intervening buffered program commands, the program ceases to exist; it does not count against 

the limit for the number of subprograms that can be stored in the Power PMAC at one time. 
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Kinematic Subroutines 

Forward and inverse kinematic subroutines cannot be downloaded for a coordinate system while 

a motion program in that coordinate system or any PLC programs (or subprograms called from 

them) are executing, as these programs could attempt to call the kinematic subroutines at any 

time, leading to a potentially dangerous failure. 

When the open forward or the open inverse command is sent to prepare the subroutine 

buffer of the presently addressed coordinate system for downloading of new contents, all existing 

contents of that buffer are automatically erased. There is no need to use a clear command to do 

this as in older types of PMAC controllers. As long as the buffer is open, motion programs in the 

coordinate system, or any PLC programs, cannot be executed; a close command must be sent 

first. 

If the open forward or the open inverse command is immediately followed by a close 

command, with no intervening buffered program commands, the subroutine ceases to exist; 

Power PMAC regards the coordinate system as not having the subroutine. 

Implementing Script Programs in the IDE 

In the vast majority of Power PMAC applications, most, if not all, of the Script programs will be 

developed and downloaded using the Integrated Development Environment (IDE) software on a 

PC. The IDE provides many facilities for enhancing the capabilities of the Script programs. 

Organizing Your Program Files 

The “Solution Explorer” control in the IDE provides a good mechanism for organizing your 

Script program files. A “solution” can potentially comprise multiple Power PMACs, although 

most solutions will only use a single Power PMAC. Each Power PMAC within a solution has a 

“project”, and within that project are folders and sub-folders containing the files that make up the 

project. 

The “Power PMAC Script Language” top-level folder will contain all of the sub-folders and files 

for the Script language programs. The sub-folders in this folder are: 

 “Global Includes”: For files with definitions and variable declarations 

 “Kinematics Routines”: For forward and inverse kinematic subroutines 

 “Libraries”: For subprograms 

 “Motion Programs”: For (fixed) motion programs 

 “PLC Programs”: For foreground and background PLC programs 

 

The following screen capture shows how the Script programs of a sample project are organized in 

the Solution Explorer: 
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Sample Project Script Program Organization 

To add a new file under a sub-folder, right-click on the name of the sub-folder, then click on 

“Add” on the little sub-menu that comes up. To start a new file, next click on “New”; to import a 

file, whether from another project or a separate source, click on “Existing”, then specify the path 

and file to import. 

Note that the IDE project manager does not support rotary motion programs, as these are 

generally sent to the Power PMAC during the actual running of the application, outside of the 

IDE project. 

User Variable Names 

The IDE permits the use of meaningful variable names by the user, making the programs much 

more understandable. It provides two mechanisms for doing this, “auto assigning” and “manual 

assigning”. Both of these mechanisms match the user variable name to an underlying enumerated 

variable.  

The use of the variables themselves is covered in more detail in the Power PMAC Computational 

Features chapter of the User’s Manual. 

Auto-Assigned User Variable Names 

User variable names are automatically assigned to underlying enumerated variables through 

variable declaration statements in a file in the IDE. The user almost never needs to know which 

enumerated variable is matched to the user variable name. 
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“Global” Variable Declaration 

Declaring a “global” variable causes that user variable name to be automatically matched to one 

of the 65,536 Power PMAC P-variables. These are double-precision (64-bit) floating-point 

variables accessible from all programs and commonly accessible from all coordinate systems. A 

sample declaration is: 

global LineSpeed, CycleCount; 

“Csglobal” Variable Declaration 

Declaring a “csglobal” variable causes that user variable name to be automatically matched to one 

of the 8,192 Power PMAC Q-variables for each coordinate system. These are double-precision 

(64-bit) floating-point variables accessible from all programs, but with a different set for each 

coordinate system. The name is associated with the same Q-variable for all coordinate systems. A 

sample declaration is: 

csglobal UnitLength, ErrorCode; 

“Ptr” Variable Declaration 

Declaring a “ptr” variable causes that user variable name to be automatically matched to one of 

the 16,384 Power PMAC M-variables. These are “pointer” variables that can be assigned to 

memory and I/O registers or portions of registers, are accessible from all programs, and are 

commonly accessible from all coordinate systems. Sample declarations are: 

ptr AirSupplyOn->Acc65E[0].DataReg[4].5; 

ptr PressureIn->Clipper[0].GpioData[0].0.8; 

Comments on “global”, “csglobal”, and “ptr” declarations 

For all of these above types of declarations for variables that can be accessed from multiple 

programs, the declarations must be outside of any program. It is suggested, but not required, that 

these be put in the “global definitions.pmh” file in the “Global Includes” sub-folder of the 

“PMAC Script Language” folder. 

During the process of downloading the project, the IDE assigns each declared variable name to 

one of the matching Power PMAC enumerated variables. For each variable type, a directive in the 

project file “pp_proj.ini” specifies the starting variable number for each type to be used in these 

auto-assignments. In the default file, these directives are: 

PVARSTART=8192 

QVARSTART=1024 

MVARSTART=8192 

 

With these directives, auto-assignment of “global” variables starts at P8192 and goes up (P0 

through P8191 are not used for this); auto-assignment of “csglobal” variables starts at Q1024 and 

goes up (Q0 through Q1023 are not used for this); auto-assignment of “ptr” variables starts at 

M8192 and goes up (M0 through M8191 are not used for this). These settings will seldom need to 

be changed. 

Once the project with the declared and/or defined user variable names of these types has been 

downloaded to the Power PMAC, these names become part of the project database, and the 

names can be used in other parts of the IDE, notably the terminal and watch windows. 
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“Local” Variable Declaration 

Declaring a “local” variable causes that user variable name to be automatically attached to tone of 

the L-variables for the program. These are double-precision (64-bit) floating-point variables only 

directly accessible from within that program. They are part of an 8,192-variable stack for the top-

level program and its subprograms. A local variable declaration must be inside the program 

(between open and close). A sample declaration is: 

local LoopCounter, ReturnValue; 

Note that it is not possible to view directly the values of local variables (with or without user 

names) from outside the program. 

Manually-Assigned User Variable Names 

It is also possible to assign user variable names to specific variables using a “#define” directive in 

an IDE project file. Generally, the variables used are lower numbered, below the starting point for 

the auto-assigned declarations. Sample assignment directives are: 

#define PartCount P50 

#define CutLength Q100 

#define CoolantOn M10 

 

The “#define” directive creates an effective text substitution. It can also be used to substitute for 

text other than variable names, especially for constants. 

IDE Program Enhancements 

When the IDE is used to develop and download Script programs, it can provide significant 

effective enhancements to the Script syntax. The ability to provide user names for variables has 

been noted above. 

Subprograms 

The IDE lets you declare subprograms with a list of arguments, making the declaration much like 

those in standard high-level programming languages. If you declare a subprogram in the form: 

open subprog MySubprogram (Arg1, Arg2, &Arg3, &Arg4) 

 

the IDE will create code like the following from that: 

#define MySubprogram 100000 

… 

open subprog 100000 

#define Arg1 L0 

#define Arg2 L1 

#define Arg3 L2 

#define Arg4 L3 

 

Arguments declared in the list without a starting “&” character are intended for passing values to 

the subprogram; these can be constants and expressions as well as variables. Arguments declared 

in the list with a starting “&” character are intended for returning values to the calling program; 

these must be variable names. If you want to use a single variable for both purposes, you must 

declare it in both forms. 
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Up to 16 arguments can be declared in this way. (It is not required to have any arguments.) 

If you declare local variables inside the subprogram, these will be automatically assigned to L-

variables starting with the one numbered one greater than the highest number used for the 

“argument” variables. These argument variables can be used within the program without any 

further declaration or definition. To expand on this example with more meaningful names, if you 

wrote the following code for the subprogram in the IDE: 

open subprog XYtoRTheta (XVal, YVal, &RVal, &ThetaVal) 

  RVal = sqrt(XVal*XVal + YVal*YVal); 

  ThetaVal = atan2d(YVal, XVal); 

return; 

close 

 

this would create code for the Power PMAC as: 

#define XYtoRTheta 100000 

open subprog 100000 

#define XVal L0 

#define YVal L1 

#define RVal L2 

#define ThetaVal L3 

  L2 = sqrt(L0*L0 + L1*L1); 

  L3 = atan2d(L1, L0); 

return; 

close 

 

A call to this subprogram from a higher-level program could be written as: 

call XYtoRTheta(ToolXPos, ToolYPos, &ToolRPos, &ToolCPos); 

 

where the arguments are user-declared or defined variables. This would generate code for the 

Power PMAC as: 

R0=ToolXPos; R1=ToolYPos; call 100000; ToolRPos=R2; ToolCPos=R3; 

 

Note that local stack variable Ri of the calling program is the same as Li of the called 

subprogram. More detail of how these local stack variables work is given in the Power PMAC 

Computational Features chapter of the User’s Manual. 

Subroutines Within Programs 

The IDE lets you declare subroutines with programs with user names and a list of arguments, 

making the declaration much like those in standard high-level programming languages. If you 

declare a subroutine in the form: 

sub: MySubroutine (Arg1, Arg2, &Arg3, &Arg4) 

 

the IDE will create code like the following from that: 

#define MySubroutine 10000 

… 

#define Arg1 L0 

#define Arg2 L1 
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#define Arg3 L2 

#define Arg4 L3 

n10000: … 

 

Arguments declared in the list without a starting “&” character are intended for passing values to 

the subroutine; these can be constants and expressions as well as variables. Arguments declared 

in the list with a starting “&” character are intended for returning values to the calling routine; 

these must be variable names. If you want to use a single variable for both purposes, you must 

declare it in both forms. 

Up to 16 arguments can be declared in this way. (It is not required to have any arguments.) 

To expand on this example with more meaningful names, if you wrote the following code for the 

subprogram in the IDE: 

sub: MinMax (Val1, Val2, &MinVal, &MaxVal) 

if (Val1 < Val2) { 

  MinVal = Val1; 

  MaxVal = Val2; 

} 

else { 

  MinVal = Val2; 

  MaxVal = Val1; 

} 

return; 

 

this would create code for the Power PMAC as: 

#define MinMax 10000 

#define Val1 L0 

#define Val2 L1 

#define MinVal L2 

#define MaxVal L3 

… 

N10000: 

if (L0 < L1) { 

  L2 = L0; 

  L3 = L1; 

} 

else { 

  L2 = L1; 

  L3 = L0; 

} 

return; 

close 

 

A call to this subroutine from a higher-level routine in the same program could be written as: 

callsub sub.MinMax(OldForce, NewForce, &MinForce, &MaxForce); 

 

where the arguments are user-declared or defined variables. This would generate code for the 

Power PMAC as: 

R0=OldForce; R1=NewForce; callsub 10000; MinForce=R2; MaxForce=R3; 
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Note that local stack variable Ri of the calling program is the same as Li of the called 

subprogram. More detail of how these local stack variables work is given in the Power PMAC 

Computational Features chapter of the User’s Manual. 

Subroutines Within Subprograms 

The IDE lets you declare subroutines within subprograms with user names and a list of 

arguments, making the declaration much like those in standard high-level programming 

languages. If you declare a subprogram with subroutines in the form: 

open subprog MySubprogram 

sub: MySubroutine1 (Arg1, Arg2, &Arg3, &Arg4) 

sub: MySubroutine2 (Arg1, Arg2, &Arg3) 

 

the IDE will create code like the following from that: 

#define MySubprogram 100000 

open subprog 100000 

#define MySubroutine1 10000 

#define Arg1 L0 

#define Arg2 L1 

#define Arg3 L2 

#define Arg4 L3 

N10000: 

#define MySubroutine2 10001 

#define Arg1 L0 

#define Arg2 L1 

#define Arg3 L2 

N10001: 

 

Arguments declared in the list without a starting “&” character are intended for passing values to 

the subroutine; these can be variable names, constants or expressions. Arguments declared in the 

list with a starting “&” character are intended for returning values to the calling routine; these 

must be variable names. Both forms must be declared to use a single variable for both purposes.  

Up to 16 arguments can be declared in this way. (It is not required to have any arguments.)  

To expand on this example with more meaningful names, if you wrote the following code for 

subprogram subroutines in the IDE: 

open subprog Calculations 

sub: XYtoRTheta (XVal, YVal, &RVal, &ThetaVal)  

RVal = sqrt(XVal*XVal + YVal*YVal);  

ThetaVal = atan2d(YVal, XVal);  

return; 

sub: Pythag (Run, Rise, &Hypot)  

Hypot=sqrt(Run*Run+Rise*Rise); 

return; 

close 

 

the IDE would create code for the Power PMAC as:  

#define Calculations 100000 

open subprog 100000 



Power PMAC User’s Manual 

Writing and Executing Script Programs in the Power PMAC 631 

#define XYtoRTheta 10000 

#define XVal L0 

#define YVal L1 

#define RVal L2 

#define ThetaVal L3 

N10000: 

L2=sqrt(L0*L0+L1*L1); 

L3=atan2d(L1,L0); 

return 

#define Pythag 10001  

#define Run  L0 

#define Rise L1 

#define Hypot L2 

N10001: 

L2=sqrt(L0*L0+L1*L1); 

return 

close  

 

Calls to these subroutines from a higher level program could be written as: 

call Calculations.XYtoRTheta(ToolXPos, ToolYPos, &ToolRPos, &ToolCPos);  

call Calculations.Pythag(Xvelocity, Yvelocity, &VectorVel); 

 

where the arguments are user-declared or defined variables. The IDE would generate code for the 

Power PMAC as:  

R0=ToolXPos; R1=ToolYPos; call 100000.01; ToolRPos=R2; ToolCPos=R3;  

R0=Xvelocity; R1=Yvelocity; call 100000.010001; VectorVel=R2; 

 

Note that local stack variable Ri of the calling program is the same as Li of the called subroutine.  

More detail of how these local stack variables work is given in the Power PMAC Computational 

Features chapter of the User’s Manual. 
 

Kinematic Subroutines 

The IDE provides several features for making the creation of kinematic subroutines easier and 

more understandable. You can declare the subroutines in a form like: 

open forward (1) 

 

where the number in parentheses is the number of coordinate system that the routine is assigned 

to. This is sent to the Power PMAC in the form: 

&1 open forward 

 

Also, there is a large set of already-defined user variable names for the input and output local 

variables for the routines. The user does not need to make these definitions explicitly. With 

Sys.MaxMotors at its default value of 32, these include: 

#define KinPosMotor0  L0 

#define KinPosMotor1  L1 

#define KinPosMotor2  L2 

... 

#define KinPosMotor31  L31 // Up to Sys.MaxMotors-1 
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#define KinPosAxisA  C0 

#define KinPosAxisB  C1 

... 

#define KinPosAxisZ  C8 

#define KinPosAxisAA  C9 

... 

#define KinPosAxisZZ  C31 

 

#define KinVelMotor0  R0 

#define KinVelMotor1  R1 

#define KinVelMotor2  R2 

... 

#define KinVelMotor31  R31 // Up to Sys.MaxMotors-1 

 

#define KinVelAxisA  C32 

#define KinVelAxisB  C33 

... 

#define KinVelAxisZ  C40 

#define KinVelAxisAA  C41 

... 

#define KinVelAxisZZ  C63 

 

#define KinVelEna   D0 // Passed to forward and inverse 

#define KinAxisUsed  D0 // Returned from forward 

 

Note that the user will generally not need to know which variables are assigned to which user 

name, and can just use the names freely. 

More detail on writing forward and inverse kinematic subroutines is provided in the chapter 

Setting Up a Coordinate System of the User’s Manual. 

Execution Rules for Script Programs 

While the Power PMAC script language syntax is the same for all types of programs, the rules for 

execution differ based on the type of program. This section explains the execution rules for each 

type of program. 

Motion Programs 

Power PMAC Script motion programs provide for automatic sequenced execution of commanded 

moves and the calculations associated with them. Because many of its key actions – moves, 

dwells, and delays – “take time”, a standard high-level programming language would require the 

user to command the start of such an action and then explicitly monitor for the end. 

In addition, if multiple moves need to be executed without an intervening stop, the motion 

program must calculate one or more moves ahead to create the proper equations of motion to join 

these moves together “on the fly”. Standard programming languages do not have good 

mechanisms for allowing the user to program these types of motion sequences easily. 

The execution rules for motion programs in the Power PMAC Script language are designed to 

facilitate the programming of these types of tasks. Program calculations will automatically 

proceed as far ahead as is necessary to ensure that the programmed move sequence can be 

properly calculated. When this has happened, program calculations are automatically suspended 

at this point. When the actual execution of the resulting commanded moves progresses to the 
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point where more program calculations are required to ensure that future commands in the 

programmed move sequence can be calculated properly, motion program calculations resume 

automatically, continue until that condition is met, and then suspend again. Note that the user’s 

motion program does not have to contain any of this sequencing logic; the Power PMAC’s Script 

execution engine handles this itself. 

Starting a Set of Motion Program Calculations 

Each real-time interrupt (RTI), Power PMAC checks each active coordinate system to see if 

motion program calculations are required in that coordinate system. It does this by looking at the 

internal “block-request” status flag for the coordinate system. This bit gets set in one of two ways. 

First, a command to start motion program execution, such as r (run), or s (step) has been issued. 

The immediate effect of such a command is just to set the block-request flag so that motion 

program calculations start on the next RTI. 

In the second way, each time the execution of commanded moves resulting from previous 

calculations in the motion program advances into the next move in the queue, the execution 

engine sets the block-request flag to indicate that it may be necessary to calculate more 

programmed moves to keep the move-equation queue full enough. 

Suspending Motion Program Calculations 

Once motion program calculations are started, they generally continue until the equations of 

motion for enough moves have been calculated and placed in the motion queue to satisfy the rules 

for that mode of motion. It will simply continue through commands that do not create equations 

of motion. 

Note 

For most purposes, the automatic sequencing of Power PMAC 

script motion programs operates invisibly to the user. 

However, it can be important to know how this sequencing 

works, particularly when trying to synchronize motion with 

other aspects of the machine control. 

 

Filling the Motion Queue 

The number of moves required for a “full” motion queue depends on the mode of motion. The 

following list explains common cases. 

 Simple point-to-point moves that cannot be blended, such as rapid-move moves, do not 

require a pre-calculated queue. The move equations are calculated from the program 

command, and the move immediately starts executing. Subsequent program calculations 

do not start again until the move is finished. A dwell command in the program, even a 

dwell 0, always stops blending and pre-calculation as well. The same is true if saved 

setup element Coord[x].NoBlend is set to 1 even for blended and splined move types. 

 Basic blending as in linear and circle-mode moves requires that one move ahead be 

calculated. That is, move i+1 must be calculated before move i finishes (or even gets to 

the point where the blend would need to start) so the blend between the two moves can be 

calculated in time. 
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 Basic acceleration constraints, such as simple acceleration limiting in linear-mode moves 

without segmentation, and the acceleration continuity condition of spline-mode moves, 

require that two moves ahead be calculated, because move i+2 can affect the whole of 

move i+1 and the transition from move i. 

 The buffered segmented lookahead function can require that many programmed moves 

be pre-calculated. The saved setup element Coord[x].LHDistance specifies how many of 

the coarse-interpolation “segments” derived from the programmed moves must be stored 

in the lookahead buffer at any time. This forces the motion program to pre-calculate 

enough programmed moves to keep the segment buffer full. In extreme cases, Power 

PMAC may pre-calculate hundreds, or even thousands, of programmed moves ahead of 

the execution point. 

 If 2D tool radius compensation is enabled, additional moves must be pre-calculated to 

compute the compensated move intersection points and to check for possible interference 

and overcut. The saved setup element Coord[x].CCDistance specifies how many 

additional compensated programmed moves are to be pre-calculated for this purpose. 

Commonly, during a continuous sequence of programmed moves, each time move execution 

transitions into a new move, one more move from the program is calculated. But as the sequence 

starts, multiple moves may be calculated at once to get the queue full, and at the end of the 

sequence, the queue will empty. 

The following motion program example shows where calculations are suspended (at the 

horizontal lines). 

↓ X0 Y0;    // Compute move, suspend 

↓ Xpos = Rad * cos(Angle); 

↓ Ypos = Rad * sin(Angle); 

↓ X(Xpos) Y(Ypos);   // Compute move, suspend 

↓  ↑ while (Interlock == 0) // Continue, blend if loop ct ≤ GoBack+1 

↓  ↑ {}     // Suspend, no blend if loop ct > GoBack+1 

↓ X(-Xpos) Y(-Ypos);  // Compute move, suspend 

↓ if (ExtendedPause == 1) { 

↓   PauseTime = 100; } 

↓ else { 

↓   PauseTime = 50; } 

↓ LaserOn = 1; 

↓ dwell(PauseTime);  // Compute “move”, suspend 
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The following diagram shows a sample time line for program move calculation and subsequent 

move execution “n” move-ahead pre-calculation. 

 

Motion Program Sample Calculation and Execution Sequencing 

Note that these sequencing rules mean that motion program calculations only occur at move 

boundaries. If there are calculations or actions that you wish to occur at other times, those should 

be implemented in another type of program, whether a Script PLC program, a C PLC program, or 

an independent C application. 

Failure to Calculate Far Enough Ahead 

One key intent of the sequencing rules and motion queue is to ensure that equations of motion are 

ready in time for their use in the actual execution of the moves. If the equations are not ready in 

time, a “run-time error” occurs. In this case, status bit Coord[x].RunTimeError is set to 1. This 

is bit 4 of status byte Coord[x].ErrorStatus, so this byte is set to 16. When a run-time error 

occurs, all motors in the coordinate system are brought to a controlled stop as if an “abort” 

command had been issued, each decelerating as specified by its Motor[x].AbortTa and 

Motor[x].AbortTs saved setup element values. 

Special Considerations for Very High Move-Rate Applications 

When the frequency of programmed moves in the motion program approaches the frequency of 

Power PMAC’s real-time interrupt and/or servo interrupt – typically thousands of moves per 

second, extra care must be taken in order to assure reliable execution of the program. 

In these applications, saved setup element Sys.RtIntPeriod should typically be set to the default 

value of 0 so that the real-time interrupt, where motion program calculations are performed, 

executes every servo interrupt. This maximizes the chance that move calculations will always be 

performed in time to have the equations of motion ready for execution. 

In addition, some care may need to be taken with the setting of saved setup element Sys.PreCalc. 

Technically, Power PMAC attempts to calculate enough moves ahead so that equations are ready 

for at least (Sys.RtIntPeriod + 1) + Sys.PreCalc servo cycles ahead of the presently executing 

point. For the large majority of Power PMAC applications, where the programmed move times 

are not nearly as small as the servo update time, the default value of 1 for Sys.PreCalc can be 

used reliably. 
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However, when the move times can be as small (or even smaller!) than the servo update time, the 

value of Sys.PreCalc may need to be adjusted to optimize the balance between the possibilities of 

“too much” pre-calculation, which can overflow a key buffer, and “too little” pre-calculation, 

which can mean that equations will not be ready in time for execution, which would result in a 

“run-time error”. 

Each motor has a buffer of pending move equations in the sub-structures Motor[x].New[i] (i = 0 

to 15) that is kept in fast “locked” cache memory for efficient use. This 16-equation buffer queue 

should never be emptied during a continuous motion sequence, causing a run-time error, or 

overflowed, causing a buffer error. If run-time errors are occurring (Coord[x].ErrorStatus = 16), 

Sys.PreCalc should be increased. If buffer overflow errors are occurring (Coord[x].ErrorStatus 

= 2), Sys.PreCalc should be decreased. 

The status element Coord[x].BufferWarn can be used to optimize the setting of Sys.PreCalc 

without actually creating errors. Sys.PreCalc should be set high enough that 

Coord[x].BufferWarn is sometimes set to 1, meaning that another move block could not be 

loaded into the equation buffer, but set low enough that BufferWarn does not get set to 2, which 

would mean that a request for move calculations had to be delayed to keep from overflowing the 

buffer. 

Suspending Calculations Without a Full Motion Queue 

There are some cases in which Power PMAC will suspend motion calculations without keeping 

the motion queue as full as desired. This occurs when the program counter jumps back to an 

earlier point in the program multiple times without finding a move or dwell. The jump back can 

occur due to a while loop or a goto command to an earlier point. 

The reason for this type of calculation suspension is concern for indefinite looping while 

searching for the next move or equivalent command. Indefinite looping means that the processor 

will not release to other tasks of the same or lower priorities as long as it is in the loop, unduly 

delaying those tasks. In addition, if this occurs in the middle of a continuous sequence of moves, 

the equations for the next move may not be computed by the time that move needs to start, with 

the most recently calculated move ending at a non-zero velocity. When move equations are not 

ready in time, a “run-time error” condition occurs, ending program execution and aborting the 

resulting motion. 

Saved setup element Coord[x].GoBack specifies how many “jumps back” can occur before 

program calculations are suspended. If program calculations jump back (Coord[x].GoBack + 2) 

times without finding a move or equivalent command, program calculations are suspended at that 

point. If the most recently calculated move was set to blend or spline into the next move, a 

deceleration to a stop is computed for that move instead. Program calculations will resume when 

that deceleration is finished. If there are no moves in progress, program calculations will resume 

on the next real-time interrupt. 

In general, motion programs that permit indefinite looping without a move command inside the 

loop should be avoided. This is especially true when PVT-mode moves, or linear and circle-mode 

moves with cutter radius compensation active, are being executed, because the stopping of the 

executing moves when calculations are suspended may not be graceful. 
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Standard vs Synchronous Variable Assignments 

When Power PMAC is calculating moves in advance of the beginning of execution of those 

moves due to blending, acceleration limiting, cutter radius compensation, and/or buffered 

lookahead, any “standard” variable value assignment commands in the program that are executed 

before the move is calculated will occur well before the beginning of execution of that move as 

well. For variables used internally, such as parameters to specify the next move, this is 

appropriate. 

However, when the standard variable assignment command is used for something like setting the 

value of an external output (analog or digital), the actual output will be set well before the 

beginning of execution of the next programmed move, something that many users will find 

undesirable. Because it is a common desire to be able to set output values in a program to occur in 

proper sequence with the accompanying move execution, Power PMAC has implemented 

“synchronous” variable assignments. A synchronous assignment is denoted by using and addition 

“=” character in the assignment operator (e.g. M1 == 1 instead of M1 = 1, or M2 +== 32 

instead of M2 += 32). 

When the program calculation executes a synchronous variable assignment command, it places 

the operation in a special assignment queue that is “parallel” to the motion equation queue for the 

programmed moves. The actual assignment is not made until the equations for the next 

programmed move are pulled from the motion equation queue for execution. This puts the actual 

assignment in proper sequence with the move execution. 

For more details on synchronous variable assignments, see the section “Synchronous Variable 

Value Assignment” in the User’s Manual chapter “Power PMAC Computational Features”. 

Motion Error Response 

If the motion commanded from a motion program results in an error condition such as an 

overtravel limit trip, fatal following error, or amplifier fault that stops motion in either a killed or 

aborted condition, motion program execution is automatically aborted as well. This means that a 

motion program itself has no capability for trapping or responding to these types of errors; that 

response should be in a PLC program or on a host computer. 

Rotary Motion Programs 

Fundamentally, rotary motion programs follow the same execution rules as the “fixed” motion 

programs. Note that since rotary motion programs cannot jump to another line, forward or back, 

the only indefinite looping that could trigger suspension of calculations is a “single-line” while 

loop. 

In addition, execution of a rotary motion program can reach the end of what has already been 

downloaded in the Power PMAC. (This condition cannot occur in a fixed motion program.) If this 

occurs, calculations are of course suspended at this point, and if the most recently calculated 

move was set to blend or spline into the next move, a deceleration to a stop is computed for that 

move instead. When additional program lines are downloaded into the Power PMAC, program 

calculations will automatically resume. 

PLC Programs 

Power PMAC Script PLC programs execute much more like standard programming languages 

than do motion programs. When a “scan” of a PLC program is started by the Power PMAC 

scheduler, it executes until the end of the program, or until it reaches a “jump back” in the 
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program – the end of a while loop, or a goto command to an earlier line. If it reached the end 

of the program, the next scan will start at the beginning of the program; if it stopped on a jump 

back, the next scan will start at the point jumped back to. 

Foreground PLC Scans 

One or more of the Script PLC programs execute under the real-time interrupt (RTI). Saved setup 

element Sys.MaxRtPlc, which has a range of 0 to 3, specifies the number of the highest PLC 

program that will execute in foreground under the RTI. Each RTI, after any needed motion-

program calculations have been finished, a scan of each active foreground PLC program will be 

executed, starting with PLC 0. 

Background PLC Scans 

PLC programs with numbers higher than Sys.MaxRtPlc execute in background, in the time 

available when no interrupt tasks are executing. Each background cycle, one scan of each active 

background script PLC is executed. In between each scan of each background script PLC 

program, one scan of every active C PLC program is executed. After all of the background script 

PLC programs have executed a scan, the processor releases to the general-purpose operating 

system for independent applications to be able to execute for a period set by saved setup element 

Sys.BgSleep. 

Buffered I/O for PLC Programs 

While it is possible for Script PLC programs to read inputs directly and write to outputs directly 

in the middle of scans, many users will want to have the Power PMAC automatically read all 

hardware inputs into buffered registers synchronously at the start of a scan, and write to all 

hardware outputs from buffered registers at the end of a scan, as most traditional PLCs do. This 

permits the user’s application-specific PLC code to access only the buffered input and output 

registers in memory. 

Power PMAC provides this capability with its buffered PLC-style I/O functionality. (This was 

introduced in V2.1 firmware, released 2nd quarter 2016). With this functionality, multiple input 

registers can be automatically copied into buffered input registers at the start of a Script PLC scan 

cycle. The user can specify registers to be copied at the beginning of a background PLC scan 

cycle, at the beginning of a foreground PLC scan cycle, or some of each. 

The bits in each input register can be digitally filtered so that up to 4 consecutive scan cycles in 

the new state are required before the buffered holding register accepts the change. This is very 

useful for electrical noise mitigation and pushbutton debouncing. In addition, any buffered input 

bit can be forced on or off, useful for developing and debugging an application. 

Multiple output registers can be automatically copied from buffered output registers at the end of 

a Script PLC scan cycle. The user can specify registers to be copied at the end of a background 

PLC scan cycle, at the end of a foreground PLC scan cycle, or some of each. Any buffered output 

bit can be forced on or off, useful for developing and debugging an application. 

The buffered PLC-style I/O functionality is described in detail in the User’s Manual chapter 

Using General-Purpose Digital I/O with Power PMAC. 

Commanding Moves from PLC Programs 

A key difference from motion program execution is that PLC program execution is not sequenced 

by the move. If a PLC program executes a move command, program calculation does not suspend 
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at that point as in a motion program, but instead continues on. The move command is simply to 

start the move. 

This difference in execution rules between motion and PLC programs means that some tasks are 

better performed in one type of program or another. For execution of a pre-determined sequence 

of moves, it is usually better to use a motion program. (Remember also that PLC programs can 

only command rapid-mode axis moves and motor moves such as jogging and homing, so if any 

other move types are desired, these must be done from motion programs.)  

However, if the application may require decisions after the move starts, for example to change the 

destination or speed, or to deal with error conditions, a PLC program will be much better to use 

because its calculations stay active after the move starts and even if the move results in an error. 

Many applications will check the status of the move each scan until it either reaches the 

destination position properly or ends in an error. 

Note that a PLC program does not guarantee that the position-match function is executed before a 

commanded axis move to ensure that the starting axis position matches the present motor 

position. The program must explicitly execute a pmatch command to do this. (If the axis 

position already matches the present motor position, the pmatch command will not do anything, 

but it will not hurt and will only take a small amount of processor time.) 

In a PLC program, it is easy to “break into” an executing axis or motor move with a new move 

command. The new move will use the present instantaneous position, velocity, acceleration, and 

jerk as its starting point, providing a seamless transition. If the new move command is an 

incremental-mode axis move, the end point of this move will be specified distance from the end 

point of the presently executing move unless the new move command is preceded by a pmatch 

command, in which case the destination is calculated as the distance from the present 

instantaneous position. 

Delaying Action of a PLC Program 

It is a common desire to delay action of a script PLC program for a fixed period of time. Unlike 

in sequenced motion programs, dwell or delay commands cannot be used for this purpose. 

One method for delaying the action of a PLC program is to use one of the built-in “time-elapsed” 

status elements such as Sys.RunTime, which contains the time since power-up/reset completion 

in seconds. Delaying code would look like: 

MyEndTime = Sys.RunTime + MyDelayTime; 

while (Sys.RunTime < MyEndTime) {} 

In execution, each time the while loop is executed with the condition logically true, the PLC scan 

ends, and other tasks at the same priority level (e.g. other PLC programs) will be executed before 

the next scan of this PLC program, which will start at the beginning of the while loop again. 

In addition, Power PMAC provides a set of automatic “countdown timers” that are useful to delay 

actions of PLC programs for a specified time. (These timers are new in V2.2 firmware, released 

3rd quarter 2016.) There are 256 of these timers.  

Each timer has a non-saved setup data structure element Sys.CdTimer[i] (i = 0 to 255) that the 

user can write to at any time. This is a non-negative floating-point value, scaled in milliseconds.  
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The most common method of use is to write a value to a timer element, then have the PLC 

program loop until the element value reaches 0. 

For example, to delay with no action for a period of 750 milliseconds, the following PLC code 

segment could be used: 

Sys.CdTimer[5] = 750; 

while (Sys.CdTimer[5] > 0) {} 

 

In a Power PMAC project, the user can give a meaningful name to a timer with a #define 

directive. Also, it is common to perform some action, often a monitoring action, while looping. 

As an example, with the directive: 

#define MeasurementTimer Sys.CdTimer[12] 

the following code segment could be used to average measurements taken over a specified 

number of seconds: 

MeasurementTimer = MonitoringSeconds * 1000; 

ScanNumber = 1; 

InputSum = 0; 

while (MeasurementTimer > 0) { 

  InputSum += Acc59E3[4].Chan[0].AdcAmp[1]; 

  ScanNumber++; 

} 

InputAverage = InputSum / ScanNumber; 

 

Subprograms 

The execution rules for a subprogram are the same as for the top-level program in the program 

stack that calls the subprogram. If the top-level program is a motion program, execution of the 

subprogram follows motion program rules. If the top-level program is a PLC program, execution 

follows PLC program rules. A subprogram with motion commands would therefore execute 

differently when the top-level program is a PLC program compared to how it would execute 

when the top-level program is a motion program. For this reason, extreme care is recommended 

when writing a subprogram with commanded motion that is to be called by both motion and PLC 

programs. 

Kinematic Subroutines 

Kinematic subroutines are called implicitly from programs as needed. They should not contain 

any motion commands themselves. Their primary purpose is to convert between axis and motor 

positions, but can contain other calculations as well (e.g. collision avoidance checks). 

A kinematic subroutine will generally just run once through its calculations to the end. Looping 

constructs may be used, and are often useful for iterative solutions. The number of loop cycles 

that can be performed without suspending execution of the routine is determined by local data 

structure element Ldata.GoBack. Each time the routine is called, the value of this element is set 

to the value of saved setup element Coord[x].GoBack. If you wish a different value for the 

kinematic subroutine, a value should be explicitly assigned to the local element at the beginning 

of the subroutine (e.g. Ldata.GoBack = 20;). 
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Starting and Stopping Script Program Execution 

Power PMAC provides multiple commands, both on-line and within script programs, to start and 

stop execution of script motion and PLC programs. These commands are explained in this 

section. 

Coordinate System Addressing for Motion Programs 

For on-line commands that start or stop motion program execution, if the command is to affect a 

single coordinate system only, it will affect the modally addressed coordinate system for the 

communications thread used. This coordinate system is the one specified by the most recent &x 

command, where x is the number of the coordinate system. Often this addressing will 

immediately precede the command itself (e.g. &1r, &2a). Since the addressing is modal, it is not 

required that every subsequent command to the same coordinate system be preceded with an 

addressing command, but this is generally recommended for clarity.  

If a list of multiple coordinate systems immediately precedes the command (e.g. &1..3r, 

&2,4,6a), all of the listed coordinate systems are affected by the command, but the modally 

addressed coordinate system for the communications thread is not changed. 

For buffered program commands that start or stop motion program execution, the program issuing 

the command must either list the affected coordinate system in the command (e.g. run1, 

abort2), or modally address the coordinate system by setting the value of (non-saved) element 

Ldata.Coord for the program. Each PLC program and each coordinate system can have its own 

modally addressed coordinate system for these commands. For PLC programs, the power-on 

default value for Ldata.Coord is 0. For coordinate systems, which control the modal addressing 

of commands issued from motion programs running in the coordinate system, the default value 

for Ldata.Coord is the number of the coordinate system itself. Using the modal address, the 

coordinate system does not have to be listed in the command itself (e.g. run, abort). 

For buffered program commands that take an argument, such as the program number, the 

argument value comes after a colon character (e.g. start:500). If there is a value before the 

colon, this value specifies the coordinate system to be affected (e.g. start3:500) 

Starting Script Motion Program Execution 

There are several commands, both on-line and program, for starting motion program execution in 

different ways. 

For the coordinate system to be able to start execution of a motion program, the following 

conditions must be met: 

 All motors assigned to position axes in the coordinate system must be activated 

(Motor[x].ServoCtrl > 0), enabled, and in closed-loop mode. 

 If axis-definition statements are used, conversion from motor positions to matching axis 

positions must be possible (Coord[x].Csolve = 1) so Power PMAC can compute the 

starting axis positions from the present commanded motor positions. (If there is a 

forward-kinematic subroutine present for the coordinate system, Power PMAC assumes 

that it will calculate the starting axis positions correctly.) 
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 No motor assigned to a position axis in the coordinate system may have both overtravel 

limits set. 

 The selected motion program (and any label selected) must be present and valid. 

 If re-starting from a suspended state, all motors must be in the same commanded position 

as they were when initially stopped in the suspended state (but changes in master position 

when following is in offset mode are permitted). 

It is possible to execute a motion program in a coordinate system in which no motors are assigned 

to axes. This provides a type of “dry run” capability for the program. 

Selecting a Motion Program 

Before any motion program can be executed, one must be selected (“pointed to”). To point a 

coordinate system to a motion program, the on-line b command or the program begin command 

is used. The integer part of the numerical argument in the command (e.g. b75, begin:75) 

specifies the number of the motion program to be pointed to. The fractional part of the numerical 

argument, if any, specifies the number of the “jump label” in the motion program to be pointed 

to; the value of the fractional component is multiplied by 1,000,000 to obtain the number of the 

jump label. For example, b75.00135 or begin:75.00135 points to jump label N1350: of 

motion program 75. There is an implicit N0: jump label at the beginning of each motion 

program, so if there is no fractional component to the argument, the command points the 

coordinate system to the beginning of the motion program. 

On-Line r Command, Program run Command 

When a coordinate system that is presently pointing to a location in a motion program or a 

subprogram that has been called from a top-level motion program receives an on-line r command 

or is acted on by a program run command from another program, execution of the motion 

program is started in continuous mode, and will proceed until the end of the program is reached 

(unless a command to stop execution is received, or an error condition is detected). These 

commands can be used to start execution of a motion program that has not been executing, or to 

resume execution of a motion program that has been stopped in a suspended state. 

On-Line s Command, Program step Command 

When a coordinate system that is presently pointing to a location in a motion program or a 

subprogram that has been called from a top-level motion program receives an on-line s command 

or is acted on by a program step command from another program, execution of the motion 

program is started in “single-step” mode, and will proceed until it calculates the next move 

command in the program, or if it encounters a bstart command in the program before any 

move command, until it encounters the next bstop command. 

However, if Coord[x].StepMode is greater than 0, if the end of a program line is encountered 

before a move command is found, program calculation is stopped at the end of the program line. 

The s and step commands can be used to start execution of a motion program that has not been 

executing, or to resume execution of a motion program that has been stopped in a suspended 

state. (They can also be used to halt execution of a program that is currently running in 

continuous mode – see the section below under Stopping Script Motion Program Execution.) 
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On-Line start Command, Program start Command 

The on-line or program start command combines the functions of the b [begin] command 

and the r [run] command. It points the coordinate system to a specified motion program (and 

optionally to a jump label within that program), then starts continuous execution of that motion 

program. 

The integer part of the numerical argument in the command (e.g. on-line start12, program 

start:12) specifies the number of the motion program to be pointed to. The fractional part of 

the numerical argument, if any, specifies the number of the “jump label” in the motion program to 

be pointed to; the value of the fractional component is multiplied by 1,000,000 to obtain the 

number of the jump label. For example, on-line start12.001 or program start:12.001 

points to jump label N1000: of motion program 12. There is an implicit N0: jump label at the 

beginning of each motion program, so if there is no fractional component to the argument, the 

command points the coordinate system to the beginning of the motion program and executes it 

from that point. 

On-Line resume Command, Program resume Command 

When motion program execution in a coordinate system has been suspended, either at the end of 

a programmed move as with a q [pause] command, or in the middle of a move with a \ [lh\] 

or h [hold] command, execution can be resumed with an on-line resume command or program 

resume command. The resume command puts the program in continuous execution mode, even 

if it had been in single-step mode when suspended. 

On-Line > Command, Program lh> Command 

When motion program execution in a coordinate system has been suspended with a \ [lh\] or h 

[hold] command, execution can be resumed with an on-line > command or program lh> 

command. The suspended motion resumes in the forward direction, and program calculations will 

resume as needed as triggered by the progression of the commanded moves.  

If the program was in continuous execution mode (as from an r [run] command) when it was 

suspended, it will resume in continuous execution mode. If the program was in single-step 

execution mode (as from an s [step] command) when it was suspended, it will resume in 

single-step mode, which probably means that the already calculated moves will be finished 

without the calculation of further moves. 

The > [lh>] command can also be used when the coordinate system is retracing moves from the 

special lookahead buffer in the reverse direction after a < [lh<] command, without the need to 

come to a full stopped state in between. 

On-Line < Command, Program lh< Command 

When motion program execution in a coordinate system has been suspended during execution of 

moves from the special lookahead buffer with a \ [lh\] command, execution of buffered moves 

can be started in the reverse direction with an on-line < command or program lh< command. 

“Retrace” of these already buffered and executed moves can be continued as far back as the 

lookahead buffer has had room to store them. No motion program calculations are performed 

during this reverse execution of buffered moves. 
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The < [lh<] command can also be used when the coordinate system is executing moves from the 

special lookahead buffer in the forward direction, without the need to come to a full stopped state 

in between. 

Stopping Script Motion Program Execution 

Power PMAC provides a variety of methods for stopping motion program execution. This variety 

permits the user to select whether the halting action begins immediately or not, whether motion 

stops at the end of a programmed move or not, whether motion can be resumed or not, and what 

state the motors are left in. 

Normal End-of-Program Termination 

When the execution of the motion program finishes the last line in the program, the program 

counter is reset to the beginning of the motion program, but further program calculations are 

disabled. Moves that have been calculated by the program are completed. Motors assigned to axes 

in the coordinate system are left in closed-loop zero-velocity position control at the final 

programmed point. In this state, the program buffer can be opened to clear or reuse the buffer if 

desired. 

Program return Command 

When the execution of the motion program encounters a return command in the top-level 

program, the program counter is reset to the beginning of the motion program, but further 

program calculations are disabled. Moves that have been calculated by the program are 

completed. Commanded motion ends at the destination position of the last calculated move, with 

motion occurring along the programmed path in multi-axis applications. Motors assigned to axes 

in the coordinate system are left in closed-loop zero-velocity position control at the final 

programmed point. 

However, if execution encounters a return command in a called subprogram, the program 

counter is set back to the next line in the calling program. Note that there is an implicit return 

command at the end of every program buffer. 

Program stop Command 

When the execution of the motion program encounters a stop command in either the top-level 

program or a called subprogram, the program counter is reset to the beginning of the top-level 

motion program, but further program calculations are disabled. Moves that have been already 

calculated by the program are completed. Commanded motion ends at the destination position of 

the last calculated move, with motion occurring along the programmed path in multi-axis 

applications. Motors assigned to axes in the coordinate system are left in closed-loop zero-

velocity position control at the last programmed point. 

On-Line q Command or Program pause Command 

When the coordinate system executing the motion program receives an on-line q command, is 

acted on by a program pause command from another program, or encounters a pause 

command in either the top-level motion program or a called subprogram, further program 

calculations are disabled. Moves that have been already calculated by the program are completed. 

Commanded motion ends at the destination position of the last calculated move, with motion 

occurring along the programmed path in multi-axis applications. Motors assigned to axes in the 

coordinate system are left in closed-loop zero-velocity position control at the last programmed 

point. 
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Execution of the motion program can be resumed from this point with an on-line r or s 

command, or a program run or step command. Because execution can be resumed from this 

point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state; 

usually an a [abort] command is given first to put the coordinate system in a state where the 

buffer can be cleared. 

On-Line s Command or Program step Command 

When the coordinate system executing the motion program receives an on-line s command, is 

acted on by a program step command from another program, or encounters a step command 

in either the top-level motion program or a called subprogram, one more programmed move (or 

program section from bstart to bstop) is calculated, and further program calculations are 

disabled. Moves that have been calculated by the program are completed. Commanded motion 

ends at the destination position of the last calculated move, with motion occurring along the 

programmed path in multi-axis applications. Motors assigned to axes in the coordinate system are 

left in closed-loop zero-velocity position control at the last programmed point. 

Execution of the motion program can be resumed from this point with an on-line r or s 

command, or a program run or step command. Because execution can be resumed from this 

point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state; 

usually an a [abort] command or a b [begin] command is given first to put the coordinate 

system in a state where the buffer can be cleared. 

On-Line h Command or Program hold Command 

When the coordinate system executing the motion program receives an on-line h command, or is 

acted on by a program hold command from another program, the time-base “%” override value 

for the coordinate system is ramped down to zero, starting immediately, at a rate set by the value 

of saved setup element Coord[x].FeedHoldSlew for the coordinate system. Commanded motion 

during the deceleration occurs along the programmed path in multi-axis applications, ending at 

the point where the % value reaches zero. In general, this will not be at a programmed point. 

Motors assigned to axes in the coordinate system are left in closed-loop zero-velocity position 

control at the point where the % value reaches zero. 

Technically, the program is still running in this state (Coord[x].ProgRunning = 1), but because 

commanded motion is not advancing, no further program calculations are being triggered. It is 

possible to tell that motion has been stopped because Coord[x].ProgProceeding has been set to 

0. Also, Coord[x].FeedHold is set to 3 during the deceleration to stop, to 1 when stopped, and to 

2 when accelerating from stop during resumption of motion. 

Execution of the motion program can be resumed from this point with an on-line r, s, or > 

command, or a program run, step, or lh> command. Because execution can be resumed from 

this point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state; 

usually an a [abort] command or a b [begin] command is given first to put the coordinate 

system in a state where the buffer can be cleared. 

On-Line \ Command or Program lh\ Command 

When the coordinate system executing the motion program receives an on-line \ command, or is 

acted on by a program lh\ command from another program, program execution will be 

suspended in one of two ways. If the program is presently executing moves from the dynamic 

lookahead buffer, the motors are decelerated to zero velocity, starting immediately, using motion 
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segments from the lookahead buffer, at a rate limited by the maximum acceleration parameter 

Motor[x].InvAmax for one of the motors. This is called a “quick stop” command. In general, 

motion will not stop at a programmed point, but in a multi-axis application, it will stop along the 

programmed path. Motors assigned to axes in the coordinate system are left in closed-loop zero-

velocity position control at this point. 

If the program is not presently executing moves from the dynamic lookahead buffer, motion is 

stopped as if an h [hold] command had been given, as explained in the preceding section. 

Technically, the program is still running in this state (Coord[x].ProgRunning = 1), but because 

commanded motion is not advancing, no further program calculations are being triggered. It is 

possible to tell that motion has been stopped because Coord[x].ProgProceeding has been set to 

0. If stopped during a buffered lookahead move, Coord[x].LookAheadStop is set to 1. 

Execution of the motion program can be resumed from this point with an on-line r, s, or > 

command, or a program run, step, or lh> command. Because execution can be resumed from 

this point (Coord[x].ProgActive = 1), the motion program buffer cannot be cleared in this state; 

usually an a [abort] command or a b [begin] command is given first to put the coordinate 

system in a state where the buffer can be cleared. 

Reverse execution of already executed buffered lookahead move segments can be started from 

this point with an on-line < command or a program lh< command. 

On-Line %0 Command or Program DesTimeBase=0 Command 

When the time-base “%” override value for the coordinate system becomes exactly 0, move 

execution is effectively suspended, because the interpolation equations that generate new desired 

positions for the motors and axes in the coordinate system are “frozen” at a fixed time value. 

This state can occur in a variety of different ways. If the coordinate system has its default setting 

of responding to command changes in the time-base value (Coord[x].pDesTimeBase = 

Coord[x].DesTimeBase.a), this can be one with an on-line %0 command or a program 

Coord[x].DesTimeBase=0 command. Often this will come from an operator’s “override 

knob” setting of 0. The time-base “%” override value for the coordinate system is ramped down 

to zero, starting immediately, at a rate set by the value of saved setup element 

Coord[x].TimeBaseSlew for the coordinate system. 

If the coordinate system is using “external time base” from a master encoder or external clock 

pulse train (Coord[x].pDesTimeBase = EncTable[n].DeltaPos.a), the absence of pulses will 

cause the time-base value to become 0. Under external time base, Coord[x].TimeBaseSlew is 

usually set to a high enough value that it never limits the rate of change of the time base value; 

this is typically limited by the rate of change of frequency of the input signal. 

Commanded motion during the deceleration occurs along the programmed path in multi-axis 

applications, ending at the point where the % value reaches zero. In general, this will not be at a 

programmed point. Motors assigned to axes in the coordinate system are left in closed-loop zero-

velocity position control at this point. 

Technically in this mode, the program and moves are still executing (Coord[x].ProgRunning = 

1, Coord[x].ProgProceeding = 1). Note that this status is different from that of a “hold” 

condition. Execution of motion can be resumed simply by setting the time-base value greater than 
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zero, by command for internal time base, or by signal for external time base. Because execution 

can be resumed from this point (Coord[x].ProgActive = 1), the motion program buffer cannot be 

cleared in this state; usually an a [abort] command is given first to put the coordinate system in 

a state where the buffer can be cleared. 

On-Line a Command or Program abort Command 

When the coordinate system executing the motion program receives an on-line a command, or is 

acted on by a program abort command, all motors in the coordinate system are brought to a 

closed-loop stopped state, starting immediately. (Note that this includes motors in the coordinate 

system but not assigned to an axis – null definitions and spindle definitions.) Each motor is 

decelerated to a stop at a rate determined by its own saved setup elements Motor[x].AbortTa and 

Motor[x].AbortTs. In general, the motors will not stop at a programmed point, and in a multi-

axis application, the deceleration will not be along the programmed path.  

The program counter is automatically reset to the beginning of the motion program, so it is not 

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). Generally, an 

abort command is only used to halt execution of a running motion program when there is a fault 

or error condition. 

