SCARA Robots YRCX Series

YRCX Robot Controller

PROGRAMMING MANUAL

Introduction

Our sincere thanks for your purchase of this OMRON YRCX robot controller.

This manual describes robot program commands and related information for using OMRON YRCX robot controllers. Be sure to read this manual carefully as well as related manuals and comply with their instructions for using the OMRON robot controllers safely and correctly.

For details on how to operate OMRON robot controllers, refer to the separate controller user's manual that comes with the OMRON robot controller.

Applicable controllers: YRCX

Safety precautions

Be sure to read before using

Before using the OMRON robot controller, be sure to read this manual and related manuals, and follow their instructions to use the robot controller safely and correctly.

Warning and caution items listed in this manual relate to OMRON robot controllers.

When this robot controller is used in a robot controller system, please take appropriate safety measures as required by the user's individual system.

This manual classifies safety caution items and operating points into the following levels, along with symbols for signal words "CAUTION" and "NOTE".

"CAUTION" indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury or damage to the equipment or software.

Primarily explains function differences, etc., between software versions.

Explains robot operation procedures in a simple and clear manner.

Note that the items classified into "CAUTION" might result in serious injury depending on the situation or environmental conditions.

Keep this manual carefully so that the operator can refer to it when needed. Also make sure that this manual reaches the end user.

Introduction	
Safety precautions	
Chapter 1 Writing Programs	
1 The OMRON Robot Language	1-1
2 Characters	1-1
3 Program Basics	1-1
4 Program Names	1-2
5 Identifiers	1-4
6 LABEL Statement	1-4
7 Comment	1-5
8 Command Statement Format	1-5
Chapter 2 Constants	
1 Outline	2-1
2 Numeric constants	2-1
2.1 Integer constants	2-1
2.2 Real constants	2-1
3 Character constants	2-2
Chapter 3 Variables	
1 Outline	3-1
2 User Variables & System Variables	3-2
2.1 User Variables	3-2
2.2 System Variables	3-2
3 Variable Names	3-3
3.1 Dynamic Variable Names	3-3
3.2 Static Variable Names	3-3
4 Variable Types	3-4

4.1 Numeric variables4.2 Character variables	3-4 3-4
5 Array variables	3-5
6 Value Assignments	3-5
7 Type Conversions	3-6
8 Value Pass-Along & Reference Pass-Along	3-6
9 System Variables	3-7
9.1 Point variable	3-7
9.2 Shift variable	3-8
9.3 Parallel input variable	3-8
9.4 Parallel output variable	3-9
9.5 Internal output variable	3-10
9.6 Arm lock output variable	3-11
9.7 Timer output variable	3-12
9.8 Serial input variable	3-13
9.9 Serial output variable	3-14
9.10 Serial word input	3-15
9.11 Serial double word input	3-15
9.12 Serial word output	3-16
9.13 Serial double word output	3-16
10 Bit Settings	3-17
11 Valid range of variables	3-18
11.1 Valid range of dynamic (array) variables	3-18
11.2 Valid range of static variables	3-18
12 Clearing variables	3-19
12.1 Clearing dynamic variables	3-19
12.2 Clearing static variables	3-19
Chapter 4 Expressions and Operations	

1 A	rithmetic operations	4-1
1.1	Arithmetic operators	4-1
1.2	Relational operators	4-1
1.3	Logic operations	4-2
1.4	Priority of arithmetic operation	4-3
1.5	Data format conversion	4-3

2 Character string operations	4-4
2.1 Character string connection	4-4
2.2 Character string comparison	4-4
3 Point data format	4-5
4 DI/DO conditional expressions	4-6
Chapter 5 Multiple Robot Control	
1 Overview	5-1
2 Command list with a robot setting	5-2
Chapter 6 Multi-tasking	
1 Outline	6-1
2 Task definition method	6-1
3 Task status and transition	6-2
3.1 Starting tasks	6-2
3.2 Task scheduling	6-3
3.3 Condition wait in task	6-4
3.4 Suspending tasks (SUSPEND)	6-5
3.5 Restarting tasks (RESTART)	6-5
3.6 Deleting tasks	6-6
3.7 Stopping tasks	6-7
4 Multi-task program example	6-8
5 Sharing the data	6-8
6 Cautionary Items	6-9
Chapter 7 Sequence function	
1 Sequence function	7-1
2 Creating a sequence program	7-1
2.1 Programming method	7-1
2.2 Compiling	7-3
3 Executing a sequence program	7-4
3.1 Sequence program STEP execution	7-4

4 F	Programming a sequen	ce program	7-5
4.1	Assignment statements		7-5
4.2	Input/output variables		7-5
	4.2.1 Input variables		7-5
	4.2.2 Output variables		7-6
4.3		nt	7-7
4.4	- 9		7-7
4.5 4.6	, , , , , , , , , , , , , , , , , , , ,		7-8 7-8
		guage Lists	
ŀ	How to read the robot la	anguage table	8-1
C	Command list in alphab	etic order	8-2
C	Operation-specific		8-7
F	Functions: in alphabetic	c order	8-13
F	Functions: operation-sp	pecific	8-16
1	ABS	Acquires absolute values	8-18
2	ABSRPOS	Acquires the machine reference value (axes: mark method)	8-19
3	ACCEL	Specifies/acquires the acceleration coefficient parameter	8-20
4	ARCHP1 / ARCHP2	Specifies/acquires the arch position parameter	8-2
5	ARMCND	Acquires the current arm status	8-23
6	ARMSEL	Sets/acquires the current hand system selection	8-24
7	ARMTYP	Sets/acquires the hand system selection during program reset	8-2
8	ASPEED	Sets/acquires the AUTO movement speed of a specified robot	8-26
9	ATN / ATN2	Acquires the arctangent of the specified value	8-27
10	AXWGHT	Sets/acquires the axis tip weight	8-28
11	CALL	Calls a sub-procedure	8-29
12	CHANGE	Switches the hand	8-30
13	CHGPRI	Changes the priority ranking of a specified task	8-3
14	CHR\$	Acquires a character with the specified character code	8-32
15	CLOSE	Closes the specified General Ethernet Port	8-33
16	COS	Acquires the cosine value of a specified value	8-34
17	CURTQST	Acquires the ratio of the current torque (current) value of axis against the rated torque (current) value	8-3
18	CURTRQ	Acquires the ratio of the current torque (current)	0.00

Acquires the ratio of the current torque (current) value of axis against the maximum torque (current) value 8-36

19	CUT	Terminates another task which is currently being executed	8-37
20	DATE\$	Acquires the date	8-38
21	DECEL	Specifies/acquires the deceleration rate parameter	8-39
22	DEF FN	Defines functions which can be used by the user	8-40
23	DEGRAD	Angle conversion (degree \rightarrow radian)	8-41
24	DELAY	Program execution waits for a specified period of time	8-42
25	DI	Acquires the input status from the parallel port	8-43
26	DIM	Declares array variable	8-44
27	DIST	Acquires the distance between 2 specified points	8-45
28	DO	Outputs to parallel port or acquires the output status	8-46
29	DRIVE	Executes absolute movement of specified axes	8-48
30	DRIVEI	Moves the specified robot axes in a relative manner	8-52
31	END SELECT	Ends the SELECT CASE statement	8-57
32	END SUB	Ends the sub-procedure definition	8-58
33	ERR / ERL	Acquires the error code / error line number	8-59
34	ETHSTS	Acquires the Ethernet port status	8-60
35	EXIT FOR	Terminates the FOR to NEXT statement loop	8-61
36	EXIT SUB	Terminates the sub-procedure defined by the SUB to END SUB statement	8-62
37	EXIT TASK	Terminates its own task which is in progress	8-63
38	FOR to NEXT	Performs loop processing until the variable exceeds the specified value	8-64
39	GEPSTS	Acquires the General Ethernet Port status	8-65
40	GOSUB to RETURN	Jumps to a subroutine	8-66
41	GOTO	Executes an unconditional jump to the specified line	8-67
42	HALT	Stops the program and performs a reset	8-68
43	HALTALL	Stops all programs and performs reset	8-69
44	HAND	Defines the hand	8-70
	44.1 For SCARA Robots		8-70
45	HOLD	Temporarily stops the program	8-73
46	HOLDALL	Temporality stops all programs	8-74
47	IF	Evaluates a conditional expression value, and executes the command in accordance with the conditions	8-75
	47.1 Simple IF statement		8-75
	47.2 Block IF statement		8-76
48	INPUT	Assigns a value to a variable specified from the programming box	8-77
49	INT	Truncates decimal fractions	8-79

50	JTOXY	Performs axis unit system conversions (pulse \rightarrow mm)	8-80
51	LEFT\$	Extracts character strings from the left end	8-81
52	LEFTY	Sets the SCARA robot hand system as a left-handed system	8-82
53	LEN	Acquires a character string length	8-83
54	LET	Assigns values to variables	8-84
55	LO	Arm lock output or acquires the output status	8-87
56	LOCx	Specifies/acquires point data for a specified axis or shift data for a specified element	8-89
57	LSHIFT	Left-shifts a bit	8-91
58	MCHREF	Acquires the machine reference value (axes: sensor method / stroke-end method)	8-92
59	MID\$	Acquires a character string from a specified position	8-93
60	МО	Outputs a specified value to the MO port or acquires the output status	8-94
61	MOTOR	Controls the motor power status	8-96
62	MOVE	Performs absolute movement of robot axes	8-97
63	MOVEI	Performs relative movement of robot axes	8-112
64	MOVET	Performs relative movement of all robot axes in tool coordinates	8-122
65	MTRDUTY	Acquires the motor load factor of the specified axis	8-132
66	OFFLINE	Sets a specified communication port to the "offline" mode	8-133
67	ON ERROR GOTO	Jumps to a specified label when an error occurs	8-134
68	ON to GOSUB	Executes the subroutine specified by the < <i>expression</i> > value	8-135
69	ON to GOTO	Jumps to the label specified by the <expression> value</expression>	8-136
70	ONLINE	Sets the specified communication port to the "online" mode	8-137
71	OPEN	Opens the specified General Ethernet Port	8-138
72	ORD	Acquires a character code	8-139
73	ORGORD	Specifies/acquires the robot's return-to-origin sequence	8-140
74	ORIGIN	Performs return-to-origin	8-141
75	OUT	Turns ON the specified port output	8-142
76	OUTPOS	Specifies/acquires the OUT enable position parameter of the robot	8-143
77	PATH	Specifies the motion path	8-145
78	PATH END	Ends the path setting	8-151
79	PATH SET	Starts the path setting	8-152
80	PATH START	Starts the PATH motion	8-155
81	PDEF	Defines the pallet	8-159
82	PGMTSK	Acquires the task number in which a specified program is registered	8-160

83 PGN	Acquires the program number from a specified program name	8-161
84 PMOVE	Executes a pallet movement command for the robot	8-162
85 Pn	Defines points within a program	8-166
86 PPNT	Creates pallet point data	8-168
87 PRINT	Displays the specified expression value at the programming box	8-169
88 PSHFRC	Specifies/acquires the pushing force parameter	8-170
89 PSHJGSP	Specifies/acquires the push judge speed parameter	8-171
90 PSHMTD	Specifies/acquires a pushing type parameter	8-172
91 PSHRSLT	Acquires the status when PUSH statement ends	8-173
92 PSHSPD	Specifies/acquires the push speed parameter	8-174
93 PSHTIME	Specifies/acquires the push time parameter	8-175
94 PUSH	Executes a pushing operation for specified axes	8-176
95 RADDEG	Performs a unit conversion (radians \rightarrow degrees)	8-181
96 REM	Inserts a comment	8-182
97 RESET	Turns OFF the bits of specified ports, or clears variables	8-183
98 RESTART	Restarts another task during a temporary stop	8-184
99 RESUME	Resumes program execution after error recovery processing	8-185
100 RETURN	Processing which was branched by GOSUB, is returned to the next line after GOSUB	8-186
101 RIGHT\$	Extracts a character string from the right end of another character string	8-187
102 RIGHTY	Sets the SCARA robot hand system as a right-handed system	8-188
103 RSHIFT	Shifts a bit value to the right	8-189
104 SELECT CASE to END SELECT	Executes the specified command block in accordance with the <expression> value</expression>	8-190
105 SEND	Sends readout file data to the write file	8-191
106 SERVO	Controls the servo status	8-193
107 SET	Turns the bit at the specified output port ON	8-194
108 SETGEP	Sets the General Ethernet Port	8-195
109 SGI	Assigns /acquires the value to a specified integer type static variable	8-196
110 SGR	Assigns /acquires the value to a specified real type static variable	8-197
111 SHARED	Enables sub-procedure referencing without passing on the variable	8-198
112 SHIFT	Sets the shift coordinates	8-199
113 SI	Acquires specified SI status	8-200
114 SID	Acquires a specified serial input's double-word information	8-201
115 SIN	Acquires the sine value for a specified value	8-202

116 SIW	Acquires a specified serial input's word information	8-203
117 Sn	Defines the shift coordinates in the program	8-204
118 SO	Outputs a specified value to serial port or acquires the output status	8-205
119 SOD	Outputs a specified serial output's double-word information or acquires the output status	8-207
120 SOW	Outputs a specified serial output's word information or acquires the output status	8-208
121 SPEED	Changes the program movement speed	8-209
122 SQR	Acquires the square root of a specified value	8-210
123 START	Starts a new task	8-211
124 STR\$	Converts a numeric value to a character string	8-212
125 SUB to END SUB	Defines a sub-procedure	8-213
126 SUSPEND	Temporarily stops another task which is being executed	8-215
127 SWI	Switches the program being executed	8-216
128 TAN	Acquires the tangent value for a specified value	8-217
129 TCOUNTER	Timer & counter	8-218
130 TIME\$	Acquires the current time	8-219
131 TIMER	Acquires the current time	8-220
132 TO	Outputs a specified value to the TO port or acquires the output status	8-221
133 TOLE	Specifies/acquires the tolerance parameter	8-222
134 TORQUE	Specifies/acquires the maximum torque command value	8-223
135 TSKPGM	Acquires the program number which is registered in a specified task number	8-225
136 VAL	Converts character strings to numeric values	8-226
137 WAIT	Waits until the conditional expression is met	8-227
138 WAIT ARM	Waits until the robot axis operation is completed	8-228
139 WEIGHT	Specifies/acquires the tip weight (kg) parameter	8-229
140 WEIGHTG	Specifies/acquires the tip weight (g) parameter	8-230
141 WEND	Ends the WHILE statement's command block	8-231
142 WHERE	Acquires the arm's current position (pulse coordinates)	8-232
143 WHILE to WEND	Repeats an operation for as long as a condition is met	8-233
144 WHRXY	Acquires the arm's current position in Cartesian coordinates	8-234
145 XYTOJ	Converts the Cartesian coordinate data ("mm") to joint coordinate data ("pulse")	8-235

1 Overview	9-1
2 Features	9-1
3 How to use	9-1
4 Cautions when using this function	9-2
Chapter 10 Data file description	
1 Overview	10-1
1.1 Data file types	10-1
1.2 Cautions	10-2
2 Program file	10-3
2.1 All programs	10-3
2.2 One program	10-4
3 Point file	10-5
3.1 All points	10-5
3.2 One point	10-7
4 Point comment file	10-8
4.1 All point comments	10-8
4.2 One point comment	10-9
5 Point name file	10-10
5.1 All point names	10-10
5.2 One point name	10-11
6 Parameter file	10-12
6.1 All parameters	10-12
6.2 One parameter	10-14
7 Shift coordinate definition file	10-16
7.1 All shift data	10-16
7.2 One shift definition	10-17
8 Hand definition file	10-18
8.1 All hand data	10-18
8.2 One hand definition	10-19

9 Work definition file	10-20
9.1 All work data	10-20
9.2 One work definition	10-21
10 Pallet definition file	10-22
10.1 All pallet definitions	10-22
10.2 One pallet definition	10-24
11 General Ethernet port file	10-26
12 Input/output name file	10-28
12.1 All input/output name data	10-28
12.2 One input/output type	10-29
12.3 One input/output port	10-30
12.4 One input/output bit	10-31
13 Area check output file	10-32
13.1 All area check output data	10-32
13.2 One area check output definition	10-33
14 All file	10-34
14.1 All file 10-34	
15 Program directory file	10-36
15.1 Entire program directory	10-36
15.2 One program directory	10-37
16 Parameter directory file	10-38
16.1 Entire parameter directory	10-38
17 Machine reference file	10-39
17.1 Machine reference (axes: sensor method, stroke-end method)	10-39
17.2 Machine reference (axes: mark method)	10-40
18 System configuration information file	10-41
19 Version information file	10-42
20 Option board file	10-43
21 Self check file	10-44
22 Alarm history file	10-45

23 Remaining memory size file	10-47
24 Variable file	10-48
25 Constant file	10-54
25.1 One character string	10-54
26 Array variable file	10-55
26.1 All array variables	10-55
26.2 One array variable	10-56
27 DI file	10-57
27.1 All DI information	10-57
27.2 One DI port	10-58
28 DO file	10-59
28.1 All DO information	10-59
28.2 One DO port	10-60
29 MO file	10-61
29.1 All MO information	10-61
29.2 One MO port	10-62
30 LO file	10-63
30.1 All LO information	10-63
30.2 One LO port	10-64
31 TO file	10-65
31.1 All TO information	10-65
31.2 One TO port	10-66
32 SI file	10-67
32.1 All SI information	10-67
32.2 One SI port	10-68
33 SO file	10-69
33.1 All SO information	10-69
33.2 One SO port	10-70
34 SIW file	10-71
34.1 All SIW data	10-71
34.2 One SIW data	10-72

35 SOW file	10-73	
35.1 All SOW	10-73	
35.2 One SOW data	10-74	
36 EOF file	10-75	
36.1 EOF data	10-75	
37 Serial port communication file	10-76	
37.1 Serial port communication file	10-76	
38 Ethernet port communication file	10-77	
38.1 Ethernet port communication file	10-77	
Chapter 11 User program examples		
1 Basic operation	11-1	
1.1 Directly writing point data in program	11-1	
1.2 Using point numbers	11-2	
1.3 Using shift coordinates	11-3	
1.4 Palletizing	11-4	
1.4.1 Calculating point coordinates	11-4	
1.4.2 Utilizing pallet movement	11-6	
1.5 DI/DO (digital input and output) operation	11-7	
2 Application	11-8	
2.1 Pick and place between 2 points	11-8	
2.2 Palletizing	11-10	
2.3 Pick and place of stacked parts	11-12	
2.4 Parts inspection (Multi-tasking example)	11-14	
2.5 Sealing 11-17		
2.6 Connection to an external device through RS-232C (example 1)	11-18	
2.7 Connection to an external device through RS-232C (example 2)	11-19	
Chapter 12 Online commands		
1 Online Command List	12-1	
1.1 Online command list: Operation-specific	12-2	
1.2 Online command list: In alphabetic order	12-6	

2 Operation and setting commands	12-9
2.1 Program operations	12-5
2.2 MANUAL mode operation	12-17
2.3 Alarm reset	12-18
2.4 Clearing output message buffer	12-19
2.5 Setting input data	12-20
2.6 Change access level	12-2 ⁻
2.7 Setting input data	12-22
3 Reference commands	12-23
3.1 Acquiring return-to-origin status	12-23
3.2 Acquiring the servo status	12-24
3.3 Acquire motor power status	12-24
3.4 Acquiring the access level	12-25
3.5 Acquiring the break point status	12-25
3.6 Acquiring the mode status	12-26
3.7 Acquiring the communication port status	12-26
3.8 Acquiring the main program number	12-27
3.9 Acquiring the sequence program execution status	12-27
3.10 Acquiring the version information	12-28
3.11 Acquiring the tasks in RUN or SUSPEND status	12-28
3.12 Acquiring the tasks operation status	12-29
3.13 Acquiring the task end condition	12-29
3.14 Acquiring the shift status	12-30
3.15 Acquiring the hand status	12-30
3.16 Acquiring the remaining memory capacity	12-3 ⁻
3.17 Acquiring the alarm status	12-3 ⁻
3.18 Acquiring the emergency stop status	12-32
3.19 Acquiring the manual movement speed	12-32
3.20 Acquiring the inching movement amount	12-33
3.21 Acquiring the last reference point number (current point numbe	r) 12-33
3.22 Acquiring the output message	12-34
3.23 Acquiring the input data	12-34
3.24 Acquiring various values	12-35
4 Operation commands	12-37
4.1 Absolute reset	12-37
4.2 Return-to-origin operation	12-38
4.3 Manual movement: inching	12-39
4.4 Manual movement: jog	12-40

5 Data file operation commands	12-41
5.1 Copy operations	12-41
5.2 Erase 12-42	
5.3 Rename program	12-47
5.4 Changing the program attribute	12-47
5.5 Initialization process	12-48
5.6 Data readout processing	12-50
5.7 Data write processing	12-51
6 Utility commands	12-52
6.1 Setting the sequence program execution flag	12-52
6.2 Setting the date	12-52
6.3 Setting the time	12-53
7 Individual execution of robot language	12-54
8 Control codes	12-55
Chapter 13 Appendix	
1 Reserved word list	13-1
2 Changes from conventional models	13-3
1 Program name	13-3
A) FUNCTION	13-3
B)_SELECT 13-3	
2 Multiple Robot Control	13-3
3 Multi-tasking	13-4
4 Robot Language	13-4
5 Online commands	13-5

Index

Chapter 1 Writing Programs

1	The OMRON Robot Language	. 1-1
2	Characters	. 1-1
3	Program Basics	. 1-1
4	Program Names	. 1-2
5	Identifiers	. 1-4
6	LABEL Statement	. 1-4
7	Comment	. 1-5
8	Command Statement Format	. 1-5

The OMRON robot language is similar to BASIC (Beginner's All-purpose Symbolic Instruction Code) and makes even complex robot movements easy to program. This manual explains how to write robot control programs with the OMRON robot language, including actual examples on how its commands are used.

Characters

The characters and symbols used in the OMRON robot language are shown below. Only 1-byte characters can be used.

- Alphabetic characters
- A to Z, a to z
- Numbers
 - 0 to 9
- Symbols

() [] + - * / ^ = <> & | ~ _ % ! # \$: ; , . " ' { }@ ?

- katakana (Japanese phonetic characters)
- MEMO
- Katakana (Japanese phonetic characters) cannot be entered from a programming box. Katakana can be used when communicating with a host computer (if it handles katakana).
- Spaces are also counted as characters (1 space = 1 character).

3 **Program Basics**

NOTE

• For details regarding subprocedure, refer to "11 CALL" and "125 SUB to END SUB" in Chapter 8.

 For details regarding user defined functions, refer to "22 DEF FN" in Chapter 8. Programs are written in a "1 line = 1 command" format, and every line must contain a command. Blank lines (lines with no command) will cause an error when the program is executed. A line-feed on the program's final line creates a blank line, so be careful not to do so.

To increase the program's efficiency, processes which are repeated within the program should be written as subroutines or sub-procedures which can be called from the main routine. Moreover, same processing items which occurs in multiple programs should be written as common routines within a program named [COMMON], allowing those processing items to be called from multiple programs.

User functions can be defined for specific calculations. Defined user functions are easily called, allowing even complex calculations to be easily performed.

Multi-task programs can also be used to execute multiple command statements simultaneously in a parallel processing manner.

Using the above functions allows easy creation of programs which perform complex processing.

l

1

4 Program Names

Each program to be created in the robot controller must have its own name. Programs can be named as desired provided that the following conditions are satisfied:

- Program names may contain no more than 32 characters, comprising a combination of alphanumeric characters and underscores (_).
- Each program must have a unique name (no duplications).

The 2 program names shown below are reserved for system operations, and programs with these names have a special meaning.

- A) SEQUENCE
- B) COMMON

The functions of these programs are explained below.

A) SEQUENCE

Functions Unlike standard robot programs, the YRCX Controller allows the execution of highspeed processing programs (sequence programs) in response to robot inputs and outputs (DI, DO, MO, LO, TO, SI, SO). Specify a program name of "SEQUENCE" to use this function, thus creating a pseudo PLC within the controller.

> When the controller is in the AUTO or MANUAL mode, a SEQUENCE program can be executed in fixed cycles (regardless of the program execution status) in response to dedicated D110 (sequence control input) input signals, with the cycle being determined by the program capacity. For details, refer to "4.6 Sequence program specifications" in Chapter 7.

> This allows sensors, push-button switches, and solenoid valves, etc., to be monitored and operated by input/output signals.

Moreover, because the sequence programs are written in robot language, they can easily be created without having to use a new and unfamiliar language.

SAMPLE

```
DO(20) =~DI(20)
DO(25) =DI(21) AND DI(22)
MO(26) =DO(26) OR DO(25)
:
```

REFERENCE For details, refer to "4.6 Sequence program specifications" in Chapter 7.

B) COMMON

Functions A separate "COMMON" program can be created to perform the same processing in multiple robot programs. The common processing routine which has been written in the COMMON program can be called and executed as required from multiple programs. This enables efficient use of the programming space.

The sample COMMON program shown below contains two processing items (obtaining the distance between 2 points (SUB *DISTANCE), and obtaining the area (*AREA)) which are written as common routines, and these are called from separate programs (SAMPLE 1 and SAMPLE 2).

When SAMPLE1 or SAMPLE2 is executed, the SUB *DISTANCE (A!,B!,C!) and the *AREA routine are executed.

```
SAMPLE
```

```
Program name: SAMPLE1
   X!=2.5
   Y!=1.2
   CALL *DISTANCE(X!,Y!,REF C!)
   GOSUB *AREA
   PRINT C!,Z!
   HALT
Program name: SAMPLE2
   X!=5.5
   Y!=0.2
   CALL *DISTANCE(X!,Y!,REF C!)
   GOSUB *AREA
   PRINT C!,Z!
   HALT
Program name: COMMON ..... Common routine
   SUB *DISTANCE(A!, B!, C!)
       C!=SQR(A!^2+B!^2)
   END SUB
   *AREA:
       Z! = X! * Y!
   RETURN
```

REFERENCE

For details, refer to the command explanations given in this manual.

Π

Identifiers

5

"Identifiers" are a combination of characters and numerals used for label names, variable names, and procedure names. Identifiers can be named as desired provided that the following conditions are satisfied:

- Identifiers must consist only of alphanumeric characters and underscores (_). Special symbols cannot be used, and the identifier must not begin with an underscore (_).
- The identifier length must not exceed 32 characters (all characters beyond the 32th character are ignored).
- The maximum number of usable identifiers varies depending on the length of the identifiers. When all identifier length is 32 characters, the number is at the maximum. Local variables can be used up to 128 (in one program task) and global variables can be used up to 512.
- Variable names must not be the same as a reserved word, or the same as a name defined as a system variable. Moreover, variable name character strings must begin with an alphabetic character. For label names, however, the "*" mark may be immediately followed by a numeric character.

SAMPLE

LOOP, SUBROUTINE, GET_DATA

REFERENCE

For details regarding reserved words, refer to Chapter 13 "1. Reserved word list", regarding system variables, refer to Chapter 3 "9 System Variables".

6 LABEL Statement

Defines a label on a program line.

*label:	

A *label* must always begin with an asterisk (*), and it must be located at the beginning of the line. Although a colon (:) is required at the end of the *label* when defining it, this mark is not required when writing a jump destination in a program.

- 1. A *label* must begin with an alphabetic or numeric character.
- 2. Alphanumeric and underscore (_) can be used as the remaining *label* characters. Special symbols cannot be used.
- 3. The label must not exceed 32 characters (all characters beyond the 32th character are ignored).

Characters which follow REM or an apostrophe (') are processed as a comment. Comment statements are not executed. Moreover, comments may begin at any point in the line.

SAMPLE	
REM *** MAIN PROGRAM ***	
(Main program)	
'*** SUBROUTINE ***	
(Subroutine)	
HALT 'HALT COMMAND	This comment may begin at any point in
	the line.

8

Command Statement Format

Format

label: statement operand

One robot language command must be written on a single line and arranged in the format shown below:

- The shaded section can be omitted.
- The italic items should be written in the specific format.
- Items surrounded by | | are selectable.
- The label can be omitted. When using a label, it must always be preceded by an asterisk (*), and it must end with a colon (:) (the colon is unnecessary when a label is written as a branching destination).

For details regarding labels, refer to "6 LABEL Statement" in this Chapter.

- Operands may be unnecessary for some commands.
- Programs are executed in order from top to bottom unless a branching instruction is given.

1 line may contain no more than 255 characters.

l

Chapter 2

Constants

1	Outline	2-1
2	Numeric constants	2-1
3	Character constants	2-2

1

2

Outline

Constants can be divided into two main categories: "numeric types" and "character types". These categories are further divided as shown below.

Category	Туре	Details/Range
Numeric type	Integer type	Decimal constants -2,147,483,648 to 2,147,483,647
		Binary constants &B0 to &B11111111
		Hexadecimal constants &H80000000 to &H7FFFFFF
_	Real type	Single-precision real numbers -999,999.9 to +999,999.9
		Exponential format single-precision real numbers -1.0×10^{38} to $+1.0 \times 10^{38}$
Character type	Character string	Alphabetic, numeric, special character, or katakana (Japanese) character string of 255 bytes or less.

Numeric constants

\mathbf{n}			
	_		

Integer constants

1. Decimal constants

Integers from -2,147,483,648 to 2,147,483,647 may be used.

2. Binary constants

Unsigned binary numbers of 8 bits or less may be used. The prefix "&B" is attached to the number to define it as a binary number.

Range: &B0 (decimal: 0) to &B11111111 (decimal: 255)

3. Hexadecimal constants

Signed hexadecimal numbers of 32 bits or less may be used. The prefix "&H" is attached to the number to define it as a hexadecimal number.

Range: &H80000000 (decimal: -2,147,483,648) to &H7FFFFFFF (decimal: 2,147,483,647)

2.2 Real constants

1. Single-precision real numbers

Real numbers from -999999.9 to +999999.9 may be used.

• 7 digits including integers and decimals. (For example, ".0000001" may be used.)

- 2. Single-precision real numbers in exponent form
 - Numbers from -1.0×10^{38} to $+1.0 \times 10^{38}$ may be used.
 - Mantissas should be 7 digits or less, including integers and decimals.

Examples: -1. 23456E-12 3. 14E0 1. E5

MEMO

• An integer constant range of -1,073,741,824 to 1,073,741,823 is expressed in signed hexadecimal number as &H80000000 to &H7FFFFFF.

Character constants

Character type constants are character string data enclosed in double quotation marks ("). The character string must not exceed 255 bytes in length, and it may contain upper-case alphabetic characters, numerals, special characters, or katakana (Japanese) characters.

To include a double quotation mark (") in a string, enter two double quotation marks in succession.

SAMPLE

```
"OMRON ROBOT"
"EXAMPLE OF""A""" ..... EXAMPLE OF "A"
PRINT "COMPLETED"
"OMRON ROBOT"
```

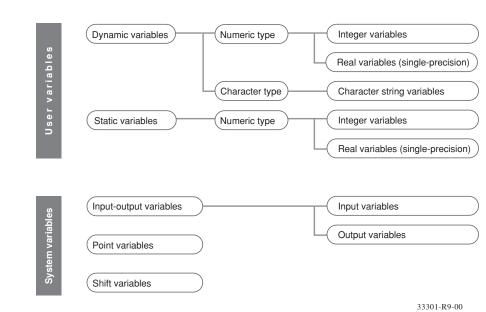
Chapter 3 Variables

1	Outline	3-1
2	User Variables & System Variables	3-2
3	Variable Names	3-3
4	Variable Types	3-4
5	Array variables	3-5
6	Value Assignments	3-5
7	Type Conversions	3-6
8	Value Pass-Along & Reference Pass-Along	3-6
9	System Variables	3-7
10	Bit Settings	3-17
11	Valid range of variables	3-18
12	Clearing variables	3-19

2

3

Outline


1

There are "user variables" which can be freely defined, and "system variables" which have predefined names and functions.

User variables consist of "dynamic variables" and "static variables". "Dynamic variables" are cleared at program editing, program resets, and program switching. "Static variables" are not cleared unless the memory is cleared. The names of dynamic variables can be freely defined, and array variables can also be used.

Variables can be used simply by specifying the variable name and type in the program. A declaration is not necessarily required. However, array variables must be pre-defined by a DIM statement.

User variables & system variables

REFERENCE For details regarding array variables, refer to "5 Array variables" in this Chapter.

User Variables & System Variables

2.1 **User Variables**

Numeric type variables consist of an "integer type" and a "real type", and these two types have different usable numeric value ranges. Moreover, each of these types has different usable variables (character string variables, array variables, etc.), and different data ranges, as shown below.

	Category	Variable Type	Details/Range
	Dynamic variables	Numeric type	Integer type variables -2,147,483,648 to 2,147,483,647 (Signed hexadecimal constants: &H80000000 to &H7FFFFFF)
			Real variables (single-precision) -1.0×10 ³⁸ to +1.0×10 ³⁸
		Character type	Character string variables Alphabetic, numeric, special character, or katakana (Japanese) character string of 255 bytes or less.
	Static variables	Numeric type	Integer type variables -2,147,483,648 to 2,147,483,647
			Real variables (single-precision) -1.0×10 ³⁸ to +1.0×10 ³⁸
NOTE	Array variables	Numeric type	Integer array variables -2,147,483,648 to 2,147,483,647
Array variables are dynamic variables.			Real array variables (single-precision) -1.0×10 ³⁸ to +1.0×10 ³⁸
		Character type	Character string array variables Alphabetic, numeric, special character, or katakana (Japanese) character string of 255 bytes or less.

2.2

System Variables

As shown below, system variables have pre-defined names which cannot be changed.

Category	Туре	Details	Specific Examples
Input/output variables	Input variables	External signal / status inputs	DI, SI, SIW, SID
-	Output variables	External signal / status outputs	DO, SO, SOW, SOD
Point variables		Handles point data	Pnnnn
Shift variables		Specifies the shift coordinate No. as a numeric constant or expression	Sn

REFERENCE For details, refer to "9 System Variables" in this Chapter.

3.1 Dynamic Variable Names

Dynamic variables can be named as desired, provided that the following conditions are satisfied:

- The name must consist only of alphanumeric characters and underscores (_). Special symbols cannot be used.
- The name must not exceed 32 characters (all characters beyond the 32th character are ignored).
- The name must begin with an alphabetic character.

SAMPLE	
COUNT	······Use is permitted
COUNT123	······Use is permitted
2COUNT	······Use is not permitted

- Variable names must not be the same as a reserved word.
- Variable names must not begin with characters used for system variable names (pre-defined variables) and user-defined function. These characters include the following:
 FN, DIn, DOn, MOn, LOn, TOn, SIn, SOn, Pn, Sn, Hn ("n" denotes a numeric value)

SAMPLE	
COUNT	······Use is permitted
ABS	······Use is not permitted
	(Reserved word)
FNAME	······Use is not permitted
	(FN: user-defined function)
S91	······Use is not permitted
	(Sn: pre-defined variable)

REFERENCE For details regarding reserved words, refer to Chapter 13 "1 Reserved word list".

Static Variable Names

3.2

Static variable names are determined as shown below, and these names cannot be changed.

Variable Type	Variable Name
Integer variable	SGIn (n: 0 to 31)
Real variable	SGRn (n: 0 to 31)

Static variables are cleared only when initializing is executed by online command.

REFERENCE For details regarding clearing of static variables, refer to "12 Clearing variables" in this Chapter.

Variable Types

The type of variable is specified by the type declaration character attached at the end of the variable name.

However, because the names of static variables are determined based on their type, no type declaration statement is required.

Type Declaration Character	Variable Type	Specific Examples
\$	Character variables	STR1\$
%	Integer variables	CONT0%, ACT%(1)
!	Real variables	CNT1!, CNT1

4.1

When a real number is

assigned to an integer type variable, the

decimal value is rounded off to the nearest whole

number. For details, refer

NOTE

- If no type declaration character is attached, the variable is viewed as a real type.
- Variables using the same identifier are recognized to be different from each other by the type of each variable.

\rightarrow ASP_DEF% and ASP_DEF are different variables.	
\rightarrow ASP_DEF! and ASP_DEF are the same variables.	

Numeric variables

Integer variables

Integer variables and integer array elements can handle an integer from -2,147,483,648 to 2,147,483,647 (in signed hexadecimal, this range is expressed as &H80000000 to &H7FFFFFF).

Examples: R1% = 10 R2%(2) = R1% + 10000

Real variables

Real variables and real array elements can handle a real number from -1.0×10^{38} to 1.0×10^{38} .

```
Examples: R1!
                 = 10.31
          R2!(2) = R1% + 1.98E3
```

Character variables and character array elements can handle a character string of up to 255 characters.

Character strings may include alphabetic characters, numbers, symbols and katakana (Japanese phonetic characters).

```
Examples: R1$ = "OMRON"
          R2$(2) = R1$ + "MOTOR" · · · · · · · · · "OMRON MOTOR"
```

to Chapter 4 "1.5 Data format conversion".

NOTE

The "!" used in real variables may be omitted .

4.2

Character variables

4

Both numeric and character type arrays can be used at dynamic variables. Using an array allows multiple same-type continuous data to be handled together. Each of the array elements is referenced in accordance with the parenthesized subscript which appears after each variable name. Subscripts may include integers or *expressions* in up to 3 dimensions.

In order to use an array, Array variables must be declared by DIM statement in advance, and the maximum number of elements which can be used is the declared subscripts + 1 (0 ~ number of declared subscripts).

.....

- All array variables are dynamic variables. (For details regarding dynamic variables, refer to "11 Valid range of variables" in this Chapter.)
- The length of an array variable that can be declared with the DIM statement depends on the program size.

Format	
variable name	<pre>% (expression, expression, expression) 1 \$</pre>

SAMPLE
A%(1) Integer array variable
DATA!(1,10,3) ·····v······Single-precision real array variable
(3-dimension array)
STRING\$(10) ······ Character array variable

Value Assignments

An assignment statement (LET) can also be used to assign a value to a variable.

6

• "LET" directly specifies an assignment statement, and it can always be omitted.

Format

LET variable = expression

Write the value assignment target variable on the left side, and write the assignment value or the *expression* on the right side. The *expression* may be a constant, a variable, or an arithmetic expression, etc.

REFERENCE

For details, refer to Chapter 8 "54 LET (Assignment Statement)"

Type Conversions

7

8

When different-type values are assigned to variables, the data type is converted as described below.

• When a real number is assigned to an integer type:

The decimal value is rounded off to the nearest whole number.

- When an integer is assigned to a real type: The integer is assigned as it is, and is handled as a real number.
- When a numeric value is assigned to a character string type: The numeric value is automatically converted to a character string.
- When a character string is assigned to numeric type: This assignment is not possible, and an error will occur at the program is execution. Use the "VAL" command to convert the character string to a numeric value, and that value is then assigned.

Value Pass-Along & Reference Pass-Along

A variable can be passed along when a sub-procedure is called by a CALL statement. This passalong can occur in either of two ways: as a value pass-along, or as a reference pass-along.

Value pass-along

With this method, the variable's value is passed along to the sub-procedure. Even if this value is changed within the sub-procedure, **the content of the call source variable is not changed**. A value pass-along occurs when the CALL statement's actual argument specifies a constant, an expression, a variable, or an array element (array name followed by (*subscript*)).

Reference pass-along

With this method, the variable's reference (address in memory) is passed along to the subprocedure. If this value is changed within the sub-procedure, **the content of the call source variable is also changed.**

A reference pass-along occurs when the CALL statement's actual argument specifies an entire array (an array named followed by parenthetical content), or when the actual argument is preceded by "REF".

Value pass-along & reference pass-along

Value pass-along
X%=5
CALL *TEST(X%)
PRINT X%
HALT
' SUB ROUTINE
SUB *TEST(A%)
A%=A%*10
END SUB

Reference pass-along

```
X%=5
CALL *TEST( REF X% )
PRINT X%
HALT
' SUB ROUTINE
SUB *TEST( A% )
A%=A%*10
END SUB
```

Execution result: The X% value remains as "5". (Execution result: The X% value becomes "50".

33302-R7-00

3

2

9 System Variables

The following system variables are pre-defined, and other variable names must not begin with the characters used for these system variable names.

Format	Meaning
Pnnn / P [<i>expression</i>]	Specifies a point number
Sn / S [<i>expression</i>]	Specifies the shift number as a constant or as an expression
DI(mb), DIm(b)	Parallel input signal status
DO(mb), DOm(b)	Parallel output signal setting and status
MO(mb), MOm(b)	Controller's internal output signal setting and status
LO(mb), LOm(b)	Axis-specific movement prohibit
TO(mb), TOm(b)	For sequence program's timer function
SI(mb), SIm(b)	Serial input signal status
SO(mb), SOm(b)	Serial output signal setting and status
SIW(m)	Serial input's word information status
SID(m)	Serial input's double-word information status
SOW(m)	Serial output's word information status
SOD(m)	Serial output's double-word information status
	Pnnn / P [<i>expression</i>] Sn / S [<i>expression</i>] DI(mb), DIm(b) DO(mb), DOm(b) MO(mb), MOm(b) LO(mb), LOm(b) TO(mb), TOm(b) SI(mb), SIm(b) SI(mb), SIm(b) SIW(m) SID(m)

9.1

Point variable

This variable specifies a point data number with a numeric constant or expression.

Format

Pnnnnn or P[expression]

Values n: Point number 0 to 9

Functions A point data number is expressed with a "P" followed by a number of 5 digits or less, or an *expression* surrounded by brackets ([*expression*]) Point numbers from 0 to 29999 can be specified with point variables.

Examples: P0 P110 P[A] P[START_POINT] P[A(10)]

7.2	Shiri variable				
	This variable specifies a shift coordinate number with a numeric constant or expression.				
	Format				
	Snn or S[<i>expression</i>]				
	Values n: Shift number 0 to 9				
	Functions A shift number is expressed with an "S" followed by a 2-digits number or an <i>expression</i> surrounded by brackets ([<i>expression</i>]). As a shift number, 0 to 39 can be specified.				
	Examples: S1 S[A] S[BASE] S[A(10)]				
MEMO	• The "shift coordinate range" for each shift number can be changed from the programming box.				
9.3	Parallel input variable				
	This variable is used to indicate the status of parallel input signals.				
	Format 1				
	$DIm(b, \cdots, b)$				
	Format 2				

Format 2

DI(mb, · · · , mb)

Shift variable

9.2

Values m : port number 0 to 7, 10 to 17, 20 to 27 b : bit definition 0 to 7 If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

```
Examples: A%=DI1()
```

```
\rightarrowInput status of ports DI(17) to DI(10)
  is assigned to variable A%.
 0 to 255 integer can be assigned to A%.
A%=DI5(7,4,0)
 \rightarrowInput status of DI(57), DI(54) and
  DI(50) is assigned to variable A%.
 (If all above signals are 1(ON), then A%=7.)
A%=DI(27,15,10)
 \rightarrowInput status of DI(27), DI(15) and
  DI(10) is assigned to variable A%.
 (If all above signals except DI(10) are 1 (ON), then A%=6.)
WAIT DI(21)=1
 \rightarrowWaits for DI(21) to change to 1(ON).
```

MEMO

• When specifying multiple bits, specify them from left to right in descending order (high to low). • A "0" is input if an input port does not actually exist.

Speci	fies the parallel output signal or indicates the output status.
Format	1
DOm(b	,,b)
Format	
DO (mb	,,mb)
/alues	m : port number 0 to 7, 10 to 17, 20 to 27 b : bit definition 0 to 7
	If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.
Examp	<pre>bles: A%=DO2()</pre>
	→Output status of DO(27) to DO(20) is assigned to variable A%.
	A%=D05(7,4,0)
	\rightarrow Output status of DO(57), DO(54) and
	DO(50) is assigned to variable A%. (If all above signals are 1(ON), then A%=7.)
	A%=DO(37,25,20)
	\rightarrow Output status of DO(37), DO(25) and
	DO(20) is assigned to variable A%.
	(If all above signals except DO(20) are 1 (ON), then A%=6.)
	DO3() = B%
	\rightarrow Changes to a status in which the DO(37)
	to DO(30) output can be indicated by B%.
	For example, if B% is "123": If a binary
	number is used, "123" will become "01111011", DO(37) and DO(32) will become
	"0", and the other bits will become "1".
	DO4(5,4,0)=&B101
	\rightarrow DO(45) and DO(40) become "1", and DO(44) becomes "0".

.....

9.4

When specifying multiple bits, specify them from left to right in descending order (high to low).
If an output port does not actually exist, the data is not output externally.

• If an output port does not actually exist, the data is not output externally.

9.5

Internal output variable

Specifies the controller's internal output signals and indicates the signal status.

Format 1

 $MOm(b, \cdots, b)$

Format 2

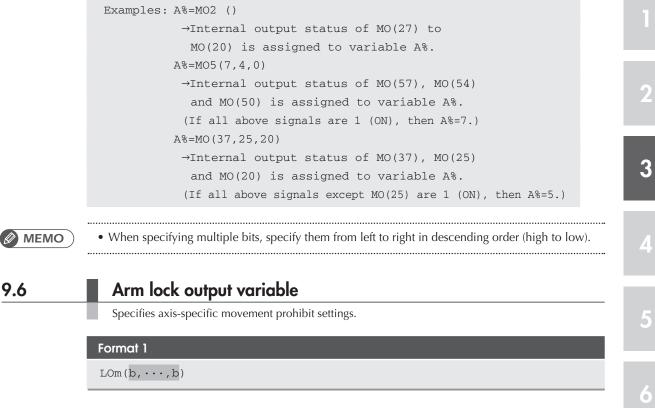
 $MO(mb, \cdots, mb)$

Values	m : port number 0 to 7, 10 to 17, 20 to 27, 30 to 33
	b : bit definition 0 to 7
	• If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

Functions Internal output variables which are used only in the controller, can set the status and refer. These variables are used for signal communications, etc., with the sequence program. Ports 30 to 33 are for dedicated internal output variables which can only be referenced (they cannot be changed).

- Port 30 indicates the status of origin sensors for axes 1 to 8 (in order from bit 0). Port 31 indicates the status of origin sensors for axes 9 to 16 (in order from bit 0). Each bit sets to "1" when the origin sensor turns ON, and to "0" when OFF.
- 2. Port 34 indicates the HOLD status of axes 1 to 8 (in order from bit 0). Port 35 indicates the HOLD status of axes 9 to 16 (in order from bit 0).

Each bit sets to "1" when the axis is in HOLD status, and to "0" when not.


Bit	7	6	5	4	3	2	1	0
Port 30	Axis 8	Axis 7	Axis 6	Axis 5	Axis 4	Axis 3	Axis 2	Axis 1
Port 31	Axis 16	Axis 15	Axis 14	Axis 13	Axis 12	Axis 11	Axis 10	Axis 9
	Origin	sensor sta	atus 0: OF	F / 1: ON	(Axis 1 is	not conne	cted)	
Port 34	Axis 8	Axis 7	Axis 6	Axis 5	Axis 4	Axis 3	Axis 2	Axis 1
Port 35	Axis 16	Axis 15	Axis 14	Axis 13	Axis 12	Axis 11	Axis 10	Axis 9
	Hold s	tatus 0: F	RELEASE	/ 1: HOLD	(Axis 1 is	not conne	ected)	

MEMO

• Axes where no origin sensor is connected are always ON.

• Being in HOLD status means that the axis movement is stopped and positioned within the target point tolerance while the servo is still turned ON.

- When the servo turns OFF, the HOLD status is released.
- Axes not being used are set to "1" (HOLD).
- The status of each axis in order from the smallest axis number used by robot 1 is maintained. Example) In the case of a configuration where robot 1 has 5 axes and robot 2 has 4 axes, bits 0 to 4 of port 30 indicate the status of axes 1 to 5 of robot 1, bits 5 to 7 of port 30 indicate the status of axes 1 to 3 of robot 2, and bit 0 of port 31 indicates the status of axis 4 of robot 2.


```
Format 2
  LO(mb, \cdots, mb)
Values
           m : port number ..... 0, 1
          b : bit definition ..... 0 to 7
           • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.
Functions The contents of this variable can be set the status and referred to as needed.
          Of Port 0, bits 0 to 7 respectively correspond to axes 1 to 8, and of port 1, bits 0 to
          respectively correspond to axes 9 to 16.
          When this bit is ON, movement on the corresponding axis is prohibited.
  Examples:
  A%=LO0()
      \rightarrowArm lock status of LO(07) to LO(00) is assigned to variable A%.
  A%=LO0(7,4,0)
      \rightarrowArm lock status of LO(07), LO(04) and LO(00) is assigned to variable A%.
       (If all above signals are 1(ON), then A%=7.)
  A%=LO0(06,04,01)
      \rightarrowArm lock status of LO(06), LO(04) and LO(01) is assigned to variable A%.
       (If all above signals except LO(01) are 1(ON), then A%=6.)
  LO1()=&B0010
```

```
-LO(11) is set to 1(ON), then movement of axis 10 is prohibited. LO1(2,0)=3 -LO(12) and LO(10) are set to 1(ON),
```

then movements of axes 11 and 9 are prohibited.

MEMO

- When specifying multiple bits, specify them from left to right in descending order (high to low).
- Servo OFF to ON switching is disabled if an arm lock is in effect at even 1 axis.
- When performing JOG movement in the MANUAL mode, axis movement is possible at axes where an arm lock status is not in effect, even if an arm lock status is in effect at another axis.
- When executing movement commands from the program, etc., the "12.401 Arm locked" error will occur if an arm lock status is in effect at the axis in question.
- Arm locks sequentially correspond to axes in order from the axis with the smallest axis number used by robot 1.

Example) In the case of a configuration where robot 1 has 5 axes and robot 2 has 4 axes, the status of axes 1 to 5 of robot 1 is set by bits 0 to 4 of port 0, the status of axes 1 to 3 of robot 2 is set by bits 5 to 7 of port 0, and the prohibition of motion of axis 4 of robot 2 is set by bit 0 of port 1.

9.7 Timer output variable

This variable is used in the timer function of a sequence program.

normal program, it is an internal output.

TOm (b, • Format 2	••,b)
Format 2	
Format 2	
TO(mb, •	••, mb)
Values	m : port number 0, 1
	b : bit definition 0 to 7
	• If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

For details regarding sequence program usage examples, refer to the timer usage examples given in "4.2 Input/output variables" in Chapter 7.

```
Examples: A%=TOO()
        →Status of TO(07) to TO(00) is assigned
        to variable A%.
        A%=TOO(7,4,0)
        →Status of TO(07), TO(04) and TO(00) is
        assigned to variable A%.
        (If all above signals are 1 (ON), then A%=7.)
        A%=TO(06,04,01)
        →Status of TO(06), TO(04) and TO(01) is
        assigned to variable A%.
        (If all above signals except TO(01) are 1
        (ON), then A%=6.)
```

MEMO

• When specifying multiple bits, specify them from left to right in descending order (high to low).

m : port number 0 to 7, 10 to 17, 20 to 27 b : bit definition 0 to 7 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected. \rightarrow Input status of ports SI(17) to SI(10) is assigned to variable A%.

```
A%=SI5(7,4,0)
 \rightarrowInput status of SI(57), SI(54) and
  SI(50) is assigned to variable A%.
 (If all above signals are 1(ON), then A%=7.)
A%=SI(27,15,10)
 \rightarrowInput status of SI(27), SI(15) and
  SI(10) is assigned to variable A%.
 (If all above signals except SI(10) are 1^
 (ON), then A%=6.)
WAIT SI(21)=1
 \rightarrowWaits until SI(21) sets to 1 (ON).
```

.....

• When specifying multiple bits, specify them from left to right in descending order (high to law). • A "0" is input if a serial port does not actually exist.

.....

Serial input variable

This variable is used to indicate the status of serial input signals.

Format 1

Format 2

Values

 $SIm(b, \cdots, b)$

SI(mb, · · · , mb)

Examples: A%=SI1()

.....

3

9.9

Serial output variable

This variable is used to define the serial output signals and indicate the output status.

Format 1

 $SOm(b, \cdots, b)$

Format 2

 $SO(mb, \cdots, mb)$

Values m : port number 0 to 7, 10 to 17, 20 to 27 b : bit definition 0 to 7 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected. Examples: A%=SO2() \rightarrow Output status of SO(27) to SO(20) is

assigned to variable A%.

```
A%=SO5(7,4,0)
 \rightarrowOutput status of SO(57), SO(54) and
  SO(50) is assigned to variable A%.
```

(If all above signals turn 1(ON), then A%=7.)

```
A%=SO(37,25,20)
 \rightarrowOutput status of SO(37), SO(25) and
  SO(20) is assigned to variable A%.
 (If all above signals except SO(25) turn 1(ON), then A%=5.)
```

SO3()=B%

 \rightarrow Changes the output status of SO(37) to SO(30) to one indicated by B%. (If B% is 123, 123 is expressed B01111011 as a binary number, that means SO(37) and SO(32) turn O(OFF), the other bits turn 1(ON).) SO4(5, 4, 0) = & B101

 \rightarrow DO(45) and DO(40) turn 1(ON), DO(44) turns 0(OFF).

..... • When specifying multiple bits, specify them from left to right in descending order (high to law). • If a serial port does not actually exist, the data is not output externally.

9.10	Serial word input This variable indicates the status of the serial input word information.	1
	Format SIW (m)	
	Values m : port number 2 to 15	2
	The acquisition range is 0 (&H0000) to 65,535 (&HFFFF). Examples: A%=SIW(2)	3
	→The input status from SIW (2) is assigned to variable A%.	-
	A%=SIW(15) →The input status from SIW (15) is assigned to variable A%.	4
MEMO)	• The information is handled as unsigned word data.	5
	• "0" is input if a serial port does not actually exist.	5

Serial double word input

9.11

This variable indicates the state of the serial input word information as a double word.

	Format
	SID(m)
	Values m : port number 2, 4, 6, 8, 10, 12, 14 The acquisition range is -2,147,483,648(&H80000000) to 2,147,483,647(&H7FFFFFF).
	<pre>Examples: A%=SID(2)</pre>
MEMO)	 The information is handled as signed double word data. "0" is input if a serial port does not actually exist. The lower port number data is placed at the lower address. For example, if SIW(2) =&H2345, SIW(3) =&H0001, then SID(2) =&H00012345.

9.12	Serial word output				
	Outputs to the serial output word information or indicates the output status.				
	Format				
	SOW(m)				
	Valuesm : port number				
	Examples: A%=SOW(2)				
	→The output status of SOW (2) is assigned to variable A%. SOW(15)=A%				
	→The contents of variable A% are assigned in SOW (15).				
	If the variable A% value exceeds the output range, the low-order word information will be assigned. SOW(15)=-255				
	→The contents of -255 (&HFFFFFF01) are assigned to SOW (15).				
	-255 is a negative value, so the low-order word information (&HFF01) will be assigned.				
MEMO	 The information is handled as unsigned word data. If a serial port does not actually exist, the data is not output externally. If a value exceeding the output range is assigned, the low-order 2-byte information is output. 				
9.13	Serial double word output				
	Output the status of serial output word information in a double word, or indicates the output status.				
	Format SOD(m)				
	Values m : port number 2, 4, 6, 8, 10, 12, 14 The output range is -2,147,483,648(&H80000000) to 2,147,483,647(&H7FFFFFF).				
	Examples: A%=SOD(2) →The output status of SOD (2) is assigned to variable A%. SOD(14)=A% →The contents of variable A% are assigned in SOD (14).				
MEMO	• The information is handled as signed double word data.				
	 If a serial port does not actually exist, the data is not output externally. The lower port number data is placed at the lower address. For example, if SOW(2) =&H2345, SOW(3) =&H0001, then SOD(2) =&H00012345. 				

10 Bit Settings

Bits can be specified for input/output variables by any of the following methods.

1. Single bit

To specify only 1 of the bits, the target port number and bit number are specified in parentheses. The port number may also be specified outside the parentheses.

```
Programming example: DOm(b)DOm(b)
Example: DO(25) Specifies bit 5 of port 2.
DO2(5)
```

2. Same-port multiple bits

To specify multiple bits at the same port, those bit numbers are specified in parentheses (separated by commas) following the port number.

The port number may also be specified in parentheses.

```
Programming example: DOm(b,b,...,b) DO(mb,mb,...,mb)
Example: DO2(7,5,3) Specifies DO(27), DO(25), DO(23)
DO(27,25,23)
```

3. Different-port multiple bits

To specify multiple bits at different ports, 2-digit consisting of the port number and the bit number must be specified in parentheses and must be separated by commas. Up to 8 bits can be written.

```
Programming example: DO(mb,mb,...,mb)
Example: DO(37,25,20) Specifies DO(37), DO(25), DO(20).
```

4. All bits of 1 port

To specify all bits of a single port, use parentheses after the port number. Methods 2 and 3 shown above can also be used.

Valid range of variables

11.1 Valid range of dynamic (array) variables

Dynamic (array) variables are divided into global variables and local variables, according to their declaration position in the program. Global and local variables have different valid ranges.

Variable Type	Explanation
Global variables	Variables are declared outside of sub-procedures (outside of program areas enclosed by a SUB statement and END SUB statement). These variables are valid throughout the entire program.
Local variables	Variables are declared within sub-procedures and are valid only in these sub-procedures.

- For details regarding arrays, refer to Chapter 3 "5 Array variables".
 - A variable declared at the program level can be referenced from a sub-procedure without being passed along as a dummy argument, by using the SHARED statement (for details, refer to Chapter 8 "111 SHARED").

11.2 Valid range of static variables

.....

Static variable data is not cleared when a program reset occurs. Moreover, variable data can be changed and referenced from any program.

The variable names are determined as shown below (they cannot be named as desired).

Variable type	Variable name
Integer variable	SGIn (n: 0 to 31)
Real variable	SGRn (n: 0 to 31)

3

12 Clearing variables

12.1 Clearing dynamic variables

In the cases below, numeric variables are cleared to zero, and character variables are cleared to a null string. The array is cleared in the same manner.

- When a program reset occurs.
- When dedicated input signal DI15 (program reset input) was turned on while the program was stopped in AUTO mode.
- When either of the following is initialized by an initialization operation.
 - 1. Program memory
 - 2. Entire memory
- When any of the following online commands was executed.
 @RESET, @INIT PGM, @INIT MEM, @INIT ALL
- When the HALTALL statement was executed in the program (HALT statement does not clear dynamic variables).

12.2 Clearing static variables

In the cases below, integer variables and real variables are cleared to zero.

- When the following is initialized by an initialization operation. Entire memory
- When any of the following online commands was executed.
 @INIT MEM, @INIT ALL

Chapter 4 Expressions and Operations

1	Arithmetic operations4	-1
2	Character string operations4	-4
3	Point data format4	-5
4	DI/DO conditional expressions4	-6

1

Arithmetic operations

1.1 Arithmetic operators

Operators	Usage Example	Meaning
+	A+B	Adds A to B
-	A-B	Subtracts B from A
*	A*B	Multiplies A by B
1	A/B	Divides A by B
^	A^B	Obtains the B exponent of A (exponent operation)
-	-A	Reverses the sign of A
MOD	A MOD B	Obtains the remainder A divided by B

When a "remainder" (MOD) operation involves real numbers, **the decimal value is rounded off to the nearest whole number which is then converted to an integer** before the calculation is executed. The result represents the remainder of an integer division operation.

Examples: A=15 MOD 2 \rightarrow		A=1(15/2=71)
A=17.34 MOD 5.98	\rightarrow	A=2(17/5=32)

1.2 Relational operators

Relational operators are used to compare 2 values. If the result is "true", a "-1" is obtained. If it is "false", a "0" is obtained.

Operators	Usage Example	Meaning
=	A=B	"-1" if A and B are equal, "0" if not.
<>, ≻<	A⇔B	"-1" if A and B are unequal, "0" if not.
<	A <b< td=""><td>"-1" if A is smaller than B, "0" if not.</td></b<>	"-1" if A is smaller than B, "0" if not.
>	A>B	"-1" if A is larger than B, "0" if not.
<=, =<	A<=B	"-1" if A is equal to or smaller than B, "0" if not.
>=, =>	A>=B	"-1" if A is equal to or larger than B, "0" if not.
Examples:	A=10>5	\rightarrow Since 10 > 5 is "true", A = -1.

• When using equivalence relational operators with real variables and real arrays, the desired result may not be obtained due to the round-off error.

Examples: A=2

B=SQR(A!) IF A!=B!*B! THEN... → In this case, A! will be unequal to B!*B!.

1.3 Logic operations

I

Logic operators are used to manipulate 1 or 2 values bit by bit. For example, the status of an I/O port can be manipulated.

- Depending on the logic operation performed, the results generated are either 0 or 1.
- Logic operations with real numbers convert the values into integers before they are executed.

Operators	Functions	Meaning
NOT, ~	Logical NOT	Reverses the bits.
AND, &	Logical AND	Becomes "1" when both bits are "1".
OR, I	Logical OR	Becomes "1" when either of the bits is "1".
XOR	Exclusive OR	Becomes "1" when both bits are different.
EQV	Logical equivalence operator	Becomes "1" when both bits are equal.
IMP	Logical implication operator	Becomes "0" when the first bit is "1" and the second bit is "0".

Examples: A%=NOT 13.05 \rightarrow "-14" is assigned to A% (reversed after being rounded off to 13).

Bit	7	6	5	4	3	2	1	0
13	0	0	0	0	1	1	0	1
NOT 13=-14	1	1	1	1	0	0	1	0

Examples: A%=3 AND 10 \rightarrow "2" is assigned to A%

Bit	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	1	1
10	0	0	0	0	1	0	1	0
3 AND 10 = 2	0	0	0	0	0	0	1	0

Examples: A%=3 OR 10 \rightarrow "11" is assigned to A%

Bit	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	1	1
10	0	0	0	0	1	0	1	0
3 OR 10 = 11	0	0	0	0	1	0	1	1

Examples: A%=3 XOR 10 \rightarrow "9" is assigned to A%

Bit	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	1	1
10	0	0	0	0	1	0	1	0
3 XOR 10 = 9	0	0	0	0	1	0	0	1

1.4 Priority of arithmetic operation

Operations are performed in the following order of priority. When two operations of equal priority appear in the same statement, the operations are executed in order from left to right.

Priority Rank	Arithmetic Operation
1	Expressions included in parentheses
2	Functions, variables
3	^ (exponents)
4	Independent "+" and "-" signs (Monominal operators)
5	* (Multiplication), / (Division)
6	MOD
7	+ (Addition), - (Subtraction)
8	Relational operators
9	NOT, ~ (Logical NOT)
10	AND, & (Logical AND)
11	OR, I, XOR (Logical OR, exclusive OR)
12	EQV (Logical equivalence)
13	IMP (Logical implication)

1.5 Data format conversion

Data format is converted in cases where two values of different formats are involved in the same operation.

1. When a real number is assigned to an integer, decimal places are rounded off.

Examples: A%=125.67 → A%=126

2. When integers and real numbers are involved in the same operation, the result becomes a real number.

Examples: $A(0)=125 \times 0.25 \rightarrow A(0)=31.25$

3. When an integer is divided by an integer, the result is an integer with the remainder discarded.

Examples: $A(0) = 100/3 \rightarrow A(0) = 33$

Character string operations

2.1 Character string connection

Character strings may be combined by using the "+" sign.

SAMPLE	
A\$="OMRON"	
B\$="ROBOT"	
C\$="LANGUAGE"	
D\$="MOUNTER"	
E\$=A\$+" "+B\$+" "+C\$	
F\$=A\$+" "+D\$	
PRINT E\$	
PRINT F\$	
Results: OMRON ROBOT LANGUAG	E
OMRON MOUNTER	

2.2 Character string comparison

Characters can be compared with the same relational operators as used for numeric values. Character string comparison can be used to find out the contents of character strings, or to sort character strings into alphabetical order.

- In the case of character strings, the comparison is performed from the beginning of each string, character by character.
- If all characters match in both strings, they are considered to be equal.
- Even if only one character in the string differs from its corresponding character in the other string, then the string with the larger (higher) character code is treated as the larger string.
- When the character string lengths differ, the longer of the character strings is judged to be the greater value string.

All examples below are "true".

Examples: "AA"<"AB" "X&">"X#" "DESK"<"DESKS"

3 Point data format

.....

ΝΟΤΕ

- •The data format is common for axes 1 to 6 for both the joint coordinate format and the Cartesian coordinate format.
- Plus (+) signs can be omitted.

There are two types of point data formats: joint coordinate format and Cartesian coordinate format. Point numbers are in the range of 0 to 29999.

Coordinate Format	Data Format	Explanation
Joint coordinate format	± nnnnnn	This is a decimal integer constant of 8 digits or less with a plus or minus sign, and can be specified from –999999999 to 999999999. Unit: [pulses]
Cartesian coordinate format	± nnn.nn to ± nnnnnnn	This is a decimal fraction of a total of 7 digits including 3 or less decimal places. Unit: [mm] or [degrees]

When setting an extended hand system flag for SCARA robots, set either "1" or "2" at the end of the data. If a value other than "1" or "2" is set, or if no value is designated, "0" will be set to indicate that no hand system flag is set.

Hand System	Data Value
RIGHTY (right-handed system)	1
LEFTY (left-handed system)	2

DI/DO conditional expressions

DI/DO conditional expressions may be used to set conditions for WAIT statements and STOPON options in MOVE statements.

Numeric constants, variables and arithmetic operators that may be used with DI/DO conditional expressions are shown below.

• Constant

Decimal integer constant, binary integer constant, hexadecimal integer constant

• Variables

Global integer type, global real type, input/output type

Operators

Relational operators, logic operators

- Operation priority
 - 1. Relational operators
 - 2. NOT, ~
 - 3. AND, &
 - 4. OR, |, XOR

Chapter 5 Multiple Robot Control

1	Overview5-1
2	Command list with a robot setting5-2

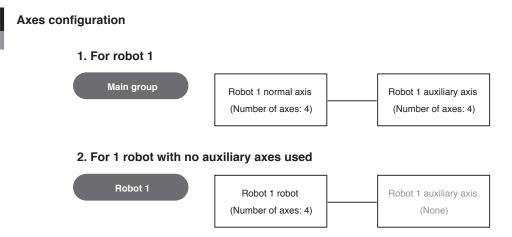
Overview

YRCX can be used to control multiple robots (up to 4).

The multi-task function also enables multiple robots to move asynchronously.

To use this function, settings for multiple robots or settings for auxiliary axes must be made in the system prior to shipment.

The following settings are possible to the axes of robots.


- Robot 1 (4 axes)
- Robot 1 (4 axes) + robot 2 (4 axes) (when using the YC-LINK/E option)
- Robot 1 (4 axes) + robot 2 (4 axes) + robot 3 (4 axes) + robot 4 (4 axes)

(when a master controller is YRCX

and the YC-LINK/E option is used.)

Each robot consists of normal axes and auxiliary axes.

When using one robot without auxiliary axes, the setting is made only to normal axes.

33501-R9-00

Command list with a robot setting

The special commands and functions for robot movements and coordinate control are common for all robots. A robot can be specified with an option of a command. Main commands are shown below.