However, if program execution has been suspended in a manner that would permit resumption 

from the suspended point (hold, quit, step, etc.), and it is desired not to resume the program, an 

abort is commonly used to completely terminate program execution. This permits the motion 

program buffer to be cleared or reused. 

On-Line or Program disable Command 

When the coordinate system executing the motion program receives an on-line disable 

command, or is acted on by a program disable command, all motors in the coordinate system 

are immediately “killed” – the servo loops are opened, the servo outputs are forced to zero, and 

the amplifiers are disabled. (Note that this includes motors in the coordinate system but not 

assigned to an axis – null definitions and spindle definitions.) In general, the motors will not stop 

at a programmed point, and in a multi-axis application, the (uncontrolled) deceleration will not be 

along the programmed path. 

If automatic brake control is enabled for a motor in the coordinate system (Motor[x].pBrakeOut 

> 0), the disabling of the motor is not delayed until the brake is engaged. 

The program counter is automatically reset to the beginning of the motion program, so it is not 

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). All motors 

assigned to axes in the coordinate system must be re-enabled in closed-loop mode before the 

coordinate system can start a motion program again. Generally, a disable command is only used 

to halt execution of a running motion program when there is a fault or error condition so severe 

that motors cannot be brought to a closed-loop stop. 

On-Line or Program ddisable Command 

When the coordinate system executing the motion program receives an on-line ddisable 

command, or is acted on by a program ddisable command, all motors in the coordinate system 

are immediately “killed” – the servo loops are opened, the servo outputs are forced to zero, and 

the amplifiers are disabled. (Note that this includes motors in the coordinate system but not 

assigned to an axis – null definitions and spindle definitions.) In general, the motors will not stop 
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at a programmed point, and in a multi-axis application, the (uncontrolled) deceleration will not be 

along the programmed path. 

If automatic brake control is enabled for a motor in the coordinate system (Motor[x].pBrakeOut 

> 0), the disabling of the motor is delayed until the brake is engaged, as set by 

Motor[x].BrakeOnDelay. This delay is the only difference from using the disable command. 

Because the use of disabling action during motion program execution is generally only needed for 

serious fault conditions that could cause an immediate runaway, this delay is usually not 

desirable, so the standard disable command is usually used instead. 

The program counter is automatically reset to the beginning of the motion program, so it is not 

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). All motors 

assigned to axes in the coordinate system must be re-enabled in closed-loop mode before the 

coordinate system can start a motion program again. Generally, a disable command is only used 

to halt execution of a running motion program when there is a fault or error condition so severe 

that motors cannot be brought to a closed-loop stop. 

On-Line or Program adisable Command 

When the coordinate system executing the motion program receives the on-line adisable 

command, or is acted on by a program adisable command, all motors in the coordinate system 

are brought to a closed-loop stopped state, starting immediately, as if an “abort” command had 

been issued. Then, as each motor completes its controlled deceleration profile, reaching a 

“desired velocity zero” state, it executes a “delayed kill”, engaging the brake (if any), then 

disabling the motor (open-loop, zero output, amplifier disabled) after a delay of 

Motor[x].BrakeOnDelay milliseconds. 

The program counter is automatically reset to the beginning of the motion program, so it is not 

possible to resume execution at the stopped point (Coord[x].ProgActive = 0). Generally, an 

“adisable” command is only used to halt execution of a running motion program when there is a 

fault or error condition. 

On-Line #*k Command 

When the Power PMAC receives a #*k command (kill all motors), all motors in all coordinate 

systems are immediately “killed” – the servo loops are opened, the servo outputs are forced to 

zero, and the amplifiers are disabled. In general, the motors will not stop at a programmed point, 

and in a multi-axis application, the (uncontrolled) deceleration will not be along the programmed 

path. 

If automatic brake control is enabled for a motor in the coordinate system (Motor[x].pBrakeOut 

> 0), the disabling of the motor is not delayed until the brake is engaged. 

In all coordinate systems executing a motion program, the execution is immediately halted, and 

program counters are automatically reset to the beginning of the motion program, so it is not 

possible to resume execution at the stopped point. All motors assigned to axes in a coordinate 

system must be re-enabled in closed-loop mode before the coordinate system can start a motion 

program again. Generally, a kill command is only used to halt execution of a running motion 

program when there is a fault or error condition so severe that motors cannot be brought to a 

closed-loop stop. 
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Note that a kill command for specific motors (e.g. #3k or #1..8k), even if for all of the motors 

in the coordinate system, will not act on the motors of a coordinate system that is executing a 

motion program.  

On-Line #*dkill Command 

When the Power PMAC receives a #*dkill command (delayed kill of all motors), all motors in 

all coordinate systems are immediately “killed” – the servo loops are opened, the servo outputs 

are forced to zero, and the amplifiers are disabled. In general, the motors will not stop at a 

programmed point, and in a multi-axis application, the deceleration will not be along the 

programmed path. 

If automatic brake control is enabled for a motor (Motor[x].pBrakeOut > 0), the disabling of the 

motor is delayed until the brake is engaged, as set by Motor[x].BrakeOnDelay. This delay is the 

only difference from using the disable command. Because the use of disabling action during 

motion program execution is generally only needed for serious fault conditions that could cause 

an immediate runaway, this delay is usually not desirable, so the standard kill-all (#*k) command 

is usually used instead. 

In all coordinate systems executing a motion program, the execution is immediately halted, and 

program counters are automatically reset to the beginning of the motion program, so it is not 

possible to resume execution at the stopped point. All motors assigned to axes in a coordinate 

system must be re-enabled in closed-loop mode before the coordinate system can start a motion 

program again. Generally, a kill command is only used to halt execution of a running motion 

program when there is a fault or error condition so severe that motors cannot be brought to a 

closed-loop stop. 

Note that a kill command for specific motors (e.g. #3dkill or #1..8dkill), even if for all of 

the motors in the coordinate system, will not act on the motors of a coordinate system that is 

executing a motion program.  

Starting Script PLC Program Execution 

Power PMAC provides several commands to start and re-start PLC program execution, providing 

flexibility in operation and debugging. Note that on power-on, reset, and project download, all 

script PLC programs are disabled by default. Many users will put enabling commands into the 

automatically executed command list of the pp_startup.txt project file if they want some or 

all of their PLC programs to be running immediately on startup. 

On-Line enable plc Command, Program enable plc Command 

The on-line or program enable plc command (e.g. enable plc 1, enable plc 7..9) 

causes the listed script PLC program(s) to execute scans starting in their next turn in either the 

foreground cycle or the background cycle, as appropriate. The program(s) will continue to 

execute a scan in its turn in each cycle until stopped by a disable plc, pause plc, or 

step plc command. 

The enable plc command can act on a PLC program that is disabled, paused, stopped in 

single-step mode, or already enabled. In all cases, the next scan will start at the beginning of the 

program. This is appropriate if the PLC program is disabled, and is the only way to start or re-

start execution of the PLC program, but may not be appropriate for the other modes, particularly 

if the execution has stopped at a point other than the end of the program due to the scan ending at 

the end of a while loop or because the program was in single-step mode. 
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This command sets status bits Plc[i].Active and Plc[i].Running to 1 for the affected PLC 

program(s). 

On-Line step plc Command, Program step plc Command 

The on-line or program step plc command (e.g. step plc 0, step plc 3,5,9) causes 

the listed script PLC program(s), if disabled, paused, or stopped in single-step mode, to execute a 

single program line in their next turn in either the foreground cycle or the background cycle, as 

appropriate. If there are multiple commands on this program line, all will be executed in a single 

scan. Note that bstart and bstop commands in a PLC program do not affect how single-step 

operation works, unlike in motion programs. 

This command sets (or leaves) status bit Plc[i].Active to 1, and sets Plc[i].Running to 0 after 

completing the step for the affected PLC program(s). 

This single-step mode of execution for PLC programs is primarily for debugging purposes. 

On-Line resume plc Command, Program resume plc Command 

The on-line or program resume plc command (e.g. resume plc 31, resume plc 

9..17) causes the listed script PLC program(s), if paused or stopped in single-step mode, to re-

start executing scans in continuous mode starting in their next turn in either the foreground cycle 

of the background cycle, as appropriate. The program(s) will continue to execute a scan in its turn 

in each cycle until stopped by a disable plc, pause plc, or step plc command. The 

resume plc command does not act on a PLC program that is disabled. 

This command sets status bits Plc[i].Active and Plc[i].Running to 1 for the affected PLC 

program(s). 

Stopping Script PLC Program Execution 

Power PMAC provides several commands for stopping execution of script PLC program 

execution. These commands provide for different methods of stopping and subsequent re-starting. 

On-Line disable plc Command, Program disable plc Command 

The on-line or program disable plc command (e.g. disable plc 10, step plc 

13..17) causes the listed script PLC program(s) not to execute a scan starting in their next turn 

in either the foreground cycle or the background cycle, as appropriate. Execution can only be re-

started at the beginning of the program (regardless of where the last scan ended) with an enable 

plc command (which starts continuous execution) or with a step plc command (which starts 

single-step execution). 

If the disable plc command is issued from within the PLC program itself, the present scan 

will finish, even if the command is not the final command for the scan. 

This command sets status bits Plc[i].Active and Plc[i].Running to 0 for the affected PLC 

program(s). 

On-Line pause plc Command, Program pause plc Command 

The on-line or program pause plc command (e.g. pause plc 20, pause plc 

22,25,27) causes the listed script PLC program(s) not to execute a scan starting in their next 

turn in either the foreground cycle or the background cycle, as appropriate. Execution can be re-
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started at the paused point (beginning of a while loop if the last scan finished at the end of the 

loop, or at the beginning of the program if the last scan finished at the end of the program) in 

continuous mode with a resume plc command, or in single-step mode with a step plc 

command. Execution can be re-started at the beginning of the program (regardless of where the 

last scan ended) with an enable plc command 

If the pause plc command is issued from within the PLC program itself, the present scan will 

finish, even if the command is not the final command for the scan. 

This command leaves status bits Plc[i].Active at 1 and sets Plc[i].Running to 0 for the affected 

PLC program(s). 

On-Line step plc Command, Program step plc Command 

The on-line or program (if executed from a different program) step plc command (e.g. step 

plc 0, step plc 3,5,9) causes the listed script PLC program(s), if enabled, to execute a 

single program line in their next turn in either the foreground cycle or the background cycle, as 

appropriate. If there are multiple commands on this program line, all will be executed in a single 

scan. The program step plc command, if executed from within the same program, causes the 

PLC program to halt execution immediately at the end of the program line. 

In either case, the program is ready to restart operation at the next line either with a resume 

plc command (which starts continuous execution) or with a step plc command (which starts 

single-step execution). 

This command leaves status bits Plc[i].Active at 1 and sets Plc[i].Running to 0 for the affected 

PLC program(s). 
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Implementing an RS-274 Style Motion Program 

RS-274 is a widely accepted and widely used standard for path-control motion programs, 

particularly for use in computer-numerically-controlled (CNC) cutting machines. Many 

CAD/CAM (computer-aided-design/computer-aided-manufacturing) software packages produce 

RS-274 code as output. 

RS-274 is an old standard, dating back to times when the program parsers had to be very simple. 

Its syntax is therefore also very simple, with all commands in letter/number format (e.g. X100 

F50). It is also a very “loose” standard, with many different “dialects” of the language. In 

addition, there are many different machine-specific implementation issues that must be dealt with 

in any application. 

Power PMAC supports implementation of RS-274 programs through a two-pronged strategy. 

First, the native Power PMAC motion command syntax is compatible with the RS-274 standard. 

In other words, Power PMAC can directly execute the move commands of an RS-274 program. 

Second, Power PMAC interprets the other key commands in the RS-274 standard as subroutine 

calls. This permits the machine integrator to write embedded subroutines that implement these 

codes, using whatever “dialect” is desired, and covering all machine-specific issues. 

G, M, T, and D-Codes 

The standard “codes” in RS-274 are G-codes, M-codes, T-codes, and D-codes. Power PMAC 

treats these as subroutine calls to dedicated subprograms.  

A G-code (preparatory code) is a call to the subprogram of the number specified by 

Coord[x].Gprog (default of subprog 1000) at the line jump label 1000 times the code 

number (e.g. G17 jumps to N17000: of this subprogram). 

An M-code (machine-output code) is a call to the subprogram of the number specified by 

Coord[x].Mprog (default of subprog 1001) at the line jump label 1000 times the code 

number (e.g. M08 jumps to N8000: of this subprogram). 

A T-code (tool-select code) is a call to the subprogram of the number specified by 

Coord[x].Tprog (default of subprog 1002) at the line jump label 1000 times the code 

number (e.g. T5 jumps to N5000: of this subprogram). 

A D-code (tool-data code) is a call to the subprogram of the number specified by 

Coord[x].Dprog (default of subprog 1003) at the line jump label 1000 times the code 

number (e.g. D25 jumps to N25000: of this subprogram). 

Therefore, to implement the execution of RS-274 programs, the machine integrator must write 

subprograms that execute the specific codes of these types in the manner desired. With these 

subprograms resident in the Power PMAC, it can execute standard RS-274 “part programs” 

directly. Part programmers and machine operators do not need to understand the underlying 

mechanism for this execution. 

In most implementations, these subprograms will be called only from motion programs running in 

a single coordinate system, typically C.S.1. However, it is possible for motion programs running 

in multiple coordinate systems to call the same subprograms. Due to the use of variables unique 
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to each coordinate system (local variables [L and D] or coordinate-system global [Q]), many 

tasks can be done in the subprograms for multiple coordinate systems without conflict. However, 

it may be easier in many cases to use separate subprograms for separate coordinate systems, even 

if many of the code subroutines are identical between coordinate systems. This is particularly true 

for M-codes, which will likely use different outputs the same tasks in different coordinate 

systems. 

Note that if the part program executes a code that causes a call to a non-existent subroutine in an 

existing subprogram, it is treated as a “no-op”, and does not cause an error. 

If the same subprogram can be called from motion programs running in multiple coordinate 

systems, and it is necessary to know which coordinate system is calling it, this can be determined 

from the value of local data structure element Ldata.coord. If it is necessary to access a data 

structure element for the coordinate system that is executing the subroutine, a local variable 

should be given the value of this element, and the local variable then used as the index for the 

coordinate system. For example: 

local ThisCs; 

… 

ThisCs = Ldata.coord; 

Coord[ThisCs].NoBlend = 1; 

S-Codes 

S-codes in RS-274 programs are commonly used to set spindle speeds or equivalent (e.g. laser 

intensity, waterjet pressure). Sometimes the S-value is used as an argument in an M-code. For 

example M03 S1200 may mean “start spindle clockwise at 1200 rpm”. In this case, the S-value 

is passed to the M03 subroutine with a read(S) command and the value is put in local variable 

D19 for the coordinate system. The subroutine can then process this value further. 

If the S-code is executed in a motion program when it is not an argument in a subroutine call, the 

value of the constant or expression following it is assigned to local variable D53 for the 

coordinate system, where it can be used by other routines as the user desires. 

If Coord[x].Sprog is set to a value greater than 0 when this “independent” S-code is executed, 

then after D53 is set to the value of the code, the subprogram specified by Coord[x].Sprog 

(suggested 1004) is called. If the subprogram has a numerical jump label matching the code 

number (1000 times the code number), subprogram execution will start at that label. 

If the subprogram does not have a numerical jump label matching the code number, subprogram 

execution will start from the top. In many applications, the execution logic of the subprogram will 

be identical for all S-code values (with the S-code value in D53 simply specifying the speed), so 

no numeric jump labels will be used. 

This subprogram can be used when more complex control is required, such as stopping motion 

until the specified speed is reached. The ability to call this subprogram is new in V2.4 firmware, 

released 1st quarter 2018. 
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H-Codes 

An H-code (height-offset code) is a call to the subprogram of the number specified by 

Coord[x].Hprog (commonly subprog 1005) at the line jump label 1000 times the code 

number (e.g. H06 jumps to N6000: of this subprogram). 

Standard G-Codes 

This section explains implementation issues with the most common, and most standard of the 

“preparatory” G-codes in RS-274 programs. These subroutines would be included in the 

subprogram whose number is specified by Coord[x].Gprog, which is usually the default 

subprog 1000. These examples are intended just as a starting point, as each application will 

have unique features depending on the “dialect” used and machine-specific features. 

Note 

While many of the “modal” G-codes shown here will cause 

specific settings of built-in coordinate-system status bits, many 

users will want to set customized status values in user variables 

in order to optimize the ease of monitoring the machine state 

for operator display. 

 

Top of Program – Non-Existent Codes 

A robust implementation of a G-code subprogram should consider what action should be taken if 

the motion program uses a G-code number that has not been specifically implemented in the 

subprogram. 

When there is a subprogram call to a non-existent label (but in an existing subprogram), such as 

would occur with an unimplemented G-code, Power PMAC jumps to the top of the subprogram. 

So whatever action is to be taken on an unimplemented code should be specified at the very 

beginning of the G-code subprogram. Note that this should be before any jump label, including 

the N0: label used for the G00 code implementation. 

If an unimplemented G-code call is desired to be an error that stops execution of the motion 

program, there should simply be a stop command at the top of the subprogram. This halts 

execution of the program and returns the program counter to the beginning of the top level motion 

program. The stop command does not need to be followed by a return command, but using 

the return command may make it easier to understand that this is separate action from 

subsequent codes. 

If an unimplemented G-code call is desired just to be a “no-op”, there should simply be a 

return command at the top of the subprogram. 

Some users may want to “clear” the motion program line of possible arguments, as when the call 

is for an unimplemented canned cycle. This can be done with a read command that checks the 

command line for most possible letter arguments (but probably not G or M). For example: 

read(A,B,C,D,E,H,I,J,K,L,P,Q,R,S,T,U,V,W,X,Y,Z); 

return; 
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Of course, with a system variable and branching logic, it is possible to implement the user’s 

choice of these options, giving the possibility of one option for development and debugging, and 

another for operation. 

G00 – Point-to-Point Positioning Mode 

In Power PMAC, the G00 point-to-point positioning mode is usually implemented by declaring 

the rapid move mode. The subroutine can be as simple as: 

N0: rapid return; 

 

Under the RS-274 standard, the parameters for G00 moves are not set in the program, but rather 

by system constants. In Power PMAC, motor speed for a rapid-mode move is set by 

Motor[x].MaxSpeed or Motor[x].JogSpeed, depending on the setting of 

Motor[x].RapidSpeedSel. Whether all motors use these speeds, or those with shorter times for a 

move are slowed to match the time of the longest motor, is determined by 

Coord[x].RapidVelCtrl. Acceleration and deceleration are controlled by Motor[x].JogTa and 

Motor[x].JogTs. 

Some users will want to implement point-to-point positioning with a “fast” linear mode, 

especially if the coordinate system is defined with kinematic subroutines. In this case, a rapid-

mode move may yield an unpredictable path in tool-tip coordinates, because the inverse 

kinematics are only calculated for the end-point of a rapid-mode move, and no lookahead 

dynamic limiting is possible. In addition, the use of linear mode permits the use of the same 

“segmentation override” for feedrate override functions as for G01, G02, and G03 modes, and 

provides the possibility of using separate acceleration and deceleration parameters. 

There are multiple techniques for making Power PMAC’s linear move mode behave much like 

the rapid move mode, but the simplest is to remove all axes from the vector-feedrate axis list with 

the nofrax command, then use the value of Coord[x].AltFeedrate to control the speed of the 

move(s). This technique is appropriate when there are only Cartesian positioning axes in the 

system. The AltFeedrate parameter is used to calculate the move time whenever the time for a 

“non-feedrate axis”, calculated as the axis distance divided by this value, is greater than the time 

for the “vector feedrate” axes, calculated as the vector distance divided by the vector feedrate. 

With no vector feedrate axes, this second time is zero, and the first of these move times will be 

used, and it will be the longest time for any of the axes. 

To implement point-to-point positioning mode with this technique, the G00 subroutine could be 

implemented something like: 

N0: linear; 

dwell 0; 

nofrax; 

Coord[1].AltFeedrate = MyRapidSpeed; 

Coord[1].NoBlend = 1; 

return; 

 

In this example, MyRapidSpeed is a user variable or constant in axis units (as set by the axis 

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting 

Coord[x].NoBlend to 1 ensures that no moves will be blended together. 



Power PMAC User’s Manual 

Writing and Executing Script Programs in the Power PMAC 656 

If there are rotary axes as well, it is better to specify a very high feedrate value, high enough that 

at least one of the motors, linear or rotary, will always be limited by its Motor[x].MaxSpeed 

parameter. In this case, the G00 subroutine could be implemented something like: 

N0: linear; 

if (MyMoveMode != 0) { 

  dwell 0; 

  MyLastCuttingFeedrate = -Coord[1].Tm; 

} 

MyMoveMode == 0; 

F(MyRapidFeedrate); 

Coord[1].NoBlend = 1; 

return; 

 

In this example, the present programmed feedrate is stored in a user variable so it can be restored 

when returning to G01, G02, or G03 mode. 

G01 – Linear Interpolation Mode 

G01 linear interpolation mode is virtually always implemented using Power PMAC’s linear move 

mode. If G00 mode is implemented using Power PMAC’s rapid move mode, the G01 subroutine 

could simply be: 

N1000: linear return; 

 

If G00 mode is implemented as a “fast linear” mode with the speed controlled by 

Coord[x].AltFeedRate, the G01 subroutine could be implemented as: 

N1000: linear;  

frax(X,Y,Z); 

Coord[1].AltFeedrate = MyRotarySpeed; 

Coord[1].NoBlend = 0; 

return; 

 

In this example, Coord[x].AltFeedRate would control the speed of any moves only involving 

non-feedrate axes – usually rotary axes – and only needs to be set if there are non-feedrate axes in 

the system. MyRotarySpeed is a user variable or constant in axis units (as set by the axis 

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting 

Coord[x].NoBlend to 0 enables blending between subsequent linear and circle mode moves. 

If G00 mode is implemented as a “fast linear” mode with the speed controlled by a motor’s 

Motor[x].MaxSpeed, the G01 subroutine could be implemented as: 

N1000: linear;  

if (MyMoveMode == 0) { 

  dwell 0; 

  F(MyLastCuttingFeedrate); 

} 

MyMoveMode == 1; 

Coord[1].NoBlend = 0; 

return; 
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G02 – Clockwise Circular Interpolation Mode 

G02 clockwise circular interpolation mode is virtually always implemented using Power PMAC’s 

circle1 move mode. If G00 mode is implemented using Power PMAC’s rapid move mode, the 

G02 subroutine could simply be: 

N2000: circle1 return; 

 

If G00 mode is implemented as a “fast linear” mode with the speed controlled by 

Coord[x].AltFeedRate, the G02 subroutine could be implemented as: 

N2000: circle1; 

frax(X,Y,Z); 

Coord[1].AltFeedrate = MyRotarySpeed; 

Coord[1].NoBlend = 0; 

return; 

 

In this example, Coord[x].AltFeedRate would control the speed of any moves only involving 

non-feedrate axes – usually rotary axes – and only needs to be set if there are non-feedrate axes in 

the system. MyRotarySpeed is a user variable or constant in axis units (as set by the axis 

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting 

Coord[x].NoBlend to 0 enables blending between subsequent linear and circle mode moves. 

If G00 mode is implemented as a “fast linear” mode with the speed controlled by a motor’s 

Motor[x].MaxSpeed, the G02 subroutine could be implemented as: 

N2000: circle1; 

if (MyMoveMode == 0) { 

  dwell 0; 

  F(MyLastCuttingFeedrate); 

} 

MyMoveMode == 2; 

Coord[1].NoBlend = 0; 

return; 

 

G03 – Counterclockwise Circular Interpolation Mode 

G03 counterclockwise interpolation mode is virtually always implemented using Power PMAC’s 

circle2 move mode. If G00 mode is implemented using Power PMAC’s rapid move mode, the 

G03 subroutine could simply be: 

N3000: circle2 return; 

 

If G00 mode is implemented as a “fast linear” mode with the speed controlled by 

Coord[x].AltFeedRate, the G03 subroutine could be implemented as: 

N3000: circle2; 

frax(X,Y,Z); 

Coord[1].AltFeedrate = MyRotarySpeed; 

Coord[1].NoBlend = 0; 

return; 

 

In this example, Coord[x].AltFeedRate would control the speed of any moves only involving 

non-feedrate axes – usually rotary axes – and only needs to be set if there are non-feedrate axes in 

the system. MyRotarySpeed is a user variable or constant in axis units (as set by the axis 



Power PMAC User’s Manual 

Writing and Executing Script Programs in the Power PMAC 658 

definitions) per coordinate system time unit (as set by Coord[x].FeedTime). Setting 

Coord[x].NoBlend to 0 enables blending between subsequent linear and circle mode moves. 

If G00 mode is implemented as a “fast linear” mode with the speed controlled by a motor’s 

Motor[x].MaxSpeed, the G03 subroutine could be implemented as: 

N3000: circle2; 

if (MyMoveMode == 0) { 

  dwell 0; 

  F(MyLastCuttingFeedrate); 

} 

MyMoveMode == 3; 

Coord[1].NoBlend = 0; 

return; 

 

G04 – Dwell Command 

The G04 code implements a “dwell” of a specified time. In different “dialects” of RS-274, the 

time is specified in different ways, but always with a letter/number combination immediately 

following the G04 code. Common letters used are X, P, L, and D, and the number values can 

represent the dwell time in seconds or milliseconds. The subroutine will use the read command 

to obtain the value associated with the chosen letter. 

Most Power PMAC implementations will choose a single letter and a specific time unit for the 

dwell. For example, to use the letter P with a number specifying the time in seconds, the 

subroutine could be: 

N4000: read(P); 

dwell(D16 * 1000); 

return; 

 

The read(P) command places the value after the letter P in the main program into local 

variable D16 (as P is the 16th letter of the alphabet). Since Power PMAC’s dwell time is always 

specified in milliseconds, the specified time in seconds is multiplied by 1000. 

A more robust implementation may want to ensure that a dwell time value has actually been 

specified in the command line. In the above subroutine, if no P-value were specified after the G04 

in the part program, the subroutine would execute a dwell using whatever value happened to be in 

the D16 variable at the time. Bit n-1 of local variable D0 is set to 1 if and only if a value 

associated with the nth letter of the alphabet has been successfully read in the most recent read 

command. For the letter P, this is bit 15, with a value of 215, or 32,768. A subroutine using this 

feature would be like the following: 

N4000: read(P); 

if (D0 & 32768) dwell(D16 * 1000); 

else dwell 0; 

return; 

 

Of course, the action to take, if any, if no value is present to be read, is up to the integrator. 

Power PMAC’s dwell command always executes at 100%; it does not use the feedrate override 

value (whether time base or segmentation override) in force at the time. It also stops any pre-

calculation for blending and lookahead purposes. On the other hand, Power PMAC’s delay 
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command executes at the override value in effect at the time, and does not disable pre-calculation. 

Depending on what features the integrator wants, dwell, delay, or both commands could be 

used. For example, to implement a G04 that uses the override value in effect, but disables pre-

calculation, the following subroutine could be used: 

N4000: read(P); 

if (D0 & 32768) { 

  dwell 0; 

  delay(D16 * 1000); 

  dwell 0; 

} 

else dwell 0; 

return; 

 

G09 – Exact Stop 

The G09 code is typically a “single-shot” (non-modal) exact stop intended to disable blending 

between consecutive modes that normally would be blended together. It can be implemented by 

setting non-saved setup element Coord[x].OnceNoBlend to 1, so blending is automatically 

disabled after the next move: 

N9000: Coord[1].OnceNoBlend = 1 return; 

 

The value of Coord[x].OnceNoBlend is automatically decremented each time it is used to inhibit 

a blend. So after the next move is executed, and the blending to the following move is inhibited, 

OnceNoBlend will automatically be set to 0, and subsequent blending will not be inhibited. (This 

functionality is distinct from the “exact stop mode” of G61 enabled by setting the modal 

Coord[x].NoBlend to 1.) 

In exact-stop mode, if Coord[x].InPosTimeOut is set to its default value of 0, the commanded 

trajectory is brought to a momentary stop at the programmed point, but the actual positions may 

not have reached the point before the next commanded move is begun. If it is set to a value 

greater than 0, all motors in the coordinate system must become “in position” before the next 

commanded move is begun. However, if this does not occur within the specified number of real-

time-interrupt periods from the end of the commanded move, the program will stop with a time-

out error. 

The operation described above is for the standard functionality of single-shot exact stop, where 

the blending is disabled after the next move commanded in the part program. So if the part 

program had the command line G09 X10 Y20, the blending would be disabled at the point 

(10,20). If you wish the G09 code to inhibit blending before the next move, the subroutine should 

be: 

N9000: dwell 0 return; 

 

G17, G18, G19 – Circle, Cutter Comp Plane Select 

The G17, G18, and G19 codes are used to specify the plane in X/Y/Z Cartesian space for circular 

interpolation and 2D cutter radius compensation. G17 specifies the XY plane, G18 specifies the 

ZX plane, and G19 specifies the YZ plane. In Power PMAC, this plane specification is performed 

using the normal command, which specifies the vector normal to the desired plane. The standard 

implementation of these codes would be: 

N17000: normal K-1 return; 
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N18000: normal J-1 return; 

N19000: normal I-1 return; 

G40, G41, G42 – 2D Cutter Radius Compensation Control 

The G40, G41, and G42 codes are used to control the 2D cutter radius compensation 

functionality. G40 turns off the compensation, removing it gradually over the next linear-mode 

move. G41 turns on compensation to the left, introducing it gradually over the next linear-mode 

move. G42 turns on compensation to the right, introducing it gradually over the next linear-mode 

move. This functionality is accomplished in Power PMAC with the ccmode0, ccmode1, and 

ccmode2 commands, respectively. This means that the standard implementation of these codes 

would be: 

N40000: ccmode0 return; 

N41000: ccmode1 return; 

N42000: ccmode2 return; 

Typically, specification of the cutter radius using the ccr{data} command is not performed 

within these G-code routines. More commonly, it is specified in a T-code or D-code routine. 

G61, G64 – Exact Stop, Continuous Cutting Mode Control 

The G61 and G64 codes specify modal control of how cutting moves (linear and circle mode) are 

combined. G61 specifies “exact stop” mode, in which the moves are not blended together, so the 

trajectory comes to a full stop between each move. G64 specifies continuous cutting mode, in 

which the moves are blended together without stopping. In Power PMAC, this control is 

implemented through the setting of Boolean element Coord[x].NoBlend, so the standard 

implementation of these codes would be: 

N61000: Coord[1].NoBlend = 1 return; 

N64000: Coord[1].NoBlend = 0 return; 

Coord[x].NoBlend is a saved setup element, so the power-on/reset default state can be chosen by 

the integrator. The factory default value for this element is 0, so blending is enabled by default. 

In exact-stop mode, if Coord[x].InPosTimeOut is set to its default value of 0, the commanded 

trajectory is brought to a momentary stop at each programmed point, but the actual positions may 

not have reached the point before the next commanded move is begun. If it is set to a value 

greater than 0, all motors in the coordinate system must become “in position” before the next 

commanded move is begun. However, if this does not occur within the specified number of real-

time-interrupt periods from the end of the commanded move, the program will stop with a time-

out error. 

The modal exact stop operation of G61 is distinct from the single-shot exact stop of G09. 

G90, G91 – Absolute, Incremental Move Mode Control 

The G90 and G91 codes specify absolute and incremental axis modes, respectively. In absolute 

mode, the axis values in move commands represent positions (i.e. referenced to the axis 

programming origin). In incremental mode, the axis values in move commands represent 
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distances (i.e. referenced to the axis starting position for the move). These modes are 

implemented in Power PMAC with the abs and inc commands, respectively. This means that 

the standard implementation of these codes would be: 

N90000: abs return; 

N91000: inc return; 

G93, G94 – Inverse-Time, Feedrate Move Mode Control 

The G93 and G94 codes specify how the values provided in the programmed F-codes are used. In 

the G94 “feedrate” mode, the F-code value specifies the vector speed of the Cartesian axes, 

typically in millimeters per minute or inches per minute. This is the default power-up mode for 

Power PMAC. 

In the G93 “inverse-time” mode, the F-code value specifies the reciprocal of the time for the 

move, typically with the time in minutes being one divided by the F-code value. This mode is 

commonly used when linear and rotary axes are commanded together in the same move block. It 

is enabled by setting non-saved setup element Coord[x].InvTimeMode to a non-zero value. 

Standard implementation of these codes would be: 

N93000: Coord[1].InvTimeMode = 1 return; 

N94000: Coord[1].InvTimeMode = 0 return; 

Settings for Coord[x].InvTimeMode of 2 or 3 compute the time for circle-mode moves 

differently from the setting of 1 used above. Refer to the description of inverse-time mode in the 

User’s Manual chapter Power PMAC Move Mode Trajectories or the Software Reference 

description of the parameter for details. 

Both feedrate and inverse-time mode use the value of saved setup element Coord[x].FeedTime 

in their calculations. This parameter itself has units of milliseconds. In virtually all RS-274 

applications, Coord[x].FeedTime should be set to 60,000 so feedrates are specified in 

millimeters or inches per minute, and times are specified as minutes divided by the F-code value. 

Note that the factor default value of Coord[x].FeedTime is 1,000, specifying seconds, not 

minutes. 

G95 – Length per Revolution Mode Control 

The G95 code, commonly used in lathe-style applications for operations like thread cutting, 

permits the feedrate to be specified in units of length per revolution of the spindle (millimeters 

per rev or inches per rev). 

With Power PMAC’s “external time base” feature, the spindle does not need to be under precise 

control of the Power PMAC; instead, its encoder can be used as the time base “master” for the 

coordinate system with the linear axes. Refer to the chapter Synchronizing Power PMAC to 

External Events for details. 

The key actions for this code are to define a “real time” speed for the spindle master (in 

revolutions per minute), then calculate the “real time input frequency” from the encoder (in 

counts per millisecond) that would be produced at this speed. An encoder conversion table entry 

whose scaling EncTable[i].ScaleFactor value uses the RTIF processes the spindle encoder input. 
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A typical implementation of the G95 code would look like the following: 

N95000:     // G95: length per rev mode 

dwell 0;     // Stop pre-computation and motion 

Coord[1].InvTimeMode = 0;  // Not compatible with inverse time 

Coord[1].TimeBaseSlew = 1.0; // High value to track master 

Coord[1].FeedTime = 60000 / SpindleRtRpm; // Time for rev in real time 

Coord[1].pDesTimeBase = EncTable[i].DeltaPos.a; // Use encoder freq 

return; 

 

When using this code, it is necessary to restore settings properly for the G93 and G94 modes. 

Typical implementations of those codes would look like the following: 

N93000:     // G93: inverse time mode 

dwell 0;     // Stop pre-computation and motion 

Coord[1].InvTimeMode = 0;  // Enable inverse time calcs 

Coord[1].TimeBaseSlew = 0.001; // Low value for gradual change 

Coord[1].FeedTime = 60000;  // F values are minute/F-command 

Coord[1].pDesTimeBase = Coord[1].DesTimeBase.a; // Use cmd % value 

return; 

 

N94000:     // G94: length per minute mode 

dwell 0;     // Stop pre-computation and motion 

Coord[1].InvTimeMode = 0;  // Not inverse time 

Coord[1].TimeBaseSlew = 0.001; // Low value for gradual change 

Coord[1].FeedTime = 60000;  // F values are per minute 

Coord[1].pDesTimeBase = Coord[1].DesTimeBase.a; // Use cmd % value 

return; 
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POWER PMAC MOVE MODE TRAJECTORIES 

Power PMAC supports five fundamental move modes, each with its own particular strengths. 

These move modes are: 

 Rapid mode: trapezoidal/triangular profiles, minimum-time point-to-point moves 

 Linear mode: trapezoidal/triangular profiles, straight-line paths in Cartesian space 

 Circle mode: sinusoidal velocity profiles, arc paths in Cartesian space 

 Spline mode: parabolic velocity profiles, cubic B-spline paths 

 PVT mode: parabolic velocity profiles, Hermite-spline paths 

 

Each move mode can be declared in a motion program, and all following move commands in the 

program are executed using the rules of that mode, until a different mode is declared. PLC 

programs can only command rapid-mode moves; if a PLC program commands a move, the 

addressed coordinate system is automatically placed in rapid mode. 

Modal Move-Rule Commands 

The program commands that tell Power PMAC how to interpret the actual move commands are 

all modal in nature. That is, the command affects all subsequent moves in the program until 

another modal command of the same type is executed, superseding it. For example, the 

commands that specify one of the five move modes – rapid, linear, circle, spline, pvt 

– control all subsequent moves until another mode is commanded. The same is true for 

commands setting move times or speeds, and those specifying absolute versus incremental mode. 

Move Commands 

The move commands themselves consist of a set of one-letter (e.g. X) or two-letter (e.g. YY) axis-

specifiers, each followed by one or two values – a constant without parentheses (e.g. X-20) or a 

mathematical expression in parentheses (e.g. YY(Target+50) ). The first value specified after 

the axis name is always the end destination position if the axis is in abs (absolute) mode, or the 

distance from the start point to the end point if the axis is in inc (incremental) mode. The 

meaning of the second value, if there is one, depends on the move mode. 

All separate axis moves specified on the same command line (e.g. X10.34 Y20) will execute 

simultaneously in a coordinated fashion, starting at the same time, and in all modes except 

possibly rapid mode, ending at the same time. Axis moves specified on separate lines will execute 

sequentially, with or without stops in between, depending on the mode(s) in effect at the time. 

Note that if any given axis specifier is found for a second time in one program line, Power PMAC 

interprets this point as the beginning of a new command line. This permits multiple moves to be 

condensed onto a single command line (e.g. X5 Y10 X7 Y13), possibly improving the 

efficiency of the download process. 

If an axis in the coordinate system is not explicitly commanded in the move command, it is 

implicitly commanded to have the same endpoint as start point for the move. Often this means 

that the axis is commanded to hold still during the move. 
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Rapid Move Mode 

Rapid-mode moves provide for minimum-time point-to-point moves, subject to predefined motor 

constraints. These moves are essentially jog moves for each motor assigned to an axis specified in 

the move. Successive rapid-mode moves are not blended together on the fly, as in other move 

modes, but it is possible to break into a rapid-mode move at the presently executing point and 

alter the move. Power PMAC’s rapid move mode is equivalent to the G00 mode in RS-274 

machine-tool code. 

Rapid-mode moves can be commanded either from motion programs or PLC programs. They are 

the only type of move that can be commanded from PLC programs. If a move command is issued 

from a PLC program, the coordinate system addressed by the PLC program is automatically put 

into rapid mode (even if another move mode has just been declared in the program). 

Rapid Mode Declaration 

To put a coordinate system (and all the axes in the coordinate system) into the rapid move mode, 

the rapid command is used. All subsequent move commands will be interpreted using the rules 

of the rapid move mode until another move mode is declared. 

Position or Distance Specification 

The destination point of a rapid-mode move is specified in the move command itself (e.g. 

X10Y20). The commanded destination for each axis can be specified as a position relative to the 

programming origin (if the axis is in abs absolute mode) or with a distance from the last 

commanded position (if the axis is in inc incremental mode). The command specifies one of 

these; Power PMAC automatically calculates the other. 

Velocity Specification 

The top speed of a rapid-mode move is set either by the value of Motor[x].MaxSpeed or 

Motor[x].JogSpeed. If Motor[x].RapidSpeedSel is set to the default value of 1, 

Motor[x].MaxSpeed is used; if it is set to 0, Motor[x].JogSpeed is used instead. Note that a 

move may not be long enough in distance to reach this top speed, given the acceleration 

parameters. 

If multiple axes are specified in the same move command, Power PMAC computes the move time 

for each motor as the distance divided by the top speed. If Coord[x].RapidVelCtrl is set to its 

default value of 0, all motors will use these move times (and therefore their commanded speeds), 

and the motors with shorter times will finish first. However, if Coord[x].RapidVelCtrl is set to 

1, the lesser move times are extended to equal the longest move time. In a Cartesian system, this 

will yield a straight-line or nearly straight-line path, depending on the acceleration specifications 

(see below). 

No further checking of command velocity against any velocity limits is performed for rapid-mode 

moves in any mode. 

Acceleration Specification 

The acceleration profile for rapid-mode moves is specified on a motor-by-motor basis using the 

saved setup elements Motor[x].JogTa and Motor[x].JogTs (the same parameters that govern 

acceleration for jogging and homing-search moves. 
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Specification by Time 

If Motor[x].JogTa is greater than zero, it specifies the basic acceleration time in milliseconds. 

This time is used regardless of the change in speed, so the rate of acceleration will be different for 

different changes in speed. 

If Motor[x].JogTs is greater than zero, it specifies the “S-curve” time (the time in each half of 

the “S” of the profile) in milliseconds. During the “S-curve” portion of the profile, the 

acceleration is increasing or decreasing at a constant rate (so these sections of the profile have a 

constant “jerk”). This time is used regardless of the value of the peak acceleration, so the rate of 

jerk will be different for different peak accelerations. If it is set to 0, there are no S-curve sections 

in the acceleration profiles. 

If Motor[x].JogTa is greater than Motor[x].JogTs, the total acceleration time is the sum of the 

two element values. (Note that this is different from the PMAC and Turbo PMAC.) If 

Motor[x].JogTa is less than Motor[x].JogTs, the total acceleration time is 2 * JogTs, and 

JogTa is not used. The profiles for both cases are shown in the figure below. 
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Rapid Move Acceleration Profiles, Time Specification 

Specification of acceleration parameters by time is better for creating true straight-line paths for 

multi-axis moves in Cartesian space. If the times are the same for all motors, and 

Coord[x].RapidVelCtrl is set to 1, a straight-line path will result. 

Specification by Rate 

If Motor[x].JogTa is less than zero, it specifies the inverse of the peak acceleration magnitude, in 

msec2 / motor unit. This rate is used regardless of the change in speed, so the acceleration time 

will be different for different changes in speed. 

If Motor[x].JogTs is less than zero, it specifies the inverse of the jerk magnitude during each half 

of the “S-curve” portion of the acceleration profile, in msec3 / motor unit. This rate is used 

regardless of the value of the peak acceleration, so the S-curve time will be different for different 
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peak accelerations. If Motor[x].JogTs is less than zero, Motor[x].JogTa must also be less than 

zero. 

The following figure shows the acceleration profiles for these rate specifications of acceleration 

and jerk, both for the case where the specified maximum acceleration is reached, and where this 

acceleration is not reached before it must start returning to 0. 
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JogSpeed

Vel Acc

√-ΔV*JogTs √-ΔV*JogTs
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Rapid Move Acceleration Profiles, Rate Specification 

Specification of acceleration parameters by rate is better for creating minimum-time moves for 

short distances. It is also better if you wish to issue new rapid move commands while the moves 

from previous commands are still executing, as the transition is seamless, even during 

accelerations. 
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Sample Move Profile 

The following plot shows the velocity and acceleration profiles for a rapid mode move of 200,000 

motor units distance, with MaxSpeed = 50 (50 motor units per msec), JogTa = -10 (peak 

acceleration of 0.1 motor units per msec2), and JogTs = -2000 (0.0005 motor units per msec3, for 

200 msec to reach the peak acceleration). 

 

Standard Rapid-Mode Move Profile 
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Multi-Axis Path Options 

The following drawing shows the possibilities for multi-axis path control with rapid-mode moves. 

Path A shows the course of the move with Coord[x].RapidVelCtrl at the default value of 0, so 

the short-distance motor finishes first (with the same top speed values). Path B shows the course 

of the move with Coord[x].RapidVelCtrl set to 1, but the accelerations specified by rate instead 

of time (with the same rates). Path C shows the course of the move with Coord[x].RapidVelCtrl 

set to 1, and the accelerations specified by time instead of rate (with the same times). 

A B C

rapid inc x30 y10

A: RapidVelCtrl = 0, top speeds match

B: RapidVelCtrl = 1, accel rates match

C: RapidVelCtrl = 1, accel times match

Y

X
 

Rapid Move Multi-Axis Path Options 

Rapid-Mode Move-Until-Trigger 

The “move-until-trigger” function permits a programmed rapid-mode move to be interrupted by a 

trigger and terminated by a move relative to the position at the time of the trigger. It is very 

similar to a homing-search move, except that the motor zero position is not altered, and there is a 

specific destination in the absence of a trigger. Note that the trigger occurs on a motor that has 

been assigned to the programmed axis. For this reason, triggered moves are not permitted on axes 

defined through kinematic routines. 

Speeds and accelerations for both the pre-trigger and post-trigger portions of the move (and the 

transition between them) are governed by the same variables as for regular rapid-mode moves. 

The “move-until-trigger” function for an axis, and therefore for any motor(s) defined to that axis, 

is specified by adding a ^{data} specifier to the move command for the axis, where {data} is 

the signed distance from the trigger position to the end of the post-trigger portion of the move. 

This makes the axis command for a move-until-trigger {axis}{data}^{data}, something 

like X50^-5. The first value is the destination position or distance (depending on whether the 

axis is in absolute or incremental mode, respectively) to be traveled in the absence of a trigger. 

The second value is the signed distance of the end of the post-trigger move (should one occur) 

relative to the position captured at the trigger. This value is always expressed as a relative 

distance, regardless of whether the axis is in absolute or incremental mode. Both values are 

expressed in the axis user units. 
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Motor Action 

The move-until-trigger function is technically a motor function, not an axis function. The axis 

command simply provides an easy way of commanding the motor(s). With the usual one-to-one 

relationship between axes and motors, this relationship is quite transparent to the user. However, 

in other cases, there are issues that must be considered. If there are multiple motors defined to the 

axis, as in some gantry configurations, each motor performs its own move-until-trigger with 

independent trigger conditions. These triggers may not occur at the same time. If multiple axes 

are commanded to do moves-until-trigger on the same program line, the associated motors will all 

start together, but will find their triggers and execute their post-trigger moves independently. 

Note 

The move-until-trigger function is not supported for motors 

and axes related through kinematic subroutines. In this case, an 

axis move-until-trigger command will be executed as a normal 

rapid-mode move, ignoring the triggering part. It is possible to 

command motor jog-until-trigger moves from the motion 

program in this configuration. 

 

Trigger and Capture Conditions 

The trigger and capture conditions for the motor in a rapid-mode move-until-trigger are specified 

in the same way as for homing-search moves and jog-until-trigger moves. The variable settings to 

specify these are described in detail in the section on triggered motor moves in the chapter 

Executing Individual Motor Moves. A brief list of the relevant variables is given here: 

 Motor[x].CaptureMode: Input or error trigger, hardware or software capture 

 Motor[x].EncType:  Quick set of variables for trigger and capture for class 

 Motor[x].pCaptFlag:  Address of input trigger register 

 Motor[x].CaptFlagBit:  Number of input trigger bit in specified register 

 Gaten[i].Chan[j].CaptCtrl: Use and edge of index and/or flag from channel 

 Gaten[i].Chan[j].CaptFlagSel: Selection of flag from channel to use 

 Motor[x].WarnFeLimit: Magnitude of error for error trigger 

 Motor[x].CaptPosShiftRight: # of bits to shift data right to eliminate unwanted bits 

 Motor[x].CaptPosShiftLeft: # of bits to shift data back left to match servo resolution 

 Motor[x].CaptPosRound: Flag to offset data half-count to match interpolated offset 

 

Example 

The following plot shows the velocity and acceleration profiles for a rapid mode triggered move 

of -50,000 motor units distance from the trigger position, with MaxSpeed = 50 (50 motor units 

per msec), JogTa = -10 (peak acceleration of 0.1 motor units per msec2), and JogTs = -2000 

(0.0005 motor units per msec3, for 200 msec to reach the peak acceleration). Note that the rate of 

acceleration is the same in each of the three acceleration sections, even though the changes in 

speed are different. 
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Triggered Rapid-Move Profile 

Breaking into a Rapid-Mode Move 

Uniquely among the Power PMAC programmed move modes, it is possible to break into an 

executing rapid-mode move at any time and command a new rapid-mode move, with all, some, or 

none of the move parameters changing. (The move-until-trigger function is just one example of 

this capability.) Fundamentally, since rapid-mode moves are executed like jog moves, they share 

this capability with motor jog moves. 

The new move command must be issued from a PLC program (or using the on-line cx command, 

which creates a one-line one-shot PLC program), because when a motion program commands a 

rapid-mode move, it does no further calculations until the move execution is finished. New move 

commands can be issued at up to the servo update rate; it is not necessary to wait for the previous 

acceleration to finish, as in older PMACs. 

Executing Rapid-Style Moves with Linear Mode 

Some users, when desiring to command minimum-time point-to-point moves, still desire other 

move attributes that are provided with Power PMAC’s linear move mode. These attributes 

include the ability to traverse a straight-line “tool-tip” path with a non-Cartesian mechanism, the 

ability to limit motor velocity and accelerations while maintaining a straight-line path, and to use 

separate acceleration and deceleration times. 

For details on implementing this functionality, refer to the section Using Linear Mode for 

“Rapid” Moves under Linear Move Mode, below. 
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Linear Move Mode 

The linear move mode is the most commonly used move mode in Power PMAC. It is the default 

mode for each coordinate system on power-up/reset. In this type of move, each axis moves 

toward the target position at a designated speed, accelerating to, and decelerating from this speed 

in a controlled fashion. If more than one move is specified in succession with no pause in 

between, the first move can blend into the second with the same type of controlled acceleration as 

is done to and from a stop. Power PMAC’s linear move mode is equivalent to the G01 mode in 

RS-274 machine-tool code. 

Optional Segmentation Mode 

Linear-mode moves can be executed either without segmentation mode 

(Coord[x].SegMoveTime set to the default value of 0) or with segmentation mode 

(Coord[x].SegMoveTime > 0, specifying the time of the coarse-interpolation segments). Without 

segmentation mode, the equations of motion generated from the move description are solved 

directly at the servo update rate, for a “single-stage” interpolation. With segmentation mode, the 

equations of motion from the move commands are solved at the coarser segment intervals, and a 

second-stage “fine interpolation” is calculated at the servo update rate using a cubic B-spline 

interpolation between the calculated segment points. 

Segmentation mode requires more calculations, but it is required if the user wants to utilize any of 

the following features:  

 Circular interpolation 

 Tool-radius compensation 

 Special linear contouring mode 

 Segmentation feedrate override 

 Inverse-kinematic subroutines 

 Special lookahead buffer for dynamic limiting 

 

Note that in segmentation mode, acceleration-limit and jerk-limit checks using 

Motor[x].InvAmax, Motor[x].InvDmax, and Motor[x].InvJmax are not performed at move 

calculation time, as they are when not in segmentation mode. Acceleration-limit calculations are 

performed at segmentation time if the special lookahead buffer is operating. 

Linear Mode Declaration 

To put a coordinate system (and all the axes in the coordinate system) into the linear move mode, 

the linear command is used. All subsequent move commands will be interpreted using the 

rules of the linear move mode until another move mode is declared. 