Operator	Comm	and name
Robot movement	DRIVE MOVE MOVET PMOVE WAIT ARM	DRIVEI MOVEI PATH SERVO
Coordinate control	CHANGE LEFTY RIGHTY	HAND PATH SHIFT
Status change	ACCEL ARCHP2 ARMTYP AXWGHT MSPEED OUTPOS TOLE	ARCHP1 ARMSEL ASPEED DECEL ORGORD SPEED WEIGHT WEIGHTG
Point operation	JTOXY XYTOJ	WHERE WHRXY
Parameter reference	ACCEL ARCHP2 AXWGHT ORGORD TOLE	ARCHP1 ARMTYP DECEL OUTPOS WEIGHT WEIGHTG
Status reference	ABSRPOS ARMSEL CURTQST MCHREF WHRXY	ARMCND ARMTYP CURTRQ WHERE
Torque control	TORQUE TRQTIME	TRQSTS CURTRQ

 An axis specified as an auxiliary axis cannot be moved with the MOVE, MOVEI, MOVET and PMOVE commands. Use the DRIVE or DRIVEI command to move it.

Chapter 6 Multi-tasking

1	Outline	6-1
2	Task definition method	6-1
3	Task status and transition	6-2
4	Multi-task program example	6-8
5	Sharing the data	6-8
6	Cautionary Items	6-9

3

1

The multi-task function performs multiple processing simultaneously in a parallel manner, and can be used to create programs of higher complexity. Before using the multi-task function, read this section thoroughly and make sure that you fully understand its contents.

Multi-tasking allows executing two or more tasks in parallel. However, this does not mean that multiple tasks are executed simultaneously because the controller has only one CPU to execute the tasks. In multi-tasking, the CPU time is shared among multiple tasks by assigning a priority to each task so that they can be executed efficiently.

- A maximum of 16 tasks (task 1 to task 16) can be executed in one program.
- Tasks can be prioritized and executed in their priority order (higher priority tasks are executed first).
- The priority level can be set to any level between 1 and 64.
- Smaller values have higher priority, and larger values have lower priority (High priority: 1 ⇔ 64: low priority).

2 Task definition method

A task is a set of instructions which are executed as a single sequence. As explained below, a task is defined by assigning a label to it.

- 1. Create one program that describes a command which is to be defined as a task.
- 2. In the START statement of the program that will be a main task, specify the program created at Step 1 above. Task numbers are then assigned, and the program starts.

```
SAMPLE
```

```
'MAIN TASK(TASK1)
START <SUB_PGM>,T2 ········· <SUB_PGM> is started as Task 2
*ST1:
MOVE P, P1, P0
   IF DO(20) = 1 THEN
      HALTALL
   ENDIF
GOTO *ST
HALTALL
Program name:SUB_PGM
'SUB TASK(TASK2)
         ····· Task 2 begins here
*IOTASK:
   IF DI(21) = 1 THEN
      DO(30) = 1
   ELSE
      DO(30)=0
   ENDIF
GOTO *IOTASK ..... Task 2 processing ends here
EXIT TASK
```

Task status and transition

There are 6 types of task status.

1. STOP status

A task is present but the task processing is stopped.

2. RUN status

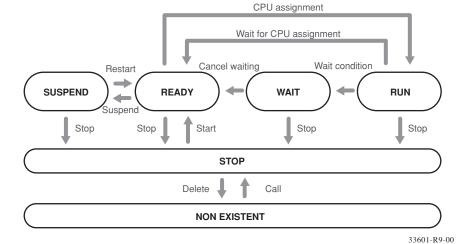
A task is present and the task processing is being executed by the CPU.

3. READY status

A task is present and ready to be allocated to the CPU for task processing.

4. WAIT status

A task is present and waiting for an event to begin the task processing.


5. SUSPEND status

A task is present but suspended while waiting to begin the task processing.

6. NON EXISTENT status

No tasks exist in the program. (The START command is used to perform a call.)

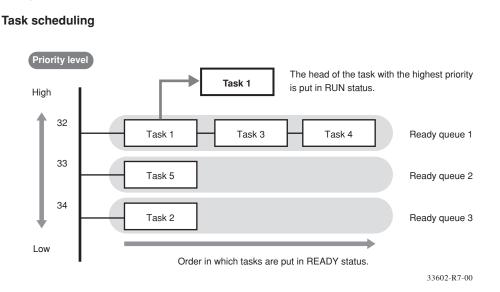
Task state transition

3.1 Starting tasks

When the START command is executed, a specified program is registered in the task and placed in RUN status. If the task number (1 to 16) is not specified by the START command, the task with the smallest number among the tasks yet to be started is automatically specified. For details regarding the START command, refer to "123 START" in Chapter 8.

MEMO

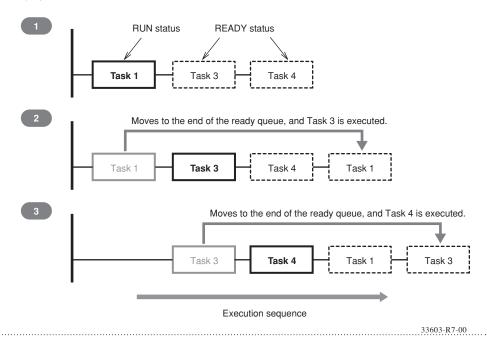
- When the LOAD command is executed, a specified program is registered in the task and placed in a STOP status. For details of the LOAD command, refer to "1. Register task" of "2.1 Program operations" in Chapter 12.
- If another program is already registered in the task number specified by the START command or the LOAD command, the "6.215: Task running" error will occur.
- When programs are registered in all task numbers and the START command or the LOAD command is executed without specifying the task number, the "6.263: Too many Tasks" error will occur.
- When the HALTALL command is executed, all tasks termitate and the task enters the NON EXISTENT (no task registration) status. When the main program is specified, the HALTALL command registers the main program in the task 1 and stops at the beginning line. When the main program is not specified, the HALTALL command registers the program that has been executed last (current program) in the task 1 and stops at the beginning line.


For details regarding the main program, refer to "Setting the main program" of YRCX operator's manual.

3.2 Task scheduling

Task scheduling determines the priority to be used in allocating tasks in the READY (execution enabled) status to the CPU and executing them.

When there are two or more tasks which are put in the READY status, ready queues for CPU allocation are used to determine the priority for executing the tasks. One of these READY status tasks is then selected and executed (RUN status).


Only tasks with the same priority ranking are assigned to a given ready queue. Therefore, where several tasks with differing priority rankings exist, a corresponding number of ready queues are created. Tasks within a given ready queue are handled on a first come first serve (FCFS) basis. The task where a READY status is first established has priority. The smaller the number, the higher the task priority level.

A RUN status task will be moved to the end of the ready queue if placed in a READY status by any of the following causes:

- 1) A WAIT status command was executed.
- 2) The CPU occupation time exceeds a specified time.
- 3) A task with a higher priority level is put in READY status.

Ready queue

• When the prescribed CPU occupation time elapses, the active command is ended, and processing moves to the next task. However, if there are no other tasks of the same or higher priority (same or higher ready queue), the same task will be executed again.

Condition wait in task

A task is put in the WAIT status (waiting for an event) when a command causing WAIT status is executed for that task. At this time, the transition to READY status does not take place until the wait condition is canceled.

1. When a command causing WAIT status is executed, the following transition happens.

- Task for which a command causing WAIT status is executed \rightarrow WAIT status
- Task at the head of the ready queue with higher priority \rightarrow RUN status
- MEMO

3.3

• For example, when a MOVE statement (a command that establishes WAIT status) is executed, the CPU sends a "MOVE" instruction to the driver, and then waits for a "MOVE COMPLETED" reply from the driver. This is "waiting for an event" status. In this case, WAIT status is established at the task which executed the MOVE command, and that task is moved to the end of the ready queue. RUN status is then established at the next task.

🚺 ΝΟΤΕ

If multiple tasks are in WAIT status awaiting the same condition event, or different condition events occur simultaneously, all tasks for which the waited events occur are put in READY status.

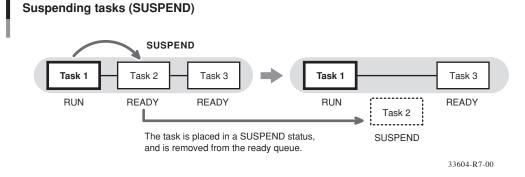
MEMO

- 2. When an event waited by the task in the WAIT status occurs, the following status transition takes place by task scheduling.
 - Task in the WAIT status for which the awaited event occurred \rightarrow READY status However, if the task put in the READY status was at the head of the ready queue with the highest priority, the following transition takes place.
 - 1) Task that is currently in RUN status \rightarrow READY status
 - 2) Task at the head of the ready queue with higher priority \rightarrow RUN status
- In the above MOVE statement example, the task is moved to the end of the ready queue. Then, when a "MOVE COMPLETED" reply is received, this task is placed in READY status.

Tasks are put in WAIT status by the following commands.

Event		Command			
Wait for axis movement to complete	Axis movement command	MOVE DRIVEI SERVO	MOVEI PMOVE WAIT ARM	MOVET PATH	DRIVE MOTOR
	Parameter command	ACCEL DECEL WEIGHT	ARCHP1 OUTPOS WEIGHTG	ARCHP2 TOLE	AXWGHT ORGORD
	Robot status change command	CHANGE MSPEED	SHIFT SPEED	LEFTY	ASPEED
Wait for time to elapse		DELAY, SET (Time should be specified.), WAIT ARM (Time should be specified.)			
Wait for condition to be met		WAIT			
Wait for data to send or to be received		SEND			
Wait for print buffer to become empty		PRINT			
Wait for key input		INPUT			

MEMO


• The tasks are not put in WAIT status if the event has been established before the above commands are executed.

3.4 Suspending tasks (SUSPEND)

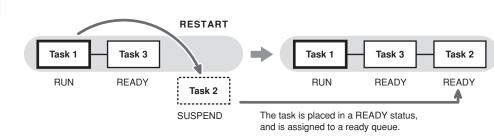
The SUSPEND command temporarily stops tasks other than task 1 and places them in SUSPEND status.

When the SUSPEND command is executed, the status transition takes place as follows.

- Task that executed the SUSPEND command \rightarrow RUN status
- Specified task → SUSPEND status

3.5 Restarting tasks (RESTART)

Tasks in the SUSPEND status can be restarted with the RESTART command. When the RESTART command is executed, the status transition takes place as follows.


Task for which the RESTART command was executed

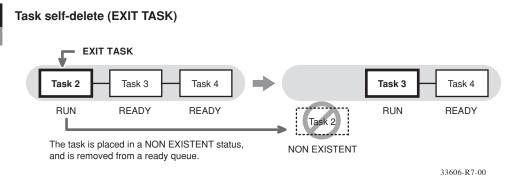
Restarting tasks (RESTART)

 \rightarrow RUN status

Specified task

→ READY status

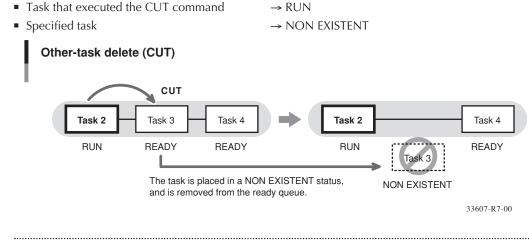
33605-R7-00


3.6 Deleting tasks

Task self-delete (EXIT TASK)

Tasks can delete themselves and set to the NON EXISTENT (no task registration) status by using the EXIT TASK command.

When the EXIT TASK command is executed, the status transition takes place as follows.


- Task that executed the EXIT TASK command \rightarrow NON EXISTENT status
- Task at the head of the ready queue with higher priority \rightarrow RUN status

Other-task delete (CUT)

Tasks can also delete the other tasks and put in the NON EXISTENT (no task registration) status by using the CUT command.

When the CUT command is executed, the status transition takes place as follows.

- MEMO
- If a SUSPEND command is executed for a WAIT-status task, the commands being executed by that task are ended.

All tasks stop if any of the following cases occurs.

1. HALTALL command is executed. (stop & reset)

All programs are reset and task is put in the NON EXISTENT status. When the main program is specified, the HALTALL command registers the main program in the task 1 and all tasks are put in the STOP status at the beginning line. When the main program is not specified, the HALTALL command registers the program that has been executed last (current program) in the task 1 and all tasks are put in the STOP status at the beginning line.

2. HOLDALL command is executed. (temporary stop)

All tasks are put in the STOP status. When the program is restarted, the tasks in the STOP status set to the READY or SUSPEND status.

3. STOP key on the programming box is pressed or the interlock signal is cut off.

Just as in the case where the HOLD command is executed, all tasks are put in the STOP status. When the program is restarted, the tasks in the STOP status set to the READY status (or, the task is placed the SUSPEND status after being placed in the READY status).

4. When the emergency stop button on the programming box is pressed or the emergency stop signal is cut off.

All tasks are put in the STOP status. At this point, the power to the robot is shut off and the servo sets to the non-hold state.

After the canceling emergency stop, when the program is restarted, the tasks in the STOP status are set to the READY or SUSPEND status. However, a servo ON is required in order to restart the robot power supply.

• When the program is restarted without being reset after the tasks have been stopped by a cause other than 1., then each task is processed from the status in which the task stopped. This holds true when the power to the controller is turned off and then turned on.

Multi-task program example

Tasks are executed in their scheduled order. An example of a multi-task program is shown below.

```
SAMPLE
'TASK1
START <SUB_TSK2>,T2
START <SUB_TSK3>,T3
*ST1:
   DO(20) = 1
   WAIT MO(20) = 1
   MOVE P, P1, P2, Z=0
   IF MO(21)=1 THEN *FIN
GOTO *ST1
*FIN:
CUT T2
HALTTALL
Program name:SUB_TSK2
'TASK2
         ..... Task 2 begins here.
*ST2:
   IF DI(20) = 1
      MO(20) = 1
      DELAY 100
   ELSE
      MO(20) = 0
   ENDIF
GOTO *ST2
EXIT TASK Ends here.
Program name:SUB_TSK3
'TASK3
         ..... Task 3 begins here.
*ST3:
   IF DI(21) = 0 THEN *ST3
   IF DI(30) = 0 THEN *ST3
   IF DI(33) = 0 THEN *ST3
   MO(21) = 1
EXIT TASK
          ..... Ends here.
```

5 Sharing the data

All global variables, static variables, input/output variables, point data, shift coordinate definition data, hand definition data, and pallet definition data are shared between all tasks. Execution of each task can be controlled while using the same variables and data shared with the other tasks.

MEMO

• In this case, however, use sufficient caution when rewriting the variable and data because improper changes may cause trouble in the task processing. Take great care when sharing the same variables and data.

5

6

6 Cautionary Items

A freeze may occur if subtasks are continuously started (START command) and ended (EXIT TASK command) by a main task in an alternating manner.

This occurs for the following reason: if the main task and subtask priority levels are the same, a task transition to the main task occurs during subtask END processing, and an illegal task status then occurs when the main task attempts to start a subtask.

Therefore, in order to properly execute the program, the subtask priority level must be set higher than that of the main task. This prevents a task transition condition from occurring during execution of the EXIT TASK command.

In the sample program shown below, the priority level of task 1 (main task) is set as 32, and the priority level of task 2 is set as 31 (the lower the value, the higher the priority).

SAMPLE FLAG1 = 0*MAIN_TASK: IF FLAG1=0 THEN FLAG1 = 1START <SUB_PGM>,T2,31 ····· <SUB_PGM> is started as task 2 at the priority level of 31. ENDIF GOTO *MAIN_TASK HALTALL Program name:SUB_PGM '================== . TASK2 '================== *TASK2: DRIVE(1,P1) WAIT ARM(1) DRIVE(1,P2) WAIT ARM(1) FLAG1 = 0EXIT TASK

Chapter 7 Sequence function

1	Sequence function7-1
2	Creating a sequence program7-1
3	Executing a sequence program7-4
4	Programming a sequence program7-5

Sequence function

NOTE

1

- While the "DI10: sequence control input" is ON, a sequence program runs according to its own cycle, regardless of robot program starts and stops.
- The "DO12: Sequence program running" dedicated signal output occurs while a sequence program is being executed.

Besides normal robot programs, the YRCX controller can execute high-speed processing programs (sequence programs) in response to the robot input/output (DI, DO, MO, LO, TO, SI, SO) signals.

- This function allows to monitor the input/output signals of sensors, push button switches, solenoid valves, etc. and move them. The sequence program starts running simultaneously the controller is turned on.
- The sequence program can be written in the same robot language used for robot programs. (The ladder logic are not necessary).
- Naming the program "SEQUENCE" makes the controller recognize as sequence program.

34701-R9-00

34702-R9-00

- For details regarding conditions to execute a sequence program, refer to "3 Executing a sequence program" in this Chapter.
- General-purpose outputs are not reset by the program reset while the sequence function is running.

MEMO

- In the manner shown below, the reset of general-purpose output can be set while the sequence program compile.
 - Set a sequence flag value of the controller parameter at "3".
 - Select "Output Reset Enable" on the sequence execution flag dialogue in the support software "SCARA-YRCX Studio".

2 Creating a sequence program

2.1 Programming method

.....

Step 1 Select (Program Edit) from (Edit) menus on the "MENU" screen of the programming box.

Step 1 Program edit

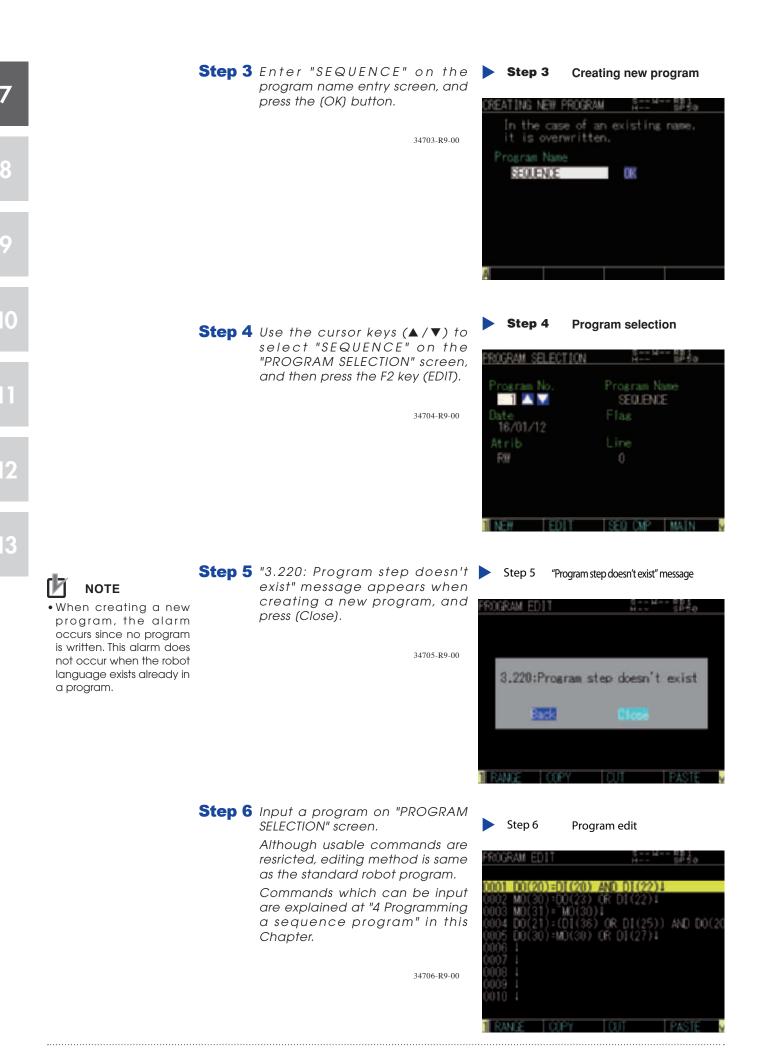
7

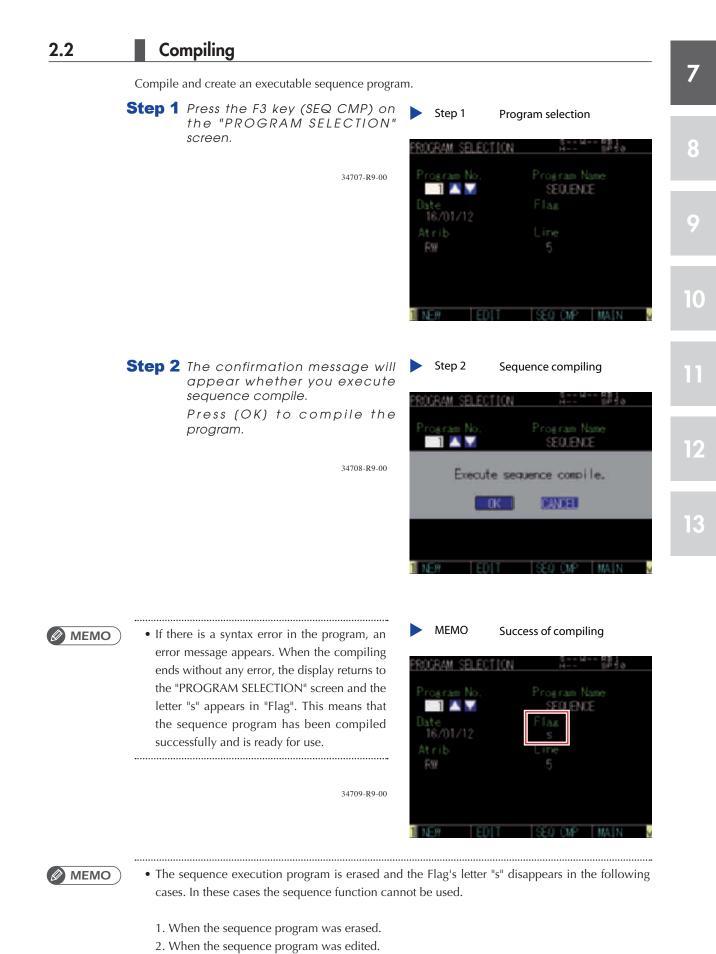
8

9

10

12


13


Step 2 Press the F1 key (NEW) on the "PROGRAM SELECTION" screen.

Step 2

Program selection

- 3. When the program data was initialized.
- 4. When the "9.729: Sequence object destroyed." alarm occured.

7	3 Executing	g a sequence program
	Al	I the following conditions must be satisfied to execute a sequence program.
8	1. 2.	The sequence program has been compiled. The sequence program execution flag is enabled. (For details regarding the sequence program execution flag, refer to the YRCX operator's manual.)
9	3.	The external sequence control input (DI10) contact is ON.
10		Sequence program execution in progress Indicated during execution PROGRAM SELECTION 도도이 그 방울이 Program No. Program Name
11		Image: Sequence Date Elag 34710-R9-00
12	3.1 Th	Sequence program STEP execution e sequence program may be executed line by line while checking one command line at a time.
13	Th Fo	is step execution can be executed in the same way as normal programs. r details, refer to the YRCX operator's manual. hen the step is executed, satisfying the conditions described in the previous section is not

required.

Programming a sequence program 4

When programming a sequence program, you may use only assignment statements comprised of input/output variables and logical operators.

7

13

	Format	
	output variable = expression	9
	Values expression Any one of the following can be used.	
	Parallel input/output variables	10
	Internal output variables Arm look output variables	
	Arm lock output variablesTimer output variables	
	Serial input/output variable	
	• The logic operation expression shown above	
4.2	Input/output variables	
	Each variable must be specified in a 1-bit format	12

Each variable must be specified in a 1-bit format

\cdot Correct examples	DO(35)
	MO(24)
	DI(16)
 Incorrect examples 	DO(37, 24)
	DI3(4)
	MO3 ()

Input variables 4.2.1

Parallel input variables

Format	
DI(mb)	m: Port number 0 to 7, 10 to 17, 20 to 27
	b: bit definition ····· 0 to 7

These variables show the status of the parallel input signal.

Serial input variables

Format	
SI(mb)	m: Port number 0 to 7, 10 to 17, 20 to 27
	b: bit definition ····· 0 to 7

Indicates a serial input signal status. Only referencing can occur. No controls are possible.

4.2.2 Output variables

Parallel output variables

Format	
DO(mb)	m: Port number 0 to 7, 10 to 17, 20 to 27
	b: bit definition ····· 0 to 7

A parallel output is specified, or the output status is referenced. Ports 0 and 1 are for referencing only, and no outputs can occur there.

Internal output variables

Format	
MO(mb)	m: Port number 0 to 7, 10 to 17, 20 to 27, 30 to 37
	b: bit definition ····· 0 to 7

These variables are used within the controller. Ports 30 to 37 are for referencing only and ON/OFF can not be controlled.

Arm lock output variables

Format	
LO(mb)	m: port number ····· 0, 1
b:	bit definition · · · · · · · · 0 to 7

These variables are used to prohibit the arm (axis) movement. Movement is prohibited when ON. LO(00) to LO(07) corresponds to arm 1 to arm 8, LO(10) to LO(17) corresponds to arm 9 to arm 16, respectively.

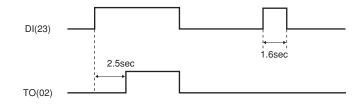
Timer output variables

Format	
TO(mb)	m: port number ····· 0, 1
	b: bit definition 0 to 7

There are a total of 16 timer output variables: TO(00) to TO(17). The timer of each variable is defined by the timer definition statement TIM00 to 17.

Serial output variables

Control or reference serial output signal status. Port 0 is for referencing only, and no controls are possible.


Timer usage example

SAMPLE

```
TIM02 = 2500 ····· Timer 02 is set to 2.5 seconds.
TO(02) = DI(23) ····· Timer starts when DI(23) switches ON.
```

- When DI(23) is ON, after 2.5 seconds, TO(02) is set ON.
- When DI(23) is OFF, TO(02) is also OFF.
- When DI(23) isn't ON after 2.5 second or more, TO(02) does not change to ON.

Timer usage example: Timing chart

33701-R7-00

7

8

9

10

12

ß

4.3 Timer definition statement

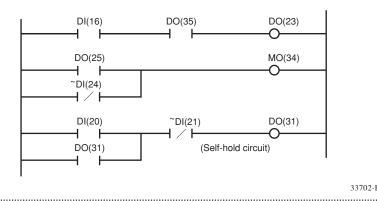
Format	
TIMmb=	time m: Port number 0, 1 b: bit definition 0 to 7
Values	time 100 to 999,900ms (0.1 to 999.9 second)
Meaning	The timer definition statement sets the timer value of the timer output variable. This

caning The timer definition statement sets the timer value of the timer output variable. This definition statement may be anywhere in the program.
When the timer definition statement is omitted, the timer setting value of the variable is 0.
TIM00 to 17 correspond to the timer output variables TO(00) to (17).
However, since the units are set every 100ms, values less than 99ms are truncated.

4.4 Logical operators

Operators	Functions	Meaning
NOT, ~	Logical NOT	Reverses the bits.
AND, &	Logical AND	Becomes "1" when both bits are "1".
OR, I	Logical OR	Becomes "1" when either of the bits is "1".
XOR	Exclusive OR	Becomes "1" when both bits are different.
EQV	Logical equivalence operator	Becomes "1" when both bits are equal.
IMP	Logical implication operator	Becomes "0" when the first bit is "1" and the second bit is "0".

4.5


Priority of logic operations

Priority Ranking	Operation Content
1	Expressions in parentheses
2	NOT, ~ (Logical NOT)
3	AND, & (Logical AND)
4	OR, I (Logical OR)
5	XOR (Exclusive OR)
6	EQV (Logical equivalence operator)
7	IMP (Logical implication operator)

Example with a ladder statement substitution

```
SAMPLE
DO(23)=DI(16)&DO(35)
MO(34)=DO(25) | ~DI(24)
DO(31) = (DI(20) | DO(31)) &~DI(21)
```

Ladder diagram

33702-R7-00

- "NOT" cannot be used prior to the first parenthesis " (" or on the left of an expression. For example, the following commands cannot be used.
 - •DO(21)=~(DI(30) | DI(32))
 - •~DO(30)=DI(22)&DI(27)
 - Numeric values cannot be assigned on the right of an expression.
 - •MO(35)=1
 - •DO(26)=0
 - There is no need to define a "HALT" or "HOLD" statement at the end of the program.
 - The variables used in sequence programs are shared with robot programs, so be careful not to make improper changes when using the same variables between them.

4.6

MEMO

Sequence program specifications

Item	Specification
Commands	Logical NOT, AND, OR, XOR, EQV, IMP
I/O	Same as robot language
Program capacity	16,384 bytes (A maximum of 2,048 variables can be specified.)
Scan time	1 to 4ms depending on the number of steps (This changes automatically.)

9 10

Chapter 8 Robot Language Lists

How to	read the robot language table	8-1
Comm	and list in alphabetic order	8-2
Opera	lion-specific	8-7
Functio	ons: in alphabetic order	8-13
Functio	ons: operation-specific	8-16
1	ABS	8-18
2	ABSRPOS	8-19
3	ACCEL	8-20
4	ARCHP1 / ARCHP2	8-21
5	ARMCND	8-23
6	ARMSEL	8-24
7	ARMTYP	8-25
8	ASPEED	8-26
9	ATN / ATN2	8-27
10	AXWGHT	8-28
11	CALL	8-29
12	CHANGE	8-30
13	CHGPRI	8-31
14	CHR\$	8-32
15	CLOSE	8-33

16	CO\$	8-34
17	CURTQST	8-35
18	CURTRQ	8-36
19	CUT	8-37
20	DATE\$	8-38
21	DECEL	8-39
22	DEF FN	8-40
23	DEGRAD	8-41
24	DELAY	8-42
25	DI	8-43
26	DIM	8-44
27	DIST	8-45
28	DO	8-46
29	DRIVE	8-48
30	DRIVEI	8-52
31	END SELECT	8-57
32	END SUB	8-58
33	ERR / ERL	8-59
34	ETHSTS	8-60
35	EXIT FOR	8-61
36	EXIT SUB	8-62
37	EXIT TASK	8-63
38	FOR to NEXT	8-64
39	GEPSTS	8-65
40	GOSUB to RETURN	8-66
41	GOTO	8-67
42	HALT	8-68
43	HALTALL	8-69
44	HAND	8-70
45	HOLD	8-73
46	HOLDALL	8-74
47	IF	8-75
48	INPUT	8-77
49	INT	8-79
50	JTOXY	8-80

LEFT\$	8-81
LEFTY	8-82
LEN	8-83
LET	8-84
LO	8-87
LOCx	8-89
LSHIFT	8-91
MCHREF	8-92
MID\$	8-93
МО	8-94
MOTOR	8-96
MOVE	8-97
MOVEI	. 8-112
MOVET	.8-122
MTRDUTY	.8-132
OFFLINE	.8-133
ON ERROR GOTO	.8-134
ON to GOSUB	.8-135
ON to GOTO	.8-136
ONLINE	.8-137
OPEN	.8-138
ORD	.8-139
ORGORD	.8-140
ORIGIN	.8-141
OUT	.8-142
OUTPOS	.8-143
PATH	.8-145
PATH END	.8-151
PATH SET	.8-152
PATH START	.8-155
PDEF	.8-159
PGMTSK	.8-160
PGN	.8-161
PMOVE	.8-162
Pn	8-166
	LEFTY LEN LET LO LOCX LSHIFT MCHREF MID\$ MO MOVE MOVEI MOVEI MOVET MTRDUTY OFFLINE ON to GOSUB ON to GOTO ON to GOTO ONLINE OPEN ORD ORGORD ORIGIN OUT OUTPOS PATH PATH SET PATH START POEF PGN PMOVE

86	PPNT	.8-168
87	PRINT	.8-169
88	PSHFRC	.8-170
89	PSHJGSP	.8-171
90	PSHMTD	.8-172
91	PSHRSLT	.8-173
92	PSHSPD	.8-174
93	PSHTIME	.8-175
94	PUSH	.8-176
95	RADDEG	.8-181
96	REM	.8-182
97	RESET	.8-183
98	RESTART	.8-184
99	RESUME	.8-185
100	RETURN	.8-186
101	RIGHT\$.8-187
102	RIGHTY	.8-188
103	RSHIFT	.8-189
104	SELECT CASE to END SELECT	.8-190
105	SEND	.8-191
106	SERVO	.8-193
107	SET	.8-194
108	SETGEP	.8-195
109	SGI	.8-196
110	SGR	.8-197
111	SHARED	.8-198
112	SHIFT	.8-199
113	SI	.8-200
114	SID	.8-201
115	SIN	.8-202
116	SIW	.8-203
117	Sn	.8-204
118	SO	.8-205
119	SOD	.8-207

120	SOW	
121	SPEED	
122	SQR	
123	START	8-211
124	STR\$	
125	SUB to END SUB	
126	SUSPEND	
127	SWI	
128	TAN	
129	TCOUNTER	
130	TIME\$	
131	TIMER	
132	то	
133	TOLE	
134	TORQUE	
135	TSKPGM	
136	VAL	
137	WAIT	
138	WAIT ARM	
139	WEIGHT	
140	WEIGHTG	
141	WEND	
142	WHERE	
143	WHILE to WEND	
144	WHRXY	
145	XYTOJ	

How to read the robot language table

The key to reading the following robot language table is explained below.

(1) 		(2) I	(3) I	(4) I
No.	Name	Description	Online	Туре
26	DIM	Declares array variable	_	Command

(1) No.

Indicates the Item No. where this robot language is explained in detail.

cample of "No." column
No. 26 DIM Declares array variable
Dectares array variable
Format
DIM array definition , array definition ,
Format
name
Values constantArray subscript: 0 to 32,767 (positive integer)
Explanation Directly declares the name and length (number of elements) of an array variable. A maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can be declared in a single line by using comma (,) to separate.
 MEMO Array subscripts can be "0 to a specified value", with their total number being the <i>constant</i> + 1. A "9.300: Memory full" error may occur depending on the size of each dimension defined in an array.
SAMPLE
DIM A%(10) Defines a integer array variable A% (0) to A% (10). (Number of elements: 11).
DIM B(2,3,4) Defines a real array variable B (0, 0, 0) to B (2, 3, 4). (Number of elements: 60).
<pre>DIM C%(2,2),D!(10) Defines an integer array C%</pre>

(2) Description

Explains the function of the robot language.

(3) Online

If " \checkmark " is indicated at this item, online commands can be used.

If "-" is indicated at this item, commands containing operands that cannot partially be executed by online command.

(4) Type

Indicates the robot language type as "Command" or "Function".

When a command is used as both a "Command" and "Function", this is expressed as follows: Command/Function

Command list in alphabetic order

No.	Name	Description	Online	Туре
Α				
1	ABS	Acquires the absolute value of a specified value.	✓	Function
2	ABSRPOS	Acquires the machine reference value for specified robot axes. (Valid only for axes whose return-to-origin method is set as "mark".)	1	Function
3	ACCEL	Specifies/acquires the acceleration coefficient parameter of a specified robot.	1	Command Function
4	ARCHP1	Specifies/acquires the arch position 1 parameter of a specified robot.	1	Command Function
4	ARCHP2	Specifies/acquires the arch position 2 parameter of a specified robot.	1	Command Function
5	ARMCND	Acquires the current arm status of a specified robot.	1	Function
6	ARMSEL	Specifies/acquires the current "hand system" setting of a specified robot.	1	Command Function
7	ARMTYP	Specifies/acquires the "hand system" setting of a specified robot.	1	Command Function
8	ASPEED	Specifies/acquires the AUTO movement speed of a specified robot.	1	Command Function
9	ATN	Acquires the arctangent of the specified value.	 ✓ 	Function
9	ATN2	Acquires the arctangent of the specified X-Y coordinates.	1	Function
10	AXWGHT	Specifies/acquires the axis tip weight parameter of a specified robot.	1	Command Function
С				
11	CALL	Calls a sub-procedure.	-	Command
12	CHANGE	Switches the hand of a specified robot.	1	Command
13	CHGPRI	Changes the priority ranking of a specified task.	1	Command
14	CHR\$	Acquires a character with the specified character code.	1	Function
15	CLOSE	Close the specified General Ethernet Port.	1	Command
16	COS	Acquires the cosine value of a specified value.	 ✓ 	Function
17	CURTQST	Acquires the current torque value ratio of a specified axis to the rated torque.	~	Function
18	CURTRQ	Acquires the current torque value of the specified axis of a specified robot.	1	Function
19	CUT	Terminates another task currently being executed or temporarily stopped.	1	Command
D				
20	DATE\$	Acquires the date as a "yy/mm/dd" format character string.	 ✓ 	Function
21	DECEL	Specifies/acquires the deceleration rate parameter of a specified robot.	1	Command Function
22	DEF FN	Defines the functions that can be used by the user.	_	Command
23	DEGRAD	Converts a specified value to radians (↔RADDEG).	1	Function
24	DELAY	Waits for the specified period (units: ms).	_	Command
25	DI	Acquires the specified DI status.	1	Function
26	DIM	Declares the array variable name and the number of elements.	_	Command
27	DIST	Acquires the distance between 2 specified points.	1	Function
28	DO	Outputs a specified value to the DO port or acquires the DO status.	1	Command Function
29	DRIVE	Moves a specified axis of a specified robot to an absolute position.	1	Command

No.	Name	Description	Online	Туре	
30	DRIVEI	Moves a specified axis of a specified robot to a relative position.	 ✓ 	Command	
Ε					
31	END SELECT	Terminates the SELECT CASE statement.	_	Command	
32	END SUB	Terminates the sub-procedure definition.	_	Command	
33	ERR / ERL	Acquires the error code number of an error which has occurred / the line number where an error occurred.	1	Function	
34	ETHSTS	Acquires the Ethernet port status.	1	Function	
35	EXIT FOR	Terminates the FOR to NEXT statement loop.	_	Command	
36	EXIT SUB	Terminates the sub-procedure defined by the SUB to END statement.	_	Command	
37	EXIT TASK	Terminates its own task which is in progress.	_	Command	
F					
38	FOR to NEXT	Executes the FOR to NEXT statement repeatedly until a specified value is exceeded.	_	Command	
G	·				
39	GEPSTS	Acquires the General Ethernet Port status.	1	Function	
40	GOSUB to RETURN	Jumps to a subroutine with the label specified by GOSUB statement, and executes that subroutine.	_	Command	
41	GOTO	Unconditionally jumps to the line specified by a label.	_	Command	
Н					
42	HALT	Stops the program and performs a reset.	_	Command	
43	HALTALL	Stops and resets all programs.	_	Command	1
44	HAND	Defines the hand of a specified robot.	1	Command	
45	HOLD	Temporarily stops the program.	_	Command	
46	HOLDALL	Temporarily stops all programs.	_	Command	
Ι					
47	IF	Allows control flow to branch according to conditions.	_	Command	
48	INPUT	Assigns a value to a variable specified from the programming box.	 ✓ 	Command	
49	INT	Acquires an integer for a specified value by truncating all decimal fractions.	1	Function	
J	· ·				
50	JTOXY	Converts joint coordinate data to Cartesian coordinate data of a specified robot. (↔XYTOJ)	1	Function	
L					
51	LEFT\$	Extracts a character string comprising a specified number of digits from the left end of a specified character string.	~	Function	
52	LEFTY	Sets the hand system of a specified robot to the left-handed system.	~	Command	
53	LEN	Acquires the length (byte count) of a specified character string.	✓	Function	
54	LET	Executes a specified assignment statement.	 ✓ 	Command	
55	LO	Outputs a specified value to the LO port to enable/disable axis movement or acquires the LO status.	~	Command / Function	
56	LOCx	Specifies/acquires point data for a specified axis or shift data for a specified element.	~	Command / Function	
57	LSHIFT	Shifts a value to the left by the specified bit count. (↔RSHIFT)	1	Function	

No.	Name	Description	Online	Туре
Μ				
58	MCHREF	Acquires the return-to-origin or absolute-search machine reference value for specified robot axes. (Valid only for axes whose return-to-origin method is set as "sensor" or "stroke- end".)	~	Function
59	MID\$	Extracts a character string of a desired length from a specified character string.	1	Function
60	МО	Outputs a specified value to the MO port or acquires the MO status.	1	Command / Function
61	MOTOR	Controls the motor power status.	1	Command
62	MOVE	Performs absolute movement of all axes of a specified robot.	1	Command
63	MOVEI	Performs relative movement of all axes of a specified robot.	1	Command
64	MOVET	Performs relative movement of all axes of a specified robot when the tool coordinate is selected.	1	Command
65	MTRDUTY	Acquires the motor load factor of the specified axis.	1	Function
0				
66	OFFLINE	Sets a specified communication port to the "offline" mode.		Command
67	ON ERROR GOTO	This command allows the program to jump to the error processing routine specified by the label without stopping the program, or it stops the program and displays the error message.	_	Command
68	ON to GOSUB	Jumps to a subroutine with labels specified by a GOSUB statement in accordance with the conditions, and executes that subroutine.	-	Command
69	ON to GOTO	Jumps to label-specified lines in accordance with the conditions.	_	Command
70	ONLINE	Sets the specified communication port to the "online" mode.	1	Command
71	OPEN	Opens the specified General Ethernet Port.	1	Command
72	ORD	Acquires the character code of the first character in a specified character string.	1	Function
73	ORGORD	Specifies/acquires the axis sequence parameter for performing return-to-origin and an absolute search operation in a specified robot.	~	Command / Function
74	ORIGIN	Performs return-to-origin.	1	Command
75	OUT	Turns ON the bits of the specified output ports and terminates the command statement.	_	Command
76	OUTPOS	Specifies/acquires the "OUT position" parameter of a specified robot.	1	Command / Function
Ρ				
77	PATH	Specifies the PATH motion path.	_	Command
78	PATH END	Ends the path setting for PATH motion.	_	Command
79	PATH SET	Starts the path setting for PATH motion.	_	Command
80	PATH START	Starts the PATH motion.	_	Command
81	PDEF	Defines the pallet used to execute pallet movement commands.	1	Command
82	PGMTSK	Acquires the task number in which a specified program is registered.	1	Function
83	PGN	Acquires the program number from a specified program name.	1	Function
84	PMOVE	Executes the pallet movement command of a specified robot.	1	Command
85	Pn	Defines points within a program.	1	Command
86	PPNT	Creates point data specified by a pallet definition number and pallet position number.	1	Function
87	PRINT	Displays a character string at the programming box screen.	_	Command

No.	Name	Description	Online	Туре
88	PSHFRC	Specifies/acquires the "Push force" parameter.	1	Command / Function
89	PSHJGSP	Specifies/acquires the push judge speed threshold parameter.	1	Command / Function
90	PSHMTD	Specifies/acquires the push method parameter.	1	Command / Function
91	PSHRSLT	Acquires the status at the end of the PUSH statement.	1	Function
92	PSHSPD	Specifies/acquires the push speed parameter.	1	Command / Function
93	PSHTIME	Specifies/acquires the push time parameter.	1	Command / Function
94	PUSH	Executes a pushing operation in the axis unit.	1	Command
R				
95	RADDEG	Converts a specified value to degrees. (↔DEGRAD)	1	Function
96	REM	Expresses a comment statement.	-	Command
97	RESET	Turns the bit of a specified output port OFF.	1	Command
98	RESTART	Restarts another task during a temporary stop.	1	Command
99	RESUME	Resumes program execution after error recovery processing.	_	Command
100	RETURN	Returns the processing branching with GOSUB to the next line of GOSUB.	_	Command
101	RIGHT\$	Extracts a character string comprising a specified number of digits from the right end of a specified character string.	1	Function
102	RIGHTY	Sets the hand system of a specified robot to the right- handed system.	1	Command
103	RSHIFT	Shifts a value to the right by the specified bit count. (\leftrightarrow LSHIFT)	1	Function
S				
104	SELECT CASE to END SELECT	Allows control flow to branch according to conditions.	-	Command
105	SEND	Sends a file.	1	Command
106	SERVO	Controls the servo ON/OFF of a specified axis or all axes of a specified robot.	1	Command
107	SET	Turns the bit at the specified output port ON.	_	Command
108	SETGEP	Sets the General Ethernet Port.	1	Command
109	SGI	Assigns the value to a specified integer type static variable / acquires the value of a specified integer type static variable.	1	Command / Function
110	SGR	Assigns the value to a specified real type static variable / acquires the value of a specified real type static variable.	1	Command / Function
111	SHARED	Enables reference with a sub-procedure without transferring a variable.	_	Command
112	SHIFT	Sets the shift coordinate for a specified robot by using the shift data specified by a shift variable.	1	Command
113	SI	Acquires a specified SI status.	1	Function
114	SID	Acquires a specified serial input's double-word information status.	1	Function
115	SIN	Acquires the sine value for a specified value.	1	Function
116	SIW	Acquires a specified serial input's word information status.	1	Function
117	Sn	Defines the shift coordinates within the program.	1	Command
118	SO	Outputs a specified value to the SO port or acquires the SO status.	✓	Command / Function
119	SOD	Outputs a specified serial output's double-word information or acquires the output status.	1	Command / Function
	SOW	Outputs a specified serial output's word information or	1	Command /

.....

No.	Name	Description	Online	Туре
121	SPEED	Changes the program movement speed of a specified robot.	1	Command
122	SQR	Acquires the square root of a specified value.	1	Function
123	START	Specifies the task number and priority ranking of a specified program, and starts that program.	1	Command
124	STR\$	Converts a specified value to a character string (↔VAL).	1	Function
125	SUB to END SUB	Defines a sub-procedure.	-	Command
126	SUSPEND	Temporarily stops another task which is being executed.	_	Command
127	SWI	Switches the program being executed, then begins execution from the first line.	-	Command
Т				
128	TAN	Acquires the tangent value for a specified value.	1	Function
129	TCOUNTER	Outputs count-up values at 1ms intervals starting from the point when the TCOUNTER variable is reset.	1	Function
130	TIME\$	Acquires the current time as an "hh:mm:ss" format character string.	1	Function
131	TIMER	Acquires the current time in seconds, counting from midnight.	1	Function
132	то	Outputs a specified value to the TO port or acquires the TO status.	1	Command Function
133	TOLE	Specifies/acquires the tolerance parameter of a specified robot.	1	Command Function
134	TORQUE	Specifies/acquires the maximum torque command value which can be set for a specified axis of a specified robot.	1	Command Function
135	TSKPGM	Acquires the program number which is registered in a specified task.	1	Function
۷				
136	VAL	Converts the numeric value of a specified character string to an actual numeric value. (↔STR\$)	1	Function
W			·	
137	WAIT	Waits until the conditions of the DI/DO conditional expression are met (with time-out).	-	Command
138	WAIT ARM	Waits until the axis operation of a specified robot is completed.	_	Command
139	WEIGHT	Specifies/acquires the tip weight (kg) parameter of a specified robot.	1	Command Function
140	WEIGHTG	Specifies/acquires the tip weight (g) parameter of a specified robot.	1	Command Function
141	WEND	Terminates the command block of the WHILE statement.	_	Command
142	WHERE	Reads out the current position of the arm of a specified robot in joint coordinates (pulse).	1	Function
143	WHILE to WEND	Controls repeated operations.	_	Command
144	WHRXY	Reads out the current position of the arm of a specified robot as Cartesian coordinates (mm, degrees).	1	Function
Χ				
145	ХҮТОЈ	Converts the point variable Cartesian coordinate data to the joint coordinate data of a specified robot. (↔JTOXY).	1	Function

Operation-specific

Program commands

General commands

No.	Command	Description	Online	Туре
26	DIM	Declares the array variable name and the number of elements.	-	Command
54	LET	Executes a specified assignment statement.	1	Command
96	REM	Expresses a comment statement.	-	Command

Arithmetic commands

No.	Command	Description	Online	Туре
1	ABS	Acquires the absolute value of a specified value.	1	Function
9	ATN	Acquires the arctangent of the specified value.	1	Function
9	ATN2	Acquires the arctangent of the specified X-Y coordinates.	1	Function
16	COS	Acquires the cosine value of a specified value.	1	Function
23	DEGRAD	Converts a specified value to radians (↔RADDEG).	1	Function
27	DIST	Acquires the distance between 2 specified points.	1	Function
49	INT	Acquires an integer for a specified value by truncating all decimal fractions.	1	Function
57	LSHIFT	Shifts a value to the left by the specified bit count. (↔RSHIFT)	1	Function
95	RADDEG	Converts a specified value to degrees. (↔DEGRAD)	1	Function
103	RSHIFT	Shifts a value to the right by the specified bit count. (↔LSHIFT)	1	Function
115	SIN	Acquires the sine value for a specified value.	1	Function
122	SQR	Acquires the square root of a specified value.	1	Function
128	TAN	Acquires the tangent value for a specified value.	1	Function

Date / time

No.	Command	Description	Online	Туре
20	DATE \$	Acquires the date as a "yy/mm/dd" format character string.	1	Function
129	TCOUNTER	Outputs count-up values at 1ms intervals starting from the point when the TCOUNTER variable is reset.	1	Function
130	TIME \$	Acquires the current time as an "hh:mm:ss" format character string.	1	Function
131	TIMER	Acquires the current time in seconds, counting from midnight.	1	Function

Character string operation

No.	Command	Description	Online	Туре
14	CHR \$	Acquires a character with the specified character code.	1	Function
51	LEFT \$	Extracts a character string comprising a specified number of digits from the left end of a specified character string.	1	Function
53	LEN	Acquires the length (byte count) of a specified character string.	1	Function
59	MID \$	Extracts a character string of a desired length from a specified character string.	1	Function

8

No.	Command	Description	Online	Туре
72	ORD	Acquires the character code of the first character in a specified character string.	~	Function
101	RIGHT \$	Extracts a character string comprising a specified number of digits from the right end of a specified character string.	1	Function
124	STR \$	Converts a specified value to a character string (↔VAL).	1	Function
136	VAL	Converts the numeric value of a specified character string to an actual numeric value. (↔STR\$)	1	Function

Point, coordinates, shift coordinates

No.	Command	Description	Online	Туре
12	CHANGE	Switches the hand of a specified robot.	1	Command
44	HAND	Defines the hand of a specified robot.	1	Command
50	JTOXY	Converts joint coordinate data to Cartesian coordinate data of a specified robot. (↔XYTOJ)	1	Function
52	LEFTY	Sets the hand system of a specified robot to the left-handed system.	1	Command
56	LOCx	Specifies/acquires point data for a specified axis or shift data for a specified element.	1	Command / Function
77	PATH	Sets the movement path.	_	Command
85	Pn	Defines points within a program.	1	Command
86	PPNT	Creates point data specified by a pallet definition number and pallet position number.	1	Function
102	RIGHTY	Sets the hand system of a specified robot to the right- handed system.	1	Command
117	Sn	Defines the shift coordinates within the program.	1	Command
112	SHIFT	Sets the shift coordinate for a specified robot by using the shift data specified by a shift variable.	1	Command
144	ХҮТОЈ	Converts the point variable Cartesian coordinate data to the joint coordinate data of a specified robot. (↔JTOXY).	1	Function

Branching commands

No.	Command	Description	Online	Туре
35	EXIT FOR	Terminates the FOR to NEXT statement loop.	_	Command
38	FOR to NEXT	Executes the FOR to NEXT statement repeatedly until a specified value is exceeded.	-	Command
40	GOSUB to RETURN	Jumps to a subroutine with the label specified by GOSUB statement, and executes that subroutine.	_	Command
41	GOTO	Unconditionally jumps to the line specified by a label.	-	Command
47	IF	Allows control flow to branch according to conditions.	_	Command
68	ON to GOSUB	Jumps to a subroutine with labels specified by a GOSUB statement in accordance with the conditions, and executes that subroutine.	_	Command
69	ON to GOTO	Jumps to label-specified lines in accordance with the conditions.	_	Command
104	SELECT CASE to END SELECT	Allows control flow to branch according to conditions.	_	Command
142	WHILE to WEND	Controls repeated operations.	_	Command

Error control

No.	Command	Description	Online	Туре
33	ERR / ERL	Acquires the error code number of an error which has occurred / the line number where an error occurred.	1	Function
67	ON ERROR GOTO	This command allows the program to jump to the error processing routine specified by the label without stopping the program, or it stops the program and displays the error message.	_	Command
99	RESUME	Resumes program execution after error recovery processing.	_	Command

Program & task control

Program control

No.	Command	Description	Online	Туре
11	CALL	Calls a sub-procedure.	-	Command
42	HALT	Stops the program and performs a reset.	-	Command
43	HALTALL	Stops and resets all programs.	-	Command
45	HOLD	Temporarily stops the program.	-	Command
46	HOLDALL	Temporarily stops all programs.	_	Command
82	PGMTSK	Acquires the task number in which a specified program is registered.	1	Function
83	PGN	Acquires the program number from a specified program name.	1	Function
109	SGI	Assigns/acquires the value to a specified integer type static variable.	1	Command / Function
110	SGR	Assigns/acquires the value to a specified real type static variable.	1	Command / Function
127	SWI	Switches the program being executed, then begins execution from the first line.	_	Command
135	TSKPGM	Acquires the program number which is registered in a specified task.	1	Function

Task control

No.	Command	Description	Online	Туре
13	CHGPRI	Changes the priority ranking of a specified task.	1	Command
19	CUT	Terminates another task currently being executed or temporarily stopped.	1	Command
37	EXIT TASK	Terminates its own task which is in progress.	-	Command
98	RESTART	Restarts another task during a temporary stop.	1	Command
123	START	Specifies the task number and priority ranking of a specified program, and starts that program.	1	Command
126	SUSPEND	Temporarily stops another task which is being executed.	_	Command

8

10

Robot control

Robot operations

No.	Command	Description		Туре
29	DRIVE	Moves a specified axis of a specified robot to an absolute position.	1	Command
30	DRIVEI	Moves a specified axis of a specified robot to a relative position.	1	Command
61	MOTOR	Controls the motor power status.	1	Command
62	MOVE	Performs absolute movement of all axes of a specified robot.	1	Command
63	MOVEI	Performs relative movement of all axes of a specified robot.	1	Command
64	MOVET	Performs relative movement of all axes of a specified robot when the tool coordinate is selected.	1	Command
74	ORIGIN	Performs return-to-origin.	1	Command
84	PMOVE	Executes the pallet movement command of a specified robot.	1	Command
94	PUSH	Executes a pushing operation in the axis unit.	1	Command
106	SERVO	Controls the servo ON/OFF of a specified axis or all axes of a specified robot.	1	Command

Status acquisition

No.	Command	Description	Online	Туре
2	ABSRPOS	Acquires the machine reference value for specified robot axes. (Valid only for axes whose return-to-origin method is set as "mark".)	1	Function
5	ARMCND	Acquires the current arm status of a specified robot.	1	Function
6	ARMSEL	Specifies/acquires the current "hand system" setting of a specified robot.	1	Command / Function
7	ARMTYP	Specifies/acquires the "hand system" setting of a specified robot.	1	Command / Function
17	CURTQST	Acquires the current torque value ratio of a specified axis to the rated torque.	1	Function
58	MCHREF	Acquires the return-to-origin or absolute-search machine reference value for specified robot axes. (Valid only for axes whose return-to-origin method is set as "sensor" or "stroke- end".)	1	Function
65	MTRDUTY	Acquires the motor load factor of the specified axis.	1	Function
91	PSHRSLT	Acquires the status at the end of the PUSH statement.	1	Function
92	PSHSPD	Specifies/acquires the push speed parameter.	1	Command / Function
93	PSHTIME	Specifies/acquires the push time parameter.	1	Command / Function
138	WAIT ARM	Waits until the axis operation of a specified robot is completed.	_	Command
141	WHERE	Reads out the current position of the arm of a specified robot in joint coordinates (pulse).	1	Function
143	WHRXY	Reads out the current position of the arm of a specified robot as Cartesian coordinates (mm, degrees).	1	Function

Status change

No.	Command	Description		Туре
3	ACCEL	Specifies/acquires the acceleration coefficient parameter of a specified robot.	1	Command / Function
4	ARCHP1	Specifies/acquires the arch position 1 parameter of a specified robot.	1	Command / Function

No.	Command	Description	Online	Туре
4	ARCHP2	Specifies/acquires the arch position 2 parameter of a specified robot.	1	Command / Function
8	ASPEED	Specifies/acquires the AUTO movement speed of a specified robot.	1	Command / Function
10	AXWGHT	Specifies/acquires the axis tip weight parameter of a specified robot.	1	Command / Function
12	CHANGE	Switches the hand of a specified robot.	1	Command
21	DECEL	Specifies/acquires the deceleration rate parameter of a specified robot.	1	Command / Function
44	HAND	Defines the hand of a specified robot.	1	Command
52	LEFTY	Sets the hand system of a specified robot to the left-handed system.	1	Command
73	ORGORD	Specifies/acquires the axis sequence parameter for performing return-to-origin and an absolute search operation in a specified robot.	1	Command / Function
76	OUTPOS	Specifies/acquires the "OUT position" parameter of a specified robot.		Command / Function
81	PDEF	Defines the pallet used to execute pallet movement commands.	1	Command
88	PSHFRC	Specifies/acquires the "Push force" parameter.	1	Command / Function
89	PSHJGSP	Specifies/acquires the push judge speed threshold parameter.	1	Command / Function
90	PSHMTD	Specifies/acquires the push method parameter.	1	Command / Function
102	RIGHTY	Sets the hand system of a specified robot to the right- handed system.	1	Command
108	SETGEP	Sets the General Ethernet Port.	1	Command
121	SPEED	Changes the program movement speed of a specified robot.	1	Command
133	TOLE	Specifies/acquires the tolerance parameter of a specified robot.	1	Command / Function
139	WEIGHT	Specifies/acquires the tip weight (kg) parameter of a specified robot.	1	Command / Function
140	WEIGHTG	Specifies/acquires the tip weight (g) parameter of a specified robot.	1	Command / Function

PATH control

No.	Command	Description		Туре
77	PATH	Specifies the PATH motion path.	-	Command
78	PATH END	Ends the path setting for PATH motion.	-	Command
79	PATH SET	Starts the path setting for PATH motion.	-	Command
80	PATH START	Starts the PATH motion.	_	Command

Torque control

No.	Command	Description		Туре
17	CURTQST	Acquires the current torque value ratio of a specified axis to the rated torque.	1	Function
18	CURTRQ	Acquires the current torque value of the specified axis of a specified robot.	1	Function
94	PUSH	Executes a pushing operation in the axis unit.	1	Command
134	TORQUE	Specifies/acquires the maximum torque command value which can be set for a specified axis of a specified robot.	1	Command / Function

8

10

12

Input/output & communication control

Input/output control

No.	Command	Description	Online	Туре
24	DELAY	Waits for the specified period (units: ms).	_	Command
28	DO	Outputs a specified value to the DO port or acquires the DO status.	1	Command / Function
55	LO	Outputs a specified value to the LO port to enable/disable axis movement or acquires the LO status.	1	Command / Function
60	МО	Outputs a specified value to the MO port or acquires the MO status.	1	Command / Function
75	OUT	Turns ON the bits of the specified output ports and terminates the command statement.	_	Command
97	RESET	Turns the bit of a specified output port OFF.	1	Command
107	SET	Turns the bit at the specified output port ON.	_	Command
113	SI	Acquires a specified SI status.	1	Function
114	SID	Acquires a specified serial input's double-word information status.	1	Function
116	SIW	Acquires a specified serial input's word information status.	1	Function
108	SO	Outputs a specified value to the SO port or acquires the SO status.	1	Command / Function
119	SOD	Outputs a specified serial output's double-word information or acquires the output status.	1	Command / Function
120	SOW	Outputs a specified serial output's word information or acquires the output status.	1	Command / Function
132	ТО	Outputs a specified value to the TO port or acquires the TO status.	1	Command / Function
137	WAIT	Waits until the conditions of the DI/DO conditional expression are met (with time-out).	_	Command

Communication control

No.	Command	Description		Туре
15	CLOSE	Close the specified General Ethernet Port.	1	Command
34	ETHSTS	Acquires the Ethernet port status.	1	Function
39	GEPSTS	Acquires the General Ethernet Port status.	1	Function
66	OFFLINE	Sets a specified communication port to the "offline" mode.	1	Command
70	ONLINE	Sets the specified communication port to the "online" mode.	1	Command
71	OPEN	Opens the specified General Ethernet Port.	1	Command
105	SEND	Sends a file.	1	Command

Functions: in alphabetic order

No.	Function	Туре	Description
Α	·	·	
1	ABS	Arithmetic function	Acquires the absolute value of a specified value.
2	ABSRPOS	Arithmetic function	Acquires the machine reference value for specified robot axes. (Valid only for axes whose return-to-origin method is set as "mark".)
3	ACCEL	Arithmetic function	Acquires the acceleration coefficient parameter of a specified robot.
4	ARCHP1	Arithmetic function	Acquires the arch position 1 parameter of a specified robot.
4	ARCHP2	Arithmetic function	Acquires the arch position 2 parameter of a specified robot.
5	ARMCND	Arithmetic function	Acquires the current arm status of a specified robot.
6	ARMSEL	Arithmetic function	Acquires the current "hand system" setting of a specified robot.
7	ARMTYP	Arithmetic function	Acquires the "hand system" setting of a specified robot.
8	ASPEED	Arithmetic function	Acquires the AUTO movement speed of a specified robot.
9	ATN	Arithmetic function	Acquires the arctangent of the specified value.
9	ATN2	Arithmetic function	Acquires the arctangent of the specified X-Y coordinates.
10	AXWGHT	Arithmetic function	Acquires the axis tip weight parameter of a specified robot.
С			
14	CHR\$	Character string function	Acquires a character with the specified character code.
16	cos	Arithmetic function	Acquires the cosine value of a specified value.
17	CURTQST	Arithmetic function	Acquires the current torque value ratio of a specified axis to the rated torque.
18	CURTRQ	Arithmetic function	Acquires the current torque value of the specified axis of a specified robot.
D			
19	DATE\$	Character string function	Acquires the date as a "yy/mm/dd" format character string.
21	DECEL	Arithmetic function	Acquires the deceleration rate parameter of a specified robot.
23	DEGRAD	Arithmetic function	Converts a specified value to radians (↔RADDEG).
27	DIST	Arithmetic function	Acquires the distance between 2 specified points.
Ε		·	
33	ERR / ERL	Arithmetic function	Acquires the error code number of an error which has occurred / the line number where an error occurred.
34	ETHSTS	Arithmetic function	Acquires the Ethernet port status.
G		·	
39	GEPSTS	Arithmetic function	Acquires the General Ethernet Port status.
I	<u> </u>		
49	INT	Arithmetic function	Acquires an integer for a specified value by truncating all decimal fractions.
J			
50	JTOXY	Point function	Converts joint coordinate data to Cartesian coordinate data of a specified robot. (↔XYTOJ)
L			
		Character string	Extracts a character string comprising a specified number of
51	LEFT\$	function	digits from the left end of a specified character string.

No.	Function	Туре	Description
56	LOCx	Point function	Acquires point data for a specified axis or shift data for a specified element.
57	LSHIFT	Arithmetic function	Shifts a value to the left by the specified bit count. (↔RSHIFT)
Μ			
58	MCHREF	Arithmetic function	Acquires the return-to-origin or absolute-search machine reference for specified robot axes. (Valid only for axes whose return-to-origin method is set as "sensor" or "stroke-end".)
59	MID\$	Character string function	Extracts a character string of a desired length from a specified character string.
65	MTRDUTY	Character string function	Acquires the motor load factor of the specified axis.
0			
72	ORD	Arithmetic function	Acquires the character code of the first character in a specified character string.
73	ORGORD	Arithmetic function	Acquires the axis sequence parameter for performing return-to origin and an absolute search operation of a specified robot.
76	OUTPOS	Arithmetic function	Acquires the "OUT position" parameter of a specified robot.
Ρ			
82	PGMTSK	Arithmetic function	Acquires the task number in which a specified program is registered.
83	PGN	Arithmetic function	Acquires the program number from a specified program name.
86	PPNT	Point function	Creates point data specified by a pallet definition number an pallet position number.
88	PSHFRC	Arithmetic function	Acquires the "Push force" parameter.
89	PSHJGSP	Arithmetic function	Acquires the push judge speed threshold parameter.
90	PSHMTD	Arithmetic function	Acquires the push method parameter.
91	PSHRSLT	Arithmetic function	Acquires the status at the end of the PUSH statement.
92	PSHSPD	Arithmetic function	Acquires the push speed parameter.
93	PSHTIME	Arithmetic function	Acquires the push time parameter.
R			
95	RADDEG	Arithmetic function	Converts a specified value to degrees. (↔DEGRAD)
101	RIGHT\$	Character string function	Extracts a character string comprising a specified number of digits from the right end of a specified character string.
103	RSHIFT	Arithmetic function	Shifts a value to the right by the specified bit count. (\leftrightarrow LSHIFT)
S			
109	SGI	Arithmetic function	Acquires the value of a specified integer type static variable.
110	SGR	Arithmetic function	Acquires the value of a specified real type static variable.
113	SI	Arithmetic function	Acquires a specified SI status.
114	SID	Arithmetic function	Acquires a specified serial input's double-word information status.
115	SIN	Arithmetic function	Acquires the sine value for a specified value.
116	SIW	Arithmetic function	Acquires a specified serial input's word information status.
122	SQR	Arithmetic function	Acquires the square root of a specified value.
124	STR\$	Character string function	Converts a specified value to a character string (↔VAL).
Т			
108	TAN	Arithmetic function	Acquires the tangent value for a specified value.
109	TCOUNTER	Arithmetic function	Outputs count-up values at 1ms intervals starting from the poir when the TCOUNTER variable is reset.

No.	Function	Туре	Description
130	TIME\$	Character string function	Acquires the current time as an "hh:mm:ss" format character string.
131	TIMER	Arithmetic function	Acquires the current time in seconds, counting from midnight.
133	TOLE	Arithmetic function	Acquires the tolerance parameter of a specified robot.
134	TORQUE	Arithmetic function	Acquires the maximum torque command value which can be set for a specified axis of a specified robot.
135	TSKPGM	Arithmetic function	Acquires the program number which is registered in a specified task.
۷			
136	VAL	Arithmetic function	Converts the numeric value of a specified character string to an actual numeric value. (↔STR\$)
W			
139	WEIGHT	Arithmetic function	Acquires the tip weight (kg) parameter of a specified robot.
140	WEIGHTG	Arithmetic function	Acquires the tip weight (g) parameter of a specified robot.
141	WHERE	Point function	Reads out the current position of the arm of a specified robot in joint coordinates (pulse).
143	WHRXY	Point function	Reads out the current position of the arm of a specified robot as Cartesian coordinates (mm, degrees).
Х			
144	ХҮТОЈ	Point function	Converts the point variable Cartesian coordinate data to the joint coordinate data of a specified robot. (⇔JTOXY).

Functions: operation-specific

Point related functions

No.	Function name	Description
50	JTOXY	Converts joint coordinate data to Cartesian coordinate data of a specified robot. (↔XYTOJ)
56	LOCx	Acquires point data for a specified axis or shift data for a specified element.
86	PPNT	Creates point data specified by a pallet definition number and pallet position number.
141	WHERE	Reads out the current position of the arm of a specified robot in joint coordinates (pulse).
143	WHRXY	Reads out the current position of the arm of a specified robot as Cartesian coordinates (mm, degrees).
144	ХҮТОЈ	Converts the point variable Cartesian coordinate data to the joint coordinate data of a specified robot. (⇔JTOXY).