Position or Distance Specification 

The destination point of a linear-mode move is specified in the move command itself (e.g. X10 

Y20). The commanded destination for each axis can be specified as a position relative to the 

programming origin (if the axis is in abs absolute mode) or with a distance from the last 

commanded position (if the axis is in inc incremental mode). The command specifies one of 

these; Power PMAC automatically calculates the other. 
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Feedrate or Move-Time Specification 

The user can either specify the target velocity (“feedrate”) for the move, with an F{data} 

command, or the move time with the tm{data} command. If F is specified, the move time is 

calculated, and if tm is specified, the feedrate is calculated. The relationship between the two 

values is reciprocal for a given move distance. Move-time and feedrate values are modal; they 

affect all subsequent linear (and circle) mode moves until another F or tm value is specified in 

the program. 

The units of the tm time are milliseconds; the units of the F velocity are the user length (or angle) 

units of the vector feedrate axes (see below) divided by the time units as defined by the saved 

setup element Coord[x].FeedTime, in milliseconds. If Coord[x].FeedTime is at the default 

value of 1000, the F units are length units per second; if Coord[x].FeedTime is set to 60,000, the 

F units are length units per minute. 

Both the F command and tm command set the value of the data-structure element Coord[x].Tm. 

The tm command sets the element to a positive value representing the move time; the F 

command sets the element to a negative value, whose magnitude represents the vector federate. It 

is possible to bypass the F and tm commands and write to Coord[x].Tm directly. If no F or tm 

command is specified after power-up/reset, the saved value of Coord[x].Tm is used for the 

moves. 

Any feedrate value specified in a program is compared to the value of the saved setup element 

Coord[x].MaxFeedrate; if it is greater than this parameter, Coord[x].MaxFeedrate is used 

instead. 

!
Caution 

Feedrate is a magnitude and should therefore always be 

specified as a positive number. A negative feedrate-value 

specification will cause the coordinate system to be put in 

move-time mode, with the time in milliseconds set as the 

magnitude of the specified value. (For example, an F-50 

command sets a move time of 50 milliseconds for subsequent 

moves.) This could lead to unintended and potentially 

dangerous consequences. 

 

Feedrate-Only Mode 

In certain applications, particularly NC-style applications, the user may desire that only feedrate 

specifications should be valid. For these applications, Coord[x].FProtect can be set to 1 so that a 

valid (positive) feedrate command must be specified in a motion program before a linear or circle 

mode move can be executed, and moves specified by tm are not permitted. Moves specified by 

an F command in “inverse time mode” are still permitted in this case. 

Vector Feedrate Axes 

If a multi-axis move is specified by feedrate (and not time), the user has the further flexibility of 

specifying which axes control the vector feedrate, using the buffered program frax command, 

and velocity is apportioned among these axes so that their vector combination (root of sum of 

squares) is the specified velocity. Power PMAC calculates the move time as the vector distance of 

the feedrate axes divided by the programmed feedrate. This frees the user from having to compute 
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each axis’ velocity individually for each different angle of movement. If a simultaneous move is 

requested of a non-feedrate axis, that move is completed in the same time as that computed for 

the feedrate axes. The default feedrate axes for a coordinate system are the X, Y, and Z-axes. 

If there are other axes (“non-feedrate axes”) commanded on the same line, Power PMAC 

compares the move time computed for the vector feedrate axes to the move time derived by 

taking the greatest distance of a non-feedrate axis divided by the value of the saved setup 

element Coord[x].AltFeedRate. Whichever of these move times is the longest is used for all 

axes. 

 

Example Vector Feedrate Calculations 

(Coord[x].AltFeedrate=40) 

 

inc Vect Dist = SQRT(32 + 42) = 5 
frax(X,Y) Move Time = 5/10 = 0.5 

X3 Y4 F10 Vx = 3/0.5 = 6 

 Vy = 4/0.5 = 8 

  

inc Vect Dist = SQRT(32 + 42) = 5 
frax(X,Y) Vect Move Time = 5/10 = 0.5 

X3 Y4 Z12 F10 Non-Vect Dist = 12 

 Non-Vect Move Time = 12/40 = 0.3 

 Vx = 3/0.5 = 6 

 Vy = 4/0.5 = 8 

 Vz = 12/0.5 = 24 

  

inc Vect Dist = SQRT(32+42+122)=13 
frax(X,Y,Z) Move Time = 13/10 = 1.3 

X3 Y4 Z12 F10 Vx = 3/1.3 = 2.31 

 Vy = 4/1.3 = 3.08 

 Vz = 12/1.3 = 9.23 

  

inc Vect Dist = 0, Non-Vect Dist = 10 

frax(X,Y,Z) Move Time = 10/40 = 0.25 

C10 F10 Vc = 40 

 

Transformation Matrix Rescaling of Feedrate 

If the position magnitude of the vector feedrate axes is rescaled with a transformation matrix and 

nothing else is done, the magnitude of the vector feedrate itself is also rescaled proportionally. 

For example, if the position scaling is tripled in magnitude (a factor of 3.0), the vector feedrate 

will also be tripled, so a programmed feedrate of 20 mm/sec would execute as 60 mm/sec. 

However, it is possible to compensate for this effect. If saved setup element 

Coord[x].AutoTxyzScale is set to 1, then status element Coord[x].TxyzScale is automatically 

set to the “magnitude” of the selected XYZ transformation matrix (technically, to the cube root of 

the determinant of the XYZ minor matrix of the transformation matrix) when a program 
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tsel{data} command is executed, selecting the matrix. For this method to be useful, the 

matrix scaling of the X, Y, and Z axes must always be the same. 

The value of Coord[x].TxyzScale can also be set “manually” with the program command 

txyzscale{data}, where {data} specifies the value to be placed in the status element. 

With either method of setting the value of this element, the feedrate as modified by the scaling of 

the transformation matrix is divided by the value of this element (which should contain the matrix 

scaling factor). Typically this is used to keep the feedrate at the programmed value regardless of 

the scaling of the matrix. 

Secondary Vector Feedrate Axes 

A second set of vector feedrate axes can be defined with the buffered program frax2 command. 

This capability is typically used when there are dual mechanisms performing path moves in the 

same coordinate system.  

At power-on/reset, there are no axes in this secondary feedrate axis set. When used, the secondary 

set usually comes from the XX/YY/ZZ Cartesian axis set, or the U/V/W Cartesian axis set. To 

include all three of the former set, the frax2(XX,YY,ZZ) command would be used. 

When a secondary feedrate axis set exists and a feedrate-specified move is commanded, Power 

PMAC compares the time for the primary feedrate axis set (its vector distance divided by the 

feedrate) to the time for the secondary feedrate axis set (its vector distance divided by the same 

feedrate), and uses the longer of these two times. Note that these calculations only make sense if 

all primary and secondary feedrate axes have the same units. 

The secondary feedrate axis set capability is new in V2.1 firmware (released 1st quarter 2016). 

Non-Vector-Feedrate Axes 

As mentioned above, in many systems, there are a combination of vector feedrate axes and non-

vector-feedrate axes in the same coordinate system. Most commonly, the vector feedrate axes are 

linear axes in a Cartesian configuration, and the non-vector-feedrate axes are rotary axes. 

In such a system, the time for the vector feedrate axes, calculated as explained above, is 

compared to the time for the non-vector-feedrate axes, with the longer of the times being used. 

When there are multiple non-vector-feedrate axes, there are two ways of computing the time for 

these axes. With Coord[x].AltFeedMode at its default value of 0, the magnitude of the distance 

for each of these axes is individually divided by Coord[x].AltFeedRate, and the longest of these 

times is used to compare to the time for the vector feedrate axes. This method is typically 

appropriate when the non-vector-feedrate axes are rotary, ensuring that no rotary axis will exceed 

AltFeedRate. 

If Coord[x].AltFeedMode is set to 1, the non-vector-feedrate axes are treated as a separate 

vector set, with their combined distance (root of sum of squares) divided by 

Coord[x].AltFeedRate used as the time for these axes, to be compare to the time for vector 

feedrate axes (if any). This method is typically used to ignore the programmed feedrate value for 

a Cartesian axis set, as to perform a fast “dry run” mode. With the set of vector feedrate axes 

emptied using the nofrax command, the speed of moves will be governed by the value of 
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Coord[x].AltFeedRate instead of the programmed F value. No change to the motion program is 

required. 

Inverse Time Mode 

The moves can also be specified in “inverse time” mode, a mode of operation common in 

CNC machines that are coordinating linear and rotary axes, where it is often specified with 

the G93 code. In inverse time mode, the time for a move is inversely proportional to the 

value of the most recent F-code. 

Inverse time mode in Power PMAC is specified by setting non-saved setup element 

Coord[x].InvTimeMode to a value greater than 0. The power-on default for this element is 

0, so this mode is always disabled on power-up/reset, and must be enabled explicitly. The 

move time for linear-mode moves is calculated identically for any of the valid non-zero 

settings for InvTimeMode; the distinction between these settings lies in how the times are 

calculated for circle-mode moves. (See the section on circle-mode moves, below, for details.) 

When in inverse time mode, the time for a linear-mode move in milliseconds is calculated by 

dividing the specified value of the most recent F-code into the value of Coord[x].FeedTime, 

which is expressed in milliseconds. For example, with Coord[x].FeedTime set to 60,000, 

which is the common setting for CNC applications, an F300 code specifies a move time of 

60,000 / 300 = 200 milliseconds (0.2 seconds). 

Motor Velocity Limits 

Power PMAC has a velocity-limit saved setup element Motor[x].MaxSpeed for each motor that 

can be used to automatically limit the commanded velocity in linear-mode moves even if the 

motion program requests a higher rate. Power PMAC compares the motor velocity magnitudes 

requested by the motion program for each linear-mode move to the Motor[x].MaxSpeed limit for 

each motor. (Unlike the velocity and acceleration limits, this check occurs regardless of whether 

the coordinate system is in segmentation mode or not.)  

If the request for any motor exceeds the limit, the move time is extended so that motor will not 

exceed its limit; this automatically slows the other motors in the coordinate system in proportion 

so that the coordination between motors (and the path in space) is maintained. 

If segmentation mode is active (Coord[x].SegMoveTime > 0) and the special lookahead buffer is 

active (Coord[x].LHDistance > 0, defined lookahead buffer), the velocity limit is also applied 

segment by segment, which can be useful for inverse-kinematic axes, where there is a non-linear 

relationship between the programmed tool-tip speeds and the underlying motor speeds during 

moves. 

Minimum Move Time 

If the time for a linear-mode move, whether specified directly with a tm{data} command or an 

F{data} command in inverse time mode, or calculated by Power PMAC as vector distance 

divided by vector feedrate, is less than the specified total acceleration time, one of the times must 

be altered to create a realizable move. In this case, the effective “move time” is lengthened so that 

it is equal to the total acceleration time, lessening the top speed of the move. This means that 

there is no “constant speed” section to the move; it transitions directly from the incoming 

acceleration (or blending) to the outgoing deceleration (or blending). 
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In this way, the programmed acceleration time acts as the minimum permitted move time for an 

individual linear-mode move. This is in part a protection against move times so short that Power 

PMAC could not calculate them in real time. If you are working with very short move segments 

(particularly programmed by feedrate) and your move sequence is going more slowly than you 

want, this acceleration-time limit may be the cause. 

If the acceleration-time parameters are set small enough (even to 0), the move times can become 

very small. It is even possible for them to be less than a servo cycle in length, although moves 

this short are simply skipped over until enough time in the trajectory has accumulated to pass the 

next servo cycle. The user should be aware of the potential for overloading the processor in this 

case, because each of these programmed moves must be calculated, even if they are actually 

skipped over in execution. If the processor cannot compute the required moves before they must 

be executed, a “run-time error” will occur, program execution will be halted, and all motors in the 

coordinate system aborted (decelerated to a closed-loop stop). 

Acceleration Specification 

Power PMAC provides multiple parameters for specifying the acceleration and deceleration of 

linear-mode moves. The ta{data} command specifies both the “acceleration” and 

“deceleration” times for a linear-mode move, in units of milliseconds with floating-point 

resolution. It sets the value of data-structure elements Coord[x].Ta, which governs the initial 

acceleration from stop of the first move in a continuous sequence and blending between moves in 

a sequence, and Coord[x].Td, which governs the final deceleration to a stop. 

The td{data} command specifies the final “deceleration” time only, in units of milliseconds 

with floating-point resolution, setting the value of data structure element Coord[x].Td alone. 

This scheme makes it easy to specify common acceleration and deceleration times, using the 

ta{data} command alone, or separate times, using the td{data} command after the 

ta{data} command. 

The value of Coord[x].Td is used to compute a deceleration to stop for each programmed move 

as it is computed, even if that move is then blended on the fly into a subsequent move, with the 

deceleration to a stop discarded. If the rate of deceleration exceeds that set by 

Coord[x].InvDmax (see next section), this time can be extended, and this could possible cause 

the move to be executed at a velocity lower than what was programmed. 

It is possible to bypass the ta{data} and td{data} commands and write to Coord[x].Ta and 

Coord[x].Td directly. If no ta{data} or td{data} command is specified after power-

up/reset, the saved values of Coord[x].Ta and Coord[x].Td are used for the moves. 

The ts{data} command specifies the “S-curve” time for both acceleration and deceleration 

(including blends), in units of milliseconds with floating-point resolution, setting the value of data 

structure elements Coord[x].Ts (for the initial acceleration and blends) and Coord[x].Tsd (for 

the final deceleration. These values are the time in each half of the “S” (so called because the 

velocity-versus-time plot looks like the letter S), in which the acceleration or deceleration value is 

linearly changing between zero and the peak value. If this S-curve time is zero, the accelerations 

and decelerations are constant. If no ts{data} command is specified after power-up/reset, the 

saved value of Coord[x].Ts is used for the moves. 

The tsd{data} command specifies the final “deceleration” S-curve time only, in units of 

milliseconds with floating-point resolution, setting the value of data structure element 
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Coord[x].Tsd alone. This scheme makes it easy to specify common acceleration and deceleration 

S-curve times, using the ts{data} command alone, or separate times, using the tsd{data} 

command after the ts{data} command. 

If the Ts value is less than the Ta value (or the Tsd value is less than the Td value), the overall 

acceleration (or deceleration) time is equal to Ta + Ts (or Td + Tsd). This is “partial S-curve” 

acceleration, with a peak constant acceleration time of Ta – Ts (or Td + Tsd). If the Ts value is 

greater than or equal to the Ta value (or the Tsd value is greater than or equal to the Td value), 

the overall acceleration (or deceleration) time is equal to 2 * Ts (or 2 * Tsd), and there is not 

peak constant acceleration time. (Note that these rules are different from those in Turbo PMAC.) 

Acceleration Limits 

Power PMAC has acceleration-limit saved setup elements Motor[x].InvAmax and 

Motor[x].InvDmax for each motor that can be used to automatically limit the commanded 

acceleration and final deceleration, respectively, in linear-mode moves even if the motion 

program requests a higher rate. The details of how this limiting function operates are dependent 

on the mode of operation.  

This acceleration limiting is active either if segmentation mode is not active 

(Coord[x].SegMoveTime = 0), in which case circular interpolation and cutter-radius 

compensation are not permitted, or if segmentation mode is active (Coord[x].SegMoveTime > 0) 

and the special lookahead buffer is active (Coord[x].LHDistance > 0, defined lookahead buffer), 

in which case the acceleration limit is applied segment by segment (using only 

Motor[x].InvAmax). 

If the acceleration limits are active, Power PMAC compares the motor acceleration magnitudes 

requested by the motion program to the Motor[x].InvAmax or Motor[x].InvDmax limit, as 

appropriate, for each motor. Note that these elements are in units of inverse acceleration (msec2 

per motor unit), which yields quicker calculations by the Power PMAC. If the request for any 

motor exceeds the limit, the acceleration-section or segment time is extended so that motor will 

not exceed its limit; this automatically slows the other motors in the coordinate system in 

proportion so that the coordination between motors (and the path in space) is maintained. 

Note 

When the coordinate system is not in segmentation mode, the 

specified acceleration time Coord[x].Ta must be greater than 

0.0 in order for the acceleration limiting function (and jerk 

limiting function) to be active. 

 

Jerk Limit 

Power PMAC also has a “jerk-limit” saved setup element Motor[x].InvJmax for each motor that 

can be used to automatically limit the commanded jerk (rate of change of acceleration) in the “S-

curve” portions linear-mode move accelerations and decelerations even if the motion program 

requests a higher rate. This jerk limiting is active only if segmentation mode is not active 

(Coord[x].SegMoveTime = 0), in which case circular interpolation, special buffered lookahead, 

and tool-radius compensation are not permitted. 

If the jerk limits are active, Power PMAC compares the motor jerk magnitudes requested by the 

motion program to the Motor[x].InvJmax limit for each motor. Note that these elements are in 
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units of inverse jerk (msec3 per motor unit), which yields quicker calculations by the Power 

PMAC. If the request for any motor exceeds the limit, the S-curve time is extended so that motor 

will not exceed its limit; this automatically slows the other motors in the coordinate system in 

proportion so that the coordination between motors (and the path in space) is maintained. 

Issues with Acceleration and Jerk Limits 

Without the special lookahead buffer enabled, Power PMAC simply compares the acceleration 

and jerk rates computed given the programmed Ta and Ts times for each change in velocity at a 

programmed move boundary. If these rates exceed the limits, Power PMAC extends the Ta 

and/or Ts times (or tries to extend them – see below) so that the limits are not violated. 

Each linear move that Power PMAC calculates is considered to be potentially the last move in a 

sequence, so Power PMAC checks the required rate to decelerate to a stop at the end of the move 

against the acceleration and jerk limits, extending this deceleration time as necessary to see that 

the limits are not violated. If this extends the total acceleration time to a value greater than the 

move time, the move time is extended, slowing the move. This slowing occurs even if the move 

turns out not to be the last move in the sequence and this deceleration is not required. 

In another case, if Power PMAC wants to extend an acceleration time in the blending between 

two linear-mode moves, because the symmetry of the blending algorithm causes half of the 

blending time to be in the incoming move, the extension goes further into the incoming move. 

This extension can only go as far as the beginning of the constant-speed portion of this move; it 

cannot go into the acceleration/blending into this move, because that would force a recalculation 

of the previous move, which will already have been executed. Because of the limits of the 

extension of blending time, it is possible that the acceleration limits can be violated. (Those 

wishing a robust observance of acceleration limits in this type of case should use the special 

lookahead buffer.) 

Linear Move Examples 

The following plot shows the commanded velocity and acceleration profiles for a linear mode 

move of 100 axis units (= 100,000 motor units) distance, with a feedrate of 40 axis units per 

second (= 40 motor units per msec), a Ta time of 800 msec, and a Ts time of 200 msec. Seven 

separate sections (the maximum number possible) are created from a single move command:  
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inc linear X100 F40 ta800 ts200 

 

 

Seven-Section Linear Mode Move 

The following plot shows the velocity and acceleration profiles for a linear mode move of 100 

axis units (= 100,000 motor units) distance, with a feedrate of 40 axis units per second (= 40 

motor units per msec), a Ta time of 400 msec, a Td time of 800 msec, and a Ts time of 0. Three 

separate sections are created from a single move command: 

inc linear X100 F40 ta400 td800 ts0 

 

 

Three-Section Linear Move Mode, Separate Accel & Decel 
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The following plot shows the velocity and acceleration profiles for a linear mode move of 40 axis 

units (= 40,000 motor units) distance, with a feedrate of 40 axis units per second (= 40 motor 

units per msec), a Ta time of 7500 msec, and a Ts time of 750 msec, for a total acceleration time 

of 1500 msec. Four separate sections are created from a single move command (there are no 

separate sections at constant maximum acceleration, deceleration, or speed): 

inc linear X40 F40 ta750 ts750 

 

 

Four-Section Linear Mode Move 

Blending Moves Together 

If more than one linear-mode move is specified in succession with blending enabled 

(Coord[x].NoBlend = 0 – the default) and no intervening dwell commands (or other inhibiting 

factors – see below), each motor blends smoothly from its velocity for the first move to the 

velocity for the second move according to the acceleration times and limits in force at the time 

the second move is calculated. This blend starts at the point where the first move would begin to 

decelerate to a stop at its specified end position if there were no blending, not at the first move’s 

endpoint itself. It ends at the point where the second move would finish its acceleration from a 

stop at its starting position if there were no blending. 

Linear-mode moves can also blend into and from circle-mode moves and PVT-mode moves. 

Details of these blends are discussed in the sections describing those move modes. 

Control of Blend vs No-Blend 

There are several factors that control whether linear moves are blended together or not. (These 

same factors also control for circle moves.) If Coord[x].NoBlend is set to 1, no linear or circle 

moves are blended together, regardless of other factors. 

If Coord[x].NoBlend is set to 0, these moves are blended together unless some other factor 

inhibits blending. In this case, if Coord[x].OnceNoBlend is greater than 0 when the move is 
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calculated, that move will not be blended into the next move, and the value of OnceNoBlend is 

decremented by 1. This permits “single-shot” exact stop specification, as with the G09 NC code. 

For multi-axis path-based moves, it is possible to control blending or not based on the corner 

angle using Coord[x].CornerBlendBp. This permits “sharp” corners not to be blended, but 

“shallow” corners to be blended. This is covered in detail in the section Blended Move Cornering 

Control, below. 

If motion program calculation is temporarily suspended because the number of “jumps back” in 

execution while looking for the next move command exceeds the limit specified by 

Coord[x].GoBack, then the most recently calculated move will not be blended into the next 

move calculated after execution resumes. 

Blending Profile Examples 

The following diagrams show velocity-versus time plots for linear-mode move sequences with no 

S-curve time and deceleration time equal to acceleration time for various cases. It shows the 

decelerations that were “discarded” due to blending as dashed lines. They also show the 

“rectangular” profiles for equivalent moves with no acceleration time for reference. 
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Blending Path Implications 

The following diagram shows a sequence of two linear-mode moves in the X/Y plane both 

unblended and blended. On the left side is the unblended case. The first move stops fully before 

the second move starts. The result is a sharp corner in the X/Y plane. On the right side is the 

blended case. The first move blends into the second move without stopping. The result is a 

rounded corner at the blend to the inside of the programmed point for the corner. The blended 

path starts at the point where the first move began its deceleration to a stop in the unblended case, 

and ends where the second move finished its acceleration from stop in the unblended case. 

 

Linear Mode Paths – Non-Blended and Blended 

Special Linear Contouring Mode 

While it is common in the industry to use closely spaced linear-mode (G01) moves to generate 

arbitrary contour paths, the standard linear mode is not optimal for this task, due to the fact that 

the blends round to the inside of programmed point on the contour, and that any space between 

blends generates “flats” in the path that may not be desired. 

Power PMAC has a new special variant of linear-mode interpolation that avoids these problems. 

If the saved setup element Coord[x].SegLinToPvt is set to 1 or 2, then linear-mode move 

commands are automatically converted to PVT mode moves for execution. 

Coord[x].SegMoveTime must be set greater than zero to enable segmentation in order for this 

conversion to occur. 

In this mode, Power PMAC takes the basic linear move command for the axis based on the 

position/distance specification in the command and the modal feedrate/move-time specification as 

the starting point for the conversion. It computes the axis end velocity for the move for a smooth 

transition between this move and the next move while passing exactly through the programmed 

Y Y 

Vx Vx 

Vy Vy 

X X 

t t 

t t 
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point, and passes this value to the PVT-mode calculation algorithm. It also computes a move time 

value that keeps the speed along the path as constant as possible (or smoothly transitioning from 

one speed to another). 

For smooth contours, there is essentially no difference between values of 1 and 2 for 

Coord[x].SegLinToPvt. The behavior differs if there are sharp corners in the path. If it is set to 

1, the velocity is increased at the corner to better preserve the path. If it is set to 2, the 

programmed velocity at the corner is preserved better, but the path “bulges” more to the outside 

on both sides of the corner. 

In this mode, the Ta, Ts, and Td acceleration-time parameters are not used. Acceleration control 

is typically accomplished through use of the special lookahead buffer. 

This mode is intended for move sequences where the individual points are quite close together 

and reasonably evenly spaced. Often, the sequences will be generated automatically from 

CAD/CAM programs. Note that CAD/CAM programs often base their point spacing given your 

specified error threshold using the errors found in traditional linear interpolation. The contouring 

errors in this mode are so much smaller that the points can often be spaced 50 times farther apart 

for the same error threshold. 

Using Linear Mode for “Rapid” Moves 

Some users will want one or more attributes of the linear move mode when they are executing 

what would normally be “rapid” mode moves (G00 mode in RS-274 “G-Codes”). These attributes 

include: 

 Execution of inverse-kinematic transformations at segmentation rate to obtain a straight-

line tool-tip path in a non-Cartesian geometry. 

 Execution of lookahead velocity and acceleration limiting at segmentation rate after 

inverse-kinematic transformation in a non-Cartesian geometry 

 Ability to use the same “segmentation override” as for linear and circle mode moves 

 Ability to specify separate acceleration and deceleration times 

 

The simplest way of getting linear mode moves to behave like typical rapid mode moves is to 

declare a vector feedrate high enough that at least one motor will always limit on its 

Motor[x].MaxSpeed parameter. The other motors will be slowed in proportion to maintain a 

straight-line path. It will probably be necessary to store the programmed vector feedrate for linear 

and circle-mode moves (found in Coord[x].Tm) in a holding variable, to be restored when 

returning to linear or circle mode. 

If there are only vector feedrate axes in the system (e.g. X, Y, and Z – no rotary axes), it is also 

possible to declare nofrax when entering this mode, so that none of the axes are considered 

vector feedrate axes. In this case, saved setup element Coord[x].AltFeedrate controls the speed 

of the axes, setting the speed of the axis with the longest distance for the move, with the other 

axes matching the move time. When returning to linear or circle mode, the axes should be 

restored as vector feedrate axes, using a command such as frax(X,Y,Z). 
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Circle Move Mode 

Power PMAC permits circular interpolation in the X/Y/Z-axis Cartesian space, and the 

XX/YY/ZZ-axis Cartesian space in a coordinate system. Circular (or similar) paths can be 

executed on any plane in either of these 3D spaces. 

Enabling Move Segmentation 

To execute circle-mode moves, the commanded trajectories must be “segmented”. “Segmentation 

is a first-stage (coarse) interpolation where the exact circle calculations are performed. The 

second-stage (fine) interpolation is performed at the servo update rate, using a very efficient cubic 

B-spline interpolation algorithm (the same algorithm used in spline mode). Performing the 

complex circle calculations themselves every servo cycle would put a tremendous computational 

load on the processor, without significantly increasing accuracy. 

Commanded trajectories (in circle, linear, and PVT modes) are segmented if 

Coord[x].SegMoveTime is set greater than 0. The value of Coord[x].SegMoveTime is the 

segmentation period in milliseconds, with floating-point resolution. Typically it is set to a value 

equivalent to 10 to 20 servo cycles, providing a good trade-off between computational load and 

resulting path accuracy. 

If segmentation mode is disabled, a circle-mode move will execute as a linear-mode move 

directly from the start point to the end point. Segmentation mode must also be enabled to use the 

special lookahead buffer, tool-radius compensation, and kinematic-subroutine calculations. 

Specifying the Interpolation Plane 

The first thing that should be done in preparing for a circle-mode move is to specify the 

orientation of the plane in the 3D space that will contain the circle. This is done by specifying the 

vector normal to that plane with the normal command. The arguments of this command are the 

component magnitudes of the vector. In X/Y/Z space, the components are I (X-axis direction), J 

(Y-axis direction), and K (Z-axis direction). In XX/YY/ZZ space, the components are I (XX-axis 

direction), J (YY-axis direction), and K (ZZ-axis direction). 

A typical command might be normal I0.866 J-0.5 K0.0, or normal II0.0 

JJ0.707 KK-0.707. Zero-magnitude components do not need to be specified; if a component 

of the triplet is not specified, it is assumed to be zero. The length of the normal vector here is not 

important (although most people use a net unit length); only the ratio between the component 

magnitudes (which determines the direction) is. 

Standard Planes 

The “standard” planes require only a single non-zero component in the normal command. To 

specify the X/Y-plane, the usual command is normal K-1. This is the power-on default vector, 

and the command is equivalent to G17 in RS-274 “G-code” programming. Similarly, to specify 

the Z/X-plane, the usual command is normal J-1 (G18 equivalent); to specify the Y/Z-plane, 

the usual command is normal I-1 (G19 equivalent). 

The equivalent commands for the standard planes in XX/YY/ZZ space are normal KK-1 for 

the XX/YY-plane, normal JJ-1 for the ZZ/XX plane, and normal II-1 for the YY/ZZ-

plane. 
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Clockwise Direction Sense 

The directional sense of the normal vector for determining the clockwise/counter-clockwise sense 

of moves in the plane is “right handed”. That is in a standard (right-handed) 3D space, if you 

point your right thumb in the direction of the specified normal vector, your fingers will curl in the 

direction of a clockwise arc in the plane. The standard clockwise sense is obtained by using 

normal vectors that point in the negative direction along their axes. 

The following figure shows the six possibilities for “single-component” normal vectors defining 

the three standard planes, each with both possibilities for clockwise sense. 

 

Basic Normal Vectors for Circle Mode Moves 
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Circle Mode Declaration 

To put a set of the Cartesian axes into circle mode, the circlen command is used, where n can 

take a value from 1 to 4. Each one of these commands puts one of the 3D Cartesian axis sets into 

clockwise or counterclockwise circle mode. If the other 3D Cartesian axis set is already in linear 

or circle mode, it is left alone; otherwise it is put in linear mode. All other axes in the coordinate 

system are automatically put in linear mode on any of the circlen commands. All subsequent 

move commands will be interpreted using the rules of the circle and linear move modes, as 

appropriate, until another move mode is declared. 

The following list shows what each of the circlen commands does: 

 circle1 puts the X/Y/Z axis set in clockwise circle mode 

 circle2 puts the X/Y/Z axis set in counterclockwise circle mode 

 circle3 puts the XX/YY/ZZ axis set in clockwise circle mode 

 circle4 puts the XX/YY/ZZ axis set in counterclockwise circle mode 
 

The circle1 mode is equivalent to the G02 mode in RS-274 machine-tool code, and circle2 

mode is equivalent to the G03 mode. 

Position or Distance Specification 

The destination point of a circle-mode move is specified in the move command itself (e.g. 

X10Y20). The commanded destination for each axis can be specified as a position relative to the 

programming origin (if the axis is in abs [absolute] mode) or with a distance from the last 

commanded position (if the axis is in inc [incremental] mode). This is the “straight-line” 

distance for the axis from start to end point, not the distance along the arc. As with other move 

modes, if the axis position/distance is not explicitly specified in the move command, its end point 

will be the same as the start point (in either abs or inc mode). However, in circle-mode, this 

typically means that the axis will execute some commanded motion during the move. 

In circle move mode, it is possible to command a full circle in a single move command when the 

end point of all circle axes is the same as the start point. When the end point coordinates are 

calculated mathematically, there may be small computational errors that make the end point 

slightly different from the start point, which could mean that the intended full-circle command is 

instead executed as a tiny arc move, typically too small to detect, so it appears that the move has 

been skipped. 

The saved setup element Coord[x].MinArcLen provides a tolerance for this type of 

computational error. It specifies the minimum arc length (in radians) of a move that will be 

executed as a short arc. If the angle subtended by the programmed arc move is smaller than this 

value (even if not exactly zero), the move will be executed as a full circle (plus or minus the small 

difference from start to end). If Coord[x].MinArcLen is set to its default value of 0.0, the end 

point must equal the start point to full floating-point resolution in order for a full-circle move to 

be executed. 

Center Specification 

Power PMAC provides two methods for specifying the arc center in circle-mode move 

commands. The first and most commonly used method is to specify a vector from the move start 

point to the center. The second method is to specify the magnitude of the radius and let Power 
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PMAC calculate the coordinates of the arc center point. If neither method is used, the move is 

executed as a linear-mode move instead. 

Center Vector Specification 

If the vector method of locating the arc center is used, the vector is specified by its I, J, and K 

components along the X, Y, and Z axes, respectively, or by its II, JJ, and KK components along 

the XX, YY, and ZZ axes, respectively. In the default incremental vector mode, each vector 

component specifies the distance in the respective axis from the move’s start point to the arc 

center point. If a component is not explicitly specified, its value is assumed to be 0 for the move. 

It is also possible to use absolute vector mode, implemented with the program command 

abs(I,J,K) for X/Y/Z circles, or abs(II,JJ,KK) for XX/YY/ZZ circles. In this mode, 

each vector component specifies the distance in the respective axis from the programming origin 

to the arc center point. 

A typical circle-mode move command with a center vector specification is: 

X1000 Y2000 I500 J-500 

With the center vector specification, if the end points of all the circle axes are equal to the start 

points, whether by explicit command or by not specifying the axis values at all in the move 

command, a full circle will be executed. For example, with the X/Y-plane specified for circles the 

move command I10 specifies a full circle of radius 10, with the X-axis moving 20 units positive 

and back, and the Y-axis moving plus and minus 10 units and back. 

Radius Change and Errors 

Note that there is nothing in the circle mode command with center-vector specification that 

constrains the end point to be the same distance from the center point as the start point is. If the 

user desires a true circular arc path, he must ensure in his command that his specified end point is 

exactly the same distance from the specified center point as the start point is. If this is not the 

case, Power PMAC will execute a spiral path from the start point to the end point, continuously 

changing the radius of curvature along the path. 

To separate the case of minor differences due to effects like mathematical round-off from the case 

of programming errors, the user can set the threshold for the maximum change in radius that is 

permitted in a circle-mode move. If saved setup element Coord[x].RadiusErrorLimit is set to a 

positive value, any circle move with a difference in radius (distance to center) between the start 

point and end point whose magnitude is greater than this value will be rejected. Power PMAC 

will not execute this move, stopping at the beginning of the move, aborting the motion program, 

and setting status element Coord[x].RadiusError to 1 (for a move in X/Y/Z space) or to 3 (for a 

move in XX/YY/ZZ space). If Coord[x].RadiusErrorLimit is set to its default value of 0.0, no 

checking is performed, and these moves are always executed without error. 

Example 

Starting from the point (X0, Y0), make a quarter circle clockwise in the XY plane to (X20, Y20), 

then a linear move to (X40, Y20), then a three-quarters circle clockwise to (X20, Y0).  

normal K-1;     // XY plane 

F10;      // Vector speed specification 

abs;      // Absolute endpoint specification 

circle1;     // Clockwise circle mode 
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X20 Y20 I20 J0;    // Arc move; I=20-0=20; J=0-0=0 

linear;     // Linear move mode 

X40 Y20;     // Straight-line move 

circle1;     // Clockwise circle mode 

X20 Y0 I0 J-20;    // Arc move; I=40-40=0; J=0-20=-20 

 

Radius Size Specification 

For the X/Y/Z axis set, the arc center can also be located by specifying the radius magnitude as 

the value after the letter R in the move command. (RR is an axis name, so this method is not 

available for the XX/YY/ZZ axis set.) The magnitude of this value always represents the distance 

from the starting point. With this radius specification, it is necessary to specify whether the arc to 

the move endpoint is the long route (>= 180 degrees) or the short route (<= 180 degrees). 

Following an industry convention, Power PMAC takes the short route if the R value is positive, 

and the long route if the R value is negative. R values are not modal – a value must be specified 

on each move command line. It is not possible to do a full circle in a single move command with 

radius-size specification; the circle must be broken into at least two parts. 

Note that if the distance from start point to end point is more than twice the magnitude of the 

specified radius, no circular path is possible, and Power PMAC will calculate an exponential 

spiral path with continuously changing radius. However, if the magnitude of the difference 

between the starting radius and the ending radius is greater than that of saved setup element 

Coord[x].RadiusErrorLimit, the move will be rejected. Power PMAC will not execute this 

move, stopping at the beginning of the move, aborting the motion program, and setting status 

element Coord[x].RadiusError to 1 (for a move in X/Y/Z space) or to 3 (for a move in 

XX/YY/ZZ space). If Coord[x].RadiusErrorLimit is set to its default value of 0.0, no checking 

is performed, and these moves are always executed without error. 

A typical circle move command with a radius specification is: 

X1000 Y2000 R750 

Example 

To do the same moves as in the above example, except with radius center specification, the 

program would be: 

normal K-1;     // XY plane 

F10;      // Vector speed specification 

circle1;     // Clockwise circle mode 

X20 Y20 R20;    // Arc move < 180 deg 

X40 Y20;     // Automatically linear 

X20 Y0 R-20;    // Arc move > 180 deg 
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The following figure shows several examples of circle-mode move commands and the paths that 

result: 
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Circle Mode Move Examples 

Motion of Other Axes 

With the coordinate system in circle mode, axes that are not circularly interpolated are linearly 

interpolated. This includes all axes not in the 3D axis set where circular interpolation is 

performed. A rotary axis may be commanded to keep a constant axis relative to the circular arc 

path in this way. It also includes the component of motion in the 3D axis set that is perpendicular 

to the plane of interpolation defined by the normal command. For example, with the XY plane 

defined for circular interpolation, the Z-axis will be linearly interpolated during an XY circle 

move, automatically producing helical interpolation. 

Feedrate or Move-Time Specification 

As with linear moves, the user can either specify the target velocity (“feedrate”) for the circle-

mode move, with an F{data} command, or the move time with the tm{data} command. If F 

is specified, the move time is calculated, and if tm is specified, the feedrate is calculated. The 

relationship between the two values is reciprocal for a given move distance. Move-time and 

feedrate values are modal; they affect all subsequent circle (and linear) mode moves until another 

F or tm value is specified in the program. 

The units of the tm time are milliseconds; the units of the F velocity are the user length (or angle) 

units of the vector feedrate axes (see below) divided by the time units as defined by the saved 

setup element Coord[x].FeedTime, in milliseconds. If Coord[x].FeedTime is at the default 

value of 1000, the F units are length units per second; if Coord[x].FeedTime is set to 60,000, the 

F units are length units per minute. 

More details on this specification are given in the section on linear-mode moves, above. 
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Vector Feedrate Axes 

As with linear-mode moves, the specified feedrate is applied to the “vector feedrate” axes, which 

are X, Y, and Z by default, or specified by the frax command. However, for circle-mode moves, 

if an axis is one of the circular interpolation axes as specified by the normal command, it is 

automatically used as a vector feedrate axis, even if it is currently specified as such an axis. 

More details on vector feedrate axes are given in the section on linear-mode moves, above. 

Inverse Time Mode 

The time for circle-mode moves can also be specified in “inverse time” mode. In this mode, the 

time for a move is inversely proportional to the value specified in the most recent F-code in the 

program. 

Inverse time mode in Power PMAC is specified by setting non-saved setup element 

Coord[x].InvTimeMode to a value greater than 0. The power-on default for this element is 0, so 

this mode is always disabled on power-up/reset, and must be enabled explicitly. There are three 

valid non-zero values; for each one, the exact method of computing circle-mode move times 

differs. (The calculation of linear-mode move times is the same in all three – see the above 

section for details.) 

If Coord[x].InvTimeMode is set to 1, the time for a circle-mode move in milliseconds is 

calculated by dividing the specified value of the most recent F-code into the value of 

Coord[x].FeedTime, which is expressed in milliseconds. For example, with Coord[x].FeedTime 

set to 60,000, which is the common setting for CNC applications, an F200 code specifies a move 

time of 60,000 / 200 = 300 milliseconds (0.3 seconds) for that move. 

If Coord[x].InvTimeMode is set to 2, the time for a circle-mode move in milliseconds is 

calculated first by dividing the specified value of the most recent F-code into the value of 

Coord[x].FeedTime and then multiplying this by the angle subtended by the X/Y/Z arc move in 

radians. Here the value of the F command can also be considered as the arc velocity divided by 

the X/Y/Z radius. For example, with Coord[x].FeedTime set to 60,000, a full circle move 

specified with F100 would have a move time of (60,000 / 100) * 2 * π = 3770 milliseconds (3.77 

seconds). 

If Coord[x].InvTimeMode is set to 3, the time for a circle-mode move in milliseconds is 

calculated first by dividing the specified value of the most recent F-code into the value of 

Coord[x].FeedTime and then multiplying this by the angle subtended by the XX/YY/ZZ arc 

move in radians. Here the value of the F command can also be considered as the arc velocity 

divided by the XX/YY/ZZ radius. For example, with Coord[x].FeedTime set to 60,000, a 

semicircle move specified with F150 would have a move time of (60,000 / 150) * π = 1257 

milliseconds (1.257 seconds). 

Motor Velocity Limits 

The motor velocity-limit saved setup element Motor[x].MaxSpeed is applied to circle-mode 

moves, whether or not the special lookahead buffer is active. The limit is applied on a segment-

by-segment basis, and since motor velocities generally change through the course of a circle-

mode move, the limits may be applied in some parts of a move and not others. 
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Minimum Move Time 

If the time for a circle-mode move, whether specified directly with a tm{data} command, or an 

F{data} command in inverse time mode, or calculated by Power PMAC as vector distance 

divided by vector feedrate, is less than the specified total acceleration time, one of the times must 

be altered to create a realizable move. In this case, the effective “move time” is lengthened so that 

it is equal to the total acceleration time, lessening the top speed of the move. This means that 

there is no “constant speed” section to the move; it transitions directly from the incoming 

acceleration (or blending) to the outgoing deceleration (or blending). 

This means that the programmed acceleration time acts as the minimum permitted move time for 

an individual circle-mode move. This is in part a protection against move times so short that 

Power PMAC could not calculate them in real time. If you are working with very short move 

segments (particularly programmed by feedrate) and your move sequence is going more slowly 

than you want, this acceleration-time limit may be the cause. 

If the acceleration-time parameters are set small enough (even to 0), the move times can become 

very small. It is even possible for them to be less than a servo cycle in length, although moves 

this short are simply skipped over until enough time in the trajectory has accumulated to pass the 

next servo cycle. 

Acceleration Specification 

Power PMAC provides multiple parameters for specifying the acceleration and deceleration of 

circle-mode moves. These parameters are the same parameters that govern the acceleration and 

deceleration of linear-mode moves, and are described in detail in that section, above. 

Acceleration Limits 

Power PMAC can perform automatic acceleration limiting for circle-mode moves on a segment-

by-segment basis if the special lookahead buffer is enabled (Coord[x].LHDistance > 0, defined 

lookahead buffer). If, in any segment generated by a circle-mode move, the magnitude 

acceleration requested of a motor exceeds the limit specified by saved setup element 

Motor[x].InvAmax, the time for the segment will be extended so the limit is not violated. 

Preceding segments may also be extended so that the required deceleration to this point does not 

exceed these limits. 

Without the special lookahead buffer enabled, Power PMAC does not check for violations of 

acceleration limits in circle-mode moves. Power PMAC does not check for violations of jerk 

limits in circle-mode moves whether or not the special lookahead buffer is enabled. 

Blending Moves Together 

If a circle-mode move is part of a sequence of linear and circle moves with blending enabled 

(Coord[x].NoBlend = 0 – the default) and no intervening dwell commands, each motor blends 

smoothly from the velocity at the end of the first move to the velocity at the beginning of the 

second move according to the acceleration parameters in force at the time the second move is 

calculated. This blend starts at the point where the first move would begin to decelerate to a stop 

at its specified end position if there were no blending, not at the first move’s endpoint itself. It 

ends at the point where the second move would finish its acceleration from a stop at its starting 

position if there were no blending. 

The following diagram shows the blend paths between lines and arcs, both when there would be a 

corner in the unblended path (“non-tangent”), and when there would not be (“tangent”). 
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Line/Line

Line/Arc

Arc/Arc

Non-Tangent Blend Tangent Blend
 

Line and Arc Blend Paths 

Tangent blends involving arc moves result in a path over the blend that is “flatter” than the 

unblended path would be. This feature permits smooth transitions in centripetal acceleration when 

the radius/curvature changes, rather than the step change of unblended tangent moves. 

Circle-mode moves can also blend into and from PVT-mode moves. Details of these blends are 

discussed in the PVT-mode move section, below. 

Blended Move “Cornering” Control 

For path-based applications employing linear and circle mode moves, Power PMAC has a rich set 

of automatic functions that make it easy to optimize the behavior at the blended “corners” created 

at move boundaries in a given application. 

Cornering Angle Definition 

Many of these functions are based on the “angle” of the corner, and it is important to understand 

exactly what is meant by this angle. First, it is the change in the directed angle of motion of the X, 

Y, and Z axes at the programmed point (the target position of the incoming move) if the moves 

were not smoothly blended. This angle is equal to 180° minus the “included angle” at the corner. 

So for example, two consecutive moves in the same direction would have a 0° change in directed 

angle used by Power PMAC calculations, but a 180° included angle. 

Second, if either (or both) of the moves at the corner is a circle mode move, it is the direction of 

the move immediately at the unblended corner that is used, not the direction at the end of any 

blending (which would be different). 
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Finally, it is the angle in the plane defined by the normal command (the XY plane by default) 

that is used for these functions. If the corner does not lie in this plane, it is the perpendicular 

projection of this corner into the defined plane that determines the angle. For example, with the 

XY plane defined, if the incoming move is linear X motion only, and the outgoing move is linear 

Y and Z motion only, then the change in directed angle would be calculated as 90°, because the Z 

motion is not relevant to the angle calculations in the XY plane. 

If either the incoming or outgoing move at the corner has no component in the defined plane, the 

corner is treated as having an angle whose cosine is equal to the value of saved setup element 

Coord[x].NoCornerBp for the purposes of deciding whether to blend and/or dwell at the corner, 

as discussed below. 

Corner Blend/No-Blend Control 

If saved setup element Coord[x].CornerBlendBp is a non-zero number, it specifies the cosine of 

the “breakpoint” change in directed angle between corners where the incoming and outgoing 

moves are blended together and those that are not. If the cosine of the change in directed angle is 

greater than or equal to this value (a “shallow” corner), the moves will be blended together based 

on several factors described below. If the cosine of the change in directed angle is less than this 

value (a “sharp” corner), the moves will not be blended together, and the pause at the corner is 

governed by several factors described below. 

Coord[x].CornerBlendBp permits smooth contours to be generated without stops at each 

programmed point, but the creation of sharp corners where there is a sudden change in direction, 

without the need to specify this explicitly in the program. It is used only if saved setup element 

Coord[x].NoBlend is set to its default value of 0, if Coord[x].NoBlend is set to 1, no moves are 

blended, regardless of corner angle. 

Blended Corner Characteristics 

Power PMAC permits a variety of ways of defining the path of a blended corner. These allow the 

user to optimize the application in any of several preferred methods. Note that these methods 

operate at the programmed move calculation time. If the special lookahead buffer that 

subsequently operates on move segments generated from the programmed move equations is 

used, it can slow down execution of the moves at any point, including blends, if any motor 

dynamic limits are violated, but it will not change the path initially calculated. 

Fixed-Time Corner Blend 

If saved setup elements Coord[x].CornerRadius, Coord[x].CornerAccel, and 

Coord[x].CornerError are all set to their default values of 0.0, then the blended corner time is 

set by and the values of Coord[x].Ta and Coord[x].Ts (often set by ta and ts commands in the 

program) in force at the time, and the blended corner size is set by these parameters and the move 

speed (usually set by an F command in the program). The overall blending time Tb is either Ta + 

Ts or 2 * Ts, whichever is larger, and the blend starts and stops at a distance V * Tb / 2 from the 

programmed corner part. 

In this mode of operation, neither the cornering acceleration, the “radius” of curvature, nor the 

corner blending path error is fixed as move speeds and corner angles change.  
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The following plot shows how the corners are executed in this mode. It shows a figure with 45°, 

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and 

“2x” speeds. It illustrates how the blends vary with speed and angle. 

 

Corner Blend Paths, Constant-Time Mode 

The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended, 

then blended at “1x” speed, and finally blended at “2x” speed. Note how the blending time is 

constant over speed and corner angle. 

 

Corner Blend Profiles, Constant-Time Mode 
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Fixed-Radius Corner Blend 

If saved setup element Coord[x].CornerRadius is set to a positive value, it specifies the “radius” 

of the corner blend. While the blended corner path is not a true circular arc, it is often very close, 

particularly if there is no Ts time, so the concept of a corner radius is still valuable. (Technically, 

it is the distance of the lines perpendicular to the paths at the starting and ending points of the 

blend to their intersection point.) 

Based on the moves speeds and the change in angle at the corner, it calculates a Ta time to 

achieve the specified corner radius, instead of just using the value in Coord[x].Ta (which it does 

not change). To get the closest possible approximation to a circular blend, it set the Ts time to 0, 

instead of just using the value in Coord[x].Ts (which it does not change). 

This mode of operation is generally used to generate a fixed size of corner, regardless of move 

speeds and corner angles. 

The following plot shows how the corners are executed in this mode. It shows a figure with 45°, 

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and 

“2x” speeds. It illustrates how the blends vary with speed and angle. Note that the blended paths 

are identical at different speeds. 

 

Corner Blend Paths, Constant-Radius Mode 
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The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended, 

then blended at “1x” speed, and finally blended at “2x” speed. 

 

Corner-Blend Profiles, Constant-Radius Mode 

Fixed-Acceleration Corner Blend 

If saved setup element Coord[x].CornerAccel is set to a positive value (but 

Coord[x].CornerRadius is set to its default value of 0.0), it specifies the vector cornering 

acceleration used at a blended corner. It does this by calculating a Ta time for the corner based on 

the move speeds and the change in angle at the corner to achieve the specified vector 

acceleration, instead of just using the value in Coord[x].Ta (which it does not change). If the 

time calculated this way is less than the value of Coord[x].Td, it will use that value instead, so 

Coord[x].Td acts as a minimum time in this mode of operation. This mode does use the value of 

Coord[x].Ts in force at the time, resulting in an overall blending time Tb is either Ta + Ts or 2 * 

Ts, whichever is larger, and the blend starts and stops at a distance V * Tb / 2 from the 

programmed corner part. 

This mode of operation is generally used to generate the smallest possible corner blends, 

regardless of move speeds and corner angles, given an acceleration limit. 

The corner blending time is computed to give the cornering acceleration given the programmed 

speed at the corner. If buffered lookahead is used to execute the resulting path, the acceleration-

limiting function of the lookahead can be used to further limit motor accelerations by 

automatically limiting speed along this path. (The buffered lookahead does not change the path 

computed here.) 
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The following plot shows how the corners are executed in this mode. It shows a figure with 45°, 

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and 

“2x” speeds. It illustrates how the blends vary with speed and angle. 

 

Corner Blend Paths, Constant-Acceleration Mode 

The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended, 

then blended at “1x” speed, and finally blended at “2x” speed. 

 

Corner Blend Profiles, Constant-Acceleration Mode 
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Fixed-Error Corner Blend 

If saved setup element Coord[x].CornerError is set to a positive value (but 

Coord[x].CornerRadius and Coord[x].CornerAccel are set to their default values of 0.0), it 

specifies the error between the blended path at the corner and the programmed corner point. It 

does this by calculating a Ta and Ts time for the corner based on the move speeds and the change 

in angle at the corner to achieve the specified path error, instead of just using the values in 

Coord[x].Ta and Coord[x].Ts (which it does not change). It maintains the ratio between these 

two values, allowing the user to control the “shape” of the corner. The bigger Coord[x].Ts is 

relative to Coord[x].Ta, the “squarer” the corner will be. 

If the time calculated this way is less than the value of Coord[x].Td, it will use that value instead, 

so Coord[x].Td acts as a minimum time in this mode of operation. This mode does use the value 

of Coord[x].Ts in force at the time, resulting in an overall blending time Tb is either Ta + Ts or 2 

* Ts, whichever is larger, and the blend starts and stops at a distance V * Tb / 2 from the 

programmed corner part. 

The following plot shows how the corners are executed in this mode. It shows a figure with 45°, 

90°, and 135° corners, executed first without blending to show the sharp corners, then at “1x” and 

“2x” speeds. It illustrates how the blends vary with speed and angle. Note that the blended paths 

are identical at different speeds. 

 

Corner Blend Paths, Constant-Error Mode 
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The next plot shows the velocity-vs-time profiles for these three runs of the path, first unblended, 

then blended at “1x” speed, and finally blended at “2x” speed. 

 

Corner Blend Profiles, Constant-Error Mode 

Hybrid Corner Acceleration/Error Control Blend 

If both Coord[x].CornerAccel and Coord[x].CornerError are set to positive values, Power 

PMAC will first calculate the blend time for fixed acceleration as specified by the value of 

CornerAccel. It will then compare the blending error in this path against the value of 

CornerError. 

If the blending error computed from the acceleration specification is larger than the error limit, 

the blending time is recomputed according to the error specification, resulting in a smaller corner 

blend. The result of this mode is a corner blend that meets either the acceleration specification or 

the error specification, whichever results in a smaller corner. 

When the blend time is set by the error specification, the acceleration at the programmed speed 

will be higher than that set by CornerAccel. However, if buffered lookahead is used in the 

execution of the resulting path, the acceleration-limiting function of the lookahead can be used to 

keep the actual motor accelerations in the blend within specifications by automatically reducing 

the speed in the vicinity of the corner. 

Non-Blended Corner Characteristics 

If blending is disabled at a corner for whatever reason, the commanded trajectory of the incoming 

move is brought to a stop according to the acceleration parameters Coord[x].Td and 

Coord[x].Ts in force at the time. What happens next is dependent on the value of several 

parameters. 

Command Stop vs. Actual Stop 

If saved setup element Coord[x].InPosTimeout is set to its default value of 0, when the 

commanded trajectory at the end of the incoming move reaches zero velocity, Power PMAC is 
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immediately ready to start the next step, regardless of where the actual trajectory is. However, if 

Coord[x].InPosTimeout is set to a positive value, Power PMAC will wait until all axes in the 

coordinate system have pulled to within their “in-position band” at this target position before 

Power PMAC is ready to start the next step. 

When Coord[x].InPosTimeout is greater than zero, it specifies the number of real-time-interrupt 

periods (Sys.RtIntPeriod + 1 servo cycles) after the commanded trajectory has stopped that 

Power PMAC will continue to check for all axes to come “in position” before it gives up and 

aborts the program. This should be set large enough so that normal variation in the time to 

achieve “in-position” status will never cause an abort. 

Added Corner Dwell 

If saved setup element Coord[x].CornerDwellBp is a non-zero number, it specifies the cosine of 

the “breakpoint” change in directed angle between non-blended corners for which a dwell period 

is automatically added and those for which it is not. If the cosine of the change in directed angle 

is greater than or equal to this value (a “shallow” corner), no dwell period is automatically added. 

If the cosine of the change in directed angle is less than this value (a “sharp” corner), Power 

PMAC will automatically add a dwell of the period specified by saved setup element 

Coord[x].AddedDwellTime, expressed in real-time interrupt periods. 

This dwell period is only added for corners where blending has been disabled because the corner 

is sharper than that specified by Corner[x].CornerBlendBp. If Coord[x].InPosTimeout is 

greater than 0, requiring that all motors in the coordinate system become “in-position” before the 

next step in the process, the added blend period will start after the “in-position” condition occurs. 

 



Power PMAC User’s Manual 

Power PMAC Move Mode Trajectories 705 

Tool (Cutter) Radius Compensation 

Power PMAC provides the capability for performing tool (cutter) radius compensation on the 

moves it performs. This compensation can be performed among the X, Y, and Z axes, which 

should be physically perpendicular to each other. The compensation automatically offsets the 

described path of motion perpendicular to the path by a programmed amount, compensating for 

the size of the tool. This permits the user to program the path along the edge of the tool, letting 

Power PMAC calculate the tool-center path, based on a radius magnitude that can be specified 

independently of the program. 

Power PMAC supports both two-dimensional (2D) and three-dimensional (3D) cutter radius 

compensation. In the more common 2D compensation, described immediately below, you first 

specify the plane of compensation, the direction of compensation (left or right) relative to the 

path, and the radius magnitude. In 3D compensation, described subsequently, you specify the 

surface-normal vector and the tool-orientation vector, as well as the tool-tip geometry. 

Cutter radius compensation is valid only in linear and circle move modes. The moves must 

be specified by F (feedrate), not tm (move time). The coordinate system must be in move 

segmentation mode (Coord[x].SegMoveTime > 0) to do this compensation 

(Coord[x].SegMoveTime > 0 is required for circle mode moves anyway.) 

Note 

In circle mode, a move specification without any center 

specification results in a linear move. This move is executed 

correctly without cutter radius compensation active, but if the 

compensation is active, it will not be applied properly in this 

case. A linear move must be executed in linear mode for 

proper cutter-radius compensation. 

 

Two-Dimensional Tool Radius Compensation 

In 2D compensation, it is assumed that there is a cylindrical tool perpendicular to the plane of 

compensation. The compensation offset is automatically set perpendicular to both the axis of the 

tool and the motion of the tool in the plane of compensation. The resulting compensated path is 

offset by the specified cutter radius so that the edge of the tool traverses the programmed path, 

permitting the user to specify the tool-edge path. 

Setting Up the Compensation Buffer 

In 2D tool radius compensation, programmed moves must be pre-computed and buffered in order 

to implement several important features of the compensation: 

1. Calculating the compensated intersection point with the next move 

2. Ability to process “zero-motion-in-plane” moves (e.g. dwells, moves perpendicular to the 

plane of compensation) 

3. Checking for interference and overcut with upcoming move(s) 

4. Ability to eliminate interfering moves and continue in the program 

 

Each of these features requires that moves be pre-computed and buffered. Saved data structure 

element Coord[x].CCSize, by setting the size of this buffer, specifies how many pre-computed 
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moves can be stored in the buffer for the coordinate system (not necessarily how many will be 

stored). 

Minimum Buffer Size 

Any 2D compensation algorithm must pre-compute one move in order to calculate the 

compensated intersection point with the present move. It is also very important to pre-compute a 

second move to find the next compensated intersection point to see whether the first pre-

computed move is “reversed” by compensation, which usually indicates an “overcut” at the 

beginning of the move. For this reason, Coord[x].CCSize must be set to a value of at least 2 in 

order for 2D compensation to operate in the Power PMAC. 

Zero-Distance Move Buffering 

Some applications will require additional pre-computation and buffering. If there is the possibility 

during a compensated sequence of moves of having one or more moves with zero distance in the 

plane of compensation, these moves must be buffered so the algorithm can calculate the 

compensated intersection point between the moves before and after these “zero-distance” moves. 

Any type of move that has no component of motion in the plane of compensation must be 

buffered. This includes dwells, delays, moves with no distance in any axis, moves perpendicular 

to the plane of compensation (e.g. pure Z-axis moves with compensation in the XY-plane), and 

rotary-axis moves. For example, if you can have a dwell, a perpendicular move up, a rotary-axis 

move, a perpendicular move down, and another dwell between two “in-plane” moves, you must 

reserve room to buffer 5 of these “zero-distance” moves. 

Interference-Check Buffering 

Being able to detect and handle interference conditions that can cause overcutting may require 

additional buffering. The most basic interference check just requires a single additional pre-

computed move, as explained above. This is suitable for many applications, as most of the 

interference cases encountered just require this single additional buffered move.  

However, there are two reasons why additional moves would need to be buffered. First, there are 

applications with the possibility of interference between compensated moves that are not adjacent 

in a sequence, resulting in overcut (e.g. entry and exit moves for a pocket with a narrow neck). To 

catch these cases, the PMAC must be able to buffer enough moves ahead to detect this type of 

occurrence and take appropriate action before an overcut occurs. 

Second, if it is desired to implement the mode of operation that deletes the move path between the 

interfering points and continue operation without that section (sometimes desirable in rough 

cutting passes), the number of moves buffered for the purpose of interference checking must be 

doubled. 

More details on how the interference checking is performed are provided in the section 

Interference Checking, below. 

Total Buffer Size 

To calculate the buffer size needed for your application, decide how many moves “P” ahead you 

want to check for interference and overcut (this must be at least 1). If you want to be able to 

discard the interfering section and continue (instead of stopping with an error), double this value. 

Next, decide how many consecutive “zero-distance-in-plane” moves “Q” (if any) you may need 
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to handle, and add this. Finally, add one move for the fundamental compensated intersection 

calculation. 

Coord[x].CCSize must be set to a value at least as big as this sum (P + Q + 1 or 2P + Q + 1). The 

only disadvantage to defining a buffer larger than necessary is that it requires more memory (~1 

kbyte per move), making that memory unavailable for other uses. 

Specifying the Pre-Computation Length 

Next, the user must specify how many “in-plane” moves ahead of the present move it will keep in 

the buffer during a compensated move sequence by setting Coord[x].CCDistance. This number 

is equivalent to P + 1 for the value of “P” computed above. If Coord[x].CCDistance is set to a 

value less than 2, Power PMAC will use a value of 2. Coord[x].CCDistance cannot be set to a 

value larger than Coord[x].CCSize, but it can, and often will, be set to a smaller value.  

Defining the Plane of Compensation 

The plane in which the 2D compensation is to be performed must be set using the buffered 

motion-program normal command. This is the same plane that is specified for circular 

interpolation. Any plane in XYZ-space may be specified. This is done by specifying a vector 

normal to that plane, with I, J, and K-components parallel to the X, Y, and Z-axes, respectively. 

For example, normal K-1, by describing a vector parallel to the Z-axis in the negative 

direction, specifies the XY-plane with the standard right/left sense of the compensation. 

(normal K1 would also use the XY-plane, but invert the right/left sense.) The vector normal 

K-1 is the power-on/reset default. The compensation plane should not be changed while 

compensation is active. 

Other common settings are normal J-1, which specifies the ZX-plane for compensation 

(common for lathes), and normal I-1, which specifies the YZ-plane. These three settings of 

the normal vector correspond to RS-274 “G-codes” G17, G18, and G19, respectively. If you are 

implementing G-codes in Power PMAC subprogram 1000 (the default G-code subprogram), you 

could incorporate in subprog 1000: 

N17000 normal K-1 return; 

N18000 normal J-1 return; 

N19000 normal I-1 return; 

 

By using more than one vector component in a normal command, a “tilted” plane can be 

defined. The ratio of the components determines the orientation of the normal vector, and 

therefore of the plane of compensation. For example, the command normal K-0.866 J0.5 

defines a plane tilted 30° from the XY-plane. 

Defining the Magnitude of Compensation 

The magnitude of the compensation – the tool radius – must be set using the buffered motion 

program command ccr{data} (cutter compensation radius). This command can take either a 

constant argument (e.g. ccr0.125) or an expression in parentheses (e.g. 

ccr(P10+0.0625)). The units of the argument are the user units of the X, Y, and Z-axes. In 

RS-274 style programs, these commands are often incorporated into “tool data” D-codes using 

Power PMAC subprogram 1003 or equivalent. 
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Negative and zero values for cutter radius are possible, although rarely used. Note that the 

behavior in changing between a positive and negative magnitude is different from changing the 

direction of compensation. See Changes in Compensation, below. Also, the behavior in changing 

between a non-zero magnitude and a zero magnitude is different from turning the compensation 

on and off. See the appropriate sections below. 

Compensation Magnitude and Transformation Matrix Scaling 

Some users will want to change the scaling of the X, Y, and Z axes through the use of 

transformation matrices. By default, the magnitude of the radius compensation will scale with the 

axis scaling. For example, if the axis units are scaled up by a factor of 5.0 with a transformation 

matrix, a programmed radius of 4.0 mm will be used as a 20.0 mm radius. 

In many applications, this is not desirable, so Power PMAC provides methods for rescaling the 

magnitude of radius compensation through the use of status element Coord[x].TxyzScale. Most 

users rescale the radius back to the “base” units of the coordinate system, although this is not 

required. 

If saved setup element Coord[x].AutoTxyzScale is set to 1, then status element 

Coord[x].TxyzScale is automatically set to the “magnitude” of the selected XYZ transformation 

matrix (technically, to the cube root of the determinant of the XYZ minor matrix of the 

transformation matrix) when a program tsel{data} command is executed, selecting the 

matrix. For this method to be useful, the matrix scaling of the X, Y, and Z axes must always be 

the same. 

The value of Coord[x].TxyzScale can also be set “manually” with the program command 

txyzscale{data}, where {data} specifies the value to be placed in the status element. 

With either method of setting the value of this element, the compensation radius as modified by 

the scaling of the transformation matrix is then divided by the value of this element (which should 

contain the matrix scaling factor). Typically this is used to keep the radius magnitude at the 

programmed value regardless of the scaling of the matrix. 

Feedrate of Compensated Arc Moves 

When a circle-mode move is executed with 2D compensation active, the length of the 

compensated arc move for the path of the tool center is different from the length of the 

programmed arc move for the path of the tool edge. This means that the velocity of the tool center 

is also different from the velocity of the tool edge along the programmed path. 

The user can specify whether the compensated tool-center path moves at the programmed 

feedrate, or the tool-edge path along the programmed path does so. If bit 3 (value 8) of saved 

setup element Coord[x].CCCtrl is set to its default value of 0, the tool-center path moves at the 

programmed feedrate. This means that the tool edge along the programmed path will move at a 

different velocity, less if the compensation is to the outside of the arc, greater if to the inside of 

the arc. 

If bit 3 of Coord[x].CCCtrl is set to 1, the tool-edge path along the programmed path moves at 

the programmed feedrate. This means that the compensated tool-center path will move at a 

different velocity, greater if the compensation is to the outside of the arc, less if to the inside of 

the arc. 
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The ability to specify the tool-edge path feedrate of a compensated arc move by setting bit 3 of 

Coord[x].CCCtrl to 1 is new in V2.1 firmware, released 1st quarter 2016. With the bit at its 

default value of 0, operation is compatible with older firmware versions. 

Turning On Compensation 

The compensation is turned on by buffered motion program command ccmode1 (offset left) or 

ccmode2 (offset right). (Note that the equivalent Turbo PMAC commands cc1 and cc2 are 

axis motion commands for the “CC” axis in Power PMAC.) These are equivalent to the RS-274 

G-codes G41 and G42, respectively. If you are implementing G-code subroutines in Power 

PMAC subprogram 1000, you could simply incorporate into subprog 1000: 

N41000 ccmode1 return; 

N42000 ccmode2 return; 

 

Turning Off Compensation 

The compensation is turned off by buffered motion program command ccmode0, which is 

equivalent to the RS-274 G- Code G40. (Note that the equivalent Turbo PMAC command cc0 is 

an axis motion command for the “CC” axis in Power PMAC.) If you are implementing G-Code 

subroutines in Power PMAC subprogram 1000, you could simply incorporate into subprog 

1000: 

N40000 ccmode0 return; 

How Power PMAC Introduces Compensation 

Power PMAC gradually introduces compensation over the next linear-mode move following 

the ccmode1 or ccmode2 command that turns on compensation. Compensation cannot be 

introduced over a circle-mode move (unlike in Turbo PMAC). Note that the length of the 

programmed lead-in move must be greater than the cutter-compensation radius; otherwise the 

program will be stopped with an error. 

Inside Corner Introduction 

If the lead-in move and the first fully compensated move form an inside corner, the compensated 

lead-in move ends at a point one cutter radius away from the intersection of the programmed 

lead-in move and the first fully compensated move, with the line from the programmed point to 

this compensated endpoint being perpendicular to the path of the first fully compensated move at 

the intersection. Note that this intersection point between the lead-in move and the first fully 

compensated move is different from what the intersection between two compensated moves 

would be. If the moves are to be blended, the corner will be blended according to the acceleration 

times in force (Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves. 
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Introducing Compensation – Inside Corner 

Outside Corner Introduction 

If the lead-in move and the first fully compensated move form an outside corner, the compensated 

lead-in move first moves to a point one cutter radius away from the uncompensated intersection 

of the programmed lead-in move and the first fully compensated move, with the line from the 

programmed point to this compensated endpoint being perpendicular to the path of the 

compensated lead-in move at the intersection. This compensated tool path will be at a diagonal to 

the programmed move path. 

From this point, the path is dependent on whether the angle between the lead-in move and the 

first fully compensated move is sharp enough that the corner is traversed with an added arc about 

the uncompensated intersection point or not. The threshold for this choice is determined by 

Coord[x].CCAddedArcBp (as it is for fully compensated intersections). This is explained more 

completely in the section Treatment of Compensated Outside Corners, below. 

If the angle is sharper than this threshold, Power PMAC will execute an arc move, with radius of 

the cutter radius, about the uncompensated intersection point to a point perpendicular to the 

starting direction of the fully compensated move. 

If the angle is less sharp than this threshold, the compensated lead-in move will extend to the 

direct compensated intersection point with the (extended) first fully compensated move. If the 

moves are to be blended, the corner will be blended according to the acceleration times in force 

(Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves. 
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Introducing Compensation – Outside Corner 

Treatment of Compensated Inside Corners 

If the algorithm determines that the corner defined by two fully compensated moves must be 

compensated to the inside, it will calculate the intersection point of these two compensated 

moves. If the two moves are not blended for whatever reason, the incoming move will stop 

exactly at this point. If the moves are to be blended, the compensated path will be blended 

according to the acceleration times in force (Coord[x].Ta and Coord[x].Ts), just as for 

uncompensated moves, and the blended path will pass to the “inside” of the corner at the 

compensated intersection point. 
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Inside Corner Cutter Compensation 

Treatment of Compensated Outside Corners 

If the algorithm determines that the corner defined by two fully compensated moves must be 

compensated to the outside, it will first calculate the direct intersection point of these two 

compensated moves. Then, it will calculate the distance from the uncompensated intersection 

point to this compensated point, and compare it to the cutter radius. Next, it will compare the ratio 

of the cutter radius to this distance (which for linear moves is equal to the cosine of the change in 

directed angle between the two moves) to the saved setup element Coord[x].CCAddedArcBp.  

Sharp Outside Corner 

If this ratio is less than Coord[x].CCAddedArcBp, meaning that the compensated intersection is 

farther away from the uncompensated corner than the “break point” set by this element, and 

implying a “sharper” corner (greater change in direction), Power PMAC will add an arc move of 

the cutter radius to traverse this outside corner from the point tangent to the incoming 

compensated move to the point tangent to the outgoing compensated move. 

The purpose of this arc move is to keep the tool-center time from moving too far from the 

programmed corner point on sharp corners, which could interfere with other features on the part, 

and take more time. The move will be executed at the same vector feedrate as the incoming 

move, subject to two limitations. First, the minimum time for this move is the acceleration time in 

force (Coord[x].Ta + Coord[x].Ts or 2 * Coord[x].Ts, whichever is greater). Second, the move 

speed can be limited by the Coord[x].MaxCircleAccel centripetal acceleration limit. 



Power PMAC User’s Manual 

Power PMAC Move Mode Trajectories 713 

If the two moves are not blended for whatever reason, Power PMAC can be programmed to stop 

either at the beginning of this added arc move (bit 0 – value 1 – of Coord[x].CCCtrl = 1) or at 

the end of this added arc move (bit 0 of Coord[x].CCCtrl = 0). 
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Sharp Outside Corner Cutter Compensation 

Shallow Outside Corner 

If this ratio is greater than Coord[x].CCAddedArcBp, meaning that the compensated 

intersection is closer to the uncompensated corner than the “break point” set by this element, and 

implying a “shallower” corner (less change in direction), Power PMAC will use this compensated 

intersection point to combine the two moves directly, with no added arc move in between. If the 

two moves are not blended for whatever reason, the incoming move will stop exactly at this point. 

If the moves are to be blended, the compensated path will be blended according to the 

acceleration times in force (Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves, 

and the blended path will pass to the “inside” of the corner at the compensated intersection point. 
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Shallow Outside Corner Cutter Compensation 

Changing Radius During Compensation 

It is possible to change the tool radius value while compensation is active. If this is done, the 

change in compensation will be introduced linearly along the length of the next compensated 

move. For a linear-mode move, this will result in a path that is diagonal to the programmed 

move. For a circle-mode move, this will result in a spiral path for the compensated move. 

Changing the tool radius value to or from zero will result in different path behavior from modally 

removing or introducing compensation (respectively). 

How Power PMAC Removes Compensation 

Power PMAC gradually removes compensation over the next linear-mode move following the 

cc0 command that turns off compensation. The process is exactly the reverse of the process that 

introduces compensation. Note that the length of the programmed lead-out move must be greater 

than the cutter-compensation radius; otherwise the program will be stopped with an error. 

Inside Corner Removal 

If the last fully compensated move and the lead-out move form an inside corner, the lead-out 

move starts at a point one cutter radius away from the intersection of the last fully compensated 

move and the lead-out move, with the line from the programmed point to this compensated 

starting point being perpendicular to the path of the last fully compensated move at the 

intersection. Note that this intersection point between the last fully compensated move and the 

lead-out move is different from what the intersection between two compensated moves would be.  
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If the moves are to be blended, the corner will be blended according to the acceleration times in 

force (Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves. For the lead-out move, 

the compensated tool path will be at a diagonal to the programmed move path, ending at the 

programmed point for this move. 
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Inside Corner Cutter Compensation Removal 

Outside Corner Removal 

If the last fully compensated move and the lead-out move form an outside corner, the lead-in 

move first moves to a point one cutter radius away from the uncompensated intersection of the 

last fully compensated move and the lead-out move, with the line from the programmed point to 

this compensated endpoint being perpendicular to the path of the last fully compensated move at 

the intersection.  

From this point, the path is dependent on whether the angle between the last fully compensated 

move and the lead-out move is sharp enough that the corner is traversed with an added arc about 

the uncompensated intersection point or not. The threshold for this choice is determined by 

Coord[x].CCAddedArcBp (as it is for fully compensated intersections). This is explained more 

completely in the section Treatment of Compensated Outside Corners, above. 

If the angle is sharper than this threshold, Power PMAC will execute an arc move, with radius of 

the cutter radius, about the uncompensated intersection point to a point tangent to a straight-line 

move to the programmed point of the lead-out move. It will then execute the straight-line lead-out 

move to this point. The path of this move will be diagonal to the path of the uncompensated 

move. 

If the angle is less sharp than this threshold, the last fully compensated move will extend to the 

direct compensated intersection point with the (extended) compensated lead-out move. If the 

moves are to be blended, the corner will be blended according to the acceleration times in force 

(Coord[x].Ta and Coord[x].Ts), just as for uncompensated moves. 
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Outside Corner Cutter Compensation Removal 

Interference Checking 

Power PMAC has powerful capabilities to detect interference in the compensated tool-center path 

that is indicative of “overcut” conditions on the part. Fundamentally, interference can be detected 

if a compensated move is in the opposite direction from the uncompensated move, which will 

cause a crossover in the compensated path. 

In order to detect interference conditions in time to prevent an overcut, Power PMAC must be 

pre-computing and buffering at least 2 “in-plane” moves in the compensated move sequence. The 

number of pre-computed “in-plane” moves that will be buffered is specified by 

Coord[x].CCDistance; the total number of moves – in-plane and not – that can be buffered is 

specified by Coord[x].CCSize. The settings for these are discussed in the above sections 

Specifying the Pre-Computation Length and Setting Up the Compensation Buffer. 

 
Note 

If Coord[x].CCDistance is large enough to cover a complete 

programmed loop, it may consider the loop to constitute 

interference. 

 

Action on Detecting Interference 

Power PMAC permits two different actions when interference in the compensated path is 

detected. If bit 1 (value 2) of Coord[x].CCCtrl is set to 0, Power PMAC will stop the motion 

program when interference is detected. Provided that the program has been told to pre-compute 

enough moves, motion will be stopped before the resulting overcut would occur. This mode 
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basically assumes that the interference was caused by a programming error, so the program 

should not continue. 

However, if bit 1 (value 2) of Coord[x].CCCtrl is set to 1, Power PMAC will compute the 

intersection point of the interfering compensated move paths, discard the trajectory between the 

first arrival at this intersection point and the second arrival, and directly blend the first incoming 

path to point to the second outgoing path. This mode is useful for rough cutting with a large tool 

that may not be able to get into small features in the part, before a final path with a small tool that 

can. Note that this removal is only possible for linear mode moves in the compensated path, and 

that it is not always possible to compute a non-interfering path in this algorithm. If the Power 

PMAC cannot compute a non-interfering path in this mode, it will stop the program when 

interference is detected. 

For debugging purposes, bit 2 (value 4) of Coord[x].CCCtrl can be set to 1. With this setting, 

Power PMAC will permit interference to occur. This setting is suggested mainly for dry-run 

modes, to be able to detect more clearly what the source of the problem is. 

Examples 

This XY path plot shows what can happen with interference checking disabled. The bottom path 

shows the uncompensated path; this path has a “pocket” that is deep and narrow relative to the 

radius of the tool. Without interference checking, the top compensated path goes too deep into the 

pocket. One of the compensated moves is reversed in direction and the compensated path 

intersects itself. The result is that the tool would “overcut” past the edge of the uncompensated 

path. 

 

Deep Pocket, Interference Check Disabled 

The next XY path plot shows the same uncompensated and compensated paths, but this time with 

interference checking enabled for the compensated moves. Note that the reversed move at the 

bottom of the pocket of the compensated path is eliminated, and the moves entering and leaving 
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the pocket are shortened to the point where they intersected without interference checking. This 

action prevents any overcutting by the tool. 

 

Deep Pocket, Interference Check and Removal Enabled 

In this next case, the XY path plot shows a case of interference that involves several moves. The 

bottom path shows the uncompensated path with a small shallow pocket. Without interference 

checking active, the top compensated path goes too deep into the pocket, causing overcut. Note 

that the compensated path has several points of intersection with itself. 

 

Shallow Pocket, Interference Check Disabled 
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The following XY path plot shows the same uncompensated and compensated paths, but this time 

with interference checking enabled for the compensated moves. Notice that everything between 

the first and last crossover point has been removed, so that the added outside arc going into the 

pocket directly blends into the added outside arc leaving the pocket. 

 

Shallow Pocket, Interference Check and Removal Enabled 

Single-Stepping in 2D Tool Radius Compensation 

Single-step execution of motion programs with 2D tool radius compensation active requires 

special consideration by the Power PMAC. When this compensation is not active, a single-step 

command simply progresses in the program until it finds and calculates the next move, and 

executes that move. 

However, when 2D compensation is active, in order to be able to execute the next move (which is 

the operator’s intention), the program must calculate far enough ahead to compute the intersection 

with the next in-plane move, and to check for possible interference conditions. At the end of a 

compensated move sequence, no more moves must be calculated. 

When given a single-step command with 2D compensation active – an on-line s command or a 

buffered program step command – Power PMAC computes enough moves ahead so that it can 

execute one move, taking that move out of the compensated move buffer. At the beginning of a 

compensated move sequence, it must compute enough moves to get Coord[x].CCDistance 

moves ahead. In the middle of a sequence, it must compute enough moves to stay this many in-

plane moves ahead – often one move, but sometimes more, and sometimes none. At the end of a 

sequence, when the lead-out move has already been computed, no additional moves are computed 

on a single-step command; one move is simply pulled from the buffer and executed. 

Errors in 2D Tool Radius Compensation 

Power PMAC can detect several types of errors during the execution of 2D tool radius 

compensation. If it detects one of these errors, it will halt execution of the program and set an 

error status value to denote the presence and type of error. The following table shows the values 
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of Coord[x].ErrorStatus that reflect 2D compensation errors. 8-bit element 

Coord[x].ErrorStatus is part of full-word element Coord[x].Status[0], whose contents can also 

be found with the &x? or backup Coord[x].Status query commands. 

ErrorStatus 

Value 

Error Name Description 

0 NoError Normal execution 

3 CCMoveTypeError Illegal move mode or command while cutter compensation 

active (rapid, pvt, spline, lin-to-pvt, new normal, pmatch, 

pclr, pset, pload) 

5 CCLeadOutMoveError Illegal cutter compensation lead-out move (circle mode or 

length not greater than cutter radius) 

6 CCLeadInMoveError Illegal cutter compensation lead-in move (circle mode or 

length notgreater than cutter radius) 

7 CCBufSizeError Insufficient size for cutter compensation move buffer (not 

enough to find next in-plane move) 

9 CCFeedRateError Moves not specified by feedrate for cutter comp 

10 CCDirChangeError Compensated move in opposite direction from programmed 

move; indicates interference condition 

11 CCNoSolutionError No solution could be found for compensated move  

13 CCDistanceError Could not resolve overcuts by removing moves 

14 CCNoIntersectError Could not find intersection of compensated paths 

15 CCNoMovesError No compensated moves between lead-in and lead-out 

moves 

 

Three-Dimensional Tool Radius Compensation 

Power PMAC provides the capability for performing three-dimensional (3D) tool (cutter) radius 

compensation on the moves it performs. This compensation can be performed among the X, Y, 

and Z axes, which should be physically perpendicular to each other (even if the motors assigned 

to the axes are not). Unlike the more common two-dimensional (2D) compensation, the user can 

independently specify the offset vector normal to the cutting surface, and the tool orientation 

vector. 

The 3D compensation algorithm automatically uses this data to offset the described path of 

motion, compensating for the size and shape of the tool. This permits the user to program the path 

along the surface of the part, letting Power PMAC calculate the path of the center of the end of 

the tool. 

3D compensation is valid only in linear and circle move modes, and is really intended only 

for linear moves. 

Defining the 3D Tool Geometry 

The magnitude of the 3D compensation is determined by a table that defines the size and 

shape of the end of the cylindrical tool. The table specifies the cross-sectional shape of the 

tool end as a set of up to 16 arcs of individually specified radii and subtended angles. These 

define the shape of the tool tip from the end of the tool “shaft” to the tip point of the tool at 

the center of rotation. 

Most users will define a very simple table for either a “flat-end” tool or a spherical “ball-nose” 

tool. These cases are given as specific examples below. However, this table gives the capability 
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for using other tool-tip shapes, and also for compensating for tool wear in very high-accuracy 

applications. 

 
Note 

For convenience of description, the explanation of the tool 

geometry will use the convention that the tool is vertical with 

the tool tip at the bottom. 

 

The table is defined within the data structure Coord[x].CC3Data[i], where x is the 

coordinate system number, and i is the index (i = 0 to 16) of the arc section of the tool tip. 

(Index i = 16 only contains data for the end of section 15.) Each tool-tip section structure 

has multiple elements, as explained below. Note that each coordinate system only has one 

table of tool-tip geometry, so if the tool is changed, the table must be re-entered using (on-

line or program) commands. The table contents cannot be saved to non-volatile memory, so 

the table must be created after power-on/reset using (on-line or program) commands. 

Sample Tool-Tip Geometry 

 

User sets: 

Coord[x].CC3Data[0].ToolRadius = TR0  

Coord[x].CC3Data[0].ToolOffset = TO0 

(values for higher indices i are calculated automatically) 

Coord[x].CC3Data[i].CutRadius = Ri  

Coord[x].CC3Data[i].NdotT = cos Θi  
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for i = 0 until cos Θi = 1.0 

Setting the Initial Reference Point 

The initial reference point for the table can be considered the transition point between the 

non-cutting tool shaft and the cutting tool-tip. The user must define both the radial and 

axial distance of this point from the tool-center reference point. The path in the motion 

program is described as if this tool-center point were directly in contact with the part, and 

the compensation function will offset the tool-center path to allow for the defined size and 

shape of the tool end. The tool-center reference point must be on the center-line, or axis of 

rotation, of the tool. Its location along the axis of rotation is at the discretion of the user. 

The user defines the table’s initial reference point by setting two table elements. 

Coord[x].CC3Data[0].ToolRadius is set to the radial distance of this point from the tool 

center-line, in the linear length units of the coordinate system (typically millimeters or 

inches). This must be a positive value, and is usually considered to be the “shaft radius”. 

Coord[x].CC3Data[0].ToolOffset is set to the (signed) axial distance of the this point from 

the tool-center reference point, in the linear length units of the coordinate system. If this is a 

positive value, the initial reference point for the table is “above” (away from the tool tip) the 

tool-center reference point; if it is a negative value, the initial reference point for the table is 

“below” (toward the tool tip) from the tool-center reference point. 

Note that the ToolRadius and ToolOffset elements exist and are used for higher section 

index values (i = 1 to 16). However, these are automatically calculated by the Power PMAC 

as arc-piece data is entered using Script commands. Note that the user should not enter 

values for these elements using the Script language, and should not enter the arc-piece 

section data using C-language commands. 

Entering the Arc-Piece Section Data 

Next, the user must enter element values defining the arc pieces used to build the cross-section of 

the tool end. Each arc piece is defined by specifying its starting angle and its radius. The 

subtended angle of an arc piece is simply the difference between the starting angle of this arc 

piece and the starting angle of the next arc piece. There is no change of direction at the junction 

of two arc pieces. If a sharp corner in the cross section is desired, a “dummy” arc piece of zero 

radius must be defined. 

The element Coord[x].CC3Data[i].NdotT is set to the cosine of the starting angle for the arc 

piece with index i. The angle is defined as the angle between the tool axis of rotation (“vertical”) 

and the radial line on the end of the arc away from the tool tip (the “top” end of the arc). This 

cosine value is equivalent to the dot product of the surface-normal vector N and the tool-direction 

vector T for this point on the tool, hence the element name NdotT. Of course, this value must be 

within the range -1.0 to +1.0; an attempt to enter a value outside of this range will be rejected 

with an error. 

The value of NdotT for each arc piece must be greater than the value for the previous piece (so 

the starting angle is less than for the previous piece) – this requires that the full tool-end cross-

section be convex. When a value for NdotT is entered for an arc piece with a Script command, 

the values of NdotT for all subsequent (higher-numbered) arc pieces are checked against this 

value, and if less, are set equal to this value. If a command attempts to set a value for NdotT that 
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is less than the value for a previous (lower-numbered) arc piece, the command will be rejected 

with an error. 

The element Coord[x].CC3Data[i].CutRadius is set to the length of the radius for the arc piece 

with index i, in the linear length units of the coordinate system. This must be a non-negative 

value. It can be larger or smaller than the tool radius. A zero value can be used to specify a sharp 

corner in the cross-section. 

The tool-tip cross section can be defined using up to 16 arc pieces (i = 0 to 15). A table of n arc 

pieces is ended with a setting for Coord[x].CC3Data[n].NdotT of 1.0, which defines a zero-

degree angle from the “vertical” for the radial line at the end of the last arc piece (with index n-1), 

specifying a “smooth” tool-center tip. Coord[x].CC3Data[16].NdotT is automatically set to 1.0, 

so if the full set of 16 arc pieces is used, this will be the ending value for the last arc. In the 

unusual event that a pointed tool-center tip is desired, a last arc piece of zero radius must be 

specified to bring the final angle to zero degrees. No value of Coord[x].CC3Data[n].CutRadius 

must be entered; this value will not be used in any case. A value for 

Coord[x].CC3Data[16].CutRadius cannot be entered and will never be used. 

The values of Coord[x].CC3Data[0].NdotT and Coord[x].CC3Data[0].CutRadius specify the 

information for the first arc piece of the cross-section, which starts at the initial reference point. If 

Coord[x].CC3Data[0].NdotT is set to 0.0, there is a smooth blend between the tool shaft 

cylinder and the start of the tool end. If it is set to a non-zero value, there will be a sharp corner at 

this junction. A negative value for Coord[x].CC3Data[n].NdotT is permissible; this will create a 

“bulbous” tool end that permits undercutting operations in holes. 

Examples 

A semi-circular (“ball-nose”) tool-end cross section whose radius is specified in the variable 

BallRad and whose tool-center reference point is at the center of the hemisphere can be defined 

with the following settings: 

Coord[x].CC3Data[0].ToolRadius = BallRad 

Coord[x].CC3Data[0].ToolOffset = 0.0 

Coord[x].CC3Data[0].NdotT = 0.0 

Coord[x].CC3Data[0].CutRadius = BallRad 

Coord[x].CC3Data[1].NdotT = 1.0 

 

A tool-end cross section that is square with an overall size set by variable ShaftRad and a 

circular corner of radius CornerRad, and whose tool-center reference point is ShaftRad in from 

the tool tip, can be defined with the following settings: 

Coord[x].CC3Data[0].ToolRadius = ShaftRad 

Coord[x].CC3Data[0].ToolOffset = ShaftRad - CornerRad 

Coord[x].CC3Data[0].NdotT = 0.0 

Coord[x].CC3Data[0].CutRadius = CornerRad 

Coord[x].CC3Data[1].NdotT = 1.0 

 

Turning On 3D Compensation 

3D cutter compensation is turned on by the buffered motion program command ccmode3. (Note 

that the equivalent Turbo PMAC command cc3 is an axis motion command for the “CC” axis in 

Power PMAC.) Since the offset vector is specified explicitly, there is no “left” or “right” 
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compensation here. When 3D compensation is turned on, the “surface-normal” vector is 

automatically set to the “null” (zero-magnitude) vector, and the “tool-orientation” vector is also 

automatically set to the “null” vector. Until a surface-normal vector and a tool-orientation vector 

are explicitly declared with 3D compensation active, no actual compensation will occur. The first 

move after 3D compensation is enabled must be a linear mode or circle (not 

recommended) mode move; otherwise, the program will be halted with an error. 

Turning Off 3D Compensation 

3D cutter compensation is turned off by the buffered motion program command ccmode0, just 

as for 2D compensation. ). (Note that the equivalent Turbo PMAC command cc0 is an axis 

motion command for the “CC” axis in Power PMAC.) Compensation will be removed over the 

next linear mode or circle (not recommended) mode move after compensation has been 

turned off. If a commanded move of a different mode is encountered in the program before there 

is a linear or circle mode move that can remove the compensation, the program will be 

halted with an error. 

Declaring the Surface-Normal Vector 

In 3D cutter compensation, the “surface-normal vector” must be explicitly declared in the part 

program. (In 2D cutter compensation, it is automatically perpendicular to both the plane normal 

vector and the velocity vector.) The surface-normal vector N is the vector that is to be 

perpendicular to the part surface at the programmed point(s). The 3D compensation algorithm 

uses this vector, along with the tool-orientation vector, to compute what part of the tool-tip must 

be in contact with the surface at the point(s) to create a surface with this normal vector. 

The direction of the surface-normal vector is determined by the nxyz I{data}, J{data}, 

and K{data} components declared in a motion program line, specifying the X, Y, and Z-axis 

components, respectively. The absolute magnitude of these components does not matter, but the 

relative magnitudes define the direction. The direction must be from the surface into the tool. 

If a component is not declared in an nxyz command, that component is automatically set to 0.0. 

For example the command nxyz I1 automatically sets the J and K components to 0, defining a 

surface-normal vector parallel to the X-axis.  

Note that the coordinates of the surface-normal vector must be expressed in the machine 

coordinates. If the part is on a rotating table, these coordinates will not in general be the same as 

the original part coordinates from the part design – the vector must be rotated into machine 

coordinates before sending to Power PMAC. 

The surface-normal vector affects the compensation for the move on the same line of the motion 

program, and all subsequent moves until another surface-normal vector is declared. In usual 

practice, a surface-normal vector is declared for each move, affecting that move alone. 

Declaring the Tool-Orientation Vector 

In 3D cutter compensation, the “tool-orientation vector” must be explicitly declared in the part 

program. (In 2D cutter compensation, it is automatically parallel to the plane normal vector.) The 

tool-orientation vector T is the vector that is parallel to the axis of rotation of the tool. The 3D 

compensation algorithm uses this vector, along with the surface-normal vector, to compute what 

part of the tool-tip must be in contact with the surface at the point(s) to create a surface with this 

normal vector. 
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The direction of the tool-orientation vector is determined by the txyz I{data}, J{data}, 

and K{data} components declared in a motion program line, specifying the X, Y, and Z-axis 

components, respectively. The absolute magnitude of these components does not matter, but the 

relative magnitudes define the direction. The direction sense of the tool-orientation vector is not 

important; it can be from base to tip, or from tip to base. 

If a component is not declared in a txyz command, that component is automatically set to 0.0. 

For example the command txyz K1 automatically sets the I and J components to 0, defining a 

surface normal vector parallel to the Z-axis.  

The tool-orientation vector affects the compensation for the move on the same line of the motion 

program, and all subsequent moves until another tool-orientation vector is declared. In usual 

practice, a tool-orientation vector is declared for each move, affecting that move alone. 

Note 

Note that the tool-orientation vector declared here does not 

command motion; it merely tells the compensation algorithm 

the angular orientation that has been commanded of the tool. 

Typically the motion for the tool angle has been commanded 

with A, B, and/or C-axis commands, often processed through 

an inverse-kinematic subroutine on Power PMAC. 

 

Move Commands with 3D Compensation 

A typical move command with 3D compensation active will include commands for all of the 

axes, including the rotary axes, the surface-normal vector declaration, and the tool-orientation 

vector declaration. It will usually look something like: 

X37.32Y-1.64Z39.45A-17.23C27.33nxyzI0.73J-0.26K0.55txyzI0.51J0.72K-0.35 

 

How 3D Compensation is Performed 

In operation, Power PMAC starts from the uncompensated X, Y, and Z-axis positions for each 

end-point programmed while 3D compensation is active. Then several offsets are applied to the 

X, Y, and Z-axis positions. The first offset is taken along the surface-normal vector, of a 

magnitude equal to the defined CutRadius for the arc-piece section of the tool-tip that is in 

contact with the part given the surface-normal and tool-orientation vectors in force. The second 

offset is then taken to the centerline of the tool, in the plane containing both the surface-normal 

vector and the tool-orientation vector, perpendicular to the tool-orientation vector. The third 

offset is then taken along the centerline of the tool, from this point to the tool-center reference 

point. 
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The following diagram shows how the programmed point, surface-normal vector, tool-orientation 

vector, and tool-nose shape are used to compute the offset point. 
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Move command:

X.. Y.. Z.. A.. B.. nxyz I.. J.. K.. txyz I.. J.. K..

P: Programmed Point

(from X.. Y.. Z.. A.. B..)

N: Surface Normal Vector

(from nxyz I.. J.. K..)

T: Tool Orientation Vector

(from txyz I.. J.. K..)

R: Tool-Nose Radius

(from tool-tip table)

C: Tool Center Point

(automatically computed)
R

 

3D Tool Radius Compensation Offset 

If Power PMAC cannot compute a proper solution for a move, it will stop the motion program 

with an error. It will set Coord[x].ErrorStatus to 12 (“CCNdotTError”) to denote this particular 

error. If the command backup Coord[x].Status is used, the text name of the error will be 

reported for ErrorStatus. 

Once the modified end-point is calculated, the move to that end-point is calculated just as it 

would be without compensation. If the program is in linear mode, it will be linearly 

interpolated. If the program is in circle mode (not advised), arc interpolation will be applied. 

Because the offset to the end-point is directly specified for each move, there are no intersection 

points for Power PMAC to compute using the equations for the next move. This means there are 

no special lookahead or single-step execution considerations, as there are in 2D compensation. 

No interference checking is performed. 

All moves in 3D compensation are directly blended together. There are no special considerations 

for outside corners, as there are in 2D compensation. Also, there are no special considerations for 

the lead-in and lead-out moves. The lead-in move is simply an interpolated move from the last 

uncompensated position to the first compensated position. The lead-out move is simply an 

interpolated move from the last compensated position to the first uncompensated position. 
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PVT Move Mode 

For the user who desires more direct control over the trajectory profile, Power PMAC offers 

Position-Velocity-Time (PVT) mode moves. In these moves, the user specifies the axis states 

directly at the transitions between moves (unlike in linear or circle-mode moves). This requires 

more calculation by the host, but allows tighter control of the profile shape. For each piece of a 

move, the user specifies the end position or distance, the end velocity, and the piece time. 

PVT Mode Declaration 

To put a coordinate system (and all the axes in the coordinate system) into the PVT move mode, 

the pvt{data} command is used. The value of {data} specifies the time for subsequent 

moves, in milliseconds, with floating-point resolution. If you wish to change the move time while 

staying in PVT move mode, you must issue another pvt{data} command with a different time 

value. Unlike in PMAC and Turbo PMAC, the ta and tm commands do not affect PVT-mode 

moves. 

Position or Distance Specification 

The destination point of a PVT-mode move is specified in the move command itself. The 

commanded destination for each axis can be specified as a position relative to the programming 

origin (if the axis is in abs absolute mode) or as a distance from the last commanded move (if the 

axis is in inc incremental mode). The command specifies one of these; Power PMAC 

automatically computes the other. As in other modes, the position or distance value is specified 

immediately after the axis name, in the user axis units, either as a numerical constant without 

parentheses or as a mathematical expression inside parentheses. 

Velocity Specification 

The ending velocity for an axis move is specified as a signed quantity following the “:” (colon) 

character immediately after the position/distance value. This makes the axis mode command of 

the form X100:-25. The value can be specified either as a numerical constant without 

parentheses or as a mathematical expression inside parentheses. The velocity units are determined 

by the user axis units and the coordinate-system time units. The user axis units are determined by 

the axis definition; the coordinate-system time units are determined by the value of 

Coord[x].FeedTime, in milliseconds. At the default value of 1000, the coordinate-system time 

units are seconds, so the velocity units are the user axis units per second. 

Note 

Unlike the vector velocity (feedrate) specification for linear 

and circle-mode moves, which is always a positive value, the 

individual axis velocity specifications for pvt-mode moves are 

signed quantities. If the axis move is to end going in the 

negative direction, the specified velocity value should be 

negative. 

 

Power PMAC Calculations 

To compute the equations of motion for the axis, Power PMAC uses the specified position, 

velocity, and time from the command, plus the ending position and velocity from the previous 

move (or stop condition), and computes the unique third-order position polynomial as a function 
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of time that satisfies these constraints. This results in a linearly changing acceleration, a parabolic 

velocity profile, and a cubic position profile for the move. 

Use of PVT Move to Create Arbitrary Profiles 

The PVT mode is the most useful for creating arbitrary trajectory profiles. It provides a “building 

block” approach to putting together linear and parabolic velocity profile sections to create 

whatever overall profile is desired. The following diagram gives an example of such an arbitrary 

PVT-mode sequence. 
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The next diagram shows the relationship between distance, velocity, and time for common PVT-

mode sections: 
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Use of PVT Mode in Contouring 

PVT mode provides excellent contouring capability, because it takes the interpolated commanded 

path exactly through the programmed points. It creates a path known as a “Hermite spline”. To 

use PVT mode for this multi-axis contouring, the axis velocities at each programmed point must 

be specified in addition to the positions. 

The following drawing shows one technique for computing the the axis velocities at each 

programmed point of a contour. Each point in the sequence can be considered as being on a circle 
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with the point before and point after. The line from the center of this circle to the programmed 

point (the radius vector) is perpendicular to the velocity vector at the point. Using the desired 

vector velocity magnitude and the direction of the vector, the individual axis velocities can be 

computed. 

 

The automatic conversion of linear-mode moves to PVT format that is performed when 

Coord[x].SegLinToPvt is greater than 0 uses an algorithm similar to this to compute the internal 

PVT move commands from the programmed points and vector feedrate. 

Lookahead with PVT Moves 

The trajectories from PVT mode moves can be passed through the special lookahead buffer for 

dynamic limiting, just as those from linear and circle mode moves are, if the coordinate system is 

in segmentation mode (Coord[x].SegMoveTime > 0). Each segment derived from the 

commanded PVT mode move is checked for possible violations of position, velocity, and 

acceleration limits for every motor, and the time for the segment is extended if necessary to avoid 

exceeding any of these limits. As with linear and circle mode moves, the path generated is not 

changed, only the speed at which the path is traversed is. 

Blending PVT Moves with Linear and Circle Moves 

In Power PMAC, it is possible to blend PVT-mode moves with linear and circle-mode moves. 

(This was not possible in earlier PMAC generations.) Unlike blending between linear and circle 

mode moves themselves, this does not include a separate blend section governed by acceleration-

time parameters. In this case, the linear and circle-mode moves are treated as if they had zero 
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acceleration times at the blend (regardless of the present settings of the acceleration-time 

parameters), and these are directly concatenated with the PVT-mode moves before or after. Note 

that the coordinate system must be in “segmentation mode” (Coord[x].SegMoveTime > 0) to 

perform this blending. 

Probably the most common use of this capability is to create “custom” acceleration and 

deceleration profiles for linear and circle-mode moves that cannot be created by the standard 

profiles for those modes. 

In the case of a linear or circle-mode move blending into a PVT-mode move, the ending velocity 

of each axis in the linear or circle-mode move is automatically used as the starting velocity for 

that axis in the PVT-mode move, guaranteeing continuity of velocity. The ending (programmed) 

position for each axis in the linear or circle-mode move (not where it would have started to 

decelerate to a stop in the absence of blending) is the starting position for the PVT-mode move. 

In the case of a PVT-mode move blending into a linear or circle-mode move, each axis starts the 

linear or circle-mode move at the (unblended) programmed speed. Each axis ends the PVT-mode 

move at the speed programmed in the PVT-mode move command. If these two speeds are not the 

same, there will be a sudden step-change in the axis velocity. It is the user’s responsibility to 

ensure that these two velocities are the same in order to achieve a smooth transition. 

Acceleration is never guaranteed to be continuous at the junctions between PVT-mode sections 

and linear or circle-mode sections. The user must include acceleration continuity as a constraint 

in his calculations if he wishes such a condition. 

The following plot shows the velocity and acceleration profiles for a linear-mode move with 

PVT-mode acceleration and deceleration moves. The parabolic acceleration and deceleration 

profiles in this example can optimize the use of a typical motor’s torque/speed envelope. The 

sequence of commands is: 

inc;      // Incremental move mode 

pvt1000;     // PVT mode, 1 sec move 

x20:30;     // Accel to 30 over dist of 20 

linear;     // Switch to linear mode 

x30 f30;     // Move at speed of 30 

pvt1000;     // PVT mode, 1 sec move 

x20:0;     // Decel to stop over dist of 20 
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Linear Mode Move with PVT Mode Acceleration and Deceleration 

Issues with Single-Stepping 

Because PVT-mode moves can be, and usually are, specified with explicitly non-zero velocities 

at the end points, single-stepping execution with the s [step] command presents problems not 

found in other move modes. Users are in general discouraged from trying to single-step a PVT-

mode move with non-zero end velocity, because there will be an immediate deceleration to stop 

from the programmed end velocity at the end of the move. In addition, the next move, which was 

calculated assuming a non-zero starting velocity, will have a profile very different from that 

intended when calculated, and will probably require a higher peak velocity than intended. 