Parameter related functions

No.	Function name	Description
2	ABSRPOS	Acquires the machine reference value for specified robot axes. (Valid only for axes whose return-to-origin method is set as "mark".)
3	ACCEL	Acquires the acceleration coefficient parameter of a specified robot.
4	ARCHP1	Acquires the arch position 1 parameter of a specified robot.
4	ARCHP2	Acquires the arch position 2 parameter of a specified robot.
5	ARMCND	Acquires the current arm status of a specified robot.
6	ARMSEL	Acquires the current "hand system" setting of a specified robot.
7	ARMTYP	Acquires the "hand system" setting of a specified robot.
10	AXWGHT	Acquires the axis tip weight parameter of a specified robot.
17	CURTQST	Acquires the current torque value ratio of a specified axis to the rated torque.
18	CURTRQ	Acquires the current torque value of the specified axis of a specified robot.
21	DECEL	Acquires the deceleration rate parameter of a specified robot.
53	LEN	Acquires the length (byte count) of a specified character string.
58	MCHREF	Acquires the return-to-origin or absolute-search machine reference for specified robot axes. (Valid only for axes whose return-to-origin method is set as "sensor" or "stroke-end".)
65	MTRDUTY	Acquires the motor load factor of the specified axis.
72	ORD	Acquires the character code of the first character in a specified character string.
73	ORGORD	Acquires the axis sequence parameter for performing return-to-origin and an absolute search operation of a specified robot.
76	OUTPOS	Acquires the "OUT position" parameter of a specified robot.
88	PSHFRC	Acquires the "Push force" parameter.
89	PSHJGSP	Acquires the push judge speed threshold parameter.
90	PSHMTD	Acquires the push method parameter.
91	PSHRSLT	Acquires the status at the end of the PUSH statement.
92	PSHSPD	Acquires the push speed parameter.
93	PSHTIME	Acquires the push time parameter.
133	TOLE	Acquires the tolerance parameter of a specified robot.
134	TORQUE	Acquires the maximum torque command value which can be set for a specified axis of a specified robot.
139	WEIGHT	Acquires the tip weight (kg) parameter of a specified robot.
140	WEIGHTG	Acquires the tip weight (g) parameter of a specified robot.

Program related functions

No.	Function name	Description	
82	PGMTSK	Acquires the task number in which a specified program is registered.	
83	PGN	Acquires the program number from a specified program name.	
135	TSKPGM	Acquires the program number which is registered in a specified task.	

Numeric calculation related functions

No.	Function name	Description	
1	ABS	Acquires the absolute value of a specified value.	
9	ATN	Acquires the arctangent of the specified value.	
9	ATN2	Acquires the arctangent of the specified X-Y coordinates.	
16	COS	Acquires the cosine value of a specified value.	
23	DEGRAD	Converts a specified value to radians (↔RADDEG).	
27	DIST	Acquires the distance between 2 specified points.	
49	INT	Acquires an integer for a specified value by truncating all decimal fractions.	
57	LSHIFT	Shifts a value to the left by the specified bit count. (↔RSHIFT)	
95	RADDEG	Converts a specified value to degrees. (↔DEGRAD)	
103	RSHIFT	Shifts a value to the right by the specified bit count. (↔LSHIFT)	
115	SIN	Acquires the sine value for a specified value.	
122	SQR	Acquires the square root of a specified value.	
128	TAN	Acquires the tangent value for a specified value.	
136	VAL	Converts the numeric value of a specified character string to an actual numeric value. (->STR\$)	

Character string calculation related functions

No.	Function name	Description
14	CHR \$	Acquires a character with the specified character code.
20	DATE \$	Acquires the date as a "yy/mm/dd" format character string.
51	LEFT \$	Extracts a character string comprising a specified number of digits from the left end of a specified character string.
59	MID \$	Extracts a character string of a desired length from a specified character string.
101	RIGHT \$	Extracts a character string comprising a specified number of digits from the right end of a specified character string.
124	STR \$	Converts a specified value to a character string (↔VAL).
130	TIME \$	Acquires the current time as an "hh:mm:ss" format character string.

Other functions

No.	Function name	Description
33	ERR / ERL	Acquires the error code number of an error which has occurred / the line number where an error occurred.
34	ETHSTS	Acquires the Ethernet port status.
39	GEPSTS	Acquires the General Ethernet Port status.
109	SGI	Acquires the value of a specified integer type static variable.
110	SGR	Acquires the value of a specified real type static variable.
129	TCOUNTER	Outputs count-up values at 1ms intervals starting from the point when the TCOUNTER variable is reset.
131	TIMER	Acquires the current time in seconds, counting from midnight.

8

9

ABS

1

Acquires absolute values

Format

ABS (expression)

Explanation Returns a value specified by an *<expression>* as an absolute value.

SAMPLE

A=ABS(-326.55) ····· The absolute value of -362.54 (=362.54) is assigned to variable A.

ABSRPOS

Acquires the machine reference value (axes: mark method)

	Format
	ABSRPOS [robot number] (axis number)
	Values Robot number
	ExplanationAcquires the machine reference value of axes specified by an <axis number="">.This function is valid only for axes whose return-to-origin method is set as "Mark", not for "Sensor" or "Stroke-end".</axis>
MEMO)	• At axes where return-to-origin method is set to "mark" method, absolute reset is possible when the machine reference value is in a 44 to 56% range.
	SAMPLE
	A=ABSRPOS(4) The machine reference value for axis 4 of robot 1 is assigned to variable A.

Specifies/acquires the acceleration coefficient parameter

Format	
1. ACCEL 2. ACCEL	<pre>[robot number] expression [robot number] (axis number)=expression</pre>
	<i>ot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>s number</i> 1 to 6
exp	<i>ression</i> 1 to 100 (units: %)
	Changes the acceleration coefficient parameter of the robot axis specified by the <i>crobot number></i> to the value specified by the <i><expression></expression></i> .
I	n format 1, the change occurs at all axes specified with a specified robot.
I	n format 2, the change occurs at the axis specified in <i><axis number=""></axis></i> .

Functions

Format
ACCEL [robot number] (axis number)
Values robot number
Explanation The acceleration coefficient parameter value is acquired for the axis specified by the <i><axis number=""></axis></i> among the robot axes specified by the <i><robot number=""></robot></i> .
SAMPLE
<pre>A=50 ACCEL A The acceleration coefficient of all axes of robot 1 becomes 50%. ACCEL(3)=100 Only axis 3 of robot 1 becomes 100%. 'CYCLE WITH INCREASING ACCELERATION FOR A=10 TO 100 STEP 10 The acceleration coefficient parameter is increased from 10% to 100% in 10% increments.</pre>
ACCEL A MOVE P,P0 MOVE P,P1
NEXT A A=ACCEL(3) The acceleration coefficient parameter of axis 3 of robot 1 is
assigned to variable A. HALT "END TEST"

ARCHP1 / ARCHP2

Specifies/acquires the arch position parameter

1.	ARCHP1	[robot n	number]	expression
2.	ARCHP1	[robot n	number]	(axis number)=expression
For	mat			
1.	ARCHP2	[robot n	number]	expression
2.	ARCHP2	[robot n	number]	(axis number)=expression
Value	axis	number		1 to 4 (If not input, robot 1 is specified.) 1 to 6 0 to 999999999 (Unit: pulses)
	axis expre	number ession		1 to 6
	axis expre mation AF are	number ession RCHP1 corre	esponds to 2 paramete	1 to 6 0 to 999999999 (Unit: pulses) the arch position 1 parameter; ARCHP2 corresponds er, respectively. Changes the parameter's arch position
	axis expre mation AF are va	number ession RCHP1 corre ch position 2 lue indicated	esponds to 2 paramete d in the < <i>e</i>	1 to 6 0 to 999999999 (Unit: pulses) the arch position 1 parameter; ARCHP2 corresponds er, respectively. Changes the parameter's arch position
	axis expro mation AF are va Fo	number ession CHP1 corre ch position 2 lue indicated rmat 1 chan	esponds to 2 paramete d in the < <i>e</i> ges all axe	1 to 6 0 to 999999999 (Unit: pulses) the arch position 1 parameter; ARCHP2 corresponds er, respectively. Changes the parameter's arch position expression>.

Acquires the arch position parameter value of the axis specified at *<axis number>*.

ARCHP1 / ARCHP2

SAMPLE

ARCHP1 3 =10 ····· The arch position 1 parameter value of the 3rd axis of robot 1 changes to 10
pulses.
ARCHP2 3 =20 ····· The arch position 2 parameter value of
the 3rd axis of robot 1 changes to 20
pulses.
FOR B=1 TO 4
SAV B-1 =ARCHP1 B The arch position parameters ARCHP1(1)
to (4) are assigned to array variables
SAV(0) to (3).
NEXT

8

ARMCND

Acquires the current arm status

ARMCND	[robot_number]
ARMCND	[robot number]
alues ro	bot number1 to 4 (If not input, robot 1 is specified.)
xplanation	This function acquires the current arm status of the SCARA robot. The robot to acquire an arm status is specified by the <i><robot number=""></robot></i> . The arm status is "1" for a right-handed system and "2" for a left-handed system.
SAMPLE	
A=ARMCND	•••••• The current arm status of robot 1 is assigned to variable A.
IF A=1 TH	

Sets/acquires the current hand system selection

Format	
ARMSEL	[robot number] expression
Values	<i>robot number</i>
Explanatio	This function sets the current hand system selection of the SCARA robot. A robot to set a hand system is specified by the <i><robot number=""></robot></i> .
SAMPL	E
ARMSEL	[2] 2 Sets the left-handed system for the hand system selection of the robot 2.

Functions

Format	
ARMSEL [robot number]	
Values robot number1 t	o 4 (If not input, robot 1 is specified.)
robot to acquire a hand system	nd system currently selected for the SCARA robot. The is specified by the <i><robot number=""></robot></i> . nanded system, and "2" for a left-handed system.
SAMPLE	
A=ARMSEL	The current hand system selection of robot 1 is assigned to the variable A.
IF A=1 THEN ·····	
	a right-handed system.
MOVE P, P100, Z=0	
ELSE ······	The hand system selection is
	a left-handed system.
MOVE P, P200, Z=0	
ENDIF	

ARMTYP

Sets/acquires the hand system selection during program reset

Format
ARMTYP [robot number] expression
Valuesrobot number
Explanation This function sets the hand system at program reset of the SCARA robot. A robot to set a hand system selection is specified by the <i><robot number=""></robot></i> .
SAMPLE
ARMTYP[2] 2 Sets the left-handed system for the

hand system of the robot 2.

Functions

Format
ARMTYP [robot number]
Values robot number
Explanation This function provides the hand system at program reset of the SCARA robot. The
robot to acquire a hand system is specified by the <i><robot number=""></robot></i> . The arm type is "1" for a right-handed system, and "2" for a left-handed system.
The arm type is "1" for a right-handed system, and "2" for a left-handed system.
The arm type is "1" for a right-handed system, and "2" for a left-handed system.
The arm type is "1" for a right-handed system, and "2" for a left-handed system. SAMPLE A=ARMTYP The arm type value of robot 1 is assigned to the variable A.
The arm type is "1" for a right-handed system, and "2" for a left-handed system. SAMPLE A=ARMTYP The arm type value of robot 1 is assigned to the variable A. IF A=1 THEN The arm type is a right-handed system.
The arm type is "1" for a right-handed system, and "2" for a left-handed system. SAMPLE A=ARMTYP The arm type value of robot 1 is assigned to the variable A. IF A=1 THEN The arm type is a right-handed system. MOVE P,P100,Z=0
The arm type is "1" for a right-handed system, and "2" for a left-handed system. SAMPLE A=ARMTYP The arm type value of robot 1 is assigned to the variable A. IF A=1 THEN The arm type is a right-handed system. MOVE P, P100, Z=0 ELSE The arm type is a left-handed system.

ASPEED

Sets/acquires the AUTO movement speed of a specified robot

	Format ASPEED [robot number] expression
	Valuesrobot number1 to 4 (If not input, robot 1 is specified.)expression1 to 100 (units: %)
• Automatic movement speed	ExplanationChanges the automatic movement speed of the robot specified by the <robot </robot number> to the value indicated in the <expression>.This speed change applies to all axes.</expression>
Specified by programming box operation or by the ASPEED command. • Program movement speed	The operation speed is determined by the product of the automatic movement speed (specified by programming box operation and by the ASPEED command), and the program movement speed (specified by SPEED command, etc.).
Specified by SPEED commands or MOVE, DRIVE speed settings.	Operation speed = automatic movement speed x program movement speed. Example: Automatic movement speed 80% Program movement speed 50% Movement speed = 40% (80% × 50%)
Fun	ctions

ASPEED [robot number]
/alues rol	pot number1 to 4 (If not input, robot 1 is specified.)
-	Acquires the automatic movement speed value of the robot specified by the <i><rol< i=""> <i>number></i>.</rol<></i>
SAMPLE	
SPEED 70	
ASPEED 10)
MOVE P,P0	Movement from the current position to PO
	occurs at 70% speed (=100 * 70) of the
	robot 1.
ASPEED 50	
MOVE P,P1	Movement from the current position to P1
	occurs at 35% speed (=50 * 70) of the robot 1.
MOVE P, P2	,S=10 ····· position to P2
	occurs at 5% speed (=50 * 10) of the robot 1.

.....

ATN / ATN2

Acquires the arctangent of the specified value

Format

ATN (expression)

Format

- ATN2 (expression 1, expression 2)
- Explanation ATN: Acquires the arctangent values of the specified *<expression>* values. The acquired values are radians within the following range: - π / 2 to + π / 2 ATN2: Acquires the arctangent values of the specified <expression 1> and <expression 2> X-Y coordinates. The acquired values are radians within the following range: $-\pi$ to $+\pi$

SAMPLE	
A(0) = A * ATN(Y/X) · · · · · · · · · Th	e product of the expression (Y/X)
ar	ctangent value and variable A is
as	signed to array A (0).
A(0) = ATN(0.5) Th	e 0.5 arctangent value is assigned
to	array A (0).
A(0)=ATN2(B,C)-D ····· Th	ne difference between the X-Y
co	ordinates (B,C) arctangent value and
va	riable D is assigned to array A (0).
$A(1) = RADDEG(ATN2(B,C)) \cdots Th$	e X-Y coordinates (B,C) arctangent
va	lue is converted to degrees, and is
th	en assigned to array A (1).

Related commands

COS, DEGRAD, RADDEG, SIN, TAN

Sets/acquires the axis tip weight

Format	
AXWGHT	[robot number] (axis number)=expression
Values	<i>robot number</i>
Explanatio	Changes the axis tip weight parameter for the specified axis to the <i><expression< i="">: value. This statement is valid in systems with "MULTI" axes and auxiliary axes (the robotic)</expression<></i>
	type and auxiliary axes are factory set prior to shipment).

Functions

Format		
AXWGH'	[robot number]	(axis number)
Values	robot number axis number	
Explanati		p weight parameter value for the specified axis. Ilid in systems with "MULTI" axes and auxiliary axes.
SAMPI	E	
A=5 B=0		
C=AXWO	HT(1) ·····	•••••••••• Axis tip weight value of the axis 1 of the robot 1 is acquired (the current value is saved to variable C).
AXWGH7	'(1)=A	
DRIVE	1,P0)	
DRIVE		
	r(1)=B	
AXWGHI DRIVE	2(1)=B 21,P1)	The axis tip weight value of the axis 1 of the robot 1 is set again.

Related commands

WEIGHT, WEIGHTG

......

NOTE

- When a value is passed on to a sub-procedure, the original value of the actual argument will not be changed even if it is changed in the subprocedure.
- When a reference is passed on to a subprocedure, the original value of the actual argument will also be changed if it is changed in the sub-procedure.
- For details, refer to Chapter 3 "8 Value Pass-Along & Reference Pass-Along".

Format
CALL label (actual argument, actual argument)
Explanation This statement calls up sub-procedures defined by the SUB to END SUB statements.
The <i><label></label></i> specifies the same name as that defined by the SUB statement.
 When a constant or expression is specified as an actual argument, its value is passed on to the sub-procedure.
2. When a variable or array element is specified as an actual argument, its value is passed on to the sub-procedure. It will be passed on as a reference if "REF" is

- added at the head of the actual argument. 3. When an entire array (array name followed by parentheses) is specified as an actual argument, it is passed along as a reference.
- _____ • CALL statements can be used up to 120 times in succession. Note that this number is reduced if commands which use stacks such as an FOR or GOSUB statement are used, or depending on the use status of identifiers.
- Always use the END SUB or EXT SUB statement to end a sub-procedure which has been called with the CALL statement. If another statement such as GOTO is used to jump out of the subroutine, a "5.212: Stack overflow" error, etc., may occur.

```
SAMPLE 1
X%=4
V%=5
CALL *COMPARE ( REF X%, REF Y% )
HALT
'SUB ROUTINE: COMPARE
SUB *COMPARE ( A%, B% )
    IF A% < B% THEN
       TEMP%=A%
       A%=B%
       B%=TEMP%
    ENDIF
END SUB
```

SAMPLE 2

```
I = 1
CALL *TEST(I)
HALT
'SUB ROUTINE: TEST
SUB *TEST
   X = X + 1
   IF X < 15 THEN
      CALL *TEST( X )
   ENDIF
END SUB
```

Related commands

SUB, END SUB, EXIT SUB, SHARED

8

Format				
CHANGE	[robot number]	Hn OF		
	obot number : hand number		f not input, robot 1 is s	specified.)
Explanation	specified, the hand s Before hand switchi the programming bo	setting is not ena ng can occur, th ox, or the SCARA section "44 HAN	abled. ne hands must be defir A-YRCX Studio. ND". If the hand data y	e < <i>robot number</i> >. If OFF is ned at the HAND statement, with another robot setting is
SAMPLE				
HAND H1= HAND H2= P1=150.0	0 -5000 00 300.000 0.000	150.000 20.0000 0.000 0.000	0.000 0.000 0.000	
CHANGE H MOVE P,P			-	ne robot 1 to hand 2. p of the robot 1 to

- CHANGE H1 Changes to hand 1.
- MOVE P,P1 \cdots Moves the hand 1 tip to P1 (2).
- HALT

CHGPRI

Changes the priority ranking of a specified task

CHGPRI	Tn ,p <program name=""> PGm</program>
n	n: Program number0 to 100 n: Task number1 to 16 p: Task priority ranking1 to 64
xplanation	Directly changes the priority ranking of the specified task ("n") to "p". The smaller the priority number, the higher the priority (high priority: 1 \Leftrightarrow low priority: 64). When a READY status occurs at a task with higher priority, all tasks with lower priority also remain in a READY status.
SAMPLE	
START <s *ST:</s 	UB_PGM>, T2, 33
IF D	P,P0,P1 I(20) = 1 THEN CHGPRI T2,32
ELSE	
C	CHGPRI T2,33
ENDI	
GOTO *ST HALTALL	
	name:SUB_PGM
-	ROUTINE
*SUBTASK	:
IF LO	OC3(WHERE) > 10000 THEN
Ľ	DO(20) = 1
	GOTO *SUBTASK
ENDI	
	0) = 0
GOTO *SU	

Acquires a character with the specified character code

Format
CHR\$ (<i>expression</i>)
Values expression0 to 255
Explanation Acquires a character with the specified character code. An error occurs if the <i><expression></expression></i> value is outside the 0 to 255 range.
SAMPLE
A\$=CHR\$(65) "A" is assigned to A\$.
Related commands ORD

Format

CLOSE GPm

m: General Ethernet Port number0 to 7

Explanation Closes the communication port of the specified General Ethernet Port.

SAMPLE
OPEN GP1 Opens the General Ethernet Port 1.
SEND "123" TO GP1 Sends the character strings "123" from
the General Ethernet Port 1.
SEND GP1 TO A\$ \cdots Receives the data from the General
Ethernet Port 1 and Saves the received
data in the variable A\$.
CLOSE GP1 ····· Port 1.

Related commands

OPEN, SEND, SETGEP, GEPSTS

Acquires the cosine value of a specified value

COS (expression)

expression.....Angle (units: radians)

Explanation Acquires a cosine value for the *<expression>* value.

SAMPLE	
A(0)=B*COS(C)	The product of the C variable's cosine
	value and variable B is assigned to array
	A (0).
A(1)=COS(DEGRAD(20))	The 20.0° cosine value is assigned to array
	A (1).

Related commands ATN, DEGRAD, RADDEG, SIN, TAN

CURTQST

Acquires the ratio of the current torque (current) value of axis against the rated torque (current) value

Format			
CURTQST [robot number] (axis number)			
	oot number1 to 4 (s number1 to 6	f not input, robot 1 is spec	ified.)
r	Acquires the percentage (-1000 to rated torque value of axis. Plus/minus signs indicate the direct		orque value against the
SAMPLE			
A = CURTQS	to	e ratio of the o urrent) value aga cque (current) valu robot 1 is assigned	inst the rated e of the axis 3

Acquires the ratio of the current torque (current) value of axis against the maximum torque (current) value

Format		
CURTRQ	[robot number] (axis n	umber)
	robot number1 to axis number1 to	o 4 (If not input, robot 1 is specified.) o 6
Explanation	Acquires the percentage (-100 maximum torque command va Plus/minus signs indicate the d	
SAMPLE		
A = CURI	RQ(3)	The ratio of the current torque (current) value against the maximum torque (current) value of the axis 3 of robot 1 is assigned to variable A.

Format
CUT Tn
<pre><pre>cprogram name></pre></pre>
PGm
Values m: Program number0 to 100
n: Task number1 to 16
Explanation Terminates another task which is currently being executed or which is temporarily stopped. A task can be specified by the name or the number of a program in execution.
This statement cannot terminate its own task.
• If a task (program) not active is specified for the execution an error occurs
• If a task (program) not active is specified for the execution, an error occurs.
SAMPLE
'TASK1 ROUTINE
*ST:
MO(20) = 0
START <sub_pgm>,T2</sub_pgm>
MOVE P,P0
MOVE P, P1
WAIT $MO(20) = 1$
CUT T2
GOTO *ST
HALTALL
Program name:SUB_PGM
'TASK2 ROUTINE
*SUBTASK2:
P100=JTOXY(WHERE)
IF LOC3(P100) >= 100.0 THEN
MO(20) = 1
ELSE
DELAY 100
ENDIF
GOTO *SUBTASK2
EXIT TASK
EXIT TASK

Related commands EXIT TASK, RESTART, START, SUSPEND

Format DATE\$ Explanation Acquires the date as a "yyyy/mm/dd" format character string. "yyyy" indicates the year, "mm" indicates the month, and "dd" indicates the day. Date setting is performed from an operation terminal such as a programming box. SAMPLE A\$=DATE\$ PRINT DATE\$ HALT Related commands TIME\$

DECEL

Specifies/acquires the deceleration rate parameter

1. DE	ECEL [robot number] expression
2. DE	ECEL [robot number] (axis number)=expression
Values	robot number1 to 4 (If not input, robot 1 is specified.)
	axis number1 to 6
	expression1 to 100 (units: %)
Explanati	tion) Change the deceleration rate parameter of the specified robot axis to the <i>expression</i>
	value.
	In format 1, the change occurs at all axes of a specified robot.
	In format 2, the change occurs at the axis specified in <i><axis number=""></axis></i> .
• The a	acceleration parameter can be changed by using the ACCEL statement.
tions	
Format	it
DECEL	[robot number] (axis number)
Values	robot number1 to 4 (If not input, robot 1 is specified.)
Values	axis number1 to 6
	axis number1 to 6
Explanati	axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis.
	axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE
Explanati SAMP1	axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE
SAMP A =50	axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE
Explanati SAMPI A =50	<pre>axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE ASpecifies 50 in the deceleratio</pre>
Explanati SAMPI A =50 DECEL	<pre>axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE ASpecifies 50 in the deceleratio rate parameter fo</pre>
Explanati SAMPI A =50 DECEL	<pre>axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE ASpecifies 50 in the deceleratio</pre>
Explanati SAMPI A =50 DECEL DECEL	<pre>axis number1 to 6 ion Acquires the deceleration rate parameter value for the specified axis. LE ASpecifies 50 in the deceleration r a t e p a r a m e t e r f o all axes of robot 1 .(3)=100Specifies 100 as the deceleration rate parameter for the axis 3 o robot 1</pre>
Explanati SAMPI A =50 DECEL DECEL	<pre>axis number1 to 6 tion Acquires the deceleration rate parameter value for the specified axis. LE ASpecifies 50 in the deceleratio r a t e p a r a m e t e r f o all axes of robot 1 f(3)=100Specifies 100 as the deceleratio rate parameter for the axis 3 o</pre>
Explanati SAMPJ A =50 DECEL DECEL 'CYCLH FOR A	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL DECEL 'CYCLH FOR A	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL DECEL 'CYCLH FOR A	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL CECEL 'CYCLI FOR A DE MC	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL CYCLH FOR A DE MC MC	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL CUCLI FOR A DE MC MC NEXT A	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL CUCLI FOR A DE MC MC NEXT A	<pre>axis number</pre>
Explanati SAMPI A =50 DECEL DECEL 'CYCLH FOR A DE MC MC NEXT A	<pre>axis number</pre>

22

Defines functions which can be used by the user

Format				
DEF FN name % (dummy argu I \$	<pre>ument, dummy argument) = function definition expression</pre>			
	Function name. Max. of 16 characters including "FN". Numeric or character string variable.			
Explanation Defines the function the FN <i><name></name></i> (<i><</i>	ons which can be used by the user. Defined functions are called in <i>variable</i> >) format.			
definition expression>. The definition expression> is eva program.	ames are the same as the variable names used in the <i><function< i=""> e names of these variables are valid only when the <i><function< i=""> aluated. There may be other variables with the same name in the</function<></i></function<></i>			
• When calling a function that	at uses a < <i>dummy argument</i> >, specify the constant, variable, or			

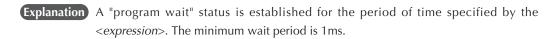
- When calling a function that uses a *<dummy argument>*, specify the constant, variable, or expression type which is the same as the *<dummy argument>* type. The *<dummy argument>* can be omitted. If *<dummy arguments>* are the same type, the difference of variable names does not affect.
- If a variable used in the *<function definition expression>* is not included in the *<dummy argument>* list, the current value of that particular variable is used for the calculation.
- A space must be entered between "DEF" and "FN". If no space is entered, DEFFN will be handled as a variable.
- The DEF FN statement cannot be used in sub-procedures.
- Definition by the DEF FN statement must be declared before statements which use functions.

SAMPLE

DEGRAD

Angle conversion (degree \rightarrow radian)

	Format
	DEGRAD (<i>expression</i>)
	Values expressionAngle (units: degrees)
	Explanation The <i><expression></expression></i> value is converted to radians.
MEMO	• To convert radians to degrees, use RADDEG.
	SAMPLE
	A=COS(DEGRAD(30)) \cdots A cosine value which is converted 30° to radians is assigned to variable A.
	Related commands ATN, COS, RADDEG, SIN, TAN


Program execution waits for a specified period of time

Format

DELAY expression

expression.....0 to 3600000 (units: ms)

SAMPLE

DELAY 3500 3,500ms (3.5 secs) wait A-50 DELAY A*10 500ms (0,5 secs) wait DI

Format	
1. LET	$expression = DIm(b, \cdots, b)$
	expression = DI(mb,,mb)
Values	m: port number0 to 7, 10 to 17, 20 to 27
	b: bit definition0 to 7 (If omitted, all 8 bits are processed.)
	If multiple bits are specified, they are expressed from the
	left in descending order (high to low).
Explanation	Indicates the parallel input signal status.
	Enter "0" if no input port exists.
SAMPLE	
A%=DI2()) The input status from DI (27) to DI (20)
	is assigned to variable A%.
A%=DI5(7,4,0) The DI (57), DI (54), DI (50) input
	status is assigned to variable A% (when
	all the above signals are "1" (ON), A% = 7).
A%=DI(3'	7,25,20) The DI (37), DI (25), DI (20) input
	status is assigned to variable A% (when
	all the above signals except DI (20)
	are "1" (ON), A% = 6).

Reference

For details, refer to Chapter 3 "9.3 Parallel input variable".

D

26

Format

	Format		
	DIM array definition , array definition,		
	Array definition		
	name % (constant, constant) ! \$		
	Values constant : Array subscript0 to 32,767 (positive integer)		
	Explanation Declares the name and length (number of elements) of an array variable. A maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can be declared in a single line by using comma (,) breakpoints to separate the arrays.		
MEMO	 The total number of array elements is <<i>constant></i> + 1. A "9.300: Memory full" error may occur depending on the size of each dimension defined in an array. 		
	SAMPLE		
	DIM A%(10) ·····vorvorvorvorvorvorvorvorvorvorvorvorvorv		
	DIM $B(2,3,4)$ Defines a real array variable $B(0, 0, 0)$ to $B(2, 3, 4)$. (Number of elements: 60).		
	DIM C%(2,2),D!(10) Defines an integer array C% (0,0) to C% (2,2) and a real array D! (0) to D! (10).		

••••••

DIST

Acquires the distance between 2 specified points

Format	Format			
DIST	(point expression 1, point expression 2)			
Values	point expression 1Cartesian coordinate system point			
	point expression 2Cartesian coordinate system point			
Explanati	• Acquires the distance (units: mm) between the 2 points (X,Y,Z) specified by <i><point< i=""> expression 1> and <i><point< i=""> expression 2>. An error occurs if the 2 points specified be each <i><point< i=""> expression> do not have Cartesian coordinates.</point<></i></point<></i></point<></i>			
SAMPI	Æ			
A=DIST	P(P0,P1) The distance between P0 and P1 is			

Outputs to parallel port or acquires the output status

Format	
1. LET DOm $(b, \dots, b) = ex$	pression
2. LET DO $(mb, \dots, mb) = e$	expression
Values m: port number	2 to 7, 10 to 17, 20 to 27
D: DIT definition	0 to 7 (If omitted, all 8 bits are processed.)
	If multiple bits are specified, they are expressed from the
	left in descending order (high to low).
Outputs are not possible SAMPLE	to DO0() and DO1(). These ports are for referencing only.
DO2() = &B10111000	DO (27, 25, 24, 23) are turned ON, and DO (26, 22, 21, 20) are turned OFF.
$DO2(6,5,1) = \&B010 \cdots$	DO (25) are turned ON, and DO (26, 21)
- (-)	are turned OFF.
DO3() = 15 ·····	DO (33, 32, 31, 30) are turned ON, and
	DO (37, 36, 35, 34) are turned OFF.
$DO(37,35,27,20) = A \cdots$	The contents of the 4 lower bits
	acquired when variable A is converted
	to an integer are output to DO (37,
	35, 27, 20) respectively.

DO

Functions

Format	
	m (b,,b)
LET DO	(mb,,mb)
Values	m: port number0 to 7, 10 to 17, 20 to 27
values	b: bit definition0 to 7 (If omitted, all 8 bits are processed.)
	If multiple bits are specified, they are expressed from the
	left in descending order (high to low).

Explanation References the parallel port signal status.

SAMPLE	
A%= DO2()	Output status of ports DO(27) to DO(20)
	is assigned to variable A%.
A%= DOO(6, 5, 1)	Output status of DO(06), DO(05) and
	DO(01) is assigned to variable A%.
	(If all above signals are $1(ON)$, then
	A%=7.)
A%=DO(37,35,27,10)	Output status of DO(37),
	DO(35) , DO(27) and DO(10)
	is assigned to variable A%.
	(If all above signals except D0(27)
	are 1 (ON), then A%=13.)

Related commands RESET, SET

DRIVE

29

Executes absolute movement of specified axes

Format	
-	t number] (axis number, expression)
, (axis numbe	r, expression), option, option
axis nul	umber1 to 4 (If not input, robot 1 is specified.) mber1 to 6 ionMotor position (mm, degrees, pulses) or point expression
	utes absolute movement command for the specified axis command is also used in the same way for the auxiliary axes.
• Mc	ovement type: PTP movement of specified axis.
• Poi	int setting method: Direct numeric value input, point definition.

• Options: Speed setting, STOPON conditions setting, XY setting.

Movement type

• PTP (Point to Point) movement of specified axis:

PTP movement begins after positioning of all axes specified at *<axis number>* is complete (within the tolerance range), and the command terminates when the specified axes enter the OUT position range. When two or more axes are specified, they will reach their target positions simultaneously.

If the next command following the DRIVE command is an executable command such as a signal output command, that next command will start when the movement axis enters the OUT position range. In other words, that next command starts before the axis arrives within the target position tolerance range.

F	1
Exam	ple:

Signal output (DO, etc.)	Signal is output when axis enters within OUT position range.
DELAY	DELAY command is executed and standby starts, when axis enters the OUT position range.
HALT	Program stops and is reset when axis enters the OUT position range. Therefore, axis movement also stops.
HALTALL	All programs in execution stop when axis enters the OUT position range, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops when axis enters the OUT position range. Therefore, axis movement also stops.
HOLDALL	All programs in execution temporarily stop when axis enters the OUT position range. Therefore, the movement also stops.
WAIT	WAIT command is executed when axis enters the OUT position range.

DRIVE(1,P1) DRIVE(1,P1) Target position DO(20)=1 WAIT ARM DO(20)=1 Tolerance OUT position DO(20) turns ON DO(20) turns ON DRIVE(1,P1) DRIVE(1,P1) Target position HOLD WAIT ARM HOLD Tolerance OUT position HOLD execution HOLD execution (program temporarily stops) (program temporarily stops) 33819-R7-00 SAMPLE DRIVE(1, P0) · · · · ······Axis 1 of robot 1 moves from its current position to the position specified by P0.

The WAIT ARM statement is used to execute the next command after the axis enters the

DRIVE command

tolerance range.

Point data setting types

• Direct numeric value input

The target posotion is specified directly in <expression>.

If the numeric value is an integer, this is interpreted as "pulse" units. If the numeric value is a real number, this is interpreted as "mm/degrees" units, and each axis will move from the 0-pulse position to a pulse-converted position.

However, when using the optional XY setting, movement occurs from the Cartesian coordinate origin position.

```
SAMPLE

DRIVE(1,10000) .....Axis 1 of robot 1 moves from its

current position to the 10000 pulses

position.

DRIVE 2 (2,90.00) ....Axis 2 of robot 2 moves from its

current position to a position which

is 90° in the plus-direction from the

0-pulse position.
```

DRIVE

29

NOTE • If point data is specified with both integers and real numbers in the same statement, all values are handled in "mm/degrees"

ſÞ

units.

叼

8

Point data is specified in <expressions>. The axis data specified by the <axis number> is used. If the point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse position to the pulse-converted position. However, when using the optional XY setting, movement occurs from the Cartesian coordinate origin position.

SAMPLE

Point definition

DRIVE(1,P1)Axis 1 of robot 1 moves from its current position to
the position specified by P1.
DRIVE(4, P90) ····· Axis 4 of robot 1 moves from its current position to the
position specified by P90 (deg) relative to the 0 pulse
position. (When axis 4 is a rotating axis.)

Option types

	Speed	setting
--	-------	---------

Form	nat
1.	SPEED =expression
2.	S =expression

• This defines the maximum

NOTE

speed, and does not guarantee that all movement will occur at specified speed.

NOTE

• SPEED option and DSPEED option cannot be used together

Values expression1 to 100 (units: %)
 Explanation The program's movement speed is specified as an <<i>expression</i>>. The actual speed is determined as shown below. Robot's max. speed (mm/sec, or deg/sec) × automatic movement speed (%) value of <i>expression</i> (%) This option is enabled only for the specified DRIVE statement.
SAMPLE
<pre>DRIVE 2 (1,10000),S=10 ····· Axis 1 of robot 2 moves from its current position to the 10000 pulses position at 10% of the automatic movement speed.</pre>
Format
 DSPEED =expression DS =expression
Values expression0.01 to 100.00 (units: %)
 Explanation The axis movement speed is specified in <<i>expression</i>>. The actual speed is determined as shown below. Robot's max. speed (mm/sec, or deg/sec) × value of <i>expression</i> (%) This option is enabled only for the specified DRIVE statement. Movement always occurs at the DSPEED <<i>expression</i>> value (%) without bein affected by the automatic movement speed value (%).
SAMPLE
DRIVE 2 (1,10000).DS=0.1 ····· Axis 1 of robot 2 moves from its current position to

DRIVE 2 (1,10000), DS=0.1 ····· Axis 1 of robot 2 moves from its current position to the 10000 pulses position at 0.1% of the maximum speed.

DRIVE

• STOPON condition setting

Format	onditional expression
Explanation	Stops movement when the conditions specified by the <i><conditional expression=""></conditional></i> are met. Because this is a deceleration type stop, there will be some movement (during deceleration) after the conditions are met. If the conditions are already met before movement begins, no movement occurs, and the command is terminated. This option is enabled only during program execution.
SAMPLE	
DRIVE(1,1)	0000),STOPON DI(20)=1
	<pre> Axis 1 of robot 1 moves from its current position toward the "10000 pulses" position and stops at an intermediate point if the "DI (20) = 1" condition is met. The next step is then executed.</pre>

• When the conditional expression used to designate the STOPON condition is a numeric expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

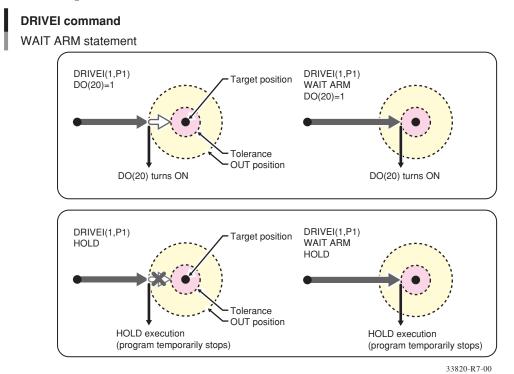
• XY setting

Format	
XY	
Explanation	 Moves multiple specified axes to a position specified by Cartesian coordinates. All the specified axes arrive at the target position at the same time. If all axes which can be moved by MOVE statement have been specified, operation is identical to that which occurs when using MOVE statement. The following restrictions apply to this command: 1. Axes specified by <i><axis number=""></axis></i> must include the axis 1 and 2. 2. This command can be specified at SCARA robots with X and Y- axes. 3. Point settings must be in "mm" or "deg" units (real number setting).
SAMPLE	
DRIVE(1,P	100),(2,P100),(4,P100),XY
	•••••• The axis 1, 2 and 4 of robot 1 move from their current positions to the Cartesian coordinates position specified by P100.

Moves the specified robot axes in a relative manner

	Format
	DRIVEI [robot number] (axis number, expression), (axis number, expression), option, option
	Values robot number
	ExplanationExecutes relative movement, including the auxiliary axes.• Movement type :PTP movement of a specified axis• Point data setting :Direct coordinate data input, point definition• Options :Speed setting, STOPON conditions setting
MEMO)	 When DRIVEI motion to the original target position is interrupted and then restarted, the target position for the resumed movement can be selected as the "MOVEI/DRIVEI start position" in the controller's parameters. (For details, refer to the YRCX user's/ operator's manual.) 1) KEEP (default setting) Continues the previous (before interruption) movement. The original target position remains unchanged.
	2) RESET Relative movement begins anew from the current position. The target position before interruption is reset.

Movement type


PTP (point-to-point) of specified axis

PTP movement begins after positioning of all axes specified at *<axis number>* is complete (within the tolerance range), and the command terminates when the specified axes enter the OUT position range. When two or more axes are specified, they will reach their target positions simultaneously.

If the next command following the DRIVEI command is an executable command such as a signal output command, that next command will start when the movement axis enters the OUT position range. In other words, that next command starts before the axis arrives within the target position tolerance range.

Example	e:
---------	----

Signal output (DO, etc.)	Signal is output when axis enters within OUT position range.
DELAY	DELAY command is executed and standby starts, when axis enters the OUT position range.
HALT	Program stops and is reset when axis enters the OUT position range. Therefore, axis movement also stops.
HALTALL	All programs in execution stop when axis enters the OUT position range, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops when axis enters the OUT position range. Therefore, axis movement also stops.
HOLDALL	All programs in execution temporarily stop when axis enters the OUT position range. Therefore, the movement also stops.
WAIT	WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement are used to execute the next command after the axis enters the tolerance range.

Limitless motion related cautions

• When the "limitless motion" parameter is enabled, the DRIVEI statement soft limit check values are as follows:

Plus-direction soft limit:	99,999,999 [pulse]
Minus-direction soft limit:	-99,999,999 [pulse]

•When using the DRIVEI statement, the above values represent the maximum movement distance per operation.

SAMPLE	
DRIVEI(1,P0)	•••••• The axis 1 of robot 1 moves from its current position to the amount of
	distance specified by P0.

DRIVEI

Point data setting types

Direct numeric value input

The target position is specified in *<expression>*.

If the target position's numeric value is a real number, this is interpreted as a "mm/ deg" units, and each axis will move from its current position to a pulse-converted position.

SAMPLE	
DRIVEI(1,10000)	······From its current position, the axis 1
	of robot 1 moves a distance of "+10000
	pulses".
DRIVEI(4,90.00)	\cdots From its current position, the axis 4
	of robot 1 moves +90°(when axis 4 is a
	rotating axis).

 If point data is specified with both integers and real numbers in the same statement, all values are handled in "mm/degrees" units.

Point definition

Point data is specified in *<expression>*. The axis data specified by the *<axis number>* is used. From its current position, the axis moves the distance specified by the point in a relative manner.

If the point expression is in "mm/ degrees" units, movement for each axis occurs from the 0-pulse position to the pulse-converted position.

SAMPLE
DRIVEI(1,P1)The axis 1 of robot 1 moves from its
current position the distance specified
by P1.
DRIVEI(4, P90) ····· The axis 4 of robot 1 moves from its
current position the number of degrees
specified by P90 (when axis 4 is a
rotating axis).

Option types

Speed setting

ormat	

Values

Explanation

SAMPLE

1. SPEED=expression

expression.....1 to 100 (units: %)

The actual speed is as follows:

program movement speed (%)

2. S=expression

• This defines the maximum speed, and does not guarantee that all movement will occur at specified speed.

 SPEED option and DSPEED option cannot be used together.

	pulses position at 10% of the program movement speed.
Format	
	EED=expression expression
Values expr	<i>ession</i> 0.01 to 100.00 (units: %)
Explanation	The axis movement speed is specified as an <i><expression< i="">>.</expression<></i>
	The actual speed is determined as shown below.
• Robot's max. speed (mm/sec, or deg/sec) × axis movement speed (%)	
	This option is enabled only for the specified DRIVEI statement.
	• Movement always occurs at the DSPEED < expression> value (%) without bein
	affected by the automatic movement speed value (%).
SAMPLE	

The program's movement speed is specified by the *<expression>*.

This option is enabled only for the specified DRIVEI statement.

DRIVEI(1,10000),S=10.....The axis 1 of robot 1 moves from

• Robot's max. speed (mm/sec, or deg/sec) \times automatic movement speed (%) \times

its current position to the +10000

SAMI DRIVEI(1,10000), DS=0.1 ······ The axis 1 of robot 1 moves from its current position to the +10000 pulses position at 0.1% of the maximum speed.

DRIVEI

30

• STOPON condition setting

5101010 00	onditional expression
Explanation	Stops movement when the conditions specified by the <i><conditional expression=""></conditional></i> are met. Because this is a deceleration type stop, there will be some movement
	(during deceleration) after the conditions are satisfied.
	If the conditions are already satisfied before movement begins, no movement
	occurs, and the command is terminated.
	This option is enabled only by program execution.
• When the c	conditional expression used to designate the STOPON condition is a numeric
expression, status.	expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE

DRIVEI(1,10000),STOPON DI(20)=1
····· Axis 1 of robot 1 moves from its current
position toward the "+10000 pulses" position
and stops at an intermediate point if the "DI
(20) = 1" condition become satisfied. The next
step is then executed.

8

Ends the SELECT CASE statement

Format

```
SELECT CASE expression
CASE expression's list 1
command block 1
CASE expression's list 2
command block 2
:
CASE ELSE
command block n
```

END SELECT

Explanation Directly ends the SELECT CASE command block. For details, refer to section "104 SELECT CASE to END SELECT".

SAMPLE

```
WHILE -1
SELECT CASE DI3()
CASE 1,2,3
CALL *EXEC(1,10)
CASE 4,5,6,7,8,9,10
CALL *EXEC(11,20)
CASE ELSE
CALL *EXEC(21,30)
END SELECT
WEND
HALT
```

Related commands SELECT CASE

END SUB

Ends the sub-procedure definition

Format

```
SUB label (dummy argument, dummy argument...)
command block
END SUB
```

Explanation Ends the sub-procedure definition which begins at the SUB statement. For details, refer to section "125 SUB to END SUB".

SAMPLE 1	
I=1	
CALL *TEST	
PRINT I	
HALT	
'SUB ROUTINE: TEST	
SUB *TEST	
I=50	
END SUB	

Related commands

CALL, EXIT SUB, SUB to END SUB

Acquires the error code / error line number

Format
ERR(task number) ERL(task number)
Values task number1 to 4
ExplanationVariables ERR and ERL are used in error processing routines specified by the ON ERROR GOTO statement. ERR of the task specified by the <task number=""> gives the error code of the error that has occurred and ERL gives the line number in which the error occurred.</task>
SAMPLE 1
IF ERR 1 <> &H604 THEN HALT IF ERL 1 =20 THEN RESUME NEXT
Related commands ON ERROR GOTO, RESUME

ETHSTS

34

Acquires the Ethernet port status

Format

ETHSTS

Explanation	Acquires the Ethernet port status.
	-2 Ethernet port is not opened yet.

-1 LAN cable is not connected.

0...... The connection is not established.

1...... The connection is established.

2...... The connection is established / the data is stored in the reception buffer.

SAMPLE

A=ETHSTS Assigns the the Ethernet port status to the variable A

EXIT FOR

MEMO

Terminates the FOR to NEXT statement loop

Format

	EXIT FOR
	ExplanationTerminates the FOR to NEXT statement loop, then jumps to the command which follows the NEXT statement. This statement is valid only between the FOR to NEXT statements.
)	• The FOR to NEXT statement loop will end when the FOR statement condition is satisfied or when the EXIT FOR statement is executed. A "5.212: Stack overflow" error, etc., will occur if another statement such as GOTO is used to jump out of the loop.
	SAMPLE
	*ST:
	WAIT DI(20)=1
	FOR A%=101 TO 109
	MOVE P, P100, Z=0
	DO(20)=1
	MOVE P, P[A%], Z=0
	DO(20)=0
	IF DI(20)=0 THEN EXIT FOR
	NEXT A%
	GOTO *ST

Related commands FOR, NEXT

HALT

EXIT SUB

Terminates the sub-procedure defined by the SUB to END SUB statement

SUB statements.

Format

EXIT SUB

Explanation The EXIT SUB statement terminates the sub-procedure defined by the SUB to END SUB statements, then jumps to the next command in the CALL statement that called up the sub-procedure. This statement is valid only within the sub-procedure defined by the SUB to END

• To end the sub-procedure defined by the SUB to END SUB statements, use the END SUB statement or EXIT SUB statement. A "5.212: Stack overflow" error, etc., will occur if another statement such as GOTO is used to jump out of the loop.

SAMPLE

```
'MAIN ROUTINE
CALL *SORT2(REF X%,REF Y%)
HALT
'SUB ROUTINE: SORT
SUB *SORT2(X%, Y%)
IF X%>=Y% THEN EXIT SUB
TMP%=Y%
Y%=X%
X%=TMP%
END SUB
```

Related commands

CALL, SUB to END SUB, END SUB

Format

EXIT TASK

Explanation Terminates its own task which is currently being executed.

SAMPLE

```
'TASK1 ROUTINE
*ST:
   MO(20)=0
   START <SUB_PGM>,T2
   MOVE P, P0, P1
   WAIT MO(20)=1
   GOTO *ST
HALTALL
Program name:SUB_PGM
'TASK2 ROUTINE
*SUBTASK2:
   P100=JTOXY(WHERE)
   IF LOCZ(P100)>=100.000 THEN
       MO(20) = 1
       EXIT TASK
   ENDIF
   DELAY 100
GOTO *SUBPTASK2
EXIT TASK
```

Related commands CUT, RESTART, START, SUSPEND, CHGPRI

Performs loop processing until the variable exceeds the specified value

Format

ExplanationThese statements repeatedly execute commands between the FOR to NEXT
statements for the *<start value>* to *<end value>* number of times, while changing the
<control variable> value in steps specified by *<STEP>*.
If *<STEP>* is omitted, its value becomes "1".
The *<STEP>* value may be either positive or negative.
The *<control variable>* must be a numeric *<simple variable>* or *<array variable>*.
The FOR and NEXT statements are always used as a set.

SAMPLE

```
'CYCLE WITH CYCLE NUMBER OUTPUT TO DISPLAY
FOR A=1 TO 10
MOVE P,P0
MOVE P,P1
MOVE P,P2
PRINT"CYCLE NUMBER=";A
NEXT A
HALT
```

Related commands EXIT FOR

GEPSTS

Acquires the General Ethernet Port status

Format
GEPSTS(General Ethernet Port number)
Values General Ethernet Port number 0 to 7
Explanation Acquires the specified General Ethernet port status.
-2 The specified General Ethernet port is not opened yet.
-1 LAN cable is not connected.
0 The connection is not established.
1 The connection is established.
2 The connection is established / the data is stored in the reception buffer.
SAMPLE
OPEN GP1 Opens the port which is specified at the General Ethernet port 1
<pre>IF GEPSTS(1) > 0 THEN Confirms if the connection is</pre>
SEND "ABC" TO GP1 Sends the character string "123".
IF GEPSTS(1)=2 THEN Confirms if the data is stored in the reception buffer.
SEND GP1 TO RET\$ ······ Receives the data and assigns the received to the variable RET\$.
ENDIF
ENDIF
CLOSE GP1 Closes the port which is specified at
the General Ethernet port 1.
HALT

Related commands

OPEN, CLOSE, SEND, SETGEP

Jumps to a subroutine

Format	
GOSUB label	* GOSUB can also be expressed as "GO SUB".
:	
label:	
:	
RETURN	

MEMO)

- A RETURN statement within the subroutine causes a jump to the next line of the GOSUB statement.
- The GOSUB statement can be used up to 120 times in succession. Note that this number of times is reduced if commands containing a stack such as an FOR statement or CALL statement are used.

Explanation Jumps to the *<label>* subroutine specified by the GOSUB statement.

• When a jump to a subroutine was made with the GOSUB statement, always use the RETURN statement to end the subroutine. If another statement such as GOTO is used to jump out of the subroutine, an error such as "5.212: Stack overflow" may occur.

17.	11	÷	1	-	1.7
¥-	11 I.U		-		1 M T

*ST:		
MOVE P,P0		
GOSUB *CLOSEHAND		
MOVE P,P1		
GOSUB *OPENHAND		
GOTO *ST		
HALT		
'SUB ROUTINE		
*CLOSEHAND:		
DO(20) = 1		
RETURN		
*OPENHAND:		
DO(20) = 0		
RETURN		

Related commands

RETURN

GOTO

Executes an unconditional jump to the specified line

Format

GOTO label* GOTO can also be expressed as "GO TO".

Explanation Executes an unconditional jump to the line specified by <label>.

SAMPLE

```
'MAIN ROUTINE
*ST:
MOVE P,P0,P1
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT
```

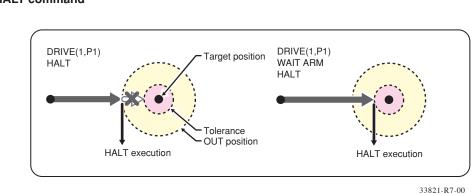
42

HALT

MEMO

Stops the program and performs a reset

Format	
HALT	expression character string
k I	Stops the program and resets it. If restarted after a HALT, the program runs from its beginning. If an <i><expression></expression></i> or a <i><character string=""></character></i> is written, the operation result of <i><expression></expression></i> or the contents of <i><character string=""></character></i> are displayed on the programming box screen, respectively
	re not reset by execution of HALT statement. HALTALL is available to reset variables. ffective only in the executed task. The programs executed in other tasks continue


SAMPLE

```
'MAIN ROUTINE
*ST:
MOVE P,P0,P1
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT "PROGRAM FIN"
```

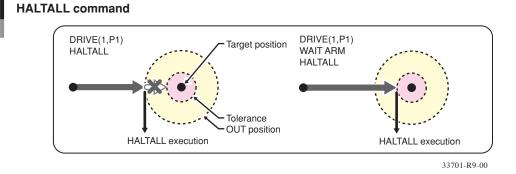
In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command is executed when the axis enters the OUT position range.

Therefore, if a HALT command exists immediately after a PTP movement command, that HALT command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C) command, the next command is executed immediately after movement starts. Therefore, if a HALT command exists immediately after the interpolation movement command during MOVE (L or C) command with CONT options, a HALT command is executed immediately after starting movement. In either of the above cases, use the WAIT ARM command as shown below if desiring to execute the HALT command after the axis arrives within the target position tolerance range.

HALT command

HALTALL


Stops all programs and performs reset

	Format HALTALL expression character string
	Explanation Stops and resets all programs. Dynamic variables, array variables, output variables are also rest.
	If a program is restarted after a HALTALL, the program runs from its beginning of the main program or of the last program executed at task 1. If an <i><expression></expression></i> or a <i><character string=""></character></i> is written, the calculation result of <i><expression></expression></i> or the contents of <i><character string=""></character></i> are displayed on the programming box screen, respectively (if variable is written in an <i><expression></expression></i> , the previous value before clearing is displayed).
MEMO	Output variables (DO/SO/MO/LO/TO/SOW) are reset under the condition as shown below. • IO parameter "DO output at Program reset" is "IO_RESET". • Sequence program is in execution and the sequence program execution flag is enabled.
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET".
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled.
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled. SAMPLE 'MAIN ROUTINE *ST:
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled. SAMPLE 'MAIN ROUTINE *ST: MOVE P,P0,P1
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled. SAMPLE 'MAIN ROUTINE *ST: MOVE P, P0, P1 IF DI (20) = 1 THEN
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled. SAMPLE 'MAIN ROUTINE *ST: MOVE P, P0, P1 IF DI (20) = 1 THEN GOTO *FIN
MEMO	 O parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled. SAMPLE 'MAIN ROUTINE *ST: MOVE P, P0, P1 IF DI (20) = 1 THEN GOTO *FIN ENDIF
MEMO	 IO parameter "DO output at Program reset" is "IO_RESET". Sequence program is in execution and the sequence program execution flag is enabled. SAMPLE 'MAIN ROUTINE *ST: MOVE P, P0, P1 IF DI (20) = 1 THEN GOTO *FIN

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command is executed when the axis enters the OUT position range.

Therefore, if a HALTALL command exists immediately after a PTP movement command, that HALTALL command is executed before the axis arrives in the target position tolerance range. Likewise, when specifying CONT options in interpolation movement during MOVE (L or C) command, the next command is executed immediately after movement starts. Therefore, if a HALTALL command exists immediately after the interpolation movement command during MOVE (L or C) command with CONT options, a HALTALL command is executed immediately after starting movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute the HALTALL command after the axis arrives within the target position tolerance range.

HAND Defines the hand

44

Format

Definition statement:
HAND[robot number] Hn = 1st parameter 2nd parameter 3rd parameter R
Selection statement:
CHANGE[robot number] Hn

Values	robot number1 to 4
	n: hand number0 to 31
	R: Indicates whether a hand is attached to the R-axis.
	_

Explanation	The HAND statement only defines the hand. To actually change hands, the CHANGE
	statement must be used.
	For CHANGE statement details, refer to section "12 CHANGE".
	If "R" is specified, the hands that are offset from the R-axis rotating center are selected.
•••••	· · · · · ·

- If a power OFF occurs during execution of the hand definition statement, the "9.707 Hand data destroyed" error may occur.
 - If specifying the hand data that was defined by specifying other robots in the CHANGE statement, "6.258: Illegal robot no" error may occur.

44.1 **For SCARA Robots**

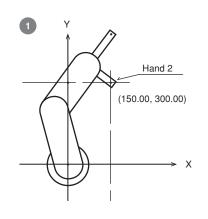
1. When the <4th parameter> "R" is not specified

.....

Hands installed on the second arm tip are selected (see below).

1st parameter Number of offset pulses between the standard second arm position and the virtual second arm position of hand "n". "+" indicates the counterclockwise direction [pulse].

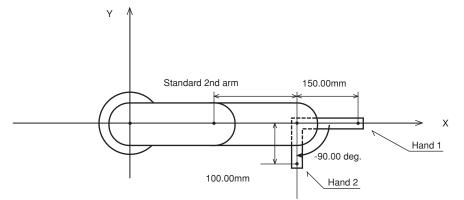
2nd parameter Difference between the hand "n" virtual second arm length and the standard second arm length. [mm]


3rd parameter Z-axis offset value for hand "n". [mm]



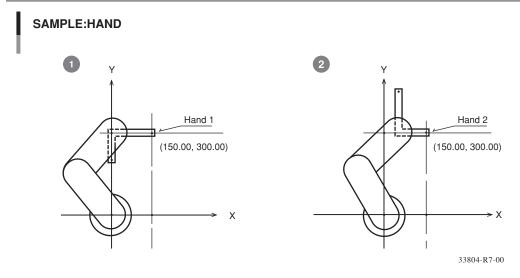
33803-R9-00

SAMPLE						
HAND H1=	0	150.000	0.0000			
HAND H2=	-5000	20.000	0.000			
P1=	150.000	300.000	0.000	0.000	0.000	0.000
CHANGE H2			• Hand of 1	robot 1 char	nges to ha	nd 2.
MOVE P,P1			• Tip of ha	and 2 of rol	oot 1 move	s to P1. 🌒
CHANGE H1			• Hand of 1	robot 1 char	nges to ha	nd 1.
MOVE P,P1			\cdot Tip of ha	and 1 of rok	oot 1 move	s to P1. 2
HALT						



2. When the <4th parameter> "R" is specified

The hands that are offset from the R-axis rotating center are selected (see below).


2nd parameter Length of hand "n". [mm] (>0)

3rd parameter Z-axis offset amount for hand "n". [mm]

33804-R9-00

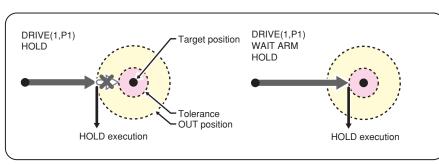
SAMPLE						
HAND H1=	0.00	150.0	0.0	R		
HAND H2=	-90.00	100.00	0.0	R		
P1=	150.00	300.00	0.00	0.00	0.00	0.00
CHANGE H1			• Hand of r	obot 1 chan	ges to han	d 1.
MOVE P,P1			• Tip of ha	nd 1 moves	to P1. 🚺	
CHANGE H2	• • • • • • • • • •	••••	• Hand of r	obot 1 chan	ges to han	d 2.
MOVE P,P1	• • • • • • • • • •	••••	• Tip of ha	nd 2 moves	to P1. 2	
HALT						

HOLD

Temporarily stops the program

GOTO *ST HALT

HOLD command


	Format		
	HOLD expression character string		
	Explanation Temporarily stops the program. When restarted, processing resumes from the next line after the HOLD statement. If an <i><expression></expression></i> or <i><character string=""></character></i> is written in the statement, the contents of the <i><expression></expression></i> or <i><character string=""></character></i> display on the programming box screen.		
MEMO	• HOLD is effective only in the task executed. The programs executed in other tasks continue execution.		
	SAMPLE		
	'MAIN ROUTINE *ST: MOVE P,P0,P1		
	IF DI(20)=1 THEN HOLD "PROGRAM STOP" ENDIF		

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command is executed when the axis enters the effective OUT position range.

Therefore, if a HOLD command exists immediately after a PTP movement command, that HOLD command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C) command, the next command is executed immediately after movement starts. Therefore, if a HOLD command exists immediately after the interpolation movement command during MOVE (L or C) command with CONT options, a HOLD command is executed immediately after starting movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute the HOLD command after the axis arrives within the target position tolerance range.

33822-R7-00

R

HOLDALL Temporality stops all programs

Format

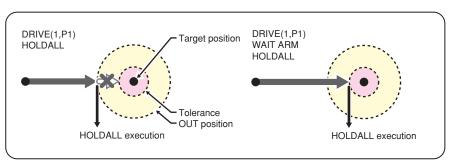
HOLD

expression		
character	string	

Explanation Temporality stops all programs. When restarted, the program that has executed HOLDALL is executed from the next line after the statement, and other programs are resumed from the line that has interrupted execution. If an *<expression>* or *<character sting>* is written in the statement, the contents of *<expression>* or *<character string>* displays on the programming box screen.

SAMPLE

```
'MAIN ROUTINE
*ST:
MOVE P,P0,P1
IF DI(20)=1 THEN
HOLD "PROGRAM STOP"
ENDIF
GOTO *ST
HALT
```


In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command is executed when the axis enters the effective OUT position range.

Therefore, if a HOLDALL command exists immediately after a PTP movement command, that HOLDALL command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C) command, the next command is executed immediately after movement starts. Therefore, if a HOLDALL command exists immediately after the interpolation movement command during MOVE (L or C) command with CONT options, a HOLDALL command is executed immediately after starting movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute the HOLDALL command after the axis arrives within the target position tolerance range.

HOLDALL command

33702-R9-00

IF

Evaluates a conditional expression value, and executes the command in accordance with the conditions

17.1	7.1 Simple IF statement		
	Format		
	IF conditional expression THEN label 1 ELSE label 2 command statement 1 command statement 2		
MEMO	 Explanation If the condition specified by the <i><conditional expression=""></conditional></i> is met (true), processing jumps either to the <i><label 1=""></label></i> which follows THEN, or to the next line after <i><command 1="" statement=""/></i> is executed. If the condition specified by the <i><conditional expression=""></conditional></i> is not met (false), the following processing occurs: 1. Processing either jumps to the <i><label 2=""></label></i> specified after the ELSE statement, or to the next line after <i><command 2="" statement=""/></i> is executed. 2. If nothing is specified after the ELSE statement, no action is taken, and processing simply jumps to the next line. • When the conditional expression used to designate the IF statement condition is a numeric expression, an expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status. 		
	SAMPLE		
	'MAIN ROUTINE *ST: MOVE P,P0,P1 IF DI(20)=1 THEN *L1 If DI (20) is "1", a jump to *L1 occurs.		
	DO(20)=1 DELAY 100 *L1: IF DI(21)=1 THEN *ST ELSE *FIN		
	If DI (21) is "1", a jump to *ST		
	occurs. If other than "1", a jump to *FIN occurs.		

IF

47

Block IF statement 47.2

Format
IF conditional expression 1 THEN
command block 1
ELSEIF conditional expression 2 THEN
command block 2
ELSE
command block n
ENDIF

Explanation If the condition specified by <conditional expression 1> is met (true), this statement executes the instructions specified in < command block 1>, then jumps to the next line after ENDIF. When an ELSEIF statement is present and the condition specified by <conditional expression 2> is met (true), the instructions specified in <command block 2> are executed.

> If all the conditions specified by the conditional expression are not met (false), <command block n> is executed.

• When the conditional expression used to designate the IF statement condition is a numeric expression, an expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

SAMPLE 'MAIN ROUTINE *ST: MOVE P, P0, P1 IF DI(21,20)=1 THEN DO(20) = 1DELAY 100 WAIT DI(20)=0 ELSEIF DI(21,20)=2 THEN DELAY 100 ELSE GOTO *FIN ENDIF GOTO *ST *FIN: HALT

INPUT

48

Assigns a value to a variable specified from the programming box

Format			
INPUT prompt statement	; variable , point variable shift variable	, variable point variable shift variable	,

Explanation

Assigns a value to the variable specified from the programming box. The input definitions are as follows:

- 1. When two or more variables are specified by separating them with a comma (,), the specified input data items must also be separated with a comma (,).
- At the *<prompt statement>*, enter a character string enclosed in double quotation marks (") that will appear as a message requiring data input. When a semicolon (;) is entered following the *<prompt statement>*, a question mark (?) and a space will appear at the end of the message. When a comma (,) is entered, nothing will be displayed following the message.
- 3. When the *<prompt statement>* is omitted, only a question mark (?) and a space will be displayed.
- 4. The input data type must match the type of the corresponding variables. When data is input to a point variable or shift variable, insufficient elements are set to "0".
- 5. If only the ENTER key is pressed without making any entry, the program interprets this as a "0" or "null string" input. However, if specifying two or more variables, a comma (,) must be used to separate them.
- 6. If the specified variable is a character type and a significant space is to be entered before and after a comma (,), double quotation mark (") or character string, the character string must be enclosed in double quotation marks ("). Note that in this case, you must enter two double quotation marks in succession so that they will be identified as a double quotation mark input.

Input Contents of A\$	
ABC	ABC
	ABC: space is not entered before and after ABC
" ABC "	ABC : space is entered before and after ABC
ABC,XYZ	ABC is entered, and XYZ is entered when the next INPUT statement is executed.
"ABC,XYZ"	ABC,XYZ
"""ABC"""	"ABC"

7. Pressing the ESC key skips this command.

- If the variable and the value to be assigned are different types, the specified message displays, and a "waiting for input" status is established.
- When assigning alphanumeric characters to a character variable, it is not necessary to enclose the character string in double quotation marks (").
- When using INPUT statement, the value is assigned to the variable from the channel specified in cotroller parameter "INPUT/PRINT using channel".

SAMPLE

INPUT A Conve	erts the enterered character
string	g to a real number and assigns to
varia	ble A!.
INPUT "INPUT POINT NUMBER";A1	
Displa	ays INPUT POINT NUMBER on a prompt
of pr	ogramming box, etc. and converts
the e	enterered character string to a
real :	number and assigns to variable A!.
<pre>INPUT "INPUT STRING",B\$(0),B\$(1)</pre>	
····· Displ	ays INPUT STRING on a prompt of
progr	amming box, etc. If commas are
conta	ined in the enterered character
strin	g, the first character string is
assig	ned to 0 element of the array
varia	ble B\$ and the second character
string	g is assigned to its 1 element.
INPUT P100 ····· Assign	ns the enterered character string
to P1	00.
HALT	

Format

INT (expression)

Explanation This function acquires an integer value with decimal fractions truncated. The maximum integer value which does not exceed the *<expression>* value is acquired.