The bstart (block-start) and bstop (block-stop) program commands can be used to “bracket” 

a set of PVT-mode moves in a motion program that start and end at zero velocity. Since single-

step execution progresses all the way from the bstart to the bstop (block-stop) command, the 

entire move sequence can be safely executed as a single-step. 

Note that if the PVT-mode move is executed in single-step mode with segmentation and the 

special lookahead buffer active, the lookahead acceleration control will keep the profile within 

the acceleration limits, but the profile will look nothing like that for continuous execution. 

Enhanced PVAT Moves 

If saved setup element Coord[x].PvatEnable is set to 1, moves in this mode are more 

sophisticated and flexible. In addition to specifying the ending position/distance and ending 

signed velocity for each axis in each move command, the user specifies the ending signed 

acceleration as well. From this information, Power PMAC computes a 5th-order position profile 

between the programmed points for each axis. 

In this mode, commanded axis position, velocity, and acceleration are guaranteed to be 

continuous, even at programmed move boundaries. Jerk (rate of change of acceleration) and 

“snap” (rate of change of jerk) are continuous within each programmed move. 
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(When Coord[x].PvatEnable is set to its default value of 0, Power PMAC computes a 3rd-order 

position profile between the programmed points for each axis, with position and velocity 

guaranteed to be continuous, even at programmed move boundaries. Acceleration is continuous 

within each programmed move.) 

The time for a move is still specified by the most recent pvt{data} command, with the value 

of {data} setting the move time in milliseconds. 

The move command for an axis in this mode is: 

{axis}{data}:{data}:{data} 

The first {data} value specifies the ending position or distance for the axis, depending on 

whether the axis is in absolute or incremental mode, respectively. The second {data} value 

specifies the ending signed velocity for the axis. These two terms are exactly the same as for 

standard PVT moves with Coord[x].PvatEnable = 0. 

The third {data} value specifies the ending signed acceleration for the axis. If no third value is 

specified for the axis, Power PMAC will use a value of 0.0 for the end acceleration. 

Power PMAC uses the constraints at the beginning of the move – from the previous move or a 

stopped condition – and these constraints to compute the unique 5th-order position profile that 

meets all of these constraints. 

To execute moves in this mode, the coordinate system must be in segmentation mode, with 

Coord[x].SegMoveTime set greater than zero, specifying the segmentation time in milliseconds. 

In executing these moves, Power PMAC will solve the exact 5th-order equations each segment. 

As with other segmented moves, the fine interpolation executing at the servo update rate is a 3rd-

order interpolation between the segmentation points. 
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Spline Move Mode 

Power PMAC’s spline move mode provides the capability for generating very smooth but 

complex profiles and contours, generally with many programmed points spaced closely together. 

It generates profiles and paths known as non-rational cubic B-splines. The time profiles are 

guaranteed to be continuous in position, velocity, and acceleration, even at move boundaries. 

Multi-dimensional paths are guaranteed continuous in position, direction, and curvature, even at 

move boundaries. 

Internally, Power PMAC uses this mode to perform the “fine interpolation” between coarse 

segment points when executing linear, circle, and PVT mode moves in segmentation mode. When 

moves are programmed directly in spline mode, the spline equations are generated directly from 

the programmed points and interpolated at the servo update rate. Programmed spline-mode moves 

are never segmented, even if the coordinate system is in “segmentation mode” with 

Coord[x].SegMoveTime > 0. 

Spline Mode Declaration 

To put a coordinate system (and all the axes in the coordinate system) into the spline move mode, 

the spline{data}[spline{data}[spline{data}]] command is used. The values of 

the {data} elements specify the times for the individual spline segments. All subsequent move 

commands will be interpreted using the rules of the spline move mode until another move mode 

is declared. If you wish to change move times while staying in spline move mode, you must issue 

another spline command with different time value(s). Unlike in PMAC and Turbo PMAC, the 

ta and tm commands do not affect spline-mode moves. 

The most common use of the spline mode utilizes the declaration of a single spline segment time 

with the simplest form of this command: spline{data}. In this form, all of the spline 

segments use the same time value. This case creates a “uniform” B-spline, and is explained in the 

“Uniform-Time Calculations” section below. 

If multiple spline-segment time values are declared using the optional forms of the spline 

command, “non-uniform” B-spline trajectories can be created. In this form, the spline segments 

use different time values. This case is explained in the “Non-Uniform Time Calculations” section 

below. 

Position or Distance Specification 

The destination point of a spline-mode move is specified in the move command itself (e.g. 

X10Y20). The commanded destination for each axis can be specified as a position relative to the 

programming origin (if the axis is in abs absolute mode) or with a distance from the last 

commanded position (if the axis is in inc incremental mode). The command specifies one of 

these; Power PMAC automatically calculates the other. 

Uniform-Time Calculations 

A single spline-mode programmed move with all segments of the same time creates a “bell-

shaped” velocity-versus-time profile with three separate parabolic sections. In the figure “Spline-

Mode Uniform-Time Profiles” below, this case is shown in the “One Programmed Move” plot. A 

constant-velocity move profile (“unsplined”) of the programmed time is shown in the rectangular 

profile. The splined profile has equivalent times added before and after. The total distance for the 

spline move (visualized as the area under the curve) is the same for the splined move as the 

unsplined move. Note that the splined profile is continuous in both velocity and acceleration, 
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even at the section boundaries (including beginning and end). A single spline-mode move with 

uniform times for all three sections will always have this profile. 

If there are multiple spline-mode moves in a continuous sequence, the resulting profile can be 

thought of as a superposition of individual moves, each offset by one programmed move time. 

This concept is illustrated by subsequent drawings in the figure. 

Spline-Mode Uniform Time Profiles 
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The following figure shows the profile for a typical spline sequence with uniform-time moves of 

varying distances. 

 

Spline Mode Sample Trajectory 

Non-Uniform-Time Calculations 

When the spline mode declaration command specifies multiple separate section times, the 

resulting profiles are somewhat different, and not so symmetrical. For instance, with the 

declaration command spline 50 spline 100 spline 150, then for a single 

programmed move, the first parabolic section would be 50 msec long, the second section would 

be 100 msec long, and the third section would be 150 msec long. The total distance (area under 

the velocity profile curve) is still the programmed distance, and both velocity and acceleration are 

always continuous, including at all section boundaries. 

Power PMAC stores the times for the three sections of a programmed spline move in the data 

structure elements Coord[x].T0Spline (for the incoming section), Coord[x].T1Spline (for the 

center section), and Coord[x].T2Spline (for the outgoing section). If only a single time is 

specified in the mode declaration command (e.g. spline 50), all three elements will be set to 

the specified value. If two times are specified in the command (e.g. spline 50 spline 

100), Coord[x].T0Spline and Coord[x].T1Spline are set to the first value, and 

Coord[x].T2Spline is set to the second value. If three times are specified in the command (e.g. 

spline 50 spline 100 spline 150), each element is set to a unique value. 

When a spline move is calculated from a motion program command, all three sections are 

calculated according to the times in effect at that point, but only the first section is committed to 
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execution. If there is another move in the same continuous sequence, it will use as its starting 

state the position, velocity, and acceleration of the end of the first section of the previous move, 

and calculate the equations for its three sections, using the three section times in effect at that 

point, “overwriting” the last two sections calculated from the previous move. Note that if the 

section times have not been changed between the two move commands, the new command will 

use Coord[x].T0Spline for its incoming section, overwriting the possibly different 

Coord[x].T1Spline used for the matching section of the previous move. Also, the new command 

will use Coord[x].T1Spline for its incoming section, overwriting the possibly different 

Coord[x].T2Spline used for the matching section of the previous move. 

Use of Spline Mode for Contouring 

Power PMAC’s spline move mode is popular for multi-axis contouring due to the smoothness of 

the path it generates. Because the profiles for each axis are guaranteed to be continuous in both 

velocity and acceleration, the resulting commanded path is guaranteed to be continuous in both 

direction and curvature. 

However, the commanded path in spline mode does not pass exactly through the programmed 

points in general. Instead, the path passes slightly to the inside of the programmed points. The 

“way points” WPi through which the commanded path actually passes (for a uniform-time path) 

can be calculated from the programmed point Pi and the points on either side of it as: 
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For a given radius of curvature R in a path, the error introduced in the commanded path by the 

splining algorithm can be approximated as: 
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where V is the velocity and T is the programmed move time. 

Some users will want to reduce this error in their contours. A simple algorithm that can 

dramatically reduce this error pre-compensates for these errors. For each point Pi in the spline, 

replace with a point P’i with the following formula before sending to Power PMAC: 
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These new points are to the outside of the desired curve (technically, they are “control points” for 

the spline curve) and the fact that the spline algorithm will cause the commanded curve to pass to 

the inside of these points means that the curve will pass very close to the original points. The 

contouring error for a given radius of curvature R in a path using this technique can be 

approximated as: 
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Power PMAC Special Lookahead Function 

Power PMAC can perform highly sophisticated lookahead calculations on programmed 

trajectories to ensure that the trajectories do not violate specified maximum quantities for the axes 

involved in the moves. This permits the user to write the motion program simply to describe the 

commanded path. Vector feedrate becomes a constraint instead of a command; programmed 

acceleration times are used only to define corner sizes and minimum move block times. Power 

PMAC will automatically control the speed along the path (but without changing the path) to 

ensure that axis limits are not violated. 

Lookahead calculations are appropriate for any execution of a programmed path where 

throughput has been limited by the need to keep execution slow throughout the path because of 

the inability to anticipate the few sections where slow execution is required. The lookahead 

function’s ability to anticipate these problem areas permits much faster execution through most of 

the path, dramatically increasing throughput. 

Because of the nature of the lookahead calculations – trajectory calculations are done well in 

advance of the actual move execution, and moves are kept within machine limits by the automatic 

adjustment of move speeds and times – they are not appropriate for some applications. Any 

application requiring quick reaction to external conditions should not use lookahead. Also, any 

application requiring precise synchronization to external motion, such as those using PMAC’s 

“external time base” feature, should not use lookahead. 

Principle of Operation 

When the lookahead function is enabled, Power PMAC will scan ahead in the programmed 

trajectories, looking for potential violations of its position, velocity, and acceleration limits. If it 

sees a violation, it will slow the trajectory at that point just enough so that no limit is violated. It 

will then work backward through the pre-computed buffered trajectories, slowing down the parts 

of these trajectories going into this point so that the deceleration to this point does not violate any 

motor limits. These calculations are completed before these sections of the trajectory are actually 

executed. 

Power PMAC can perform these lookahead calculations on linear, circle, and PVT-mode moves. 

The coordinate system must be put in segmentation mode (Coord[x].SegMoveTime > 0) to 

enable lookahead calculations. In segmentation mode, Power PMAC automatically splits the 

moves into small segments, which are executed as a series of smooth splines to re-create the 

programmed moves. 

Power PMAC stores data on these segments in a specially defined lookahead buffer for the 

coordinate system. Each segment takes Coord[x].SegMoveTime milliseconds when it is put into 

the buffer, but this time can be extended if it or some other segment in the buffer violates a 

velocity or acceleration limit. 

This technique permits Power PMAC to create deceleration slopes in the middle of programmed 

moves, at the boundaries of programmed move, or over multiple programmed moves, whichever 

is required to create the fastest possible move that does not violate constraints. All of this is done 

automatically and invisibly inside the Power PMAC; the part programmer and operator do not 

need to understand the workings of the algorithm. 
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Sample Effect Diagrams 

The following diagram shows the principle of how the lookahead function can automatically 

create acceleration and deceleration profiles over multiple programmed moves. In this case, the 

programmed moves are too short to permit the full acceleration to and from programmed speed in 

a single programmed move. Without any change to the motion program, the lookahead function 

will create a profile that does not violate acceleration constraints. 
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The next diagram shows how the lookahead function can automatically create a deceleration into 

a tight corner, permitting the corner to be taken slowly to keep it within acceleration constraints, 

and then to accelerate back up to the programmed speed coming out of the corner. This permits 

the user to command high speeds, and to have Power PMAC slow down the path only where 

needed. Note that the post-lookahead profile in this diagram is not time-extended as it would 

really be; this was done to show the correspondence of points on the profiles. 
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Lookahead & Small, Tight Corners
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Interactions with Kinematics 

If Power PMAC’s inverse kinematic calculations are used, the conversion from “tip” coordinates 

to “joint” coordinates takes place before lookahead calculations, segment by segment for linear, 

circle, and PVT-mode moves. Therefore, Power PMAC can execute the lookahead calculations in 

“joint space”, motor by motor, even if the system has been programmed in tip coordinates. 

If it is desired that the lookahead algorithm limit tool-tip position, velocity, and/or acceleration as 

well as joint (motor) dynamics, additional virtual motors (with active computation) should be 

assigned to tool-tip axes in the kinematics subroutines with a direct 1-to-1 relationship. 

Transparent Operation 

Once the lookahead function has been set up, the lookahead function operates transparently to the 

programmer and the operator. No changes need to be made to a motion program to use the 

lookahead function, although the programmer may choose to make some changes to take 

advantage of the increased performance capabilities that lookahead provides. 

Quick Instructions: Setting Up Lookahead 

The following list quickly explains the steps required for setting up and using the lookahead 

function on the Power PMAC. Greater detail and context are given in the subsequent section. 

1. Assign all desired motors to the coordinate system with axis definition statements. 

2. Set Motor[x].MaxPos and Motor[x].MinPos positive and negative position limits, in motor 

units for each motor in coordinate system, relative to the home position. 

3. Set Motor[x].MaxSpeed maximum velocity in motor units/msec for each motor in 

coordinate system. If your feedrate for the type of moves (e.g. linear and circle mode) for 

which you will be employing lookahead is lower than the motor maximum speed, limit these 

before lookahead with Coord[x].MaxFeedrate. 
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4. Set Motor[x].InvAmax inverse maximum acceleration in msec2/motor unit for each motor in 

coordinate system. 

5. Set Coord[x].SegMoveTime segmentation time in milliseconds for the coordinate system to 

your desired value, typically a length of 10 to 20 servo cycles. 

6. Compute maximum stopping time for each motor as Motor[x].MaxSpeed * 

Motor[x].InvAmax, or if these moves will be speed-limited more by 

Coord[x].MaxFeedrate, by the product of Coord[x]MaxFeedrate and Motor[x].InvAmax 

(scaled into consistent units). 

7. Select the motor with longest stopping time. 

8. Compute number of segments needed to look ahead as this “stopping time” divided by (2 * 

Coord[x].SegMoveTime). 

9. Multiply the “segments needed” by 4/3 (round up if necessary) and set the 

Coord[x].LHDistance lookahead length parameter to this value. 

10. If the application involves high block rates, set the Coord[x].Ta default acceleration time to 

the minimum block time in msec; the Coord[x].Ts default S-curve time to 0. 

11. If the application does not involve high block rates, set the Coord[x].Ta default acceleration 

time and the Coord[x].Ts default S-curve time parameters to values that give the desired 

blending corner size and shape at the programmed speeds. 

12. Store these parameters to non-volatile memory with the save command if you want them to 

be an automatic part of the machine state. 

13. After each power-up/reset, send the card a define lookahead {# of segments} 

command for the coordinate system, where {# of segments} is equal to 

Coord[x].LHDistance plus any segments for which backup capability is desired. 

14. Load your motion program into the Power PMAC. Nothing special needs to be done to the 

motion program. The motion program defines the path to be followed; the lookahead 

algorithm may reduce the speed along the path, but it will not change the path. 

15. Run the motion program, and let the lookahead algorithm do its work! 

Detailed Instructions: Setting Up to use Lookahead 

A few steps are required to calculate and set up the lookahead function. Typically, the 

calculations only have to be done once in the initial configuration of the machine. Once 

configured, the lookahead function operates automatically and invisibly. 

Defining the Coordinate System 

The lookahead function checks the programmed moves against all motors in the coordinate 

system. The first step is therefore to define the coordinate system by assigning motors to axes in 

the coordinate system with axis definition statements or kinematic subroutines. This action is 

covered in the User’s Guide under Setting Up the Coordinate System. 
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Lookahead Constraints 

Power PMAC’s lookahead algorithm forces the coordinate system to observe four constraints for 

each motor. These constraints are defined in saved setup elements for each motor representing 

maximum position extents, velocities, and accelerations. These setup elements must have valid 

values in order for the lookahead algorithm to work properly. 

Position Limits 

Variables Motor[x].MaxPos and Motor[x].MinPos for each motor define the maximum and 

minimum position values, respectively, that are permitted for the motor (“software overtravel 

limits”). These variables are defined in motor units, and are referenced to the motor zero, or 

home, position (often called “machine zero”). Even if the origin of the axis for programming 

purposes has been offset (often called “program zero”), the physical position of these position 

limits does not change; they maintain their reference to the machine zero point. Power PMAC 

checks the actual position for each motor as the trajectory is being executed against these limits; 

if a limit is exceeded, the program is aborted and the motors are decelerated at the time or rate set 

by Motor[x].AbortTa and Motor[x].AbortTs. 

In lookahead, if the algorithm, while scanning ahead in the programmed trajectory, determines 

that any motor in the coordinate system would exceed one of its desired position limits, it will 

suspend the program and force a stop right at that limit. It will then work backwards through the 

buffered trajectory segments to bring the motors to a stop along the path at that point in the 

minimum time that does not violate any motor’s Motor[x].InvAmax acceleration constraint. 

(However, if Coord[x].SoftLimitStopDis is set to 1, the program does not stop at the limit. 

Instead, it will continue, with the offending motor saturating at the limit value. If operating in this 

mode, Motor[x].SoftLimitOffset should be set less than 0.0 for all involved motors to put the 

execution-time limits outside of the calculation-time limits, preventing the program from being 

stopped due to possible violation of execution-time limits.) 

When stopped on a soft position limit within lookahead, the program is only suspended, not 

aborted. The action is effectively equivalent to issuing a \ quick-stop command. It is possible to 

“retrace” the path coming into the limit, or even to resume forward execution after changing the 

limit value. An “abort” command must be issued before another program can be started. 

Velocity Limits 

Motor[x].MaxSpeed defines the magnitude of the maximum velocity permitted for each motor. 

These variables are defined in motor units per millisecond, so a quick conversion must be 

calculated from the axis user units (e.g. millimeters per minute). 

If the algorithm, while looking ahead in the programmed trajectory, determines that any motor in 

the coordinate system is being asked to violate its velocity limit during a segment, it will slow 

down the trajectory at that point just enough so that no limit is violated. It will then work 

backwards through the buffered trajectory segments to create a controlled deceleration along the 

path to this limited speed in the minimum time that does not violate any motor’s 

Motor[x].InvAmax acceleration constraint. 

During the initial move-block calculations, before move data is sent to the lookahead function, a 

couple of factors can result in commanded velocities lower than what is programmed: 
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 If the vector feedrate commanded in the motion program with the F command exceeds 

the maximum feedrate parameter Coord[x].MaxFeedrate, then Coord[x].MaxFeedrate 

is used instead.  

 If the programmed feedrate and radius for a circle-mode move would result in a 

centripetal acceleration greater than the limit specified by Coord[x].MaxCirAccel, the 

speed of the move will be reduced so that this limit is not violated 

 If the move-block time, either specified directly with the TM command, or calculated as 

vector-distance divided by vector-feedrate, is less than the programmed acceleration time 

(the larger of Ta + Ts or 2 * Ts), the programmed acceleration time is used instead. This 

results in a speed less than what was programmed.  

The lookahead function can further slow these moves, but it cannot speed them up. 

Acceleration Limits 

Motor[x].InvAmax defines the magnitude of the maximum acceleration permitted for each 

motor (as the inverse of this magnitude). These variables are defined in the raw PMAC units of 

milliseconds-squared per motor unit, so a quick conversion (and inversion) must be calculated 

from the user units (e.g. in/sec2, or g’s). 

If the algorithm, while looking ahead in the programmed trajectory, determines that any motor in 

the coordinate system is being asked to violate its acceleration limit for a segment, it will slow 

down the trajectory at that point just enough so that no limit is violated. It will then work 

backwards through the buffered trajectory segments to create a controlled deceleration along the 

path to this limited speed in the minimum time that does not violate any motor’s 

Motor[x].InvAmax acceleration constraint. 

Note 

The acceleration calculations in lookahead can be very 

sensitive to the numeric limitations of the commanded point 

positions in the motion program. If the commanded points are 

very close together, as in many contour applications, they 

should be specified with at least two, and up to four, decimal 

digits beyond the feedback resolution to avoid the problem of 

artificial limitations due to “quantization noise”. 

 

Calculating the Segmentation Time 

Power PMAC’s lookahead function operates on intermediate motion “segments” calculated from 

the programmed trajectory. An intermediate point for each motor is computed once per segment 

from the programmed path, and then a fine interpolation using a cubic spline to join these 

segments is executed at the servo update rate. The user settable “segmentation time” is therefore 

an important parameter for optimization of the lookahead function. 

Saved setup element Coord[x].SegMoveTime for each coordinate system defines the time for 

each intermediate segment in the programmed trajectory (before it is possibly extended by the 

lookahead function). Coord[x].SegMoveTime is a floating-point value, with units of 

milliseconds. If Coord[x].SegMoveTime is set to 0, the coordinate system is not in 

“segmentation mode”; no intermediate segments are calculated, and the lookahead function 

cannot be enabled. 
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Several issues must be addressed in setting the segmentation time. These include its relationship 

to the maximum block rate, the small interpolation errors it introduces, and its effect on the 

calculation load of the Power PMAC. Each of these is addressed in turn, below. 

Block rate relationship 

In most applications, the Coord[x].SegMoveTime segmentation time will be set so that it is less 

than or equal to the minimum block (programmed move) time. Put another way, the segmentation 

rate defined by Coord[x].SegMoveTime is usually set greater than or equal to the maximum 

block rate. For example, if a maximum block rate of 500 blocks per second is desired, the 

minimum block time is 2 milliseconds, and Coord[x].SegMoveTime is set to a value no greater 

than 2. 

This relationship holds because blocks of a smaller time than the segmentation time are skipped 

over as Power PMAC looks for the next segment point. While this does not cause any errors, 

there is no real point in putting these programmed points in the motion program if the controller 

is going to skip over them. However, some people “inherit” old motion programs with points 

closer together than is actually required; these users may have reason to set their segmentation 

time larger than their minimum block time. 

Note that the programmed acceleration time sets a limit on the maximum block rate. The move 

time for a programmed block, even before lookahead, is not permitted to be less than the 

programmed acceleration time. The programmed acceleration time is the larger of the sum of the 

Ta and Ts times and twice the Ts time. In high-block-rate contouring lookahead applications, the 

Ta time is typically set equal to the minimum desired block time, and the Ts time is typically set 

to 0 (because it squares up corners). 

Interpolation errors 

The cubic-spline interpolation technique that Power PMAC uses to connect the intermediate 

segment points is very accurate, but it does create small errors.  These errors can be calculated as: 
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where V is the vector velocity along the path, T is the segmentation time (watch the units!), and R 

is the local radius of curvature of the path. For example, if the speed is 100 mm/sec (~4 in/sec), 

the segmentation time is 0.01 sec (Coord[x].SegMoveTime = 10 msec), and the minimum radius 

at this speed is 50 mm (~2 in), then the worst-case interpolation error can be calculated as: 
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If the programmed path itself introduces path error, such as the “chordal error” of linear 

interpolation, this must be added to the error budget as well. In addition, if the servo-loop 

execution adds servo errors, these must also be included. 

Calculating the Required Lookahead Length 

In order for the coordinate system to reach maximum performance, it must be looking ahead for 

the time and distance required for each motor to come to a full stop from maximum speed. 



Power PMAC User’s Manual 

Power PMAC Move Mode Trajectories 745 

Because the lookahead buffer stores motion segments, this lookahead length must be expressed in 

segments. 

To calculate this value, first compute the worst-case time required to stop for each motor in the 

coordinate system. This value can be obtained by dividing the maximum motor velocity by the 

maximum motor acceleration. In terms of Power PMAC parameters: 

InvAmaxxMotorMaxSpeedxMotormsecStopTime ].[*].[)(   

Note that if the motor speed is limited to less than Motor[x].MaxSpeed in the segmented path 

moves that used the lookahead buffer, through the use of Coord[x].MaxFeedrate or other 

limiting methods, this lower speed can be used instead in these calculations. 

Now take the motor with the longest stop time, and divide this time by 2 (because the segments 

will come in at maximum speed, which takes half the time of ramping down to zero speed). Next, 

convert this value to a number of segments by dividing by the coordinate system segmentation 

time: 
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This is the number of segments in the lookahead buffer that must always be properly computed 

ahead of time. Because the Power PMAC does not fully recalculate the lookahead buffer every 

segment, it must actually look further ahead than this number of required segments. 

Lookahead Length Parameter 

Saved setup element Coord[x].LHDistance for the coordinate system tells the algorithm how 

many segments ahead in the program to look. This value is a function of the number of segments 

that must always be correct in the lookahead buffer (“SegmentsNeeded”). The formula is: 
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Setting Coord[x].LHDistance to a value larger than needed does not increase the computational 

load (although it does increase the time of heaviest computational load while the buffer is filling).  

However, it does require more memory storage, and it does increase the delay in having the 

program react to any external conditions, including changes in the “segmentation override” value 

commonly used for interactive feedrate override. 

Some users will want to vary Coord[x].LHDistance dynamically during operation, making it 

proportional to the present programmed speed, the present segmentation override, or both. This 

can minimize “excessive” lookahead, making the system more responsive to external conditions 

and commanded override changes. 

Setting Coord[x].LHDistance to a value smaller than needed does not cause the limits to be 

violated. However, it may cause Power PMAC to limit speeds more severely than the velocity 

limits require in order to ensure that acceleration limits are not violated. Also, a “saw-tooth” 

velocity profile may be observed. 
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Defining the lookahead buffer 

In order to use the lookahead function in a Power PMAC coordinate system, a lookahead buffer 

must be defined for that coordinate system, reserving memory for the buffer. This is done with 

the on-line coordinate-system-specific define lookahead {constant} command. 

Because lookahead buffers are not retained through a power down or reset, this command must be 

issued after every power-up or reset. This command can be included in the file 

pp_startup.txt for automatic execution every power-up/reset. 

The value associated with the define lookahead command determines the number of 

motion segments for each motor in the coordinate system that can be stored in the lookahead 

buffer. At a minimum, this must be set equal to Coord[x].LHDistance (and it must be greater 

than or equal to 1024). 

If this value is set greater than Coord[x].LHDistance, the lookahead buffer stores “historical” 

data. This data can be used to reverse through the already executed trajectory. If reversal is 

desired, the buffer should be sized to store enough “back segments” to cover the desired backup 

distance. There is no penalty for reserving more memory for this history than is needed, other 

than the loss of this memory for other uses. 

The room reserved for the segment data in the lookahead buffer is dependent on the number of 

motors assigned to axes in the coordinate system at the time of the define lookahead 

command (motors with a null definition in the coordinate system do not count). If the number of 

motors assigned to axes in the coordinate system then changes, the organization of the lookahead 

buffer will be wrong, and the program will abort with a run-time error on the next move after the 

coordinate system is changed. 

The most common reason to alter the configuration of a coordinate system during an application 

is to change a motor between a rotary positioning axis and a spindle (velocity) axis. Power 

PMAC can support this change without the necessity to redefine the lookahead buffer. When the 

lookahead buffer is defined, the motor should either be assigned to a position axis (e.g. #4->C) 

or a spindle axis (e.g. #4->S0) in the coordinate system. After this time, the definition can be 

changed between the two types without the need to reconfigure the lookahead buffer. When the 

motor is assigned to a position axis, it is involved in the lookahead calculations; when it is 

assigned to a spindle axis, it is not. 

If a motor must be added to or removed from a coordinate system during an application that uses 

lookahead, the lookahead buffer must first be deleted, then defined again after the change. The 

following motion program code shows how this could be done: 

dwell 10     // Stop lookahead execution 

cmd "&1 delete lookahead"  // Delete buffer 

cmd "&1 #4->100C"    // Assign new motor to C. S. 1 

cmd "&1 define lookahead 10000" // Redefine buffer 

sendallcmds     // Make sure commands execute 

 

Memory Requirements 

The act of defining a lookahead buffer reserves space in active memory for the buffer. The longer 

the buffer defined, and the more motors assigned to axes in the coordinate system, the more 

memory will be reserved. The equation for the amount of memory required for a lookahead buffer 

is: 
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 40*16*  NSB  

where B is the number of bytes of memory required, S is the length of the buffer in segments, and 

N is the number of motors assigned to axes in the coordinate system. For example, defining a 

lookahead buffer with a length of 20,000 segments in a coordinate system with 6 motors assigned 

to axes requires 20,000 * (16*6 + 40) = 2,720,000 bytes (2.6 MB) of memory. 

By default, Power PMAC reserves 16 MB of RAM for all lookahead and reversal buffers (plus 

target-position and cutter-compensation buffers, which are typically very small). This is sufficient 

memory for virtually all applications. The amount of memory still available in the buffer can be 

determined using the on-line free query command. This amount can be changed as part of the 

project management. 

Running a Program with Lookahead 

The lookahead function is automatically active when a motion program is run in a coordinate 

system provided the following conditions are true: 

1. The coordinate system is in segmentation mode (Coord[x].SegMoveTime > 0). 

2. The coordinate system is told to look ahead (Coord[x].LHDistance > 0). 

3. A lookahead buffer has been defined for the coordinate system since the last board power-

up/reset. 

4. The motion program is executing linear, circle, or PVT-mode moves. 

The lookahead function is active under these conditions even when Power PMAC is performing 

inverse-kinematic calculations every segment to convert tip positions to joint positions. This 

permits the user to write a motion program in convenient tip coordinates, yet still automatically 

observe all joint-motor limits. This is particularly important if the tip path passes near a 

singularity, requesting very high joint velocities and accelerations. 

Other move modes – rapid and spline– can be executed with the lookahead buffer defined, but the 

lookahead function is not active when these moves are being executed. 

Note 

Absolutely no change is required to the motion program to 

utilize the lookahead function. 

 

It is important to realize the implications of the lookahead function on several aspects of the 

motion program.  Each of these areas is covered below. 

Vector Feedrate 

Without lookahead, the vector feedrate value (Fxxx) is a command for each programmed move 

block in the motion program. That is, each move is calculated so that it is traversed at the 

programmed vector feedrate (speed). With lookahead active, the feedrate value is only a 

constraint. The move will never be executed at a higher speed, but it may be executed at slower 

speeds during some or all of the move as necessary to meet the motor constraints. 
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If the move is programmed by move time instead of feedrate, the programmed move time 

becomes a (minimum) constraint; the move will never be executed in less time, but it may be 

executed in greater time. 

Acceleration Time 

The programmed acceleration times Coord[x].Ta and Coord[x].Ts, whether using the saved 

values or setting with the ta and ts commands in the motion program, are the times before 

lookahead. The lookahead function will control the actual acceleration times that are executed, 

but the programmed acceleration times are still important for two reasons. 

First, the programmed acceleration time Tacc, which is the larger of Ta + Ts and 2 * Ts, is the 

minimum move-block time. If Power PMAC initially computes a smaller move time, typically as 

(vector-distance divided by vector-feedrate), it will increase the time to be equal to the 

acceleration time, slowing the move. This check occurs even before lookahead (which can only 

slow the move further), and it is an important protection against computational overload. The 

acceleration time must be set low enough not to limit valid moves. 

Second, as longer moves are blended together, the programmed acceleration time and feedrate 

control the corner size for the blending. The blended corner begins a distance of F * Tacc / 2 

before the programmed corner point, where F is the programmed feedrate, and Tacc is the larger of 

Ta + Ts and 2 * Ts. The blended corner ends an equal distance past the programmed corner 

point. 

If the lookahead algorithm determines that the blended corner violates the acceleration limit on 

one or more motors, it will automatically slow the speed of the path in the corner. This will make 

the time for the blended corner bigger than what was specified in the program. The lookahead 

will also automatically create a controlled deceleration ramp going into the blended corner, and a 

controlled acceleration ramp coming out of the corner. In this manner, the size of the rounding at 

a corner can be kept small without violating acceleration constraints, and without limiting speeds 

far away from the corners. 

In general, the acceleration time should be set as large as it can be without either making the 

minimum move time too large, or the corners too large. In high block-rate applications, the Ta 

time is generally set to the minimum block time, and the Ts time is set to 0. In low block-rate 

applications, the Ta and Ts times are generally set to get the desired corner size and shape. 

Stopping While in Lookahead 

If the user desires to stop axis motion while in lookahead mode, he must carefully consider how 

the stopping is to be done. It is important to realize what point in the chain of execution is being 

halted with the stopping command. Different stopping commands have different effects, and 

different uses. 

Quick Stop 

The \ [lh\ buffered program command] “quick-stop” command causes Power PMAC to 

immediately calculate and execute the quickest stop within the lookahead buffer that does not 

exceed Motor[x].InvAmax acceleration limits for motors in the coordinate system. Motion 

continues along the programmed path to a controlled stop, which is not necessarily at a 

programmed point (and probably will not be). This command is the effective equivalent of a 

“feed hold” within lookahead (even though the internal mechanism is quite different), and it 

should be the command issued when an operator presses a “Hold” button during lookahead.  
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Outside of lookahead, this command causes an actual feed hold, as if the h [hold] command had 

been given. 

The \ command is the best command to use to stop interactively within lookahead operation with 

the intention of resuming operation. Any synchronous M-variable assignments set to happen 

within the deceleration will execute. 

Motors may be jogged away from this stop point, if desired. Also, motion can be reversed along 

the path with the < command (see “Reversal”, below). 

Normal programmed motion can subsequently be resumed with the > [lh>]“resume-forward”, r 

[run], or s [step] command, provided all motors are commanded to be at the same position at 

which they originally stopped with the / command. If any motors have been jogged away from 

this point, they must first be returned with the j= [jog=] command. Acceleration limits are 

observed during the ramp up from a stop here. The > “resume-forward” command puts the 

coordinate system in either continuous run mode, or single-step mode, whichever mode it was in 

before the “quick-stop”. 

Quit/Step 

The q “quit” command simply tells the motion program not to calculate any further motion 

program blocks. (The s “single-step” command will do the same thing if given while the program 

is running.) Motion segments up to the end of the latest calculated motion program move block 

are still added to the lookahead buffer, and all segments and synchronous M-variable assignments 

in the lookahead buffer are completed. 

Motion will come to a controlled stop at the end of the latest calculated move block without 

violating constraints. However, there can be a significant delay – over (Coord[x].LHDistance * 

Coord[x].SegMoveTime) milliseconds if the lookahead buffer is full – from the time the q or s 

command is given and the time the axes stop. 

Motors may be jogged away from this stop point, if desired. Motion can subsequently be resumed 

with the r or s command. Motors do not have to be at the same position at which they were 

originally stopped with the q or s command. However, if it is desired to return them to this 

position, the j= command should be used. 

Feed Hold 

The h “feed hold” command brings the feedrate override value to zero, starting immediately, and 

ramping down at a rate controlled by coordinate system variable Coord[x].FeedHoldSlew. 

Motion continues along the programmed path to a controlled stop, which is not necessarily at a 

programmed point (and probably will not be). Acceleration limits are not necessarily observed 

during the ramp down to a stop. Any synchronous M-variable assignments set to happen within 

the deceleration will execute. 

Abort 

The a “abort” command breaks into the executing trajectory immediately, and brings all motors 

in the coordinate system to a controlled stop, each at its own deceleration time or rate as set by 

Motor[x].AbortTa and Motor[x].AbortTs for the motor. The stop is not necessarily at a 

programmed point (and probably will not be), and it is not necessarily even along the 

programmed path (and probably will not be).  
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Segments and synchronous M-variable assignments already in the lookahead buffer are 

discarded; they cannot be recovered. The program counter is automatically reset to the beginning 

of the (top-level) motion program, so the abort command is not recommended except for stopping 

quickly under error conditions. 

Reversal While in Lookahead 

If the lookahead buffer has been sized larger than what is required simply for the actual 

lookahead, it will contain “historical” data that can be used for reversal along the programmed 

path. This capability gives the system a “retrace” capability, allowing it easily to go backwards 

along the already executed path. The key command to be used in reversal is the < [lh<] 

“backup” command, which causes the coordinate system to start execution in the reverse 

direction through the segments in the lookahead buffer. 

Back-up Command 

If the < command is given while the coordinate system is in normal forward execution in the 

lookahead buffer, Power PMAC will internally generate a \ “quick-stop” command to halt the 

forward execution, then immediately start reverse execution. 

The < command can also be given after execution of the program has been halted with a \ quick-

stop command. It cannot be given after stopping with a q “quit”, s “single-step”, or a “abort” 

command, or an automatic error termination. 

Reverse Execution 

Execution in the reverse direction will observe the position, velocity, and acceleration limits, just 

as in the forward direction. If not stopped by another command, reverse execution will continue 

until it reaches the beginning (oldest stored point) of the lookahead buffer. It will automatically 

stop at this point with a controlled deceleration within the acceleration constraints.  

Reversal cannot proceed through any non-segmented move (spline, rapid, homing), so will 

automatically stop at the end point of the latest of this type of move. If the program had been 

stopped with a q or s command, the lookahead buffer is cleared on restarting, so reversal can 

only go back to that point. 

It is possible for reversal to continue through a stop due to a dwell command or similar break, 

but the time for such a stop is not retained; it is just a momentary stop in reversal (and subsequent 

forward execution). Note that a delay command is part of the continuous motion sequence, so 

its time at zero velocity is maintained during reversal. 

Stopping Reverse Execution 

The reverse execution can be halted before this point with the \ “quick-stop” command. Reverse 

execution can then be resumed with another < “back-up” command; forward execution can be re-

started with a > “resume”, r “run”, or s “single-step” command. The > “resume” command puts 

the coordinate system in either continuous run mode, or single-step mode, whichever mode it was 

in before the back-up. 

Synchronous Assignments in Reversal 

No synchronous variable assignments are executed either during a reversal or during the forward 

execution over the reversed part of the path. However, synchronous label assignments to 

Coord[x].Nsync are executed in the reverse and forward directions so it is possible to monitor the 
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programmed move block being executed during all aspects of this procedure if synchronizing line 

labels have been used in the program. 

Forward execution over the reversed part of the path will blend seamlessly into previously 

unexecuted parts of the path. At this point, standard execution of the lookahead buffer will 

resume, with new points being added to the end of the lookahead buffer, and execution of 

buffered synchronous M-variable assignments starting again. 

Comparison to Time-Base Reversal 

Power PMAC is also capable of reversible path execution using negative time-base if motor 

“trace” buffers have been set up for all motors in the coordinate system. Reversing in the 

lookahead buffer itself is usually better for “state” changes in direction, as with “forward”, 

“reverse” and “stop/hold” buttons on the operator control panel. 

Reversal with negative time base is generally better for “proportional” changes, as with operator 

pot or handwheel rotation, or with a continuously varying process value that controls movement 

along the programmed path. 

Feedrate Override with Lookahead 

Power PMAC provides two methods for implementing “feedrate override”. One method uses the 

“time-base” override that executes at the servo update rate, varying the numerical time-change 

value used for the (fine) interpolation update algorithm from the true physical time elapsed in one 

servo update period. This override is accomplished using the %{constant} on-line command 

(scaled in percent of “real time”), or by writing to the Coord[x].DesTimeBase data structure 

element (scaled in milliseconds). 

However, this override function occurs after the lookahead calculations, so it can override the 

limits imposed by the lookahead algorithm. The velocity of the resulting trajectory varies linearly 

with the override value, and the acceleration varies with the square of the override value. At an 

override value of 150%, the velocities will be 150% of those programmed (or limited), and the 

accelerations will be 225% of those programmed (or limited). 

A more sophisticated technique is to use Power PMAC’s patented “segmentation override” 

capability. This override function occurs at the segmentation (coarse interpolation) stage, before 

the lookahead algorithm. It varies the numerical time-change value used for the segmentation 

update from the true physical time elapsed in one segmentation update period, which is set by the 

saved setup element Coord[x].SegMoveTime. This override is accomplished writing to the 

Coord[x].SegOverride value (scaled so that 1.0 is “real time”). The numerical time-change value 

used for the update is thus the product of Coord[x].SegMoveTime and Coord[x].SegOverride. 

Because the lookahead algorithm occurs after this override function, the limits imposed by 

lookahead are not changed by the override value. This factor makes the segmentation override the 

preferred method in most applications. It should be noted that changes in the override value are 

delayed by the length of the lookahead buffer. This delay is necessary to ensure that acceleration 

limits are always observed. 

Both override techniques are discussed in detail in the “Setting Up Coordinate Systems” chapter 

of the User’s Manual. 
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SYNCHRONIZING POWER PMAC TO EXTERNAL 
EVENTS 

Power PMAC has several powerful features to help in synchronizing the motion under Power 

PMAC’s control to external events. These include: 

 Position following (commonly known as electronic gearing) 

 External time-base control (commonly known as electronic cams) 

 Hardware position capture (useful for registration and probing) 

 Hardware position compare (useful for triggering outputs and measurements) 

A Note on “Master/Slave” Techniques 

Power PMAC’s position-following and external-time-base functions are both what is generally 

known as “master/slave” techniques, in that the action of the motor(s)/axis(es) in question (the 

“slave(s)”) is dependent on the action of a “master” motion (or simulation of such a motor). 

However, there is no causality in the opposite direction, as the action of the slave(s) does not 

affect the action of the master. 
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Multi-Axis Master/Slave Concept 
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A master/slave algorithm is one strategy for tying together the motion of two or more devices. 

Another strategy is generally known as “coordination”. In a coordination strategy, the desired 

motion of multiple axes is tied together through a mathematical relationship, and the physical 

coordination is achieved through the action of the feedback loops for each motor causing the 

actual motion to track the desired motion. In Power PMAC, this is achieved by means of 

assigning the relevant motors to axes in the same coordinate system, and commanding the axes 

together in a motion program. 
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Multi-Axis Coordination Concept 

In general, if the desired physical relationship can be achieved through a coordination strategy, 

such a strategy should be used. A mathematically generated trajectory is superior to a signal-

generated trajectory, reducing quantization noise, measurement noise, and delay. However, the 

use of a coordination strategy requires a sufficiently high-quality feedback algorithm on all axes 

to keep the relationship within the required tolerance, and the ability to generate all of the 

trajectories in a single controller. 

If these conditions do not apply, it is necessary to use one axis without tight feedback or 

commanded from a separate controller as the “master”, employing a sensor on this device to 

generate the master signal for the other axes operating as “slaves”. This signal is used in the 

generation of the trajectories for the slave axes. Note that the imperfections (noise) in the master 

signal may limit the aggressiveness of the tuning of the slave axes, particularly of the feedforward 

terms. 

Processing the Master Position Signal 

The master position signal for either position following or external time base must be processed 

first through interface hardware and then through the software of Power PMAC’s encoder 

conversion table (ECT). In most cases, this processing is similar or even identical to that for 

feedback position. Note that at re-initialization, Power PMAC automatically sets up an ECT entry 

of the most appropriate type for each interface channel it detects. 
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When the signal is used for feedback or position-following master, the output scale factor of the 

ECT entry is usually set to scale the result in the “counts” or “LSBs” of the encoder or other 

sensor. When the signal is used for external time-base master, the output scale factor of the ECT 

entry is usually set based on a user-selected “real-time input frequency” (RTIF), so the result is 

scaled in the “milliseconds” elapsed if the input signal were running at this RTIF. Refer to the 

section “What is External Time-Base Control?” below for details on understanding and setting 

the RTIF. The motion program running under external time base is written as if the master device 

were always producing the RTIF, with the time base functionality automatically adjusting the 

speed in proportion to the actual frequency. 

If the same signal is used both for feedback and for external time-base master, it should be 

processed through two separate ECT entries, one for the feedback function, and one for the time-

base master function. These two entries can be identical except for the output scale factor. The 

scale factor for the time-base master entry should be smaller than the scale factor for the feedback 

entry by a factor of the RTIF (in counts per millisecond). That is, to get the scale factor for the 

time-base master entry, divide the scale factor for the feedback entry by the RTIF value. 

Processing a Quadrature Encoder with a PMAC2-Style IC 

If the master signal comes from a quadrature encoder connected into a PMAC2-style Servo IC, as 

on an ACC-24E2x UMAC interface board, it should be processed with a Type 3 “software 1/T 

extension” encoder conversion table entry, just as for a feedback encoder. The sub-count 

interpolation provided by this timer-based extension is important to improve the smoothness of 

the following. 

This software sub-count interpolation computes 9 bits of fractional count information. When used 

for feedback or position-following master, this type of entry usually has an output scale factor 

EncTable[n].ScaleFactor of 1/29 (1/512) so the output is scaled in counts of the encoder. When 

used for an external time-base master, the output scale factor should be set to 1/(512*RTIF), with 

the RTIF expressed in counts per millisecond, so the output is in units of the fictitious 

“milliseconds” required for external time-base. It is recommended that the value be entered as an 

expression so Power PMAC can compute the result precisely. 

Processing an External Clock Signal with a PMAC2-Style IC 

Some applications require full synchronization to an external time clock signal (for true “external 

time base”). This may be to get higher absolute time accuracy than Power-PMAC’s own internal 

clock signal provides (generally 100ppm), or to synchronize to another sub-system with its own 

clock signal, as with many video systems. A digital clock signal can be connected to the “A” 

phase encoder input of a Power PMAC encoder interface channel, and the channel decode set up 

for “pulse-and-direction” decode – Gate1[i].Chan[j].EncCtrl set to 0 or 4, whichever causes the 

channel’s encoder counter to increment in the positive direction.  

From this point on, the signal is treated just as a quadrature encoder would be (see directly 

above). The RTIF is usually selected as the nominal frequency of this input signal. 

Processing a Sinusoidal Encoder with a PMAC2-Style IC 

If the master signal comes from a sinusoidal encoder connected into a PMAC2-style Servo IC, as 

on an ACC-51E UMAC interface board, it should be processed with a Type 4 “software 

sinusoidal extension” encoder conversion table entry, just as for a feedback encoder. The sub-

count interpolation provided by this extension from the analog circuitry is important the 

smoothness of the following. 
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This sub-count interpolation computes 10 bits of fractional count information (12 bits per line for 

“4096x” interpolation). When used for feedback or position-following master, this type of entry 

usually has an output scale factor EncTable[n].ScaleFactor of 1/210 (1/1024) so the output is 

scaled in (quadrature) counts of the encoder. When used for an external time-base master, the 

output scale factor should be set to 1/(1024*RTIF), with the RTIF expressed in counts per 

millisecond, so the output is in units of the fictitious “milliseconds” required for external time-

base. It is recommended that the value be entered as an expression so Power PMAC can compute 

the result precisely. 

Processing a Quadrature Encoder with a PMAC3-Style IC 

If the master signal comes from a quadrature encoder connected into a PMAC3-style IC, as on an 

ACC-24E3 UMAC interface board, “hardware 1/T extension” for timer-based sub-count 

interpolation is automatically performed by the IC if saved setup element 

Gate3[i].Chan[j].TimerMode is set to its default value of 0. The resulting value can be 

processed with a Type 1 “single register read” encoder conversion table entry. 

The hardware timer-based sub-count interpolation computes 10 bits of fractional count 

information. When used for feedback or position-following master, this type of entry usually has 

an output scale factor EncTable[n].ScaleFactor of 1/28 (1/256) so the output is scaled in counts 

of the encoder. When used for an external time-base master, the output scale factor should be set 

to 1/(256*RTIF), with the RTIF expressed in counts per millisecond, so the output is in units of 

the fictitious “milliseconds” required for external time-base. It is recommended that the value be 

entered as an expression so Power PMAC can compute the result precisely. 

Processing an External Clock Signal with a PMAC3-Style IC 

Some applications require full synchronization to an external time clock signal (for true “external 

time base”). This may be to get higher absolute time accuracy than Power-PMAC’s own internal 

clock signal provides (generally 50ppm), or to synchronize to another sub-system with its own 

clock signal, as with many video systems. A digital clock signal can be connected to the “A” 

phase encoder input of a Power PMAC encoder interface channel, and the channel decode set up 

for “pulse-and-direction” decode – Gate3[i].Chan[j].EncCtrl set to 0 or 4, whichever causes the 

channel’s encoder counter to increment in the positive direction.  

From this point on, the signal is treated just as a quadrature encoder would be (see directly 

above). The RTIF is usually selected as the nominal frequency of this input signal. 

Processing a Sinusoidal Encoder with a PMAC3-Style IC 

If the master signal comes from a sinusoidal encoder connected into a PMAC3-style IC, as on an 

ACC-24E3 UMAC interface board, “hardware arctangent extension” for analog-based sub-count 

interpolation is automatically performed by the IC if saved setup element 

Gate3[i].Chan[j].AtanEna is set 1. The resulting value can be processed with a Type 1 “single 

register read” encoder conversion table entry. 

The hardware analog-circuitry-based sub-count interpolation computes 12 bits of fractional count 

information (14 bits per line for “16,384x” interpolation). When used for feedback or position-

following master, this type of entry usually has an output scale factor EncTable[n].ScaleFactor 

of 1/212 (1/4096) so the output is scaled in (quadrature) counts of the encoder. When used for an 

external time-base master, the output scale factor should be set to 1/(4096*RTIF), with the RTIF 

expressed in counts per millisecond, so the output is in units of the fictitious “milliseconds” 
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required for external time-base. It is recommended that the value be entered as an expression so 

Power PMAC can compute the result precisely. 

Processing a Serial Encoder with a PMAC3-Style IC 

If the master signal comes from a serial encoder connected into a PMAC3-style IC, as on an 

ACC-24E3 UMAC interface board, the data is simply latched into a register without any 

extension or interpolation. The resulting value can be processed with a Type 1 “single register 

read” encoder conversion table entry. 

When used for feedback or position-following master, this type of entry usually has an output 

scale factor EncTable[n].ScaleFactor of 1.0 so the output is scaled in counts (LSBs) of the 

encoder. When used for an external time-base master, the output scale factor should be set to 

1/RTIF, with the RTIF expressed in counts per millisecond, so the output is in units of the 

fictitious “milliseconds” required for external time-base. It is recommended that the value be 

entered as an expression so Power PMAC can compute the result precisely. 

Position Following (Electronic Gearing) 

Power PMAC’s simplest method of master/slave control is basic position following, also known 

as “electronic gearing” because it mimics the functionality of mechanical gearing through 

electronic means. This is a motor function, not a coordinate-system function as external time-base 

control is. Typically, an encoder signal from the master (whether from real machine motion or an 

operator “handwheel”) is fed into one of Power PMAC’s encoder inputs, and processed through 

the encoder conversion table, just as a feedback encoder would be. 

The functionality can be envisioned through its mechanical analogy as shown in the following 

figure: 

Master
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Rm Rs

MasterPosSf = Rm / Rs
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Position Following Mechanical Analogy 
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Use of the position-following feature does not require the use of any motion or PLC programs. It 

simply requires setting values for a few setup elements. These values can be saved to non-volatile 

flash memory, but also can be changed at any time. 

Position Following Master Address 

Once the master signal has been processed through an encoder conversion table entry, as 

explained in the above section, it is ready for use by a motor’s position-following function. The 

saved setup element Motor[x].pMasterEnc must be set to the address of the ECT entry n that 

provides the master position to follow. The assignment command will look like: 

Motor[x].pMasterEnc = EncTable[n].a 

This command can be either an on-line or buffered-program command. The assignment can also 

be made interactively through the motor-setup program associated with the IDE. Note that the 

only valid settings for Motor[x].pMasterEnc are addresses of ECT entries. 

The default value of pMasterEnc for all motors is EncTable[0].a. ECT entry 0 is by default a 

“dummy” entry, processing a null register. Many Power PMAC users who have a single master 

encoder for position following will process it through ECT entry 0. However, if the encoder 

channel used for the master encoder is already processed through a different entry (auto-

assignment of ECT entries to existing hardware interface channels at system re-initialization start 

with ECT entry 1), it is usually best just to use that entry. Because all ECT entries are processed 

first in each servo cycle, before any of the following or feedback algorithms, there is no delay 

from using a higher-numbered ECT entry. 

Position Following “Gear Ratio” 

Saved setup element Motor[x].MasterPosSf establishes the commanded “gear ratio” for the 

electronic gearing. It is a double-precision floating-point value, expressed in (slave) motor units 

per master unit. The motor units are defined by the feedback sensor resolution (including ECT 

scale factor) and Motor[x].PosSf; the master units are defined by the master sensor resolution 

(including ECT scale factor). The default value of Motor[x].MasterPosSf is 1.0 for a 1-to-1 gear 

ratio. 

Note 

This gear ratio in Turbo PMAC was expressed as the ratio of 

two integers: Ixx07 and Ixx08. The equivalent gear ratio in 

Power PMAC is the (floating-point) quotient of these two 

values: Ixx07 / Ixx08. 

 

Motor[x].MasterPosSf can be changed at any time to any floating-point value, whether or not 

following is enabled. If saved setup element Motor[x].SlewMasterPosSf is set to its default 

value of 0.0 (or in older firmware revisions where Motor[x].SlewMasterPosSf does not exist), 

the ratio used is changed immediately to the new value; there is no slew-rate control. Care should 

therefore be taken in this mode when changing this value while the motor is actually moving in 

tracking the master position, as large instantaneous changes will cause significant step changes in 

the commanded velocity of the slaved motor. 

However, if Motor[x].SlewMasterPosSf is set to a positive value, slew-rate control on the 

following ratio is enabled, and the actual ratio used each servo cycle, found in status element 
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Motor[x].ActiveMasterPosSf can change at most by the magnitude of 

Motor[x].SlewMasterPosSf each servo cycle. The slew-rate control is active when following is 

enabled or disabled, or when the desired ratio in Motor[x].MasterPosSf is changed. 

When following is disabled, the actual ratio in Motor[x].ActiveMasterPosSf is set to 0.0. When 

following is enabled, this actual ratio is incremented by the magnitude of 

Motor[x].SlewMasterPosSf each servo cycle until the desired ratio is reached. When following 

is disabled the actual ratio is incremented in the other direction by Motor[x].SlewMasterPosSf 

each servo cycle until a value of 0.0 is reached. When the desired ratio is changed, the actual ratio 

is incremented by the magnitude of Motor[x].SlewMasterPosSf each servo cycle until the new 

desired ratio is reached. 

If the application may enable or disable following, or change the desired ratio, while the master is 

“moving”, it is strongly recommended to use slew-rate control to prevent step changes in the 

commanded velocity of the slaved motor. However, the use of slew-rate control means that the 

“position lock” between master and slave is not just dependent on the desired following ratio. 

Enabling and Disabling Following 

Bit 0 (value 1) of Motor[x].MasterCtrl controls whether the following function is enabled or 

disabled for the motor. If it is set to the default value of 0, following is disabled; if it is set to 1, 

following is enabled. If slew-rate control is not enabled (the default condition, with 

Motor[x].SlewMasterPosSf at 0.0), the change is immediate, so great care should be taken when 

enabling or disabling following while the master position is changing in this mode.. 

Following Mode: Normal vs. Offset 

Bit 1 (value 2) of Motor[x].MasterCtrl controls the following “mode”. If it is set to the default 

value of 0, “normal” mode is specified. In normal mode, the reference position for programmed 

moves using the motor does not change as the motor follows the master position. Subsequent 

absolute-mode moves will therefore “take out” the motion from the following. Also, in normal 

mode, the reference position for reporting does not change with following motion, so the reported 

position does change with following motion. 

However, if bit 1 is set to 1, thus adding 2 to the value of Motor[x].MasterCtrl, “offset” mode is 

specified, the reference position for programmed moves using the motor does change along with 

the following motion. Subsequent absolute-mode moves are added on top of the position changes 

from the following function. This permits the user to superimpose programmed and following 

motion, as on a moving web, so the motion program can be written as if the web were not 

moving, but resulting in an identical path relative to the moving web. 

Use of Offset Mode for Cascaded Loops 

Offset-mode following can be very useful for the implementation of cascaded servo loops. The 

output of the outer loop is used as the master position for the inner position loop (and not sent 

directly to an actuator). In this mode of operation, the inner loop typically is a standard position 

loop; the outer loop closes a loop on force, tool height (gap), or some process variable. The use of 

offset mode for this purpose permits the inner-loop motor to accept simultaneously trajectory 

commands and following corrections for the outer-loop motor. 

Changing Following Mode 

The following mode is used in determining how the calculations relating programmed axis 

position to underlying motor position are performed, so changing the mode changes how these 
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calculations would be done for subsequent moves, creating a “mismatch” between axis and motor 

position, which could cause a sudden jump in the motor motion on the next programmed move if 

not corrected. This is true regardless of whether following is enabled or not. To eliminate this 

mismatch, a pmatch position-matching command must be executed before the next programmed 

move command is executed. 

Power PMAC automatically executes a pmatch command any time an r (run) or s (step) 

command is issued to start a motion program; however, if the mode is changed in the middle of a 

motion program, or if the next axis move is commanded from a PLC program, the pmatch 

buffered program command must be issued explicitly in the program before the next move 

command. It should be preceded by a dwell command in a motion program to ensure that any 

pre-calculation is halted. 

The program sequence would look something like: 

dwell 0;     // Stop pre-calculation 

Motor[2].MasterCtrl |= 2;   // Set mode bit to "offset" 

pmatch;      // Re-match axis and motor position 

Y20;      // Command programmed move 

 

Speed and Acceleration Limiting in Following 

Power PMAC’s position-following algorithm can automatically limit the speed and/or 

acceleration of the slave motor that results from the following function. If saved setup element 

Motor[x].MasterMaxSpeed is set to a positive value, then the magnitude of the position change 

of the slave motor resulting from following in any servo cycle cannot exceed this value. If it is set 

to the default value of 0.0, there is no speed limiting. 

Note 

This element is expressed in motor units per servo cycle, not 

motor units per millisecond, as other motor velocity setup 

elements are. The limit imposed by this element is not affected 

by the time base override (%) value. 

 

When the following is speed-limited, the motor “falls behind” the master, losing position 

synchronization with it. In some applications, the desire is to “catch up” with the master when the 

speed is no longer limited and re-establish “position lock” with the master. In other applications, 

the desire is just to re-establish “velocity lock” with the master when the speed is no longer 

limited, letting the motor “stay behind” the master. 

Speed Limiting Only: Recovery of Velocity Lock 

In Power PMAC, the choice between these two modes of operation is controlled by the setting of 

saved setup element Motor[x].MasterMaxAccel. If this element is set to its default value of 0.0, 

there is no acceleration limiting in following, and the motor will only re-establish “velocity lock” 

with the master when the speed is no longer limited. It will not “catch up” to the master position; 

any “excess” due to speed limiting is lost. 
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The following plot demonstrates the case that is speed limited but not acceleration limited, and 

which therefore only re-establishes velocity lock when no longer limited. The slave motor (Motor 

2) does not catch up to the master position when it comes out of speed limiting. 

 

Speed-Limited Following, No Recovery of Position Lock 

Speed and Acceleration Limiting: Recovery of Position Lock 

If Motor[x].MasterMaxAccel is set to a positive value, two aspects of the following function 

change. First, the magnitude of the acceleration due to following is limited to the value of this 

element. Second, any “excess” master distance from speed or acceleration limiting is accumulated 

and then “released” when following is no longer limited. This permits the following function to 

re-establish “position lock” with the master.  

The “excess” accumulated at any time can be seen in the difference between the status elements 

Motor[x].MasterPos (the unlimited position from the master) and Motor[x].ActiveMasterPos 

(the limited position). Position lock is re-established when these two elements have the same 

value. Note that acceleration limiting can only be enabled if velocity limiting is also enabled 

(Motor[x].MasterMaxSpeed > 0). 

Note 

This element is expressed in motor units per servo cycle per 

servo cycle, not motor units per millisecond per millisecond, as 

other motor acceleration setup elements are. The limit imposed 

by this element is not affected by the time base override (%) 

value. 
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The next plot demonstrates the case that is both speed limited and acceleration limited, and which 

therefore “catches up” with the master once it is no longer limited. The slave motor (Motor 2) 

continues at the speed set by Motor[x].MasterMaxSpeed, even when the master is no longer 

commanding a speed this high, until it is almost caught up, at which time it decelerates at the rate 

set by Motor[x].MasterMaxAccel. 

 

Speed- and Acceleration-Limited Following, Recovery of Position Lock 

Note that the initial slave-motor acceleration is kept well below the specified limit (at which the 

final slave-motor deceleration occurs). This is due to the fact the Power PMAC is limiting the 

speed so that a deceleration to zero velocity could occur within the specified acceleration limit, 

even if there were no further change in master position. 

Engaging and Disengaging Following on the Fly 

The speed and acceleration limits in following make it possible to engage and disengage the 

following in a controlled manner when the master is in motion. When following is enabled, the 

slaved motor will first accelerate from zero at the rate specified by Motor[x].MasterMaxAccel 

to a speed higher than a velocity lock to the master would cause. It will maintain a higher speed 

until it has established a position lock with the master, by which time it will have decelerated to 

be in velocity lock with the master as well. In establishing position lock, it will have traveled the 

same distance relative to the master as it would have if it could have established velocity lock 

immediately upon enabling. 

When following is disabled when the master is in motion, the slave motor will first decelerate at 

the rate specified by Motor[x].MasterMaxAccel until it is traveling in the opposite direction. It 

will continue to move in the opposite direction until it has returned to the position where it was 

when following was disabled, by which time it will have decelerated to zero velocity. 
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The following plot shows the response to enabling and disabling following while the master is in 

motion. In this case, the master is moving at approximately constant velocity throughout the 

process. 

 

On-the-Fly Engaging and Disengaging of Following, Acceleration-Limited 

If, during the initial acceleration after enabling, continued acceleration would cause the following 

motor to exceed its following speed limit, the following is clamped at this maximum speed even 

while it is attempting to re-attain position lock with the master. This is shown in the following 

plot: 

 

On-the-Fly Engaging and Disengaging of Following, Acceleration- and Speed-Limited 
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Custom Following Algorithms 

It is possible for the user to write directly to the Motor[x].MasterPos register, which is scaled in 

the slave motor units. Doing this bypasses the built-in position-following algorithm. If this is 

done, bit 0 (value 1) of Motor[x].MasterCtrl should be set to 0, disabling the built-in algorithm 

so it is not trying to write to the same register. Setup elements Motor[x].pMasterEnc and 

Motor[x].MasterPosSf are not used in this case. Bit 1 (value 2) of Motor[x].MasterCtrl is still 

used to determine whether programmed moves are offset with the following or not. 

It is suggested that custom following algorithms that directly to the Motor[x].MasterPos register 

be implemented in a foreground PLC program executing at servo rate, or a user-written servo for 

an unused motor (especially Motor 0). These algorithms can implement special features not 

present in the standard algorithm. 

Tuning the Servo Loop of the Slave Motor 

Most users will employ the same tuning of the servo loop of a slave motor in position following 

as they would for a motor executing calculated trajectories. However, due to the finite resolution 

and imperfections of the master sensor, and possible mechanical disturbances and vibration, the 

master trajectory will not be as “smooth” as an internal mathematically generated trajectory, and 

it may not be possible to tune as aggressively when following. Note that low-pass filtering in the 

feedforward path of the slave motor’s servo algorithm (with the “F” polynomial) can be used to 

preserve decent tracking without too much amplification of the imperfections of the master 

signal. 

External Time-Base Control  

A more sophisticated method of slaving to external motion is that of “external time-base” control, 

in which the input signal frequency controls the rate of execution of moves and programs. 

External time-base control operates on an entire coordinate system, affecting the motion of all 

motors in that coordinate system. 

What is External Time-Base Control? 

Power PMAC’s motion language expresses position trajectories as functions of time. Whether the 

moves are specified directly by time, or by speed, ultimately the trajectory is defined as a 

position-vs-time function. 

This is fine for a great number of applications. However, in some applications, we wish to slave 

the Power PMAC axes to an external axis not under Power PMAC control. In these applications, 

we really want to specify the trajectories as functions of master position, not of time. Most 

controllers force the user to use a completely different method for specifying the trajectories for 

this type of trajectory, often table-based, as common terms involved in position-vs-time 

trajectories, such as velocity and acceleration, are no longer really valid. 

Power PMAC’s method for specifying trajectories in this mode leaves the language expressing 

position as a function of “time”, but makes this now-fictitious “time” proportional to the distance 

covered by the master. This is done by defining a “real-time input frequency” (RTIF) from the 

master’s position sensor, usually in units of counts per millisecond. For example, we define an 

RTIF of 32 cts/msec. Then, in external time-base mode, when the motion program refers to a 

millisecond (directly or indirectly), it is really referring to a distance elapsed on the master 

corresponding to 32 counts of the master encoder. If the motion program commands a move to 
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take 2 seconds (2000 msec) to complete, it is really commanding the move to complete in 64,000 

counts of the master encoder, however long of a time that takes. 

The selected RTIF is used to compute a scale factor in the encoder conversion table (ECT) entry 

that processes the master signal, as explained in the section “Processing the Master Position 

Signal”, above. The motion program then specifies a trajectory assuming that the master always 

provides this frequency. 

The selection of the RTIF is quite arbitrary. In many applications, the frequency produced at the 

“nominal” speed of the master is used. It can be desirable to select a value that is a power of 2 

(such as 32) so that the scale factor in the ECT has an exact floating-point representation, if this 

does not result in difficulties in writing the motion sequence. (The scale factor is inversely 

proportional to the RTIF.) However, because the scale factor is a double-precision floating-point 

value, in the vast majority of applications, a non-exact representation will not cause any 

noticeable errors. (This is a substantial improvement over the PMAC and Turbo PMAC integer 

algorithms, in which any inexactness would cause a quickly noticeable error. In Power PMAC, an 

inexact representation would require continuous high-speed motion of the master for multiple 

hours before any noticeable error could accumulate.) 

One of the advantages of this method is that is possible to develop and debug the slave 

trajectories without the need for a master signal, executing them as true functions of time (i.e. 

with “internal time base”). This is often a very useful development strategy, especially employing 

the data gathering and plotting features provided. Once satisfied with the results at this stage, 

changing the value of a single variable (as explained below) converts execution to external time 

base. 

Comparison to Electronic Cam Tables 

Many applications use Power PMAC’s external time-base feature to achieve functionality that is 

similar, or even equivalent, to that provided by electronic cam tables. Power PMAC also provides 

cam table functionality, providing users with a choice of approach. Power PMAC’s cam tables 

are covered in a separate chapter. 

The key advantage of the cam table approach is that the master can be fully bi-directional, 

whereas the time-base master must be fundamentally uni-directional. Also, many users are more 

familiar with the table-based approach, since it is more common in industry. 

However, the external time-base approach is more flexible in that it can use the full capabilities of 

Power PMAC’s motion program math, logic, and trajectory generation. It is not limited to cyclic 

motions, and in many cyclic motions, the cycle can be described in a small number of 

programmed moves, not necessarily evenly spaced, rather than a large number of evenly spaced 

table points. 

How External Time-Base Works 

In executing commanded move profiles, every servo cycle n, Power PMAC’s interpolation 

function calculates a new commanded position CPn for each active motor using the equation: 

tCVCPCP nnn  1  

where CPn-1 is the previous cycle’s command position, CVn is the cycle’s command velocity, and 

Δt is the time elapsed in the servo cycle. 
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In most operation, the value of Δt corresponds to the true physical time elapsed in one servo 

cycle. This true time should be specified by the user in saved global setup element 

Sys.ServoPeriod, in units of milliseconds. However, the numerical value used does not need to 

match this physical time interval. If we instead use a value for Δt each servo cycle that is 

proportional to the change in master position (ΔMP) during that servo cycle, we have made the 

trajectory a function of elapsed master position, not of elapsed time. 

Note that the physical time between servo cycles does not change, which means the dynamics of 

the servo loop feedback and feedforward terms do not change either. It is only the rate of 

execution of commanded trajectories that change, and since they change together for all motors in 

the coordinate system, any path through space does not change, and full coordination is 

maintained. 

External time base is designed to work only in the positive direction (ΔMP > 0). The algorithm 

can handle very brief moments of negative direction from the master without losing 

synchronicity, as the motion is reversible within a single motion segment with given equations of 

motion. This permits the master to come to a stop and to dither about a stopping point without the 

slave axes losing their “lock” to the master. However, if the accumulated negative signal from the 

master would require a transition into a previous segment with different motion equations, this 

transition will not be made. Applications that require tracking of a fully bi-directional master 

position signal may use position “compensation” tables with the master signal assigned to the 

“source” motor and the slaved motor as the table’s “target” motor. 

Time-Base Entry in the Encoder Conversion Table 

The coordinate system’s source for its Δt time base value in external time-base mode must be an 

entry in the encoder conversion table. This entry processes the incoming signal information to 

calculate a “delta-position” value each servo cycle that will be used as a Δt value. 

The details for processing each common type of signal in an ECT entry are given in the section 

Processing the Master Position Signal earlier in this chapter. The key difference in using the 

signal for time-base master instead of servo feedback is that the output scale factor for the entry 

for time-base master should be a factor of the RTIF (in cts/msec) smaller than it would be for 

servo feedback. If the signal is used for both purposes, two separate entries with different scale 

factors should be used. 

Using the Scaled Master Value 

Each coordinate system has a saved setup element Coord[x].pDesTimeBase that tells the 

coordinate system the address of the register to read to get its “Δt” value for its motor’s 

interpolation functions. By default, this is set to the address of the register 

(Coord[x].DesTimeBase.a) that responds to “%n” commands to the coordinate system. For 

external time-base following, this should be set to the address of the scaled “delta-position” 

register for the ECT entry processing the master signal: 

Coord[x].pDesTimeBase = EncTable[n].DeltaPos.a 

This will cause the coordinate system to use the computed scaled ΔMP value from the entry as its 

Δt value in the motion interpolation equations. If the master encoder is outputting the real-time 

input frequency, this value will match the real time elapsed in a servo cycle. 
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The saved setup element Coord[x].TimeBaseSlew, which limits how much the time-base value 

actually used in the interpolation equations can change each servo cycle, even if there are big 

changes in the desired time-base value, is by default set to a very low value (0.00001) to prevent 

sudden velocity changes when commanded time-base has a step change. When external time-base 

is used, the inertia of the physical master prevents large instant changes, but there can be cycle-to-

cycle “noise” requiring significant changes to maintain full synchronization. Therefore 

Coord[x].TimeBaseSlew should be set much larger (e.g. to 1.0) so it will not limit the changes 

due to noise, which would cause a loss of synchronization. 

Writing the Motion Program 

When you write the motion program that is to be under external time-base control, simply write it 

as if the input signal were always as the “real-time” frequency. When run, the motion will execute 

at a rate proportional to the input frequency. All positions, speeds, and times are calculated to full 

double-precision floating-point resolution. 

Maintaining Synchronicity 

Synchronicity to the master signal is only maintained during a continuous (blended or splined) 

motion sequence. If there is a break in the sequence for whatever reason, even if only for a 

moment, synchronicity to the master cannot be fully maintained between the motion sections 

before and after the break. Conditions that will cause a break in the continuous sequence include 

disabling of blending from setting Coord[x].NoBlend to 1 or from having a corner sharper than 

that set by Coord[x].CornerBlendBp, using a rapid-mode move (which is never blended at 

beginning or end), and using a dwell command (even a dwell 0).  

Note that a dwell command always executes in “real time”, regardless of the input frequency. It 

also disables pre-computation, so there is a brief but not fully deterministic break afterward to 

compute the next move. If you want to command zero motion of the slave axes for a period 

proportional to the frequency of the master, either explicitly command a zero-distance move of a 

specified “time”, or use the delay command for this “time”. Unlike a dwell command, a 

delay command executes in “variable time”, and it is part of a blended move sequence, with 

calculations done during the continuous sequence. 

Effect of Acceleration Profiles 

If the commanded motion is started with the master signal already at speed, a programmed 

acceleration profile is necessary to obtain a controlled start to the motion. If the acceleration is 

specified by time, as with ta and ts commands, the actual time is inversely proportional to the 

master signal frequency. If the acceleration is specified by rate, as with an InvAmax parameter, 

the actual rate is proportional to the square of the master signal frequency. Note that any 

acceleration rate calculations in programmed motion assume time base at 100% (i.e. at RTIF). 

In some applications, the commanded motion is started with the master signal at rest, and so will 

not actually begin until the master signal actually starts. If the master signal comes from a 

position sensor on a physical device, the inertia of the device will limit the acceleration of the 

signal. Sometimes, the user desires that the actual motion of the commanded trajectory be directly 

proportional to the master signal frequency, without any lag (much like in electronic gearing). To 

accomplish this, the acceleration times for the programmed trajectory should be set to 0, and if 

there could be any acceleration rate limiting, the InvAmax parameters should be set to 0.0 to 

permit “infinite” acceleration at 100%.  
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Simple Time-Base Example: Crosscut on Moving Web 

You have a web of material moving under open-loop control at a nominal speed of 800 mm per 

second. There is a quadrature encoder on the web that provides 40 lines per mm. There is a cross-

cutting axis under Power PMAC control. When the web is moving at nominal speed, the crosscut 

move should take 0.2 seconds. You want to repeat the crosscut every 500 mm of the web 

material. 

Step 1: Signal Connection and Decode 

The master encoder is connected to the 4th channel of the 1st ACC-24E2A board at default address 

settings, so the IC index is 4 and the channel index is 3. Gate1[4].Chan[3].EncCtrl is set to 3 or 

7 for “times-4” decode, whichever causes the counter to count up in the direction of motion. 

Step 2: Encoder Conversion Table Processing 

Most commonly, an appropriate encoder conversion table (ECT) entry will automatically be 

configured to process this encoder signal with “software 1/T extension” (Type = 3). In most 

configurations this entry will be EncTable[4]. However, by default, this will have a scale factor 

of 1/512 (= 0.001953125), which will probably not be appropriate for our real-time input 

frequency (RTIF). 

For simplicity, we will define our RTIF as the count frequency produced by the web encoder at 

the nominal speed. We get: 
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Our desired ECT scale factor is 1 / (512 * RTIF), so we can set: 

EncTable[4].ScaleFactor = 1/(512*64) 

Step 3: Writing the Motion Program 

Since our RTIF would be produced at the nominal speed of the web, we write our motion 

sequence assuming the web is always moving at the nominal speed of 800 mm/sec. The cutting 

move takes 200 msec at this speed, as stated above. We want the total cycle to occur over 500 

mm of movement, which at the nominal speed takes 500/800 sec, or 625 msec. So the total return 

must take 625 – 200 = 425 msec. We would have a program loop such as: 

while (CuttingMode) {    // Loop until mode changes 

  CutterDown = 1;    // Turn on output to lower cutter 

  delay 100;     // Proportional wait 

  X1000 tm200;     // Crosscut move 

  delay 100;     // Proportional wait 

  CutterDown = 0;    // Turn off output to raise cutter 

  X0 tm225;     // Return move 

} 

 

Triggered Time Base 

The time-base techniques discussed so far keep the slaved coordinate system locked perfectly to 

the master once locked in, but they do not provide a way of synchronizing to a particular point on 

the master. Thus, the slave cycle can be “out of phase” with the master cycle, and some special 

technique, usually involving position capture from a registration mark, must be used to bring the 

cycles in phase with each other. 
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Many time-base applications do not require the master and slave cycles to be in phase with each 

other (for example, cutting blank sheets of paper to length rather than printed pages), and others 

have to be continually re-registered due to stretching, slippage, or uneven spacing. These types of 

applications can use the standard time-base functionality, with any necessary adjustments made in 

the application program on the fly. 

However, applications that simply need to start off in proper phase with the master cycle can use 

the automatic “triggered time base” feature of the conversion table. This technique permits 

perfect synchronization to the position of the master that is captured by a trigger, by freezing the 

time base until the capture trigger is received, then starting the time base referenced precisely to 

the position that was captured by the trigger. The trigger is commonly the index pulse of a spindle 

encoder, or a registration mark on a moving web wired to one of the channel’s flags. The 

“hardware capture” feature of PMAC ASICs is used to get the exact master position at the instant 

of the capture, without any software reaction delays. 

Valid Sensor Types 

Triggered time base can be used with incremental encoders processed either through PMAC2-

style ICs (with software 1/T extension converted with Type = 3) or PMAC3-style ICs (with 

hardware 1/T extension converted with Type = 1). The incremental encoders can be either digital 

quadrature or analog sinusoidal, but analog sinusoidal encoders must be processed as if they were 

digital quadrature encoders, with the sub-count interpolation coming from timer circuits, not A/D 

converters. 

Setting the Capture Trigger Condition 

The capture trigger condition for the IC channel is set up in the same way as for a feedback 

encoder, using saved setup elements Gaten[i].Chan[j].CaptCtrl, to specify what combination of 

flag and/or index pulse will be used, Gaten[i].Chan[j].CaptFlagSel, to specify which type of 

flag will be used (if used), and for PMAC3-style ICs only, Gate3[i].Chan[j].CaptFlagChan, to 

specify the channel index of the specified flag (for PMAC2-style ICs, it must be the same channel 

as the captured encoder). 

Modifying the ECT Entry for Triggering 

Triggered time base uses the same encoder conversion table entry that is used for standard time 

base, either a Type 3 “software 1/T extension” entry for a PMAC2-style IC, or a Type 1 “single-

register read” entry for a PMAC3-style IC, where the 1/T extension is done in hardware in the IC. 

Some elements of the entry are modified to set up the triggering, but when the trigger occurs, the 

entry automatically reverts to the same state as for standard time base. 

Freezing and Arming the Time Base 

For either type of IC, changing EncTable[n].type to 10 creates a triggered entry and “freezes” 

the time base. That is, the output value at EncTable[n].DeltaPos will be exactly 0.0 regardless of 

the input frequency, and there will be no motion in the slaved coordinate system using this 

register for its time base. 

Then, EncTable[n].pEnc1, which specifies the address of the secondary source for the entry, 

must be changed to Gaten[i].Chan[j].Status.a for the IC and channel used, so the trigger-capture 

bit can be monitored. At this point, the time base is still frozen. 
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Next, EncTable[n].index1 must be changed to 2 (for a PMAC2-style IC) or to 3 (for a PMAC3-

style IC). This “arms” the triggered time-base entry, so it can react to the trigger as soon as it 

occurs. 

(In the older Turbo PMAC, this arming step needed to be done in a separate PLC program to 

ensure that the arming occurred after the first move was fully calculated. That separate function is 

not required in the Power PMAC as long as the first move command line in the motion program 

immediately follows the arming command.) 

While the time base is in its frozen state, the initial programmed move that is to start on the 

trigger must be fully calculated and completely read to start execution. This way, there will be no 

possibility of a calculation delay hurting the accuracy of the relationship of the motion to the 

master trigger position. 

Triggering the Time Base 

Once the entry is armed, it checks the specified status register every servo cycle to see if the 

trigger has occurred. On the servo cycle where it sees that the trigger occurs, several things occur 

automatically. First, it changes the entry back to its running state. For a PMAC2-style IC, 

EncTable[n].Type is changed back to 3, and EncTable[n].pEnc1 is changed back to 

Gate1[i].Chan[j].TimeBetweenCts.a so that the software 1/T extension can resume. For a 

PMAC3-style IC, EncTable[n].Type is changed back to 1 (and the value of EncTable[n].pEnc1 

does not matter in running mode). In either case, the entry is now simply a standard entry for 

running time base. 

It also reads the position captured at the instant of the trigger, and subtracts this from the position 

captured at the start of the servo cycle to get the change in master position since the trigger 

(which will be a fraction – between 0.0 and 1.0 – of the position elapsed since the previous servo 

cycle), multiplies this difference by EncTable[n].ScaleFactor, and puts the result into 

EncTable[n].DeltaPos.a, where it will be used by the slaved coordinate system. 

In subsequent servo cycles, the change in master position will be calculated over the entire servo 

cycle, but by using the hardware-captured position at the trigger, the motion will be referenced 

exactly to this position. 

Writing the Motion Program Sequence 

The motion program that specifies the trajectory to be executed under a triggered time base must 

perform several tasks. First, if there were any previous programmed moves or calculations, both 

the moves and pre-calculations must be stopped with a dwell command. A dwell 0 command 

is sufficient for this. 

Next, the time base must be frozen by setting EncTable[n].type to 10 and prepared to read the 

trigger by setting EncTable[n].pEnc1 to Gaten[i].Chan[j].Status.a. 

If there are any extensive calculations required to prepare for the first move command, these 

should be done next in the motion program. 

Then, the trigger must be armed by setting EncTable[n].index1 to 2 or 3 for a PMAC2-style or 

PMAC3-style IC, respectively. In Power PMAC, this can be done in the motion program 

immediately before the first move command.  
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(This arming can also be done, as in Turbo PMAC, in a single statement in a PLC program, e.g.: 

if (EncTable[n].type == 10) EncTable[n].index1 = 2 ). 

The actual move command for the first move to start on the trigger must immediately follow in 

the motion program. Power PMAC will calculate the equations of motion for this move and place 

them in the execution queue, but actual move execution (interpolation) will not begin because the 

time base (Δt value) is frozen at zero. This move execution will not begin until the specified 

trigger is detected. 

Triggered Time Base Example 

This example uses triggered time base for multi-thread screw threading on a lathe with an open-

loop spindle. Coordinate system 1 has X (radial) and Z (axial) axes, and is slaved to an encoder 

on the spindle while cutting, so that axial cutter speed tracks spindle speed, resulting in constant 

pitch. 

 

Threading Application Block Diagram 

Each thread cut pass is triggered by the index pulse of the spindle encoder, permitting a precisely 

referenced start to the cut. This permits the different threads to be perfectly spaced relative to 

each other, while still permitting the fastest possible return after each thread cut (which causes a 

loss of synchronicity). 

The spindle has a quadrature encoder with 1024 lines per revolution, which provides 4096 counts 

per revolution with the standard “times-4” decode, connected into the last channel of our single 

ACC-24E2A board at the default address. The spindle has a nominal speed of 1200 rpm (20 

revolutions per second), which we will use as the real-time speed. The resulting real-time input 

frequency is 81.92 cts/msec (81.92 kHz). 

The spindle encoder channel is assigned by default to the ECT entry 4 as a Type 3 “software 1/T 

extension” conversion, and we will not change that. However, the default scale factor is 1/512, so 

we will change that to specify our selected RTIF with the command: 

EncTable[4].ScaleFactor = 1 / (512*81.92) 
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The program sequence is to cut three equally spaced threads of a pitch of 4 mm and a depth of 0.5 

mm on a cylinder of 10 mm radius from Z = 1 mm to Z = 25 mm. The programmed speed of the 

cutting move is calculated as 4 (mm/rev) * 20 (rev/sec) = 80 mm/sec.Each thread is delayed one-

third of a revolution from the previous thread by the time of the “plunge” move; at the real-time 

speed of 20 rps, this delay is 50/3 msec. The motion program code to implement this is: 

rapid X11 Z1;      // Quick move above thread start 

Coord[1].pDesTimeBase = EncTable[4].DeltaPos.a; // External time base 

Coord[1].TimeBaseSlew = 1.0;    // High slew rate 

Gate1[4].Chan[3].CaptCtrl = 1;   // Trigger on rising index 

ThreadNum = 1;      // Initialize thread count 

while (ThreadNum <= 3) {    // Loop once per thread 

  dwell 0;      // Stop pre-calculation 

  EncTable[4].Type = 10;    // Triggered time base, frozen 

  EncTable[4].pEnc1 = Gate1[4].Chan[3].Status.a; // Trigger register 

  linear;      // Linear mode move 

  tm(Coord[1].Ta + (ThreadNum – 1) * 50 / 3); // Plunge move time 

  EncTable[4].index1 = 2;    // Arm trigger (PMAC2 IC) 

  X9.5;       // Plunge move command 

  F80;       // Cutting move speed at RTIF 

  Z25;       // Cutting move command 

  tm(Coord[1].Ta);     // Retract move time 

  X11;       // Retract move command 

  dwell 0;      // Stop pre-calculation 

  Coord[1].pDesTimeBase = Coord[1].DesTimeBase.a; // Internal time base 

  rapid Z1;      // Fast return move, not sync’ed 

  ThreadNum++;      // Increment thread count 

} 

X0 Z0;       // Done, return to home 
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Hardware Position-Capture Functions 

The hardware position-capture function of the Power PMAC ASICs latches the present encoder 

position at the instant of an external trigger into a dedicated register. It is executed totally in 

hardware, without the need for software intervention (although it is set up, and later serviced, in 

software). This means that the only delays in the hardware capture are the hardware gate delays 

(negligible in any mechanical system), so this provides an incredibly accurate capture function, 

exact to the count at any speed. The accuracy is not limited by the servo update rate, as the 

position can be captured at any time during the servo cycle. 

Power PMAC has high-level “move-until-trigger” constructs that can utilize the hardware 

position-capture function to end a commanded move automatically at a precise distance from the 

captured feedback position at the trigger. The “triggered time base” slaving function uses the 

hardware-capture function on the master position data to provide a precise staring reference point 

for the following. It is also possible to create your own “low-level” algorithms to use the 

hardware capture functions for other purposes. 

Requirements for Hardware Capture 

The hardware position-capture function in a servo channel of a Power PMAC ASIC latches the 

channel’s encoder counter value upon a pre-defined change in the encoder’s index-channel input 

and/or a flag input. Note that for position data to have this hardware-capture capability, it must be 

processed through the encoder counter of an IC servo channel. The most common sensor types 

used with this capture function are digital quadrature encoders and analog sinusoidal encoders. 

Parallel-format and serial-format encoders that are read by the controller only once per servo 

cycle do not directly support this function; other techniques must be used. 

Both PMAC2-style and PMAC3-style interface ICs support the hardware position-capture 

function. Both also support capture of timer-based estimated sub-count position as well, although 

this is much easier and more direct in the PMAC3-style IC. 

Setting the Trigger Condition 

In both the PMAC2-style and PMAC3-style ICs, the saved setup element 

Gaten[i].Chan[j].CaptCtrl is the first parameter to set in specifying the trigger condition. This 

4-bit variable, with a range of 0 to 15, permits specification of whether the channel’s index 

channel, a flag input, or a combination of the two, is used in the trigger; and which edges of these 

signals will cause the trigger. 

If a flag is specified to be used, Gaten[i].Chan[j].CaptFlagSel specifies which flag is used in the 

trigger condition. This element has a range of 0 to 3, specifying the home flag, positive limit flag, 

negative limit flag, or user flag, respectively. In the PMAC2-style IC, the selected flag input must 

be connected to the same channel as the encoder to be captured. If you want to capture multiple 

positions simultaneously with a single flag input (as on a CMM probe), you must wire the 

triggering flag into inputs for each of the channels whose position you wish to capture. 

The following diagram shows the capture trigger specification circuitry for a channel of a 

PMAC2-style IC as part of the encoder processing circuitry. The same basic circuitry is present in 

each channel of a PMAC3-style IC. 
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PMAC2-Style IC Encoder Capture and Trigger Circuitry 

In the PMAC3-style IC, however, it is possible to use a flag from any channel on the IC in the 

trigger for a given channel’s position capture. Gate3[i].Chan[j].CaptFlagChan specifies the 

channel index (0 to 3) for the flag that will be used in this (i) channel’s position capture. The 

default value for each channel’s capture is the same channel’s flag. Whether the same or different 

channel’s flag set is selected, Gate3[i].Chan[j].CaptFlagSel specifies which flag in the set is 

used. 

Automatic Move-Until-Trigger Functions 

Power PMAC has three types of “move-until-trigger” functions that can use the hardware 

position-capture feature to latch the exact position at the trigger: 

1. Homing-search moves (on-line or in a motion program) 

2. On-line jog-until-trigger moves 

3. Program rapid-mode move-until-trigger 

 

All of these create basically the same type of motion. All of them end their “post-trigger” move at 

a pre-defined distance from the position at the trigger. These moves are described in detail in the 

chapter Executing Individual Motor Moves. 

Semi-Automatic Position-Capture Monitoring Function 

Power PMAC can monitor a motor for a position-capture event, automatically processing the 

captured sensor position into a motor position and storing that position for the userWhile this 

monitoring function uses the same logic and processing as the position capture for triggered 

moves such as homing search moves, unlike the triggered moves, it does not affect the motor 

motion in any way. The monitoring function should not be used while a triggered move is looking 

for the trigger, as the two functions could interfere with each other. 
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The position-capture monitoring function is activated by setting non-saved setup element 

Motor[x].CapturePos to 1. When this is done, it will monitor every real-time interrupt (RTI) for 

the specified capture trigger. When it sees the trigger event, it will automatically read the 

captured sensor position and process it into motor position, writing that calculated motor position 

at the time of the capture to status element Motor[x].CapturedPos, where it is available for 

application use. 

The motor’s position-capture method is determined by Motor[x].CaptureMode. The capture 

monitoring function can be used for all methods specified by CaptureMode. In the usual case 

where the capture event is caused by an input trigger, the trigger bit to be monitored is specified 

by Motor[x].pCaptFlag and Motor[x].CaptFlagBit. 

The input trigger is most commonly from a capture flag in one of the Servo ICs (“gates”) for the 

Power PMAC. In this case Gaten[i].Chan[j].CaptCtrl and Gaten[i].CaptFlagSel determine 

which states of which inputs contribute to the trigger event. 

For the IC hardware position capture, Motor[x].CaptPosRightShift, 

Motor[x].CaptPosLeftShift, and Motor[x].CaptPosRound specify how to convert the captured 

sensor position value to the same scaling as the servo position feedback. From this point, the 

captured sensor position can be converted to motor position just as the servo sensor position is. 

Once the captured motor position is calculated, it is stored in Motor[x].CapturedPos and the 

control element Motor[x].CapturePos is set back to 0 to indicate that the function is complete. 

An example of how to use this function is shown in the following PLC program code: 

Motor[3].CapturePos = 1;   // Activate monitoring 

while (Motor[3].CapturePos == 1) {}  // Wait for capture 

MyVariable = Motor[3].CapturedPos;  // Use motor pos at capture 

… 

 

Manual Use of the Hardware-Capture Feature 

If the automatic move-until-trigger functions do not accomplish the action you need, you can 

create your own functionality by accessing the capture registers directly. Each channel of either a 

PMAC2-style IC or PMAC3-style IC has capture status flags and a captured-position register. 

Capture Status Flags 

In both PMAC2-style ICs and PMAC3-style ICs, Gaten[i].Chan[j].PosCapt is a 2-bit status flag 

indicating whether a trigger capture has occurred for the channel. (For C users, who must access a 

full 32-bit I/O register, it is bits 18 and 19 of the full-word element Gate1[i].Chan[j].Status for a 

PMAC2-style IC, or bits 20 and 21 of the full-word element Gate3[i].Chan[j].Status for a 

PMAC3-style IC.) 

Bit 1 (value 2) of the status flag is set to 1 by the IC’s capture logic when the trigger condition 

occurs and the position is latched into the capture register(s). It is set to 0 when the captured-

position register Gaten[i].Chan[j].HomeCapt is read by the processor. The act of reading this 

register automatically resets and re-arms the capture logic. 

Bit 0 (value 1) of the status flag is set to 1 by the IC’s capture when a trigger condition occurs 

that uses the “gated index” as at least part of the trigger condition (Gaten[i].Chan[j].CaptCtrl bit 

0 = 1 to specify use of the index, and Gaten[i].Chan[j].GatedIndexSel = 1 to specify “gating” of 
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the index pulse to a single quadrature-state width). Bit 1 is always set as well when this bit is set. 

This bit is set to 0 when the captured-position register is read by the processor This bit is mainly 

used by routines that check for position loss by comparing the difference in successive capture 

values against the nominal counts per revolution. 

Level vs Edge Triggering 

PMAC2-style ICs use “level-triggered” capture logic. When the captured-position register is read, 

clearing the status flags to 0, if the specified input signal(s) are still in the specified trigger 

level(s), the logic will immediately retrigger, setting the status flag and latching the present 

position. Robust application logic should check the trigger state before starting a move that is 

expecting to see an edge.  

PMAC3-style ICs use “edge-triggered” capture logic, so after a trigger and read of the captured-

position register, the specified input signal(s) must leave the specified trigger level(s) and then re-

enter these level(s) to create another trigger. 

Captured Position Registers – PMAC2-Style ICs 

In PMAC2-style ICs, the read-only element Gate1[i].Chan[j].HomeCapt is an unsigned 24-bit 

register (for C users, a 32-bit register with real data in the high 24 bits) containing the most recent 

position latched by the trigger logic (even if not from the home flag). It is in units of “counts” as 

defined by the value of saved setup element Gate1[i].Chan[j].EncCtrl, usually specifying 4 

counts per line of the encoder, whether for digital quadrature or analog sinusoidal encoders. 

Note that the relationship of these “hardware count” units to any resulting motor position units 

depend on the values for EncTable[n].ScaleFactor and Motor[x].PosSf used in processing the 

position data for the motor. 

The value in this register is referenced to the power-up/reset position of the sensor. That is, the 

counter is set to zero at power-up/reset, and it counts from there. It does not get reset to zero if the 

motor using it for feedback is homed. If the value in the register passes 0 in the negative 

direction, or 16,777,215 (224 – 1) in the positive direction, it simply rolls over to the other end of 

its range. See the section “Handling Rollover of the IC Position Registers”, below, for 

instructions on how to deal with this effect. 

Optional Fractional Count Registers 

PMAC2-style Servo ICs optionally support the capturing of estimated fractional count values on 

a trigger, not just the whole-count values. If saved setup element Gate1[i].Chan[j].1OverTEna 

is set to 1, the IC will use its “1/T” timer circuitry to calculate an estimated fractional-count value 

every SCLK cycle. This value can then be captured along with the whole-count value on the 

selected input trigger. 

This “hardware 1/T” extension in the IC is not compatible with the standard “software 1/T” 

extension performed in the encoder conversion table for servo use. For this reason, it is most 

often used with sinusoidal encoders, as on the ACC-51E interpolator board. In this case, the servo 

uses analog arctangent extension in the ECT, but the capture (and compare) circuits use the 

“hardware 1/T” in the IC. 

When “hardware 1/T” extension is enabled for an IC channel, the contents of the two timer 

registers for the channel change (which is why “software 1/T” extension in the conversion table 

cannot be supported). The 24-bit element Gate1[i].Chan[j].TimeBetweenCts is split into 2 12-
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bit components; the high 12 bits form the (unsigned) fractional count portion for HomeCapt (for 

C users, these are the high 12 bits of a 32-bit element).  

This component can take a value of 0 to 4095, in units of 1/4096 of a count. Higher values of 

fractional count are closer to the more positive whole count, regardless of the direction of motion. 

When reading the value in the component, it is best to mask out the low 12 bits (although some 

will consider that data too insignificant to care about), then shift the data right by 24 bits to get it 

into the fractional components of a count. (First, shift 12 bits to move the data to the LSBs of the 

element, then 12 more bits to make it fractional. In C, this would be 20 + 12 = 32 bits of shift.) 

Note carefully what a “count” means here. Because we are dealing with the hardware counter in 

the Servo IC, these are “hardware counts” – one unit of the hardware counter. With the “times-4” 

decode that is almost universally used (and must be used with ACC-51E boards), there are 4 

hardware counts per line (signal cycle) of the encoder. The units of the output of an encoder 

conversion table entry processing the sinusoidal encoder for motor servo feedback depend on the 

scale factor used there (if the suggested value 1/1024 is used, it will have the same units). 

Because the act of reading the whole-count position in the HomeCapt register re-arms the trigger 

circuitry, the fractional-count position should be read first in any operation to read both and 

combine into a single position value. For example: 

MyCapturedPos = (Gate1[i].Chan[j].TimeBetweenCts & $FFF000) >> 24; 

MyCapturedPos += Gate1[i].Chan[j].HomeCapt; 

 

In C, which must work with 32-bit I/O elements, the mask value would be $FFF00000 and the 

shift-right operation would be by 32 bits. 

Captured Position Registers – PMAC3-Style ICs 

In PMAC3-style ICs, the read-only element Gate3[i].Chan[j].HomeCapt is an unsigned 32-bit 

register containing the most recent position latched by the trigger logic (even if not from the 

home flag). It is in units of 1/256 of a “count” as defined by the value of saved setup element 

Gate3[i].Chan[j].EncCtrl, usually specifying 4 counts per line of the encoder, whether for 

digital quadrature of analog sinusoidal encoders. If Gate3[i].Chan[j].TimerMode is set to the 

default value of 0, the low 8 “bits of this register contain an estimated fractional count value 

estimated by the channel’s “1/T” timer-based circuitry. Otherwise, the fractional value is always 

set to ½. The timer-based sub-count estimation can be used for this captured position register 

even if analog sub-count extension is used for servo and phase position, as with sinusoidal 

encoders (and is particularly useful in this case). 

The following diagram shows how the fractional count position is generated for the positions 

latched on the capture trigger, servo clock, and phase clock. Even if the “arctangent extension” is 

used for the fractional count extension for servo and phase data (as enabled by setting saved setup 

element Gate3[i].Chan[j].AtanEna to 1), the timer-based extension will can still be used for the 

trigger-captured position. 
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PMAC3-Style IC Encoder Capture Circuitry 

Note that the relationship of these “hardware count” units to any resulting motor position units 

depend on the values for EncTable[n].ScaleFactor and Motor[x].PosSf used in processing the 

position data for the motor. 

The value in this register is referenced to the power-up/reset position of the sensor. That is, the 

counter is set to zero at power-up/reset, and it counts from there. It does not get reset to zero if the 

motor using it for feedback is homed. If the value in the register passes 0 in the negative 

direction, or 232 - 1 in the positive direction, it simply rolls over to the other end of its range. See 

the section “Handling Rollover of the IC Position Registers”, below, for instructions on how to 

deal with this effect. 

Manually Converting to Motor and Axis Positions 

The capture registers are scaled in the raw counts of the encoders (possibly with fractional 

resolution), referenced to the position at the latest power-up/reset. Typically, the user wishes to 

work in either motor coordinates, whether still in encoder counts or scaled to engineering units 

(e.g. mm, inches, degrees), referenced to the motor “home” position, or in axis coordinates, 

virtually always in engineering units and referenced to a user-set origin. 

For simplicity, this analysis assumes that EncTable[n].ScaleFactor for the ECT entry processing 

the encoder for motor position feedback results in the entry’s output being scaled in the same 

counts as the compare circuit uses. (There can be fractional resolution from 1/T timer extension 

or analog arctangent extension, but each unit increment is a count.) If the application uses a 

different scaling, this must be accounted for in subsequent calculations. 

Handling Rollover of the IC Position Registers 

In both the PMAC2-style ICs and the PMAC3-style ICs, the position values associated with the 

capture registers have 24 bits of full count information, which means they have a range of 224 

(16,777,216) counts before they roll over. They are automatically set to 0 at power-on/reset of the 

Power PMAC. They are treated as unsigned values, so if they get outside of the range of 0 to 

+16,777,215 counts from the power-on/reset position, they will roll over. 
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If the user is accessing the captured position registers directly in an application where rollover is a 

possibility, the application code must explicitly account for the rollover, calculating the number 

of times the counter has rolled over, and in which direction, so a correction can be applied. In an 

application where the motor is scaled in encoder counts and a PMAC2-style IC is used, the 

following script algorithm (with declared user variables) can be used to account for rollover: 

EncCaptPos = Gate1[i].Chan[j].HomeCapt;  // Store capt enc pos (cts) 

Diff = Motor[x].ActPos - EncCaptPos;   // Difference from motor pos 

ModDiff = rem(Diff, 16777216);   // Modulo 2^24 

RolloverCorr = Diff - ModDiff;   // Correction of 2^24 * N 

EncCaptPos += RolloverCorr;    // Add in rollover correction 

 

The same algorithm using a PMAC3-style IC is: 

EncCaptPos = Gate3[i].Chan[j].HomeCapt / 256; // Capt enc pos (cts) 

Diff = Motor[x].ActPos - EncCaptPos;   // Difference from motor pos 

ModDiff = rem(Diff, 16777216);   // Modulo 2^24 

RolloverCorr = Diff - ModDiff;   // Correction of 2^24 * N 

EncCaptPos += RolloverCorr;    // Add in rollover correction 

 

Note that EncCaptPos and Motor[x].ActPos are in units of full counts of the encoder in this 

example. Use of other units for either will require rescaling. 

Motor Offset and Scaling 

When the motor is homed, Power PMAC stores the value of the encoder position (in motor units) 

at the motor zero position (whether this is the same as the trigger position, or different as 

specified by a non-zero value in saved setup element Motor[x].HomeOffset) is stored in status 

element Motor[x].HomePos. This value will be used as the difference between motor position 

and encoder position. 

A Power PMAC motor takes the feedback position output from its selected ECT entry and 

multiplies it by saved setup element Motor[x].PosSf to use as motor position. At the default 

value of 1.0, the motor has the same units as the ECT output – counts in our case. However, if the 

motor is scaled in engineering units, the value will be different from 1.0 – often much smaller. To 

convert from motor units to encoder units, the calculation must divide by this motor scale factor. 

The calculation combining the offset and scaling to convert from encoder units to motor units is: 

MotorCapturePos = Motor[x].PosSf * EncCapturePos – Motor[x].HomePos 

If the capture position register has fractional resolution, you will need to include that scaling in 

the calculations. For example, the PMAC3-style ICs have 8 bits of fractional resolution, so you 

will need to divide the read value in counts by 28 (256) (even if you will have a value of 0 in the 

fractional component). 