SAMPLE

```
A=INT(A(0))
B=INT(-1. 233) ..... "-2" is assigned to B.
```

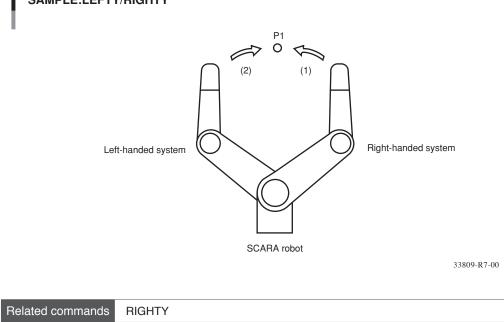
50 JTOXY

Performs axis unit system conversions (pulse \rightarrow mm)

Format		
JTOXY [robot number] (point expression)		
Values robot number		
Explanation Converts the joint coordinate data (unit: pulse) specified by the <i><point expression=""></point></i> into Cartesian coordinate data (unit: mm, degree) of the robot specified by the <i><robot number=""></robot></i> .		
SAMPLE		
P10=JTOXY(WHERE) Current position data of robot 1 is converted to Cartesian coordinate data and assigned to P10.		
Related commands XYTOJ		

LEFT\$

Extracts character strings from the left end


Format		
LEFT\$ (<character expression="" string=""> , <expression>)</expression></character>		
Values expression0 to 255		
ExplanationThis function extracts a character string with the digits specified by the <expression> from the left end of the character string specified by <character expression="" string="">. The <expression> value must be between 0 and 255, otherwise an error will occur. If the <expression> value is 0, then extracted character string will be a null string (empty character string). If the <expression> value has more characters than the <character expression="" string="">, extracted character string will become the same as the <character expression="" string="">.</character></character></expression></expression></expression></character></expression>		
SAMPLE		
B\$=LEFT\$(A\$,4) ····· 4 characters from the left end of A\$ are assigned to B\$.		
Related commands MID\$, RIGHT\$		

LEFTY

52

Sets the SCARA robot hand system as a left-handed system

Values robot nur Explanation Specifi This st execut	es the robot as a le atement only spe	ecifies the hand system, and does not move the robot. t arm is moving, execution waits until movement is complete
Explanation Specifi This st execut	es the robot as a le atement only spe ed while the robot	eft-handed system. ecifies the hand system, and does not move the robot. t arm is moving, execution waits until movement is complet
execut	atement only spe ed while the robot	ecifies the hand system, and does not move the robot. t arm is moving, execution waits until movement is complete
		nce range).
SAMPLE		
RIGHTY		••••• Specifies the hand system of robot 1 as a right-handed system.
MOVE P,P1 ···		(1)
		••••• Specifies the hand system of robot 1 as a left-handed system.
MOVE P, Pl ···		$\cdots $ (2)
RIGHTY ···		••••• Specifies the hand system of robot 1 as a right-handed system.
HALT		

8

LEN

Acquires a character string length

Format

LEN(character string expression)

Explanation Returns the *character string* length of the *<character string expression>* as a number of bytes.

SAMPLE

```
A$="OMRON"
B$="OMRON MOTOR"
C$="OMRON CO., LTD."
PRINT LEN(A$) ..... Indicates "6".
PRINT LEN(B$) .... Indicates "12".
PRINT LEN(C$) .... Indicates "16".
```

```
LET
      arithmetic assignment statement
       character string assignment statement
       point assignment statement
       shift assignment statement
```

Explanation Executes the specified assignment statement. The right-side value is assigned to the left side. An assignment statement can also be directly written to the program without using a LET statement.

• If the controller power is turned off during execution of a *<point assignment statement>* or <shift assignment statement>, a memory-related error such as the "9.702: Point data destroyed" or the "9.706: Shift data destroyed" may occur.

.....

Arithmetic assignment statement

.....

Format		
LET	integer variable real variable parallel output variable internal output variable arm lock output variable timer output variable serial output variable serial word output variable serial double-word output variable	=expression

```
Values
```

expressionVariables (except character string variables, point data variables, shift variables) Function Numeric value

Explanation

The expression value is assigned to the left-side variable.

```
SAMPLE
A!=B!+1
B%(1,2,3)=INT(10.88)
DO2()=&B00101101
MO(21, 20) = 2
LO(00)=1
TO(01)=0
SO12()=255
```

LET

2. Character string assignment statement

Format	

LET character string variable = character string expression

ExplanationThe <character string expression> value is assigned to the character string variable.Only the plus (+) arithmetic operator can be used in the <character string
expression>. Other arithmetic operators and parentheses cannot be used.

```
SAMPLE
A$ ="OMRON"
B$ ="ROBOT"
D$ = A$ + "-" + B$
```

Execution result: OMRON-ROBOT

(Exp

• The "+" arithmetic operator is used to link character strings.

3. Point assignment statement

Format	
LET p	point variable = point expression
planation	Assigns < point expression> values to point variables.
	Only 4 arithmetic operators (+, -, *, /) can be used in the <i><point expression=""></point></i> .
	Multiplication and division are performed only for constant or variable arithmetic

 Addition / Subtraction Addition / subtraction is performed for each element of each axis.

• Multiplication / Division..... Multiplication / division by a constant or variable is performed for each element of each axis.

Multiplication results vary according to the point data type.

- For "pulse" units Assigned after being rounded to an integer.
- For "mm" units Assigned a real number after being rounded off to two decimal places.

SAMPLE

P1 =P10 ····· Point 10 is assigned to P1.
P20=P20+P5 ····· 20 and point 5
is summed and assigned to P20.
P30=P30-P3 ····· Each element of point 3 is subtracted
from point 30 and assigned to P30.
P80=P70*4 ····· Each element of point 70 is multiplied
by 4 and assigned to P80.
P60=P5/3 ····· 5 is divided by
3 and assigned to P60.

.....

.....

....

• Multiplication & division examples are shown below.

- Permissible examples P15 * 5, P[E]/A, etc.
- Prohibited examples P10 * P11, 3/P10, etc.

4. Shift assignment statement

Format	
LET sh	ift variable = shift expression
Explanation	 Assigns <i><shift expression=""></shift></i> values to shift variables. Only shift elements can be used in <i><shift expressions=""></shift></i>, and only addition and subtraction arithmetic operators are permitted. Parentheses cannot be used. Addition/subtractionAddition/subtraction is performed for each element of each axis.
SAMPLE	
S1=S0 S2=S1+S	"shift 0" is assigned to "shift 1". 50 ······Each element of "shift 1" and "shift 0" is summed and assigned to "shift 2".

- Examples of *<shift expression>* addition/subtraction:
 - Permissible examples S1 + S2
 - Prohibited examples S1 + 3

LO

Format

	8	

	 LET LOm (b,,b) =expression LET LO (mb,,mb) =expression
REFERENCE • For details regarding bit definitions, see Chapter 3 "10 Bit Settings".	 m: port number
	valid.) Explanation This statement outputs the specified value to the LO port to either prohibit or allow axis movement. LO(00) to LO(07) correspond to axes 1 to 8, LO(10) to LO(17) correspond to axes 9 to 16, respectively. An arm lock ON status occurs at axes where bits are set, and axis movement is prohibited.
MEMO)	 This statement is valid at axes where movement is started. SAMPLE LOO()=&B00001010 Prohibits movement at axes 2 and 4. LOO(2,1)=&B10 Prohibits movement at axis 3, Permits movement at axis 2.

55 LO

Functions

LET LOm (b, \dots, b)	
LET LO (mb, \cdots, mb)	
/alues m: port number	0 to 7, 10 to 17, 20 to 27
b: bit definition	0 to 7 (If omitted, all 8 bits are processed.)
	If multiple bits are specified, they are expressed from t
	left in descending order (high to low).
xplanation Acquires the output	status of the specified LO port.
	prrespond to axes 1 to 8, LO(10) to LO(17) correspond to axes An arm lock ON status occurs at axes where bits are set, and av ited.
to 16, respectively.	An arm lock ON status occurs at axes where bits are set, and a
to 16, respectively. / movement is prohibi	An arm lock ON status occurs at axes where bits are set, and a
to 16, respectively. / movement is prohibi	An arm lock ON status occurs at axes where bits are set, and avited.
to 16, respectively. / movement is prohibi SAMPLE A%= LO0()	An arm lock ON status occurs at axes where bits are set, and avited. Output status of ports DO(07) to LO(00) is assigned to variable A%.
to 16, respectively. / movement is prohibi SAMPLE A%= LO0()	An arm lock ON status occurs at axes where bits are set, and avited. Output status of ports DO(07) to LO(00) is assigned to variable A%. Output status of LO(06), LO(05) and LO(01) is assigned to variable A%.
to 16, respectively. / movement is prohibi SAMPLE A%= LO0()	An arm lock ON status occurs at axes where bits are set, and av ited. Output status of ports DO(07) to LO(00) is assigned to variable A%. Output status of LO(06), LO(05) and LO(01) is assigned to variable A%. (If all above signals are 1(ON), then
to 16, respectively. / movement is prohibi SAMPLE A%= LOO() A%= LOO(6, 5, 1)	An arm lock ON status occurs at axes where bits are set, and avited. Output status of ports DO(07) to LO(00) is assigned to variable A%. Output status of LO(06), LO(05) and LO(01) is assigned to variable A%. (If all above signals are 1(ON), then A%=7.)
to 16, respectively. / movement is prohibi SAMPLE A%= LOO() A%= LOO(6, 5, 1)	An arm lock ON status occurs at axes where bits are set, and av ited. Output status of ports DO(07) to LO(00) is assigned to variable A%. Output status of LO(06), LO(05) and LO(01) is assigned to variable A%. (If all above signals are 1(ON), then A%=7.)
to 16, respectively. / movement is prohibi SAMPLE A%= LOO() A%= LOO(6, 5, 1)	An arm lock ON status occurs at axes where bits are set, and avited. Output status of ports DO(07) to LO(00) is assigned to variable A%. Output status of LO(06), LO(05) and LO(01) is assigned to variable A%. (If all above signals are 1(ON), then

Related commands

RESET, SET

LOCx

Specifies/acquires point data for a specified axis or shift data for a specified element

	Format
	 LOCx (point expression) =expression LOCx (shift expression) =expression
	Values Format 1: x 1 to 6 (axis setting)
	F (hand system flag setting)
	F1 (first arm rotation information)
	F2 (second arm rotation information)
	Format 2: x 1 to 4 (element setting)
	expression Axis or element setting coordinate value
	Hand system flag setting 1 (right-handed system)
	2 (left-handed system)
	0 (no setting)
	First / second arm rotation
	information(*1)
	*1: For details regarding the first arm and the second arm rotation information, refer to Chapter 4 "3. Point data format".
	Explanation Format 1: Changes the value of the point data specified axis, the hand system flag, and the first arm and the second arm rotation information.
	Format 2: Changes the value of a specified element from the shift data value.
MEMO	• Points where data is to be changed must be registered in advance. An error will occur if a value change is attempted at an unregistered point (where there are no coordinate values).

L

8

LOCx

56

Functions

 LOCx (point expression LOCx (shift expression 	
alues Format 1: x	1 to 6 (axis setting)
	F (hand system flag setting)
	F1 (first arm rotation information)
	F2 (second arm rotation information)
	e value of the point data specified axis, the hand system f arm and the second arm rotation information. specified axis element from the shift data.
Format 2: Acquires a s	arm and the second arm rotation information.
Format 2: Acquires a s	arm and the second arm rotation information.
Format 2: Acquires a s SAMPLE LOC1(P10)=A(1) ·····	arm and the second arm rotation information. specified axis element from the shift data. Axis 1 data of P10 is changed to th
Format 2: Acquires a s SAMPLE LOC1 (P10) = A (1)	arm and the second arm rotation information. specified axis element from the shift data. ••••••• Axis 1 data of P10 is changed to th array A (1) value. •••••• Axis 2 data of S1 is changed to the

Related commands

Point variable, shift variable

Format		
LSHIFT (expression 1, expression 2)		
Explanation Shifts the <i><expression 1=""></expression></i> bit value to the left by the amount of <i><expression 2=""></expression></i> . Spaces left blank by the shift are filled with zeros (0).		
SAMPLE		
A=LSHIFT(&B10111011,2) ····· The 2-bit-left-shifted &B10111011 value (&B11101100) is assigned to A.		

Related commands RSHIFT

Acquires the machine reference value (axes: sensor method / stroke-end method)

Format	
MCHREF [robot number] (axis number)	
Values robot number	
ExplanationThis function returns the return-to-origin or absolute-search machine reference va (unit:%) of axes specified by an <axis number="">.This function is valid only for axes whose return-to-origin method is set as "Sensor "Stroke-end".</axis>	
SAMPLE	
A=MCHREF(1) ····· of axis 1 o robot 1 is assigned to variable A.	f

MID\$

Acquires a character string from a specified position

ormo	(character string expression, expression 1, expression 2)
alues	<i>expression 1</i> 1 to 255 <i>expression 2</i> 0 to 255
xplanat	 This function extracts a character string of a desired length (number of character from the character string specified by <i><character expression="" string="">. <expression 1<="" i=""> specifies the character where the extraction is to begin, and <i><expression 2=""></expression></i> specifies the number of characters to be extracted.</expression></character></i> An error will occur if the <i><expression 1=""></expression></i> and <i><expression 2=""></expression></i> values violate the permissible value ranges. If <i><expression 2=""></expression></i> is omitted, or if the number of characters to the right of the character of <i><expression 1=""></expression></i> is less than the value of <i><expression 2=""></expression></i>, then a characters to the right of the character specified by <i><expression 1=""></expression></i> will be extracted If <i><expression 1=""></expression></i> is longer than the character string, the exracted value will be a nu string (empty character string).
SAMP	LE
B\$=MI	D\$(A\$,2,4) The 2nd to 4th characters (up to the 5th characters) of A\$ are assigned to B\$.

Related commands LEFT\$, RIGHT\$

8

60 MO

Outputs a specified value to the MO port or acquires the output status

Format

Valu

1.	LET	MOm(b,,b) =expression
2.	LET	MO(mb,,mb) =expression

• For details regarding bit definitions, see Chapter 3 "10 Bit Settings".

REFERENCE

ies	m: port number	2 to 7, 10 to 17, 20 to 27, 30 to 37
	b: bit definition	0 to 7 (If omitted, all 8 bits are processed.)
		If multiple bits are specified, they are expressed from the
		left in descending order (high to low).
	expression	Integer value (If real number is specified, rounds to an
		integer.)
		Bits beyond the number of bit whom a assignment
		destination is required are ignored. (If the port number is
		specified, the lower 8 bits are valid. if the number of bit
		specified on bit definition is 1 to 8, the lower 1 to 8 bit
		corresponding to the bits specified on the left side are valid.)

Explanation Outputs a specified value to the MO port.

In order to maintain the origin sensor status and axis HOLD status at each axis, ports "30" to "37" cannot be used as output ports (these ports are for referencing only). (ports 32, 33, 36, and 37 are reserved by the system)

Ports "30", "31", "34", and "35" outputs

Bit	7	6	5	4	3	2	1	0
Port 30	Axis 8	Axis 7	Axis 6	Axis 5	Axis 4	Axis 3	Axis 2	Axis 1
Port 31	Axis 16	Axis 15	Axis 14	Axis 13	Axis 12	Axis 11	Axis 10	Axis 9
	Origin	sensor st	atus 0: Ol	N; 1: OFF	(Axis 1 is	not conne	cted)	
Port 34	Axis 8	Axis 7	Axis 6	Axis 5	Axis 4	Axis 3	Axis 2	Axis 1
Port 35	Axis 16	Axis 15	Axis 14	Axis 13	Axis 12	Axis 11	Axis 10	Axis 9
	HOLD) status 0:	No HOLD	/ 1: HOLI	D (Axis 1 is	s not conr	ected)	

MEMO

• For details regarding MO ports "30" to "37", refer to Chapter 3 "9.5 Internal output variable".

SAMPLE
MO2()=&B10111000 MO(27,25,24,23) are turned ON, and
MO(26,22,21,20) are turned OFF.
MO2(6,5,1)=&B010 MO(25) are turned ON, and MO (26,21)
are turned OFF.
$MO3() = 15 \cdots MO(33, 32, 31, 30)$ are turned ON, and
MO(37,36,35,34) are turned OFF.
MO(37,35,27,20)=A The contents of the 4 lower bits
acquired when variable A is converted
to an integer are output to
MO(37,35,27,20), respectively.

Related commands

RESET, SET

Μ

MO

Functions

FOII	nai
MOn	ı (b,,b)
MO	(mb,,mb)

Values	m: port number2 to 7, 10 to 17, 20 to 27, 30 to 37		
	b: bit definition0 to 7 (If omitted, all 8 bits are processed.)		
	If multiple bits are specified, they are expressed from the		
	left in descending order (high to low).		

Explanation Acquires the output status of the specified MO port.

SAMPLE	
A%= MOO() Out	put status of ports MO(07) to MO(00)
is	assigned to variable A%.
A%= MOO(6, 5, 1) Out	tput status of MO(06), MO(05) and
MO	(01) is assigned to variable A%.
(If	f all above signals are 1(ON), then
A%=	=7.)
A%=MO(17,15,00) ····· Out	tput status of MO(17), MO(15) and
MO	(00) is assigned to variable A%.
(If	f all above signals except MO(15)
are	e 1 (ON), then A%=5.)
A%=MO(377,365,255,123) ····· Ou	tput status of MO(377),
MO	(365), MO (255) and MO (123)
is	assigned to variable A%.
(If	f all above signals except MO(15)
are	e 1 (ON), then A%=15.)

Related commands RESET, SET

61

Controls the motor power status

Format	
MOTOR	ON
	OFF
	PWR
Explanation	This command controls the motor power on/off. The servo on/off of all robots can
Explanation	also be controlled at the same time.
	• ON Turns on the motor power. All robot servos are also turned on at the same time.
	• OFF Turns off the motor power. All robot servos are also turned off at the
	same time to apply the dynamic brake. For the axis with the brake, the
	brake is applied to lock it.
	• PWR Turns on only the motor power.
SAMPLE	
MOTOR ON	Turns on the motor power and all robot
	servos.

•••••

MOVE

Performs absolute movement of robot axes

Form	at	
MOVE	[robot number] (axis numb	ber,) PTP , point definition, option, option P L C
Values		 1 to 4 (If not input, robot 1 is specified.) 1 to 6 (• Multiple axes specifiable • If not input, all axes are specified.)
Explana		vement of the specified axes. kes of other robots or for auxiliary axes.
	 Point data setting : Options :	PTP, linear interpolation, circular interpolation Direct coordinate data input, point definition Speed setting, arch motion setting, STOPON condition setting, CONT setting, acceleration setting, deceleration setting, plane coordinate setting, port output setting (multiple ports outputs specifiable), merged level setting

Options	РТР	Linear interpolation	Arch interpolation	Remarks
Speed setting (SPEED, DSPEED)	1	1	1	Enabled only for specified MOVE statement
Speed setting (VEL)	_	1	1	Enabled only for specified MOVE statement
Arch motion	✓	_	_	Enabled only for specified MOVE statement
STOPON condition setting	1	1	_	Enabled only by program execution
CONT setting	1	1	1	Enabled only for specified MOVE statement
Acceleration setting	✓	1	_	Enabled only for specified MOVE statement
Deceleration setting	1	1	_	Enabled only for specified MOVE statement
Plane coordinate setting	_	_	1	Enabled only for specified MOVE statement
Port output setting	_	1	1	Enabled only for specified MOVE statement

Μ

62

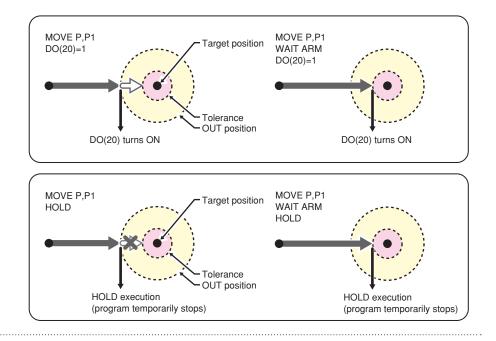
Movement type

PTP (point-to-point) movement

Execution START condition: Movement of all specified axes is complete (within the tolerance range). Execution END condition: All specified axes have entered the OUT position range. When two or more axes are specified, they will reach their target positions simultaneously. The movement path of the axes is not guaranteed.

• Caution regarding commands which follow the MOVE P command:

If the next command following the MOVE P command is an executable command such as a signal output command, that next command will start when the movement axis enters the OUT position range. In other words, that next command starts before the axis arrives within the target position tolerance range.


Example:

Signal output (DO, etc.)	Signal is output when the axis enters within OUT position range.
DELAY	DELAY command is executed and standby starts, when the axis enters the OUT position range.
HALT	Program stops and is reset when the axis enters the OUT position range. Therefore, the axis movement also stops.
HALTALL	All programs in execution stop when the axis enters the OUT position range, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops when the axis enters the OUT position range. Therefore, the axis movement also stops.
HOLDALL	All programs in execution temporarily stop when the axis enters the OUT position range. Therefore, the movement also stops.
WAIT	WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

• The OUT position value is specified by parameter setting. This value can be changed within the program by using the OUTPOS command.

MOVE command

SAMPLE

MOVE P,P0Robot 1 moves from its current position to the position specified by P0. (the same occurs for MOVE PTP, P0).

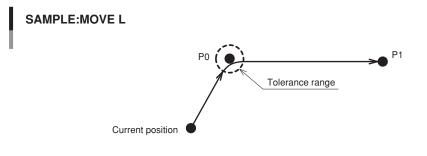
MEMO

 In YRCX, the motion of interpolation movement command and END condition are different from conventional model. Addition of the CONT setting to the movement command allows to the equivalent movement and END condition in conventional model.

🖉 MEMO 🕽

• PTP movement is faster than interpolation movement, but when executing continuous movement to multiple points, a positioning stop occurs at each point.

• Linear interpolation movement


Execution START condition: Movement of all specified axes is complete (within the tolerance range). Execution END condition: Movement of all specified axes has begun (within the tolerance range). All movement axes arrive at the same time.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending on the R-axis movement distance.

.....

SAMPLE

MOVE L, P0, P1	• The robot 1 moves (linear interpolation
	movement) from its current position to
	the position specified by PO, P1.

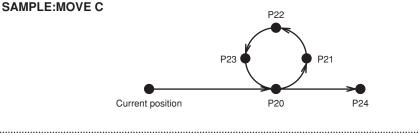
33810-R7-00

Μ

MOVE

62

 In YRCX, the motion of interpolation movement command and END condition are different from conventional model. Addition of the CONT setting to the movement command allows to the equivalent movement and END condition in conventional model.

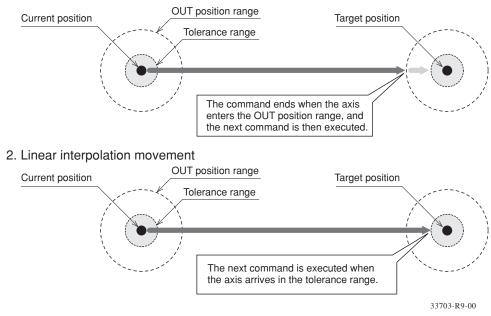

Circular interpolation movement

Execution START condition: Movement of all specified axes is complete (within the tolerance range). Execution END condition: Movement of all specified axes has begun.

All movement axes arrive at the same time.

In circular interpolation, an arc is generated based on 3 points: the current position, an intermediate position, and the target position. **Therefore, circular interpolation must be specified by an even number of points.**

SAMPLE	
MOVE L, P20	Linear interpolation movement of robot 1
	occurs from the current position to P20.
MOVE C, P21, P22, P23, P20 ·	·····Circular interpolation movement occurs
	through points P21, P22, P23, P20.
MOVE L, P24	·····Linear interpolation movement occurs
	to P24.


33811-R7-00

- Circular interpolation is possible within the following range: radius 0.100mm to 5,000.000mm.
- Circle distortion may occur, depending on the speed, acceleration, and the distance between points.
- On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending on the R-axis movement distance.

Movement command types and the corresponding movement

1. PTP movement

Μ

Point data setting types

Direct numeric value input

PTP Linear interpolation Circular interpolation

R D G

Μ

NOTE

 If both integers and real numbers are used together (mixed), all coordinate values will be handled in "mm/deg" units.

- When performing linear interpolation with a hand system flag specified, be sure that the same hand system is used at the current position and target position. If the hand system are different, an error will occur and robot movement will be disabled.
- When performing a linear interpolation, the current position's first arm and second arm rotation information must be the same as the movement destination's first arm and second arm rotation information. If the two are different, an error will occur and movement will be disabled.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

Format p1 p2 p3 p4 p5 p6 f

Values p1 to p6Space-separated coordinate values for each axis f Hand system flag)

Explanation

Directly specifies coordinate values by a numeric value. If an integer is used, this is interpreted as "pulse" units, and if a real number (with decimal point) is used, this is interpreted as "mm/deg" units, with movement occurring accordingly. If both integers and real numbers are used together (mixed), all coordinate values will be handled in "mm/deg" units.

The types of movements in which this specification is possible are the PTP movement and the linear interpolation movement.

Hand system flags can be specified for SCARA robots when directly specifying the coordinate values in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be set to indicate that there is no hand system flag.

1: Right-handed system is used to move to a specified position.

2: Left-handed system is used to move to a specified position.

62

SAMPLE

MOVE P,10000 10000 1000 1000 0 0
•••••• PTP movement of robot 1 occurs from
current position to the specified
position.
MOVE P,100.0 100.0 50.0 45.0 0.0 0.0 2
PTP movement of robot 1 occurs from
current position to the specified
position with Left-handed system.
MOVE P,-180.0 -430.0 50.0 180.0 0.0 0.0 1 -1 1
PTP movement of robot 1 occurs from
current position to the specified
position (first arm: -180°to 360°,
second arm: 180° to 360°) with right-
handed system.

CAUTION

• When moving the robot by linear or circular interpolation to a point where a hand system flag is specified, be sure that the same hand system is used at both the current and target positions. If the hand system are different, an error will occur and robot movement will be disabled.

MEMO

CAUTION

Μ

• When performing a linear and circular interpolation, the current position's first arm and second arm rotation information must be the same as the movement destination's first arm and second arm rotation information. If the two are different, an error will occur and movement will be disabled.

	Point definit	tion (PTP) Linear interpolation Circular interpolation
	Format	
	point exp	pression , point expression
(Explanation	Specifies a <i><point expression=""></point></i> . Two or more data items can be designated by separating them with a comma (,). Circular interpolation must be specified by an even number of points.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVE	P,P1Robot 1 moves from the current position
	to the position specified by P1.
MOVE	P,P20,P0,P100 ····· Robot 1 moves in sequence from the
	current position to positions specified
	by P20, P0, P100.

Option types

Speed setting 1

SPEED =expression

S =expression

Format

1.

2.

PTP Linear interpolation Circular interpolation

- values expression.......1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>.
 The actual speed will be as follows:
 (Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program movement speed (%)].
 This option is enabled only for the specified MOVE statement.

 EXAMPLE
 MOVE P,P10,S=10 ····· Robot 1 moves from the current position
 to the position specified by P10, at
 10% of the program movement speed.
 - Speed setting 2
- PTP Linear interpolation Circular interpolation

Format		
1. 2.	DSPEED =expression DS =expression	
Values	expression0.01 to 100.00 (units: %)	
Explana	 tion Specifies the program speed in an <i><expression></expression></i>. The actual speed will be as follows: [Robot max. speed (mm/sec or deg/sec)] × [movement speed (%)]. This option is enabled only for the specified MOVE statement. Movement always occurs at the DSPEED <i><expression></expression></i> value (%) without being affected by the automatic movement speed value (%). 	
SAMP	PLE	
MOVE	P,P10,DS=0.1 ····· Robot 1 moves from the current position to the position specified by P10, at 0.1%	

of the Robot maximum speed.

ΝΟΤΕ

• This option specifies only the maximum speed and does not guarantee movement at the specified speed.

• SPEED option and DSPEED option cannot be used together.

Μ

8

MOVE • 8-103

MOVE

 NOTE
 This option specifies only the maximum composite speed and does not guarantee movement at the specified speed.

62

•	Speed setti	ng 3	PTP Linear interpolation Circular interpolation
	Format		
	VEL =expi	ression	
	Values expr	ession	1 to maximum speed depending on the model (units: mm/sec)
	Explanation	in an <i><expression< i="">>. T</expression<></i>	m composite speed (in "mm/sec" units) of the XYZ axes his option is specifiable when movement type is linear ar interpolation movements.
		This option is enabled	only for the specified MOVE statement.
	SAMPLE		
	MOVE L, P10),VEL=100	••••Robot 1 moves from the current position to the position specified by P10 at the maximum composite speed of 100 mm/sec.

F G H I J K L

.....

62 MOVE			
	 Arch motion setting 	PTP Linear interpolation Circular interp	olation
	Format		
	x =expression {expres	sion , expression2}	
	Values x expression	Integer value: "pulse" units.	
	expression1, expression	Real number (with decimal point): "mm/deg" ur n2Arch distance 1, Arch distance 2 Integer value: "pulse" units. Real number (with decimal point): "mm/deg" ur	
MEMO)	• When there is a real value in an expressions are handed as real	ny of the <i><expression>, <expression 1="">,</expression></expression></i> and <i><express< i=""></express<></i>	<i>sion 2</i> >, al
• NOTE • The axis arch distance parameters can be changed using ARCHP1/ ARCHP2. The smaller the value, the shorter the movement execution time.	<expression> (2. When the axis move to their ta 3. The axis speci movement dist other axes is co 4. The command This option can b When the axis s robot or the axis</expression>	Fied axis begins moving toward the position specifie ("1" shown in the Fig. below). a specified by "x" moves the arch distance 1 or more, of arget positions ("2" shown in the figure below). ified by "x" moves to the target position so that the re- tance becomes the arch distance 2 when the move ompleted ("3" shown in the figure below). I ends when all axis enter the OUT position range. be used only for PTP movement. specified by "x" is the first arm or second arm of the s 1 or axis 2 of the XY robot, the <i><expression></expression></i> ar e limited to an integer (pulse units).	ther axes emaining ement of e SCARA
	SAMPLE	<pre>The A3-axis moves from the current pos to the "0 pulse" position. After that, axes move to P1. Finally, the A3-axis to P1.</pre>	other
	SAMPLE:MOVE A3 A3=0 Arch distance 1	2. Other axes movement 1. A3-axis movement 3. A3-axis movement	ment
	С	Current position Target position 33	3704-R9-00

8

Μ

62 MOVE	
MEMO	• When multiple points are specified in PTP movement, the axis in arch motion setting als moves to the target position.
	PTP movement MOVE P, P10, P11, A3 = 0
	A3=0
	All axes move to P10.
	P10 P11
	• STOPON condition setting PTP (linear interpolation) Circular interpolation
Addition of the STOPON condition setting disables the CONT setting in the	Format STOPON conditional expression
PTP movement and the linear interpolation movement.	Explanation Stops movement when the conditions specified by the conditional expression are met. Because this is a deceleration type stop, there will be some movement
	(during deceleration) after the conditions are met. If the conditions are already met before movement begins, no movement occurs, and the command is terminated.
	This option can only be used for PTP movement and linear interpolation movement.
	This option is only possible by program execution.
	SAMPLE
	MOVE P,P100,STOPON DI(20)=1 Robot 1 moves from the current position to the position specified by
	P100. If the "DI (20) = 1" condition is met during movement, a deceleration
	and stop occurs, and the next step is then executed.
MEMO)	• When the conditional expression used to designate the STOPON condition is a numer

CONT setting

Format

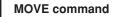
• In YRCX, the motion of interpolation movement command and END condition are different from conventional model. Addition of the CONT setting to the movement command allows to the equivalent movement and END condition in conventional model.

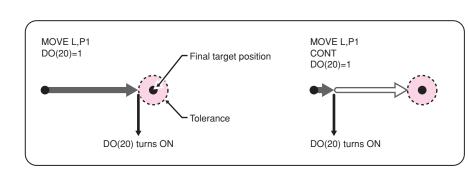
• The CONT setting can be used to reduce the movement END positioning time. The path to the target point is not guaranteed.

Explanation

CONT

Example:


When movement is executed with CONT setting option, Movable axes will begin to execute the next command without waiting the completion their movement (entering the tolerance range). If the next command is a movement command, the 2 movement paths are linked by connecting the deceleration and acceleration sections, enabling continuous movement without intermediate stops.

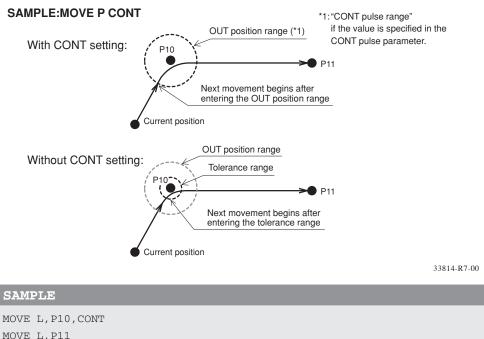

This option is enabled only for the specified MOVE statement.

• Caution regarding MOVE L / MOVE C command with CONT setting:

If the next command following the MOVE L / MOVE C command with CONT setting is an executable command such as a signal output command, that next command will start immediately after axis movement begins. In other words, that next command starts before the axis arrives within the target position tolerance range.

Signal output (DO, etc.)	Signal is output immediately after movement along the final path begins.		
DELAY	DELAY command is executed and standby starts immediately after movement along the final path begins.		
HALT	Program stops and is reset immediately after movement along the final path begins. Therefore, axis movement also stops.		
HALTALL	All programs in execution stop immediately after movement along the final path begins, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.		
HOLD	Program temporarily stops immediately after movement along the final path begins. Therefore, axis movement also stops.		
HOLDALL	All programs in execution temporarily stop immediately after movement along the final path begins. Therefore, the movement also stops.		
WAIT	WAIT command is executed immediately after movement along the final path begins.		

33808-R9-00

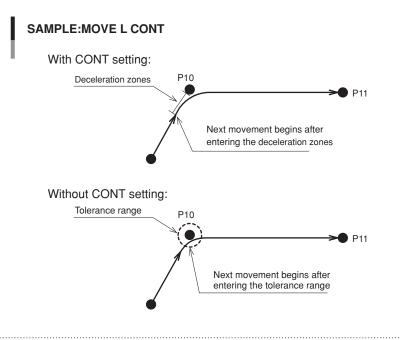

R

D

SAMPLE

MOVE P, P10, P11, CONT

.....Robot 1 Moves from the current position to the position specified by P10, and then moves to P11 without waiting for the moving axes to arrive in the tolerance range.


MOVE L, P11	L
	\cdots Robot 1 Moves from the current position to the
	position specified by P10, and then moves (linear
	interpolation movement) to P11 without waiting for
	the moving axes to arrive in the tolerance range, and
	completes the movement within the tolerance range.

```
MEMO
```

• The interpolation movement with CONT setting doesn't stop at intermediate points in the continuous movement.

.....

33810-R9-00

Acceleration	n setting (PTP) Linear interpolation Circular interpolation
Format	
ACC =exp	ression
Values expr	ession1 to 100 (units: %)
Explanation	Specifies the robot acceleration rate in the <i><expression></expression></i> . The actual robot acceleration is determined by the acceleration coefficient parameter setting. This option can only be used for PTP movement and linear interpolation movement and is enabled only for the specified MOVE statement.
SAMPLE	
MOVE L, P1	00,ACC=10Robot 1 moves at an acceleration rate of 10% from the current position to the position specified by P100.
 Deceleration Format 	n setting PTP Linear interpolation Circular interpolation
DEC =exp	ression
Values expr	ession1 to 100 (units: %)
Explanation	Specifies the robot deceleration rate in an <i><expression< i="">>. The actual robot deceleration is determined by the acceleration coefficient parameter setting (the setting is specified as a percentage of the acceleration setting value (100%)). This option can only be used for PTP movement and linear interpolation movement and is enabled only for the specified MOVE statement.</expression<></i>
SAMPLE	
MOVE L,	P100,DEC=20 ······Robot 1 moves at a deceleration rate of 20% from the current position to the position specified by P100.

D

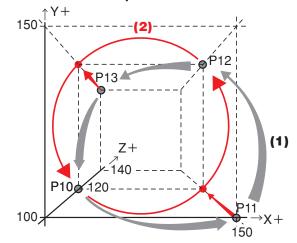
Μ

MOVE

62

Coordinate plane setting

PTP Linear interpolation Circular interpolation


Formc	t
XY YZ ZX	
Values	XYXY coordinate plane
	YZYZ coordinate plane
	ZXZX coordinate plane
Explana	ion When circular interpolation is executed by setting coordina

When circular interpolation is executed by setting coordinates, this option executes circular interpolation so that the projection on the specified coordinate plane becomes a circle.

This option can be used for circular interpolation movement and is enabled only for the specified MOVE statement.

SAMPLE
P10 = 100.000 100.000 20.000 0.000 0.000 0.000
P11 = 150.000 100.000 0.000 0.000 0.000 0.000
P12 = 150.000 150.000 20.000 0.000 0.000 0.000
P13 = 100.000 150.000 40.000 0.000 0.000 0.000
MOVE P,P10 ····· position to the
position specified by P10.
MOVE C, P11, P12
MOVE C, P13, P10 ····· Moves continuously along a 3-dimensional
circle generated at P10, P11, P12, and P12,
P13, P10 ····· (1)
MOVE C, P11, P12, XY
MOVE C, P13, P10, XY ····· Moves continuously along a circle on an XY
plane generated at P10, P11, P12, and P12, P13,
P10. Z-axis moves to the position specified by
P12 and P10 (the circle's target position)
(2)

33822-R9-00

- If no coordinate plane is specified, the robot moves along a 3-dimensional circle.
- When a 2-axis robot is used, the robot moves along a circle on the XY plane.

MOVE

•	setting (PTP) Linear interpolation Circular interpolation
Format 1	
DO m(b MO SO	,,b)=expression 1 @ expression 2
Format 2	
DO (mb MO SO	,,mb)=expression 1 @ expression 2
b: ex	a: port number
Explanation	During linear interpolation or circular interpolation movement, this command option outputs the value of <i><expression 1=""></expression></i> to the specified port when the robot reaches the <i><expression 2=""></expression></i> distance (units: "mm") from the start position.
	The <i><expression 2=""></expression></i> numeric value represents a circle radius (not arc length) centered on the movement START point. This command option can only be used with linear or circular interpolation movement, and it can be specified no more than 2 times per MOVE statement. If no hardware port exists, nothing is output.
SAMPLE	1
MOVE P, MOVE L,	,P0 ,P1,D02()=105@25.85 During linear interpolation movement of robot 1 to P1, 105 (&B01101001) is output to D02() when the robot reaches a distance of 25.85mm from

Μ

• Output to ports "0" and "1" is not allowed at DO, MO, and SO.

• For bit setting details, see Chapter 3 "10 Bit Settings".

SAMPLE 2	
A!=10	
в!=20	
MOVE L, P2, MO(22)=10	A!, MO(22)=0@B!
	After the 1 starts toward P2, MO(22)
	switches ON when robot 1 leaves a distance of
	10mm, and switches OFF when robot 1 leaves a
	distance of 20mm.

Related commands MOVEI, MOVET, DRIVE, DRIVEI, WAIT ARM

MOVEI

63

Performs relative movement of robot axes

Format		
MOVEI [<i>rob</i>	ot number](axis n	number,) PTP , point definition , option, option P L
		 1 to 4 (If not input, robot 1 is specified.) 1 to 6 (• Multiple axes specifiable • If not input, all axes are specified.)
	•	ition movement of the specified robot. axes of other robots or for auxiliary axes.
	<i>,</i> ,	PTP, linear interpolation Direct coordinate data input, point definition
	• Options :	Speed setting, STOPON condition setting, CONT setting, acceleration setting, deceleration setting

Options	РТР	Linear interpolation	Remarks
Speed setting (SPEED, DSPEED)	5	\$	Enabled only for specified MOVEI statement
Speed setting (VEL)	_	1	Enabled only for specified MOVEI statement
STOPON condition setting	1	1	Enabled only by program execution
CONT setting	1	1	Enabled only for specified MOVEI statement
Acceleration setting	1	1	Enabled only for specified MOVEI statement
Deceleration setting	_	1	Enabled only for specified MOVEI statement

MEMO

• If the MOVEI statement is interrupted and then re-executed, the movement target position can be selected at the "MOVEI/DRIVEI start position" setting in the controller parameter. For details, refer to the YRCX user's or operator's manual.

KEEP (default setting) Continues the previous (before interruption) movement. The original target position remains unchanged.
 RESET Relative movement begins anew from the current position. The new

2) RESET Relative movement begins anew from the current position. The new target position is different from the original one (before interruption). (Backward compatibility)

.....

Movement type

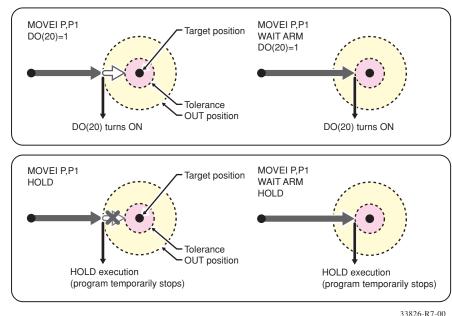
PTP (point-to-point) movement

Execution START condition: Movement of all specified axes is complete (within the tolerance range). Execution END condition: All specified axes have entered the OUT position range. When two or more axes are specified, they will reach their target positions simultaneously. The movement path of the axes is not guaranteed.

Caution regarding commands which follow the MOVEI P command:

If the next command following the MOVEI P command is an executable command such as a signal output command, that next command will start when the movement axis enters the OUT position range. In other words, that next command starts before the axis arrives within the target position tolerance range.

Example:


Signal output (DO, etc.)	Signal is output when axis enters within OUT position range.			
DELAY	DELAY command is executed and standby starts, when axis enters the OUT position range.			
HALT	Program stops and is reset when axis enters the OUT position range. Therefore, axis movement also stops.			
HALTALL	All programs in execution stop when axis enters the OUT position range, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.			
HOLD	Program temporarily stops when axis enters the OUT position range. Therefore, axis movement also stops.			
HOLDALL	All programs in execution temporarily stop when axis enters the OUT position range. Therefore, the movement also stops.			
WAIT	WAIT command is executed when axis enters the OUT position range.			

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

.....

• The OUT position value is specified by parameter setting. This value can be changed within the program by using the OUTPOS command.

Α

D

C

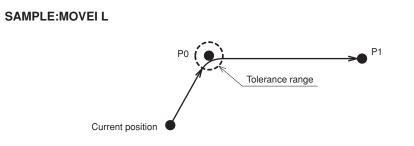
ł

Μ

SAMPLE

MOVEI P,P0 From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P0.

• In YRCX, the motion of interpolation movement command and END condition are different from conventional model. Addition of the CONT setting to the movement command allows to the equivalent movement and END condition in conventional model.


• PTP movement is faster than interpolation movement, but when executing continuous movement to multiple points, a positioning stop occurs at each point.

Linear interpolation movement

Execution START condition: Movement of all specified axes is complete (within the tolerance range). Execution END condition: Movement of all specified axes has begun (within the tolerance range). All movement axes arrive at the same time.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending on the R-axis movement distance.

	SAMPLE
]	MOVE L,P0,P1
	robot 1 moves (linear interpolation
	movement) the amount specified by PO, P1.

33810-R7-00

8

Point data setting types

Direct numeric value input

p1 p2 p3 p4 p5 p6 f

Format

Explanation

• If both integers and real numbers are used together (mixed), all coordinate values will be handled in "mm/deg" units.

- When performing linear interpolation with a hand system flag specified, be sure that the same hand system is used at the current position and target position. If the same hand system is not used, an error will occur and robot movement will be disabled.
- When performing a linear interpolation, the current position's first arm and second arm rotation information must be the same as the movement destination's first arm and second arm rotation information. If the two are different, an error will occur and movement will be disabled.

.....

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

.....

Values p1 to p6Space-separated coordinate values for each axis

Directly specifies coordinate values by a numeric value. If an integer is

used, this is interpreted as "pulse" units, and if a real number is used, this is

Hand system flags can be specified for SCARA robots when directly specifying

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at

"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be

interpreted as "mm/deg" units, with movement occurring accordingly.

1: Right-handed system is used to move to a specified position.

2: Left-handed system is used to move to a specified position.

f Hand system flag

the coordinate values in "mm" units.

set to indicate that there is no hand system flag.

SAMPLE MOVEI P, 10000 10000 1000 0 0 Erop its surrout

..... From its current position, the axis of robot 1 moves (PTP movement) the specified amount (pulse units).

PTP Linear interpolation

Μ

MOVEI

63

• When moving the robot by linear interpolation to a point where a hand system flag is specified, be sure that the same

be sure that the same hand system is used at both the current and target positions. If the same hand system is not used, an error will occur and robot movement will be disabled.

Point definition

PTP Linear interpolation

Explanation Specifies a *<point expression>*. Two or more data items can be designated by separating them with a comma (,).

MEMO

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P, P1 ·····	Fro	m i	its	cu	rrent	posit	ion,	the	axis
	of	rok	oot	1	moves	(PTP	mover	ment)	the
	amo	unt	spe	ci	fied by	P1.			

• When performing a linear interpolation, the current position's first arm and second arm rotation information must be the same as the movement destination's first arm and second arm rotation information. If the two are different, an error will occur and movement will be disabled. NOTE

This option specifies only

the maximum speed

and does not guarantee movement at the specified

Option types

Speed setting 1

- **PTP** Linear interpolation
- Format 1. SPEED =expression 2. S =expression Values expression1 to 100 (units: %) Explanation Specifies the program speed in an *<expression>*. The actual speed will be as follows: • [Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program movement speed (%)]. This option is enabled only for the specified MOVEI statement. SAMPLE MOVEI P,P10,S=10 ····· From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P10, at 10% of the program movement speed.

• Speed setting 2

.....

PTP Linear interpolation

Formc	DSPEED =expression
2.	DS =expression
Values	expression0.01 to 100.00 (units: %)
Explanat	tion Specifies the program speed in an <i><expression< i="">>.</expression<></i>
	The actual speed will be as follows:
	• [Robot max. speed (mm/sec or deg/sec)] \times [movement speed (%)].
	This option is enabled only for the specified MOVEI statement.
	• Movement always occurs at the DSPEED <expression> value (%)</expression>
	without being affected by the automatic movement speed value (%).
SAMP	LE
MOVEI	P,P10,DS=0.1 ······From its current position, the axis
	of robot 1 moves (PTP movement) the
	amount specified by P10, at 0.1% of the

robot maximum speed.

together.

speed.

• SPEED option and DSPEED option cannot be used 8

MOVEI

63

	• Speed s	etting 3 PTP Linear interpolation
	Format	
	VEL =e	xpression
	Values	<i>expression</i>
• This option specifies only the maximum composite speed and does not	Explanatio	 Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in an <i><expression></expression></i>. This option is specifiable when the movement type is linear interpolation movements. This option is enabled only for the specified MOVEI statement.
guarantee movement at the specified speed.	SAMPLI	2
	MOVEI L	,P10,VEL=100From its current position, the axis of robot 1 moves (linear interpolation movement) the amount specified by P10, at the maximum composite speed of 100

CAUTION • Addition of the STOPON condition setting disables the CONT setting.

	STOPON	condition	setting
--	---------------	-----------	---------

(PTP) (Linear interpolation)

Format						
STOPON conditional expression						
Explanation	Stops movement when the conditions specified by the conditional expression are met. Because this is a deceleration type stop, there will be some movement (during deceleration) after the conditions are met.					

If the conditions are already met before movement begins, no movement occurs, and the command is terminated.

mm/sec. of the XYZ axis.

This option is only possible by program execution.

SAMPLE
MOVEI P, P100, STOPON DI(20)=1
From its current position, the axis
of robot 1 moves (PTP movement) the
amount specified by P100. If the "DI (20)
= 1" condition is met during movement,
a deceleration and stop occurs, and
the next step is then executed.

.....

• When the conditional expression used to designate the STOPON condition is a numeric expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

CONT setting

(PTP) (Linear interpolation)

Format CONT

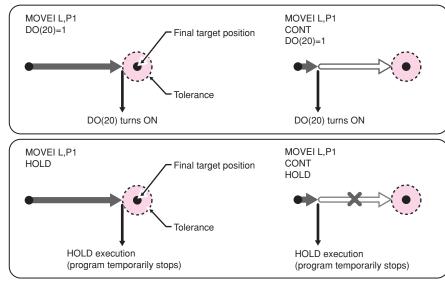
CAUTION

• In YRCX, the motion of interpolation movement command and END condition are different from conventional model. Addition of the CONT setting to the movement command allows to the equivalent movement and END condition in conventional model.

The CONT setting can be used to reduce the movement START positioning time.

Explanation

When movement is executed with CONT setting option, Movable axes will begin to execute the next command without waiting the completion their movement (entering the tolerance range). If the next command is a movement command, the 2 movement paths are linked by connecting the deceleration and acceleration sections, enabling continuous movement without intermediate stops. This option is enabled only for the specified MOVEI statement.


Caution regarding MOVELL command with CONT setting:

If the next command following the MOVEI L command with CONT setting is an executable command such as a signal output command, that next command will start immediately after axis movement begins. In other words, that next command starts before the axis arrives within the target position tolerance range.

Example:

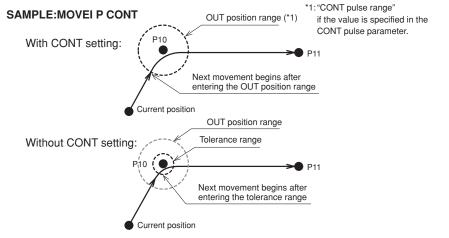
Signal output (DO, etc.)	Signal is output immediately after movement along the final path begins.
DELAY	DELAY command is executed and standby starts immediately after movement along the final path begins.
HALT	Program stops and is reset immediately after movement along the final path begins. Therefore, axis movement also stops.
HALTALL	All programs in execution stop immediately after movement along the final path begins, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops immediately after movement along the final path begins. Therefore, axis movement also stops.
HOLDALL	All programs in execution temporarily stop immediately after movement along the final path begins. Therefore, the movement also stops.
WAIT	WAIT command is executed immediately after movement along the final path begins.

MOVEI command

33814-R9-00

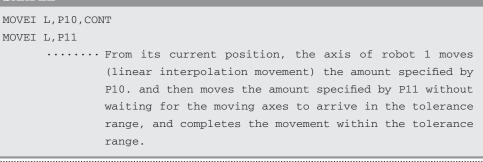
Α

R

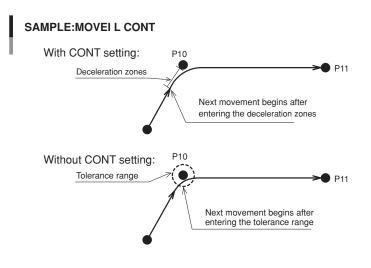

D

63

SAMPLE


MOVEI P, P10, P11, CONT

•••••• From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P10, and then moves the amount specified by P11 without waiting for the moving axes to arrive in the tolerance range.


33815-R9-00

SAMPLE

• The interpolation movement with CONT setting doesn't stop at intermediate points in the continuous movement.

33810-R9-00

Acceleration setting			PTP Lin	Linear interpolation	
Format					
ACC =exp	ression				
Values expr	ession1	to 100 (units: %)			
Explanation	Specifies the robot acco acceleration is determine This option is enabled or	ed by the acceleration c	oefficient par	ameter setting.	
SAMPLE					
MOVEI L,P	100,ACC=10	• From its current robot 1 moves movement) the am at an acceleratio	(linear in Nount spec	nterpolation ified by P100	

• Deceleration setting

РТР	Linear interpolation

	on coming		
Format			
DEC $=exp$.	ression		
Values exp	ression1	to 100 (units: %)	
Explanation	deceleration is determine setting is specified as a p		0
SAMPLE			
MOVEI L,P	100,DEC=20	• From its current por robot 1 moves (lin movement) the amoun at a deceleration ra	near interpolation t specified by P100
Related comm	ands MOVE, MOVET, DR	RIVE, DRIVEI, WAIT ARM	

Μ

8

MOVET

64

Performs relative movement of all robot axes in tool coordinates

Forma	t
MOVET	<pre>[robot number](axis number,) PTP , point definition , option, option P L</pre>
Values	robot number
Explanat	ion Executes relative position movement of the specified axes in the tool coordinates. It is not enabled for axes of other robots or for auxiliary axes.

- Movement type : PTP, linear interpolation
- Point data setting : Direct coordinate data input, point definition
- Options : Speed setting, STOPON condition setting, CONT setting, acceleration setting, deceleration setting

Options	РТР	Linear interpolation	Remarks
Speed setting (SPEED, DSPEED)	5	1	Enabled only for specified MOVET statement
Speed setting (VEL)	_	1	Enabled only for specified MOVET statement
STOPON condition setting	1	1	Enabled only by program execution
CONT setting	1	1	Enabled only for specified MOVET statement
Acceleration setting	1	1	Enabled only for specified MOVET statement
Deceleration setting	_	1	Enabled only for specified MOVET statement

Movement type

PTP (point-to-point) movement

Execution START condition: Movement of all specified axes is complete (within the tolerance range). Execution END condition: All specified axes have entered the OUT position range. When two or more axes are specified, they will reach their target positions simultaneously. The movement path of the axes is not guaranteed.

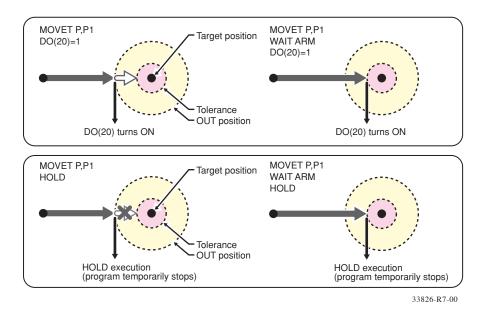
Caution regarding commands which follow the MOVET P command:

If the next command following the MOVET P command is an executable command such as a signal output command, that next command will start when the movement axis enters the OUT position range. In other words, that next command starts before the axis arrives within the target position tolerance range.

Examp	le:
-------	-----

Signal output (DO, etc.)	Signal is output when the axis enters within OUT position range.
DELAY	DELAY command is executed and standby starts, when the axis enters the OUT position range.
HALT	Program stops and is reset when the axis enters the OUT position range. Therefore, the axis movement also stops.
HALTALL	All programs in execution stop when the axis enters the OUT position range, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops when the axis enters the OUT position range. Therefore, the axis movement also stops.
HOLDALL	All programs in execution temporarily stop when the axis enters the OUT position range. Therefore, the movement also stops.
WAIT	WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.


.....

MEMO

• The OUT position value is specified by parameter setting.

This value can be changed within the program by using the OUTPOS command.

MOVET command

MOVET

64

SAMPLE

MOVET P,P0.....From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P0 in the tool coordinates.

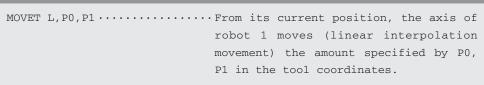
• PTP movement is faster than interpolation movement, but when executing continuous movement to multiple points, a positioning stop occurs at each point.

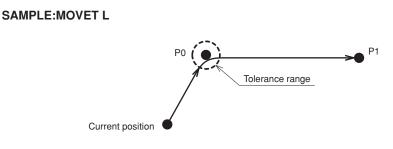
Linear interpolation movement

Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: Movement of all specified axes has begun (within the tolerance range).

All movement axes arrive at the same time.


.....



• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending on the R-axis movement distance.

.....

SAMPLE

33810-R7-00

NOTE

units.

If both integers and real numbers are used

together (mixed), all coordinate values will

be handled in "mm/deg"

CAUTION

 When performing linear interpolation with a hand

system flag specified,

be sure that the same

hand system is used at the current position and

target position. If the same hand system is not used, an error will occur and robot movement will

 When performing a linear interpolation, the current position's first arm and second arm rotation information must be the same as the movement destination's first arm and second arm rotation information. If the two are different, an error will occur and movement will

be disabled.

be disabled.

Point data setting types

• Direct numeric value input

PTP Linear interpolation

For	mat						
p1	p2	рЗ	p4	p5	рб	f	

Values p1 to p6Space-separated coordinate values for each axis fHand system flag

Directly specifies coordinate values by a numeric value. If an integer is used, this is interpreted as "pulse" units, and if a real number is used, this is interpreted as "mm/deg" units, with movement occurring accordingly.

Hand system flags can be specified for SCARA robots when directly specifying the coordinate values in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be set to indicate that there is no hand system flag.

- 1: Right-handed system is used to move to a specified position.
- 2: Left-handed system is used to move to a specified position.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

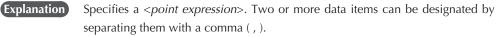
SAMPLE
MOVET P, 10.000 10.000 10.000 0.000 0.000
From its current position, the axis
of robot 1 moves (PTP movement) the
specified amount (mm units) in the tool
coordinates.

8

R

D

MOVET


64

• When moving the robot by linear interpolation to a point where a hand system flag is specified, be sure that the same hand system is used at both the current and target positions. If the same hand system is not used, an error will occur and robot movement will be disabled.

Point definition

(PTP) Linear interpolation

Format point expression , point expression...

- MEMO
- At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVET P,P1..... From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P1 in the tool coordinates.

8

CAUTION

• When performing a linear interpolation, the current position's first arm and second arm rotation information must be the same as the movement destination's first arm and second arm rotation information. If the two are different, an error will occur and movement will be disabled.

Option types

• Speed setting 1	
-------------------	--

Values

Format1.SPEED =expression2.S =expression

ΝΟΤΕ

- This option specifies only the maximum speed and does not guarantee movement at the specified speed.
- Explanation Specifies the program speed in an *<expression>*. The actual speed will be as follows:
 [Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program movement speed (%)].

expression1 to 100 (units: %)

× [program movement speed (%)]. This option is enabled only for the specified MOVET statement.

SAMPLE MOVET P,P10,S=10.....From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P10 in the tool coordinates, at 10% of the program movement speed.

Speed setting 2

PTP Linear interpolation

(PTP) Linear interpolation

Format			
 DSPEED =expression DS =expression 			
Values expression0.01 to 100.00 (units: %)			
 Explanation Specifies the program speed in an <i><expression></expression></i>. The actual speed will be as follows: [Robot max. speed (mm/sec or deg/sec)] × [movement speed (%)]. This option is enabled only for the specified MOVET statement. Movement always occurs at the DSPEED <i><expression></expression></i> value (%) without being affected by the automatic movement speed value (%). 			
SAMPLE			
MOVET P,P10,DS=0.1 ····· From its current position, the axis of robot 1 moves (PTP movement) the			

maximum speed.

• SPEED option and DSPEED option cannot be used together.

D G Н

Μ

amount specified by P10 in the tool coordinates, at 0.1% of the robot

MOVET

Speed setting 3

STOPON condition setting

Format

• This option specifie the maximum com speed and doe guarantee movem the specified speed

64

	romai
fies only mposite des not ment at ed.	VEL =expression
	Values expression
	ExplanationSpecifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in an < <i>expression></i> . This option is specifiable when the movement type is linear interpolation movements. This option is enabled only for the specified MOVET statement.
	SAMPLE
	MOVEI L,P10,VEL=100 ······ From its current position, the axis of robot 1 moves (linear interpolation movement) the amount specified by P10 in the tool coordinates, at the

PTP Linear interpolation

PTP Linear interpolation

maximum composite speed of 100 mm/sec.

occurs, and the next step is then executed.

• Addition of the STOPON condition setting disables the CONT setting.

Format	
STOPON C	onditional expression
Explanation	Stops movement when the conditions specified by the conditional expression are met. Because this is a deceleration type stop, there will be some movement (during deceleration) after the conditions are met. If the conditions are already met before movement begins, no movement occurs, and the command is terminated. This option is only possible by program execution.
SAMPLE	
MOVET P,P	100,STOPON DI(20)=1
	<pre>From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P100 in the tool coordinates. If the "DI (20) = 1" condition is met during movement, a deceleration and stop</pre>

of the XYZ axes.

• When the conditional expression used to designate the STOPON condition is a numeric expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

.....

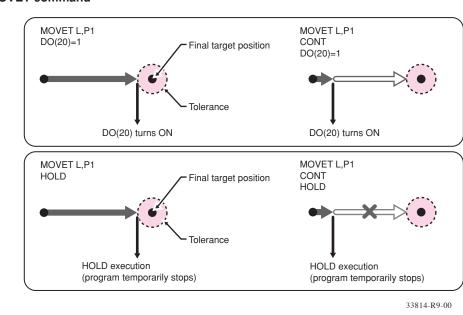
CONT setting

PTP Linear interpolation

Format CONT

• The CONT setting can be used to reduce the movement START positioning time.

Explanation When movement is executed with CONT setting option, Movable axes will begin to execute the next command without waiting the completion their movement (entering the tolerance range). If the next command is a movement command, the 2 movement paths are linked by connecting the deceleration and acceleration sections, enabling continuous movement without intermediate stops.


This option is enabled only for the specified MOVET statement.

• Caution regarding MOVET L command with CONT setting:

If the next command following the MOVET L command with CONT setting is an executable command such as a signal output command, that next command will start immediately after axis movement begins. In other words, that next command starts before the axis arrives within the target position tolerance range.

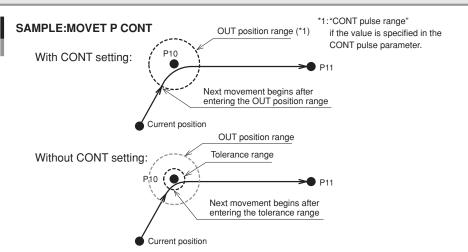
Signal output (DO, etc.)	Signal is output immediately after movement along the final path begins.
DELAY	DELAY command is executed and standby starts immediately after movement along the final path begins.
HALT	Program stops and is reset immediately after movement along the final path begins. Therefore, the axis movement also stops.
HALTALL	All programs in execution stop immediately after movement along the final path begins, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops immediately after movement along the final path begins. Therefore, the axis movement also stops.
HOLDALL	All programs in execution temporarily stop immediately after movement along the final path begins. Therefore, the movement also stops.
WAIT	WAIT command is executed immediately after movement along the final path begins.

Example:

MOVET command

Α

Μ

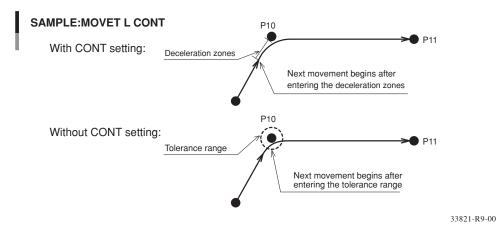

MOVET

64

SAMPLE

MOVET P, P10, P11, CONT

••••• From its current position, the axis of robot 1 moves (PTP movement) the amount specified by P10 in the tool coordinates, and then moves the amount specified by P11 in the tool coordinates without waiting for the moving axes to arrive in the tolerance range.



33820-R9-00

SAMPLE

MOVET L,P10,CONT MOVET L,P11 ····· From its current position, the axis of robot 1 moves (linear interpolation movement) the amount specified by P10 in the tool coordinates, and then moves the amount specified by P11 in the tool coordinates without waiting for the moving axes to arrive in the tolerance range, and completes the movement within the tolerance range.

• The interpolation movement with CONT setting doesn't stop at intermediate points in the continuous movement.

Accelerati	on setting	PTP	Linear interpolation
Format			
ACC =exp	ression		
Values expr	<i>ession</i> 1 to 100 (u	nits: %)	
Explanation	Specifies the robot acceleration r acceleration is determined by the a This option is enabled only for the s	cceleration coefficient	parameter setting.
SAMPLE			
MOVET L,P	moveme P100 i	s current position 1 moves (linear nt) the amount n the tool coor ation rate of 10%	interpolation specified by dinates at an

• Deceleration setting

PTP Linear interpolation

	on sening PTP Linear Interpolation
Format	
DEC =expi	ression
Values expr	ression1 to 100 (units: %)
Explanation	Specifies the robot deceleration rate in an <i><expression></expression></i> . The actual robot deceleration is determined by the acceleration coefficient parameter setting (the setting is specified as a percentage of the acceleration setting value (100%)). This option is enabled only for the specified MOVET statement.
SAMPLE	
MOVET L, P	100,DEC=20From its current position, the axis of robot 1 moves (linear interpolation movement) the amount specified by P100 in the tool coordintes at a deceleration rate of 20%.

Related commands MOVE, MOVEI, DRIVE, DRIVEI, WAIT ARM

MTRDUTY

Acquires the motor load factor of the specified axis

MTRI	DUTY [robot number] (axis number)
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>axis number</i> 1 to 6
Explan	Acquires the motor load factor (1 to 100 [%]) of the specified axis.
	The motor load factor increases when the current value of the specified axis exceed the rated current value. When the factor reaches 100%, "17.800 Motor overload error occurs.
SAM	PLE
A=M1	TRDUTY(1) The motor load factor of axis 1 of robot 1 is assigned to variable A.

OFFLINE

Exp

Sets a specified communication port to the "offline" mode

Format		
OFFLINE	ETH CMU	
Explanation	Changes the o mode to OFFL	communication mode parameter in order to switch the communication
	ETH	Changes the Ethernet communication mode parameter to OFFLINE, clears the transmission and reception buffers.
	CMU	Changes the RS-232C communication mode parameter to OFFLINE, resets the communication error, and clears the transmission and reception buffers.
	No setting	Changes the Ethernet and RS-232C communication mode parameter to OFFLINE, resets the communication error (RS-232C only), and clears the transmission and reception buffers.

MEMO

• Online command is invalid in OFFLINE (mode).

.....

.....

SAMPLE
OFFLINE
SEND CMU TO A\$
SEND CMU TO P10
ONLINE
HALT

Related commands ONLINE

66

.

Jumps to a specified label when an error occurs

Format
 ON ERROR GOTO label ON ERROR GOTO 0
Values Error output information ERR: Error code number ERL: Line number where error occurred
Explanation Even if an error occurs during execution of the robot language, this statement allows the program to jump to the error processing routine specified by the <i><label></label></i> , allowing the program to continue without being stopped (this is not possible for some serious errors.)
If "0" is specified instead of the <i><label></label></i> , the program stops when an error occurs, and an error message displays. If ON ERROR GOTO "0" is executed at any place other than an error processing
routine, the ON ERROR GOTO command is canceled (interruption canceled). The error processing routine can process an error using the RESUME statement and the error output information (ERR, ERL).
 If a serious error such as "17.800: Motor overload" occurs, the program execution stops. The most recently executed "ON ERROR GOTO <<i>label></i>" statement is valid. If an error occurs during an error processing routine, the program will stop. "ON ERROR GOTO <<i>label></i>" statements cannot be used within error processing routines.

-			 	-
-	7^3	1.1	 	1.H

MEMO

ON ERROR GOTO *ER1
FOR $A = 0$ TO 9
P[A+10] = P[A]
NEXT A
*L99: HALT
'ERROR ROUTINE
*ER1:
IF ERR = &H000600CC THEN *NEXT1 · Checks to see if a "Point doesn't
exist" error has occurred.
IF ERR = &H000600CE THEN *NEXT2 · Checks to see if a "Subscript out of
range" error has occurred.
ON ERROR GOTO 0 Displays the error message and stops
the program.
*NEXT1:
RESUME NEXT Jumps to the next line after the error
line and resumes program execution.
*NEXT2:
RESUME *L99 Jumps to label *L99 and resumes program
execution.
Related commands RESUME

.....