Axis Offset and Scaling 

In the most common case for an axis definition, where a motor is assigned to an individual axis 

with a scale factor and an offset, the conversion from motor to axis position is very 

straightforward, with the inverse form of the axis definition itself. Using the values stored by the 

axis definition command, the relationship can be described as: 

AxisCapturePos = (MotorCapturePos – Motor[x].CoordSf[32]) / Motor[x].CoordSf[i] 
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where Motor[x].CoordSf[i] is the axis scale factor for the axis with index “i” (e.g. 0 for A, 1 for 

B, etc.) and Motor[x].CoordSf[32] is the axis offset value. 

If the axis definitions are more complex than this, either involving multiple axes in a single 

definition, or using kinematic subroutines, then this simple relationship cannot be used, and 

application-specific algorithms must be employed. 

Processor Interrupt on Hardware Capture Event 

When the PMAC3-style IC detects a hardware-capture event, it can interrupt the Power PMAC 

processor with the highest-priority interrupt so that the processor can respond very quickly. This 

interrupt does not enhance the accuracy of the captured position, since the ASIC itself has already 

latched the position at the instant of the capture trigger. Instead, it can be useful to prepare for the 

next capture event if these can occur at a very high frequency. 

This interrupt has a higher priority than even the phase and servo interrupts that control the 

motors. This means that capture events can be processed at a higher frequency than even the 

phase and servo interrupts. However, it also means that the interrupt service routine must be kept 

very short so that phase and servo tasks can always complete in the correct update cycle. The 

intent of this routine is to update a list of positions in memory quickly from the captured position 

register and prepare the capture circuitry for the next trigger. 

Power PMAC permits the user to install a dedicated interrupt service routine written in C to react 

to capture and/or compare events from a PMAC3-style IC. Refer to the chapter Writing C 

Functions and Programs for more details. 
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Hardware Position-Compare Functions 

The hardware position-compare function of the Power PMAC ASICs creates a digital output 

signal based on the instantaneous encoder position within the ASIC. When the encoder position 

matches that of a preset “compare” register, the “EQU” compare digital output is toggled. This 

function is executed totally in hardware, without the need for software intervention (although it is 

set up in software). This means that the only delays in the hardware compare are the hardware 

gate delays (negligible in any mechanical system), so this provides an incredibly accurate 

compare function, exact to the count at any speed. The accuracy is not limited by the servo update 

rate, as the compare position can be reached at any time during the servo cycle. 

The position-compare function is implemented in software-configurable hardware registers in the 

ASICs. The software configuration gives the function its flexibility; the hardware circuitry gives 

the function its speed and accuracy. 

The individual hardware used determines where the position-compare outputs are brought out, 

and the nature of the driver circuit. Consult the Hardware Reference manual for your product. 

These outputs, typically labeled “EQUn”, can be used to driver external hardware, such as the 

triggers for scanning and measurement equipment. 

Setup on a PMAC2-Style IC 

Each encoder channel in a PMAC2-style servo IC has a position-compare circuit. Furthermore, 

the position value of the 1st channel (index j = 0) on the IC can use any or all of the 4 compare 

circuits on the IC. The action of the compare function for a channel is controlled by 3 24-bit 

position registers and 2 control elements. 

Compare Registers 

The position-compare circuitry for each channel is based on three (non-saved) setup data 

structure elements: 

 Gate1[i].Chan[j].CompA 

 Gate1[i].Chan[j].CompB 

 Gate1[i].Chan[j].CompAdd 
 

All 3 elements are unsigned 24-bit integer values, in units of counts of the encoder. Even though 

they are unsigned values, you can assign negative values to them and get the same effect as 

though they were signed registers. For example, if you wrote a value of -100 to one of the 

registers, the value would report back as 16,777,116 (224 - 100). 

The encoder counter value associated with the compare position registers is automatically set to 0 

at power-on/reset, and counts from there. It is not reset on the homing of an associated motor or 

transformation of an associated axis. The present value of the encoder counter can be read in the 

element Gate1[i].Chan[j].PhaseCapt (in units of counts). 

Each SCLK (encoder sample clock) cycle, the encoder counter value is compared to the values in 

CompA and CompB. If it matches either value, the compare output is toggled from the existing 

state. Technically, the transition occurs on the transition from “equal” to “not equal” in either 

direction. For instance, if the compare register has a value of 100, the toggling of the output 

would occur on the counter transition from 100 to 101 counts in the positive direction, or on the 

transition from 100 to 99 counts in the negative direction. 
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Note 

If the value of CompA is equal to the value of CompB in a 

PMAC2-style IC, as is the case when both have their power-on 

default value of 0, there will be a single toggle event of the 

output when the value of the encoder counter matches this 

value. 

 

Auto-Increment Function 

In addition, when the output is toggled by the count matching one of the compare registers, the 

other compare register is incremented immediately by the amount in the CompAdd element. If 

the output is toggled by movement in the positive direction, the value in CompAdd is added to 

the other compare register. If the output is toggled by movement in the negative direction, the 

value in CompAdd is subtracted from the other compare register. Of course, if the value of 

CompAdd is 0 (the power-on default value), there is no change to the value of the compare 

registers. 

If the value of CompAdd is non-zero, all of the compare edges should be at least two counts 

apart. This means that the values of CompA and CompB should not be less than two counts 

apart, and the minimum non-zero value for CompAdd should be 4. 

The “auto-increment” feature implemented by non-zero values of CompAdd makes it possible to 

create multiple evenly spaced compare pulses from a single software setup operation without any 

further software intervention. This aids in ease of use, and permits higher frequencies than is 

possible with software updating. 

Because every compare event that toggles the output causes the other compare value to be 

incremented, to start a series of pulses with auto-increment, it is necessary to set CompA and 

CompB initially to “bracket” the present position counter value. In the figure below, we want the 

first pulse to turn on at the CompA position represented by A0 and turn off at the CompB 

position represented by B1. However, when the counter reaches the A0 position and the output 

turns on, the value of CompB will be incremented automatically. This means that the initial value 

B0 that we write to CompB must be equal to B1 minus the auto-increment value. 

         Starting Position 

    B0                    A0          B1                    A1 

 

 

 

 

 

 

            Auto-Increment  

 

PMAC2 IC Position Compare with Auto-Increment Setup 



Power PMAC User’s Manual 

Synchronizing Power PMAC to External Events 782 

(If a 50% duty cycle in the compare-output waveform is acceptable, and it is known which 

direction from the starting position to the first transition will be, it is possible to set up for a 

repeated compare output of even intervals without bracketing the starting position. To do this, 

both CompA and CompB should be set to the value of the position where the first transition is 

desired. CompAdd should be set to half the value of a full on/off cycle. In this case, each time a 

compare position is reached, the output is toggled once, and both elements are automatically 

incremented to the position where the output will be toggled in the opposite direction. 

Compare Control Elements 

There are two control elements for each channel on a PMAC2-style Servo IC. Both are part of the 

full-word element Gate1[i].Chan[j].Ctrl. They are: 

Gate1[i].Chan[j].Equ1Ena: This single-bit saved setup element determines whether the compare 

circuitry for the channel uses the encoder counter for the same channel, or for the first channel 

(index j = 0) of the IC. Of course, this element for the first channel on the IC has no effect. Note 

that when multiple compare circuits have been assigned to the first channel’s counter, the 

compare output for the first channel is the logical OR of all the compare logical states of circuits 

assigned to this counter. 

Gate1[i].Chan[j].EquWrite: This two-bit (non-saved) element allows you to force the state of 

the output directly, either as an initial state for a compare sequence, or to use the output for 

general-purpose use. Bit 1 (value 2) is the output value to be forced; a “1” in this bit forces a high 

state on the output of the IC (this may be inverted by the output driver); a “0” forces a low state 

of the IC output. Bit 0 (value 1) is the “forcing” bit. Writing a value of 1 in this bit causes the 

value of bit 1 to be forced onto the IC output, and once this is done, the IC resets this bit to 0. 

Setting EquWrite to 3 forces the IC output value (which can be read in status bit 

Gate1[i].Chan[j].Equ) to 1 (high); setting EquWrite to 1 forces the IC output value to 0 (low). 

Optional Fractional Count Registers 

PMAC2-style Servo ICs optionally support the triggering of compare outputs at estimated 

fractional count values, not just at whole count values (i.e. at edges). If saved setup element 

Gate1[i].Chan[j].1OverTEna is set to 1, the IC will use its “1/T” timer circuitry to calculate an 

estimated fractional-count value every SCLK cycle. It can then compare the combined whole-

count and fractional-count value against combined compare registers. 

This “hardware 1/T” extension in the IC is not compatible with the standard “software 1/T” 

extension performed in the encoder conversion table for servo use. For this reason, it is most 

often used with sinusoidal encoders, as on the ACC-51E interpolator board. In this case, the servo 

uses analog arctangent extension in the ECT, but the compare (and capture) circuits use the 

“hardware 1/T” in the IC. 

When “hardware 1/T” extension is enabled for an IC channel, the contents of the two timer 

registers for the channel change (which is why “software 1/T” extension in the conversion table 

cannot be supported). The 24-bit element Gate1[i].Chan[j].TimeBetweenCts is split into 2 12-

bit components; the low 12 bits form the (unsigned) fractional count portion for CompA. The 24-

bit element Gate1[i].Chan[j].TimeSinceCts is also split into 2 12-bit components; the low 12 

bits form the (unsigned) fractional count portion for CompB.  

These components can take a value of 0 to 4095, in units of 1/4096 of a count. Higher values of 

fractional count are closer to the more positive whole count, regardless of the direction of motion. 
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When writing to one of these 24-bit elements, you can simply assign as value of 0 to 4095, as the 

high 12 bits are read-only and will not be affected. However, to read the value in the component, 

it is necessary to mask out the value in the high 12-bits of the 24-bit element (e.g. 

Gate1[i].Chan[j].TimeBetweenCts & $FFF). 

Note carefully what a “count” means here. Because we are dealing with the hardware counter in 

the Servo IC, these are “hardware counts” – one unit of the hardware counter. With the “times-4” 

decode that is almost universally used (and must be used with ACC-51E boards), there are 4 

hardware counts per line (signal cycle) of the encoder. The units of the output of an encoder 

conversion table entry processing the sinusoidal encoder for motor servo feedback depend on the 

scale factor used there (if the suggested value 1/1024 is used, it will have the same units). 

The auto-increment function is still available in extended-count mode, but the auto-increment 

value is limited to integer numbers of counts. 

In operation in this mode, the user writes to both the whole-count compare element and the 

fractional-count compare element. In this mode, the integer value written to the whole-count 

compare register is offset by one count from the count value at which the compare output will 

toggle. The direction of this offset is dependent on the direction of motion. If a value of n counts 

is written to the integer compare register, the compare output will toggle at n+1 counts when 

moving in the positive direction, or n-1 counts when moving in the negative direction. To 

compensate for this, simply add or subtract 1 count depending on the direction of motion. For 

instance, to get a compare edge at 743.25 counts when moving in the positive direction, write 742 

(= 743 - 1) to the integer compare register, and write 1024 (= 0.25 * 4096) to the fractional 

compare register. 

Setup on a PMAC3-Style IC 

Each encoder channel in a PMAC3-style IC has a position-compare circuit. Furthermore, the 

position value of the 1st channel (index j = 0) on the IC can use any or all of the 4 compare 

circuits on the IC. Also, the compare output for each channel can be a user-specified logical 

combination of the 4 internal compare states in the IC. The action of the compare function for a 

channel is controlled by 3 32-bit position registers and 4 control elements. 

Compare Registers 

The position-compare circuitry for each channel is based on three (non-saved) setup data 

structure elements: 

 Gate3[i].Chan[j].CompA 

 Gate3[i].Chan[j].CompB 

 Gate3[i].Chan[j].CompAdd 
 

All 3 elements are unsigned 32-bit integer values, in units of 1/4096 of a count of the encoder. 

That is, they have 20 bits of full-count information, and 12 bits of fractional-count information. 

Even though they are unsigned values, you can assign negative values to them and get the same 

effect as though they were signed registers. For example, if you wrote a value of -1000 to one of 

the registers, the value would report back as 4,294,966,296 (= 232 - 1000). 

If saved setup element Gate3[i].Chan[j].TimerMode is set to its default value of 0, “hardware 

1/T” count extension is enabled for the channel to calculate an estimated fractional-count value 

with potentially 12 bits of resolution every SCLK cycle. The IC can then compare the combined 
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whole-count and fractional-count value against the values in the compare registers, which have 20 

bits of whole-count data and 12 bits of fractional data. If TimerMode is set to a different value, 

the fractional count value is fixed at ½. 

The encoder counter value associated with the compare position registers is automatically set to 0 

at power-on/reset, and counts from there. It is not reset on the homing of an associated motor or 

transformation of an associated axis. If saved setup element Gate3[i].Chan[j].AtanEna is set to 

its default value of 0, the present value of the encoder position, latched on the most recent servo 

interrupt, which can be read in the element Gate3[i].Chan[j].ServoCapt, has 8 bits of fraction, 

so has units of 1/256 of a count. Note that the units of the ServoCapt register is different from 

that of the compare registers, and the numerical value in ServoCapt will be 16 times that of the 

compare registers for the same position (before rollover).  

Note 

In this mode, the status element Gate3[i].Chan[j].TimerA has 

the same information as ServoCapt, but with 12 bits of 

fractional count resolution, so it is in the same units as the 

compare registers. The TimerA register is therefore the easiest 

to us as representing the present position with regard to the 

compare position registers. 

 

If Gate3[i].Chan[j].AtanEna is set to 1, the present value of the encoder position, latched on the 

most recent servo interrupt, which can be read in the element Gate3[i].Chan[j].ServoCapt, has 

12 bits of fraction derived from the A/D converters through a hardware arctangent calculation in 

the ASIC. In this mode, the ServoCapt register has the same units as the compare registers. 

However, the converters cannot be sampled often enough to be useful for the compare function, 

so the sub-count data in the instantaneous position value to be checked against the compare 

positions is still timer-based (provided TimerMode is set to its default value of 0). 

Each SCLK (encoder sample clock) cycle, the encoder position value, potentially with timer-

estimated sub-count resolution, is compared to the values in CompA and CompB. If it has 

matched or passed either value, the compare output is toggled from the existing state. 

(Note that if the value of CompA is equal to the value of CompB in a PMAC3-style IC, as is the 

case when both have their power-on default value of 0, the output will not toggle when the value 

of the encoder counter matches this value.) 

Auto-Increment Function 

In addition, when the output is toggled by the count reaching the value of one of the compare 

registers, the other compare register is incremented immediately by the amount in the CompAdd 

element. If the output is toggled by movement in the positive direction, the value in CompAdd is 

added to the other compare register. If the output is toggled by movement in the negative 

direction, the value in CompAdd is subtracted from the other compare register. Of course, if the 

value of CompAdd is 0 (the power-on default value), there is no change to the value of the 

compare registers. Note that it is possible to suppress the first auto-increment operation of a 

sequence, making the initial setup easier in many applications. See the instructions for the 

EquWrite element, below. 
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DSPGATE3 Position Compare Functionality with Auto-Increment 

The “auto-increment” feature implemented by non-zero values of CompAdd makes it possible to 

create multiple evenly spaced compare pulses from a single software setup operation without any 

further software intervention. This aids in ease of use, and permits higher frequencies than is 

possible with software updating. 

In theory, compare edges can be as close as 1/128 of a count (32 LSBs of the register) apart, so 

CompAdd could be as small as 1/64 of a count (64 LSBs of the register). However, for this to 

operate correctly, the count edges must be perfectly evenly spaced in time, requiring both 

completely constant speed and perfect spacing of encoder edges (or zero-crossings) to eliminate 

any possible discontinuities in the timer-estimated sub-count data. In addition, each compare 

event must occur in a separate SCLK cycle. If sub-count spacing of edges is desired, particularly 

with auto-increment active, careful characterization is required to ensure reliable operation. 

The following diagram shows the waveform possibilities for the compare function, first with 

auto-increment disabled, then with auto-increment enabled in both the mode where the first 

increment is not inhibited, and where it is. 
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PMAC3 ASIC Position Compare Waveforms 

Compare Control Elements 

There are four control elements for each channel on a PMAC3-style IC. All are part of the full-

word element Gate3[i].Chan[j].OutCtrl. They are: 

Gate3[i].Chan[j].Equ1Ena: This single-bit saved setup element determines whether the compare 

circuitry for the channel uses the encoder counter for the same channel, or for the first channel 

(index j = 0) of the IC. The default value of 0 specifies the use of the same channel’s counter. Of 

course, this element for the first channel on the IC has no effect.  

Gate3[i].Chan[j].EquOutMask: This 4-bit saved setup element determines which channels’ 

internal position compare states are used to generate this channel’s (Chan[j]) compare output. If 

bit k (k = 0 to 3) of this element is set to 1, the internal state from Chan[k] is combined into this 

channel’s output state in a logical OR operation. This logical combination facility enables 

functions such as multi-dimensional “box” compares, or, when used with the same encoder 
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counter, “windowing” of high-frequency auto-incrementing outputs to a set zone. The default 

setting for each channel uses that channel’s internal compare state only. 

Gate3[i].Chan[j].EquOutPol: This single-bit saved setup element determines whether the 

channel’s compare output is logically inverted or not after the logical combination specified by 

Gate3[i].Chan[j].EquOutMask. A value of 0 (default) specifies no inversion; a value of 1 

specifies an inversion. Note that the output driver on some hardware may further invert the 

voltage (but generally a high level out of the IC will turn on an inverting driver such as an open 

collector). 

The internal compare state for a channel can be read in the single-bit status element 

Gate3[i].Chan[j].Equ; the compare output state for a channel can be read in the single-bit status 

element Gate3[i].Chan[j].EquOut. 

The following diagram illustrates the relationship between the channel internal compare states 

and the channel compare outputs. 
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DSPGATE3 Position Compare Internal States and Outputs 

The next diagram shows how the logical combination of the internal Equ signals, along with the 

ability to apply multiple compare circuits to the first encoder channel of the ASIC, produces a 

“windowing” function, providing high-frequency output signals only within a pre-defined range. 
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DSPGATE3 Compare Output Windowing Functionality Example 

Gate3[i].Chan[j].EquWrite: This two-bit (non-saved) element allows you to force the state of 

the channel’s internal compare state directly, either as an initial state for a compare sequence, or 

for general-purpose use. Bit 1 (value 2) is the state value to be forced. Bit 0 (value 1) is the 

“forcing” bit. Writing a value of 1 in this bit causes the value of bit 1 to be forced into the 

channel’s internal compare state, and once this is done, the IC resets this bit to 0. 

Setting EquWrite to 3 forces the channel’s internal compare state (which can be read in status bit 

Gate3[i].Chan[j].Equ) to 1; setting EquWrite to 1 forces the channel’s internal compare state to 

0. This can immediately affect one or more of the IC’s compare outputs if the compare state is 

used in the generation of those outputs. 

The act of forcing a value into the channel’s internal compare state, whether it changes the state 

or not, will disable the auto-increment operation on the first subsequent compare event for the 

channel. This permits the user to specify the first two compare positions directly in an auto-

incrementing sequence; without this, the second compare position must initially be specified one 

increment interval away from where the desired position would be (as is required with PMAC2-

style ICs – see above). Writing to either CompA or CompB (re-)enables the first auto-increment 

operation. 

In most applications, it is desirable to specify the first two compare edge positions directly, both 

in the same direction from the present position. This makes it easier to specify the sequence when 

the position is changing, and provides more flexibility as to where the sequence will start, as it 

can be more than one increment interval away. In these applications, the initial values of CompA 

and CompB should be assigned before forcing the initial value with EquWrite. 
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Handling Fractional Count Values 

In some applications, the method for handling fractional count values is important, even if the 

only desire is to eliminate the fractional component for a whole-count compare. As mentioned 

above, all of the compare position elements in both PMAC2-style and PMAC3-style ICs are 

unsigned integer registers, even if they represent fractional count values. In the Power PMAC 

script language, a command that assigns a non-integer value to an integer register automatically 

truncates the value before writing to the register. For an unsigned integer register, this always 

rounds towards 0 (not towards the nearest integer value). If you wish to round to the nearest 

integer value, you should add 0.5 to the expression to be assigned to the element, or use the rint 

(round to nearest integer) function. For example: 

Gate1[i].Chan[j].CompB = rint(MyDesiredCompPos); 

 

In a PMAC2-style IC, if you wish to retain the fractional count component for use with the 

“hardware 1/T extension”, you must explicitly split the value into whole-count and fractional-

count components so these can be written to separate registers. For example: 

MyWholeCountCompPos = int(MyDesiredCompPos); 

Gate1[i].Chan[j].CompB = MyWholeCountCompPos; 

Gate1[i].Chan[j].TimeSinceCts = (MyDesiredCompPos -  

                                 MyWholeCountCompPos) * 4096; 

 

In a PMAC3-style IC, where the compare position registers are single 32-bit elements with 12 

bits of fraction, simply multiply the desired value in encoder counts by 4096, regardless of 

whether you are using the fractional count value or not. For example: 

Gate3[i].Chan[j].CompA = MyDesiredCompPos * 4096; 

 

Converting from Motor and Axis Coordinates 

The compare registers are scaled in the raw counts of the encoders (possibly with fractional 

resolution), referenced to the position at the latest power-up/reset. Typically, the user wishes to 

work in either motor coordinates, whether still in encoder counts or scaled to engineering units 

(e.g. mm, inches, degrees), referenced to the motor “home” position, or in axis coordinates, 

virtually always in engineering units and referenced to a user-set origin. 

For simplicity, this analysis assumes that EncTable[n].ScaleFactor for the ECT entry processing 

the encoder for motor position feedback results in the entry’s output being scaled in the same 

counts as the compare circuit uses. (There can be fractional resolution from 1/T timer extension 

or analog arctangent extension, but each unit increment is a count.) If the application uses a 

different scaling, this must be accounted for in subsequent calculations. 

Handling Rollover of the IC Position Registers 

In the PMAC2-style ICs, the position values associated with the compare registers have 24 bits of 

full count information, which means they have a range of 224 (= 16,777,216) counts before they 

roll over. In the PMAC3-style ICs, they have 20 bits of full count information, and so a range of 

220 (= 1,048,576) counts before they roll over. In both cases, they are automatically set to 0 at 

power-on/reset of the Power PMAC. They are treated as unsigned values, so if they get outside of 

the range of 0 to +16,777,215, or 0 to +1,048,576, counts from the power-on/reset position, they 

will roll over. 
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When writing a value to a compare register, if there is a possibility that the total position value 

could be outside of this range, it is important to ensure that the value written is kept within this 

range. This is usually done with a “modulo” or “remainder” operation. Power PMAC’s script 

language provides two methods of implementing this functionality: the “%” modulo operator, and 

the rem remainder function. 

For example, in a PMAC2-style IC: 

Gate1[4].Chan[1].CompA = MyDesiredCompPos % 16777216; 

 

Gate1[6].Chan[3].CompB = rem(MyDesiredCompPos, 16777216); 

 

In a PMAC3-style IC, where the units of the compare position registers are in 1/4096 of a count,  

typical program commands would be: 

Gate3[0].Chan[3].CompA = (MyDesiredCompPos % 1048576) * 4096; 

 

Gate3[1].Chan[0].CompB = rem(MyDesiredCompPos, 1048576) * 4096; 

 

Motor Offset and Scaling 

When the motor is homed, Power PMAC stores the value of the encoder position (in motor units) 

at the motor zero position (whether this is the same as the trigger position, or different as 

specified by a non-zero value in saved setup element Motor[x].HomeOffset) is stored in status 

element Motor[x].HomePos. This value will be used as the difference between motor position 

and encoder position. 

A Power PMAC motor takes the feedback position output from its selected ECT entry and 

multiplies it by saved setup element Motor[x].PosSf to use as motor position. At the default 

value of 1.0, the motor has the same units as the ECT output – counts in our case. However, if the 

motor is scaled in engineering units, the value will be different from 1.0 – often much smaller. To 

convert from motor units to encoder units, the calculation must divide by this motor scale factor. 

The calculation combining the offset and scaling to convert from motor units to encoder units is: 

EncComparePos (cts) = (MotorComparePos + Motor[x].HomePos) / Motor[x].PosSf  

If the compare position register has fractional resolution, you will need to include that scaling in 

the calculations. For example, the PMAC3-style ICs have 12 bits of fractional resolution, so you 

will need to multiply the desired value in counts by 212 (= 4096) before writing to the register 

(even if you will have a value of 0 in the fractional component). 

Axis Offset and Scaling 

In the most common case for an axis definition, where a motor is assigned to an individual axis 

with a scale factor and an offset, the conversion from axis to motor position is very 

straightforward, with the same form as the axis definition itself. Using the values stored by the 

axis definition command, the relationship can be described as: 

MotorComparePos = Motor[x].CoordSf[i] * AxisComparePos + Motor[x].CoordSf[32] 

where Motor[x].CoordSf[i] is the axis scale factor for the axis with index “i” (e.g. 0 for A, 1 for 

B, etc.) and Motor[x].CoordSf[32] is the axis offset value. 
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If the axis definitions are more complex than this, either involving multiple axes in a single 

definition, or using kinematic subroutines, then this simple relationship cannot be used, and 

application-specific algorithms must be employed. 

Processor Interrupt on Hardware Compare Event 

When the PMAC3-style IC detects a hardware-compare event, it can interrupt the Power PMAC 

processor with the highest-priority interrupt so that the processor can respond very quickly. This 

interrupt does not enhance the accuracy of the compare output, since the ASIC itself has already 

toggled the compare output at the instant of the compare event. Instead, it can be useful to prepare 

for the next compare event if these can occur at a very high frequency. 

This interrupt has a higher priority than even the phase and servo interrupts that control the 

motors. This means that compare events can be processed at a higher frequency than even the 

phase and servo interrupts. However, it also means that the interrupt service routine must be kept 

very short so that phase and servo tasks can always complete in the correct update cycle. The 

intent of this routine is to update the compare registers quickly from a list of positions already in 

Power PMAC memory. 

Power PMAC permits the user to install a dedicated interrupt service routine written in C to react 

to capture and/or compare events from a PMAC3-style IC. Refer to the chapter Writing C 

Functions and Programs for more details. 
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WRITING C FUNCTIONS AND PROGRAMS IN POWER 
PMAC 

Power PMAC’s ability to accept and execute functions and programs written in the standard C 

programming language provides powerful capabilities for experienced programmers, giving them 

full access to the flexibility and sophistication of these programming languages. 

Priorities for C Programs and Routines in Power PMAC 

Power PMAC can run C routines and programs at several priority levels, permitting great 

flexibility in the functionality of user C code. 

The priorities at which user C code can be executed are: 

1. Capture/compare interrupt: Special capture/compare interrupt service routine. The 

PMAC3-style DSPGATE3 IC can generate an interrupt to the processor on a hardware 

position-capture or position-compare event on any of its four channels. This ISR can be 

invoked on this highest-priority interrupt, intended to store the latest captured position or 

to supply the next compare position extremely quickly. 

2. Phase interrupt: “User-written phase” functions: The most common use for these 

functions is to execute specialized motor phase commutation and/or current-loop-closure 

algorithms, but these can also be used for other tasks (e.g. fast I/O) at this highest priority 

level. Each motor with an active phase task can select its own phase function (built-in or 

user-written) to be called each phase interrupt. 

3. Servo interrupt: “User-written servo” functions: The most common use for these 

functions is to execute specialized motor feedback and feedforward algorithms, but these 

can also be used for other tasks (e.g. fast I/O) at this second-highest priority level. Each 

motor with an active servo task can select its own servo function (built-in or user-written) 

to be called each servo interrupt. 

4. Real-time interrupt: “Real-time C PLC” function: This function is most commonly used 

for non-motion operations that must occur at a predictably repeatable interval. This 

(single) function is called each real-time interrupt. 

5. Each background scan: “Background C PLC” functions: These functions are most 

commonly used for non-motion operations that do not need to be run as an interrupt task. 

These 32 separately enabled functions are called between each scan of a single 

background Script PLC program. 

6. General-purpose operating system: C application programs: Power PMAC can run 

independent C programs under the standard Linux operating system in the times when 

interrupt tasks are not executing and when dedicated background tasks have released the 

processor. 

Each of these priority levels is discussed in its own section, below. 
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Creating C Functions and Programs 

The Power PMAC Integrated Development Environment (IDE) program on Windows PCs 

provides a broad tool set for implementing C functions and programs. The Project Manager in the 

IDE facilitates the organization of all Script and C software, along with declarations and setup 

variables. This organization can be seen in the Project Manager’s “Solution Explorer”, shown in 

the upper-right corner of the screen shot below. 

The IDE also provides a sophisticated text editor, shown in the center of the screen capture, for 

both Script and C programs with color coding and syntax checking. Most users will write their 

code directly in this text editor, but others may simply paste in their code from another editor that 

they prefer. 

The IDE includes a built-in GNU C/C++ cross-compiler that automatically compiles your C/C++ 

code on the PC for the Power PMAC’s processor. This public-domain and open-source compiler 

is very popular and well supported in the software community. To compile your C software and 

load the resulting executable code to the Power PMAC, simply right-click on the project name in 

the Solution Explorer, then click on “Build and Download All Programs”. 
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Accessing Shared Memory and Structures 

Power PMAC provides a simple method for giving the user’s C code access to variables, data 

structures, and buffers on the Power PMAC. The vast majority of these variables, data structures, 

and buffers on the Power PMAC are placed in shared memory, where multiple tasks can access 

them. 

All files with C code that want to access anything in shared memory must start with the directive: 

#include <RtGpShm.h> 

 

This will give the software in the file access to the provided header file “RtGpShm.h”, which 

contains the definitions for the accessible variables, data structures, and buffers in shared memory 

(Shm), for both real-time (Rt) – that is, interrupt-driven – and general-purpose (Gp) – that is, 

background – routines and programs. 

For C routines automatically called by Power PMAC (user-written phase and servo, C PLCs), the 

code automatically has access to several pre-defined pointer variables, “inherited” from the 

calling software: 

pshm: pointer to the full shared-memory data structure 

piom: pointer to I/O space 

pushm: pointer to user-defined buffer memory space 

Independent background C application programs must explicitly declare a pointer variable for the 

shared-memory data structure. For example: 

volatile struct SHM *pshm; 

 

Data-structure element names are fundamentally the same as in the Script environment. Of 

course, in C, the element name must be preceded with “pshm->”. (Other names could be used in 

independent programs.) 

Keep in mind that the data structure and element names are case-sensitive in C, whereas they are 

not in the Script environment. Furthermore, in the Script environment, many elements are write-

protected so user code cannot change their values, but these elements can be read at any time. In 

the C environment, any element for which you are provided access (that is, whose name is 

provided in the RtGpShm.h header file) can be written to. However, many of the elements that 

are write-protected in the Script environment are not provided at all in the C environment. 

Accessing ASIC Hardware Registers 

Accessing the data structure elements that represent hardware registers in the Servo, MACRO, 

and I/O ASICs in a Power PMAC system from a C program is somewhat different from accessing 

software data structure elements. The ASIC data structures are referenced to a different base 

address, piom instead of pshm. In addition, the read and write accesses to I/O registers must use 

the full 32-bit data bus; explicit shifting and masking operations are required to isolate partial-

word elements in these I/O data structure (this is done automatically “behind the scenes” in the 

Script environment).  
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Accessing these registers can be done using the pre-defined data structure elements for the 

registers, or directly with pointer variables. Both methods are discussed below.  

In both cases, the variables should be declared as “volatile” so that each use of the variable results 

in a full 32-bit access of the hardware register. This keeps optimizing compilers such as GNU 

from attempting shortcuts that can have unpredictable results.  

Note that the actual read or write access to a hardware register takes approximately 100 

instruction cycles, so the number of such accesses should be carefully limited. If you want to use 

the value read from a hardware register in multiple instructions, it should first be copied into a 

software variable. If you have several operations setting different bits in the same hardware 

output register (as with discrete outputs), you should manipulate bits in an “image” variable in 

software, then copy this variable to the output register in a single operation. 

Using the Data Structures 

Most users will want to utilize the pre-defined data structures for these ASICs, yielding an 

approach that is quite similar to that in the Script environment. In this approach, structure 

variables are declared for each IC using the references in RtGpShm.h and then mapped to 

particular ICs with function calls from RtPmacApi.h. 

The variable declarations will look like: 

volatile GateArray1 *MyFirstGate1IC, *MySecondGate1IC; 

volatile GateArray2 *MyFirstGate2IC, *MySecondGate2IC; 

volatile GateArray3 *MyFirstGate3IC, *MySecondGate3IC; 

volatile GateIOStruct *MyFirstGateIoIC, *MySecondGateIoIC; 

 

These declared variables can then be assigned to particular ICs with function calls in program 

statements like the following. These must be executed every time the Power PMAC is started up. 

MyFirstGate1IC = GetGate1MemPtr(4); 

MySecondGate1IC = GetGate1MemPtr(6); 

MyFirstGate2IC = GetGate2MemPtr(0); 

MySecondGate2IC = GetGate2MemPtr(1); 

MyFirstGate3IC = GetGate3MemPtr(0); 

MySecondGate3IC = GetGate3MemPtr(1); 

MyFirstGateIoIC = GetGateIoMemPtr(0); 

MySecondGateIoIC = GetGateIoMemPtr(1); 

 

Note that functions will return a NULL value if the corresponding IC was not auto-detected by 

Power PMAC at power-on/reset. It will always be valid numerical value if the IC was detected. 

This can be used to check for the expected configuration of the system. 

Then, “whole-word” elements in these structures can be used in program statements like: 

MyFirstGate1IC->Chan[0].CompA = MyCompPos << 8; 

MyTriggerFlag = (MySecondGate1IC->Chan[3].Status & 0x80000) >> 19; 

MyFirstGate2IC->Macro[2][1] = My16BitOutBlock << 16; 

My24BitInBlock = MySecondGate2IC->Macro[6][0] >> 8; 

MyFirstGate3IC->Chan[1].AdcOffset[0] = My12BitSineOffset << 20; 

MySumOfSquares = MySecondGate3IC->Chan[2].AtanSumOfSqr & 0xffff; 

MyFirstGateIoIC->DataReg[3] = My8BitOutBlock << 8; 

My8BitInBlock = (MySecondGateIoIC->DataReg[0] & 0xff00) >> 8; 
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Using Direct Pointer Variables 

It is also possible to use pointer variables assigned directly to the ASIC registers by address, 

bypassing the structures and elements. This is a little more efficient, but also more difficult to use 

and document. 

In this case, the variable declarations will look like: 

volatile int MyFirstGate1Ptr, MySecondGate1Ptr; 

volatile int MyFirstGate2Ptr, MySecondGate2Ptr; 

volatile int MyFirstGate3Ptr, MySecondGate3Ptr; 

volatile int MyFirstGateIoPtr, MySecondGateIoPtr; 

 

volatile int *MyFirstGate1Ch0CompAPtr; 

volatile int *MySecondGate1Ch3StatusPtr; 

volatile int *MyFirstGate2MacroNode2Reg1Ptr; 

volatile int *MySecondGate2MacroNode6Reg0Ptr; 

volatile int *MyFirstGate3Ch1AdcOfs0Ptr; 

volatile int *MySecondGate3Ch2AtanSoSPtr; 

volatile int *MyFirstGateIoDataReg3Ptr; 

volatile int *MySecondGateIoDataReg0Ptr; 

 

The IC pointer variables are then assigned to the ICs using Power PMAC’s address auto-detection 

elements. This can be done with program statements like the following. For global variables, 

these must be executed once every time the Power PMAC is started up. For local variables, these 

must be executed each time the routine is entered. 

MyFirstGate1Ptr = pshm->OffsetGate1[4]; 

MySecondGate1Ptr = pshm->OffsetGate1[6]; 

MyFirstGate2Ptr = pshm->OffsetGate2[0]; 

MySecondGate2Ptr = pshm->OffsetGate2[1]; 

MyFirstGate3Ptr = pshm->OffsetGate3[0]; 

MySecondGate3Ptr = pshm->OffsetGate3[1]; 

MyFirstGateIoPtr = pshm->OffsetCardIo[0]; 

MySecondGateIoPtr = pshm->OffsetCardIo[0]; 

 

Note that the value of one of these elements will be 0 if the corresponding IC was not auto-

detected by Power PMAC at power-on/reset. It will always be non-zero if the IC was detected. 

This can be used to check for the expected configuration of the system. 

The next step is to compute the address offset of the IC register in question from the IC’s base 

address offset. To do this, the user must refer to the Software Reference Manual chapter “Power 

PMAC ASIC Register Element Addresses”. These give the offset of the register address from the 

IC base address offset. The net address of the register element can then be computed as the sum 

of piom, the IC’s base address offset, and the register’s offset from IC base. Note that for 

channel-specific registers in the Servo ICs, one must use the sum of the channel offset from the 

IC base, and the register offset from the channel base. 

The register pointer variables can be computed with program statements like the following. For 

global variables, these must be executed once every time the Power PMAC is started up. For local 

variables, these must be executed each time the routine is entered. 

MyFirstGate1Ch0CompAPtr = (int *) piom + ((MyFirstGate1Ptr+0x3C) >> 2); 

MySecondGate1Ch3StatusPtr = (int *) piom + ((MySecondGate1Ptr+0x80+0x20) >> 2); 
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MyFirstGate2MacroNode2Reg1Ptr = (int *) piom + ((MyFirstGate2Ptr+0x100+0x20+4) >> 2); 

MySecondGate2MacroNode6Reg0Ptr = (int *) piom + ((MySecondGate2Ptr+0x100+0x60) >> 2); 

MyFirstGate3Ch1AdcOfs0Ptr = (int *) piom + ((MyFirstGate3Ptr+0x80+0x60) >> 2); 

MySecondGate3Ch2AtanSoSPtr = (int *) piom + ((MySecondGate3Ptr+0x100+0xC) >> 2); 

MyFirstGateIoDataReg3Ptr = (int *) piom + ((MyFirstGateIoPtr+0xC) >> 2); 

MySecondGateIoDataReg0Ptr = (int *) piom + (MySecondGateIoPtr >> 2); 

 

The “shift-right 2” (>> 2) operation converts the “byte addressing” of the offset values into the 

“word addressing” that the program requires. This effective division by 4 reflects the fact that 

there are 4 bytes per 32-bit word. 

Now, these pointer variables can be used in program statements like: 

*MyFirstGate1Ch0CompAPtr = MyCompPos << 8; 

MyTriggerFlag = (*MySecondGate1Ch3StatusPtr & 0x80000) >> 19; 

*MyFirstGate2MacroNode2Reg1Ptr = My16BitOutBlock << 16; 

My24BitInBlock = *MySecondGate2MacroNode6Reg0Ptr >> 8; 

*MyFirstGate3Ch1AdcOfs0Ptr = My12BitSineOffset << 20; 

MySumOfSquares = *MySecondGate3Ch2AtanSoSPtr & 0xffff; 

*MyFirstGateIoDataReg3Ptr = My8BitOutBlock << 8; 

My8BitInBlock = (*MySecondGateIoDataReg0Ptr & 0xff00) >> 8; 

 

Capture/Compare Interrupt Service Routine 

Power PMAC can be configured for automatic execution of a user-written interrupt service 

routine (ISR) on an interrupt from a PMAC3-style “DSPGATE3” machine-interface ASIC, as on 

an ACC-24E3 UMAC axis-interface board or on a Power Brick control board. The ASIC has a 

built-in programmable interrupt controller (PIC) that can be configured to generate an interrupt 

on a hardware position-capture event or a hardware position-compare event (rising edge of the 

channel’s internal “EQU” bit) on any of the four channels in the ASIC. This interrupt is the 

highest-priority interrupt in the Power PMAC, higher than both the phase and servo interrupts. 

The user-written ISR permits extremely fast software response to these hardware events. This 

allows the user to set up the circuits very quickly for the next event, facilitating very high update 

rates on these events. Typically, the ISR will simply log the latest captured-position value to a 

memory array, or seed the next compare-position value from a memory array. Update rates to 60 

kHz and above can be supported with this technique. 

ASIC Interrupt Control Register 

The PIC in the DSPGATE3 ASIC has a single control/status register assigned to the data 

structure element IntCtrl. This register uses the low 24 bits of the 32-bit bus, and is organized in 

three bytes.  

The high byte (bits 16 – 23) is the “interrupt enable” byte. It allows the user to control which of 

the possible 4 capture and 4 compare events will create an interrupt. 

The middle byte (bits 8 – 15) is the “interrupt source” byte. This read-only byte permits the ISR 

to check which signal(s) have triggered the interrupt.  

The low byte (bits 0 – 7) is the “interrupt status” byte. Writing a 1 to a bit in this byte clears the 

corresponding interrupt and re-arms it for the next interrupt. When a 1 is written to any bit in this 

low byte, no changes will be made to the “interrupt source” byte, whatever is written to that byte. 
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Within each byte, the bits for each of the 8 signals that can create an interrupt are arranged as 

follows: 

 Bit 0: Chan[0].PosCapt (1st channel capture flag) 

 Bit 1: Chan[1].PosCapt (2nd channel capture flag) 

 Bit 2: Chan[2].PosCapt (3rd channel capture flag) 

 Bit 3: Chan[3].PosCapt (4th channel capture flag) 

 Bit 4: Chan[0].Equ (1st channel internal compare flag) 

 Bit 5: Chan[1].Equ (2nd channel internal compare flag) 

 Bit 6: Chan[2].Equ (3rd channel internal compare flag) 

 Bit 7: Chan[3].Equ (4th channel internal compare flag) 

 

Writing a Capture/Compare Interrupt Service Routine 

To create a capture/compare interrupt service routine in the IDE, go into the Project Manager’s 

“Solution Explorer”, expand the “C language” branch, and then expand the “Realtime Routines” 

branch. In this branch, select the file “usrcode.c” for editing. Remember that this file can contain 

multiple routines, including phase and servo algorithms. 

A capture/compare ISR must be declared in the form: 

void CaptCompISR (void) 

There can only be a single routine of this type in a Power PMAC, and it must have this exact 

name and declaration. The starting “void” indicates that no value is returned to the calling 

program (the Power PMAC real-time scheduler). The final “void” in parentheses indicates that 

the function takes no arguments. 

Note 

No floating-point variables or math can be used in a 

capture/compare ISR. This means, for example, that no Power 

PMAC P or Q-variables can be used, as those are floating-

point variables. Most commonly, arrays of integer variables in 

the user shared memory buffer are used to store or load the 

capture or compare registers (respectively) of the ASIC. 

 

Executing the Capture/Compare Interrupt Service Routine 

In order for the capture/compare ISR to execute when the processor receives an interrupt from a 

DSPGATE3 IC, the non-saved setup element UserAlgo.CaptCompIntr must be set to 1. Since 

the value of this element is not saved and its power-on default value is 0, it must be set in the 

user’s application to enable execution of the routine. 

Capture Interrupt Routine Example 

The following is an example of a routine that logs each captured position from the first channel 

into an array in the user shared memory buffer. The trigger counter and index value is stored in 

Sys.Idata[65535] in the buffer; the captured positions are stored starting in Sys.Idata[65536]. 
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The captured position value in Gate3[i].Chan[j].HomeCapt is a 32-bit integer in units of 1/256 

of a count (i.e. the low 8 bits are fractional counts, estimated by timer-based extension if 

Gate3[i].Chan[j].TimerMode is set to its default value of 0) relative to the power-on/reset 

position, the same units as that of Gate3[i].Chan[j].PhaseCapt, which holds the present position 

(latched in the most recent phase cycle). This is logged by copying it to the 32-bit integer 

Sys.Idata element in the user buffer. The act of reading the channel’s HomeCapt register 

automatically re-arms the capturing circuitry for the next trigger edge. Writing a 1 to the IntCtrl 

register clears the interrupt to prepare it for the next capture trigger on this channel. This should 

be done as early as possible in the routine. 

// Script command to set up interrupt on first channel capture 

Gate3[0].IntCtrl = $10000    // Unmask PosCapt[0] (not saved) 

// Script command to initialize trigger counter 

Sys.Idata[65535] = 0 

// Script command to enable capture/compare ISR 

UserAlgo.CaptCompIntr = 1 

 

void CaptCompISR (void) 

{ 

  volatile GateArray3 *MyFirstGate3IC;  // ASIC structure pointer 

  int *CaptCounter;     // Logs number of triggers 

  int *CaptPosStore;     // Storage pointer 

 

  MyFirstGate3IC = GetGate3MemPtr(0);   // Pointer to IC base 

  MyFirstGate3IC->IntCtrl = 1;   // Clear interrupt source 

  CaptCounter = (int *)pushm + 65535;   // Sys.Idata[65535] 

  CaptPosStore = (int *)pushm + *CaptCounter + 65536; 

  *CaptPosStore = MyFirstGate3IC->Chan[0].HomeCapt; // Store in array 

  (*CaptCounter)++;     // Increment counter 

} 

 

In the header file “usrcode.h” in the same directory, the following declarations must be made: 

void CaptCompISR (void); 

EXPORT_SYMBOL (CaptCompISR); 

 

Compare Interrupt Routine Example 

The following is an example of a routine that loads each compare position for the first channel 

from an array in user shared memory. The compare counter and index value is stored in 

Sys.Idata[65535] in the buffer; the compare positions are loaded from registers starting in 

Sys.Idata[65536]. (The first compare positions are pre-loaded in a separate routine.) 

The compare position values in Gate3[i].Chan[j].CompA and CompB are 32-bit integers in 

units of 1/4096 of a count (i.e. the low 12 bits are fractional counts, estimated by timer-based 

extension if Gate3[i].Chan[j].TimerMode is set to its default value of 0). These values are 16 

times bigger than those of Gate3[i].Chan[j].PhaseCapt, which holds the present counter position 

(latched in the most recent phase cycle) in units of 1/256 of a count (8 fractional bits).  

Gate3[i].Chan[j].CompA is set by copying the value from the presently reference 32-bit integer 

Sys.Idata element in the user buffer. In this example, the 0-to-1 transition of the channel’s 

internal compare state triggers the interrupt. The example routine sets Gate3[i].Chan[j].CompB 

to a value 10 counts more positive than that of CompA, and the compare state would be forced 

back to 0 on reaching the CompB position. Note that CompB is not really required in this 
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example, because the routine forces the compare state back to 0 in software, which could happen 

before the CompB position is reached. But setting CompB does enforce a maximum pulse width. 

After each compare interrupt (caused by the channel’s internal Equ state going to 1), the routine 

forces the Equ state back to 0 by setting bit 7 of the channel’s 32-bit OutCtrl register to 0, and 

bit 6 to 1. This is done by reading the hardware register into a software variable, masking the bits 

in question, and writing back the modified full 32-bit value. (This operation is equivalent to 

setting 2-bit element Gate3[i].Chan[j].EquWrite to 1 in the Script environment.) Note that this 

is done after setting new compare positions. Writing a 10 (hex) to the IC’s IntCtrl register clears 

the interrupt to prepare it for the next capture trigger on this channel. This should be done as early 

as possible in the routine 

// Script command to set up interrupt on first channel compare 

Gate3[0].IntCtrl = $100000   // Unmask PosComp[0] (not saved) 

// Script command to initialize compare counter 

Sys.Idata[65535] = 0 

// Script commands to initialize compare registers 

Gate3[0].Chan[0].CompA = Sys.Idata[65536] 

Gate3[0].Chan[0].CompB = Sys.Idata[65536] + 40960 // + 10 counts 

Gate3[0].Chan[0].CompAdd = 0   // Disable hardware increment 

Gate3[0].Chan[0].EquWrite = 2   // Force internal state to 0 

// Script command to enable capture/compare ISR 

UserAlgo.CaptCompIntr = 1 

 

void CaptCompISR(void) 

{ 

  volatile GateArray3 *MyGate3;  // DSPGATE3 IC structure variable 

  int *CompCounter;    // Pointer to compare event index 

  int *CompPosStore;    // Pointer to next compare position 

  int Temp; 

   

  MyGate3 = GetGate3MemPtr(0);  // Set to Gate3[0] structure 

  MyGate3->IntCtrl = 0x10;   // Clear interrupt 

  CompCounter = (int *)pushm + 65535;  // Set to Sys.Idata[65535] 

  (*CompCounter)++;    // Increment event index 

  CompPosStore = (int *)pushm + *CompCounter + 65536; // Point to next 

  MyGate3->Chan[0].CompA = *CompPosStore;   // Next CompA pos 

  MyGate3->Chan[0].CompB = *CompPosStore + 40960;  // Next CompB pos 

  Temp = MyGate3->Chan[0].OutCtrl;  // Read present word 

  Temp &= 0xFFFFFF7F;    // Clear bit 7 (EQU state to force) 

  MyGate3->Chan[0].OutCtrl = Temp | 0x40; // Set bit 6 and write 

} 

   

In the header file “usrcode.h” in the same directory, the following declarations must be made: 

void CaptCompISR (void); 

EXPORT_SYMBOL (CaptCompISR); 
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User-Written Phase Routines 

Power PMAC can execute “user-written phase” routines for any motor. At each phase interrupt, 

Power PMAC will call a phase subroutine for each motor with Motor[x].PhaseCtrl > 0. This can 

either be the built-in routine for phase-commutation and possibly current-loop closure, or a user-

written routine, individually selectable by motor. Different motors can execute different user-

written routines; multiple motors can execute the same routine. 

Most people who write user-written phase routines will use them to execute a custom algorithm 

for motor phase commutation and/or current-loop closure, providing capabilities that the built-in 

algorithm does not have. However, the routines can be used to perform actions that have nothing 

to do with these tasks. Use of these routines for very fast I/O operations is common. 

To create a user-written phase routine in the IDE, go into the Project Manager’s “Solution 

Explorer”, expand the “C language” branch, and then expand the “Realtime Routines” branch. In 

this branch, select the file “usrcode.c” for editing. Remember that this file can contain multiple 

routines, for both phase and servo. 

Declaration 

A user-written phase routine must be declared in the form: 

void MyPhaseAlg (MotorData *Mptr) 

The “void” indicates that no value is returned to the calling program. “MyPhaseAlg” is the 

user’s name for the routine. “MotorData *Mptr” must be included as an argument (even if it 

is not used in the routine). “Mptr” is a pointer to the motor data structure for the present motor. 

This permits a single routine to be used for multiple motors, providing access to all of the data 

structure elements for the calling motor. 

Automatic Preparation for Routine 

Before calling a user-written phase routine, the Power PMAC will automatically read the value in 

the register specified by Motor[x].pPhaseEnc and scale it into commutation units by multiplying 

this value by Motor[x].PhasePosSf. The resulting value is put into status element 

Motor[x].PhasePos, where the user-written algorithm can access it. 

The basic code that performs this function is: 

PresentEnc=*Mptr->pPhaseEnc;    // New rotor position 

DeltaEnc=(double)(PresentEnc-Mptr->PrevPhaseEnc); // Change 

Mptr->PrevPhaseEnc=PresentEnc;   // Store for next cycle 

PhasePos=Mptr->PhasePos+Mptr->PhasePosSf*DeltaEnc; // Scale to table 

 

This automatic preparation does not add any “slip” or other offsets to this value, and it does not 

make sure it is rolled over into the required range of (0.0 <= PhasePos < 2048.0) that would be 

required to use Power PMAC’s built-in 2048-unit sine table. 

Input/Output Access 

Unlike the user-written servo algorithm, a user-written phase algorithm that is actually 

performing motor functions must write its resulting command values directly to the output 
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registers. To use the motor’s command output addressing element for this (which is 

recommended, but not required), the routine would have code something like: 

Mptr->pDac[0]=PhaseACmd; 

Mptr->pDac[1]=PhaseBCmd; 

Mptr->pDac[2]=PhaseCCmd; 

 

Basic Example Routine 

The following code implements a very simple sinusoidal commutation routine using existing 

setup elements: 

void user_phase(struct MotorData *Mptr) 

{ 

  int TableOfs; 

  float *SineTable; 

  double PhaseAng, IqVolts, IaVolts, IbVolts; 

   

  PhaseAng=Mptr->PhasePos;    // Copy into local var 

  if (PhaseAng<0.0) PhaseAng+=2048.0;   // Negative rollover? 

  else if (PhaseAng>=2048.0) PhaseAng-=2048.0; // Positive rollover? 

  TableOfs=(int)PhaseAng;    // Table entry 

  Mptr->PhasePos=PhaseAng;    // Store for next cycle 

  IqVolts=Mptr->IqCmd;     // Get torque command 

  SineTable=Mptr->pVoltSineTable;   // Start addr of lookup table 

  IaVolts=IqVolts*SineTable[(TableOfs+512)&2047]; 

  IbVolts=IqVolts*SineTable[(TableOfs+Mptr->PhaseOffset+512)&2047]; 

  Mptr->pDac[0]=((int)(IaVolts*65536));  // Output Phase A 

  Mptr->pDac[1]=((int)(IbVolts*65536));  // Output Phase B 

} 

 

Note 

Do not embed your user code inside an indefinite loop in the 

routine. This would probably get the Power PMAC “stuck” 

inside the routine, leading to a failure of other tasks to execute 

at the needed times, and could even lead to a watchdog-timer 

trip. Repeated execution of this routine will happen because 

the built-in Power PMAC sequencing software calls this 

routine every interrupt. 

 

Compiling and Downloading 

In the header file “usrcode.h” in the same directory, the following declarations must be made: 

void MyPhaseAlg (struct MotorData *Mptr); 

EXPORT_SYMBOL (MyPhaseAlg); 

 

To compile and download this code to the Power PMAC, right-click on the project name in the 

Solution Explorer, then select “Build and Download All Programs”. 

To instruct the Power PMAC to use a compiled and downloaded user-written phase routine, right-

click on “Realtime Routines” in the “C Language” branch. Select “User Servo Setup” to get the 

window permitting you to assign user routines to motors. If you have not added your routine’s 
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name to the list of selectable routines, click on “Add New Function”, type your routine name into 

the dialog box, and click on “Apply”.  

Then to select this routine for Motor “x”, click on the down arrow associated with “User Phasex” 

and select the routine name from the pick list. When you have done this for all of the motors you 

desire, click on “Apply” for the large window. 

 

IDE User Phase and Servo Selection Control 

User-Written Servo Routines 

Power PMAC can execute “user-written servo” routines for any motor. At each servo interrupt, 

Power PMAC will call a servo subroutine for each motor with Motor[x].ServoCtrl > 0. This can 

either be the built-in routine for feedback and feedforward, or a user-written routine, individually 

selectable by motor. Different motors can execute different user-written routines; multiple motors 

can execute the same routine. 

Most people who write user-written servo routines will use them to execute a custom algorithm 

for motor feedback and feedforward, providing capabilities that the built-in algorithm does not 

have. However, the routines can be used to perform actions that have nothing to do with these 

tasks. Use of these routines for fast I/O operations is common. 
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To create a user-written servo routine in the IDE, go into the Project Manager’s “Solution 

Explorer”, expand the “C language” branch, and then expand the “Realtime Routines” branch. In 

this branch, select the file “usrcode.c” for editing. Remember that this file can contain multiple 

routines, for both phase and servo. 
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Declaration 

A user-written servo routine must be declared in the form: 

double MyServoAlg (MotorData *Mptr) 

The “double” indicates that a double-precision floating-point value (the servo output command) 

is returned to the calling program. “MyServoAlg” is the user’s name for the routine. 

“MotorData *Mptr” must be included as an argument (even if it is not used in the routine). 

“Mptr” is a pointer to the motor data structure for the present motor. This permits a single 

routine to be used for multiple motors, providing access to all of the data structure elements for 

the calling motor. 

Automatic Preparation of Input Values 

Power PMAC automatically computes the values of several commonly used quantities before 

calling a user-written servo algorithm each cycle. 

The following automatically computed elements are of particular use. All are “double” format 

floating-point values. 

Motor[x].DesPos Net desired position (trajectory, master, compensation) 

Motor[x].DesVel Net desired velocity (DesPosnew – DesPosold) 

Motor[x].ActPos Outer loop net actual position (measured, compensation, backlash) 

Motor[x].ActPos2 Inner loop net actual position (measured, compensation) 

Motor[x].PosError Following error (DesPos – ActPos) 

Motor[x].ActVel Inner loop net actual velocity (ActPos2new – ActPos2old) 

 

Automatic Processing of Returned Value 

Because this routine is returning its resulting value to the calling program, it does not need to 

write the result to an output register, or to the appropriate input register for a commutation 

algorithm. Power PMAC firmware will handle that task. 

Basic Example Routine 

The following code implements a very simple PID servo routine using existing setup elements: 

double user_pid_ctrl(struct MotorData *Mptr) 

{ 

  double ctrl_out; 

   

  if (Mptr->ClosedLoop) { 

    // Compute PD terms 

    ctrl_out=Mptr->Servo.Kp*Mptr->PosError-Mptr->Servo.Kvfb*Mptr->ActVel; 

    Mptr->Servo.Integrator+=Mptr->PosError*Mptr->Servo.Ki; // I term 

    ctrl_out+=Mptr->Servo.Integrator;    // Combine 

    return ctrl_out; 

  } 

  else { 

    Mptr->Servo.Integrator=0.0; 

    return 0.0; 

} 
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Note 

Do not embed your user code inside an indefinite loop in the 

routine. This would probably get the Power PMAC “stuck” 

inside the routine, leading to a failure of other tasks to execute 

at the needed times, and could even lead to a watchdog-timer 

trip. Repeated execution of this routine will happen because 

the built-in Power PMAC sequencing software calls this 

routine every interrupt. 

 

Multi-Motor Routines 

It is possible to write servo routines for coupled control of multiple motors. In fact, this is one of 

the key reasons that custom servo algorithms are employed. (Power PMAC has one built-in 

multi-motor servo algorithm – the two-motor cross-coupled gantry algorithm.) 

The motors affected by this coupled algorithm must be consecutively numbered, and the servo 

algorithm actually executed by the lowest-numbered of these motors. The saved setup element 

Motor[x].ExtraMotors for this motor must be set to the additional number of motors controlled 

by this algorithm. For example, if Motors 3 through 7 are controlled in a single servo algorithm, 

this algorithm will be executed by Motor 3 and Motor[3].ExtraMotors would be set to 4. Motors 

4 through 7 would then not execute any servo algorithms. 

The Mptr structure passed to the custom algorithm refers to the structure of this lowest numbered 

motor. There are a couple of methods of accessing the structure(s) of the other motor(s) 

controlled. 

In “relative addressing”, you can declare new structure variables like Mptr2 and Mptr3 and 

reference them in the routine with: 

Mptr2 = Mptr + 1; 

Mptr3 = Mptr + 2; 

 

In “absolute addressing”, you can simply use the full structure name for these motors, such as: 

pshm->Motor[4].ActPos… 

pshm->Motor[5].ActPos… 

 

The servo command for the motor actually executing the routine is the returned value. For the 

other motors, the routine should write directly to the ServoOut element (a “double” variable) for 

that motor, such as: 

Mptr2->ServoOut 

or 

pshm->Motor[4].ServoOut 
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Compiling and Downloading 

In the header file “usrcode.h” in the same directory, the following declarations must be made: 

double MyServoAlg (struct MotorData *Mptr); 

EXPORT_SYMBOL (MyServoAlg); 

 

To compile and download this code to the Power PMAC, right-click on the project name in the 

Solution Explorer, then select “Build and Download All Programs”. 

To instruct the Power PMAC to use a compiled and downloaded user-written phase routine, right-

click on “Realtime Routines” in the “C Language” branch. Select “User Servo Setup” to get the 

window permitting you to assign user routines to motors. If you have not added your routine’s 

name to the list of selectable routines, click on “Add New Function”, type your routine name into 

the dialog box, and click on “Apply”.  

Then to select this routine for Motor “x”, click on the down arrow associated with “User Servox” 

and select the routine name from the pick list. When you have done this for all of the motors you 

desire, click on “Apply” for the large window. 

Real-Time Interrupt C PLC Routine 

At each real-time interrupt (RTI), Power PMAC will call a special C PLC routine if the function 

is enabled. This occurs after any motion-program or motion-segment calculations started in the 

RTI have finished, and after a scan of the script PLC 0, if one exists and is active. A real-time 

interrupt occurs every (Sys.RtIntPeriod + 1) servo interrupts, but if the calculations from the 

previous RTI leave no time for the new cycle’s calculations to start, the cycle will be skipped. 

To create an RTI C PLC in the IDE, go into the Project Manager’s “Solution Explorer”, expand 

the “C language” branch, and then expand the “CPLCs” branch, followed by the “rticplc” branch. 

In this branch, select the file “rtiplcc.c” for editing. 

This routine must be named as “realtimeinterrupt_plcc” and must be declared as: 

void realtimeinterrupt_plcc() 

The “void” indicates that no value is returned to the calling program. Unlike user-written phase 

and servo algorithms, the user cannot select his own name for this routine. 

The following code implements a simple example of writing to banks of discrete outputs in 

alternating on/off patterns. 

#include <RtGpShm.h> 

#include <stdio.h> 

#include <dlfcn.h> 

 

#define IoCard0Out0_7 *(piom + 0xA0000C/4) 

#define IoCard0Out8_15 *(piom + 0xA00010/4) 

#define IoCard0Out16_23 *(piom + 0xA00014/4) 

#define OutputData(x) (x << 8) 

 

void realtimeinterrupt_plcc()   // RTI C PLC function 

{ 

  static int i = 0; 
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  if (i++>1000) {    // > 1 sec from cycle start 

 IoCard0Out0_7=OutputData(0xAA); // Odd-numbered outputs on 

 IoCard0Out8_15=OutputData(0xAA); 

 IoCard0Out16_23=OutputData(0xAA); 

 if (i>2000) i=0;   // Reset to start of cycle 

  } 

  else {     // < 1 sec from cycle start 

 IoCard0Out0_7=OutputData(0x55); // Even-numbered outputs on 

 IoCard0Out8_15=OutputData(0x55); 

 IoCard0Out16_23=OutputData(0x55); 

  } 

} 

 

Note 

Do not embed your user code inside an indefinite loop in the 

routine. This would probably get the Power PMAC “stuck” 

inside the routine, leading to a failure of other tasks to execute 

at the needed times, and could even lead to a watchdog-timer 

trip. Repeated execution of this routine will happen because 

the built-in Power PMAC sequencing software calls this 

routine every interrupt. 

 

To compile and download this code to the Power PMAC, right-click on the project name in the 

Solution Explorer, then select “Build and Download All Programs”. 

To enable the execution of this routine, simply set the data structure element UserAlgo.RtiCplc 

to 1. To disable the execution, set UserAlgo.RtiCplc to 0. 

Background C PLC Routines 

After each scan of each enabled background Script PLC program, Power PMAC will call every 

active background CPLC program that is present as a function. Power PMAC can have up to 32 

separate background CPLC programs, with the enabling individually controlled. These 

background C PLC programs are equivalent in scheduling the background compiled (script) PLC 

programs of the Turbo PMAC. 

To create a background C PLC in the IDE, go into the Project Manager’s “Solution Explorer”, 

expand the “C language” branch, and right click on the “CPLCs” folder. In the window that pops 

up select a C PLC number (0 to 31) from the pick list. The Solution explorer will create a sub-

folder “bgcplcnn”, and a file in that folder “bgplcnn.c”, where nn is the selected C PLC number 

(always two digits). Select this file for editing. 

The routine for all background CPLC programs must be named as “user_plcc” and must be 

declared as: 

void user_plcc() 

The “void” indicates that no value is returned to the calling program. Unlike user-written phase 

and servo algorithms, the user cannot select his own name for this routine. Note that the routine 

itself contains no information as to what number the CPLC has – that is determined by the file 

and folder names. 
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Note 

Do not embed your user code inside an indefinite loop in the 

routine. This would probably get the Power PMAC “stuck” 

inside the routine, leading to a failure of other tasks to execute 

at the needed times, and could even lead to a watchdog-timer 

trip. Repeated execution of this routine will happen because 

the built-in Power PMAC sequencing software calls this 

routine every background cycle. 

 

To compile and download this code to the Power PMAC, right-click on the project name in the 

Solution Explorer, then select “Build and Download All Programs”. 

To enable the execution of routine C PLC n, simply set the data structure element 

UserAlgo.BgCplc[n] to 1. To disable the execution, set UserAlgo.BgCplc[n] to 0. 

The next background Script PLC program will not run until all of the enabled background C PLC 

programs have finished executing a scan, or 100 microseconds after the start of execution of these 

C PLC programs, whichever is less. 

CfromScript Function 

CfromScript is a C-language function that the user can call from Power PMAC Script 

programs. This function permits users to access their C subroutines directly from the PMAC 

Script language. It is expected to be used primarily for kinematics calculations, but is flexible 

enough that the user can use it for many different purposes. This function is useful especially for 

kinematics calculations (which are known to be generally quite computationally intensive) 

because this C function executes calculations much faster than if the calculations had been written 

in the Script-based subroutines directly. 

Power PMAC can have only a single CfromScript function. However, it is possible using passed 

arguments and internal logic to call this single function from multiple Script programs, even at 

overlapping times. Techniques to do this are explained below. 

Declaring CfromScript() 

The CfromScript function must be written in the “usrcode.c” file in the “Realtime Routines” 

folder of the Project Manager. The declaration must be of the form: 

double CfromScript(double arg1, double arg2, double arg3, double arg4, double arg5,double 

arg6, double arg7, LocalData *Ldata) 

 

While the user can give whatever names are desired to the eight arguments, there must be seven 

arguments of type “double”, and one final argument of the structure type “LocalData”. 

There must be exact matching prototype and symbol exportation declarations in the “usrcode.h” 

file in the same folder: 

double CfromScript(double arg1,double arg2,double arg3,double arg4,double arg5,double 

arg6,double arg7,LocalData *Ldata); 

EXPORT_SYMBOL(CfromScript); 
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Calling CfromScript from Script Programs 

CfromScript() is usually called from a Script routine that executes in the real-time interrupt, 

such as a foreground PLC program (the number of which is set by Sys.MaxRtPlc), kinematics 

subroutines, or motion programs. However, the function can be called from background routines 

if the user first sets non-saved setup element UserAlgo.CFunc to 1. If the user plans to call 

CfromScript() from a background routine, it is recommended to set UserAlgo.CFunc = 1 in 

the “global definitions.pmh” file under the “PMAC Script Language” “Global Includes” folder 

of the Project Manager, or to set it to 1 in pp.startup.txt. 

The calling command in the Script program is of the form: 

MyReturnVar = CfromScript(arg1, arg2, arg3, arg4, arg5, arg6, arg7); 

 

The calling program must pass to CfromScript() all seven arguments of type double, even 

if CfromScript() does not use all of the arguments internally. If CfromScript() does not 

use one of the arguments, it is recommmended just to pass a zero to CfromScript() for that 

argument. All general-purpose user variables in Power PMAC (P, Q, L, R, C, D) are of type 

double. Some data structure elements are of type double, but the value in an element of a 

different type can be converted to double simply by copying the value into a general-purpose 

variable. 

Power PMAC automatically passes to CfromScript() into the 8th argument a pointer to the 

local data structure of the program from which the user is calling the function. The user should 

not include this argument explicitly in the function call. 

The calling program must store the result of CfromScript() in a variable (R, L, C, D, P, Q, or 

M variable) even if the result is not needed. Otherwise, the command will be flagged with a 

syntax error. 

Note that the execution of the calling program will halt until the CfromScript() function call 

has completed – there is no need to write additional code to force PMAC to wait for 

CfromScript() to finish. 

Basic calling example 

This example simply calls CfromScript() from foreground PLC 0, passing zeros to all 

arguments of the function, and stores the result in P1000. 

open plc 0 

P1000 = CfromScript(0,0,0,0,0,0,0); 

close 

 

Using Local Data Variables within CfromScript 

If the user desires to use the local variables from within CfromScript(), he can pass the local 

data pointer usually called “Ldata” to built-in C functions that return pointers to the R, L, C, and 

D variable arrays in the LocalData space. These functions are GetRVarPtr(), 

GetLVarPtr(), GetCVarPtr(), and GetDVarPtr(), for R, L, C, and D local variables, 

respectively. See the following example for the syntax. 
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double CfromScript(double arg1, double arg2, double arg3 double arg4, double arg5, double 

arg6, double arg7, LocalData *Ldata) 

{ 

  double *R; 

  double *L; 

  double *C; 

  double *D; 

 

  R = GetRVarPtr(Ldata);  //Ldata->L + Ldata->Lindex + Ldata->Lsize; 

  L = GetLVarPtr(Ldata);  //Ldata->L + Ldata->Lindex; 

  C = GetCVarPtr(Ldata);  //Ldata->L + Ldata->Lindex + MAX_MOTORS; 

  D = GetDVarPtr(Ldata);  // Ldata->D; 

// User places additional calculations here 

return 0.0;     // Can change this to return anything else if needed 

} 

 

Once these pointers have been assigned, R, L, C, and D variables can be used with array notation. 

For example, R[0] will be equivalent to accessing R0 in the script program that calls 

CfromScript(), L[0] will be just like L0, C[0] like C0, and D[0] like D0, R[1] equivalent to 

R1, and so on for other indices. 

In the kinematics routines, the variables L[n] are the Motor n positions – inputs for the forward 

kinematics, and results for the inverse kinematics. The variables C[n] are the Axis α positions – 

inputs for the inverse kinematics and results for the forward kinematics. 

Calling CfromScript from Multiple Script Programs 

If the user desires to use CfromScript() for many different purposes, he or she can design 

CfromScript() to be a state-machine-type handler function. Then, the calling program simply 

needs to pass to CfromScript() the state number into one of its seven available arguments, 

and possibly any other useful data, such as the coordinate system number of the calling program. 

CfromScript() will then call the appropriate subsequent C function based on the state 

information it receives. 

Example: Using CfromScript() as a Kinematics Handler 

This example uses CfromScript() in the execution of both forward and inverse kinematics 

from multiple coordinate systems. It uses the arguments passed to it from the calling Script 

kinematic routines to decide what action to take. In this case, it is fundamentally deciding which 

C subroutine to call, and the real calculations are done inside these further subroutines. The 

following code is placed in usrcode.c: 

// #defines – For determining the states and kinematics types to use 

#define Forward_Kinematics_State 0 

#define Inverse_Kinematics_State 1 

#define KinematicsType1 1 

#define KinematicsType2 2 

 

// Prototypes 

int ForwardKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata); 

int InverseKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata); 

int ForwardKinematicsSubroutine1(int CS_Number,LocalData *Ldata); 

int InverseKinematicsSubroutine1(int CS_Number,LocalData *Ldata); 

int ForwardKinematicsSubroutine2(int CS_Number,LocalData *Ldata); 

int InverseKinematicsSubroutine2(int CS_Number,LocalData *Ldata); 
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double CfromScript(double CS_Number_double,double State_double,double 

KinematicsType_double,double arg4,double arg5,double arg6,double arg7,LocalData *Ldata) 

{ 

// CfromScript() functions as a State Machine handler. 

// Inputs: 

// CS_Number_double: Coordinate System number of the coordinate system  

// program that called this instance of CfromScript(). 

// State_double: State number.  Pass in the state corresponding to  

// what the user wants CfromScript() to do; e.g., design CfromScript() such  

// that Forward_Kinematics_State ( = 0) will make CfromScript() run the  

// forward kinematics routine. 

// KinematicsType_double: Type of kinematics to use. Only need to use this  

// argument if using kinematics; otherwise, set to 0.   

// arg4 - arg7: unused in this example.   

// Output: ErrCode – error code of function calls.  

// Will return -11 if invalid state entered. 

 

int CS_Number = (int)CS_Number_double; 

intState = (int)State_double; 

int KinematicsType = (int)KinematicsType_double; 

int ErrCode = 0; 

 

switch(State) 

  { 

 case Forward_Kinematics_State: 

 {   

  ErrCode = ForwardKinematics(CS_Number,KinematicsType,Ldata); 

  break; 

 } 

 case Inverse_Kinematics_State: 

 { 

  ErrCode = InverseKinematics(CS_Number,KinematicsType,Ldata); 

  break; 

 } 

 default: 

 { 

  ErrCode = -11; // InvalidState Entered 

  break; 

 } 

  } 

return (double)ErrCode;   

} 

 

int ForwardKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata) 

{ 

 int ErrCode = 0; 

 switch(Kinematics_Type) 

 { 

  case KinematicsType1: 

   ErrCode = ForwardKinematicsSubroutine1(CS_Number,Ldata); 

   break; 

  case KinematicsType2: 

   ErrCode = ForwardKinematicsSubroutine2(CS_Number,Ldata); 

   break; 

 

  // Can implement other types of forward kinematics handling  

  // here by adding other case statements for other  

  // Kinematics_Type values 

  default: 

   ErrCode = -1; // Invalid Kinematics Type Entered 

   break; 

 } 
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 return ErrCode; 

} 

 

 

int InverseKinematics(int CS_Number,int Kinematics_Type, LocalData *Ldata) 

{ 

 int ErrCode = 0; 

 switch(Kinematics_Type) 

 { 

  case KinematicsType1: 

   ErrCode = InverseKinematicsSubroutine1(CS_Number,Ldata); 

   break; 

  case KinematicsType2: 

   ErrCode = InverseKinematicsSubroutine2(CS_Number,Ldata); 

   break; 

 

  // Can implement other types of inverse kinematics handling  

  // here by adding other case statements for other  

  // Kinematics_Type values 

  default: 

   ErrCode = -1; // Invalid Kinematics Type Entered 

   break; 

 } 

 return ErrCode; 

} 

 

int ForwardKinematicsSubroutine1(int CS_Number,LocalData *Ldata) 

{ 

 int ErrCode = 0; 

 double *R; 

 double *L; 

 double *C; 

 double *D; 

 

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize; 

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex; 

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS; 

 D = GetDVarPtr(Ldata);// Ldata->D; 

 

//** Put forward kinematics calculations here **// 

 return ErrCode; 

} 

 

int InverseKinematicsSubroutine1(int CS_Number,LocalData *Ldata) 

{ 

 int ErrCode = 0; 

 double *R; 

 double *L; 

 double *C; 

 double *D; 

 

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize; 

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex; 

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS; 

 D = GetDVarPtr(Ldata);// Ldata->D; 

//** Put inverse kinematics calculations here **// 

 return ErrCode; 

} 

 

int ForwardKinematicsSubroutine2(int CS_Number,LocalData *Ldata) 

{ 

 int ErrCode = 0; 
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 double *R; 

 double *L; 

 double *C; 

 double *D; 

 

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize; 

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex; 

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS; 

 D = GetDVarPtr(Ldata);// Ldata->D; 

//** Put forward kinematics calculations here **// 

 return ErrCode; 

} 

 

int InverseKinematicsSubroutine2(int CS_Number,LocalData *Ldata) 

{ 

 int ErrCode = 0; 

 double *R; 

 double *L; 

 double *C; 

 double *D; 

 

 R = GetRVarPtr(Ldata);//Ldata->L + Ldata->Lindex + Ldata->Lsize; 

 L = GetLVarPtr(Ldata);//Ldata->L + Ldata->Lindex; 

 C = GetCVarPtr(Ldata);//Ldata->L + Ldata->Lindex + MAX_MOTORS; 

 D = GetDVarPtr(Ldata);// Ldata->D; 

 

//** Put inverse kinematics calculations here **// 

 return ErrCode; 

} 

 

// Add any to usrcode.c other functions one might need for other  

// kinematics calculations or anything else CfromScript() might need 

// to call 

 

This CfromScript() function can then be called from Script kinematics routines such as 

the following: 

// Define the same state values as defined in usrcode.c 

#define Forward_Kinematics_State 0 

#define Inverse_Kinematics_State 1 

#define KinematicsType1 1 

#define KinematicsType2 2 

#define CS_Number_1 1 

#define CS_Number_2 2 

 

// Define storage flags for the error code returns 

csglobal ForwardKin1ErrCode,ForwardKin2ErrCode,InvKin1ErrCode,InvKin2ErrCode; 

 

// Forward Kinematics Buffers 

open forward (1)      // Put Coordinate System number inside "(cs)" 

ForwardKin1ErrCode = 

CfromScript(CS_Number_1,Forward_Kinematics_State,KinematicsType1,0,0,0,0); 

close 

 

open forward (2)      // Put Coordinate System number inside "(cs)" 

ForwardKin2ErrCode = 

CfromScript(CS_Number_2,Forward_Kinematics_State,KinematicsType2,0,0,0,0); 

close 

 

// Inverse Kinematics Buffers 

open inverse (1)      // Put Coordinate System number inside "(cs)" 

InvKin1ErrCode = 

CfromScript(CS_Number_1,Inverse_Kinematics_State,KinematicsType1,0,0,0,0); 

close 
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open inverse (2)      // Put Coordinate System number inside "(cs)" 

InvKin2ErrCode = 

CfromScript(CS_Number_2,Inverse_Kinematics_State,KinematicsType2,0,0,0,0); 

close 

 

Note 

One can make the C subfunctions be of type int with internal 

int ErrCode variables within each function and then pass 

theErrCodeof each functionall the way back up to 

CfromScript() and back to the calling function. This is 

one way the user can track error reporting from within 

CfromScript(); i.e., from the script program that called 

CfromScript(), the user can read the error code that 

CfromScript() returns to determine what happened. To 

use a unique error code for each type of error is best when 

using this technique. 

 

Background C Application Programs 

Multiple independent C-language “application” programs can be downloaded into the Power 

PMAC and executed under the “general purpose” Linux operating system. These are separate 

programs, and not functions as all of the other types of routines mentioned above are. They are 

not called by the Power PMAC’s built-in scheduling software, but executed directly under the 

Linux operating system. 

These programs can be completely independent of the Power PMAC control tasks, or they can 

interact with these control tasks through the Power PMAC shared-memory structures. 

Each program must be compiled with the #include <RtGpShm.h> directive to access the 

pre-defined header file with the structure definitions. Since these are independent programs, they 

must explicitly declare variables to access the structures, as noted above. 
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POWER PMAC EXAMPLE SCRIPT PROGRAMS 

This chapter provides some simple Power PMAC Script programs. Many users will want to try 

these examples to get started in understanding how these programs work 

Simple Motion Programs 

This section shows some very simple motion programs with their associated setup in Power 

PMAC. Each example in this section includes the on-line commands necessary to set up the 

coordinate system to run the motion program immediately following it. These examples assume 

that any motors utilized in the example have already been set up for proper operation. 

Example 1: Basic Moves 

This first example shows a simple move of an axis out and back. 

// A typical coordinate system setup for this program is like: 

// &1     // Address C.S. 1 

// #1->1000X    // Motor 1 assigned to X-axis, 1000 counts/unit 

 

// Motion program code 

open prog 1    // Open buffer for entry 

linear;     // Linear interpolation move mode 

abs;     // Absolute move mode 

ta500;     // 1/2-second accel/decel time 

ts0;     // No S-curve accel/decel time 

f5;     // Speed of 5 axis units per time unit 

X10;     // Move X-axis to position of 10 units 

dwell500;    // Sit here for 1/2-second 

X0;     // Move X-axis to position of 0 units 

dwell500;    // Sit here for 1/2-second 

close     // Close buffer, end program entry 

 

// To run this program with C.S. 1, issue these on-line commands: 

// &1 b1r 

 

Note several things about this simple example: 

 The motion program does not belong to any specific coordinate system, nor does it 

directly specify which motor(s) it will move. One or more coordinate systems can point 

to the program and run it (even simultaneously!). Which motor or motors move is 

dependent on which have already been assigned to the X-axis in the executing coordinate 

system. 

 The program explicitly declares all of the factors affecting the moves.  It is possible to 

rely on defaults for much of this, but it is better where possible to declare explicitly, both 

because the defaults can change, and because it makes it easier to understand what the 

program is intended to do. Note that these factors are modal; they do not have to be 

declared for each move. 

 The setup assigns a motor to an axis with 1000 motor units (usually encoder counts) per 

axis unit. Therefore, each axis unit commanded corresponds to 1000 units of the assigned 

motor. 



Power PMAC User’s Manual 

 

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 817 

The following diagram shows the commanded trajectory generated by execution of this program, 

gathered from Power PMAC’s actual execution of the program: 

 

 

Example 2: A More Complex Move Sequence 

This example introduces scaling of axes in user units, incremental end-point specification, time-

specification of moves, S-curve acceleration with different acceleration and deceleration times, 

looping logic, variable use, and simple arithmetic. 

// A typical coordinate system setup for this program is like: 

// &1     // Address C.S. 1 

// #2->1000Y    // Motor 2 assigned to Y-axis, 1000 counts/unit 

 

// Motion program code 

open prog 2 

 

local LoopCount;   // Loop counter index 

 

linear;     // Linear interpolation move mode 

inc;     // Incremental move mode 

ta500;     // 1/2-second accel time 

td1000;     // 1-second decel time 

ts250;     // 1/4-second S-curve accel/decel time 

tm2000;     // 2-second move time 

Gather.Enable = 2;   // Start data gathering 

LoopCount = 1;    // Initialize counter index 

while (LoopCount <= 10) {  // Loop until false (10 times) 

  Y10;     // Move distance of 10 units positive 

  dwell500;    // Stay here for 1/2-second 

  Y-10;     // Move distance of 10 units negative 

  dwell500;    // Stay here for 1/2-second 

  if (LoopCount == 2) Gather.Enable = 0; // Stop gathering on 2nd loop 

  LoopCount++;    // Increment loop counter 

}     // End of while loop 
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close 

   

// To run this program with C.S. 1, issue the following on-line commands: 

// &1 b2r 

 

The following diagram shows the commanded trajectory generated by the first two loops of 

execution of this program, gathered from Power PMAC’s actual execution of the program: 

 

 

 

Example 3: Moves with Looping, Branching, and I/O 

This next example program introduces conditional branching, calculated move distances, waiting 

for settling “in position”, and I/O addressing. 

// Variable declarations 

ptr LoopCtrlInput->u.io:$A00000.8.1;  // IO Card 0 Point 00 

ptr DirCtrlInput->u.io:$A00000.9.1;  // IO Card 0 Point 01 

ptr LaserOn->u.io:$A0000C.8.1;  // IO Card 0 Point 24 

csglobal MoveLength;    // Externally settable variable 

 

MoveLength = 40;    // Set value for this example 

 

// A typical coordinate system setup for this program is something like: 

// &1 

// #3->1000Z    // Motor 3 assigned to Z-axis, 1000 counts/unit 

 

// Motion program code 

open prog 3 

 

local ThisCs;     // Local var for # of CS running program 
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ThisCs = Ldata.Coord;    // Set to # of CS running program 

rapid;      // Rapid move mode 

abs;      // Absolute end-point specification 

while (LoopCtrlInput) {   // Loop until control input false 

  if (DirCtrlInput) Z(MoveLength);  // Move in positive direction 

  else Z(-1.0*MoveLength);   // Move in negative direction 

  while (Coord[ThisCs].InPos == 0) {}  // Wait for settled 

  LaserOn = 1;     // Turn on laser control output 

  dwell100;     // Hold for 100 msec 

  LaserOn = 0;     // Turn off laser control output 

  Z0;      // Return to home position 

  dwell50;     // Hold for 50 msec 

} 

close 

 

The following plot shows the commanded velocity profile along with the direction-control input 

and the laser-control output. 

 

 

Example 4: Coordinated and Blended Moves with Linear and Circular 
Interpolation 

This example introduces coordinated moves (multiple axes commanded on the same line of a 

motion program are automatically fully coordinated), blended moves (consecutive moves are 

automatically blended together unless specifically commanded not to), plus rapid, linear, and 

circular interpolation in a Cartesian system. 

ptr DispensePumpOn->u.io:$A0000C.12.1; //IO Card 0 IO Point 28 

Coord[1].SegMoveTime = 5;   // Segmentation time of 5 msec 

 

open prog 4 

abs;      // Absolute end-point specification 

normal k-1;     // XY-plane specification for circles 
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Gather.Enable = 2;    // Start data gathering 

rapid x1 y4;     // Rapid mode move to (1,4) 

dwell 20;     // Hold position for 20 msec 

DispensePumpOn = 1;    // Turn on dispensing pump 

dwell 50;     // Hold position for 50 msec 

f50; ta100; ts50;    // Params for linear & circle moves 

linear y13;     // Straight-line move to (1,13) 

circle1 x2 y14 i1 j0;    // CW arc to (2,14) about (2,13) 

linear x3;     // Straight-line move to (3,14) 

circle1 x4 y13 i0 j-1;    // CW arc to (4,13) about (3,13) 

linear y7;     // Straight-line move to (4,7) 

circle2 x7 y4 i3 j0;    // CCW arc to (7,4) about (7,7) 

linear x13;     // Straight-line move to (13,4) 

circle1 x14 y3 i0 j-1;    // CW arc to (14,3) about (13,3) 

linear y2;     // Straight-line move to (14,2) 

circle1 x13 y1 i-1 j0;    // CW arc to (13,1) about (13,2) 

linear x4;     // Straight-line move to (4,1) 

circle1 x1 y4 i0 j3;    // CW arc to (1,4) about (4,4) 

dwell 0;     // Stop blending and lookahead 

DispensePumpOn = 0;    // Turn off dispensing pump 

rapid x0 y0;     // Return to home position 

Gather.Enable = 0;    // Stop data gathering 

close 

 

The following plot shows the XY commanded path generated by this program. 
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Example 5: Coordinated Path Motion 

Many applications require the controller to generate a precise path in a plane or in space. Power 

PMAC controllers have easy and powerful capabilities for doing this. The moves of axes 

commanded on the same program line are automatically fully coordinated, starting and stopping 

together and taking the prescribed path. Consecutive moves are automatically blended together 

(unless specifically told not to). 

The most common move modes used for generating paths are linear and circle modes, so called 

because of the paths they create in a Cartesian system. This example uses linear and circle modes 

to generate the following oval shape in a Cartesian system. 

 

 

     (-60,20)        (60,20) 

      (-60,0)       (0,0)       (60,0) 
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For circular interpolation it is necessary to define the “segmentation time” for the coordinate 

system – the period at which the exact circle calculations are done. In between these precisely 

calculated points, a simpler cubic-spline interpolation is done to create new commanded positions 

every servo cycle. Typically the exact calculations are done every 10 to 20 servo cycles, yielding 

a very accurate path without overloading the processor from too many trigonometric calculations.  

Here we set the segmentation time for C.S. 1 to 5 msec with Coord[1].SegMoveTime = 5. 

// Coordinated path motion example 

open prog 5 

normal k-1;    // XY plane for circles 

abs;     // Absolute endpoint specification 

F200;     // Vector speed of 200 mm/sec 

ta25; ts0;    // 25 msec accel/decel time, no S-curve 

Gather.Enable=2;   // Start data gathering 

linear X60 Y0;    // Straight move to (60,0) 

circle2 X60 Y20 R10;   // CCW arc of radius 10 to (60,20) 

linear X-60 Y20;   // Straight move to (-60,20) 

circle2 X-60 Y0 R10;   // CCW arc of radius 10 to (-60,0) 

linear X0 Y0;    // Straight move to (0,0) 

dwell 100;    // Hold position for 100 msec 

Gather.Enable=0;   // Stop data gathering 

close 

 

Note that the circular arc moves are programmed here by specifying the radius of the arc. It is 

also possible to program them by specifying a vector to the center of the arc with I, J, and K 

components. 

The following diagram shows the commanded path generated by execution of this program, 

gathered from Power PMAC’s actual execution of the program: 
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Programmed Move Profiles 

This first diagram shows the commanded axis velocity profiles, with a 25-msec acceleration time 

and without lookahead, gathered from actual execution on Power PMAC: 

 

The next diagram shows the commanded acceleration profiles for the same move sequence: 
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Buffered Lookahead for Dynamic Limiting 

Many times, some parts of the path, such as tight arcs or sharp corners may have to be executed 

more slowly than other parts because of acceleration constraints. On many systems, figuring out 

where the system needs to move slowly and how to tell the controller where to move more slowly 

is so difficult that the whole path is executed slowly. 

However, Power PMAC’s buffered lookahead feature permits the controller to automatically 

identify problem areas in the path, compute the highest speed at these areas that do not violate 

constraints, and to compute the optimum deceleration into these areas and acceleration out of 

them. The user simply needs to tell Power PMAC what the constraints are and to enable the 

feature. The problem areas do not need to be identified in the motion program. (While the 

lookahead algorithm also checks for violations of position and velocity constraints, it is usually 

the acceleration constraints that are key.) 

In this example, the X and Y-axes are limited to an acceleration of 1000 mm/sec2. To execute the 

arc moves, which have a radius of 10 mm, at the programmed speed of 200 mm/sec would 

require a centripetal acceleration of 200*200/10 = 4000 mm/sec2. Note that simply programming 

a lower speed for these moves would not necessarily solve the problem, because it does not 

ensure that the deceleration into the arc and the acceleration out of it are handled properly. 

For robust acceleration control, the algorithm must look ahead at least the worst case stopping 

time, which is the maximum velocity divided by the maximum acceleration. In this example, we 

have a maximum velocity of 500 mm/sec (even though the program only asks for 200), so our 

worst case stopping time is 500/1000 = 0.5 sec, or 500 msec to decelerate from full speed. 
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The following commands can be used to set up the buffered lookahead for this example: 

// Setup for buffered lookahead 

Motor[1].MaxSpeed=500;   // 500 motor units per msec 

Motor[1].InvAmax=1.0;   // 1 motor unit per msec per msec 

Motor[2].MaxSpeed=500;   // 500 motor units per msec 

Motor[2].InvAmax=1.0;   // 1 motor unit per msec per msec 

Coord[1].SegMoveTime=5;  // Segmentation time of 5 msec 

&1 define lookahead 3000  // Set up buffer with 3K segments 

Coord[1].LHDistance=200;  // Look ahead 200 segments in path 

 

These next two diagrams show the profiles when lookahead has been applied. First we see the 

commanded velocities. Note that the acceleration ramps to and from a stop have been 

significantly stretched out compared to the above velocity profiles. Note also that the arc moves 

have been slowed down, not because their programmed velocities exceeded the lookahead 

velocity limits, but because their centripetal acceleration at the programmed speed is above the 

lookahead acceleration limit. Furthermore, the linear moves going into the arcs start slowing 

down well before the beginning of the arc, and the linear moves out of the arc accelerate for some 

distance from the end of the arcs. 

 

Finally we see the commanded accelerations with lookahead applied. We see that the magnitude 

of acceleration has been dramatically reduced compared to the plot without limits, above. Note 

that the acceleration-limiting calculations are approximations, permitting very momentary slight 

excursions past the specified limits (+/-1,000,000 counts/sec2) to preserve smoothness in the 

trajectories. 
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A Move with Separate Acceleration and Deceleration 

Some users want point-to-point moves with different acceleration and deceleration parameters – 

typically a longer and more gradual deceleration for smoother settling. This is easy to do with 

Power PMAC, as this example shows. 

/****************************************/ 

open prog 1    // Open buffer for entry 

linear;     // Linear interpolation move mode 

abs;     // Absolute move specification mode 

ta500;     // 0.5 second acceleration time 

td800;     // 0.8 second deceleration time 

ts100;     // 0.1 second S-curve accel/decel time 

F5;     // Speed of 5 axis units per time unit 

Gather.Enable = 2;   // Turn on data gathering 

X10;     // Move X-axis to position of 10 units 

dwell 500;    // Sit here for 0.5 seconds 

X0;     // Move X-axis to position of 0 units 

dwell 500;    // Sit here for 0.5 seconds 

Gather.Enable = 0;   // Turn off data gathering 

close 

/****************************************/ 
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Motion with Related Machine I/O 

This example shows motion with related discrete inputs (controlling looping and the direction of 

the next move) and a discrete output (turning a laser on and off). 

/****************************************/ 

// Variable declarations 

ptr LoopCtrlInput->u.io:$A00000.8.1;  // IO Card 0 Point 00 

ptr DirCtrlInput->u.io:$A00000.9.1;  // IO Card 0 Point 01 

ptr LaserOn->u.io:$A0000C.8.1;  // IO Card 0 Point 24 

csglobal MoveLength;    // Externally set variable 

MoveLength = 40;    // Set value for this example 

 

open prog 3 

local ThisCs;     // Local var for # of CS  

ThisCs = Ldata.Coord;    // Set to # of CS running program 

rapid; abs;     // Rapid move mode, end-point spec 

while (LoopCtrlInput) {   // Loop until control input false 

  if (DirCtrlInput) Z(MoveLength);  // Move in positive direction 

  else Z(-1.0*MoveLength);   // Move in negative direction 

  while (!(Coord[ThisCs].InPos)) {}  // Wait for settled 

  LaserOn = 1;     // Turn on laser control output 

  dwell100;     // Hold for 100 msec 

  LaserOn = 0;     // Turn off laser control output 

  Z0;      // Return to home position 

  dwell50;     // Hold for 50 msec 

} 

close 

/****************************************/ 
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Interactive Jog Control PLC Programs 

This example shows a very simple PLC program as an example of customizing an operator 

interface. 

/*****************************************/ 

// Interactive motor jog PLC program 

// A single motor selected out of #1-#8 can be jogged in "continuous" 

// mode, in either the positive or negative direction. 

// In continuous mode, the motor will be commanded to jog its  

// "deceleration distance" from the present position each scan as long 

// as the button is pressed. 

// This distance is calculated as V^2/A/2 or V^2xTa/2. 

// With S-curve accel specified (JogTs != 0), this distance is  

// increased somewhat. 

 

// Declarations of input variables -- application specific 

ptr MotorSelectSw->u.io:$A00000.8.3; 

ptr JogMinusButton->u.io:$A00000.12.1; 

ptr JogPlusButton->u.io:$A00000.13.1; 

global JogDecelDist = 500; 

/****************************************/ 

open plc 1 

 

local JogMotor;   // # of motor selected for jogging 

local JogMotorStatus;   // Present state of selected motor 

 

if (JogMotorStatus == 0) {  // No motor jogging? 

  JogMotor = MotorSelectSw + 1; // Read switch to select motor 

  Ldata.Motor = JogMotor;  // Specify motor for jog commands 

} 

if (JogMinusButton && JogMotorStatus <= 0) { 

  jog:(-JogDecelDist); 

  JogMotorStatus = -1; 

} 

else { 

  if (JogPlusButton && JogMotorStatus >= 0) { 

    jog:(JogDecelDist); 

    JogMotorStatus = 1; 

  } 

  else JogMotorStatus = 0; 

} 

close 

/****************************************/ 
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This next example shows a more sophisticated version of a jogging control PLC program 

/******************************************************************************/ 

// Interactive motor jog PLC program 

// A single motor selected out of #1-#8 can be jogged in either "incremental"  

// or "continuous" mode, in either the positive or negative direction. 

// 

// In incremental mode, each time a jog button is pressed, the motor will move 

// the distance specified by saved element Motor[x].ProgJogPos (the equivalent  

// of the on-line incremental jog command). The button must be released before  

// another jog increment can be commanded. 

 

// In continuous mode, the motor will be commanded to jog its "deceleration 

// distance" from the present position each scan as long as the button is pressed. 

// This distance is calculated as V^2/A/2 or V^2xTa/2. With S-curve accel 

// specified (JogTs != 0), this distance is increased somewhat. 

 

// Declarations of input variables -- application specific 

ptr MotorSelectSw->u.io:$A00000.8.3; 

ptr IncJogSw->u.io:$A00000.11.1; 

ptr JogMinusButton->u.io:$A00000.12.1; 

ptr JogPlusButton->u.io:$A00000.13.1; 

 

/****************************************/ 

open plc 2 

 

local JogMotor;    // Number of motor selected for jogging 

local JogDecelDist;    // Distance required to decelerate 

local JogMotorStatus;    // Present jogging status of selected motor 

local JogMode;     // 0 = continuous; 1 = incremental 

 

if (JogMotorStatus == 0) {   // No motor jogging? 

  JogMotor = MotorSelectSw + 1;  // Read switch to select motor 

  Ldata.Motor = JogMotor;   // Specify motor for jog commands 

  JogMode = IncJogSw;    // Read switch to select jog mode 

  if (JogMode == 0) {    // Continuous mode? 

    if (Motor[JogMotor].JogTa < 0) {  // Accel & jerk rates specified? 

      JogDecelDist = pow(Motor[JogMotor].JogSpeed,2) * Motor[JogMotor].JogTa * -0.5; 

      JogDecelDist += Motor[JogMotor].JogSpeed / Motor[JogMotor].JogTa * 

Motor[JogMotor].JogTs * 0.5; 

      JogDecelDist += pow(Motor[JogMotor].JogTs,2) / pow(Motor[JogMotor].JogTa,3) * -0.5; 

    } 

    else { 

      if (Motor[JogMotor].JogTa > 0) { // Accel & jerk times specified? 

        JogDecelDist = Motor[JogMotor].JogSpeed * Motor[JogMotor].JogTa * 0.5; 

        JogDecelDist += Motor[JogMotor].JogSpeed * Motor[JogMotor].JogTs * 0.5; 

        JogDecelDist += Motor[JogMotor].JogSpeed * (pow(Motor[JogMotor].JogTs,2) / 

Motor[JogMotor].JogTa) * 0.5; 

      } 

      else {      // Zero accel specified 

        JogDecelDist = Motor[JogMotor].JogSpeed * 200 * 0.5; // As for 200 msec Ta 

      }      // if (JogTa > 0) else 

    }      // if (JogTa < 0) else 

  }      // if (JogMode == 0) 

}      // if (JogMotorStatus == 0) 

 

if (JogMode == 1) {    // Incremental jog mode? 

  if (JogMinusButton && JogMotorStatus == 0) { 

    jog:(-1.0 * Motor[JogMotor].ProgJogPos); 

    JogMotorStatus = -1; 

  } 

  else { 



Power PMAC User’s Manual 

 

Power PMAC Example SCRIPT ProgramsPower PMAC Example SCRIPT Programs 831 

    if (JogPlusButton && JogMotorStatus == 0) { 

      jog:(Motor[JogMotor].ProgJogPos); 

      JogMotorStatus = 1; 

    } 

    else { 

      if (!(JogMinusButton) && !(JogPlusButton)) JogMotorStatus = 0; 

    }  // if (JogPlusButton...) else 

  }   // if (JogMinusButton...) else 

}   // if (JogMode == 1) 

else {      // Continuous jog mode 

  if (JogMinusButton && JogMotorStatus <= 0) { 

    jog:(-JogDecelDist); 

    JogMotorStatus = -1; 

  } 

  else { 

    if (JogPlusButton && JogMotorStatus >= 0) { 

      jog:(JogDecelDist); 

      JogMotorStatus = 1; 

    } 

    else { 

      JogMotorStatus = 0; 

    }      // if (JogPlusButton...) else 

  }      // if (JogMinusButton...) else 

}      // if (JogMode == 1) else 

close 

/****************************************/ 
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SCARA Robot Kinematics 

This example shows the forward and inverse-kinematic subroutines for a 4-axis (“shoulder”, 

“elbow”, “wrist”, and “vertical” SCARA robot. These subroutines permit the user to program 

robot motion in Cartesian coordinates, with Power PMAC automatically computing the required 

joint positions to obtain the desired tool-tip path. 

//==================================================================== 

// SCARA robot forward kinematic subroutine 

// Global variable declarations and values 

global Len1 = 400;   // Shoulder-to-elbow length 400 mm 

global Len2 = 300;   // Elbow-to-wrist length 300 mm 

global Zofs = 250;   // Vertical axis offset 250 mm 

global SumLenSqrd;   // L1^2 + L2^2 

global ProdOfLens;   // 2 * L1 * L2 

global DifLenSqrd;   // L1^2 - L2^2 

//==================================================================== 

open forward (1)   // Forward kinematics for C.S.1 

local SplusE;    // Sum of shoulder and elbow angles 

if (Coord[1].HomeComplete) {  // All motors referenced? 

  SplusE = KinPosMotor1 + KinPosMotor2; 

  KinPosAxisX = Len1 * cosd(KinPosMotor1) + Len2 * cosd(SplusE); 

  KinPosAxisY = Len1 * sind(KinPosMotor1) + Len2 * sind(SplusE); 

  KinPosAxisC = SplusE + KinPosMotor3; 

  KinPosAxisZ = KinPosMotor4 + Zofs; 

  KinAxisUsed = $1C4;   // Mask for C,X,Y,Z values returned 

  // Compute intermediate constants for inverse kinematics 

  SumLenSqrd = Len1 * Len1 + Len2 * Len2; 

  ProdOfLens = 2 * Len1 * Len2; 

  DifLenSqrd = Len1 * Len1 - Len2 * Len2; 

} 

else Coord[1].ErrorStatus = 255; // Not referenced; stop 

close 

//==================================================================== 

// SCARA robot inverse kinematic subroutine 

open inverse (1)   // Inverse kinematics for C.S.1 

local X2Y2, Ecos, SplusQ, Qangle; // Intermediate variables 

X2Y2 = KinPosAxisX * KinPosAxisX + KinPosAxisY * KinPosAxisY; 

Ecos = (X2Y2 - SumLenSqrd) / ProdOfLens; 

if (abs(Ecos) < 0.996) {  // Valid solution w/ 5-deg margin? 

  KinPosMotor2 = cosd(Ecos); 

  SplusQ = atan2d(KinPosAxisY, KinPosAxisX); 

  Qangle = acosd(X2Y2 + DifLenSqrd) / (2 * Len1 * sqrt(SumLenSqrd)); 

  KinPosMotor1 = SplusQ - Qangle; 

  KinPosMotor3 = KinPosAxisC - KinPosMotor1 - KinPosMotor1; 

  KinPosMotor4 = KinPosAxisZ - Zofs; 

 } 

 else Coord[1].ErrorStatus = 255; // No valid solution; stop  

close 

//==================================================================== 
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