ON to GOSUB

Executes the subroutine specified by the *<expression>* value

Format	
ON <i>expression</i> GOSUB <i>label</i> 1, labe * GOS	91 2 SUB can also be expressed as "GO SUB".
Values expressionExpre	ssion whose result is 0 or positive integer
	es the program's jump destination. ecifies a jump to < <i>label 1>,</i> "2" specifies a jump to
If the <i><expression></expression></i> value is "0" of existing labels, no jump occurs, a	or if the <i><expression></expression></i> value exceeds the number of nd the next command is executed. on subroutine, the next command after the ON to
SAMPLE	
'MAIN ROUTINE *ST:	
ON DI3() GOSUB *SUB1,*SUB2,*SUB3	*SUB1 to *SUB3 are executed.
GOTO *ST ····· R	eturns to *ST.
HALT 'SUB ROUTINE	
*SUB1:	
MOVE P,P10,Z=0 RETURN	
*SUB2:	
DO(30) = 1	
RETURN *SUB3:	
DO(30) = 0	

Related commands GOSUB, RETURN

RETURN

ON to GOTO

Jumps to the label specified by the <expression> value

Format

Values	expressio	n		Ехр	ression	whos	e result	t is 0	or positive i	ntege	r	
				*	GOTO	can	also	be	expressed	l as	"GO	то".
ON ϵ	expression	GOTO 1	label 1	, lab	el 2							

ExplanationThe <expression> value determines the program's jump destination.An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to<label 2>, etc.Likewise, (<expression> value "n" specifies a jump to <label n>.)If the <expression> value is "0" or if the <expression> value exceeds the number ofexisting labels, no jump occurs, and the next command is executed.

SAMPLE

'MAIN ROUTINE
*ST:
ON DI3() GOTO *L1,*L2,*L3 ······ Jumps to *L1 to *L3 in
accordance with the DI3()
value.
GOTO *ST ····· Returns to *ST.
HALT
'SUB ROUTINE
*L1:
MOVE P, P10, Z=0
GOTO *ST
*L2:
DO(30) = 1
GOTO *ST
*L3:
DO(30) = 0
GOTO *ST

Related commands GOTO

Sets the specified communication port to the "online" mode

Format		
ONLINE	ETH CMU	
xplanation	Changes the mode to ONL	communication mode parameter in order to switch the communication INE
	ETH	Changes the Ethernet communication mode parameter to ONLINE, clears the transmission and reception buffers.
	CMU	Changes the RS-232C communication mode parameter to ONLINE, resets the communication error, and clears the transmission and reception buffers.
	No setting	Changes the Ethernet and RS-232C communication mode parameter to ONLINE, resets the communication error (RS-232C only), and clears the transmission and reception buffers.

MEMO

• Online command is valid in ONLINE (mode).

.....

.....

_					
	SAMPLE				
	OFFLINE				
	SEND CMU I	TO A\$			
	SEND CMU I	TO P10			
	ONLINE				
	HALT				
_					_

Related commands OFFLINE

.

Format

OPEN GPm

m: General Ethernet Port number 0 to 7

Explanation Opens the communication port of the specified General Ethernet Port.

SAMPLE
OPEN GP1 Opens the General Ethernet Port 1.
SEND "123" TO GP1 Sends the character strings "123" from
the General Ethernet Port 1.
SEND GP1 TO A\$ Receives the data from the General
Ethernet Port 1 and Saves the received
data in the variable A\$.
CLOSE GP1 Closes the General Ethernet Port 1.

Related commands

CLOSE, SEND, SETGEP, GEPSTS

ORD

Acquires a character code

Format
ORD (character string expression)
Explanation Acquires the character code of the first character in a <i><character expression<="" i="" string=""><i>></i>.</character></i>
SAMPLE
A=ORD("B") \cdots 66 (=&H42) is assigned to A.
Related commands CHR\$

ORGORD

Specifies/acquires the robot's return-to-origin sequence

Format	
ORGORD	[robot number] expression
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>expression</i> n to nnnnnn (n : 0 to 6)
Explanatio	n Sets the axis sequence parameter for return-to-origin and absolute search operation of the robot specified by the <i><robot number=""></robot></i> .
	The 1 to 6 axes are expressed as "1 to 6" values, respectively, and the <expression> value must be 1-digit to 6-digit integer.</expression>
	The same axis cannot be specified twice. After the specified axes are returned to their origin points in sequence, from left to right, the remaining axes return to their origin points simultaneously.
	If the <expression> value is "0", all axes will be returned to their origin points simultaneously.</expression>
ctions	

Functions

Format	
ORGORD	[robot number]

Values robot number.....1 to 4 (If not input, robot 1 is specified.)

Explanation Acquires the axis sequence parameter for return-to-origin and absolute search operation of the robot specified by the <robot number>.

SAMPLE		
A=3		
ORGORD A	•••••	Return-to-origin is executed first for
		axis 3 of robot 1.
ORIGIN^	•••••	After the return-to-origin of axis 3 of
		robot 1 is completed, return-to-origin
		is executed for the remaining axes.
MOVE P,P0		
A=ORGORD	• • • • • • • • • • • • • • • • • • • •	Return-to-origin sequence parameter of
		robot 1 is assigned to variable A.
HALT		

Related commands ORIGIN Performs return-to-origin

Format	
ORIGIN	[robot number], motor type
Values	robot number0: all robots
	1 to 4: specified robot only
	motor type0: all types
	1: incremental motor only
	2: absolute motor only
	9: incomplete return-to-origin axis only
	(If omitted, 0 (all types) is specified.)
Explanation	This statement performs return-to-origin of a robot
	If the movement is stopped at an intermediate point, "incomplete return-to-origin"
	status will occur.
	If <robot number=""> is omitted or "0" is specified during multiple robots setting, the</robot>
	return-to-origin and absolute search are first performed for the robot 1 and then for
the robots 2 to 4.	
SAMPLE	
ORIGIN	0, 1 ·····to-origin for
	incremental motor axes only of all
	robots.

Related commands

ORGORD, MCHREF

.....

Format	
OUT DOm (b, \cdots, b)	,expression
$DO(mb, \cdots, mb)$	
$MOm(b, \cdots, b)$	
$MO(mb, \cdots, mb)$	
$SOm(b, \cdots, b)$	
$SO(mb, \cdots, mb)$	
LO0 (b, · · · , b)	
LO(0b,,0b)	
TOO (b,, b)	
TO(0b,,0b)	
Values m: port number	2 to 7, 10 to 17, 20 to 27
b: bit definition	0 to 7 (If omitted, all 8 bits are processed.)
	If multiple bits are specified, they are expressed from th
	left in descending order (high to low).
expression	0 to 3600000 (units: ms)

• Output to ports "0" and "1" are not allowed at DO, and SO.

• For bit setting details, see Chapter 3 "10 Bit Settings". **Explanation** This statement turns ON the specified port output and terminates the command. (The program proceeds to the next line.) Output to that port is then turned OFF after the time specified by the *<expression>* has elapsed. If the operation is stopped temporarily at an intermediate point and then restarted, that port's output is turned OFF when the remaining *<expression>* specified time has elapsed.

If this *<expression>* is omitted, the specified port's output remains ON. Up to 16 OUT statements using *<expressions>* can be executed at the same time. Attempting to execute 17 or more OUT statements will activate error "6.225: No sufficient memory for OUT".

If no hardware port exists, nothing is output.

SAMPLE	
OUT DO2(),200 ·····	Turns DO(27 to 20) ON, then turns them
	OFF 200ms later.
OUT DO(37,35,27,20) ··	Turns DO(37, 35, 27, 20) ON.
Related commands DO, MO	, SO, TO, LO

OUTPOS

Specifies/acquires the OUT enable position parameter of the robot

axis n	<pre>[robot number] expression [robot number] (axis number) =expression number</pre>
Values robot axis n	number
axis n	umber
expre:	sion
Explanation Cha	nges the "OUT position" parameter of the specified axis to the value indicated in
the <i><expression></expression></i> . Format 1: The change is applied to all axes of the specified robot.	

Functions

Format	
OUTPOS	[robot number] (axis number)
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>axis number</i> 1 to 6
Explanatio	n Acquires the "OUT position" parameter's value for the specified axis.

OUTPOS

76

SAMPLE

```
'CYCLE WITH DECREASING OUTPOS
DIM SAV(3)
GOSUB *SAVE_OUTPOS
FOR A=1000 TO 10000 STEP 1000
   GOSUB *CHANGE_OUTPOS
   MOVE P,P0
   DO3(0)=1
   MOVE P, P1
   DO3(0)=0
NEXT A
GOSUB *RESTORE_OUTPOS
HALT
*CHANGE_OUTPOS:
   FOR B=1 TO 4
       OUTPOS(B)=A
   NEXT B
   RETURN
*SAVE_OUTPOS:
   FOR B=1 TO 4
      SAV(B-1)=OUTPOS(B)
   NEXT B
   RETURN
*RESTORE_OUTPOS:
   FOR B=1 TO 4
      OUTPOS(B)=SAV(B-1)
   NEXT B
   RETURN
```

NOTE

occur.

When "R" axis only is specified in the coordinate attribute

parameter, an error will

PATH

Specifies the motion path

	Format
	PATH [robot number](axis number,) L , point definition , option, option C
/	Values robot number
) 	Explanation Sets the motion path for the specified axis. This command can only be executed between the PATH SET and PATH END commands. If execution is attempted elsewhere, an error will occur.

- Movement type: Linear interpolation, circular interpolation
- Point setting: Direct numeric value input, point definition
- Options: Speed setting, coordinate plane setting (for circular interpolation only), port output setting

PATH motion types

.....

Linear interpolation movement

"PATH L..." is set for linear interpolation movement.

• Circular interpolation movement

"PATH C..." is set for circular interpolation movement.

Only the X, Y and Z coordinate values of the specified points are valid for PATH motion. Any other coordinates use the coordinate values of the PATH motion START point. The motion path can be connected by repeated PATH commands ("PATH L", "PATH C") to allow movement without stopping.

8

Ρ

Q

Point data setting types

Direct numeric value input

Linear interpolation Circular interpolation

Format p1 p2 p3 p4 p5 p6 f

Explanation Directly specifies coordinate data by a numeric value. If an integer is used, this is interpreted as "pulse" units, and if a real number (with decimal point) is used, this is interpreted as "mm" units. If both integers and real numbers are used together (mixed), all coordinate values will be handled in "mm" units.

With this format, only 1 point can be specified as the movement destination coordinates. The only type of movement specified by this point data setting is linear interpolation.

Hand system flags can be specified for SCARA robots when directly specifying the coordinate data in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that there is no hand system flag.

- 1 : Right-handed system is used to move to a specified position.
- 2 : Left-handed system is used to move to a specified position.

The same hand system must always be used between a motion path's START and END points. The hand system cannot be changed between these points.

Moreover, the first arm and second arm rotation information must be the same throughout the movement path, from the path's START to END points. The first arm and second arm rotation information cannot be changed at any point along the path.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

CAUTION

• The hand system used during PATH motion must be the same as the hand system used at the path motion route's start point. The same applies if the path is to pass through points where hand system flags are set. Differing hand systems will cause an error and disable motion.

• The first arm and second arm rotation information during PATH movement must be the same as the first arm and second arm rotation information at the PATH movement's START point. If the two are different, an error will occur and movement will be disabled.

SAMPLE

PATH L,10000 10000 1000 0 0 0
Sets the linear interpolation movement
path of robot 1 in "pulse" units.
PATH L,150.000 250.000 10.000 30.000 0.000 0.000 1
The linear interpolation movement path
of robot 1 is set in the coordinate
values specified by the right-handed
system in "mm" units.

• The hand system used during PATH motion must be the same as the hand system used at the path motion route's start point. The same applies if the path is to pass through points where hand system flags are set. Differing hand systems will cause an error and disable motion.

CAUTION

MEMO

.....

.....

•

• The first arm and second arm rotation information during PATH movement must be the same as the first arm and second arm rotation information at the PATH movement's START point. If the two are different, an error will occur and movement will be disabled.

Point definit	ion	Linear interpolation	Circular interpolation
Format			
point def	inition , point definition	on	
Explanation	Specifies the movement desti data items can be designated b For circular interpolation move	by separating them with	a comma (,).
	bots with a hand system flag set nd system will have priority over		

SAMPLE
PATH L, P1, P2, P3 ······Specifies sequential linear
interpolation movement of robot 1 from
its current position to the positions
specified by P1, P2 and P3 from its
current position.
PATH C P5,P6,P7,P8 ······Specifies circular interpolation
movement of robot 1 through the
following points: current position,
P5, P6, and P6, P7, P8.

.....

Option types

Speed setting

Format

Linear interpolation Circular interpolation

1.	SPEED =expression	
2.	S =expression	

ΝΟΤΕ

• This defines the maximum speed, and does not guarantee that all movement will occur at specified speed.

• This option specifies only the maximum composite speed and does not guarantee movement at the specified speed.

Values	expression1 to 100 (units: %)

ExplanationThe program's movement speed is specified as the <*expression>* value (units: %).The actual speed is determined as shown below.

• Robot's max. speed (mm/sec) × automatic movement speed (%)× program movement speed (%).

This option is enabled only for the specified PATH statement.

SAMPLE

PATH L,P5,S=40 ····· Movement of robot 1 from its current position to the position specified by P5 occurs at 40% of the program movement speed.

Format

VEL =expression

n The movement speed is specified by the *<expression>* value (units: mm/sec). An error will occur if the speed is too fast.

This command is enabled only for the specified PATH statement.

SAMPLE

PATH L, P10, VEL=150 ····· Movemen	nt of	robot	1	from	its	current
positio	n to	the pos	iti	on spe	ecifie	d by P10
occurs	occurs at a speed of 150mm/sec.					

Coordinate	plane setting	Linear interpolation	Circular interpolation
Format			
XY YZ ZX			
Values XY	XY	coordinate plane	
YZ	YZ	coordinate plane	
ZX	ZX	coordinate plane	
Explanation	interpolation movement. circular interpolation move Only circular interpolation setting.	plane on which to draw a If no coordinate plane is s ment is used. movement can be specified nly for the specified PATH sta	pecified, 3-dimensional by this coordinate plane
SAMPLE			
PATH C,P1,	i c t	rom its current posi nterpolation moveme ccurs within the X he Z-axis moving to oordinates position.	nt of robot 1 Y plane, with

PATH

77

Port output setting

Linear interpolation Circular interpolation

Format 1

```
m(b, \dots, b) = expression 1 @ expression 2
DO
MO
SO
```

Format 2

```
DO
      (mb, · · · , mb) = expression 1 @ expression 2
MO
SO
```


• Output to ports "0" and "1" is not allowed at DO, MO, and SO.

• For details regarding bit definitions, see Chapter 3 "10 Bit Settings".

Values	m: port number2 to 7, 10 to 17, 20 to 27	
	b: bit definition0 to 7 (If omitted, all 8 bits are processed.)	
	If multiple bits are specified, they are expressed from	
	the left in descending order (high to low).	
	expression 1Value which is output to the specified port (only	
	integers are valid).	
expression 2 Position where the port output occurs. T		
	can be specified in "mm" units down to the 3rd decimal	
	position.	
Explanatio	n During PATH motion, this command option outputs the value of <i><expression 1=""></expression></i>	

to the specified port when the robot reaches the <expression 2> distance from the start position.

The <expression 2> numeric value represents a circle radius (not arc length) centered on the movement START point.

If no hardware port exists, nothing is output.

SAMPLE

Related commands PATH SET, PATH END, PATH START

Reference

For PATH function details, refer to Chapter 9 "PATH Statements".

Format									
PATH [robot number] END									
Values robot number									
Explanation Ends the path setting of specified robot's PATH motion. The PATH END command must always be paired with a PATH SET command. The PATH motion path end-point is the final point specified by the final PATH command (PATH L, PATH C) which exists between the PATH SET and PATH END commands. Attempting to execute a PATH END command when no PATH SET command has been executed will result in an error.									
SAMPLE									
PATH ENDEnds the path setting of robot 1's PATH motion									
Related commands PATH, PATH SET, PATH START									

Reference For PATH function details, see Chapter 9 "PATH Statements".

.....

PATH SET Starts the path setting

tans the path set

• Th is ve

8

Format

• The PATH SET statement is available in software version 1.11 onwards.

NOTE

79

		_	

PATH [point definition] SET point definition

robot number......1 to 4 (If not input, robot 1 is specified.)

Explanation S

tion Starts the path setting of specified robot's PATH motion.

Specifies the *<point definition>* position as the PATH motion start-point. (This only sets the PATH motion start point and does not actually begin robot motion.) If the *<point definition>* value is omitted, the current robot position is set as the start point. However, if robot movement is in progress, the target position of that movement becomes the start point. (Example: The OUT position range is wider for the MOVE command which precedes the PATH SET command, so the robot is still moving when the PATH SET command is executed, etc.)

The PATH SET command must always be paired with a PATH END.

When a PATH SET command is executed, the previously set PATH motion path data is deleted.

• Point data setting : Direct numeric value input, point definition

- If both integers and real numbers are used together (mixed), all coordinate values will be handled in "mm/deg" units.

- The hand system used during PATH motion must be the same hand system as that at the PATH motion's start-point. An error will occur if the hand systems are different.
- The first arm and second arm rotation information during PATH movement must be the same as the first arm and second arm rotation information at the PATH movement's START point. If the two are different, an error will occur and movement will be disabled.

.....

• Direct numeric value input

Format

p1 p2 p3 p4 p5 p6 f

- b
- Values p1 to p6Space-separated coordinate values for each axis. fHand system flag.

Explanation

Directly specifies the path's start-point coordinates for PATH motion. If an integer is used, this is interpreted as "pulse" units, and if a real number is used, this is interpreted as "mm" units (valid down to the 3rd decimal position).

Hand system flags can be specified for SCARA robots when directly specifying the coordinate data in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that there is no hand system flag.

1: Indicates that a right-handed system is specified for the PATH motion's start-point.

2: Indicates that a left-handed system is specified for the PATH motion's start-point.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

.....

SAMPLE								
PATH SET 120 250.000 55.2 20.33 0 0								
····· The PATH motion's start-point of robot								
1 is specified in "mm" units as follows:								
120.000 250.000 55.200 20.330 0.000								
0.000.								
PATH SET -51200 80521 7045 204410 0 0								
The PATH motion's start-point of robot								
1 is specified in "pulse" units.								

PATH SET

79

• The hand system used during PATH motion must be the same as the hand system used at the path motion route's start point. Differing hand systems will cause an error and disable motion.

 CAUTION
 The first arm and second arm rotation information during PATH movement must be the same as the first arm and second arm rotation information at the PATH movement's START point. If the two are different, an error will occur and movement will be disabled.

Point definition

Format

point expression

Explanation The PATH motion's start-point is specified by the *<point expression>*.

 At SCARA robots with a hand system flag set in the movement destination's coordinate data, the specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
PATH SET P10 ····· Of of
robot 1 is set as P10.
PATH SET WHERE The PATH motion's start-point of
robot1 is set as the robot 1's current
position.

Related commands PA

nds PATH, PATH END, PATH START

Reference For PATH function details, see Chapter 9 "PATH Statements".

PATH	[robot number] START, option, option
alues	robot number1 to 4 (If not input, robot 1 is specified.)
planati	
	Before PATH START can be executed, the PATH motion path must be specified b the PATH SET command, PATH commands (PATH L, PATH C) and the PATH ENI
	command. The robot must also be positioned at the motion path's start-point whic
	was specified by the PATH SET command.
	The robot's PATH motion speed is the automatic movement speed (%) which was i
	effect when the PATH START was executed, multiplied by the program movemer
	speed (%) specified by the SPEED command or the (SPEED or S) option of the PATH
	command. A speed specified by the "VEL" option of the PATH command does no rely on the automatic movement speed.
	After PATH motion begins, the PATH START command is terminated when the robo
	reaches the PATH motion end-point, or when movement is stopped by a stop inpu
	etc.

• Options : STOPON condition setting, CONT setting

PATH START

Option types

STOPON condition setting

Addition of the STOPON	Format
condition setting disables the CONT setting.	STOPON conditional expression
	 Explanation Stops movement when the conditions specified by the conditional expression a met. Because this is a deceleration type stop, there will be some movement (durind eceleration) after the conditions are met. If the conditions are already met before movement begins, no movement occur and the command is terminated. This option is only possible by program execution.
	SAMPLE
	PATH START, STOPON DI(20)=1
	<pre>Robot 1 starts PATH movement, if the "DI (20) = 1" condition is met during movement, a deceleration and stop occurs, and the next step is then executed.</pre>

• When the conditional expression used to designate the STOPON condition is a numeric expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

.....

80

<u>/!</u>`

CAUTION

PATH START

CONT setting

Format CONT

Explanation

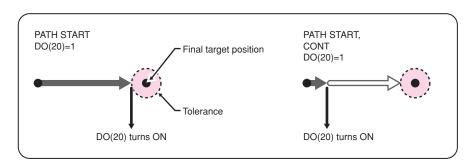
ΝΟΤΕ

• The CONT setting can be used to reduce the movement START positioning time.

• The path to the target point is not guaranteed.

When PATH movement is executed with CONT setting option, after all movable axes begin to execute the final movement specified by PATH statement, movable axes will begin to execute the next command without waiting the completion their movement (entering the tolerance range). If the next command is a movement command, the 2 movement paths are linked by connecting the deceleration and acceleration sections, enabling continuous movement without intermediate stops. This option is enabled only for the specified PATH START statement.

• Caution regarding PATH START command with CONT setting:


If the next command following the PATH START command with CONT setting is an executable command such as a signal output command, that next command will start immediately after axis movement begins. In other words, that next command starts before the axis arrives within the target position tolerance range.

Signal output (DO, etc.)	Signal is output immediately after movement along the final path begins.
DELAY	DELAY command is executed and standby starts immediately after movement along the final path begins.
HALT	Program stops and is reset immediately after movement along the final path begins. Therefore, axis movement also stops.
HALTALL	All programs in execution stop immediately after movement along the final path begins, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops immediately after movement along the final path begins. Therefore, axis movement also stops.
HOLDALL	All programs in execution temporarily stop immediately after movement along the final path begins. Therefore, the movement also stops.
WAIT	WAIT command is executed immediately after movement along the final path begins.

Example:

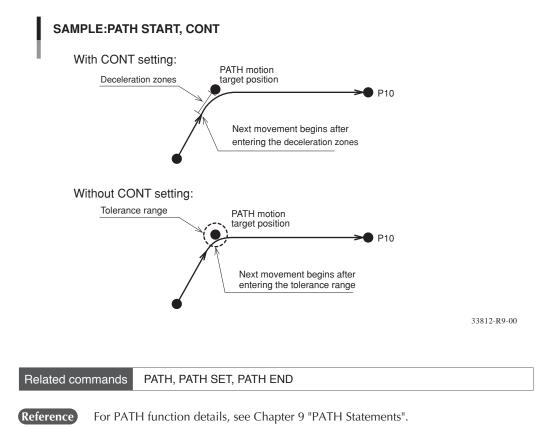
PATH START command

.....

33808-R9-00

Ν

0


Ρ

Q

80 PATH START

SAMPLE

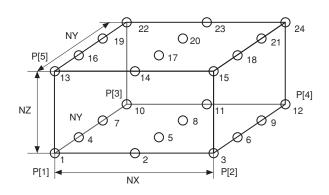
PATH	START, CONT								
MOVE	P, P10								
		• PATH	motion	start	ts, ar	nd n	novemer	ıt	to
		P10 }	oegins a	fter t	the mor	ving	axes	ent	er
		the	decelera	ation	zone	of	final	PA	TH
		motio	on.						

8

.....

Format

```
PDEF(Pallet definition number) =expression 1, expression 2
, expression 3, point definition
```



Pallet definition number	0 to 39
expression 1	Number of elements (NX) between P[1] and P[2].
expression 2	Number of elements (NY) between P[1] and P[3].
expression 3	Number of elements (NZ) between P[1] and P[5].
	Total number of elements: must be 32767 or less
	<expression 1=""> × <expression 2=""> × <expression 3=""></expression></expression></expression>
	P[1] to P[5] definition: see the figure below.
point definition	The point used for a pallet definition. Continuous 5
	points starting with the specified point are used.

Explanation Defines the pallets to permit execution of the pallet movement command: changes the contents of definition for previously defined pallet data.

After specifying the number of points per axis, the equally-spaced points for each axis are automatically calculated and defined in the sequence shown in the figure below. If <*expression 3*> (Z-axis direction) is omitted, the value becomes "1". The total number of elemnts defined for a single pallet must not exceed 32,767.

Automatic point calculation

33815-R7-00

SAMPLE

PDEF 1 =3,4,2,P3991 \cdots Pallet definition 1 is defined as 3 x 4 x 2 by using P3991 to P3995.

Ρ

Q

PGMTSK

82

Acquires the task number in which a specified program is registered

	Format		
	PGMTSK (program number)		
	Values program number1 to 100		
	Explanation Acquires the task number in w registered.	which the program specified by <i><program number=""></program></i> is	
MEMO)	• If the program number which is not registered in the task is specified, "3.203: Program doesn't exist" error occurs		
	SAMPLE		
	A = PGMTSK(1)	Assigns the task number in which the program number 1's program is registered to variable A.	
	Related commands PGN, TSKPGM		

Acquires the program number from a specified program name

Format
PGN ("program name")
Values program name
Explanation Acquires the program number of the program specified by <i><program name=""></program></i> . The program name must be enclosed in double quotation marks (").
SAMPLE
A = PGN("PG_SUB") The program number of PG_SUB is assigned to variable A.
Related commands PGMTSK, TSKPGM

8

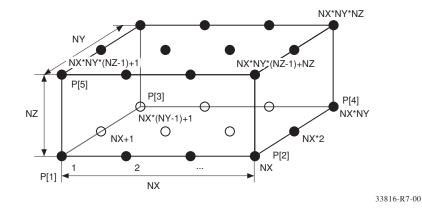
PMOVE

84

Executes a pallet movement command for the robot

01	m	a	t

```
PMOVE [robot number] (pallet definition number,
pallet position number), option, option...
```


- Values robot number......1 to 4 (If not input, robot 1 is specified.) pallet definition number.....0 to 39 pallet position number1 to 32767
- Explanation Executes "pallet move" command of the specified axes. (The specified pallet numbers must be registered in advance.)

It is not enabled for axes of other robots or for auxiliary axes. PTP

- Movement type:
- Pallet definition number: Numeric expression
- Pallet position number: Numeric expression
- Options:
- Speed setting, arch motion setting, STOPON condition setting

The position numbers for each pallet definition are shown below.

Position numbers for each pallet definition

• Acquires the XYZ axes move to the position determined by calculated values, the R attribute axis moves to the position specified by pallet point data P [1].

.....

Options	РТР	Remarks
Speed setting (SPEED)	0	Enabled only for specified PMOVE statement
Arch motion	0	Enabled only for specified PMOVE statement
STOPON condition setting	0	Enabled only by program execution

SAMPLE	
PMOVE(1,16) Rc	bot 1 moves from its current position
to	the position specified by pallet
pc	sition number 16 of pallet definition
nu	mber 1.

.....

Movement type

PTP (point-to-point) movement

PTP movement begins after positioning of all movement axes is complete (within the tolerance range), and **the command terminates when the movement axes enter the OUT position range.** Although the movement axes reach their target positions simultaneously, their paths are not guaranteed.

Caution regarding commands which follow the PMOVE command:

If the next command following the PMOVE command is an executable command such as a signal output command, that next command will start when the movement axis enters the OUT position range. In other words, that next command starts before the axis arrives within the target position OUT position range.

Example:

Signal output (DO, etc.)	Signal is output when the axis enters within OUT position range.
DELAY	DELAY command is executed and standby starts, when the axis enters the OUT position range.
HALT	Program stops and is reset when the axis enters the OUT position range. Therefore, the axis movement also stops.
HALTALL	All programs in execution stop when axis enters the OUT position range, task 1 is reset, and other tasks terminate. Therefore, the movement also stops.
HOLD	Program temporarily stops when the axis enters the OUT position range. Therefore, the axis movement also stops.
HOLDALL	All programs in execution temporarily stop when the axis enters the OUT position range. Therefore, the movement also stops.
WAIT	WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance range.

PMOVE command PMOVE(0,1) PMOVE(0,1) Target position DO(20)=1 WAIT ARM DO(20)=1 Tolerance OUT position DO(20) turns ON DO(20) turns ON PMOVE(0,1) PMOVE(0,1) Target position WAIT ARM HOLD HOLD Tolerance OUT position HOLD execution HOLD execution (program temporarily stops) (program temporarily stops)

33827-R7-00

PMOVE

Option types

Speed setting

Formo	ıt
1. 2.	SPEED =expression S =expression

84

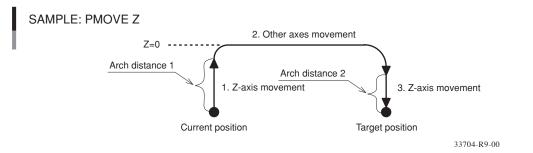
This option specifies only the maximum speed and does not guarantee movement at the specified speed.

Values expression......1 to 100 (units: %)

Explanation

Specifies the program speed in an *<expression>*. The movement speed is the automatic movement speed multiplied by the program movement speed. This option is enabled only for the specified PMOVE statement.

PTP


РТР

Robot 1 moves from its current position
to the position specified by pallet
position number 3 of pallet definition
number 1, at 10% of the program speed.

Arch motion setting

Format x =expression, x =expression... Values x.....Specifies the Z,R,A,B axis. expressionAn integer value is processed in "pulse" units. A real number (with decimal point) is process in "mm/deg" units. Explanation 1. The "x" specified axis begins moving toward the position specified by the <expression> ("1" shown in the figure below). 2. When the axis specified by "x" moves the arch distance 1 or more, other axes move to their target positions ("2" shown in the figure below). 3. The axis specified by "x" moves to the target position so that the remaining movement distance becomes the arch distance 2 when the movement of other axes is completed ("3" shown in the figure below). 4. The command ends when all axis enter the OUT position range. SAMPLE PMOVE(1,A),Z=0First the Z-axis of robot 1 moves from the current position to the "O pulse" position. Then the other axes of robot 1 move to the position specified by pallet position number A of pallet definition number 1. Finally the Z-axis of robot 1 moves to the

position specified by pallet position number A.

• STOPON condition setting

Format	
STOPON CC	onditional expression
Explanation	Stops movement when the conditions specified by the conditional expression are met. Because this is a deceleration type stop, there will be some movement (during deceleration) after the conditions are met. If the conditions are already met before movement begins, no movement occurs, and the command is terminated. This option is only possible by program execution.
SAMPLE	
PMOVE(A,16	5),STOPON DI(20)=1
	<pre>Robot 1 moves from the current position to the position specified by pallet position number 16 of pallet definition number A, then decelerates and stops when the condition "DI(20) = 1" is met.</pre>

• When the conditional expression used to designate the STOPON condition is a numeric expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

.....

PTP

P

Q

85

NOTE

units.

• If both integers and

real numbers are used together (mixed), all

coordinate values will

be handled in "mm/deg"

Pn Defines points within a program

Format	
LET Pn	= p1 p2 p3 p4 p5 p6 f
Values	nPoint number: 0 to 29999. p1 to p6Point data: the range varies according to the format. fHand system flag: 1 or 2.
Explanatio	n Defines the point data.

- 1. "n" indicates the point number.
- 2. Input data for "p1" to "p6" must be separated with a space (blank).
- 3. If all input data for "p1" to "p6" are integers (no decimal points), the movement units are viewed as "pulses". "p1" through "p6" then correspond to axis 1 through axis 6.
- 4. If there is even 1 real number (with decimal point) in the input data for "p1" through "p6", the movement units are recognized as "mm".
- 5. The input data ranges are as follows:
 - For "pulse" units: -6,144,000 to 6,144,000 range For "mm" units: -99,999.99 to 99,999.99 range

Hand system flags can be specified for SCARA robots when specifying point definition data in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be set, indicating that there is no hand system flag.

- 1: Indicates a right-handed system point setting.
- 2: Indicates a left-handed system point setting.

Pn

ΝΟΤΕ

85

- All input values are handled as constants.
- If controller power is turned off during execution of a point definition statement, a memory-related error such as "9.702: Point data destroyed" may occur.

SAI	SAMPLE						
P1	=	0	0	0	0	0	0
P2	=	100.000	200.000	50.000	0.000	0.000	0.000
P3	=	10.000	0.000	0.000	0.000	0.000	0.000
P10	P10= P2						
FOF	R A=	10 TO 15					
	P[A+1]=P[A]+P3						
NEXT A							
FOR A=10 TO 16							
MOVE P, P1, P[A]							
NEXT A							
HAI	HALT						

Related commands Point assignment statement (LET)

.....

Ν

Format

PPNT(pallet definition number, pallet position number)

Explanation Creates the point data specified by the pallet definition number and the pallet position number.

67.7		1.00	 n
	1.1	124	- 12

P10=PPNT(1,24)	Creates, at P10, the point data
	specified by pallet position number 24
	of pallet definition number 1.

Related commands PD

PDEF, PMOVE

PRINT

MEMO

Displays the specified expression value at the programming box

PRINT	expression , expression , ;
Values	<i>expression</i> character string, numeric value, variable
Explanatio	n Displays a specified variable on the programming box screen. Output definitions are as follows:
	 If numbers or character strings are specified in an <i><expression></expression></i>, they display they are. If variables or arrays are specified, the values assigned to the specifi variables or arrays display. If no <i><expression></expression></i> is specified, only a line-feed occurs. If the data length exceeds the screen width, a line-feed occurs, and the data displayed on the next line. If a comma (,) is used as a display delimiter, a space (blank) is inserted betwee the displayed items. If a semicolon (;) is used as a display delimiter, the displayed items appear succession without being separated. If the data ends with a delimiter, a line-feed does not occur. When not ended w a display delimiter, a line-feed occurs.
to be o stateme • On the	ommunication to the programming box screen occurs in order for the PRINT stateme displayed there. Therefore, program execution may be delayed when several PRIN ents are executed consecutively. e programming box, the PRINT statement is displayed on "Message" space in "Automat ion (ALL TASK) screen.
SAMPL	3
	"A1 =";A1 ····· Displays the value of variable A1 after "A1 =".
PRINT '	'B(0),B(1) = ";B(0);",";B(1)

.....

PSHFRC

Specifies/acquires the pushing force parameter

Format	
1. PSHFF 2. PSHFF	
a	bbot number
Explanation	Changes the "push force" parameter of the specified axis to the value of <i><expression></expression></i> . If the "F" option is omitted in the PUSH statement, the pushing control is executed with the setting of the pushing thrust parameter.
	Actual pushing thrust is as follows. • Rated thrust x < <i>expression</i> > / 100
	In format 1, the change occurs at all axes. In format 2, the change occurs at parameter of the axis specified by the <i><axis< i=""> <i>number></i>.</axis<></i>

SAMPLE

PSHFRC (1) = 10 \cdots Changes the pushing thrust parameter of axis 1 of robot 1 to 10%.

Functions

Format	
PSHFRC	[robot number] (axis number)
	robot number1 to 4 (If not input, robot 1 is specified.) axis number1 to 6
Explanation	n Acquires the value of "push force" parameter of the specified axis.
SAMPLE	2
A=PSHFR	C (1) ····· The pushing thrust parameter of axis 1 of robot 1 is assigned to variable A.

.....

PSHJGSP

Specifies/acquires the push judge speed parameter

Format
1. PSHJGSP [robot number] expression
2. PSHJGSP [robot number] (axis number) =expression
Values robot number
Explanation Changes the "push judge speed" parameter of the specified axis to the value of the <i><expression></expression></i> .
If the push judge speed parameter is enabled, a pushing operation is detected only when the movement speed is below <i><expression></expression></i> with the pushing thrust in the
PUSH statement at the specified value.
The setting of < <i>expression</i> > can be specified as follows.
0: A pushing operation is detected if the pushing thrust reaches the specified value with the threshold setting invalid.
1 to 100: The movement speed in the PUSH statement is 100% to specify thresholds with a rate.
SAMPLE
PSHJGSP (1) = 50 \cdots Changes the push judge speed parameter

Functions

Format	H
PSHJG	SP [robot number] (axis number)
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>axis number</i> 1 to 6
Explanati	• Acquires the value of "push judge speed" parameter of the axis specified by <i><axis< i=""> <i>number></i>.</axis<></i>
SAMPI	JE
A=PSHJ	JGSP (1) The pushing detection speed threshold parameter of axis 1 of robot 1 is assigned to variable A.

.....

of axis 1 of robot 1 to 50%.

8

PSHMTD

Specifies/acquires a pushing type parameter

Format
 PSHMTD [robot number] expression PSHMTD [robot number] (axis number) =expression
Valuesrobot number
Explanation Changes the "push method" parameter of the specified axis to the value of the <i><expression></expression></i> .
 The pushing type in the PUSH statement can be specified as follows by the <<i>expression</i>>. O: The time for the pushing thrust to reach the specified value is totalized to execute the pushing control end detection. 1: The pushing control end detection is executed only when the pushing thrust continuously reaches the specified value. If the pushing thrust is lower than the specified value, the elapsed time is reset to 0.
In format 1, the change occurs at all axes. In format 2, the change occurs at the parameter of the axis specified by <i><axis< i=""> <i>number></i>.</axis<></i>
SAMPLE
PSHMTD (1) = 1 ····· Changes the push method parameter of axis 1 of robot 1 to the resetting

Functions

Format	
PSHMTD	[robot number] (axis number)
	robot number
SAMPLE	
A=PSHMTI	0 (1) ••••••• The pushing method parameter of axis 1 of robot 1 is assigned to variable A.

method.

Acquires the status when PUSH statement ends

Format	
PSHRSLT [robot number] (axis	number)
Values robot number1 to axis number	o 4 (If not input, robot 1 is specified.) o 6
Explanation Acquires the end status of PU <i>number</i> >.	SH statement executed for the axis specified by <i><axis< i=""></axis<></i>
pushing time.	was ended for a reason other than the arrival of the was ended by the arrival of the pushing time.
SAMPLE	
PUSH(3,P1)	Moves the axis 3 of robot 1 is under the pushing control to the position specified with P1.
IF PSHRSLT(3) = 1 THEN ·····	Ended by the arrival of the pushing time.
GOTO *OK	
ELSE	Ended for a reason other than the arrival of the pushing time.
GOTO *NG ENDIF	

91

0

P

Q

PSHSPD

Specifies/acquires the push speed parameter

	PSHSPD[robot number]expressionPSHSPD[robot number](axis number)=expression
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>axis number</i> 1 to 6 <i>expression</i> 1 to 100 (units: %)
Explana	tion Changes the "push speed" parameter of the axis specified by <i><robot number=""></robot></i> to a value indicated in <i><expression></expression></i> .
	 The motion speed in the PUSH statement is as follows. Neither "S" nor "DS" is set as an option in the PUSH statement: Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (x Automatic movement speed (%) x Program movement speed (%)
	• "S" is set as an option in the PUSH statement: Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (x Automatic movement speed (%) x Program movement speed specified by S (%
	 "DS" is set as an option in the PUSH statement: Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (x Movement speed of an axis specified by DS (%) * Refer to ("94 PUSH" in this Chapter/ the YRCX programming manual) for deta

Functions

Format	
PSHSPI	[robot number] (axis number)
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>axis number</i> 1 to 6
Explanatio	Acquires the "push speed" parameter value of the axis specified by <i><axis number=""></axis></i> .
SAMPL	ιE
A=PSHS	PD (1) ····· The push speed parameter of axis 1 of robot 1 is assigned to variable A.

axis 1 of robot 1 to 50%.

••••••

PSHTIME

Specifies/acquires the push time parameter

1.	PSHTIME	[robot number]	expression
2.	PSHTIME	[robot number]	(axis number) =expression
alue	s robot	number	1 to 4 (If not input, robot 1 is specified.)
	axis n	umber	1 to 6
unla			1 to 32767 (unit: ms) parameter of the specified axis to the value indicated

PSHTIME (1) = 1000 \cdots Changes the push time parameter of

axis 1 of robot 1 to 1000ms

Functions

Format	
PSHTIME [robot	number] (axis number)
	<i>er</i> 1 to 4 (If not input, robot 1 is specified.) <i>r</i> 1 to 6
Explanation Acquires number>	, the value of "push time" parameter of the axis specified by the $<\!\!axis$.
SAMPLE	
A=PSHTIME (1) ···	••••••• The push time parameter of axis 1 of robot 1 is assigned to variable A.

.....

8

Ρ

Q

PUSH

94

Executes a pushing operation for specified axes

Formo	at	
PUSH	[robot number](axis n	umber, expression), option, option
Values	axis number	
Explana		te position movement of the specified axis with controlling the e forwarding direction.
		Pushing PTP movement of specified axis : Direct coordinate data input, point definition Pushing thrust setting, pushing time, pushing speed setting, STOPON setting

Movement type

PTP (point-to-point) of specified axis

PTP movement begins after the operation of the axis specified by the <axis number> is completed (within the tolerance range), controlling the pushing thrust in the forwarding direction of the axis.

The conditions to start the pushing control are as follows.

- Immediately after the start of movement of an axis by the PUSH statement
- After the merge operation is completed (when the PUSH statement is specified in the line next to the movement command with CONT specified)

The conditions to terminate the command are as follows.

- The axis arrives within the tolerance range of the target position.
- The status where the pushing thrust of the axis reaches *<pushing thrust value>* elapses the time specified to *<pushing time value>*.

The end status for the PUSH statement can be confirmed with the PSHRSLT statement.

The conditions to cancel the pushing thrust (to cancel the torque value defined by PUSH statement) are as follows.

- When PUSH command finishes and then either of movement commands below is executed. Note that only finishing PUSH command is not enough to cancel the pushing thrust
 - In push status at PUSH command finish When the target axis starts to move in the opposite direction of that specified by PUSH statement
 - 2. The target axis moves to the target position at PUSH command finish (not in push status) When the target axis starts to move either direction
- When a servo off occurs
- When the power source to the controller is interrupted and restartedd

PUSH

Signal output (DO, etc.)	Signal is output when the pushing conditions are satisfied or within the tolerance range.
DELAY	DELAY command is executed and standby starts, when the pushing conditions are satisfied or within the tolerance range.
HALT	Program stops and is reset when the axis enters the OUT position range. Therefore, the axis movement also stops.
HALTALL	When the pushing conditions are satisfied or within the tolerance range, the programs in execution are all stopped, task 1 is reset, and other tasks are terminated. Therefore, the axis movement also stops.
HOLD	Program temporarily stops when the axis enters the OUT position range. Therefore, the axis movement also stops.
HOLDALL	When the pushing conditions are satisfied or within the tolerance range, the programs in execution are all temporarily stopped. Therefore, the axis movement also stops.
WAIT	WAIT command is executed, when the pushing conditions are satisfied or within the tolerance range.
SAMPLE	

PUSH(1,P0)	Axis	1	of	robot	1	moves	from	its
	curre	ent	рc	sition	t	o the	posi	tion
	specif	fied	by	P0				

Point data setting types

• Direct numeric value input

The motor position is specified directly in *<expression>*.

If the motor position's numeric value is an integer, this is interpreted as a "pulse" unit. If the motor position's numeric value is a real number, this is interpreted as a "mm/degrees" unit, and each axis will move from the 0-pulse position to a pulse-converted position.

Point definition

Point data is specified in *<expression>*. The axis data specified by the *<axis number>* is used. If the point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse position to the pulse-converted position.

SAMPLE
PUSH(1,P1) ····· position to
the position specified by P1.
PUSH[2](2,P90) ····· Axis 2 of robot 2 moves from its current position to
the position specified by P90 (deg.) (when axis 2 is
a rotating axis.)

Option types

Pushing thrust setting

	Format				
	F =expression				
(Values expr	ession1000 to 1000 (units: %)			
(Explanation	The pushing thrust in the forwarding direction of an axis is specified as an <i><expression></expression></i> . The actual pushing thrust is determined as shown below.			
		• Rated thrust x < <i>expression</i> >/100			

If $\langle expression \rangle$ is omitted, pushing thrust value specified with the parameter is used.

SAMPLE

• Pushing time setting

3	
Format	
TIM =expi	ression
Values expr	ession1 to 32767 (units: ms)
Explanation	The time to keep pushing with the specified pushing thrust is specified as an <i><expression></expression></i> . When the status where the pushing thrust reaches the specified value exceeds <expression>, the PUSH statement terminates. If this option is omitted, the setting of the parameter is used.</expression>
SAMPLE	
PUSH(1,100	00),TIM=5000 ······Axis 1 of robot 1 moves from its current position to the 100000 pulse position with keeping pushing for 5 seconds.

Speed setting

Format
 SPEED =expression S =expression
Values expression1 to 100 (units: %)
 Explanation The program movement speed is specified in <expression>. This option is enabled only for the specified PUSH statement. The actual speed is determined as shown below.</expression> Max. speed of a robot (mm/s or deg./s) x Push speed (%) x automatic. movement speed (%) x <expression> (%)</expression>
SAMPLE
<pre>PUSH(1,10000),S=10 ······ Axis 1 of robot 1 moves from its</pre>

Format 1. DSPEED =expression 2. DS =expression Values expression......0.01 to 100.00 (units: %)

Explanation	 The axis movement speed is specified in <expression>.</expression> This option is enabled only for the specified PUSH statement. Movement always occurs at the DSPEED <expression> value (%) without being affected by automatic movement speed value (%).</expression> The actual speed is determined as shown below. Max. speed of a robot (mm/s or deg./s) x Push speed (%) x <expression> (%)</expression>
SAMPLE	
PUSH(1,10	000),DS=0.1Axis 1 moves of robot 1 from its current position to the 100000 pulse position with the speed at 0.1% of the pushing movement speed.

PUSH

94

STOPON conditions setting

Format	
STOPON C	onditional expression
Explanation	Stops movement when the conditions specified by the conditional expression are met. Because this is a deceleration type stop, there will be some movement (during deceleration) after the conditions are met. If the conditions are already met before movement begins, no movement occurs, and the command is terminated. This option is enabled only by program execution.

SAMPLE

• When the conditional expression used to designate the STOPON conditions is a numeric expression, an expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE status.

.....

Related commands

PSHFRC, PSHTIME, PSHMTD, PSHSPD, PSHRSLT, CURTRQ, CURTQST

RADDEG

Performs a unit conversion (radians \rightarrow degrees)

Format
RADDEG(expression)
Values expressionAngle (units: radians)
Explanation Converts the <i><expression></expression></i> value to degrees.
SAMPLE
LOC4(P0)=RADDEG(ATN(B)) Converts the variable B arctangent value to degrees, and assigns it to 4th-axis data of P0.
Related commands ATN, COS, DEGRAD, SIN, TAN

0

Q

R

Format

1. REM character string

2. ' character string

Explanation All characters which follow REM or an apostrophe (') are handled as a comment. This comment statement is used only to insert comments in the program, and it does not execute any command. REM or an apostrophe (') can be entered at any point in the line.

SAMPLE
REM *** MAIN PROGRAM ***
'*** SUBROUTINE ***
HALT 'HALT COMMAND

RESET

Turns OFF the bits of specified ports, or clears variables

	Format 1				
	RESET DOm (b,, b) DO (mb,, mb) MOm (b,, b) MO (mb,, mb) TOn (b,, b) TO (n-b,, nb) LOn (b,, b) LO (nb,, nb) SOm (b,, b) SO (mb,, mb)				
	Format 2 RESET TCOUNTER				
	Values m: port number				
• Output to ports "0" and "1" is not allowed at DO, and	ExplanationFormat 1: Turns the bits of specified ports OFF.Format 2: Clears the 1ms counter variables (1ms counter variables are used to measure the time in 1ms units).				
SO. SAMPLE					
(LL)) REFERENCE • For details regarding bit definitions, see Chapter 3 "10 Bit Settings".	RESET D02() Turns OFF D0(27 to 20). RESET D02(6,5,1) Turns OFF D0(26, 25, 21). RESET (37,35,27,20) Turns OFF D0(37, 35, 27, 20). RESET TCOUNTER Clears the 1ms counter variables.				

Related commands SET, DO, MO, SO, TO, LO

.....

8

Restarts another task during a temporary stop

	Format						
	RESTART In						
	<pre><pre>cprogram name></pre></pre>						
	PGm						
	Values n: Task number1 to 16						
	m: Program number1 to 100						
	Explanation Restarts another task that has been temporarily stopped (SUSPEND status).						
	A task can be specified by the name or the number of a program in execution.						
	The program name must be enclosed in $< >$ (angle brackets).						
MEMO	• If a task (program) not temporarily stopped is specified and executed, an error occurs.						
	SAMPLE						
	START <sub_pgm>,T2</sub_pgm>						
	FLAG=1						
	*L0:						
	IF FLAG=1 AND DI2(0)=1 THEN						
	SUSPEND T2						
	FLAG=2						
	WAIT DI2(0)=0						
	ENDIF IF FLAG=2 AND DI2(0)=1 THEN						
	RESTART T2						
	FLAG=1						
	WAIT DI2(1)=0						
	ENDIF						
	MOVE P, PO						
	MOVE P, P1						
	GOTO *LO						
	HALTALL						
	Program name:SUB_PGM						
	'SUBTASK ROUTINE						
	*SUBTASK:						
	DO2(0)=1						
	DELAY 1000						
	DO2(0)=0						
	DELAY 1000						
	GOTO *SUBPGM						
	EXIT TASK						

Related commands CUT, EX

CUT, EXIT TASK, START, SUSPEND

Reference

For details, refer to the "Multi-Task" item.

RESUME

Resumes program execution after error recovery processing

Format

- 1. RESUME
- 2. RESUME NEXT
- 3. RESUME label

• For details, refer to "67 ON ERROR GOTO".

Explanation	Resumes program execution after recovery from an error.				
	Depending on its location, a program can be resumed in the following 3 ways:				
	1. RESUME	The program resumes from the command which caused the			
		error.			
	2. RESUME NEXT	The program resumes from the next command after the			
		command which caused the error.			
	3. RESUME label	The program resumes from the command specified by the			
		<label>.</label>			

The RESUME statement can also be executed in an error processing routine.
Error recovery processing is not possible for serious errors such as "17.800 : Motor overload".

.....

Related commands ON ERROR GOTO

.....

Ν

0

Q

R

U

Format

GOSUB label	*	GOSUB	can	also	be	expressed	as	"G0	SUB".	
:										
label:										
:										
RETURN										

Explanation Ends the subroutine and returns to the next line after the jump source GOSUB statement.

> All subroutines (jump destinations) specified by a GOSUB statement must end with a RETURN statement. Using the GOTO statement, etc., to jump from a subroutine will cause an error such as "5.212: Stack overflow".

SAMPLE

*ST:
MOVE P,P0
GOSUB *CLOSEHAND
MOVE P, P1
GOSUB *OPENHAND
GOTO *ST
HALT
'SUB ROUTINE
*CLOSEHAND:
DO(20) = 1
RETURN
*OPENHAND:
DO(20) = 0
RETURN

GOSUB

Related commands

8

RIGHT\$

Extracts a character string from the right end of another character string

Format
RIGHT\$(character string expression, expression)
Values expression0 to 255
ExplanationThis function extracts a character string with the digits specified by the <expression> from the right end of the character string specified by <character expression="" string="">. The <expression> value must be between 0 and 255, otherwise an error will occur. If the <expression> value is 0, then extracted character string will be a null string (empty character string). If the <expression> value has more characters than the <character expression="" string="">, extracted character string will become the same as the <character expression="" string="">.</character></character></expression></expression></expression></character></expression>
SAMPLE
<pre>B\$=RIGHT\$(A\$,4) 4 characters from the right end of A\$ are assigned to B\$.</pre>

Related commands LEFT\$, MID\$

.....

Sets the SCARA robot hand system as a right-handed system

Specifies the robot as a roght-handed system. The robot moves to a point specifie the Cartesian coordinates. This statement only selects the hand system, and does not move the robot executed while the robot arm is moving, execution waits until movement is complete the robot arm is moving.
(positioned within tolerance range).
<pre>Specifies a Robot 1 "right-hando system" setting.(see Fig.1 below). Specifies a Robot 1 "left-hando system" setting.(see Fig.2 below).</pre>
Left-handed system

8

....

Shifts a bit value to the right

Format

RSHIFT(expression 1, expression 2)

.....

Explanation Shifts the *<expression 1>* bit value to the right by the amount of *<expression 2>*. Spaces left blank by the shift are filled with zeros (0).

SAMPLE

A=RSHIFT(&B10111011,2)	The	2-bit-right-shifted &B10111011
	valu	e (&B00101110) is assigned to A.

Related commands LSHIFT

SELECT CASE to END SELECT

Executes the specified command block in accordance with the <expression> value

Format

```
SELECT CASE expression
   CASE expression list 1
       command block 1
   CASE expression list 2
       command block 2
       •
   CASE ELSE
       command block n
END SELECT
```

Explanation These statements execute multiple command blocks in accordance with the <expression> value. The setting method is as follows.

- 1. The <expression list> following CASE statement comprises multiple numerical expressions and character expressions separated from each other by a comma (,,).
- 2. If the *<expression>* value matches one of expressions contained in the <expression list>, the specified command block is executed. After executing the command block, the program jumps to the next command which follows the END SELECT statement.
- 3. If the *<expression>* value does not match any of the expressions contained in the <expression list>, the command block indicated after the CASE ELSE statement is executed. After executing the command block, the program jumps to the next command which follows the END SELECT statement.
- 4. If the <expression> value does not match any of the expressions contained in <expression list> and no CASE ELSE statement exists, the program jumps to the next command following the END SELECT statement.

SAMPLE

```
WHILE -1
SELECT CASE DI3()
   CASE 1,2,3
       CALL *EXEC(1,10)
   CASE 4,5,6,7,8,9,10
       CALL *EXEC(11,20)
   CASE ELSE
       CALL *EXEC(21,30)
END SELECT
WEND
HALT
```

SEND

Sends readout file data to the write file

Format

SEND read-out file TO write file

• Examples of erroneous writing to a read-only file: SEND CMU TO DIR SEND PNT TO SIQ

• Examples of data format mismatches: SEND PGM TO PNT

SEND PGIVI IO PIN SEND SI() TO SFT ExplanationSends < read-out file> data to the <write file>.An entire DO, MO, TO, LO, SO, or SOW port (DO(), MO(), etc.), cannot be specified

as a write file.

Moreover, some individual files (DOn(), MOn(), etc.) cannot be specified as a write file. For details, refer to Chapter 10 "Data file description".

Writing to read-only files (indicated by a "-" in the "Write" column of the table shown below) is not permitted.

Even if the read-out/write files are specified correctly, it may not be possible to execute them if there is a data format mismatch between the files.

Turco	File Name		Defi	nition Format	Read-	Write
Туре	File I	Name	All	All Individual File		vvrite
User	All file		ALL		1	1
	Program		PGM	<bbbbbbbbb> PGn</bbbbbbbbb>	1	1
	Point		PNT	Pn	1	1
	Point comment		PCM	PCn	1	1
	Point name		PNM	PNn	1	1
	Parameter		PRM	/cccccccc/ #cccccccc# \cccccccc\	1	1
	Shift definition		SFT	Sn	1	1
	Hand definition		HND	Hn	1	1
	Pallet definition		PLT	PLn	1	1
	General Ethernet Port		GEP	GPn	1	1
	Input/output name		ION	iNMn(n)	1	1
	Area check output		ACO	ACn	1	1
Variable,	,		VAR	abby	1	1
Constant	Array variable		ARY	abby(x)	1	1
	Constant			"CCC"	1	_
Status	Program directory		DIR	< <bbbbbbbbb>></bbbbbbbbb>	1	_
	Parameter directory		DPM		1	_
	Maahina rafaranaa	sensor, stroke-end	MRF		1	_
	Machine reference mark		ARP		1	_
	System configuration information		CFG		1	_
	Version information		VER		1	_
	Option board		OPT		1	_
	Self check		SCK		1	_
	Alarm history		LOG		1	_
	Remaining memory size		MEM		1	-

Tuno	File Name	Defir	nition Format	Read-	Write	
Туре	Flie Name	All	Individual File	out	vvnie	
Device	DI port	DI()	DIn()	1	_	
	DO port	DO()	DOn()	1	1	
	MO port	MO()	MOn()	1	1	
	TO port	TO()	TOn()	1	1	
	LO port	LO()	LOn()	1	1	
	SI port	SI()	SIn()	1	_	
	SO port	SO()	SOn()	1	1	
	SIW port	SIW()	SIWn()	<i>✓</i>	_	
	SOW port	SOW()	SOWn()	1	1	
	RS-232C	CMU		1	1	
	Ethernet	ETH		1	1	
Other	File END code	EOF		1	_	

n: number a: Alphabetic character b: Alphanumeric character or underscore (_) c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type

i: Input/output type

.....

✓: Permitted –: Not Permitted

MEMO

- The following cautions apply when a restart is performed after a stop occurred during execution of the SEND statement:
 - 1. When reading from RS-232C / Ethernet (SEND CMU TO XXX, SEND ETH TO XXX): When the SEND statement is stopped during data reading from the reception buffer, the data acquired up to that point is discarded.
 - 2. When writing to RS-232C / Ethernet (SEND XXX TO CMU, SEND XXX TO ETH): When the SEND statement is stopped during data writing to the transmission buffer, the data is written from the beginning.

SAMPLE
SEND PGM TO CMU Outputs all user programs from the RS-
232C port.
SEND <prg1> TO CMU ····· Outputs the PRG1 program from the RS-</prg1>
232C port.
SEND CMU TO PNT Inputs a point data file from the RS-
232C port.
SEND "T1" TO CMU ······ Outputs the "T1" character string from
the RS-232C port.
SEND CMU TO A\$ Inputs character string data to
variable A\$ from the RS-232C port.

Reference For details, refer to Chapter 10 "Data file description".

Related commands

OPEN, CLOSE, SETGEP, GEPSTS

Format

Values

SERVO

command

ON

OFF

FREE

SERVO	[robot	number]

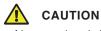
OFF FREE

ON

axis number......1 to 6 (• Multiple axes not specifiable

Explanation This command controls the servo ON/OFF at the specified axes or all axes.

(axis number)


• If not input, all axes are specified.)

Dynamic brake

OFF

ON

OFF

- Always check that the Emergency Stop is ON and Servo is OFF when working within the robot movement range.
- Electromagnetic brake is the brake to prevent the vertical axis from sliding downward. The vertical axis will slide downward when the servo is FREE, causing a hazardous situation.

.....

..... • This command is executed after the operation of all axes of the specified robot has been

Motor power

OFF

OFF

(In the case of all axes servo OFF)

Continues the previous status

complete (after positioned within the tolerance).

SERVO

ON

OFF

OFF

- The motor power is a power supply unit for robot (motor) in the controller.
- The dynamic brake controls the motor by using the electric power which is generated in the motor when the servo is turned OFF.

SAMPLE	
	Turns servos ON at all axes of robot 1.
	Turns the servo OFF and applies the dynamic brake at all axes
	of robot 1. Axes equipped with brakes are all locked by the brake.
· · /	Turns servos OFF at axis 3 of robot 1, and releases the brake.

Electromagnetic brake

OFF

ON

OFF

Related commands

	Format		
	SET	DOm (b,, b) DO (mb,, mb) MOm (b,, b) MO (mb,, mb) TOn (b,, b) TO (nb,, nb) LOn (b,, b) LO (nb,, nb) SOm (b,, mb)	, time
	Values	n: port number b: bit definition	 2 to 7, 10 to 17, 20 to 27 0, 1 0 to 7 (If omitted, all 8 bits are processed.) If multiple bits are specified, they are expressed from the left in descending order (high to low). 10 to 3600000 (units: ms)
CAUTION Output to ports "0" and "1" are not allowed at DO, and SO. REFERENCE For bit setting details, see	Explanati SAMPI SET DO	The pulse output time (u The program execution time elapses, the output If no hardware port exis	unit: ms) is specified by the <i><time></time></i> value. is WAIT status while the output is ON. When the specified is turned OFF, and the execution ends. ts, nothing is output.
Chapter 3 "10 Bit Settings".	SET DO	02(6,5,1),200	DO(26,25,21) switches ON for 200ms. Turns DO(37, 35, 27, 20) ON.

RESET, DO, MO, SO, TO, LO

8

.....

SETGEP

MEMO

Sets the General Ethernet Port

SETGE	Pm, n, "IP adress", ppppp, e, t
alues	m: General Ethernet Port number0 to 7
	n: mode0: server, 1: client
	<i>IP adress</i> 0.0.0.0 to 255.255.255.255
	ppppp: port number0 to 65535
	e: Termination code0: CRLF, 1: CR
	t: port type0: TCP
xplanati	on Sets the specified General Ethernet Port. The General Ethernet Port can open/
	the communication port by OPEN/ CLOSE commands.
	<ip adress=""> must be enclosed in " " (double quotation marks).</ip>
	When "0: server" is selected at "n: mode", although < <i>IP adress</i> > can be omittee
	(double quotation marks) must be written.
is unr • Port r When (Gerver mode is selected, dress: IP address already set on the controller is used to communicate, so IP address se necessary. (The IP address set by <i><ip address=""></ip></i> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina
is unr • Port r When C • IP ad- serve	dress: IP address already set on the controller is used to communicate, so IP address se necessary. (The IP address set by <i><ip address=""></ip></i> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected , dress and port number: Set the IP address and port number of the connection destina r.
is unr • Port r When C • IP ad- serve SAMP1	dress: IP address already set on the controller is used to communicate, so IP address se necessary. (The IP address set by <i><ip address=""></ip></i> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r.
is unr • Port r When C • IP ad- serve SAMP1	dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <i><ip address=""></ip></i> is invalid in this case.) number: Set a port number which differs from the one on the controller. C lient mode is selected , dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t
is unr • Port r When C • IP ad serve SAMP1 IPADR:	dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <i><ip address=""></ip></i> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r.
is unr • Port r When C • IP ad serve SAMP1 IPADR:	dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <i><ip address=""></ip></i> is invalid in this case.) number: Set a port number which differs from the one on the controller. C lient mode is selected , dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t
is unr • Port r When C • IP ad serve SAMP1 IPADR:	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······· Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0</ip></pre>
is unr • Port r When C • IP ad serve SAMP1 IPADR:	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ····· Sets the conditions below on General</ip></pre>
is unr • Port r When C • IP ad serve SAMP1 IPADR:	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 </ip></pre>
is unr • Port r When C • IP ad serve SAMP1 IPADR:	<pre>dress: IP address already set on the controller is used to communicate, so IP address set hecessary. (The IP address set by <ip address=""> is invalid in this case.) humber: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ····· Sets the conditions below on Genera Ethernet Port 1. mode: client the IP adress of the server to connect to: 192.168.0.100 the port number of the server to connect to: 100</ip></pre>
is unr • Port r When C • IP ad serve SAMP1 IPADR:	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destinate. E S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ······ Sets the conditions below on General Ethernet Port 1. mode: client the IP adress of the server to connect to: 192.168.0.100</ip></pre>
is unr • Port r When C • IP ad serve SAMP1 IPADR:	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······· Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ······ Sets the conditions below on Genera Ethernet Port 1. mode: client the IP adress of the server to connect to: 192.168.0.100 the port number of the server to connect to: 100 Termination code : CRLF</ip></pre>
is unr • Port r When C • IP ad serve SAMPI IPADR: SETGEI	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······· Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ······ Sets the conditions below on Genera Ethernet Port 1. mode: client the IP adress of the server to connect to: 192.168.0.100 the port number of the server to connect to: 100 Termination code : CRLF</ip></pre>
is unr • Port r When C • IP ad serve SAMPI IPADR: SETGEI OPEN O	<pre>dress: IP address already set on the controller is used to communicate, so IP address set necessary. (The IP address set by <ip address=""> is invalid in this case.) number: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r.</ip></pre>
is unr • Port r When C • IP ad serve SAMPI IPADR: SETGEI OPEN O	<pre>dress: IP address already set on the controller is used to communicate, so IP address set hecessary. (The IP address set by <ip address=""> is invalid in this case.) humber: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ······ Sets the conditions below on Genera Ethernet Port 1. mode: client the IP adress of the server to connect to: 192.168.0.100 Termination code : CRLF GP1 ····· Connects the server specified a General Ethernet Port 1.</ip></pre>
is unr • Port r When C • IP ad serve SAMPI IPADR: SETGEI OPEN O SEND	<pre>dress: IP address already set on the controller is used to communicate, so IP address set hecessary. (The IP address set by <ip address=""> is invalid in this case.) humber: Set a port number which differs from the one on the controller. Client mode is selected, dress and port number: Set the IP address and port number of the connection destina r. LE S\$="192.168.0.100" ······ Assigns the IP adress(192.168.0.100) of t server to connect to variable IPADRS\$. P 1, 1, IPADRS\$, 100, 0, 0 ······ Sets the conditions below on Genera Ethernet Port 1. mode: client the IP adress of the server to connect to: 192.168.0.100 the port number of the server to connect to: 100 Termination code : CRLF GP1 ····· Connects the server specified a General Ethernet Port 1. "123" TO GP1 ····· Sends the character strings "123" free "123" free" "123" To GP1 ····· Sends the character strings "123" free "123" To GP1 ····· Sends the character strings "123" free "123" To GP1 ···· Sends the character strings "123" free "123" To GP1 ···· Sends the character strings "123" free "123" To GP1 ···· Sends the character strings "123" free "123" To GP1 ···· Sends the character strings "123" free "123" To GP1 ···· Sends the character strings "123" free "123" To GP1 ··· Sends the character strings "123" free "123" To GP1 ··· Sends the character strings "123" free "123" To GP1 ··· Sends the character strings "123" free "123" To GP1 ··· Sends the character strings "123" free "133" free [133] free [133</ip></pre>

.....

8

O P Q R

S

Assigns /acquires the value to a specified integer type static variable

Values	n: integer type static variable number 0 to 31 xxxxxx integer of -2147483648 to 2147483647
Explanati	Assigns xxxxxx to the integer type static variable (SGI) specified by "n". If a number with decimal point is specified at xxxxxx, assigns a value with decimal fractions truncated.
(1)/DT	
SAMPI	
sGI1=3 ctions	
SGI1=3	
SGI1=3 ctions Format	
SGI1=3 ctions Format SGIn Values	00 Assigns 300 to SGI1.
SGI1=3 ctions Format SGIn Values	00 Assigns 300 to SGI1. n: integer type static variable number 0 to 31 Acquires the value of the integer type static variable (SGI) specified by "n".

.....

110

SGR

Assigns /acquires the value to a specified real type static variable

Values	n: real type static variable number 0 to 31
	xxxxxx1. Single-precision real numbers
	-999999.9 to +999999.9
	• 7 digits including integers and decimals.
	(For example, ".0000001" may be used.) 2. Single-precision real numbers in exponent for
	-1.0×10^{38} to $+1.0 \times 10^{38}$
	Mantissas should be 7 digits or less,
	including integers and decimals.
SAMP: SGR1=	Assigns xxxxx to the real type static variable (SGR) specified by "n". LE 1320.355 Assigns 1320.355 to SGR1.
SAMP: SGR1=	LE 1320.355 Assigns 1320.355 to SGR1.
SAMP: SGR1=	LE 1320.355 Assigns 1320.355 to SGR1.
SAMP: SGR1= Ctions Forma	LE 1320.355 Assigns 1320.355 to SGR1.
SAMP SGR1= ctions Forma SGRn Values	LE 1320.355 Assigns 1320.355 to SGR1.
SAMP SGR1= ctions Forma SGRn Values	LE 1320.355 Assigns 1320.355 to SGR1. n: real type static variable number0 to 31 Acquires the value of the real type static variable (SGR) specified by "n".

111 SHARED

Enables sub-procedure referencing without passing on the variable

Format

SHARED variable(), variable()...

a program written outside the sub-procedure. Explanation This statement allows variables declared with a program level code to be referenced with a sub-procedure without passing on the variables as dummy arguments. The program level variable used by the sub-procedure is specified by the *<variable>* value.

A simple variable or an array variable followed by parentheses is specified. If an array is specified, that entire array is selected.

- Normally, a dummy argument passes along the variable to a sub-procedure, but the SHARED statement allows referencing to occur without passing along the dummy argument.
- The SHARED statement allows variables to be shared only between a program level code and sub-procedure which are within the same program level.

SAMPLE
DIM Y!(10)
X!=2. 5
Y!(10)=1. 2
CALL *DISTANCE
CALL *AREA
HALT

.....

```
CALL *AREA

HALT

SUB *DISTANCE

SHARED X!,Y!()..... Variable referencing is declared by

SHARED.

PRINT X!^2+Y!(10)^2.... The variable is shared.

END SUB

SUB *AREA

DIM Y!(10)

PRINT X!*Y!(10).... The variable is not shared.
```

END SUB

Related commands SUB, END SUB

Sets the shift coordinates

	Format						
	SHIFT [robot number] shift variable OFF						
	Values robot number						
MEMO)	ExplanationSets the shift coordinates specified by <shift variable=""> to the robot specified by <robot number="">.When OFF is specified, the coordinates shift by <shift variable=""> does not occur.</shift></robot></shift>						
	 This statement is executed after axis positioning is complete (within the tolerance range). When OFF is specified, it is the same as the setting: 0.000 at each X, Y, Z and rotation direction-offset by the <i><shift variable=""></shift></i>. 						
	direction-onset by the <smit variable="">.</smit>						
	SAMPLE						
	SAMPLE SHIFT S1 Shifts the coordinate of robot 1 to the "shift 1" coordinate. MOVE P,P10						
	SAMPLE SHIFT S1 Shifts the coordinate of robot 1 to the "shift 1" coordinate. MOVE P,P10 SHIFT S[A] Shifts the coordinate of robot 1 to						
	SAMPLE SHIFT S1 Shifts the coordinate of robot 1 to the "shift 1" coordinate. MOVE P, P10 SHIFT S[A] Shifts the coordinate of robot 1 to the coordinate specified by variable A.						
	SAMPLE SHIFT S1 Shifts the coordinate of robot 1 to the "shift 1" coordinate. MOVE P,P10 SHIFT S[A] Shifts the coordinate of robot 1 to the coordinate specified by variable A. MOVE P,P20						
	SAMPLE SHIFT S1 Shifts the coordinate of robot 1 to the "shift 1" coordinate. MOVE P, P10 SHIFT S[A] Shifts the coordinate of robot 1 to the coordinate specified by variable A.						
	SAMPLE SHIFT S1 Shifts the coordinate of robot 1 to the "shift 1" coordinate. MOVE P,P10 SHIFT S[A] Shifts the coordinate of robot 1 to the coordinate specified by variable A. MOVE P,P20						

P Q

S

Acquires specified SI status

Format	
LET ex	$pression = SIm(b, \dots, b)$
LET ex	<pre>spression = SI(mb,,mb)</pre>
Values	m: port number0 to 7, 10 to 17, 20 to 27
	b: bit definition0 to 7 (If omitted, all 8 bits are processed.)
	If multiple bits are specified, they are expressed from the

left in descending order (high to low).

Explanation Acquires SI port input status specified by "m".

1.1	1.1	1	- 1	6	7
۲÷۱	ΨŲ	Ψ.	7	 ų.	5

SAME DE	
A%=SI2()	The input status from SI (27) to SI (20)
	is assigned to variable A%.
A%=SI0(6,5,1)	The SI (06), SI (05), SI (01) input
	status is assigned to variable A% (when
	all the above signals are "1" (ON), A% = 7).
A%=SI(37,35,27,10)	The SI (37), SI (35), SI (27) SI(10) input status
	is assigned to variable A% (when all the above
	signals except SI (27) are "1" (ON), A% = 13).

	Format LET SID(m)
	Values m: port number2, 4, 6, 8, 10, 12, 14
	Explanation Acquires the value at the SID port specified by "m". The acquisition range is -2,147,483,648 (&H8000000) to 2,147,483,647 (&H7FFFFFF).
MEMO)	 The information is handled as signed double word data. "0" is input if the specified port does not exist. The lower port number data is placed at the lower address. For example, if SIW(2) =&H2345,SIW(3) =&H0001, then SID(2) =&H00012345.
	SAMPLE
	A%=SID(2) ······SIW(3) is assigned to variable A%.
	A%=SID(14) The input status of SIW(14), SIW(15) is assigned to variable A%.
	Related commands SIW

Acquires the sine value for a specified value

ormat

SIN(expression)

expression.....Angle (units: radians)

Explanation This function gives the sine value for the *<expression>* value.

SAMPLE
A(0)=SIN(B*2+C) Assigns the expression $B*2+C$ sine
value to array A (0).
A(1)=SIN(DEGRAD(30)) ····· Assigns a 30.0° sine value to array A
(1).

Related commands ATN, COS, DEGRAD, RADDEG, TAN

	Format LET_SIW(m)					
	Values m: port number					
	Explanation Acquires the value at the SIW port specified by "m".					
	The acquisition range is 0 (&H0000) to 65535 (&HFFFF).					
MEMO	 The information is handled as unsigned word data "0" is input if the specified port does not exist. 					
	SAMPLE					
	A%=SIW(2) The input status of SIW (2) is assigned to variable A%.					
	A%=SIW(15) The input status of SIW (15) is assigned to variable A%.					
	assigned to variable A6.					
	Related commands SID					

117 Sn

Defines the shift coordinates in the program

Format

Sn = x y z r

used).

x, y, z, r.....-99,999.99 to 99,999.99

 All input values are handled as constants.

NOTE

• If the controller power is turned off during execution of a shift coordinate definition statement, a memory-related error such as "9.706: Shift data destroyed" may occur.

- 1. "n" indicates the shift number.
- 2. The "x" to "r" input data must be separated with spaces (blanks).

Explanation Defines shift coordinate values in order to shift the coordinates for robot movement.

- 3. The "x" to "r" input data is recognized as "mm" unit data.
- 4. "x" to "z" correspond to the Cartesian coordinate system's x, y, z coordinate shift values, and "r" corresponds to the xy coordinates' rotational shift values.

Only "mm" units can be used for these coordinate values ("pulse" units cannot be

SAMPL	E					
S0 =	0.000	0.000	0.000	0.000		
S1 =	100.000	200.000	50.000	90.000		
P3 =	100.000	0.000	0.000	0.000	0.000	0.000
SHIFT	S0					
MOVE P	,P3					
SHIFT	S1					
MOVE P, P3						
HALT						

Related commands

Shift assignment statement, SHIFT

	<pre>Format 1. LET SOm(b,,b) =expression 2. LET SO (mb,,mb) =expression</pre>
• Outputs to SOO() and SO1() are not possible.	 Walues m: port number
REFERENCE	If the port which does not exist is specified, nothing is output. SAMPLE
• For bit setting details, refer to Chapter 3 "10 Bit Settings".	<pre>S02()=&B10111000 S0 (27, 25, 24, 23) are turned ON, and S0 (26, 22, 21, 20) are turned OFF. S02(6,5,1)=&B010 S0 (25) are turned ON, and S0 (26, 21) are turned OFF.</pre>
	SO3()=15 SO (33, 32, 31, 30) are turned ON, and SO (37, 36, 35, 34) are turned OFF.
	SO(37,35,27,20)=A The lower 4 bits of integer-converted variable A are output to SO (37, 35, 27, 20).

Related commands RESET, SET

.....

118

SO

Functions

Format	
LET SOm (b,,b) LET SO (mb,,mb)	

Values

m: port number0 to 7, 10 to 17, 20 to 27b: bit definition.....0 to 7 (If omitted, all 8 bits are processed.)If multiple bits are specified, they are expressed from the left in descending order (high to low).

Explanation Indicates SO port output status.

SAMPLE	
A%= SO2()	Output status of ports SO(27) to
	SO(20) is assigned to variable A%.
A%= SOO(6, 5, 1)	Output status of SO(06), SO(05) and
	SO(01) is assigned to variable A%.
	(If all above signals are 1(ON), then
	A%=7.)
A%= SO(37,35,27,10)	Output status of SO(37),
	SO(35) , SO(27) and SO(10)
	is assigned to variable A%.
	(If all above signals except SO(27)
	are 1 (ON), then A%=13.)

Related commands

RESET, SET

Q

S

.....

SOD

	Format
	LET SOD(m)=expression
	Values m: port number2, 4, 6, 8, 10, 12, 14
	Explanation Outputs the value to the SOD port specified by "m". The output range is -2,147,483,648 (&H80000000) to 2,147,483,647 (&H7FFFFFF).
MEMO)	 The information is handled as signed double word data. If a serial port does not actually exist, the information is not output externally The lower port number data is placed at the lower address.

actually exist, the information is not output externally data is placed at the lower address. For example, if SOW(2) =&H2345,SOW(3) =&H0001, then SOD(2) =&H00012345.

Outputs a specified serial output's double-word information or acquires the output status

SAMPLE	
SOD(2)=&H12345678 Outputs &H12345678 to SOD(2).	
SOD(4)=1048575 Outputs 1048575(&HFFFFF) to SOD(4).	
SOD(2)=A% Outputs the value of variable A% to	
SOD(2).	

Functions

Format	
LET SOD(m)	
	rt number2, 4, 6, 8, 10, 12, 14 quires the SOD port output status specified by "m".
SAMPLE	
A%=SOD(2)	The output status of SOD(2) is assigned to variable A%.
Related commar	nds SOW

Outputs a specified serial output's word information or acquires the output status

	LET SOW(m)=expression		
	Values m: port number2 to 15		
	Explanation Outputs the value to the SOW port specified by "m".		
	The output range is 0 (&H0000) to 65535 (&HFFFF).		
	Note that if a negative value is output, the low-order word information will be output		
	after being converted to hexadecimal.		
	Example: SOW(2)=-255		
	The contents of -255 (&HFFFFF01) are assigned to SOW (2).		
	-255 is a negative value, so the low-order word information (&HFF01) is assigned.		
MEMO)	 If a serial port does not actually exist, the information is not output externally. If a value exceeding the output range is assigned, the low-order 2-byte information is output.		
	• If a value exceeding the output range is assigned, the low-order 2-byte information is output.		
	• If a value exceeding the output range is assigned, the low-order 2-byte information is output. SAMPLE		
	SAMPLE		
	SAMPLE SOW(2)=&H0001 Outputs &H0001 to SOW(2).		
	SAMPLE SOW(2) = & H0001 Outputs & H0001 to SOW(2). SOW(3) = 255 Outputs 255 (& H00FF) to SOW(3).		
	SAMPLE SOW(2) = & H0001 SOW(3) = 255 Outputs 255 (& H00FF) to SOW(3). SOW(15) = A% The contents of variable A% are		
	SAMPLE SOW(2) = & H0001 Outputs & H0001 to SOW(2). SOW(3) = 255 Outputs 255(& H00FF) to SOW(3). SOW(15) = A% The contents of variable A% are assigned in SOW (15). If the variable		

Fu

Format	
LET SOW(m)	
	ort number2 to 15 equires the SOW port output status specified by "m".
SAMPLE	
A%=SOW(2)	The output status of SOW (2) is assigned to variable A%.
Related comma	ands SOW

••••••

121

SPEED

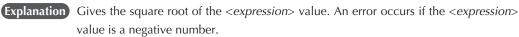
Changes the program movement speed

	Format
	SPEED [robot number] expression
	Valuesrobot number1 to 4 (If not input, robot 1 is specified.)expression1 to 100 (units: %)
• Automatic movement speed	Explanation Changes the program movement speed to the value indicated by <i><expression></expression></i> . This speed change applies to all robot axes and auxiliary axes of the specified robot.
Specified by programming box operation or by the ASPEED command.	The operation speed is determined by multiplying the automatic movement speed (specified from the programming box and by the ASPEED command), by the program
 Program movement speed 	movement speed (specified by SPEED command).
Specified by SPEED commands or MOVE, DRIVE speed options.	Operation speed = automatic movement speed × program movement speed Example: Automatic movement speed 80% Program movement speed 50%
	Movement speed = 40% ($80\% \times 50\%$)

SAMPLE		
ASPEED 100		Changes the Automatic movement speed
		of robot 1 to 100%
SPEED 70		Changes the Program movement speed of
		robot 1 to 70%
MOVE P,P0		Moves robot 1 from current position to
		PO at a speed of 70% (=100 \times 70).
SPEED 50		Changes the Program movement speed of
		robot 1 to 50%
MOVE P, P1		Moves robot 1 from current position to
		P1 at a speed of 50% (=100 \times 50).
MOVE P, P2,	S=10	Moves robot 1 from current position to
		P2 at a speed of 10% (=100 \times 10).
HALT		

Related commands ASPEED

122 SQR


Acquires the square root of a specified value

Format

SQR(expression)

expression......0 or positive number.

SAMPLE

A=SQR(X^2+Y^2) The square root of X^2+Y^2 is assigned to variable A.

arts	а	new	task	

Format	
START	<program name=""> ,Tn, p PGm</program>
Values	m: Program number1 to 100
	n: Task number1 to 16
	p: Task priority ranking1 to 64
Explanation	 Starts task "n" specified by the program with the "p" priority ranking. If task number "n" is omitted, the task with the smallest number among the tasks yet to be started is automatically specified. If a priority ranking is not specified, "32" is adopted as the priority ranking for this task. The smaller the priority number, the higher the priority (high priority: 1 ↔ low priority: 64). When RUNNING status occurs at a task with higher priority, all tasks with lower priority also remain in READY status. The program name must be enclosed in < > (angle brackets).

SAMPLE

```
START <SUB_PGM>,T2,33
*ST:
  MOVE P,P0,P1
GOTO *ST
HALT
Program name:SUB_PGM
SUBTASK ROUTINE
*SUBTASK:
   P100 = WHERE
   IF LOCZ(P100) > 10000 THEN
      DO(20) = 1
   ELSE
      DO(20) = 0
   ENDIF
GOTO *SUBTASK
EXIT TASK
```

Related commands CUT, EXIT TASK, RESTART, SUSPEND, CHGPRI

.....

124 STR\$

Converts a numeric value to a character string

STR\$ (<i>exp</i>	pression)
Explanation	Converts the value specified by the <i><expression></expression></i> to a character string. Th <i><expression></expression></i> specifies an integer or real value.
SAMPLE	
B\$=STR\$ (10.01)

Defines a sub-procedure

	SUB label (dummy argument, dummy argument) command block
	END SUB
	Explanation Defines a sub-procedure. The sub-procedure can be executed by a CALL statement. When the END S
	statement is executed, the program jumps to the next command after the Ca statement that was called. Definitions are as follows.
	1. All variables declared within the sub-procedure are local variables, and these valid only within the sub-procedure. Local variables are initialized each time sub-procedure is called up.
	 Use a SHARED statement in order to use global variables (program level). Use a <i><dummy argument=""></dummy></i> when variables are to be passed on. If two or m dummy arguments are used, separate them by a comma (,).
	 4. A valid <i><dummy argument=""></dummy></i> consists of a name of variable and an entire a (array name followed by parentheses). An error will occur if array element <i><subscript></subscript></i> following the array name) are specified.
MEMO	 Sub-procedures cannot be defined within a sub-procedure. A label can be defined within a sub-procedure, but it cannot jump (by a GOTO or GOS statement) to a label outside the sub-procedure.
	• Local variables cannot be used with PRINT and SEND statements.
	SAMPLE 1
	A=1
	A=1 CALL *TEST
	CALL *TEST PRINT A
	CALL *TEST PRINT A HALT
	CALL *TEST PRINT A HALT 'SUB ROUTINE: TEST
	CALL *TEST PRINT A HALT
	CALL *TEST PRINT A HALT 'SUB ROUTINE: TEST SUB *TEST

sub-procedure. Therefore, the value indicated in the 3rd line PRINT statement becomes "1".

SUB to END SUB

125

SAMPLE 2

```
X% = 4
Y% = 5
CALL *COMPARE( REF X%, REF Y% )
PRINT X%,Y%
Z% = 7
W% = 2
CALL *COMPARE( REF Z%, REF W% )
PRINT Z%,W%
HALT
'SUB ROUTINE: COMPARE
SUB *COMPARE( A%, B% )
   IF A% < B% THEN
       TEMP\% = A\%
       A% = B%
       B% = TEMP%
   ENDIF
END SUB
```

MEMO

• In the above example, different variables are passed along as arguments to call the subprocedure 2 times.

Related commands CALL, EXIT SUB, SHARED

SUSPEND

MEMO

Temporarily stops another task which is being executed

SUSPEND	Tn
	<program name=""></program>
	PGm
/alues n:	Task number1 to 16
	Program number1 to 100
	Temporarily stops (suspends) another task which is being executed. A task can be
	specified by the name or the number of a program in execution.
	This statement can also be used for tasks with a higher priority ranking than this tas
	itself.
	The program name must be enclosed in < > (angle brackets).
• If a task (p	rogram) not active is specified for the execution, an error occurs.
•••••	
SAMPLE	
START <su< td=""><td>B_PGM>,T2</td></su<>	B_PGM>,T2
SUSFLG=0	
*L0:	
	_
MOVE I	2, P0
MOVE I MOVE I	
MOVE I	
MOVE H WAIT S SUSPEN	P,P1 SUSFLG=1 ND T2
MOVE H WAIT S SUSPEN SUSFLO	P,P1 SUSFLG=1 ND T2
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO	P,P1 SUSFLG=1 ND T2
MOVE H WAIT S SUSPEN SUSFLO	P,P1 SUSFLG=1 ND T2
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT	P,P1 SUSFLG=1 ND T2
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT Program n	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT Program n 'SUBTASK *SUBTASK:	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT Program n 'SUBTASK *SUBTASK:	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM ROUTINE SUSFLG=0
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT Program n 'SUBTASK *SUBTASK: WAIT S	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM ROUTINE SUSFLG=0 =1
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT Program n 'SUBTASK *SUBTASK: WAIT S DO2(0)	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM ROUTINE SUSFLG=0 =1 1000
MOVE H WAIT S SUSPEN SUSFLO GOTO *L0 HALT Program n 'SUBTASK *SUBTASK: WAIT S DO2(0) DELAY	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM ROUTINE SUSFLG=0 =1 1000 =0
MOVE H WAIT S SUSPEN SUSFLO GOTO *LO HALT Program n 'SUBTASK *SUBTASK: WAIT S DO2(0) DELAY DO2(0)	P, P1 SUSFLG=1 ND T2 G=0 ame:SUB_PGM ROUTINE SUSFLG=0 =1 1000 =0 1000

Related commands CUT, EXIT TASK, RESTART, SUSPEND

127 SWI

Switches the program being executed

	Format
	SWI <program name=""></program>
	ExplanationThis statement switches from the current program to the specified program, starting from the first line. Although the output variable status is not changed when the program is switched, the dynamic variables and array variables are cleared. The program name must be enclosed in < > (angle brackets).
MEMO)	• If the program specified as the switching target does not exist, a "3.203: Program doesn't exist" (code: &H0003 &H00CB) error occurs and operation stops.
	SAMPLE SWI <abc> Switches the execution program to "ABC".</abc>

TAN

Acquires the tangent value for a specified value

Format
TAN(expression)
Values expressionAngle (units: radians)
Explanation Gives a tangent value for the <i><expression></expression></i> value. An error will occur if the <i><expression></expression></i> value is a negative number.
SAMPLE
A(0)=B-TAN(C) The difference between the tangent values of variable B and variable C is assigned to array A (0).
A(1)=TAN(DEGRAD(20)) ····· The 20.0° tangent value is assigned to array A (1).
Related commands ATN, COS, DEGRAD, RADDEG, SIN

129

Format

TCOUNTER

Explanation Outputs count-up values at 1ms intervals starting from the point when the TCOUNTER variable is reset.

After counting up to 2,147,483,647, the count is reset to 0.

SAMPLE	
MOVE P,P0	
WAIT ARM	
RESET TCOUNTER	
MOVE P, P1	
WAIT ARM	
A = TCOUNTER	
PRINT TCOUNTER ·····	Displays the P0 to P1 movement time
	until the axis enters the tolerance
	range on the programming box.

Related commands RESET Acquires the current time

Format

TIME\$

Explanation Acquires the current time in an hh:mm:ss format character string. "hh" is the hour, "mm" is the minutes, and "ss" is the seconds. The clock can be set in the SYSTEM mode's initial processing.

SAMPLE A\$=TIME\$ PRINT TIME\$

Related commands DATE\$, TIMER

.....

131 TIMER Acquires the current time

Q R S T V V X Y Z

• The time indicated by the internal clock may differ somewhat from the actual time.

Format

TIMER

Functions Acquires the current time in seconds, counting from midnight. This function is used to measure a program's run time, etc.

The clock can be set in the SYSTEM mode's initial processing.

SAMPLE

A%=TIMER FOR B=1 TO 10 MOVE P,P0 MOVE P,P1 NEXT A%=TIMER-A% PRINT A%/60;" ";A% MOD 60 HALT

Related commands TIME\$

•••••••••••••••••

TO

and the second se	TOm(b,,b) =expression TO (mb,,mb) =expression
	m: port number0, 1 b: bit definition0 to 7 (If omitted, all 8 bits are processed.) If multiple bits are specified, they are expressed from the left in descending order (high to low).
Explanation	Outputs the specified value to the TO port. The output value is the <i><expression></expression></i> 's integer-converted lower bits corresponding to the bit definition specified at the left side. The OFF/ON settings for bits which are being used in a SEQUENCE program have priority while the SEQUENCE program is running.
SAMPLE	

Functions

Form	at	
LET	TOm (b,,b)	
LET	TO (mb, \cdots, mb)	

TOO() = &B00000110

Values	m: port number	0, 1
	b: bit definition	0 to 7 (If omitted, all 8 bits are processed.)
		If multiple bits are specified, they are expressed from the
		left in descending order (high to low).

Explanation Indicates the parallel port signal status.

SAMPLE	
A%= TOO() Ou	tput status of ports TO(07) to
TO	(00) is assigned to variable A%.
A%= TOO(6, 5, 1) Out	tput status of TO(06), TO(05) and
ТО	(01) is assigned to variable A%.
(If	all above signals are 1(ON), then A%=7.)
A%=TO(17, 15, 00) ····· Out	tput status of TO(17), TO(15) and
ТО	(00) is assigned to variable A%.
tI)	f all above signals except TO(15)
are	e 1 (ON), then A%=5.)

Related commands RE

•••••••••••••••••••

s RESET, SET

133 TOLE

Specifies/acquires the tolerance parameter

Fo	rmat
1. 2.	
Valu	robot number
Expl	 anation Change the "tolerance" parameter of the specified axis to the <i><expression></expression></i> value (unit: pulse). Format 1: The change is applied to all axes of the specified robot. Format 2: The change is applied to only the axis specified by the <i><axis number=""></axis></i> of the specified robot.
) • 1	This statement is executed after positioning of the specified axes is complete (within the tolerance range).

Functions

Format
TOLE [robot number] (axis number)
 Values robot number
SAMPLE
<pre>'CYCLE WITH DECREASING TOLERANCE DIM TOLE(5) FOR A=200 TO 80 STEP -20 GOSUB *CHANGE_TOLE MOVE P,P0 MOVE P,P1 NEXT A C=TOLE(2) The tolerance parameter of axis 2 of robot 1 is assigned to variable C.</pre>
HALT
*CHANGE_TOLE: FOR B=1 TO 4
TOLE(B) = A
NEXT B

.....

RETURN

TORQUE

Specifies/acquires the maximum torque command value

Format	
TORQUE	[robot number] (axis number) =expression
Values	<i>robot numbe</i> r
	expression1 to 100 (units: %)
Explanatio	n Changes the maximum torque command value of the specified axis to the

• If the specified torque limit is too small, the axis may not move. Never enter within the robot movement range to avoid danger even though the robot is in stop status. In this case, press the emergency stop button before proceeding with the operation.

CAUTION

• If the specified value is less than the rated torque, an error may not occur even if the robot strikes an obstacle. Changes the maximum torque command value of the specified axis to the *<expression>* value. The new value is valid when the next movement command (MOVE or DRIVE statement, etc.) is executed. The parameter value does not change.

The conditions to cancel a torque limit are as follows.

- The TORQUE command for the same axis is executed.
- The controller power turned off and then on again.
- The axis polarity parameter is changed or the parameter is initialized.
- The servo is turned off.

The maximum torque command value becomes temporarily invalid in execution below.

- Return- to-origin is in execution.
- The PUSH statement is in execution.

(only the torque value in the moving direction is changed to the value specified by the PUSH statement, the value in the opposite direction is hold and not changed.)

After these movements, the value backs to the maximum torque command value when a next movement command (MOVE statement, for example) is executed.

• The TORQUE statement limits the torque in the both (rotation and opposite) direction of axis, whereas the PUSH statement limits the torque in its rotation direction only.

Functions

.....

Format	
TORQUE	[robot number] (axis number)
Values	<i>robot number</i> 1 to 4 (If not input, robot 1 is specified.) <i>axis number</i> 1 to 6
Explanatio	n Acquires the maximum torque command value for the axis specified by < <i>axis</i>

number>.

TORQUE

134

SAMPLE

TORQUE (1) = 50 \cdots Changes the max. torque of axis 1 of
robot 1 to 50%.
DRIVE (1,P1) Moves the axis 1 of robot 1 from its
current position to the point specified
by P1.
(Changes the max. torque at the same
time with the start of the movement.)
WAIT ARM Waits for the completion of an
operation of axis 1 of robot 1.
TORQUE (1) = 100 ····· Returns the max. torque of axis 1 of
robot 1 to the original value (100%).
MOVE P,P0 Moves the robot 1 from its current position
to the point specified with PO.
(Returns the max. torque of axis 1 to
the original value (100%) at the same
time with the start of a movement.)

Related commands

CURTRQ, PUSH

TSKPGM

Acquires the program number which is registered in a specified task number

Format	
TSKPGM	I(task number)
Values	task number
Explanatio	Acquires the program number which is registered in the task specified by the task number.
SAMPL	E
A=TSKP	GM(1)Assignes a program number registered in task 1 to variable A.
Related c	commands PGMTSK, PGN

136 VAL

Converts character strings to numeric values

Format

VAL (character string expression)

SAMPLE

A=VAL("&B100001")

WAIT

MEMO

Waits until the conditional expression is met

Format	
WAIT CO	nditional expression , expression
Values	expression0 to 2147483647 (units: ms)
Explanation	Establishes "wait" status until the condition specified by the <i><conditional expression<="" i=""> is met. Specify the time-out period (unit: ms) in the <i><expression></expression></i>. This command terminates if the time-out period elapses before the WAIT condition is met. The minimum wait time is 1ms but changes depending on the execution status of other tasks.</conditional></i>
	ne conditional expression is a numeric expression, an expression value other than "0" s TRUE status, and "0" indicates FALSE status.
WAIT A=1	
WAIT DI2	2()=&B01010110 ····· Waits until DI(21),(22),(24),(26) are turned on, and DI(20),(23),(25),(27) is turned off.
WAIT DI2	2(4,3,2)=&B101 ····· Waits until DI(22) and DI(24) are turned on, and DI(23) is turned off.
WAIT DI	(31)=1 OR DO(21)=1 ······ Wait status continues until either DI (31) or DO(21) turns ON.
WAIT DI	(20)=1,1000 ····· Wait status continues until DI(20) turns ON. If DI(20) fails to turn ON within 1 second, the command is terminated.

Related commands DRIVE, DRIVEI, MOVE, MOVEI, MOVET

Waits until the robot axis operation is completed

Format
WAIT ARM [robot number] (axis number)
Values robot number
Explanation Establishes "wait" status until the axis movement is completed (is positioned with the tolerance range). SAMPLE
WAIT ARM Waits for the movement completion of robot 1.
WAIT ARM2 Waits for the movement completion of axis 2 of robot 2.
Related commands DRIVE, DRIVEI, MOVE, MOVEI, MOVET

.....

WEIGHT

Specifies/acquires the tip weight (kg) parameter

WEIGHT	[robot number] expression
	obot number
Explanation	Changes the "tip weight" parameter of the robot to the <i><expression></expression></i> value. This change does not apply to auxiliary axes.
tions	
Format	
WEIGHT	[robot number]
Values	<i>robot number</i>
	<i>robot number</i>
Explanation	
Explanation	
Explanation SAMPLE A=5	Acquires the "tip weight" parameter value of the robot specified by < <i>robot num</i>
Explanation SAMPLE A=5 B=2	Acquires the "tip weight" parameter value of the robot specified by < <i>robot num</i> . The tip weight parameter of robot 1 assigned to variable C.
Explanation SAMPLE A=5 B=2 C=WEIGHT	Acquires the "tip weight" parameter value of the robot specified by < <i>robot number</i>
Explanation SAMPLE A=5 B=2 C=WEIGHT WEIGHT A	Acquires the "tip weight" parameter value of the robot specified by < <i>robot number</i> The tip weight parameter of robot 1 assigned to variable C. The tip weight parameter of robot 1 changed to value (5) of variable A.
Explanation SAMPLE A=5 B=2 C=WEIGHT WEIGHT A MOVE P, F	Acquires the "tip weight" parameter value of the robot specified by < <i>robot number</i>
Explanation SAMPLE A=5 B=2 C=WEIGHT WEIGHT A MOVE P,F WEIGHT E	Acquires the "tip weight" parameter value of the robot specified by < <i>robot number</i> Acquires the "tip weight" parameter of robot 1 assigned to variable C. The tip weight parameter of robot 1 changed to value (5) of variable A. The tip weight parameter of robot 1 changed to value (2) of variable B. The tip weight parameter of robot the tip weight parameter of robot 1 changed to value (2) of variable B.
Explanation SAMPLE A=5 B=2 C=WEIGHT WEIGHT A MOVE P, F WEIGHT E MOVE P, F	Acquires the "tip weight" parameter value of the robot specified by < <i>robot number</i> Acquires the "tip weight" parameter of robot 1 assigned to variable C. The tip weight parameter of robot 1 changed to value (5) of variable A. The tip weight parameter of robot 1 changed to value (2) of variable B. The tip weight parameter of robot 1 changed to value (2) of variable B. The tip weight parameter of robot 1 is replaced to the origin value (value of variable C).

MEMO

• If both of Tip weight parameters; <WEIGHT> and <WEIGHTG> are set, a total value will be set.

Related commands

s WEIGHTG

Specifies/acquires the tip weight (g) parameter

WEIGHT	G [robot number] expression
alues	robot number1 to 4 (If not input, robot 1 is specified.) expressionThe range varies according to the robot which ha been specified.

This change does not apply to auxiliary axes.

Functions

Format	
WEIGHT	G [robot number]
Values	robot number1 to 4 (If not input, robot 1 is specified.)

Explanation Acquires the "tip weight (g)" parameter value of the robot specified by <robot number>.

		_
SAMPLE		
A=5		
B=2		
C=WEIGHTG	The tip weight (g) parameter of robot 1	
	is assigned to variable C.	
WEIGHTG A	$\cdots\cdots\cdots\cdots$ The tip weight (G) parameter of robot 1	
	is changed to value (5) of variable A.	
MOVE P,P0		
WEIGHTG B	$\cdots\cdots\cdots\cdots$ The tip weight (g) parameter of robot 1	
	is changed to value (2) of variable B.	
MOVE P,P1		
WEIGHTG C	$\cdots\cdots\cdots\cdots$ The tip weight (g) parameter of robot 1	
	is replaced to the origin value (the	
	value of variable C).	
D=WEIGHTG	$\cdots\cdots\cdots\cdots$ The tip weight (g) parameter of	
	robot 1 is assigned to variable D.	
HALT		

MEMO

• If both of Tip weight parameters; <WEIGHT> and <WEIGHTG> are set, a total value will be set.

.....

Related commands

WEIGHT

WEND

Ends the WHILE statement's command block

Format

```
WHILE conditional expression
command block
WEND
```

Explanation Ends the command block which begins with the WHILE statement. A WEND statement must always be paired with a WHILE statement. Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

A=0 WHILE DI3(0)=0 A=A+1 MOVE P,P0 MOVE P,P1 PRINT "COUNTER=";A WEND HALT

.....

Related commands WHILE

Acquires the arm's current position (pulse coordinates)

Format WHERE	[robot number]
Values	robot number1 to 4 (If not input, robot 1 is specified.)
Evolopatio	A sector des secto sector sectors in des isisters adiretes
Explanatio	n Acquires the arm's current position in the joint coordinates.
SAMPL	
SAMPL	
SAMPL	E

8

WHILE to WEND

Repeats an operation for as long as a condition is met

Format

```
WHILE conditional expression
command block
WEND
```

Explanation Executes the command block between the WHILE and WEND statements when the condition specified by the *<conditional expression>* is met, and then returns to the WHILE statement to repeat the same operation.

When the *<conditional expression>* condition is no longer met (becomes false), the program jumps to the next command after the WEND statement.

If the *<conditional expression>* condition is not met from the beginning (false), the command block between the WHILE and WEND statements is not executed, and a jump occurs to the next statement after the WEND statement.

Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

.....

• When the conditional expression is a numeric expression, an expression value other than "0" indicates TRUE status, and "0" indicates FALSE status.

SAMPLE 1

```
A=0
WHILE DI3(0)=0
A=A+1
MOVE P,P0
MOVE P,P1
PRINT "COUNTER=";A
WEND
HALT
```

SAMPLE 2

A=0
WHILE -1 Becomes an endless loop because the
conditional expression is always TRUE
(other than 0).
A=A+1
MOVE P, PO
IF DI3(0)=1 THEN *END
MOVE P, Pl
PRINT "COUNTER=";A
IF DI3(0)=1 THEN *END
WEND
*END
HALT

Acquires the arm's current position in Cartesian coordinates

WHRXY	[robot number]
/alues	robot number1 to 4 (If not input, robot 1 is specified.)
xplanatio	Acquires the arm's current position in the Cartesian coordinates.
SAMPL	E
P10=WHI	

.....

XYTOJ

Converts the Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

Format	
XYTOJ	[robot number] (point expression)
Values	robot number1 to 4 (If not input, robot 1 is specified.)
Explanatio	This function converts the Cartesian coordinate data (unit: mm, deg.) specified by the <i><point expression=""></point></i> to the joint coordinate data (unit: pulse) of the robot specified by the <i><robot number=""></robot></i> .
	 When the command is executed, the data is converted based on the standard coordinates, shift coordinates and hand definition that were set. On SCARA robots, the converted result differs depending on whether right-handed or left-handed is specified. To convert joint coordinate data to Cartesian coordinate data, use the JTOXY statement.
SAMPL	2
P10=XY	TOJ(P10) ····· coordinate

data of robot 1.

0 Q W

Chapter 9 PATH Statements

1	Overview	9-1
2	Features	9-1
3	How to use	9-1
4	Cautions when using this function	9-2

Overview

This function moves the robot at a specified speed along a path composed of linear and circular segments. Because speed fluctuations during movement are minimal, the PATH function is ideal for applications such as sealing, etc.

2 Features

- Moves the robot at a constant speed along the entire movement path (except during acceleration from a stop, and during deceleration just prior to the operation end).
- Permits easy point teaching because the robot speed is not affected by the point teaching positions' level of precision.
- Permits movement speed changes for the entire movement path, or speed changes for only one portion of the path (using the speed option).
- Using the DO option permits signal outputs to a specified port at any desired position during movement.

3 How to use

The following robot language commands must be used as a set in order to use the PATH function.

- PATH SET..... Starts path setting.
- PATH (PATH L, PATCH C) Specifies the path to be used.
- PATH END Ends path setting.
- PATH START...... Starts actual movement along the path.

As shown below, the motion path is specified between the PATH SET and PATH END statements. Simply specifying a path, however, does not begin robot motion.

Robot motion only occurs when the PATH START statement is executed after the path setting procedure has been completed.

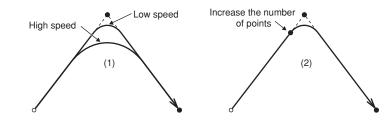
SAMPLE

Cautions when using this function

 Paths may comprise no more than 1000 points (total) linear and circular segments. 1 point forms 1 linear segment by PATH L command and 2 points form 1 circular segment by PATH C command.

Number of points specified by PATH L $+ \frac{\text{Number of points specified by PATH C}}{2} \leq 1000$

- The robot must be positioned at the path start point when PATH motion is executed (by PATH START statement).
- At points where circular and linear segments connect, the motion direction of the two connecting segments should be a close match (as close as possible). An excessive difference in their motion directions could cause vibration and robot errors.


Circular and linear segment connection point:

if there is a large difference between the motion directions of the connecting segments

Where a linear segment connects to another linear segment, the motion path passes to the inner side of the connection point. Moreover, as shown in fig. (1) below, the faster the speed, the further to the inner side the path becomes. To prevent significant speed-related path shifts, add more points as shown in fig. (2). Note also, that in some cases, the speed may have to be reduced in order to prevent errors from occurring.

- If an error occurs due the robot's inability to move at the specified speed: Robot acceleration/deceleration occurs if the speed setting is changed when PATH motion begins, stops, or at some point along the path. At such times, an error may occur before motion begins if the distance between points is too short for the specified speed to be reached. In such cases, a slower speed must be specified. If the error still occurs after the speed is lowered, adjust the PATH points to increase the length of the linear or circular segments which contain acceleration or deceleration zones.
- The hand system used during PATH motion must be the same as the hand system used at the path's start point. The same applies if the path is to pass through points where hand flags are set. Differing hand systems will cause an error and disable motion.
- The first arm and second arm rotation information during PATH movement must be the same as the first arm and second arm rotation information at the PATH movement's START point. If the two are different, an error will occur and movement will be disabled.
- If the robot is stopped by a stop signal, etc., during PATH motion, this is interpreted as an execution termination, and the remaining path motion will not be completed even if a restart is executed.

Chapter 10 Data file description

1	Overview
2	Program file10-3
3	Point file 10-5
4	Point comment file10-8
5	Point name file10-10
6	Parameter file10-12
7	Shift coordinate definition file10-16
8	Hand definition file10-18
9	Work definition file 10-20
10	Pallet definition file10-22
11	General Ethernet port file10-26
12	Input/output name file10-28
13	Area check output file 10-32
14	All file 10-34
15	Program directory file10-36
16	Parameter directory file 10-38
17	Machine reference file10-39
18	System configuration information file. 10-41

19	Version information file 10-42
20	Option board file 10-43
21	Self check file 10-44
22	Alarm history file10-45
23	Remaining memory size file 10-47
24	Variable file
25	Constant file
26	Array variable file
27	DI file 10-57
28	DO file
29	MO file
30	LO file
31	TO file
32	SI file
33	SO file
34	SIW file
35	SOW file
36	EOF file
37	Serial port communication file
38	Ethernet port communication file 10-77

Overview

1.1

1

Data file types

This section explains data files used with a SEND statement and READ/WRITE online commands. There are 36 different types of data files.

Turne	File N	lama	Definition Format		Read-	147.11
Туре	File N	vame	All	Individual File	out	Write
User	All file		ALL		1	1
	Program		PGM	<bbbbbbbbb> PGn</bbbbbbbbb>	1	1
	Point		PNT	Pn	1	1
	Point comment		PCM	PCn	1	1
	Point name		PNM	PNn	1	1
	Parameter		PRM	/ccccccc/ #cccccccc# \ccccccc\	1	1
	Shift definition		SFT	Sn	1	1
	Hand definition		HND	Hn	1	1
	Pallet definition		PLT	PLn	1	1
	General Ethernet Po	ort	GEP	GPn	1	1
	Input/output name		ION	iNMn(n)	1	1
	Area check output		ACO	ACn	1	1
Manlala	Variable		VAR	abby	1	1
Variable,	Array variable		ARY	abby(x)	1	1
Constant	Constant			"CCC"	1	_
Status	Program directory		DIR	< <bbbbbbbbb>></bbbbbbbbb>	1	_
Olalus	Parameter directory		DPM		1	_
		sensor, stroke-end	MRF		1	_
	Machine reference	mark	ARP		1	_
	System configuratio	n information	CFG		1	_
	Version information		VER		1	_
	Option board		OPT		1	_
	Self check		SCK		1	_
	Alarm history		LOG		1	-
	Remaining memory	size	MEM		1	_
Device	DI port		DI()	DIn()	1	_
201100	DO port		DO()	DOn()	1	1
	MO port		MO()	MOn()	1	· /
	TO port		TO()	TOn()	1	1
	LO port		LO()	LOn()	1	1
	SI port		SI()	SIn()	1	_
	SO port		SO()	SOn()	1	1
	SIW port		SIW()	SIWn()	1	-
	SOW port		SOW()	SOWn()	1	1
	RS-232C		CMU		1	1
	Ethernet		ETH		1	1
Other	File END code		EOF		1	_

n: Number a: Alphabetic character

b: Alphanumeric character or underscore (_)

c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type

i: Input/output type

✓: Permitted _: Not Permitted

8

9

Overview

1

1.2 Cautions

Observe the following cautions when handling data files.

- Only one-byte characters can be used.
- All data is handled as character strings conforming to ASCII character codes.
- Only upper-case alphabetic characters may be used in command statements (lower case characters are prohibited).
- Line lengths must not exceed 255 characters.
- A [cr/lf] data format designation indicates CR code (0Dh) + LF code (0Ah).
- The terms "reading out" and "writing" used in this manual indicate the following data flow; Reading out: Controller → external communication device
 Writing: External communication device → controller

2 Program file

2.1

All programs

	- <u>J</u>	
Read-out	1	When used as a read-out file, all programs currently stored are read out.
Write	1	Write files are registered at the controller under the program name indicated at the "NAME = <i>program name</i> " line.
Format		

PGM

Meaning • Expresses all programs.

- If there is a specification of a program number in the case of a write file, the new program overwrites.
- If the program number is omitted in the case of a write file, the assignment is made to the smallest free number. If there are programs with the same name and with different program numbers, the older program is deleted.

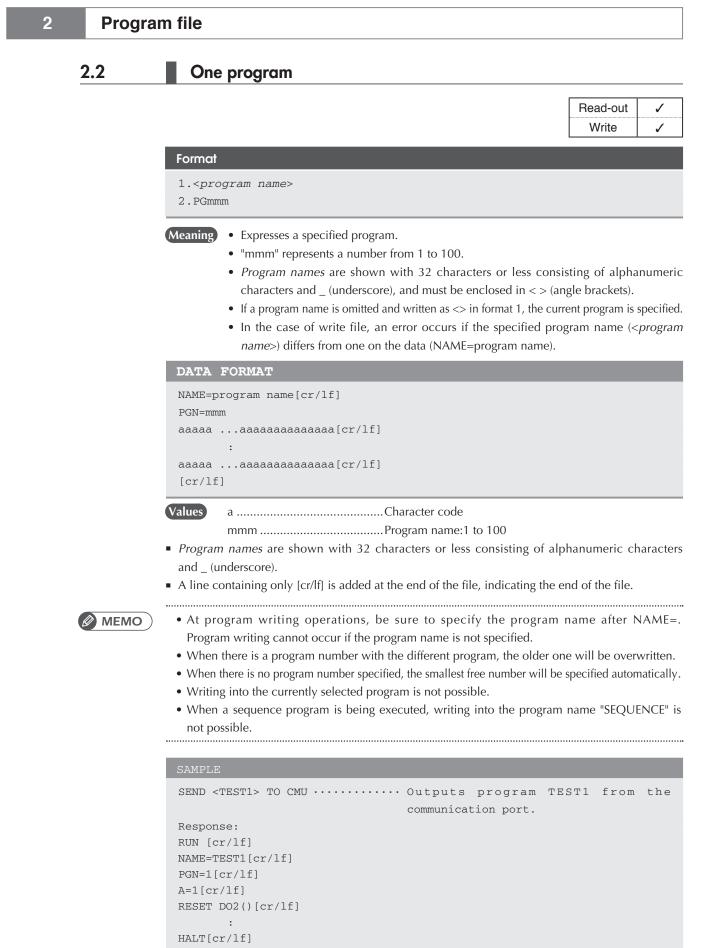
DATA FORMAT

```
NAME = program name [cr/lf]
PGN=mmm[cr/lf]
aaaaa ...aaaaaaaaaaaaaaaaaaaaa[cr/lf]
        :
aaaaa ...aaaaaaaaaaaaaaaaa[cr/lf]
PGN=mmm[cr/lf]
aaaaa ...aaaaaaaaaaaaaaaaa[cr/lf]
        :
aaaaa ...aaaaaaaaaaaaaaaaa[cr/lf]
        [cr/lf]
```

Values

mmmProgram number: 1 to 100

aCharacter code


- Program names are shown with 32 characters or less consisting of alphanumeric characters and _ (underscore).
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

12

8

9

[cr/lf] END [cr/lf]

10

10

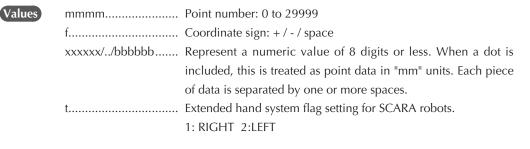
3 Point file

3.1

All points

F

Read-out	~	When used as a read-out file, all points currently stored are read out.
Write	1	When used as a write file, writing is performed with a point number.


Format PNT

Meaning • Expresses all point data.

```
DATA FORMAT
Pmmmm= fxxxxx fyyyyy fzzzzz frrrrr faaaaaa fbbbbbb t xr yr [cr/lf]
Pmmmm= fxxxxx fyyyyy fzzzzz frrrrr faaaaaa fbbbbbb t xr yr [cr/lf]
:
Pmmmm= fxxxxx fyyyyy fzzzzz frrrrr faaaaaa fbbbbbb t xr yr [cr/lf]
Pmmmm= fxxxxx fyyyyy fzzzzz frrrrr faaaaaa fbbbbbb t xr yr [cr/lf]
[cr/lf]
```

ΝΟΤΕ

 Integer point data is recognized in "pulse" units, and real number point data is recognized in "mm" units.

- Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.
- If a number other than "1" or "2" is specified for a hand system flag, or if no number is specified, this is interpreted as "0" setting (no hand system flag).
- The first arm and the second arm rotation information is processed as "0" if a numeral other than 0,
 1, -1 has been specified, or if no numeral has been specified.

10

11 12 13

Point file

• A line containing only [cr/lf] is added at the end of the file to indicate the end of the file.

SAMPLE SEND PNT TO CMU Outputs all points from the communication port. Response: RUN [cr/lf] P0 = 1 2 3 4 5 6 [cr/lf]P1 = 426.200 -160.770 0.001 337.210 0.000 0.000 0 1 0 [cr/lf] P2 = -27.570 -377.840 0.360 193.220 0.000 0.000 0 -1 0 [cr/lf] : P29999= -251.660 -419.510 0.000 -127.790 0.000 0.000 2 -1 -1 [cr/lf] [cr/lf] END [cr/lf]

3 Point f	ile	7
3.2	One point	
	Read-out ✓ Write ✓	8
	Format Pmmmm	9
	 Meaning Expresses a specified point. "mmmm" represents a number from 0 to 29999. DATA FORMAT	10
• Integers indicate point	Pmmmm= fxxxxxx fyyyyyy fzzzzz frrrrrr faaaaaa fbbbbbbb t xr yr [cr/lf] Values mmmm Point number: 0 to 29999	11
data in "pulse" units, and real numbers in "mm" units.	fCoordinate sign: + / - / space xxxxxx//bbbbbb Represent a numeric value of 8 digits or less. When a dot is included, this is treated as point data in "mm" units. Each piece of data is separated by one or more spaces. tExtended hand system flag setting for SCARA robots.	12
	 1: RIGHT 2:LEFT Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units. If a number other than "1" or "2" is specified for a hand system flag, or if no number is specified, 	13
	 this is interpreted as "0" setting (no hand system flag). The first arm and the second arm rotation information is processed as "0" if a numeral other than 0, 1, -1 has been specified, or if no numeral has been specified. A line containing only [cr/lf] is added at the end of the file, indicating the end of the file. 	
	SAMPLE	
	SEND P100 TO CMU Outputs the specified point from the communication port.	
	Response: RUN [cr/lf] P100= 1.000 2.000 3.000 4.000 5.000 6.000 0 1 0 [cr/lf] END [cr/lf]	

4.1	All po	int c	omments
	Read-out	1	When used as a read-out file, all point comments currently stored are read out.
	Write	1	When used as a write file, writing is performed with a point comment number.
	Format		
	PCM		
		Expr	esses all point comments.
	Meaning • DATA FO	ORMA	
	Meaning • DATA FO PCmmmm=	ORMA	т
	Meaning • DATA FO PCmmmm=	ORMA	T sssssssss[cr/lf]
	Meaning DATA FO PCmmmm= : PCmmmm= :	ORMA SSSSS SSSSS	T sssssssss[cr/lf]
	Meaning • DATA FO PCmmmm= = PCmmmm= =	ORMA SSSSS SSSSS SSSSS	T sssssssss[cr/lf] ssssssssss[cr/lf]

- ss...ss.....Comment data: which can be up to 16 one-byte characters. If comment data exceeds 16 characters, then the 17th character onward will be deleted.
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

4 Point comment file

4.2 One point comment

Read-out Write	<i>✓</i> <i>✓</i>
Format	
PCmmmm	
Meaning • Expresses a specified point comment.	
• "mmmm" represents a number from 0 to 29999.	
DATA FORMAT	
PCmmmm= ssssssssssssssss[cr/lf]	
Values mmmmPoint comment number: 0 to 29999	
ssss	ovte
characters. If comment data exceeds 16 charact	
then the 17th character onward will be deleted.	,
SAMPLE	- 1
SEND PC1 TO CMU Outputs the specified point comm	ent
from the communication port.	
Response:	
RUN [cr/lf] PC1 = ORIGIN POS[cr/lf]	
END [cr/lf]	

5 Point name file

5.1

All point names

Read-out	1	When used as a read-out file, all point names currently stored are read out.
Write	1	When used as a write file, writing is performed with a point name number.

Format

Values

PNM

Meaning • Expresses all point names.

```
DATA FORMAT

PNmmmm= asssssss [cr/lf]

PNmmmm= asssssss [cr/lf]

:

PNmmmm= asssssss [cr/lf]

PNmmmm= asssssss [cr/lf]

[cr/lf]
```


Name data must not be duplicate. If name data were duplicate, delete the name data with the ealier point name number and save the name data to newly specified point name number.

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

1

5 Point name file

5.2 One point name

Format	Write 🗸
PNmmm	
• Expresses a specific • "mmmm" represent	ed point name. ts a number from 0 to 29999.
DATA FORMAT	
PNmmmm= assssssssssssss	s [cr/lf]
a	 Point name number: 0 to 29999 Name data (the first character): Use only one-byte alphabetic character. Otherwise, "4.202: Input format error" occurs. Name data (the second character onward): Use one-byte alphanumeric characters and _ (underscore). Otherwise, "4.202: Input format error" occurs. If name data exceeds 16 characters, then the 17th character onward will be deleted.
SAMPLE	
SEND PN1 TO CMU ·····	••••••••••••••••••••••••••••••••••••••
Response:	
RUN [cr/lf]	
PN1=ORIGIN_POS [cr/lf]	

Parameter file 6.1 All parameters Read-out When used as a read-out file, all parameters currently stored are read out. 1 When used as a write file, only the parameters specified by labels are Write 1 written. Format PRM Meaning • Expresses all parameters. DATA FORMAT /parameter label/ [cr/lf] RC=xxxxxx [cr/lf] /parameter label/ [cr/lf] R?=xxxxxx[cr/lf] /parameter label/ [cr/lf] R?A=xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx [cr/lf] \parameter label\ [cr/lf] C?=xxxxxx [cr/lf] \parameter label\ [cr/lf] R?=xxxxxx[cr/lf] \parameter label\ [cr/lf] R?A=xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx [cr/lf] #parameter label# [cr/lf] R?=xxxxxx[cr/lf] #parameter label# [cr/lf] R?A=xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx [cr/lf] /parameter label/ [cr/lf] C?O=xxxxxx, xxxxxx, xxxxxx [cr/lf] : [cr/lf] RC.....Indicates the entire controller. Values R?.....Robot setting (?: Robot number) C?Controller setting (?: Controller number) A.....Represents an axis parameter. Each data is separated by a comma. ORepresents an option board parameter. Each data is

- Parameter labels are shown with 8 alphabetic characters.
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

separated by a comma.

6

10

Parameter file

6

• When writing parameter data, be sure that the servo is off.

- Parameters are already compatible with upper versions. However, parameters might not always be compatible with lower versions (upward compatibility).
- When you attempt to load a parameter file of new version into a controller of an earlier version, "10.214: Undefined parameter found" error may occur. In this case, you may load the parameter by setting the "PRM SKIP" parameter to "VALID".
- As parameters whose labels are enclosed in "\" are controller configuration parameters, take care when editing them.
- As parameters whose labels are enclosed in "#" affect robot control, take care when editing them.
- "\" symbols may be displayed as "¥" depending on the computer environment.

SAMPLE

SEND PRM TO CMU Outputs all parameters from the communication port.
Response:
RUN [cr/lf]
<pre>` V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]</pre>
<pre>` Gripper,V0.32/Gripper,V0.32///[cr/lf]</pre>
' PRM(0)[cr/lf]
\CNTTYP\[cr/lf]
C1=340[cr/lf]
\YCEADR\[cr/lf]
C1=0[cr/lf]
\DRVASGN\[cr/lf]
R1A=101,102,103,104,0,0[cr/lf]
R2A=0,0,0,0,0,0[cr/lf]
R3A=0,0,0,0,0,0[cr/lf]
R4A=0,0,0,0,0,0[cr/lf]
\RBTNUM\[cr/lf]
R1=2203[cr/lf]
:
[cr/lf]
END [cr/lf]

.

Parameter file

6.2	One p	ara	meter
	Read-out	1	When used as a read-out file, only the parameter specified by a label is read out.
	Write	1	When used as a write file, only the parameter specified by a label is written.
	Format		
	/paramet	er la	abel/, \parameter label #parameter label#

Meaning • Parameter labels are shown with 8 alphabetic characters.

```
DATA FORMAT 1
/parameter label/ [cr/lf]
RC= xxxxxx [cr/lf]
[cr/lf]
```

DATA FORMAT 2

/parameter label/ [cr/lf] R?= xxxxxx [cr/lf] [cr/lf]

DATA FORMAT 3

/parameter label/ [cr/lf] R?A=xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx, ccr/lf] [cr/lf]]

DATA FORMAT 4

\parameter label\ [cr/lf] C?=xxxxxx [cr/lf] [cr/lf]

DATA FORMAT5

\parameter label\ [cr/lf] R?=xxxxxx[cr/lf] [cr/lf]

DATA FORMAT 6

```
\parameter label\ [cr/lf]
R?A=xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx [cr/lf]
[cr/lf]
```

DATA FORMAT 7

```
#parameter label# [cr/lf]
R?=xxxxxx[cr/lf]
[cr/lf]
```

DATA FORMAT 8

```
#parameter label# [cr/lf]
R?A=xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx [cr/lf]
[cr/lf]
```

DATA FORMAT 9

Value

```
/parameter label/ [cr/lf]
C?O=xxxxxx,xxxxxx,xxxxxx [cr/lf]
[cr/lf]
```

es	RC	Indicates the entire controller.
	R?	Robot setting (?: Robot number)
	C?	Controller setting (?: Controller number)
	Α	Represents an axis parameter. Each data is separated by
		a comma.
	О	Represents an option board parameter. Each data is
		separated by a comma.

- Parameter labels are shown with 8 alphabetic characters.
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

• When writing parameter data, be sure that the servo is off.

• Parameters are already compatible with upper versions. However, parameters might not always be compatible with lower versions (upward compatibility).

- When you attempt to load a parameter file of new version into a controller of an earlier version, "10.214: Undefined parameter found" error may occur. In this case, you may load the parameter by setting the "PRM SKIP" to "VALID". (For detail, refer to the YRCX operator's manual.
- As parameters whose labels are enclosed in "\" are controller configuration parameters, take care when editing them.
- As parameters whose labels are enclosed in "#" affect robot control, take care when editing them.
- "\" symbols may be displayed as "¥" depending on the computer environment.

.....

SAMPLE

```
SEND /ACCEL / TO CMU ····· Outputs the acceleration parameter
from the communication port.
Response:
RUN [cr/lf]
/ACCEL / [cr/lf]
R1A=100, 100, 100 [cr/lf]
[cr/lf]
END [cr/lf]
```

Shift coordinate definition file

All shift data 7.1

Read-out	1	When used as a read-out file, all shift data currently stored are read out.
Write	1	When used as a write file, writing is performed with a shift number.

Format

SFT

Meaning • Expresses all shift data.

DATA FORMAT				
Sm = fxxxxxx	fyyyyyy	fzzzzz	frrrrrr	[cr/lf]
SPm = fxxxxxx	fyyyyyy	fzzzzz	frrrrrr	[cr/lf]
SMm = fxxxxxx	fyyyyyy	fzzzzz	frrrrrr	[cr/lf]
:				
Sm = fxxxxxx	fyyyyyy	fzzzzz	frrrrrr	[cr/lf]
SPm = fxxxxxx	fyyyyyy	fzzzzz	frrrrrr	[cr/lf]
SMm = fxxxxxx	fyyyyyy	fzzzzz	frrrrrr	[cr/lf]
[cr/lf]				

SAMPLE

mShift number: 0 to 39 fCoordinate sign: + / - / space or less places below the decimal point.

- The SPm and SMm inputs are optional in writing files. SPm: shift coordinate range plus-side SMm: shift coordinate range minus-side
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

```
SEND SFT TO CMU ..... Outputs all shift data from the
                                communication port.
Response:
RUN [cr/lf]
S0 = 0.000 0.000 0.000 0.000 [cr/lf]
SP0= 0.000 0.000 0.000 0.000 [cr/lf]
SM0= 0.000 0.000 0.000 0.000 [cr/lf]
S1 = 1.000 1.000 1.000 1.000 [cr/lf]
       :
SM39= 9.000 9.000 9.000 9.000 [cr/lf]
[cr/lf]
END [cr/lf]
```

One shift definition 7.2

Write 🗸	ð
Format Sm	9
Meaning • Expresses a specified shift definition.	
DATA FORMAT	10
Sm = fxxxxxx fyyyyyy fzzzzz frrrrrr[cr/lf]	
Values mShift number: 0 to 39 fCoordinate sign: + / - / space xxxxxx/yyyyyy//rrrrrr Represent a numeric value of 7 digits or less, having 3	11
or less places below the decimal point.	
• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.	12
SAMPLE	
SEND S0 TO CMU Outputs the specified shift coordinate from the communication port.	13
Response:	
RUN [cr/lf] S0 = 0.000 0.000 0.000 0.000[cr/lf] SP0= 0.000 0.000 0.000 0.000[cr/lf] SM0= 0.000 0.000 0.000 0.000[cr/lf] [cr/lf]	
END [cr/lf]	

Read-out 🗸

8	Hand	definition file
	8.1	All hand data
_		
		Read-out✓When used as a read-out file, all hand data currently stored are read out.
		Write \checkmark When used as a write file, writing is performed with a hand number.
		Format
		HND
		Meaning • Expresses all hand data.
		DATA FORMAT
		<pre>Hm = n,fxxxxxx, fyyyyyy, fzzzzzz ,{R}[cr/lf] :</pre>
		<pre>Hm = n,fxxxxx, fyyyyyy, fzzzzz ,{R}[cr/lf]</pre>
		[cr/lf]
		Values mHand number: 0 to 31
		nRobot number: 1 to 4
		ff space
		xxxxxx/yyyyyy/zzzzzRepresent a real numeric value of 7 digits or less,
		having 3 or less places below the decimal point, or an
		integer of 7 digits or less. (This numeric format depends

CANDT

10

11 12 13

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

{R}.....Indicates whether a hand is attached to the R-axis.

on the robot type setting and hand definition type.)

SAMPLE
SEND HND TO CMU Outputs all hand data from the
communication port.
Response:
RUN [cr/lf]
H0 = 1, 0.000, 0.000, 0.000 [cr/lf]
H1 = 1, 1.000, 1.000, 1.000 [cr/lf]
H2 = 2, 2.000, 2.000, 2.000 [cr/lf]
H3 = 2, 3.000, 3.000, 3.000 [cr/lf]
H4 = 3, 4.000, 4.000, 4.000 [cr/lf]
H5 = 3, 5.000, 5.000, 5.000 [cr/lf]
H6 = 4, 6.000, 6.000, 6.000 [cr/lf]
H7 = 4, 7.000, 7.000, 7.000 [cr/lf]
[cr/lf]
END [cr/lf]

8 Hand definition file

8.2 One hand definition

		Read-out	1
		Write	1
Forma	t		
Hm			
Aeaning	• Expresses a specified hand definition.		
DATA	FORMAT		
Hm =	n,fxxxxxx, fyyyyyy, fzzzzzz ,{R}[cr/lf]		
Values	mHand number: 0 to 31		
	nRobot number: 1 to 4		
	fCoordinate sign: + / - /	•	
	xxxxxx/yyyyyy/zzzzzRepresent a real num	•	
	о .	below the decimal point, o	
		ss. (This numeric format dep	
	· · ·	g and hand definition type.)	
	{R}Indicates whether a ha	nd is attached to the R-axis.	
Aline	containing only [cr/lf] is added at the end of the file indi	icating the end of the file	
A line	containing only [cr/lf] is added at the end of the file, indi	icating the end of the file.	
SAMP	LE		
SEND	H3 TO CMU Outputs the sp	pecified hand definit	cion
	data from the	communication port.	
Respo	nse:		
-	cr/lf]		
НЗ=2,	3.000, 3.000, 3.000, R [cr/lf]		
[cr/1	f]		
END [cr/lf]		

8

10

11 12 13 9

Work definition file

9.1 All work data

Read-out	~	When used as a read-out file, all work data currently stored are read out.
Write	1	When used as a write file, writing is performed with a work number.

Format

WRKDEF

Meaning • Expresses all work data.

```
DATA FORMAT

Wm = fxxxx.xxx fyyyy.yyy fzzzz.zzz frrrr.rrr [cr/lf]

:

Wm = fxxxx.xxx fyyyy.yyy fzzzz.zzz frrrr.rrr [cr/lf]

[cr/lf]
```

Notation	Value	Range
m	Work number	0 to 39
f	Coordinate sign	+ / - / space
xxxx.xxx/yyyyy.yy	Numeric value consisting of an integer portion of up to 4 digits and having 3 or less places below the decimal point	
zzzz.zzz/rrrr.rrr	[Unit] xxxx.xxx/yyyyy.yy/zzzz.zzz: r rrrr.rr: degree	mm

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND WRKDEF TO CMU Outputs all work data from the
communication port.
SEND CMU TO WRKDEF Intputs all work data from the
communication port.
Response:
RUN [cr/lf]
W0 = 0.000, 0.000, 0.000 [cr/lf]
W1 = 1.000, 1.000, 1.000 [cr/lf]
W2 = 2.000, 2.000, 2.000 [cr/lf]
W3 = 3.000, 3.000, 3.000, 3.000 [cr/lf]
W4 = 4.000, 4.000, 4.000, 4.000 [cr/lf]
W5 = 5.000, 5.000, 5.000 [cr/lf]
[cr/lf]
END [cr/lf]

9 Work definition file

9.2 One work definition

Read-out	1
Write	1

t	1	
	1	

Format		
Wm		
Meaning • Expresses a	specified work defir	nition.
DATA FORMAT		
Wm = fxxxx.xxx fyy	yy.yyy fzzz.zz	z frrrr.rrr [cr/lf]
Notation	Value	Range
m	Work number	0 to 39
	Os andiasta si	. / /
f	Coordinate sign	+ / - / space
xxxx.xxx/yyyyy.yy		nsisting of an integer portion of up to 4 digits and aces below the decimal point
zzzz.zzz/rrrr.rrr	•	/yy.yy/zzzz.zzz: mm
SAMPLE		
		Outputs the specified work data from the communication port.
SEND CMU TO W3 ····		nputs the specified work data from communication port.
Response:		
RUN [cr/lf]		
W3 = 3.000, 3.000,	3.000, 3.000 [c	r/lf]
END [cr/lf]		

10.1	All pallet definitions	
	Read-out Vhen used as a read-out file, all pallet definitions currently stored out.	l are
	Write 🗸 When used as a write file, writing is performed with a pallet numbe	r.
	Format	
	PLT	
	Meaning • Expresses all pallet definitions.	
	DATA FORMAT	
	<pre>PLm [cr/lf] PLN = XY [cr/lf] NX = nnn [cr/lf] NY = nnn [cr/lf] NZ = nnn [cr/lf]</pre>	
	<pre>PLP = ppppp [cr/lf] P[1] = fxxxxxx fyyyyyy fzzzzz frrrrrr faaaaaa fbbbbbbb t xr yr[cr/lf] :</pre>	
	<pre>P[5] = fxxxxxx fyyyyyy fzzzzz frrrrrr faaaaaa fbbbbbbb t xr yr[cr/lf] PLm [cr/lf]</pre>	
	:	

s	mmmm	Pallet number: 0 to 39
	XY	Coordinate plane setting: XY coordinate plane
	nnn	Number of points for each axis: positive integer
	ррррр	The point number used for a pallet definition. Continuous $\boldsymbol{5}$
		points starting with the specified point are used.
	f	Coordinate sign: + / - / space
	xxxxxx/yyyyyy//bbbbbbxr	Represent a numeric value of 8 digits or less. When a dot $% \left({{{\mathbf{x}}_{i}}} \right)$ is
		included, this is treated as point data in "mm" units. Each piece of
		data is separated by one or more spaces.
	t	An extended hand system flag setting for SCARA robots.
		1: RIGHT 2: LEFT

13

10 Pallet definition file

- Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA robots.
- Hand system flags and the first arm and the second arm rotation information are ignored during movement where pallet definitions are used.
- If a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate that there is no hand system flag.
- If a value other than "0", "1", "-1" is specified at the first arm and the second arm rotation information, or if no value is specified, this will be processed as "0".
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE SEND PLT TO CMU Outputs all pallet definitions from the communication port. Response: RUN [cr/lf] PL0[cr/lf] PLN=XY[cr/lf] NX = 3 [cr/lf]NY = 4 [cr/lf]NZ = 2 [cr/lf]PLP= 3996[cr/lf] P[1]= 0.000 0.000 0.000 0.000 0.000 0.000 [cr/lf] P[2]= 100.000 0.000 0.000 0.000 0.000 0.000 [cr/lf] P[3]= 0.000 100.000 0.000 0.000 0.000 0.000 [cr/lf] P[4]= 100.000 100.000 0.000 0.000 0.000 0.000 [cr/lf] P[5]= 0.000 0.000 50.000 0.000 0.000 0.000 [cr/lf] PL1[cr/lf] PLN= XY[cr/lf] NX = 3[cr/lf]NY = 4[cr/lf]NZ = 2[cr/lf]PLP= 3991[cr/lf] P[1]= 0.000 0.000 0.000 0.000 0.000 0.000 [cr/lf] P[2]= 100.000 100.000 0.000 0.000 0.000 0.000 [cr/lf] P[3]= 0.000 200.000 0.000 0.000 0.000 0.000 [cr/lf] P[4] = 100.000 200.000 0.000 0.000 0.000 0.000 [cr/lf] P[5] = 0.000 0.000 100.000 0.000 0.000 0.000 [cr/lf] [cr/lf] END [cr/lf]

٢Þ NOTE

• Integers indicate point data in "pulse" units, and real numbers in "mm" units.

Values	m Pallet number: 0 to 39
	nnn Number of points for each axis: positive integer
	ppppp The point number used for a pallet definition. Continuous 5
	points starting with the specified point are used.
	f Coordinate sign: + / - / space
	xxxxxx/yyyyyy//bbbbbbbxr Represent a numeric value of 8 digits or less. When a dot is
	included, this is treated as point data in "mm" units. Each piece of
	data is separated by one or more spaces.
	tAn extended hand system flag setting for SCARA robots.
	1: RIGHT 2: LEFT

Pallet definition file

Format PLm

One pallet definition 10.2

MeaningExpresses a specified pallet definition."m" represents a number from 0 to 39.	
DATA FORMAT	
<pre>PLm [cr/lf] PLN = XY [cr/lf] PLP = ppppp [cr/lf] NX = nnn [cr/lf] NY = nnn [cr/lf] NZ = nnn [cr/lf] P[1] = fxxxxx fyyyyyy fzzzzz frrrrrr faaaaaa fbbbbbbb t xr yr[cr/lf]</pre>	

10-24 Chapter 10 Data file description

.....

Read-out

Write

1

10 Pallet definition file

- Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA robots.
- Hand system flags and the first arm and the second arm rotation information are ignored during movement where pallet definitions are used.
- If a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate that there is no hand system flag.
- If a value other than "0", "1", "-1" is specified at the first arm and the second arm rotation information, or if no value is specified, this will be processed as "0".
- A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND PL2 TO CMU Outputs the specified pallet definition from
the communication port as shown below.
Response:
RUN [cr/lf]
PL2[cr/lf]
PLN=XY[cr/lf]
NX= 3[cr/lf]
NY= 3[cr/lf]
NZ= 2[cr/lf]
PLP= 3986[cr/lf]
P[1]= 100.000 100.000 50.000 90.000 0.000 0.000 [cr/lf]
P[2]= 200.000 100.000 50.000 90.000 0.000 0.000 [cr/lf]
P[3]= 100.000 200.000 50.000 90.000 0.000 0.000 [cr/lf]
P[4]= 200.000 200.000 50.000 90.000 0.000 0.000 [cr/lf]
P[5]= 100.000 10.000 100.000 90.000 0.000 0.000 [cr/lf]
[cr/lf]
END [cr/lf]

General Ethernet port file

Read-out	1	When used as a read-out file, all general Ethernet port definitions are read out.
Write	~	When used as a write file, writing is performed with a general Ethernet port number.
Format		

GEP

Meaning • Expresses all general Ethernet port definitions.

DATA FORMAT
GPm [cr/lf]
MODE=n [cr/lf]
IPADRS= aaa.aaa.aaa.aaa [cr/lf]
PORT=ppppp [cr/lf]
EOL=e [cr/lf]
TYPE=t [cr/lf]
:
TYPE=t [cr/lf]
[cr/lf]

Va.	1100
v a	ues

m	General Ethernet port number: 0 to 7
n	Mode
	0: Server 1: Client
ааа	IP address: 0 to 255
ррррр	Port number: 0 to 65535
e	Termination character code
	0: CRLF 1: CR
t	Port type (0: TCP)

When Client mode is selected in the write file,

• IP address and port number: Set the IP address and port number of the connection destination server.

When Server mode is selected in the write file,

- IP address: IP address already set on the controller is used to communicate, so IP address setting is unnecessary.
- Port number: Set a port number which differs from the one on the controller.

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE	
SEND GEP TO CMU ·····	Outputs all files of the general Ethernet
	port from the communication port.
Response:	
RUN [cr/lf]	
GP0 [cr/lf]	
MODE=1 [cr/lf]	
IPADRS=192.168.0.1 [cr/lf]	
PORT=100 [cr/lf]	
EOL=0 [cr/lf]	
TYPE=0 [cr/lf]	
GP1 [cr/lf]	
MODE=1 [cr/lf]	
IPADRS=192.168.0.100 [cr/lf]	
PORT=200 [cr/lf]	
EOL=0 [cr/lf]	
TYPE=0 [cr/lf]	
[cr/lf]	
END [cr/lf]	

7
8
0

10

Input/output name file

12.1 All input/output name data

Read-out	1	When used as a read-out file, all input/output data currently stored are read out.
Write	1	When used as a write file, writing is performed with a input/output number.

Format

ION

Meaning • Expresses all input/output name data.

DATA FORMAT	
ioNMpp(b)=asssssssssssssss	[cr/lf]
ioNMpp(b)=asssssssssssssss	[cr/lf]
:	
ioNMpp(b)=assssssssssssssss	[cr/lf]
ioNMpp(b)=asssssssssssssss	[cr/lf]
[cr/lf]	

Notation	Value	Range
io	Input/output type	DI / DO / SI / SO
рр	Port number	2 to 7 / 10 to 15
b	Bit number	0 to 7
a	Name data (the first character)	Use only one-byte alphabetic character. Otherwise, "4.202: Input format error" occurs.
SSSS	Name data (the second character onward)	Use one-byte alphanumeric characters and _ (underscore). Otherwise, "4.202: Input format error" occurs. If name data exceeds 16 characters, then the 17th character onward will be deleted.

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND ION TO CMU Outputs all input/output name data
from the communication port.
SEND CMU TO ION Inputs all input/output name data
from the communication port.
Response:
RUN [cr/lf]
DONM2(0)=DO_PORT2_0 [cr/lf]
DONM2(1)=DO_PORT2_1 [cr/lf]
:
SINM15(6)=SI_PORT15_6 [cr/lf]
SINM15(7)=SI_PORT15_7 [cr/lf]
[cr/lf]
END [cr/lf]

MEMO

Name data must not be duplicate. When duplicate name data is saved, delete the name data with the earlier point number and save the name data to the point number which is specified as the new destination to save to.

12 Input/output name file

12.2 One input/output type

Format ioNM()

Read-out	1
Write	Restricted*

9

ľ	2

Meaning • Expresses a specified input/output type.		
DATA FORMAT		
ioNMpp(b)=assssssssssssssssssssssssssssssssssss		
:		
	assssssssssssss [cr/lf]	
[cr/lf]		
Notation	Value	Range
io	Input/output type	DI / DO / SI / SO
рр	Port number	2 to 7 / 10 to 15 *Readable input/output type and Port number DI: Up to Port14 / DO: Up to Port 10 / SI, SO: Up to Port 15
b	Bit number	0 to 7
а	Name data (the first character)	Use only one-byte alphabetic character. Otherwise, "4.202: Input format error" occurs.
SSSS	Name data (the second character onward)	Use one-byte alphanumeric characters and _ (underscore). Otherwise, "4.202: Input format error" occurs. If name data exceeds 16 characters, then the 17th character onward will be deleted.

SAMPLE
SEND DONM() TO CMU Outputs the specified input/output name
data from the communication port.
Response:
RUN [cr/lf]
DONM2(0)=DO_PORT2_0 [cr/lf]
DONM2(1)=DO_PORT2_1 [cr/lf]
:
DONM10(6)=DO_PORT10_6 [cr/lf]
DONM10(7)=D0_PORT10_7 [cr/lf]
[cr/lf]
END [cr/lf]

11 12 13 12

Input/output name file

12.3 One input/output port

Read-out	1
Write	Restricted*

Format

ioNMpp()

Meaning • Expresses a specified input/output type and port number.

DATA FORMAT	
ioNMpp(b)=asssssssssssssss	[cr/lf]
:	
ioNMpp(b)=assssssssssssss	[cr/lf]
[cr/lf]	

Notation	Value	Range
io	Input/output type	DI / DO / SI / SO
рр	Port number	2 to 7 / 10 to 15 *Readable input/output type and Port number DI: Up to Port14 / DO: Up to Port 10 / SI, SO: Up to Port 15
b	Bit number	0 to 7
a	Name data (the first character)	Use only one-byte alphabetic character. Otherwise, "4.202: Input format error" occurs.
SSSS	Name data (the second character onward)	Use one-byte alphanumeric characters and _ (underscore). Otherwise, "4.202: Input format error" occurs. If name data exceeds 16 characters, then the 17th character onward will be deleted.

SAMPLE
SEND DONM2() TO CMU Outputs the specified input/output name
data from the communication port.
Response:
RUN [cr/lf]
DONM2(0)=DO_PORT2_0 [cr/lf]
DONM2(1)=D0_PORT2_1 [cr/lf]
:
DONM10(6)=D0_PORT10_6 [cr/lf]
DONM10(7)=D0_PORT10_7 [cr/lf]
[cr/lf]
END [cr/lf]

12 Input/output name file

One input/output bit 12.4

Response: RUN [cr/lf]

END [cr/lf]

DONM2(0)=DO_PORT2_0 [cr/lf]

Read-out	1
Write	Restricted*

	Read-out V
	Write Restricted
xpresses a specified input/output	type and bit number.
assssssssssssss [cr/lf]	
Value	Range
Input/output type	DI / DO / SI / SO
Port number	2 to 7 / 10 to 15 *Readable input/output type and Port number DI: Up to Port14 / DO: Up to Port 10 / SI, SC Up to Port 15
Bit number	0 to 7
Name data (the first character)	Use only one-byte alphabetic character. Otherwise, "4.202: Input format error" occurs.
	Use one-byte alphanumeric characters
	Input/output type Port number Bit number Name data

data from the communication port.

Input/output name file 10-31

13

Area check output file

13.1 All area check output data

Read-out	1	When used as a read-out file, all area check output data currently stored are read out.
Write	1	When used as a write file, writing is performed with an area check output number.

Format

ACO

Meaning • Expresses all area check output data.

DATA FORMAT	
ACm=r,p1,p2,t,n,l	[cr/lf]
ACm=r,p1,p2,t,n,1	[cr/lf]
:	
ACm=r,p1,p2,t,n,1	[cr/lf]
ACm=r,p1,p2,t,n,1	[cr/lf]
[cr/lf]	

Val	ues

m	Area check output number: 0 to 31
r	Robot number: 0 to 4 (0: Invalid)
р1	Comparison point number 1: 0 to 29999
p2	Comparison point number 2: 0 to 29999
t	Port type
	0: DO/SO 1: DO 2: SO 3: MO
n	Port number: 20 to 277
I	Logic
	0: OFF 1: ON

SAMPLE	
SEND ACO TO CMU Outputs all area check output data	L
from the communication port.	
Response:	
RUN [cr/lf]	
AC0=1,0,1,0,20,0 [cr/lf]	
AC1=2,100,110,0,50,0 [cr/lf]	
:	
AC30=1,20,21,0,20,0 [cr/lf]	
AC31=1,50,51,0,100,0 [cr/lf]	
[cr/lf]	
END[cr/lf]	

13 Area check output file 13.2 One area check output definition

Read-out	1		0
Write	1	When used as a write file, writing is performed with an area check output number.	
Format			
ACm			9
Meaning •	• Expre	esses a specified area check output definition.	-
DATA FO	ORMA	T	Π
ACm=r,p1	,p2,t	,n,l [cr/lf]	
Values	m	Area check output number: 0 to 31	
	r	Robot number: 0 to 4 (0: Invalid)	
	р1	Comparison point number 1: 0 to 29999	
	p2	Comparison point number 2: 0 to 29999	
	t	Port type	14
		0: DO/SO 1: DO 2: SO 3: MO	
	n	Port number: 20 to 277	
	I	Logic	
		0: OFF 1: ON	
		only [cr/lf] is added at the end of the file, indicating the end of the file	

```
SAMPLE

SEND ACO TO CMU ..... Outputs specified area check output

data from the communication port.

Response:

RUN [cr/lf]

AC0=1,0,1,0,20,0 [cr/lf]

END[cr/lf]
```

14.1	
	All file
	Read-out Write
	Format
	ALL
	Meaning Expresses the minimum number of data files required to operate the robot system.
	DATA FORMAT
•For details of each	[IGII] III program format
file, refer to that file's explanation.	NAME=< program name>
	PGN=mmm aaaa ····aaaaaaaa [cr/lf]
	aaaa ····aaaaaaaa [cr/lf]
	[cr/lf]
	[PNT] ····All point format
	Pmmmm=fxxxxxx fyyyyyy fzzzzz faaaaaa fbbbbbbb t [cr/lf]
	Pmmmm=fxxxxxx fyyyyyy fzzzzzz faaaaaa fbbbbbb t [cr/lf]
	[cr/lf]
	[PCM] All point comment format
	PCmmmm= ssssssssssss [cr/lf]
	: PCmmmm= ssssssssssssssss [cr/lf]
	[cr/lf]
	[PNM] ····All point name format
	PNmmmm= asssssssssss [cr/lf]
	: PNmmmm= assssssssssssssss [cr/lf]
	[cr/lf]
	[PRM] ····All parameter format
	/parameter label/ [cr/lf]
	RC=xxxxxx [cr/lf]
	: #parameter label# [cr/lf]
	R?=xxxxxx [cr/lf]
	[cr/lf]
	[SFT] ····All shift format
	Sm= fxxxxxx fyyyyyy fzzzzz frrrrrr [cr/lf]
	:
	SMm= fxxxxxx fyyyyyy fzzzzz frrrrrr [cr/lf] [cr/lf]
	[HND] ····All hand format
	Hm= n, fxxxxxx, fyyyyyy, fzzzzzz ,{R} [cr/lf]
	:
	<pre>Hm= n, fxxxxx, fyyyyyy, fzzzzzz ,{R} [cr/lf] [cr/lf]</pre>

14 All file

```
[PLT] ····All pallet format
PLm [cr/lf]
     :
P[5]= fxxxxxx fyyyyyy fzzzzz frrrrrr faaaaaa fbbbbbb t [cr/lf]
[cr/lf]
[GEP] ····All general Ethernet port format
MODE=n [cr/lf]
     :
TYPE=t [cr/lf]
[cr/lf]
[ION] ····All input/output name format
ioNMpp(b) = assssssssssssssss [cr/lf]
     :
[cr/lf]
[ACO] ····All area check output format
ACm=r,p1,p2,t,n,1 [cr/lf]
   :
ACm=r,p1,p2,t,n,1 [cr/lf]
[cr/lf]
[END] ····All file end
```

MEMO

• In readout files, only items whose data is saved in the controller is readout.

• In writing files, [xxx] determines the data file's format, and this format is saved at the controller. Example: [HND]...All text data up the next [xxx] is saved at the controller as "all hand" format data.

SAMPLE
SEND ALL TO CMU Outputs all files of the entire system from
the communication port.
SEND CMU TO ALL Inputs all files of the entire system from the
communication port.

9

	15 Program directory file				
	15	.1 Entir	e pro	gram directory	
			-		
		Read-out	1	When used as a read-out file, information on entire program directory is read out.	
		Write	-	This file cannot be used as a write file.	
		Format			
		DIR			
i.		Meaning	• Expr	esses entire program directory.	
		DATA H	ORMA	T	
		nnn, yy	/mm/dd	d, hh:mm, bbbbbbbb, llll, xx, ff, ssssssssssssss [cr/lf]	
		nnn, yy [cr/lf]	: /mm/dd	l, hh:mm, bbbbbbbb, llll, xx, ff, ssssssssssssss [cr/lf]	
		Values	nnn	Program number: 1 to 100	
			yy/mr	n/dd Date when the program was updated	
-			hh:mr	n Time when the program was updated	
			bbbbb	b Byte size of program: 7 digits	
			xx	File attribute	
				RW: Readable/writable	
				RO: Not writable (read only)	
				H: Hidden file	

ff..... Flag

SSS...SSSSSS

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

m: Main programc: Current programs: Sequence program

Program name: shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore)

SAMPLE
SEND DIR TO CMU Outputs information on all program
directory from the communication port.
Response:
RUN [cr/lf]
1, 15/01/10,10:14,100,24,RW,m,SAMPLE1 [cr/lf]
2, 15/01/18,18:00,50,18,R0,,SAMPLE2 [cr/lf]
3, 15/02/11,20:15,200,58,RW,c,SAMPLE3 [cr/lf]
4, 15/02/11,19:03,28,15,H,,SAMPLE4 [cr/lf]
10, 15/03/02, 20:21,592,288,RW,,SAMPLE10 [cr/lf]
24, 15/01/18,13:19,10,3,RW,,SAMPLE24 [cr/lf]
[cr/lf]
END [cr/lf]

15 Program directory file

15.2 One program directory

Format

Read-out	1
Write	_

<<pre><<pre>rogram name>>

- Meaning Expresses information on one program.
 - The program name is enclosed in << >> (double brackets).

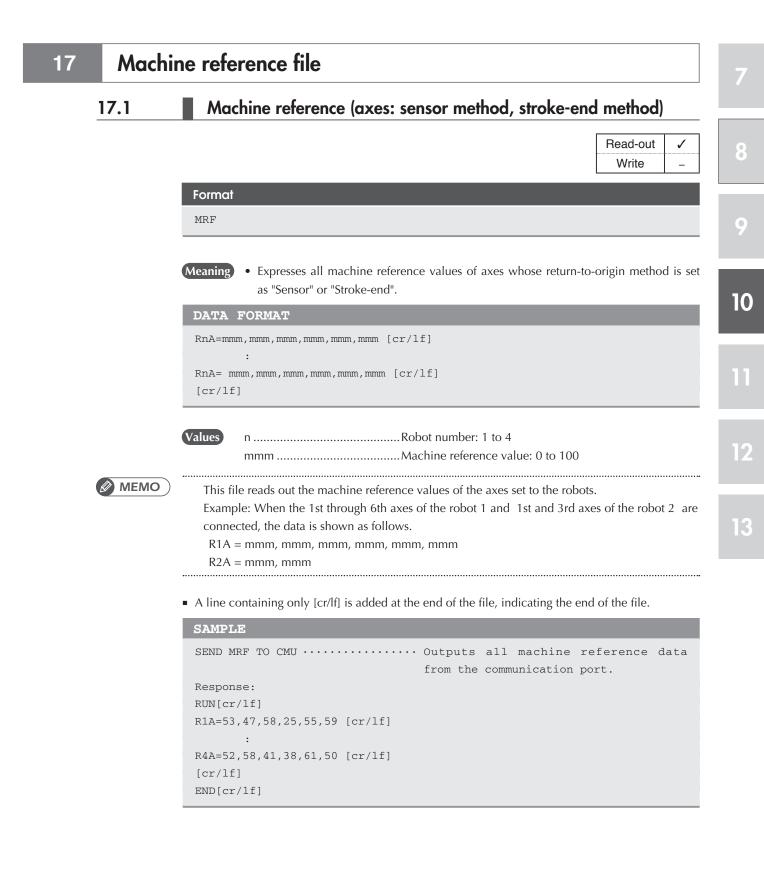
DATA FORMAT			
nnn, yy/mm/dd, hh:mm	, bbbbbbb, llll, xx,	ff, ssssssssssssss	[cr/lf]

	ues
va	ues.

nnn	Program number: 1 to 100		
yy/mm/dd	Date when the program was updated		
hh:mm	Time when the program was updated		
bbbbbb	Byte size of program: 7 digits		
xx	File attribute		
	RW: Readable/writable		
	RO: Not writable (read only)		
	H: Hidden file		
ff	Flag		
	m: Main program		
	c: Current program		
	s: Sequence program		
SSSSSSSSS	Program name: shown with 32 characters or less consisting of		
	alphanumeric characters and _ (underscore)		

F . 1	N/	÷.	n 11	
44	ιų	Ψ.	-18	1.

.....


SEND < <test>> TO CMU Outputs information on the specified</test>
program from the communication port.
Response:
RUN [cr/lf]
1, 15/01/10,10:14,100,24,RW,m,SAMPLE1 [cr/lf]
END [cr/lf]

9

13

7 16 Parameter dire					y file		
		16.1	Entire p	oarc	ımeter directo	ory	
8			Read-out Write	✓ _	When used as a re out. This file cannot be		t file, information on entire parameter directory is read
						uoou	
9			Format DPM		_	-	
			Meaning •	Expre	sses entire paramete	er dire	ctory.
10			DATA FOR	RMAT	2		
							12 uuuuuu [cr/lf]
							12 uuuuuu [cr/lf] 12 uuuuuu [cr/lf]
			[cr/lf]	1	11 112 113 1110		
			_				
							neter label: 8 characters or less having some symbols
12							ute method
						•	ect input
							2: Selective input
12			n'	* 		Input	range
15							inimum value
							aximum value
			u	uuuu	J		ive input value (n1 to n12)
			Parameter la	hels a	are shown with 6 al	nhahe	tic characters
							e end of the file, indicating the end of the file.
			"\" symbol	ls may	y be shown as "¥" d	epend	ing on the computer environment.
			SAMPLE				
			SEND DPM	FO CN	1U •••••		Outputs information on all parameter directory from the communication port.
			Response:				
			RUN [cr/li		- 1		
			'PRM(0) [c		:]) 0 0 214749364	7 [cr	·/1f1
					5 0 0 99 [cr/lf		//
			\DRVASGN\	1639	98 0 0 9906 [cr	/lf]	
			:	/ 0.01		C 1	
					52 0 0 27 [cr/l 52 0 0 27 [cr/l		
					52 0 0 27 [cr/1		
			[cr/lf] END [cr/lf	Fl			
			[CI/I]				

10-38
Chapter 10 Data file description

Machine reference file

Machine reference (axes: mark method) 17.2

		Read-out ✓ Write –
	Format	
	ARP	
(Meaning • Expresses all machine reference values of axes whose return-to- as "Mark".	origin method is set
	DATA FORMAT	
	RnA=mmm,mmm,mmm,mmm,mmm [cr/lf]	
	: RnA= mmm,mmm,mmm,mmm,mmm [cr/lf] [cr/lf]	
(Values nRobot number: 1 to 4 mmmMachine reference value: 0 to 100	
)	This file reads out the machine reference values of the axes set to the robots. Example: When the 1st through 6th axes of the robot 1 and 1st and 3rd axe connected, the data is shown as follows. R1A = mmm, mmm, mmm, mmm, mmm R2A = mmm, mmm	
	• A line containing only [cr/lf] is added at the end of the file, indicating the end	of the file.
	SAMPLE	
	SEND ARP TO CMU Outputs all machine re from the communication po	
	Response: RUN[cr/lf] R1A=53,47,58,25,55,59 [cr/lf]	
	R4A=52,58,41,38,61,50 [cr/lf] [cr/lf]	

END[cr/lf]

MEMO

System configuration information file 18

Format CFG

Values

DATA FORMAT

:

Rr:aaaa,hhhhhh [cr/lf] Rr:aaaa,hhhhhh [cr/lf]

Read-out 1 Write _

9

10

D.

12

[cr	:/lf]		
Valu	es	m	Controllr number: 1 onward
		nnn	Controller ID number
		S	Specification
			G: CE specification
			L: Normal specification
		b	Brake power
			I: Internal
			E: External
		kkkkkk	Memory size

ff..... MAC address

r Robot number: 1 to 4 aaaa Robot ID number hhhhhh..... Connected axis number

Meaning • Expresses all system configuration information.

Cm:nnnn, s, b, kkkkk, ff-ff-ff-ff-ff [cr/lf]

Cm:nnnn, s, b, kkkkk, ff-ff-ff-ff-ff [cr/lf]

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND CFG TO CMU Outputs all the system configuration
file from the communication port.
Response:
RUN [cr/lf]
C1:340,L,I,2.1MB,00-04-C6-FF-83-12[cr/1f]
R1:MULTI,1234[cr/lf]
[cr/lf]
END [cr/lf]
END [CL/II]

System configuration information file
10-41

Version information file

Read-out	1
Write	_

Format VER

Meaning • Expresses version information.

DATA FORMAT	
Cm:cv, cr-mv-du	1, dr1/dv2, dr2 [cr/lf]
:	
Cm:cv, cr-mv-dv	1, dr1/dv2, dr2 [cr/lf]
[cr/lf]	

Values

m	.Controllr number: 1 onward
CV	.Host version
cr	.Host revision (Rxxxx)
mv	.PLD version (Vx.xx)
dv? (?: 1,2)	.Driver version (Vx.xx)
dr? (?: 1,2)	.Driver revision (Rxxx)

SAMPLE
SEND VER TO CMU Outputs all files of the version
information from the communication port.
Response:
RUN [cr/lf]
C1:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]
C2:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]
C3:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]
C4:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]
[cr/lf]
END [cr/lf]

Read-out 🗸	
Write –	
	8
Format	
OPT	
Meaning • Expresses all option boards.	9
DATA FORMAT	
CmOn:aaaaaa,Vb.bb [cr/lf]	
CmOn:aaaaaa,Vb.bb [cr/lf]	10
CmOn:aaaaaa,Vb.bb [cr/lf]	
CmOn:aaaaaa,Vb.bb [cr/lf]	
[cr/lf]	
Values m Controllr number: 1 onward	
n Option board number inside the controller	
Slot number: 1 to 4	12
aaaaaa Option board name	
b.bb Option board version	
 A line containing only [cr/lf] is added at the end of the file, indicating the end of the file. 	13
SAMPLE	
SEND OPT TO CMU ····· boards	
from the communication port.	
Response:	
RUN [cr/lf]	
C101:Gripper,V0.32 [cr/lf]	
C102:Gripper,V0.32 [cr/lf]	
[cr/lf]	
END [cr/lf]	

Self check file 21

Format	
SCK	
Meaning • Expresses self check file.	
DATA FORMAT	
gg.bbb:mmmm [cr/lf]	
gg.bbb:mmmm [cr/lf]	
:	
gg.bbb:mmmm [cr/lf]	
gg.bbb:mmmm [cr/lf]	
[cr/lf]	

gg	Alarm group number
bbb	Alarm classification number
mmmm	Alarm occurrence location
	RC: Entire controller
	R?: Robot (?: Robot number)
	C?: Controller (?: Controller number)
	A?: Axis (?: Axis number)
	M?: Driver (?: Driver number)
	R?: Option board
	(?: Option board number inside the controller)
	T?: Task (?: Task number)
	ETH: Ethernet
	CMU: RS-232CBrake power

SAMPLE
SEND SCK TO CMU ······ Outputs all files of the self check
information from the communication port.
Response:
RUN [cr/lf]
12.600:C1M1 [cr/lf]
12.600:C1M2 [cr/lf]
12.600:C1M3 [cr/lf]
12.600:C1M4 [cr/lf]
[cr/lf]
END [cr/lf]

Read-out ✓ Write –	8
LOG Meaning • Expresses all alarm history.	9
DATA FORMAT nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff, iiiii, jjjjjjj, kkkkkkk, llllllll, oooooooo, pppppppp, pppppppp, pppppppp, pppppppp, q [cr/lf] nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,	10
<pre>iiiiii, jjjjjjj, kkkkkkk, llllllll, oooooooo, pppppppp, pppppppp, pppppppp, pppppppp</pre>	11
iiiii, jjjjjjj, kkkkkkk, lllllll, oooooooo, pppppppp, ppppppp, pppppppp, pppppppp, pppppppp	12

Alarm history file

	Alarm history number: 1 to 500
yy/mm/dd	
hh:mm:ss	
gg	- ·
	Alarm classification number
aaaa	Alarm occurrence location
	RC: Entire controller
	R?: Robot (?: Robot number)
	C?: Controller (?: Controller number)
	A?: Axis (?: Axis number)
	M?: Driver (?: Driver number)
	R?: Option board
	(?: Option board number inside the controller)
	T?: Task (?: Task number)
	ETH: Ethernet
	CMU: RS-232C Brake power
C	Operation mode
	I: IllegalM: Manual mode
	A: Automatic mode (with programming box)
	O: Automatic mode (with other devices)
	CMU: RS-232C
eee	Program number
ffff	Program execution line
iiiii	Point number
;;;;;;;;;;	Parallel input: Port o to 3 (hexadecimal)
	Parallel output: Port o to 3 (hexadecimal)
	Serial input: Port o to 3 (hexadecimal)
00000000	Serial output: Port o to 3 (hexadecimal)
	Alarm occurrence location: A1 to A6
q	
	0: NONE
	1: RIGHT
	2: LEFT

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE			
SEND LOG TO CMU Outputs all files of the alarm history			
from the communication port.			
Response:			
RUN [cr/lf]			
1:15/03/30,08:23:05,1.100:RC,0,:,0,00000000,00000012,00000000,00000112,,,,,,, [cr/lf]			
2:15/03/30,08:23:05,5.288: RC,0,:,0,00000000,00000010,00000000,00000110,,,,,,			
:			
500:15/03/18,10:23:04,5.228:T01,0,17:3,,00000000,00000010,0000000,00000110,			
40119,100000,99996,39375,0,0,0 [cr/lf]			
[cr/lf]			
END [cr/lf]			

23 Remaining memory size file

		Read-out	1
		Write	-
Forma	t		
MEM			
leaning	Expresses remaining memory size		
DATA	FORMAT		
	NT AREA=mmmmmmmm/nnnnnnnnnnnn[cr/lf] REA=xxxxx/yyyyy[cr/lf] f]		
/alues	mmmmmmmRemaining memory size of progr nnnnnnTotal memory size of program ar xxxxxRemaining memory size of varial	nd point area ble area	
A line o	yyyyyTotal memory size of variable are containing only [cr/lf] is added at the end of the file, indicating the		
SAMP	LE		
SEND I	MEM TO CMU ····· Outputs all files of th size from the communication		nory
Respo			
-	cr/lf]		
	NT AREA=2088547 / 2100000 [cr/lf]		
Cr/l:	REA=23220 / 24000 [cr/lf]		
-	rj cr/lf]		
	(1) 11]		

Variable file

24

24.1 Dynamic variables

	All dy	ynamic variables
Read-out	1	When used as a read-out file, all dynamic variables currently stored are read out.
Write	1	When used as a write file, a specified dynamic variable is written.

Format VAR

Meaning • Expresses all dynamic variables.

DATA FC	RMAI	•			
variable	name	t	=	xxxxxx	[cr/lf]
variable	name	t	=	xxxxxx	[cr/lf]
:					
variable	name	t	=	xxxxxx	[cr/lf]
[cr/lf]					

Val	1106
vai	ues

Variable name	Global variable defined in the program. Variable name is shown
	with 32 characters or less consisting of alphanumeric characters
	and _ (underscore).
t	Type of variable
	!: Real number, %: Integer, \$: Character string
xxxxxx	Value of variable
	Integer type: Integer of -2147483647 to 2147483647
	Real type: Real number of 7 digits or less including decimal fractions
	Character type: Character string of 255 characters or less

SAMPLE						
SEND VAR TO CMU ······	Outputs	all	global	variables	from	the
	communic	atio	n port.			
Response:						
RUN [cr/lf]						
A%=150 [cr/lf]						
B!=1.0234E1 [cr/lf]						
C1\$="SAMPLE1" [cr/lf]						
C2\$="SAMPLE2" [cr/lf]						
[cr/lf]						
END [cr/lf]C1\$="CNS_1"[cr/lf]						
C2\$="CNS_2"[cr/lf]						
[cr/lf]						
END [cr/lf]						

	One dynamic variable	
		Read-out✓Write✓
	Format	
	variable name t	
	Meaning • Expresses one dynamic variable.	
	DATA FORMAT	
	xxxxxx [cr/lf]	
	Values Variable nameGlobal variable defined in the program. Varia with 32 characters or less consisting of alpha and _ (underscore).	
	ttype of variable !: Real number, %: Integer, \$: Character string	
	xxxxxxValue of variable	
	Integer type: Integer of 8 digits or less	
	Real type: Real number of 7 digits or less includir	ng decimal fractions
	Character type: Character string of 255 charac	cters or less
MEMO	Dynamic global variables are registered during program execution. Variables to unless they are registered.	cannot be referred
	SAMPLE 1	
	SEND A% TO CMU [cr/lf] ······ Outputs the specified vari the communication port.	able A% from
	Response: 150 [cr/lf]	
	SAMPLE 2 SEND CMU TO A% [cr/lf] Inputs the specified vari	able A% from
	the communication port.	aste no rioni
	Response: 300 [cr/lf] Data input to the controll	or

OK [cr/lf]Result output from the controller.

Variable file

24

24.2 **Static variables**

24.2.1 Integer type static variables (SGI)

	integer	type	static	variables
/	meger	17 PC	Jianc	val labics

Read-out	1	When used as a read-out file, all integer type static variables currently stored are read out.
Write	1	When used as a write file, a specified integer type static variable is written.
Format		

SGI

Meaning • Expresses all integer static variables.

DATA FORMAT

```
SGIn=xxxxxx [cr/lf]
SGIn=xxxxxx [cr/lf]
      :
SGIn=xxxxxx [cr/lf]
[cr/lf]
```

Values

nInteger type static variable number: 0 to 31 xxxxxxInteger of -2147483647 to 2147483647

```
SAMPLE
SEND SGI TO CMU ..... Outputs all integer type static
                               variables from the communication port.
Response:
RUN [cr/lf]
SGR0=0 [cr/lf]
SGR1=0 [cr/lf]
      :
SGR31=0 [cr/lf]
[cr/lf]
END [cr/lf]
```

One integer type static variables	
Read-out 🗸	
Write 🗸	8
Format	
SGIm	
	9
 Meaning Expresses a specified integer type static variable. "m" represents a number from 0 to 31. 	_
DATA FORMAT	
xxxxxx [cr/lf]	10
Values xxxxxxInteger of -2147483647 to 2147483647	
SAMPLE	
SEND SGI1 TO CMU Outputs the specified integer type	
static variables (SGI1) from the	
communication port. Response:	12
RUN [cr/lf]	
0 [cr/lf]	
END [cr/lf]	13

Variable file

24

24.2.2 Real type static variables (SGR)

	All re	al type static variables
Read-out	1	When used as a read-out file, all real type static variables currently stored are read out.
Write	1	When used as a write file, a specified real type static variable is written.
Format		
SGR		

Meaning • Expresses all real type static variables.

DATA FORMAT	
SGRn=xxxxxx [cr/1	f]
SGRn=xxxxxx [cr/l	f]
:	
SGRn=xxxxxx [cr/l	f]
[cr/lf]	

Values

n Real type static variable number: 0 to 31 xxxxxx Real number of 7 digits or less including decimal fractions

SAMPLE
SEND SGR TO CMU ······ Outputs all real type static variables
from the communication port.
Response:
RUN [cr/lf]
SGI0=0 [cr/lf]
SGI1=0 [cr/lf]
:
SGI31=0 [cr/lf]
[cr/lf]
END [cr/lf]

One real type static variab	les		
		Read-out	1
		Write	1
prmat			
GRm			
eaning • Expresses a specified real type s			
• "m" represents a number from () to 31.		
DATA FORMAT			
xxxxxx [cr/lf]			
ues xxxxxx Real nu	Imber of 7 digits or less including de	cimal fracti	ons
END SGR1 TO CMU ·····	Outputs the specified real variables (SGR1) from the c port.		
desponse:			
UN [cr/lf]			
) [cr/lf]			
ND [cr/lf]			

25 Constant file

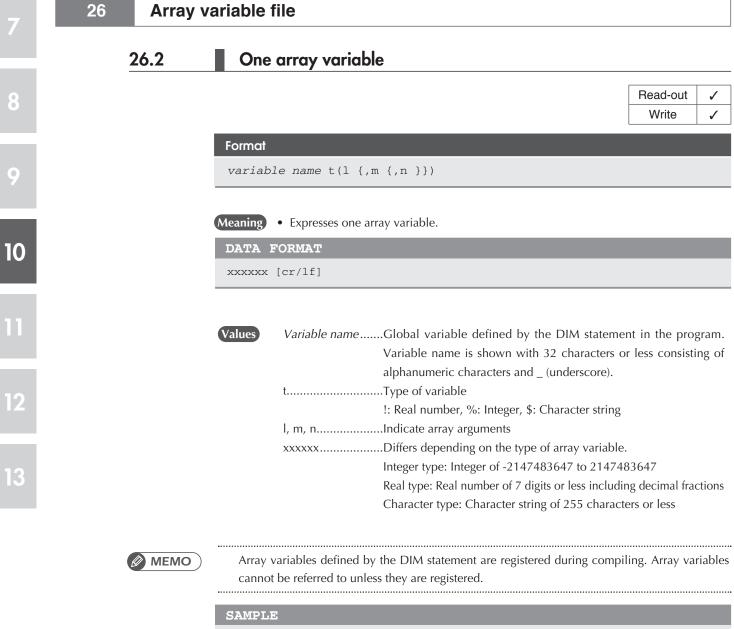
	25.1	One character string
8		Read-out ✓ When used as a read-out file, the specified character string is read out. Write – This file cannot be used as a write file.
9		Format "character string"
10		Meaning • Expresses a specified character string. DATA FORMAT sssssssssss[cr/lf]
11		 Values sssssssssssCharacter string: 255 characters or less Output of " symbol (double quotation) is shown with successive " symbol.
12		SAMPLE SEND """OMRON ROBOT""" TO CMU Outputs the specified character string from the communication port.
13		Response: "OMRON ROBOT"[cr/lf]

.....

26 Array variable file

26.1 All array variables

Read-out	1	When used as a read-out file, all array variables are read out.
Write	1	When used as a write file, a specified array variable is written.
Format		


ARY

Meaning • Expresses all array variables.

Variable nameGlobal variable defined by the DIM statement in the program.
Variable name is shown with 32 characters or less consisting of
alphanumeric characters and _ (underscore).
tType of variable
!: Real number, %: Integer, \$: Character string
l, m, nIndicate array arguments
xxxxxxDiffers depending on the type of array variable.
Integer type: Integer of -2147483647 to 2147483647
Real type: Real number of 7 digits or less including decimal fractions
Character type: Character string of 255 characters or less

SAMPLE
SEND ARY TO CMU ····· Outputs all global array variables
from the communication port.
Response:
RUN [cr/lf]
A!(0)=0 [cr/lf]
A!(1)=1.E2 [cr/lf]
A!(2)=2.E2 [cr/lf]
B%(0,0)=0 [cr/lf]
B%(0,1)=1111 [cr/lf]
B%(1,0)=2222 [cr/lf]
B%(1,0)=3333 [cr/lf]
C\$(0,0,0) = "ARY1" [cr/lf]
C\$(0,0,1) = "ARY2" [cr/lf]
C\$(0,1,0) = "ARY3" [cr/lf]
C\$(0,1,1) = "ARY4" [cr/lf]
C\$(1,0,0) = "ARY5" [cr/lf]
C\$(1,0,1) = "ARY6" [cr/lf]
C\$(1,1,0) = "ARY7" [cr/lf]
C\$(1,1,1) = "ARY8" [cr/lf]
[cr/lf]
END [cr/lf]

SEND C1\$(2)	TO CMU		Outputs	s the	specified	array	variable
			C1\$(2)	from t	che communi	cation	port.
Response:							
RUN [cr/lf]							
OMRON ROBOT	[cr/lf]					
END [cr/lf]							

DI file 27

All DI information 27.1

Read-out Vhen used as a read-out file, all DI information is read out.	2
Write – This file cannot be used as a write file.	0
Format	
DI()	9

Meaning • Expresses all DI (parallel input variable) information.

```
DATA FORMAT
DI0()=&Bnnnnnnn [cr/lf]
DI1()=&Bnnnnnnn [cr/lf]
     :
DI27()=&Bnnnnnnn [cr/lf]
[cr/lf]
```

Values n"O" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

<pre>SEND DI() TO CM Outputs all DI information from the</pre>	SAMPLE
<pre>DIO()=&B10001001[cr/lf] DI1()=&B00000000[cr/lf] DI2()=&B00000000[cr/lf] DI10()=&B00000000[cr/lf] DI10()=&B00000000[cr/lf] DI11()=&B00000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] [C120()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]</pre>	
<pre>DI1()=&B0000010[cr/lf] DI2()=&B00000000[cr/lf] : DI7()=&B00000000[cr/lf] DI10()=&B00000000[cr/lf] DI11()=&B00000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] [cr/lf]</pre>	Response:
DI2()=&B0000000[cr/lf] : DI7()=&B0000000[cr/lf] DI10()=&B00000000[cr/lf] DI11()=&B00000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] [Cr/lf]	DI0()=&B10001001[cr/lf]
: DI7()=&B0000000[cr/lf] DI10()=&B0000000[cr/lf] DI11()=&B00000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]	<pre>DI1()=&B0000010[cr/lf]</pre>
DI10()=&B0000000[cr/lf] DI11()=&B00000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]	DI2()=&B0000000[cr/lf]
DI10()=&B0000000[cr/lf] DI11()=&B00000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]	:
DI11()=&B0000000[cr/lf] DI12()=&B00000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]	DI7()=&B0000000[cr/lf]
<pre>DI12()=&B0000000[cr/lf] : DI17()=&B00000000[cr/lf] DI20()=&B00000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]</pre>	<pre>DI10() =&B00000000[cr/lf]</pre>
: DI17()=&B0000000[cr/lf] DI20()=&B00000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]	DI11()=&B0000000[cr/lf]
<pre>DI20()=&B0000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]</pre>	DI12()=&B0000000[cr/lf]
<pre>DI20()=&B0000000[cr/lf] : DI26()=&B00000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]</pre>	:
: DI26()=&B0000000[cr/lf] DI27()=&B00000000[cr/lf] [cr/lf]	DI17()=&B0000000[cr/lf]
DI27()=&B0000000[cr/lf] [cr/lf]	DI20()=&B0000000[cr/lf]
DI27()=&B0000000[cr/lf] [cr/lf]	:
[cr/lf]	DI26()=&B0000000[cr/lf]
	DI27()=&B0000000[cr/lf]
END [cr/lf]	[cr/lf]
	END [cr/lf]

7	27 DI file	
	27.2	One DI port
8		Read-out ✓ When used as a read-out file, the specified DI port status is read out. Write – This file cannot be used as a write file.
9		Format DIm()
10		Meaning • Expresses the status of one DI port. DATA FORMAT DIm()=&Bnnnnnnn[cr/lf]
11		Values m0 to 7, 10 to 17, 20 to 27 n"0" or "1" (total of 8 digits). Corresponds to m7, m6,, m0, reading from the left ("m" is the port number).
12		SAMPLE SEND DI5() TO CMU ····· Outputs the DI5 port status from the communication port.
13		Response: RUN [cr/lf] DI15()=&B00000000 [cr/lf] END [cr/lf]

28 DO file

28.1

Write V When used as a write file, the value is written to the specified DO port.
DO ()

DATA FORMAT
DOO()=&Bnnnnnnn [cr/lf]
DO1()=&Bnnnnnnn [cr/lf]
:
DO27()=&Bnnnnnnn [cr/lf]
[cr/lf]

Values n"0" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

AMPLE	
END DO() TO CMU ······ Outputs all DO informatic communication port.	on from the
esponse:	
UN [cr/lf]	
OO()=&B10001001[cr/lf]	
D1()=&B00000010[cr/lf]	
D2()=&B0000000[cr/lf]	
:	
D7()=&B0000000[cr/lf]	
D10()=&B0000000[cr/lf]	
O11()=&B0000000[cr/lf]	
D12()=&B0000000[cr/lf]	
:	
017()=&B0000000[cr/lf]	
D20()=&B0000000[cr/lf]	
:	
D26()=&B0000000[cr/lf]	
D27()=&B0000000[cr/lf]	
cr/lf]	
ND [cr/lf]	

7	28 DO file	
	28.2	One DO port
8		Read-out✓When used as a read-out file, the specified DO port status is read out.Write✓When used as a write file, the value is written to the specified DO port.
9		Format DOm()
10		 Meaning Expresses the status of one DO port. Writing to DO0() and DO1() is prohibited. Readout file
11		DATA FORMAT DOm()=&Bnnnnnnn[cr/lf]
12		• Write file DATA FORMAT &Bnnnnnnn[cr/lf] or k[cr/lf]
13		Values mPort number: 0 to 7, 10 to 17, 20 to 27 n"0" or "1" (total of 8 digits). Corresponds to m7, m6,, m0, reading from the left ("m" is the port number).
	MEMO)	k Integer from 0 to 255 Writing to DO0() and DO1() is prohibited. Only referencing is permitted.
		<pre>SEND DO5() TO CMU Outputs the DO5 port status from the</pre>

END [cr/lf]

.....

29 MO file

29.1 All MO information

Read-out	1	When used as a read-out file, all MO information is read out.	
Write	1	When used as a write file, the value is written to the specified MO port.	
Format			
MO()			

MeaningExpresses all MO (internal output variable) information.Writing to MO30() and DO37() is prohibited.

```
DATA FORMAT
MO0()=&Bnnnnnnn [cr/lf]
MO1()=&Bnnnnnnn [cr/lf]
        :
MO37()=&Bnnnnnnn [cr/lf]
[cr/lf]
```

Values n"0" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND MO() TO CMU Outputs all MO information from the
communication port.
Response:
RUN [cr/lf]
MO0()=&B10001001 [cr/lf]
MO1()=&B00000010 [cr/lf]
MO2()=&B00000000 [cr/lf]
:
MO7()=&B00000000 [cr/lf]
MO10()=&B00000000 [cr/lf]
MO11()=&B00000000 [cr/lf]
M012()=&B00000000 [cr/lf]
:
MO17()=&B00000000 [cr/lf]
MO20()=&B00000000 [cr/lf]
:
MO27()=&B00000000 [cr/lf]
MO30()=&B00000000 [cr/lf]
:
MO36()=&B00000000 [cr/lf]
MO37()=&B00000000 [cr/lf]
[cr/lf]
END [cr/lf]

12

7	29	MO file	
	2	9.2	One MO port
8			Read-out✓When used as a read-out file, the specified MO port status is read out.Write✓When used as a write file, the value is written to the specified MO port.
9			Format MOm()
10			 Meaning Expresses the status of one MO port. Writing to MO30() to MO37() is prohibited. Readout file
11			DATA FORMAT MOm()=&Bnnnnnnn[cr/lf]
12			• Write file DATA FORMAT &Bnnnnnnn[cr/lf] or k[cr/lf]
13			Values mPort number: 0 to 7, 10 to 17, 20 to 27, 30 to 37 n"0" or "1" (total of 8 digits). Corresponds to m7, m6,, m0, reading from the left ("m" is the port number). kInteger from 0 to 255
	<i>U</i>	MEMO	Writing to MO30() to MO37() is prohibited. Only reference is permitted.
			<pre>SAMPLE SEND MO5() TO CMU Outputs the MO5 port status from the</pre>

END [cr/lf]

30 LO file

.....

30.1 All LO information

Read-out	1	When used as a read-out file, all LO information is read out.	
Write	1	When used as a write file, the value is written to the specified LO port.	
Format			
Formar			

Meaning • Expresses all LO (internal output variable) information.

```
DATA FOMAT
LO0()=&Bnnnnnnn [cr/lf]
LO1()=&Bnnnnnnn [cr/lf]
[cr/lf]
```

```
Values
```

n"0" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE						
SEND LO() TO CMU ····· Outputs all LO status from the communication port.						
Response:						
RUN [cr/lf]						
LO0()=&B10001001 [cr/lf]						
LO1()=&B00100100 [cr/lf]						
[cr/lf]						
END [cr/lf]						

12

9

7	30 LO file			
	30.2	One LO port		
8		Read-out ✓ When used as a read-out file, the specified LO port status is read out. Write ✓ When used as a write file, the value is written to the specified LO port.		
9		Format LOm()		
10	 Meaning • Expresses the status of one LO port. • Readout file 			
11		DATA FORMAT LOm()=&Bnnnnnnn[cr/lf] • Write file		
12		DATA FORMAT &Bnnnnnnn[cr/lf] or k[cr/lf]		
13		Values mPort number: 0, 1 n"0" or "1" (total of 8 digits). Corresponds to m7, m6,, m0, reading from the left ("m" is the port number) kInteger from 0 to 255		
		<pre>SAMPLE SEND LO0() TO CMU Outputs the LO0 port status from the</pre>		

31 TO file

31.1 All TO information

Read-out 🖌 When used as a read-out file, all TO information is read out.			
Write \checkmark When used as a write file, the value is written to the specified TO port.			
Format			
Format			

Meaning • Expresses all TO (timer output variable) information.

```
DATA FORMAT
TO0()=&Bnnnnnnn [cr/lf]
TO1()=&Bnnnnnnn [cr/lf]
[cr/lf]
```

```
Values
```

n"0" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND TO() TO CMU ····· Outputs all TO status from the
communication port.
Response:
RUN [cr/lf]
TO0()=&B10001001 [cr/lf]
TO1()=&B10001001 [cr/lf]
[cr/lf]
END [cr/lf]

12

9

10

7

10

11 12 13

TO file

31

	Read-out	1	When used as a read-out file, the specified TO port status is read out.	
	Write	1	When used as a write file, the value is written to the specified TO port.	
	Format			
TOm()				

• Readout file

DATA	FORMAT
TOm()=	-&Bnnnnnnnn[cr/lf]

• Write file

DATA FORMAT

&Bnnnnnnn[cr/lf] or k[cr/lf]

Values	I
	I

mPort number: 0, 1 n"0" or "1" (total of 8 digits). Corresponds to m7, m6, ..., m0, reading from the left ("m" is the port number). kInteger from 0 to 255

SAMPLE 1

32 SI file

32.1 All SI information

Read-out	1	When used as a read-out file, all SI information is read out.	9
Write	_	This file cannot be used as a write file.	U
F a maa ad			
Format			
SI()			0

Meaning • Expresses all SI (serial input variable) information.

```
DATA FORMAT

SIO()=&Bnnnnnnn [cr/lf]

SII()=&Bnnnnnnn [cr/lf]

:

SI27()=&Bnnnnnnn [cr/lf]

[cr/lf]
```

Values n "0" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE		
SEND SI() TO CMU Outputs all SI communication port	from	the
Response:		
RUN [cr/lf]		
SI0()=&B10001001[cr/lf]		
SI1()=&B00000010[cr/lf]		
SI2()=&B00000000[cr/lf]		
:		
SI7()=&B00000000[cr/lf]		
SI10()=&B00000000[cr/lf]		
SI11()=&B00000000[cr/lf]		
SI12()=&B0000000[cr/lf]		
:		
SI17()=&B00000000[cr/lf]		
SI20()=&B00000000[cr/lf]		
:		
SI26()=&B00000000[cr/lf]		
SI27()=&B00000000[cr/lf]		
[cr/lf]		
END [cr/lf]		

10

12

7	32	SI file		
		32.2	One SI port	
8			Read-out✓When used as a read-out file, the specified SI port status is read out.Write–This file cannot be used as a write file.	
9			Format SIm()	
10		Meaning • Expresses the status of one SI port. DATA FORMAT SIm()=&Bnnnnnnn[cr/lf]		
11			Values mPort number: 0 to 7, 10 to 17, 20 to 27 n"0" or "1" (total of 8 digits). Corresponds to m7, m6,, m0, reading from the left ("m" is the port number).	
			SAMPLE	
12			SEND SI5() TO CMU ····· Outputs the SI5 port status from the communication port.	
			Response: RUN [cr/lf]	
13			SI5()=&B00000000 [cr/lf] END [cr/lf]	

33 SO file

33.1 All SO information

Read-out 🖌 When used as a read-out file, all SO information is read out.			
Write 🗸 When used as a write file, the value is written to the specified SO port.			
Format			
Format			

Meaning • Expresses all SO (serial output variable) information.

• Writing to SOO() and SO1() is prohibited.

DATA FORMAT
SOO()=&Bnnnnnnn [cr/lf]
SO1()=&Bnnnnnnn [cr/lf]
:
SO27()=&Bnnnnnnn [cr/lf]
[cr/lf]

cr/lf]

Values n"0" or "1" (total of 8 digits).

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE	
SEND SO() TO CMU ·····	Outputs all SO status from the communication port.
Response:	
RUN [cr/lf]	
SO0()=&B10001001[cr/lf]	
SO1()=&B00000010[cr/lf]	
SO2()=&B0000000[cr/lf]	
:	
SO7()=&B0000000[cr/lf]	
SO10()=&B00000000[cr/lf]	
SO11()=&B00000000[cr/lf]	
SO12()=&B00000000[cr/lf]	
:	
SO17()=&B00000000[cr/lf]	
SO20()=&B00000000[cr/lf]	
:	
SO26()=&B00000000[cr/lf]	
SO27()=&B00000000[cr/lf]	
[cr/lf]	
END [cr/lf]	

12

33 SO	file
33.2	One SO port
	Read-out ✓ When used as a read-out file, the specified SO port status is read out.
	Write V When used as a write file, the value is written to the specified SO port.
	Format
	SOm()
	 Meaning Expresses the output status of one SO port. Writing to SO0() and SO1() is prohibited.
	Readout file
	DATA FORMAT
	SOm()=&Bnnnnnnn[cr/lf]
	• Write file
	DATA FORMAT
	&Bnnnnnnn[cr/lf] or k[cr/lf]
	ValuesmPort number: 0 to 7, 10 to 17, 20 to 27n"0" or "1" (total of 8 digits). Corresponds to m7, m6,m0, reading from the left ("m" is the port number).kInteger from 0 to 255
Ø MEI	Wo Writing to SOO() and SO1() is prohibited. Only reference is permitted.
	SAMPLE
	SEND SO5() TO CMU Outputs the SO5 port status from the communication port.
	Response: RUN [cr/lf] SO5()=&B00000000 [cr/lf]

END [cr/lf]

1(

34 SIW file

34.1

All SIW data

Read-out	1	When used as a read-out file, all SIW information is read out in hexadecimal digit.
Write	_	This file cannot be used as a write file.
Format		

SIW()

Meaning • Expresses all SIW (serial word input) data.

```
DATA FORMAT

SIW(0)=&Hnnnn [cr/lf]

SIW(1)=&Hnnnn [cr/lf]

:

SIW(15)=&Hnnnn [cr/lf]

[ cr/lf]
```

Values n0 to 9, A to F: 4 digits (hexadecimal)

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND SIW() TO CMU Outputs all SIW data from the
communication port.
Response:
RUN [cr/lf]
SIW(0)=&H1001[cr/lf]
SIW(1)=&H0010[cr/lf]
SIW(2)=&H0000[cr/lf]
:
SIW(15)=&H0000[cr/lf]
[cr/lf]
END [cr/lf]

-	34 SIW file	9	
	34.2	One SIW	' data
8		Read-out 🗸	When used as a read-out file, the specified SIW status is read out in hexadecimal digit.
		Write –	This file cannot be used as a write file.
		Format	
9		SIW(m)	
		Meaning • Exp	presses one SIW status.
10		DATA FORM	
10		SIW(m)=&Hnnn	
		Values m	
11			
		SAMPLE	
12		SEND SIW(5)	TO CMU ····· Outputs SIW(5) from the communication port.
		Response:	
		RUN [cr/lf] SIW(5)=&H100	01[cr/lf]
13		END [cr/lf]	

35 SOW file

35.1

W	
1	When used as a read-out file, all SOW information is read out in hexadecimal digit.
\checkmark	When used as a write file, the value is written to the specified SOW port.
Writi	esses all SOW (serial word output) data. ng to SOW(0) and SOW(1) is prohibited. r
	[cr/lf]
Hnnnn	[cr/lf]
&Hnnn	n [cr/lf]
	✓ ✓ Expre Writi DRMA [™] Hnnnn

• A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SOW file

		When used as a read-out file, the specified SOW port status is read out in				
Read-ou	t 🗸	hexadecimal digit.				
Write	1	When used as a write file, the value is written to the specified SOW port.				
Format						
SOW(m)						
Meaning	• Expre	esses one SOW status.				
	• Writi	ng to SOW(0) and SOW(1) is prohibited.				
• Readout	file					
DATA	FORMA	r				
SOW(m)=&Hnnnn [cr/lf]						
SOW(m)=	&Hnnnn	[cr/lf]				
SOW(m)=	&Hnnnn	[cr/lf]				
• Write file		[cr/lf]				
	9					
• Write file	9					
• Write file	9					
• Write file	e FORMA' m	Γ				
• Write file DATA	e FORMA' m	T				
• Write file DATA = &Hnnnn Values	e FORMA' m n	Γ				
• Write file DATA = &Hnnnn Values	e FORMA' m n ontaining	r 2 to 15 0 to 9, A to F: 4 digits (hexadecimal)				
 Write file DATA &Hnnnn Values A line co SAMPL 	e FORMA' m n ontaining E 1	r 2 to 15 0 to 9, A to F: 4 digits (hexadecimal)				
 Write file DATA &Hnnnn Values A line co SAMPL 	e FORMA' n ontaining E 1 DW (5) T	r 2 to 15 0 to 9, A to F: 4 digits (hexadecimal) ; only [cr/lf] is added at the end of the file, indicating the end of the file. 0 CMU0 utputs SOW(5) from the communicatior				

END [cr/lf]

36 EOF file

36.1

EOF data Read-out When used as a read-out file, ^Z (=1Ah) is read out. 1 8 Write This file cannot be used as a write file. _ Format EOF 9 Meaning • This file is a special file consisting only of a ^Z (=1Ah) code. When transmitting data to an external device through the communication port, the EOF data can be used to 10 add a ^Z code at the end of file. DATA FORMAT ^Z (=1Ah) SAMPLE SEND PGM TO CMU SEND EOF TO CMU Outputs EOF data from the communication 12 port. NAME=TEST1[cr/lf] A=1[cr/lf] : HALT[cr/lf] [cr/lf] ^Z

.....

A " Z " code may be required at the end of the transmitted file, depending on the specifications of the receiving device and application.

.....

37	Serial	port communication file		
37	.1	Serial port communication file		
			Read-out	
			Write	
		Format		
		СМИ		
		MeaningExpresses the serial communication port.Depends on the various data formats.		
		SAMPLE		
		SEND PNT TO CMU Outputs all point dat communication port.	ta from	th
		SEND CMU TO PNT Inputs all point dat communication port.	a from	the

38	Ether	net port communication file	7
	38.1	Ethernet port communication file	
		Read-out✓Write✓	8
		Format ETH	9
		 Meaning • Expresses the Ethernet port. Depends on the various data formats. SAMPLE	10
		SEND PNT TO ETH Outputs all point data from the Ethernet port. SEND ETH TO PNT Inputs all point data from the Ethernet port.	11

.....

Chapter 11 User program examples

1	Basic operation11-1
2	Application 11-8

Basic operation

1

1.1

Directly writing point data in program

Overview

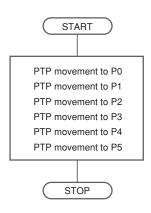
The robot arm can be moved by PTP (point-to-point) motion by directly specifying point data in the program.

Processing flow

		(START	\supset		
300.000	300.000	50.000	90.000	0.000	0.000	PTP movement
300.000	100.000	0.000	0.000	0.000	0.000	PTP movement
200.000	200.000	10.000	-90.000	0.000	0.000	PTP movement
		(STOP	\supset		
						33C01

SAMPLE						
MOVE P,	300.000	300.000	50.000	90.000	0.000	0.000
MOVE P,	300.000	100.000	0.000	0.000	0.000	0.000
MOVE P,	200.000	200.000	10.000	-90.000	0.000	0.000
HALT						

9


10

Overview

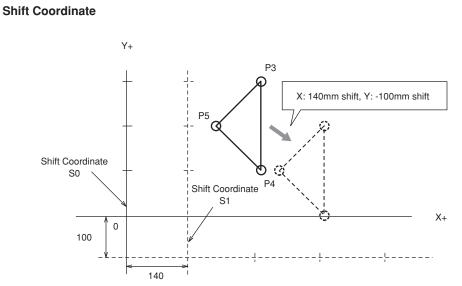
Coordinate data can be specified by using point numbers in a program. Coordinate data should be entered beforehand from the programming box or the support software "SCARA-YRCX Studio", for example as shown below (For details, refer to the YRCX operator's manual or the SCARA-YRCX Studio manual).

POINT DATA			
PO= 0.000 0.000 0.000 0.000	0.000	0.000	
P1= 100.0000.000 150.000 · · 30.000	0.000	0.000	
P2= 0.000100.000 50.000 ··· 0.000	0.000	0.000	
P3= 300.000300.000 0.000 ··· 0.000	0.000	0.000	
P4= 300.000100.000100.000 · · 90.000	0.000	0.000	
P5= 200.000200.000 0.000 ··· 0.000	0.000	0.000	

Processing flow

33C02-R7-00

SAMPLE 1	
MOVE P, PO	
MOVE P, P1	
MOVE P, P2	
MOVE P, P3	
MOVE P, P4	
MOVE P, P5	
HALT	


SAMPLE 2
FOR J=0 TO 5
MOVE P,P[J]
NEXT J
HALT

Although the same operation is executed by both SAMPLE 1 and SAMPLE 2, the program can be shortened by using point numbers and the FOR statement.

Overview

In the example shown below, after PTP movement from P3 to P5, the coordinate system is shifted +140mm along the X-axis and -100mm along the Y-axis, and the robot then moves from P3 to P5 again. The shift coordinate data is set in S1 and P3, P4, P5 are set as described in the previous section ("1.2 Using point numbers").

SHIFT D	АТА		
S0= 0.000	0.000	0.000 ···	0.000
S1= 140.00	00-100.000	0.000 ···	0.000

33C03-R7-00

9

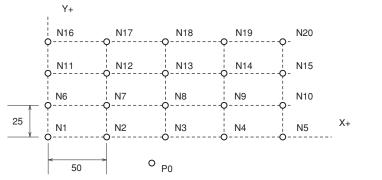
10

Ш

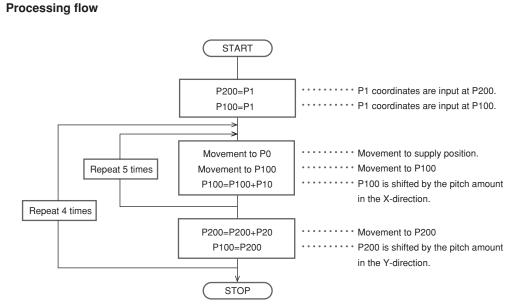
12

SAMPLE	
SHIFT SO ·····	Shift 0.
FOR J=3 TO 5	Repeated movement from P3 to P5.
MOVE P, P[J]	
NEXT J	
SHIFT S1 ·····	Changed to "shift 1".
FOR K=3 TO 5	Repeated movement occurs in the same
	manner from P3 to P5.
MOVE P,P[K]	
NEXT K	
HALT	

1.4.1 Calculating point coordinates


Overview

Repetitive movement between a fixed work supply position P0 and each of the equally spaced points on a pallet can be performed with the following program.


In the drawing below, points N1 to N20 are on Cartesian coordinates, consisting of 5 points positioned at a 50mm pitch in the X-axis direction and 4 points at a 25mm pitch in the Y-axis direction. The robot arm moves from point to point in the order of P0-N1-P0-N2...N5-P0-N6-P0... while repeatedly moving back and forth between point P0 and each pallet.

POINT DA	TA					
Work supply position:						
P0=	0.000	0.000	0.000	0.000	0.000	0.000
X-axis pit	ch:					
P10=	50.000	0.000	0.000	0.000	0.000	0.000
Y-axis pit	ch:					
P20=	0.000	25.000	0.000	0.000	0.000	0.000
N1 positio	n:					
P1 =	100.000	50.000	0.000	0.000	0.000	0.000

Calculating point coordinates

33C04-R7-00

31C05-R7-00

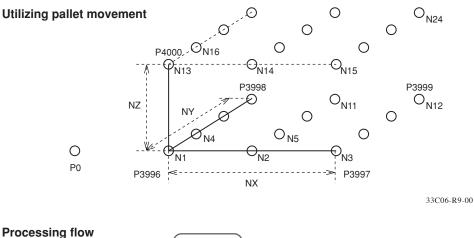
0

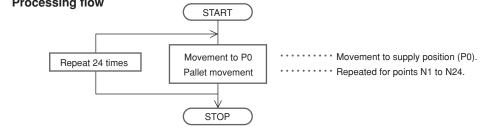
SAMPLE

P100=P1 P200=P1 FOR J=1 TO 4 FOR K=1 TO 5 MOVE P,P0 MOVE P,P100 P100=P100+P10 NEXT K P200=P200+P20 P100=P200 NEXT J HALT

11

10

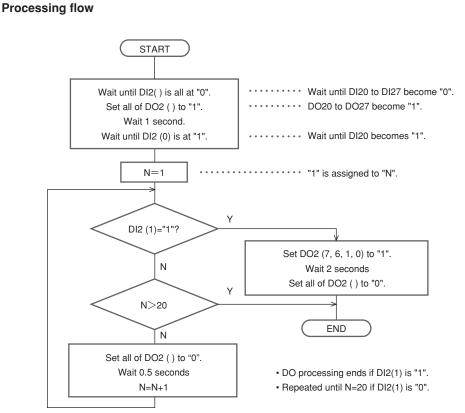

12


1.4.2 Utilizing pallet movement

Overview

Repetitive movement between a fixed work supply position P0 and each of the equally spaced points on a pallet can be performed with the following program. In the drawing below, points N1 to N24 are on Cartesian coordinates, consisting of 3 points positioned at a 50mm pitch in the X-axis direction, 4 points at a 50mm pitch in the Y-axis direction, and 2 points at 100mm pitch in the Z-axis direction. The robot arm moves from point to point in the order of P0-N1-P0-N2...-N5-P0-N6... while repeatedly moving back and forth between point P0 and each pallet.

POINT	DATA					
Work su	pply position:					
P0=	0.000	0.000	200.000	0.000	0.000	0.000
Pallet	definition:					
PL0						
NX= 3						
NY= 4						
NZ= 2						
PLP=	3996:(P3996 to	P4000 are	used)			
P[1]=	100.000	50.000	200.000	0.000	0.000	0.000
P[2]=	200.000	50.000	200.000	0.000	0.000	0.000
P[3]=	100.000	200.000	200.000	0.000	0.000	0.000
P[4]=	200.000	200.000	200.000	0.000	0.000	0.000
P[5]=	100.000	50.000	100.000	0.000	0.000	0.000


33C07-R7-00

SAMPLE FOR I=1 TO 24 Repeated for I = 1 to 24. MOVE P,P0,Z=0.000..... Movement of robot 1 to supply position. PMOVE (0,I),Z=0.000.... Movement of robot 1 to pallet point. NEXT I MOVE P,P0,Z=0.000 HALT

DI/DO (digital input and output) operation 1.5

Overview

The following example shows input/ output signal operations through the general-purpose input/ output device.

33C08-R7-00

8

9

10

11

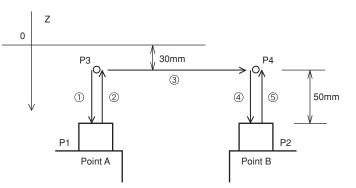
12

13

```
SAMPLE
```

```
WAIT DI2()=0 ..... Waits until DI20 to DI27 become "0".
DO2()=&B11111111 .... DO20 to DO27 become "1".
DELAY 1000
WAIT DI2(0)=1 ..... Waits until DI20 becomes "1".
N=1
*LOOP1:
IF DI2(1)=1 THEN *PROGEND ······ Jumps to *PROGEND if DI21 = 1.
IF N>20 THEN *ALLEND \cdots Ended in N > 20 (jumps to *ALLEND).
DO2() = 0
          ..... DO20 to DO27 become "0".
DELAY 500
N=N+1
GOTO *LOOP1 ..... Loop is repeated.
'END ROUTINE
*PROGEND: End processing.
DO2(7,6,1,0)=&B1111 ····· Sets DO27, 26, 21, 20 to "1".
DELAY 2000 ..... Waits 2 seconds
          ..... Sets DO20 to "0".
DO2() = 0
*ALLEND:
HALT
```

Application


2

2.1 Pick and place between 2 points

Overview

The following is an example for picking up a part at point A and placing it at point B.

Pick and place between 2 points

33C09-R7-00

Precondition

- Set the robot movement path. 1.
 - Movement path: $P3 \rightarrow P1 \rightarrow P3 \rightarrow P4 \rightarrow P2 \rightarrow P4$
 - Locate P3 and P4 respectively at a position 50mm above P1 and P2 and set the P1 and P2 positions by teaching.
- 2. I/O signal

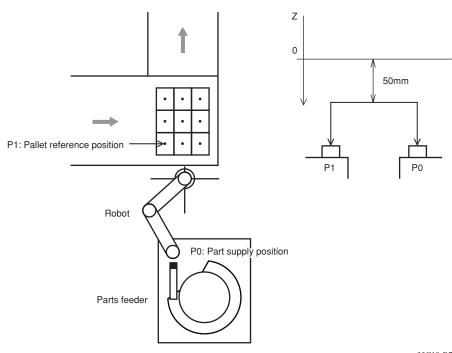
DO (20) Chuck (gripper) open/close = 0: open, 1: close

• A 0.1 second wait time is set during chuck open and close.

SAMPLE. When calculating to find P3 and 1

SAMPLE: When calculating to find P3 and P4
P3=P1 P1 coordinates are assigned to P3.
P4=P2 ····· P2 coordinates are assigned to P4.
LOC3(P3)=LOC3(P3)-50.000····· Axis 3 data of P3 is shifted 50mm in
upper direction.
LOC3(P4)=LOC3(P4)-50.000····· Axis 3 data of P4 is shifted 50mm in
upper direction.
MOVE P, P3
GOSUB *OPEN
MOVE P, P1
GOSUB *CLOSE
MOVE P, P3
MOVE P, P4
MOVE P, P2
GOSUB *OPEN
MOVE P, P4
HALT
*OPEN: ····· Chuck OPEN routine.
DO2(0)=0
DELAY 100
RETURN
*CLOSE: ····· Chuck CLOSE routine.
DO2(0)=1
DELAY 100
RETURN

SAMPLE: When using arch motion	
P4=P2 P2 coordinates are assigned to P4. LOC3(P4)=LOC3(P4)-50.000 Axis 3 data of P4 is shifted 50mm in upper direction.	7
GOSUB *OPEN	
GOSUB *OPEN MOVE P,P1,A3=30.000····· Arch motion at A3 = 30mm. GOSUB *CLOSE	8
MOVE P,P2,A3=30.000 ······ Arch motion at A3 = 30mm.	
GOSUB *OPEN	
MOVE P,P4	
HALT	Y
*OPEN: ······ Chuck OPEN routine.	
DO2(0)=0	
DELAY 100	
RETURN	10
*CLOSE: ······ Chuck CLOSE routine.	
DO2(0)=1	
DELAY 100	
RETURN	11


.....

Palletizing 2.2

Overview

The following is an example for picking up parts supplied from the parts feeder and placing them on a pallet on the conveyor. The pallet is ejected when full.

Palletizing

33C10-R7-00

Precondition

I/O signal 1.

DI (30)	Component detection sensor	1: Parts are supplied
DI (31)	Pallet sensor	1: Pallet is loaded

DO (30)	Robot hand open/close	0: Open / 1: Close
DO (31)	Pallet eject	1: Eject

Robot hand open/close time is 0.1 seconds and pallet eject time is 0.5 seconds.

2. The points below should be input beforehand as point data.

P0	Part supply position
P1	Pallet reference position
P10	X direction pitch
P11	Y direction pitch

Vertical movement is performed to a position Z=50mm above the pallet and parts feeder. 3.

```
SAMPLE 1: When point is calculated
WHILE -1 ..... All repeated (-1 is always TRUE).
 FOR A=0 TO 2
   FOR B=0 TO 2
      WAIT DI(31)=1 ····· Wait until a pallet "present" status
                            occurs.
      WAIT DI(30)=1 ..... Wait until the supplied component
                            "present" status occurs.
      DO(30)=0 ····· Robot hand OPENS.
      DELAY 100
      MOVE P,P0,A3=50.000 ····· Movement of robot 1 to supply position.
      DO(30)=1 ····· Robot hand CLOSES.
      DELAY 100
      P100=P1+P10*B+P11*A ····· Next point is calculated.
      MOVE P,P100,A3=50.000 ···· Movement of robot 1 to calculated point.
      DO(30)=0 ····· Robot hand OPENS.
      DELAY 100
   NEXT
 NEXT
 DRIVE (3,0) ..... Only 3 axis of robot 1 moves to 0.
 DO(31)=1 ····· Pallet is ejected.
 DELAY 500
 DO(31) = 0
WEND
         ..... Loop is repeated.
HALT
```

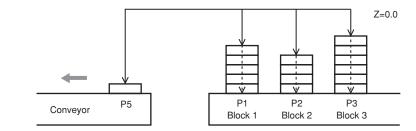
SAMPLE 2: When using the palletizing function

```
* Precondition: Must be defined at pallet "0".
WHILE -1 ..... All repeated.
   FOR A=1 TO 9
     WAIT DI(31)=1 ····· Wait until a pallet "present" status
                            occurs.
      WAIT DI(30)=1 ····· Wait until the supplied component
                            "present" status occurs.
      DO(30)=0 ····· Robot hand OPENS.
      DELAY 100
      MOVE P,P0,A3=50.000 ····· Movement of robot 1 to supply position.
      DO(30)=1 ····· Robot hand CLOSES.
      DELAY 100
      PMOVE(0,A),A3=50.000 ····· Movement of robot 1 to pallet point.
      DO(30)=0 ····· Robot hand OPENS.
      DELAY 100
   NEXT
   DRIVE(3,0) ······ Only axis 3 of robot 1 moves to 0.
   DO(31)=1····· Pallet is ejected.
   DELAY 500
  DO(31) = 0
WEND
          ..... Loop is repeated.
HALT
```

10

11

2.3 Pick and place of stacked parts


Overview

The following is an example for picking up parts stacked in a maximum of 6 layers and 3 blocks and placing them on the conveyor.

The number of parts per block may differ from others.

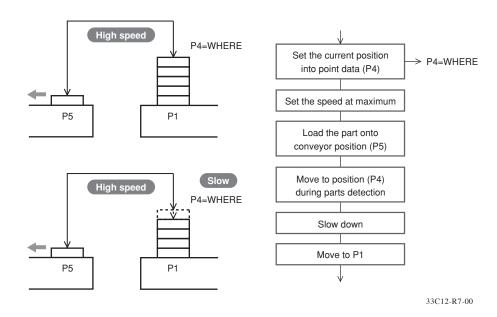
Parts are detected with a sensor installed on the robot hand.

Pick and place of stacked parts

33C11-R7-00

Precondition

1. I/O signal


DI (30)	Component detection sensor	1: Parts are supplied
DI (31)	Robot hand open/close	0: Open / 1: Close

- Robot hand open/close time is 0.1 seconds.
- 2. The points below should be input beforehand as point data.

P1	Bottom of block 1
P2	Bottom of block 2
P3	Bottom of block 3
P5	Position on conveyor

3. Movement proceeds at maximum speeds but slows down when in proximity to the part.

Processing flow

4. Use a STOPON condition in the MOVE statement for sensor detection during movement.

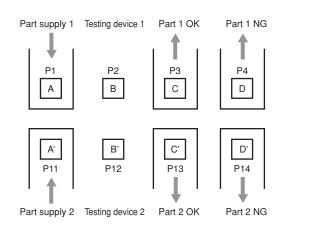
SAMPLE

FOR A=1 TO 3 SPEED 100 GOSUB *OPEN P6=P[A] LOC3(P6)=0.000 MOVE P, P6, A3=0.000 WHILE -1 SPEED 20 MOVE P,P[A],STOPON DI3(0)=1 IF DI3(0)=0 THEN *L1 'SENSOR ON P4=JTOXY(WHERE) GOSUB *CLOSE SPEED 100 MOVE P, P5, A3=0.000 GOSUB *OPEN MOVE P, P4, A3=0.000 WEND *L1: 'SENSOR OFF NEXT A SPEED 100 DRIVE (3,0) HALT *OPEN: DO3(0)=0 DELAY 100 RETURN *CLOSE: DO3(0)=1 DELAY 100 RETURN

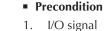
12

Parts inspection (Multi-tasking example)

Overview


One robot is used to inspect two different parts and sort them according to the OK/NG results judged by a testing device.

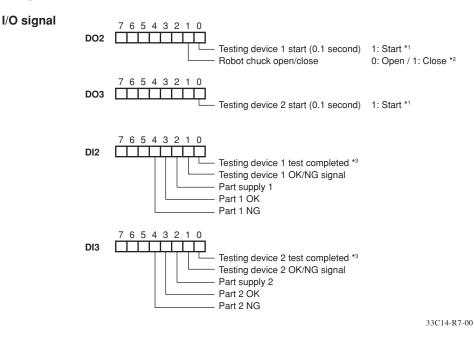
The robot picks up the part at point A and moves it to the testing device at point B. The testing device checks the part and sends it to point C if OK or to point D if NG.


The part at point A' is picked up and moved to the testing device at point B' in the same way. The testing device checks the part and sends it to point C' if OK or to point D' if NG.

It is assumed that 10 to 15 seconds are required for the testing device to issue the OK/NG results.

Parts inspection (Multi-tasking example)

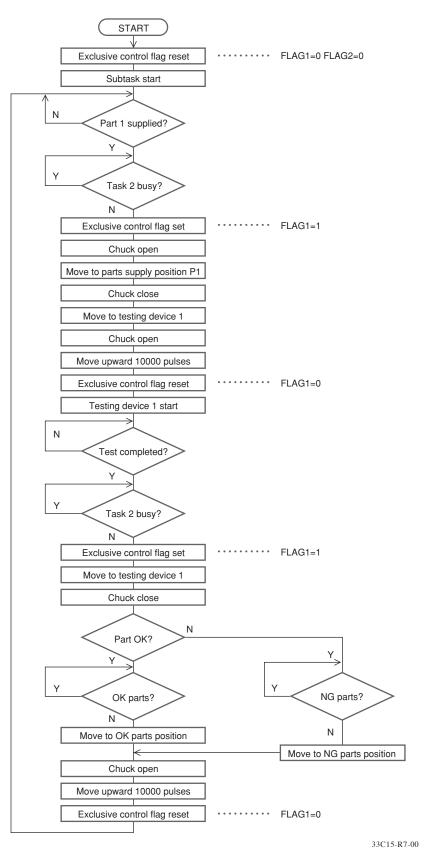
33C13-R7-00


*1: As the start signal, supply a 0.1 second pulse signal to the testing

2.4

NOTE

- *2: Chuck open and close time is 0.1 seconds.
- •*3: Each time a test is finished, the test completion signal and OK/NG signal are sent from the testing device. After testing, the test completion signal turns ON (=1), and the OK/ NG signal turns ON (=1) when the result is OK and turns OFF (=0) when NG.



- 2. The main task (task 1) is used to test part 1 and the subtask (task 2) is used to test part 2.
- 3. An exclusive control flag is used to allow other tasks to run while waiting for the test completion signal from the testing device.

FLAG1	0: Task 1 standby	(Task 2 execution enabled)
	1: Executing Task 1	(Task 2 execution disabled)
FLAG2	0: Task 2 standby	(Task 1 execution enabled)
	1: Executing Task 2	(Task 1 execution disabled)

4. Flow chart

Processing flow

Task 2 (subtask) runs in the same flow.

9

10

11

12

Program example

SAMPLE <Main task> FLAG1=0 FLAG2=0 UPPOS=0.000 START <SUB_PGM>,T2 *L1: WAIT DI2(2)=1 WAIT FLAG2=0 FLAG1=1 GOSUB *OPEN MOVE P, P1, Z=UPPOS GOSUB *CLOSE MOVE P, P2, Z=UPPOS GOSUB *OPEN DRIVEI (3,-10000) FLAG1=0 DO2(0) = 1DELAY 100 DO2(0) = 0WAIT DI2(0)=1 WAIT FLAG2=0 FLAG1=1 MOVE P, P2, Z=UPPOS GOSUB *CLOSE IF DI2(1)=1 THEN 'GOOD WAIT DI4(2)=0 MOVE P, P3, Z=UPPOS ELSE 'NG WAIT DI2(4) = 0MOVE P, P4, Z=UPPOS ENDIF GOSUB *OPEN DRIVEI (3,-10000) FLAG1=0 GOTO *L1

<Subtask> Program name:SUB_PGM

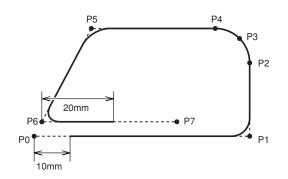
*S1: WAIT DI3(2)=1 WAIT FLAG1=0 FLAG2=1 GOSUB *OPEN MOVE P, P11, Z=UPPOS GOSUB *CLOSE MOVE P, P12, Z=UPPOS GOSUB *OPEN DRIVEI (3,-10000) FLAG2=0 DO3(0)=1 DELAY 100 DO3(0) = 0WAIT DI3(0)=1 WAIT FLAG1=0 FLAG2=1 MOVE P, P12, Z=UPPOS GOSUB *CLOSE IF DI3(1)=1 THEN 'GOOD WAIT DI3(3)=0 MOVE P, P13, Z=UPPOS ELSE 'NG WAIT DI3(4)=0 MOVE P, P14, Z=UPPOS ENDIF GOSUB *OPEN DRIVEI (3,-10000) FLAG2=0 GOTO *S1

<common routine> Program name:COMMON *OPEN: DO2(1)=0 DELAY 100 RETURN *CLOSE: DO2(1)=1 DELAY 100 RETURN ····· Subtask Start

Part supply standby
Othertaskswaiting for standby status
Chuck open
Othertasks control flag set
Othertasks and the standard status
Othertasks and the standard status
Othertasks and the status
Oth

..... Test completion standby
..... Task completion standby
..... Exclusive control flag set
..... Move to testing device
..... Chuck close
..... Test

•••••• Part movement standby •••••• Move to OK parts position


•••••• Part movement standby •••••• Move to NG parts position

.... Chuck open
.... Move axis 3 upward 10,000 pulses
.... Exclusive control flag reset

Overview

The following is an example for sealing a part.

Sealing

33C11-R9-00

11

9

10

	1 . · ·	
	_	
	. 4	

13

Precondition

1. I/O signal			
	DO (20)	Valve open/close	1: Open / 0: Close

2. Positions of P0 to P7 are set by teaching.

SAMPLE	
MOVE P,P0,Z=0 SPEED 40 PATH SET Start of robot 1's pat PATH L,P1,D0(20)=1010.000 Start of sealing at a 10mm position	h setting
PATH L,P2 PATH C,P3,P4 PATH L,P5	Setting of the
PATH L, P6, S=30 PATH L, P7, D0(20)=0020.000 ····· End of sealing at a 20mm position	motion path (Robot does not move.)
PATH END End of robot 1's path setting PATH START Path motion of robot 1 is executed (Robot 1 starts) s moving from PO
and stops at P7).	-

2.6 Connection to an external device through RS-232C (example 1)

Overview

Point data can be written in a program by using an external device connected to the YRCX series controller via the RS-232C port.

Precondition

1. Input to the external device from the controller SDATA/X/Y [cr/lf]

2. Output to the controller from the external device

	POINT DATA					
:	P10=156.420243.910	0.000 0.000	0.000	0.000	[cr/lf]	

SAMPLE

'INIT
VCMD\$="SDATA/X/Y"······ Command:Requiring the Movement position.
PO= 0.000 0.000 ··· 0.000 0.000 0.000 0.000
····· An initial position
'MAIN ROUTINE
MOVE P, P0····· Moves to the initial position.
*ST:
SEND VCMD\$ TO CMU······ Sends the command.
SEND CMU TO P10 \cdots Receives the destination point to move
to.
MOVE P, P10 ····· Moves to the reception position.
GOTO *ST

"SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.
"SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

NOTE

• (cr/lf) indicates CR code (=0Dh) + LF code (=0Ah).

	 Overview
	Point data can be created from the desired character strings and written in a program by using ar
	external device connected to the YRCX controller via the RS-232C port.
	 Precondition
	1. Input to the external device from the controller
	SDATA/X/Y [cr/lf]
NOTE /If) indicates CR code Dh) + LF code (=0Ah).	2. Output to the controller from the external device X=156.420, Y=243.910 [cr/lf]
MEMO	 "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C. "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C. The LEN () function obtains the length of the character string.
	 The MID\$ () function obtains the specified character string from among the character strings. The VAL () function obtains the value from the character string.
	SAMPLE
	'INIT
	VCMD\$="SDATA/X/Y"······ Command: Requiring the Movement position.
	P0= 0.000 0.000 ··· 0.000 0.000 0.000 0.000
	····· An initial position
	P11=100.000 100.000 0.000 0.000 0.000 0.000
	········ A reception position
	MOVE P,PO Moves to the initial position.
	*ST:SEND VCMD\$ TO CMU ······ Sends the command.
	SEND CMU TO VIN\$ Receives the Response: "X=156.420,Y=243.910".
	FOR 1%=1 TO LEN(VIN\$)-2
	IF MID\$(VIN\$,1%,2)="X=" THEN EXIT FOR
	\cdots If "X=", then exits from the roop.
	NEXT 1%
	LOC1(P11)=VAL(MID\$(VIN\$,18+2))
	••••••••••••••••••••••••••••••••••••••
	FOR I%=1 TO LEN(VIN\$)-2
	IF MID\$(VIN\$,1%,2)="Y=" THEN EXIT FOR
	IF MID\$(VIN\$,1%,2)="Y=" THEN EXIT FOR

LOC2(P11)=VAL(MID\$(VIN\$,1%+2)) Converts "Y=" downward to numeric value and assigns to axis 2 of P11. MOVE P,P11..... Moves to the reception position.

GOTO *ST

```
8
9
10
```

11

12 13

'INT VCMD\$="SDATA/X/Y" VIN\$="" VX\$=" " VY\$=" " 0.0000.0000.0000.0000.000100.000100.0000.0000.0000.000 P0= 0.000 P11= 0.000 0.000 'MAIN ROUTINE MOVE P, PO *ST: SEND VCMD\$ TO CMU SEND CMU TO VIN\$ I=1VMAX=LEN(VIN\$) *LOOP: IF I>VMAX THEN GOTO *E_LOOP C\$=MID\$(VIN\$,I,1) IF C\$="X" THEN I=I+2J=I *X_LOOP: C\$=MID\$(VIN\$, J, 1) IF C\$="," THEN *X1_LP: L=J-I VX\$=MID\$(VIN\$, I, L) I=J+1 GOTO *LOOP ENDIF J=J+1 IF J>VMAX THEN GOTO *X1_LP GOTO *X_LOOP ENDIF IF C\$="Y" THEN I=I+2J=I *Y_LOOP: C\$=MID\$(VIN\$, J, 1) IF C\$=","THEN *Y1_LP: L=J-I VY\$=MID\$(VIN\$, I, L) I=J+1 GOTO *LOOP ENDIF J = J + 1IF J>VMAX THEN GOTO *Y1_LP GOTO *Y_LOOP END IF I=I+1GOTO *LOOP *E_LOOP: WX=VAL(VX\$) WY=VAL(VY\$) LOC1(P11)=WX LOC2(P11)=WY MOVE P, P11 GOTO *ST HALT

SAMPLE

Chapter 12 Online commands

1	Online Command List 12-1
2	Operation and setting commands 12-9
3	Reference commands12-23
4	Operation commands 12-37
5	Data file operation commands12-41
6	Utility commands12-52
7	Individual execution of robot language 12-54
8	Control codes

Online Command List

Online commands can be used to operate the controller via an RS-232C interface or via an Ethernet. This Chapter explains the online commands which can be used. For details regarding the RS-232C and Ethernet connection methods, refer to the "YRCX Controller User's Manual".

About termination codes

During data transmission, the controller adds the following codes to the end of a line of transmission data.

- RS-232C
 - CR (0Dh) and LF (0Ah) are added to the end of the line when the "Termination code" parameter of communication parameters is set to "CRLF".
 - CR (0Dh) is added to the end of the line when the "Termination code" parameter of communication parameters is set to "CR".
- Ethernet
 - CR (0Dh) and LF (0Ah) are added to the end of the line.

When data is received, then the data up to CR (0Dh) is treated as one line regardless of the "Termination code" parameter setting, so LF (0Ah) is ignored.

The termination code is expressed as [cr/lf] in the detailed description of each online command stated in "2 Operation and setting commands" onwards in this Chapter.

12

8

9

Online command list: Operation-specific

Key operation

1.1

	Operation type	Command	Option	Condition
Register p	rogram in the task	LOAD	<pre> <program name=""> ,Tn , p PGm (m: 1-100, n: 1-16, p: 1-64)</program></pre>	2
Program	Reset program Execute program Stop program	RESET RUN STOP	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	2
Program	Execute one line Skip one line Execute to next line	STEP SKIP NEXT	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	2
Program	Execute before specified line Skip before specified line	RUNTO SKIPTO	Tn ,k <i><program name=""></program></i> PGm (m: 1-100, n: 1-16, k: 1-9999)	2
Set break	point	BREAK	<program name=""> (n, n, n,), k PGm 0 (m: 1-100, n: 1-9999, k: 0/1)</program>	2
Change m	anual movement speed	MSPEED	[<i>robot number</i>] k (robot number: 1-4, k: 1-100)	2
Move to al	osolute reset position	ABSADJ	[<i>robot number</i>] k, f (robot number: 1-4, k: 1-6, f: 0/1)	3
Absolute r	eset	MRKSET	[<i>robot number</i>] k (robot number: 1-4, k: 1-6)	3
Return-to-	origin	ORGRTN	[<i>robot number</i>] k (robot number: 1-4, k: 1-6)	3
Change in	ching movement amount	IDIST	[<i>robot number</i>] k (robot number: 1-4, k: 1-10000)	2
Manual mo	ovement (inching)	INCH INCHXY INCHT	[<i>robot number</i>] km (robot number: 1-4, k: 1-6, m: +/-)	3
Manual mo	ovement (jog)	JOG JOGXY JOGT	[<i>robot number</i>] km (robot number: 1-4, k: 1-6, m: +/-)	3
Point data	teaching	TEACH TCHXY	[<i>robot number</i>] m (robot number: 1-4, m: 0-29999)	2

Conditions: 1. Always executable.

- 2. Not executable during inputs from the programming box.
- 3. Not executable during inputs from the programming box, and while the program is running.
- 4. Not executable during inputs from the programming box, while the program is running, and when specific restrictions apply.

<u> </u>	peration type	Command	Option	Condition
Copy program			<i>kprogram name1></i> TO <i>kprogram name2></i> PGm (m: 1-100)	
Copy points "n	n - n" to point "k"	COPY	Pm-Pn TO Pk (m: 0-29999, n: 0-29999, k: 0-29999)	2
Copy point comme	ents "m - n" to point comment "k"		PCm-PCn TO PCk (m: 0-29999, n: 0-29999, k: 0-29999)	
Delete prograr	n		k <i>program name></i> PGm (m: 1-100)	
Delete points "	m - n"		Pm-Pn (m: 0-29999, n: 0-29999)	
Delete point co	omments "m - n"	ERA	PCm-PCn (m: 0-29999, n: 0-29999)	2
Delete point na	ames "m - n"		PNm-PNn (m: 0-29999, n: 0-29999)	
Delete pallet "			PLm (m: 0-39)	
Rename "prog	ram 1" to "program 2"	REN	<program 1=""> TO <program 2=""></program></program>	2
Check prograr	n syntax	SYNCHK	<i><program name=""></program></i> , k PGm (m: 1-100, k: 1-100)	2
Compile seque	ence program	SEQCMPL		2
Change progra	am attribute	ATTR	<i><program name=""></program></i> TO s PGm (m: 1-100, s: RW/RO/H)	2
Setting main p	rogram	MAINPG	m (m: 1-100)	2
Initialize data	Program Point Point comment Point name Shift Hand Pallet General Ethernet Port Input/output name Area check output All data except parameters Parameter All data (MEM+PRM)	INIT	PGM PNT PCM PNM SFT HND PLT GEP ION ACO MEM PRM ALL	3
Initialize data	Communication parameter	INIT	CMU ETH	3
Initialize data	Alarm history	INIT	LOG	3
Setting	Input data	INPUT	SET d CAN CLR (d: input data)	2
Buffer clear	Output message	MSGCLR		2
Change acces	s level	ACCESS	k , pppppppp (k: 0/1, p: alphanumeric characters of 8 characters or less)	2
Setting passv	vord	SETPW		2
-	ence execution flag	SEQUENCE	k (k: 0/1/3)	2
Reset alarm		ALMRST	/	2
Check or set d	ate	DATE	yy/mm/dd (yy: 00-99, mm: 01-12, dd: 00-31)	2
Check or set ti	me	TIME	hh: mm: ss (hh: 00-23, mm: 00-59. ss: 00-59)	2

Conditions: 1. Always executable.

- 2. Not executable during inputs from the programming box.
- 3. Not executable during inputs from the programming box, and while the program is running.
- 4. Not executable during inputs from the programming box, while the program is running, and when specific restrictions apply.

8

9

10

12

	8			
	9)		
1		0)	
1		1		

Data	hand	ling
------	------	------

	Operation type	Command	Option	Condition
Acquiring status	Access level	?	ACCESS k , ppppppp (k: 0/1, p: alphanumeric characters of 8 characters or less)	1
	Alarm status		ALM	
	Break point status		BREAK <i>sprogram name></i> PGm (m: 1-100)	
	Last (Current) point number reference		CURPNT	
	Emergency stop status		EMG	
	Selected hand status		HAND [<i>robot number</i>] (robot number: 1-4)	
	Inching movement amount status		IDIST [<i>robot number</i>] (robot number: 1-4)	
	Input data		INPUT	
	Online/offline status		LINEMODE ETH CMU	
	Main program number		MAINPG	
	Remaining memory capacity		MEM	
	Mode status		MODE	
	Motor power status		MOTOR	
	Output message		MSG	
	Manual movement speed		MSPEED [robot number] (robot number: 1-4)	
	Return-to-origin status		ORIGIN [<i>robot number</i>] (robot number: 1-4)	
	Sequence program execution status		SEQUENCE	
	Servo status		SERVO [<i>robot number</i>] (robot number: 1-4)	
	Selected shift status		SHIFT [<i>robot number</i>] (robot number: 1-4)	
	Acquire task in RUN or SUSPEND status		TASKS	
	Task end condition		TSKECD Tk (k: 1-16)	
	Task operation status		TSKMON Tk (k: 1-16)	
	Version information		VER	
	Numerical data		numerical expression	
	Character string data		character string expression	
	Point data		point expression	
	Shift data		shift expression	
Read-out d	ata	READ	read-out file	2
Write data		WRITE	write file	2

Conditions: 1. Always executable.

2. Not executable during inputs from the programming box.

- 3. Not executable during inputs from the programming box, and while the program is running.
- 4. Not executable during inputs from the programming box, while the program is running, and when specific restrictions apply.

Robot language independent execution

The Robot languages executable independently are the commands/functions with """ at "Online" column in Chapter 8 "robot language table".

Control code

Oneration type	Command	Ontion	Condition
Operation type	Command	Option	Condition
Execution language interruption	^C(=03H)		1

Conditions: 1. Always executable.

- 2. Not executable during inputs from the programming box.
- 3. Not executable during inputs from the programming box, and while the program is running.
- 4. Not executable during inputs from the programming box, while the program is running, and when specific restrictions apply.

Online command list: In alphabetic order

Command	Option	Meaning	Conditi
	ACCESS k, pppppppp		
?	(k: 0/1, p: alphanumeric characters of 8 characters or less)	Acquire access level	1
	ALM	Acquire alarm status	
	BREAK <i><program name=""></program></i> PGm (m: 1-100)	Acquire break point status	
	CURPNT	Acquire Last (Current) point number reference	-
	EMG	Acquire emergency stop status	-
	HAND [robot number]		-
	(robot number: 1-4)	Acquire selected hand status	
	IDIST [<i>robot number</i>] (robot number: 1-4)	Acquire inching movement amount status	-
	INPUT	Acquire input data status	
	LINEMODE ETH	Acquire online/offline status	
	MAINPG	Acquire main program number	1
	MEM	Acquire remaining memory capacity	1
	MODE	Acquire mode status	
	MOTOR	Acquire motor power status	
	MSG	Acquire output message	-
	MSPEED [<i>robot number</i>] (robot number: 1-4)	Acquire manual movement speed	-
	ORIGIN [<i>robot number</i>] (robot number: 1-4)	Acquire return-to-origin status	-
	SEQUENCE	Acquire sequence program execution status	
	SERVO [<i>robot number</i>] (robot number: 1-4)	Acquire servo status	
	SHIFT [<i>robot number</i>] (robot number: 1-4)	Acquire selected shift status	
	TASKS	Acquire task in RUN or SUSPEND status	
	TSKECD Tk (k: 1-16)	Acquire task end condition	
	TSKMON Tk (k: 1-16)	Acquire task operation status	
	VER	Acquire version	
	numerical expression	Acquire numerical data	
	character string expression	Acquire character string data	
	point expression	Acquire point data	
	shift expression	Acquire shift data	
^C (=03H)		Execution language interruption	1
ABSADJ	[<i>robot number</i>] k, f (robot number: 1-4, k: 1-6, f: 0/1)	Move to absolute reset position	3
ACCESS	k , ppppppp (k: 0/1, p: alphanumeric characters of 8 characters or less)	Change access level	2
ARMRST		Reset alarm	1
ATTR	<i><program name=""></program></i> TO s PGm (m: 1-100, s: RW/RO/H)	Change program attribute	2
BREAK	<pre><pre><pre>cprogram name> (n, n, n,), k PGm 0 0 (m: 1-100, n: 1-99999, k: 0/1)</pre></pre></pre>	Set break point	2

	5	0	3
		9)
			1

1.2

Command	Option	Meaning	Condition
COPY	<i><program name1=""></program></i> T0 <i><program name2=""></program></i> PGm (m: 1-100)	Copy program	
	Pm-Pn TO Pk	Copy points "m - n" to point "k"	2
	(m: 0-29999, n: 0-29999, k: 0-29999) PCm-PCn TO PCk (m: 0-29999, n: 0-29999, k: 0-29999)	Copy point comments "m - n" to point comment "k"	
DATE	yy/mm/dd (yy: 00-99, mm: 01-12, dd: 00-31)	Check or set the date	2
ERA	<i><program name=""></program></i> PGm (m: 1-100)	Delete program	
	Pm-Pn (m: 0-29999, n: 0-29999)	Delete points "m - n"	
	PCm-PCn (m: 0-29999, n: 0-29999)	Delete point comments "m - n"	2
	PNm-PNn (m: 0-29999, n: 0-29999)	Delete point names "m - n"	
	PLm (m: 0-39)	Delete pallet "m"	
	[robot number] k		
IDIST	(robot number: 1-4, k: 1-10000)	Change inching movement amount	3
INCH INCHXY INCHT	[<i>robot number</i>] km (robot number: 1-4, k: 1-6, m: +/-)	Manual movement (inching)	3
INIT	ACO	Initialize area check output)	
	ALL	Initialize all data (MEM+PRM)	
	СМU	Initialize communication parameter (RS-232C)	
	ETH	Initialize communication parameter (Ethernet)	
	GEP	Initialize General Ethernet Port	
	HND	Initialize hand data	
	ION	Initialize input/output name	
	LOG	Initialize alarm history	3
	MEM	Initialize all data except parameters	
	PCM	Initialize point comment data	
	PGM	Initialize program data	
	PLT	Initialize pallet data	
	PNM	Initialize point name	
	PNT	Initialize point data	
	PRM	Initialize parameter data	
	SFT	Initialize shift data	
INPUT	SET d CAN CLR (d: input data)	Sets the input data to the data request by the INPUT statement	2
JOG JOGXY JOGT	[<i>robot number</i>] km (m: 1-4, k: 1-6, m: +/-)	Manual movement (jog)	3
LOAD	<i><program name=""></program></i> ,Tn , p PGm (m: 1-100, n: 1-16, p: 1-64)	Register program in the task	2
MAINPG	m (m: 1-100)	Setting main program	2
MRKSET	[<i>robot number</i>] k (robot number: 1-4, k: 1-6)	Absolute reset	3
MSGCLR		Buffer clear Output message	1
	[robot number] k	Change manual movement speed	2

Command	Option	Meaning	Condition
NEXT	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	Execute program to next line	4
ORGRTN	[<i>robot number</i>] k (robot number: 1-4, k: 1-6)	Return-to-origin	3
READ	read-out file	Read-out data	2
REN	<program 1=""> TO <program 2=""></program></program>	Change program name from "1" to "2"	2
RESET	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	Reset program	2
RUN	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	Execute program	4
RUNTO	Tn ,k <i><program name=""></program></i> ,k PGm (m: 1-100, n: 1-16, k: 1-9999)	Execute program before specified line	2
SEQCMPL		Compile sequence program	
SEQUENCE	k (k: 0/1/3)	Set sequence execution flag	2
SETPW		Setting password	
SKIP	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	Program: Skip one line	4
SKIPTO	Tn ,k <program name=""> ,k PGm ,k (m: 1-100, n: 1-16, k: 1-9999)</program>	Program: Skip before specified line	2
STEP	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	Program: Execute one line	4
STOP	Tn <i><program name=""></program></i> PGm (m: 1-100, n: 1-16)	Stop program	2
SYNCHK	<i><program name=""></program></i> , k PGm (m: 1-100, k: 1-100)	Check program syntax	2
TEACH TCHXY	[<i>robot number</i>] m (robot number: 1-4, m: 0-29999)	Point data teaching	3
TIME	hh: mm: ss (hh: 00-23, mm: 00-59. ss: 00-59)	Check or set time	2
WRITE	write file	Write data	2
-		Robot language executable independently	4

Conditions: 1. Always executable.

- 2. Not executable during inputs from the programming box.
- 3. Not executable during inputs from the programming box, and while the program is running.
- 4. Not executable during inputs from the programming box, while the program is running, and when specific restrictions apply.

1	Program operations
	1. Register task
	Command format
	@LOAD <program name=""> ,Tn, p [cr/lf] PGm</program>
	Response format
	OK[cr/lf]
	Values mProgram number: 1 to 100 nTask number: 1 to 16
	PTask priority ranking: 1 to 64
	Meaning Registers the specified program into "task n" with "priority p". The registered program enters the STOP status. When "task number n" is omitted, the task with the smallest number of those that have not been started is specified automatically. When "task priority p" is omitted, "32" is specified.
	enters the STOP status. When "task number n" is omitted, the task with the smallest number of those that have not been started is specified automatically. When "task

2. Reset program

Command format			
1.@RESET	[cr/lf]		
2.@RESET	Tn	[cr/lf]	
	<program name=""></program>		
	PGm		

Response format

OK[cr/lf]

Values

nTask number: 1 to 16 mProgram number: 1 to 100

.....

Meaning

Executes the program reset.

Command format 1 resets all programs. When restarting the program, the main program or the program that has been executed last in task 1 is executed from its beginning. Command format 2 resets only the specified program. When restarting the program that has been reset, this program is executed from its beginning.

```
      SAMPLE

      Command:
      @RESET [cr/lf] ..... Resets all programs.

      Response:
      OK [cr/lf]

      Command:
      @RESET T3 [cr/lf] .... Resets only the program that is executed by T3.

      Response:
      OK [cr/lf]
```

3. Program execution

Command format		
1.@RUN	[cr/lf]	
2.@RUN	Tn	[cr/lf]
	<program name=""></program>	
	PGm	

Resp	ons	e foi	mat

OK[cr/lf]

Values	n	Task nu	mber: 1 to 16
	m	Program	n number: 1 to 100
Meaning	Exe	cutes or stops the current program.	
	Cor	nmand format 1 executes all progra	ams in the STOP status.
			specified program in the STOP status.
	_	, , , , , , , , , , , , , , , , , , , ,	the second s
SAMPL	E		
Commano	d:	@RUN [cr/lf]	• Executes all programs in the STOP
			status.
Respons	se:	OK [cr/lf]	
Commano	d:	@RUN T3 [cr/lf]	\cdot Executes only the program in the
			STOP status that is registered in
			т3.
Respons	se:	OK [cr/lf]	

4. Stop program

Command format	7
1.@STOP [cr/lf] 2.@STOP Tn [cr/lf] <program name=""> PGm </program>	8
Response format OK[cr/lf]	9
Values n	10
Meaning Stops the program. Command format 1 stops all programs. Command format 2 stops only the specified program. SAMPLE	11
Command: @STOP [cr/lf] Stops all programs. Response: OK [cr/lf] Command: @STOP T3 [cr/lf] Stops only the program that is executed by T3.	12
Response: OK [cr/lf]	

5. Execute one program line

.....

Command format			
@ STEP	Tn	[cr/lf]	
	<program name=""></program>		
	PGm		

Commo	ind format
OK[cr/	1f]
Values	nTask number: 1 to 16
	mProgram number: 1 to 100
Meaning	Executes one line of the specified program. When executing one line of the GOSUB statement or CALL statement, the program operation enters the subroutine or sub-procedure.
SAMPL	E
Command	d: @STEP T3 [cr/lf] ····· Executes one line of the program that is executed by T3.
Respons	se: OK [cr/lf]

6. Skip one program line

Command format			
@SKIP	Tn < <i>program name></i> PGm	[cr/lf]	

Response format

OK[cr/lf]

Meaning Skips one line of the specified program. When skipping one line of the GOSUB statement or CALL statement, all subroutines or sub-procedures are skipped.

SAMPLE		
Command:	@SKIP T3 [cr/lf]·····	···· Skips one line of the program
		that is executed by T3.
Response:	OK [cr/lf]	

7. Execute program to the next line

Command format		
@NEXT	Tn <i><program name=""></program></i> PGm	[cr/lf]

	Response format		
	OK[cr/lf]		
	Values n		
	Meaning Executes the specified program to the next line. Executing @NEXT on the line in the GOSUB or in the CALL statement make the program execute and return through the sub-procedure processing, then stop at the next line.		
MEMO)	 This is a same processing as setting the breakpoint on the next line in the program currently suspended and executing the program (@RUN). @STEP stops the program at the beginning line of the sub-procedure called by GOSUB or CALL statement. 		
	SAMPLE		
	Command: @NEXT T3 [cr/lf] ····· Executes the program in execution at T3 until the next line.		
	Response: OK [cr/lf]		

8. Execute program to line before specified line	
Command format	7
@RUNTO Tn , k [cr/lf] <program name=""> PGm</program>	8
Command format OK[cr/lf]	9
Values n	10
Meaning Executes the specified program to the line before the specified line. SAMPLE Command: @RUNTO T3, 15 [cr/lf] ····· Executes the program that is executed by T3 to the 14th line	11
and stops at the 15th line. Response: OK [cr/lf]	12

9. Skip program to line before specified line

Command f	ormat	
@SKIPTO	Tn <i><program name=""></program></i> PGm	, k [cr/lf]

Comma	ind format
OK[cr/]	
Values Meaning	nTask number: 1 to 16 mProgram number: 1 to 100 kSpecified line number: 1 to 9999 Skips the specified program to the line before the specified line.
SAMPLI	2
Command	d: @SKIPTO T3, 15 [cr/lf] ···· Skips the program that is executed by T3 to the 14th line and stops at the 15th line.
Respons	se: OK [cr/lf]

10. Set break point

Command for	mat	
1.@BREAK	<program name=""> PGm</program>	(n,n,n,), k [cr/lf]
2.@BREAK	<program name=""> PGm</program>	0 [cr/lf]
3.@BREAK 0	[cr/lf]	

Command format

OK[cr/lf]

Values	mProgram number: 1 to 100 nSpecified line number: 1 to 9999 kSet/Cancel: 0: Set, 1: Cancel
Meaning	Sets a break point to pause the program during program execution. Command format 1 sets or cancels a break point in the specified line of the specified program. Multiple lines can also be specified. Command format 2 cancels all break points set in the specified program. Command format 3 cancels all break points.
SAMPL	E
Comman	d: @BREAK PG3 (1, 3), 1 [cr/lf] ···· Sets a break point in the first and third lines of PG3.
Respon	se: OK [cr/lf]

11. Check program syntax

.....

∂SYNCHK	<program name=""> ,k [cr/lf] PGm</program>
Command	format
	lf] bbb [cr/lf] bbb [cr/lf]
	bbb [cr/lf] bbb [cr/lf] lf]
k . nn	Program number: 1 to 100 Maximum number of error: 1 to 100 .nnLine number where error occurred: 1 to 9999
00	Alarm group number bAlarm classification number
eaning) Ch If t ala ala	
eaning Ch If 1 ala ala Us	bAlarm classification number necks syntax of the program specified by <i><program name=""></program></i> or program number. there are syntax errors in the specified program, line number where error occurred, arm group number and alarm classification number are output. For details regarding arm group number and alarm classification number, refer to the "YRCX Controller
eaning Ch If t ala ala Us SAMPLE	bAlarm classification number necks syntax of the program specified by <i><program name=""></program></i> or program number. there are syntax errors in the specified program, line number where error occurred, arm group number and alarm classification number are output. For details regarding arm group number and alarm classification number, refer to the "YRCX Controller
eaning Ch If t ala ala Us SAMPLE Command :	bAlarm classification number hecks syntax of the program specified by <i><program name=""></program></i> or program number. there are syntax errors in the specified program, line number where error occurred, arm group number and alarm classification number are output. For details regarding arm group number and alarm classification number, refer to the "YRCX Controller ser's Manual" or "YRCX Controller Operator's Manual". @SYNCHK PG1, 100 [cr/lf] Sets a Maximum number of error at 100 and checks syntax of the
eaning) Ch If t ala ala	bAlarm classification number hecks syntax of the program specified by <program name=""> or program number. there are syntax errors in the specified program, line number where error occurred, arm group number and alarm classification number are output. For details regarding arm group number and alarm classification number, refer to the "YRCX Controller ser's Manual" or "YRCX Controller Operator's Manual". @SYNCHK PG1, 100 [cr/lf] Sets a Maximum number of error at 100 and checks syntax of the program 1. RUN [cr/lf] 1:5.239 [cr/lf] Detects syntax errors "5.239: Illegal identifier" at 1th, 2nd,</program>

12

NOTE

•"Main program" corresponds conventional function "_SELECT" of YRC, etc.

12. Set main program

Command format

@MAINPG[cr/lf]

Response format

OK[cr/lf]

m: Program number1 to 100 Values

(Meaning)

SAMPLE

Command:

Specifies the program which is always selected when all programs are reset. When "0" is specified at the main program number or program specified at the main program number doesn't exist, the program that has been executed last (current program) in the task 1 is selected after resetting all programs.

program.

@MAINPG 1[cr/lf] Sets program number 1 at the main

```
Response: OK[cr/lf]
```

13. Compile sequence program

Command format	

@SEQCMPL[cr/lf]

Respons	se format
RUN[cr END[cr	
Meaning	Compiles the sequence program. When the program named "SEQUENCE" doesn't exist or syntax errors exist in the program, an error message appears. The execution program is created after successful termination of compiling and the

letter "s" appears in Flag.

For details, refer to Chapter 7 "Sequence function".

SAMPLE Command: @SEQCMPL[cr/lf] Compiles the sequence program. RUN[cr/lf] Response: END[cr/lf]

2.2 MANUAL mode operation

1. Change the MANUAL mode speed	
Command format	
<pre>@MSPEED [robot number] k[cr/lf]</pre>	8
Response format	0
OK[cr/lf]	9
Values robot number1 to 4 (If not input, robot 1 is specified.) k	10
Meaning Changes the manual mode movement speed of the robot specified by the <i><robot< i=""> <i>number></i>.</robot<></i>	
SAMPLE	
Command: @MSPEED 50[cr/lf] Response: OK[cr/lf]	
	12

13

2. Point data teaching

Commar	nd format	
@ TEACH	[robot number]	mmmmm[cr/lf]
@ TCHXY	[robot number]	mmmmm[cr/lf]

Respons	se format
OK[cr/	lf]
Values	<i>robot number</i>
Meaning	Registers the current robot position as point data for the specified point number. If point data is already registered in the specified point number, then that point data will be overwritten.
	The unit of the point data may vary depending on the command. TEACH
SAMPL	E
Commano Respons	

3. Change inching movement amount

Comma	nd format
@IDIST	[robot number] mmmmm [cr/lf]
Respons	e format
OK[cr/	1f]
Values	Robot number1 to 4 (If not input, robot 1 is specified.)
, and es	mmmm: inching movement amount1 to 10000
Aeaning	Changes the inching movement amount of the robot specified by the <i><robot number=""></robot></i> .
0	0 0 1 7
	The unit of the movement amount may vary depending on the command.
	INCH"pulse" units: 1 to 10000 pulse
	INCHXY
	INCHXT
SAMPLI	
Command	d: @IDIST[2] 100[cr/lf]
Respons	se: OK[cr/lf]

Alarm reset 2.3

Command format	
@ALMRST [cr/lf]	
Response format	
Response format	

Resets the alarm.

However, this command cannot be used for the alarms which require the restart of system. In this case, turn off the controller and turn it on again.

SAMPLE	
Command:	@ALMRST [cr/lf]
Response:	RUN[cr/lf]
	END[cr/lf]

2.4 Clearing output message buffer

Command format

@MSGCLR [cr/lf]

Response	format

OK[cr/lf]

Values Clears the output message buffer of the controller. After the messages have been output by the PRINT statement, etc., the messages remaining in the buffer are cleared.

SAMPLE	
Command:	@MSGCLR [cr/lf]
Response:	OK[cr/lf]

2.5 Setting input data

Command	format			
@INPUT	SET d CAN CLR	[cr/lf]		

OK[cr/	'lf]		
/alues	d: Input data	Value that is matched to the type of the variable specifie by the INPUT statement. (Character string is enclosed by " ")	
leaning	Sets the input data for responding to a data request by INPUT statement of robo program. The controller parameter "INPUT/PRINT using channel" should be set a curren communication channel (CMU, ETH or iVY).		
	CANCancels the data re	is input to the variable when INPUT statement is executed quest by INPUT statement. ified @INPUT SET downward.	
SAMPL	E		
@INPUT @INPUT	e command> SET 10[cr/lf] SET 5[cr/lf]	<robot program=""></robot>	
OK[cr/ @?MSG[10[cr/ OK[cr/	lf]	PRINT A%[cr/lf]	
@INPUT OK[cr/ @INPUT OK[cr/ @INPUT	CLR[cr/lf] lf] SET 5[cr/lf]	<robot program=""></robot>	
OK[cr/ @?MSG[5[cr/1 OK[cr/	f]	PRINT A%[cr/lf]	

12-20
Chapter 12 Online commands

Change access level 2.6

	Command format
	@ACCESS k , pppppppp [cr/lf]
	Response format
	OK[cr/lf]
	Values k: Access level0: Maintainer level, 1: Operator level pppppppp: PasswordAlphanumeric characters of 8 characters or less
	Meaning Changes access level. If password is omitted, sets without password. When changes access level to the maintainer level and entered password is incorrect, "6.235: Password error" will occur.
_	SAMPLE
E tails regarding level, refer to the user's manual or	Command: @ACCESS 0,password [cr/lf] · · · · · · · Sets "password" as password, and changes the level to "maintainer level".
or's manual.	Response: OK [cr/lf]

REFERENCE

access level, refer to the

YRCX user's manual or operator's manual.

Setting input data

2.7

Command format

@SETPW [cr/lf]

Response format
READY[cr/lf]
ppppppp[cr/lf]
kkkkkkk[cr/lf]
nnnnnnn[cr/lf]
[cr/lf]line-feed
OK[cr/lf]

ppppppp: old password (current password)...... Alphanumeric characters of 8 characters or less kkkkkkk: new password Alphanumeric characters of 8 characters or less nnnnnnn: new password (confirmation)...... Alphanumeric characters of 8 characters or less

Changes the password for the access level changing to the maintainer level.

The current password is input for the old password, and the revised password is input for the new password and for the new password of confirmation. In the next line of the new password (confirmation), inserts line feeds only.

When input password as the old password is different from the current password or new password and new password (confirmation) are not same, "6.235: Password error" will occur.

SAMPLE	
Command:	@SETPW[cr/lf
Response:	READY [cr/lf]
	oldpass [cr/lf] Inputs "oldpass" as old password.
	newpass [cr/lf] Inputs "newpass" as new password.
	newpass [cr/lf] Inputs "newpass" as new password
	(confirmation).
	[cr/lf] line-feed
	OK [cr/lf]

3

Reference commands

3.1

Acquiring return-to-origin status

Command format 1

@?ORIGIN[cr/lf]

Response format 1

x [cr/lf] OK [cr/lf]

Command format 2

@?ORIGIN robot number [cr/lf]

Response format 2

x y{,y{,{...}} [cr/lf] OK [cr/lf]

```
Values
```

Robot number	. 1 to 4 (If not input, robot 1 is specified.)
x: Robot return-to-origin status	. 0: Incomplete, 1: Complete
y: Axis return-to-origin status	. Shows the status of the axis 1, axis 2,,
	axis 6 from the left.
	0: Incomplete, 1: Complete
	(Omitted when the axis is not connected.)

Meaning

ng Acquires return-to-origin status.

Command format 1 acquires the return-to-origin status of all robots while command format 2 acquires the status of the specified robot.

SAMPLE			
Command:	@?ORIGIN 2 [cr/lf]		
Response:	0 1,1,0,1	Axis 3 of the robot	2 is in the
		return-to-origin	incomplete
		status.	
	OK [cr/lf]		

11

9

3.2 Acquiring the serve status

Acquiring	me	Servo	siaius

Commo	and format
@?SERV	70 [robot number] [cr/lf]
Respon	se format
x y{,y OK [cr	<pre>//(,{}}} [cr/lf] //lf]</pre>
Values	<i>Robot number</i>
	1: Servo on status
	y: Axis servo status Shows the status of the axis 1, axis 2,, axis 6 from the left. 0: Mechanical brake on + dynamic brake on status
	1: Servo on status 2: Mechanical brake off + dynamic brake off status (Omitted when the axis is not connected.)

Meaning Acquires the servo status.

SAMPLE	
Command:	@?SERVO[3] [cr/lf]
Response:	0 0,1,0,0 \cdots Only the axis 2 of the robot 3 is
	in the servo on status.
	OK [cr/lf]

3.3

Acquire motor power status

@?MOTOR [cr/lf]

	c [cr/lf]	
r/lf]	DK [cr/lf]	

- 1: Motor power on status
- 2: Motor power on + all robot servo on status

Meaning Acquires the motor power status.

SAMPLE	
Command:	@?MOTOR [cr/lf]
Response:	2
	OK [cr/lf]

3.4 Acquiring the access level

Command format

@?ACCESS[cr/lf]

Response format k[cr/lf] OK[cr/lf]

• For details regarding access level, refer to the YRCX user's manual or operator's manual.

Meaning Acquires the access level.					
SAMPLE					
Command:	@?ACCESS[cr/lf]				
Response:	1[cr/lf]				
	OK[cr/lf]				

3.5

Acquiring the break point status

Command format			
@?BREAK <program name=""> [cr/lf] PGm</program>		13	

Respon	Response format				
n{,n{,{}}} [cr/lf] OK [cr/lf]					
Values	n: Line number on which break point "n" is set 1 to 9999 <i>Program name</i> Program name intended to delete m: Program number 1 to 100				
Meaning Acquires the break point status.					
SAMPLE					
Comman	nd: @?BREAK <test>[cr/lf]</test>				
Respon	nse: 12,35[cr/lf]				
	OK[cr/lf]				

9

Acquiring the mode status 3.6

	and format
@?MOD	E[cr/lf]
Respor	nse format
k[cr/	lf]
k[cr/ OK[cr	
-	
-	
OK[cr	/lf] k: Mode status 0: MANUAL mode
OK[cr	/lf]

Meaning Acquires the controller mode status.

SAMPLE	
Command:	@?MODE[cr/lf]
Response:	1[cr/lf]
	OK[cr/lf]

3.7 Acquiring the communication port status

Command format				
@?LINEMODE	ETH	[cr/lf]		
	CMU			

Respor	nse format	
k[cr/	lf]	
OK[cr,	/lf]	
Values	k 0: OFFLINE, 1: ONLINE	

Meaning Acquires the specified communication port status. ONLINE / OFFLINE commands allow to change a specified communication port to the "online" / "offline" mode, respectively.

SAMPLE						
Command:	@?LINEMODE	ETH	[cr/lf]			
Response:	1[cr/lf]					
	OK[cr/lf]					

Acquiring the main program number

@?MAINPG[
Response fo	rmat
m[cr/lf]	
OK[cr/lf]	
Values m:	Program number0 to 100
	(If not registered in the main program, acquires 0.)
Meaning Acc	uires the program number which is registered in the main program.
SAMPLE	
SAMPLE Command:	@?MAINPG[cr/lf]
	@?MAINPG[cr/lf] 1[cr/lf]

3.9

Acquiring the sequence program execution status

Command form	no	It	
		/ 7	

@?SEQUENCE[cr/lf]

Response format			
1. 1,s[cr/lf]			
OK[cr/lf]			
2. 3,s[cr/lf]			
OK[cr/lf]			
3. 0[cr/lf]			
OK[cr/lf]			
 values s			
SAMPLE			
Command: @?SEQUENCE[cr/lf]			
Response: 0[cr/lf]			
OK[cr/lf]			

3.8

12

3.10 Acquiring the version information

Command format

@?VER[cr/lf]

Response format

cv,cr-mv-dv1,dr1/dv2,dr2[cr/lf]

Values	cvHost version number
	crHost revision number (Rxxxx)
	mvPLO version number (Vx.xx)
	dv? (?: 1, 2)Driver version number (Vx.xx)
	dr? (?: 1, 2)Driver revision number (Rxxxx)

Meaning Acquires the version information.

SAMPLE	
Command:	@?VER[cr/lf]
Response:	V8.02,R1021-V5.10-V1.01,R0001/V1.01,R0001[cr/lf]
	OK[cr/lf]

3.11 Acquiring the tasks in RUN or SUSPEND status

Command format

@?TASKS[cr/lf]

Response format

```
n{,n{,{...}}}[cr/lf]
OK[cr/lf]
```

Values n: Task number1 to 16 (Task currently run or suspended)

Meaning Acquires the tasks in RUN or SUSPEND status.

SAMPLE	
Command:	@?TASKS[cr/lf]
Response:	1,3,4,6[cr/lf]
	OK[cr/lf]
	Command:

3.12 Acquiring the tasks operation status

Command format

@?TSKM	ON Tk[cr/lf]	
Respons	se format	
m,n,f, OK [cr	p[cr/lf] /lf]	
Values	k : Task number 1 to 16	
	m : Execution program number 1 to 100	
	n : Task execution line number 1 to 9999	
	f : Each task status R: RUN	
	U: SUSPEND	
	S: STOP	
	W: WAIT	
	p : Priority level of each task 17 to 47	
Meaning	Acquires the status of specified task.	
SAMPL	E	
Command	d: @?TSKMON T3[cr/lf]	
Respons	se: 5,11,R,32[cr/lf]	
	OK[cr/lf]	

3.13 Acquiring the task end condition

Command format	

@?TSKECD Tk[cr/lf]

	Response format gg.bbb[cr/lf] OK[cr/lf]		
	Values	k : Task number1 to 16 gg : Alarm group number of the task end condition bbb : Alarm classification number of the task end condition	
	Meaning	Acquires the specified task end condition. For details about alarm group number and classification number of the task end condition, refer to YRCX user's or operator's manual.	
MEMO	• When the specified task ends by error, acquires this alarm number.		
	SAMPLE		
	Command Respon	: @?TSKECD T1[cr/lf] ······ Acquires the end condition of task 1. se: 1.5[cr/lf] ····· The end condition of task 1: 1.5: Program ended by "HALT".	

OK[cr/lf]

Acquiring the shift status 3.14

Command	format

@?SHIFT [robot number] [cr/lf]

Values Robot number1 to 4 (If not input, robot 1 is specified.) m:Shift number selected for the specified robot: 0 to 39 Shift not selected: -1

Meaning Acquires the shift status of the robot specified by the *<robot number>*.

@?SHIFT[cr/lf]
1[cr/lf]
OK[cr/lf]

Acquiring the hand status 3.15

OK[cr/lf]

Command format			
<pre>@?HAND [robot number] [cr/lf]</pre>			
Response format			
m[cr/lf]			
Values Robot number1 to 4 (If not input, robot 1 is specified.) mHand number selected for the specified robot: 0 to 31 Hand not selected: -1			
Meaning Acquires the hand status of the robot specified by the <i><robot number=""></robot></i> .			
SAMPLE			
Command: @?HAND[cr/lf]			
Response: 1[cr/lf]			

3.16 Acquiring the remaining memory capacity

@?MEM[cr/		
Response fo	rmat	
k/m[cr/lf]	
	Remaining source area (unit: bytes) Remaining global identifier area (unit: bytes)	
eaning Acc	quires the remaining memory capacity.	
SAMPLE		
Command:	@?MEM[cr/lf]	
Response:	102543/1342[cr/lf]	
	OK[cr/lf]	

3.17

Acquiring the alarm status

Command format @?ALM[cr/lf]

	Response	format
	gg.bbb[c: OK[cr/lf	r/lf]
MEMO)		gAlarm group number bbAlarm classification number
	Fo	cquires the alarm which occurs in the controller. or details regarding the alarm group number and alarm classification number, refer to e YRCX user's or operator's manual.
		irable alarms are number 400 or more of alarm classification number. If multiple ccur, the alarm with larger alarm classification number (more serious alarm) is
	SAMPLE	
	Command:	@?ALM[cr/lf]
	Response:	12.600[cr/lf] OK[cr/lf]

12

3.18 Acquiring the emergency stop status

Command format

@?EMG[cr/lf]

Response format		
k[cr/lf] OK[cr/lf]		

Values k: Emergency stop status0: normal operation, 1: emergency stop

Meaning Acquires the emergency stop status by checking the internal emergency stop flag.

SAMPLE	
Command:	@?EMG[cr/lf]
Response:	1[cr/lf]
	OK[cr/lf]

3.19 Acquiring the manual movement speed

Commana format			
@?MSPEED	[robot	number]	[cr/lf]

Response format			
k[cr/lf]			
OK[cr/lf]			

Meaning Acquires the value of the manual movement speed specified by <Robot number>.

SAMPLE	
Command: @	@?MSPEED[cr/lf]
Response: 5	50[cr/lf]
C	OK[cr/lf]

3.20 Acquiring the inching movement amount

Command format	
<pre>@?IDIST [robot number] [cr/lf]</pre>	
	8
Response format	
mmmmm[cr/lf] OK[cr/lf]	
	9
Values Robot number	
mmmmm: Inching movement amount1 to 10000	
Meaning Acquires the inching movement amount specified by <i><robot number=""></robot></i> .	1
SAMPLE	
Command: @?IDIST[2][cr/lf]	
Response: 100[c/lf]	
OK[cr/lf]	

3.21 Acquiring the last reference point number (current point number)

Command format

@?CURPNT[cr/lf]

	Response f	ormat	
	k[cr/lf] OK[cr/lf]		
MEMO)	Values k:	Current point number0 to 29999	
	nu	equires the point number which is referred last. The current point number (the point number of last reference) is renewed by operations which uses the point data (point edit, r example).	
	• The current point number is renewed by following operations: the point reference and the point setting movement by remote commands, the trace movement or teaching by programming box or SCARA-YRCX Studio, etc.		
	SAMPLE		
	Command:	@?CURPNT[cr/lf]	
	Response:	100[cr/lf] OK[cr/lf]	

12

3.22 Acquiring the output message

Command format

@?MSG[cr/lf]

Response format

```
sssss ··· ssssss[cr/lf]
OK[cr/lf]
```

Values s: Message character string

Meaning Acquires one line of message which is input from the output message buffer of the controller by the PRINT statement, etc.

SAMPLE							
Command:	@?MSG[cr/lf]						
Response:	MESSAGE[cr/lf] ·	 PRINT	"MESSAGE"	is	executed	in	а
		progra	m.				
	OK[cr/lf]						

MEMO

• For executing this command, it is required that the "INPUT/PRINT using channel" parameter is set at the port to execute command.

.....

• When the output message buffer is empty, only "OK" is output as the response.

3.23 Acquiring the input data

Command format			
@?INPUT[cr/lf]			

d[cr/lf] OK[cr/lf]

Response format

d: Input data

Meaning Acquires the input data by the INPUT statement.

SAMPLE	
Command:	@?INPUT[cr/lf]
Response:	INPUT_SAMPLE[cr/lf]
	OK[cr/lf]

	ing various values	
1. Acquir	ing the value of a numerical expression	
Command	format	
@?numeric OK[cr/lf]	cal expression[cr/lf]]	
Response f	ormat	
numerical	l value[cr/lf]	
	equires the value of the specified numerical expression. The numerical expression's value format is "decimal" or "real number".	
	ne numerical expression's value format is "decimal" or "real number".	
Th SAMPLE Command:	ne numerical expression's value format is "decimal" or "real number".	
Th SAMPLE Command: Response:	<pre>e numerical expression's value format is "decimal" or "real number". @?SQR(100*5)[cr/lf] 2.236067E01[cr/lf] OK[cr/lf]</pre>	
Th SAMPLE Command:	<pre>e numerical expression's value format is "decimal" or "real number". @?SQR(100*5)[cr/lf] 2.236067E01[cr/lf] OK[cr/lf]</pre>	

2. Acquiring the value of a character string expression

Command format	
<pre>@?character string expression[cr/lf]</pre>	
Response format	
character string[cr/lf]	
OK[cr/lf]	

Meaning Acquires the value (character string) of the specified character string expression.

```
SAMPLE
The case of A = "ABC" and B$ = "DEF".
Command: @?A$+B$+"123"[cr/lf]
Response: ABCDEF123[cr/lf]
          OK[cr/lf]
```

3. Acquiring the value of a point expression

Command format

@?point expression[cr/lf]

Response format

```
point data[cr/lf]
OK[cr/lf]
```

Meaning Acquires the value (point data) of the specified point expression.

```
SAMPLE
Command: @?P1+WHRXY[cr/lf]
Response: 10.410 -1.600 52.150 3.000 0.000 0.000 0 0 0[cr/lf]
          OK[cr/lf]
```

4. Acquiring the value of a shift expression

Command format

```
@?shift expression[cr/lf]
OK[cr/lf]
```

Response format

shift data[cr/lf]

Meaning Acquires the value (shift data) of the specified shift expression.

```
SAMPLE
Command: @?s1[cr/lf]
Response: 25.000 12.600 10.000 0.000[cr/lf]
         OK[cr/lf]
```

4

4.1

Operation commands

Absolute reset

Command	l format	
@ABSADJ	[robot number]	k,f[cr/lf]
@MRKSET	[robot number]	k[cr/lf]

Deepen	to format
RUN[cr	<pre>se format c/lf] ······ At movement start c/lf] ····· At movement end</pre>
Values	<i>Robot number</i> 1 to 4 (If not input, robot 1 is specified.) kAxis number: 1 to 6 fMovement direction / 0: + direction, 1: - direction
Meaning	 Performs the absolute reset operation of the specified axis of the robot specified by the <<i>robot number></i>. This command is available only to axes whose return-to-origin method is set as "Mark". ABSADJMoves the specified robot axis to an absolute reset position. MRKSETPerforms absolute reset on the specified robot axis.
SAMPL	Æ
Comman Respon	

12

4.2 Return-to-origin operation

Commo	and format
@ORGR1	N [robot number] k[cr/lf]
Respon	se format
RUN[cr	/lf] ······ At movement start
END[cr	/lf] ······ At movement end
Values	<i>Robot number</i> 1 to 4 (If not input, robot 1 is specified.) kAxis number: 1 to 6
Values Meaning	
	kAxis number: 1 to 6 Performs the return-to-origin operation of the specified axis of the robot specified by < <i>robot number></i> .
Meaning	kAxis number: 1 to 6 Performs the return-to-origin operation of the specified axis of the robot specified by <i><robot number=""></robot></i> .
Meaning SAMPL	<pre>kAxis number: 1 to 6 Performs the return-to-origin operation of the specified axis of the robot specified by <robot number="">. E d: @ORGRTN 1[cr/lf]</robot></pre>

Command format	
<pre>@INCH [robot number] km [cr/lf] @INCHXY [robot number] km [cr/lf] @INCHT [robot number] km [cr/lf]</pre>	8
Response format	
RUN[cr/lf] ····· At movement start END[cr/lf] ····· At movement end	Ģ
Values Robot number	1
Meaning Manually moves (inching motion) the specified axis of the robot specified by the <i><robot number=""></robot></i> . The robot performs the same motion as when moved manually in inching motion with	1
the programming box's jog keys (moves a fixed distance each time a jog key is pressed). The unit of the movement amount and operation type by command are shown below. INCH	1
INCHXY"mm" units. According to the robot configuration, the arm tip of the robot moves in the direction of the Cartesian coordinate system. INCHT"mm" units. According to the robot configuration, the hand attached to the arm tip of the robot moves.	1
SAMPLE	
Command: @INCH 1+[cr/lf] Response: RUN[cr/lf] Movement start END[cr/lf] Movement end	

2

4.4

Command format

@JOG [robot number] km [cr/lf] @JOGXY [robot number] km [cr/lf] @JOGT [robot number] km [cr/lf]

Response format

```
RUN[cr/lf] .... At movement start
END[cr/lf] .... At movement end
```

lues	Robot number1 to 4 (If r	not input, robot 1 is specified.)
	kAxis num	ber: 1 to 6
	mMovemer	nt direction / +, -

(Meaning)

Val

Manually moves (jog motion) the specified axis of the robot specified by the *<robot* number>.

The robot performs the same motion as when holding down the programming box's jog keys in manual mode.

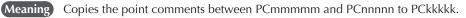
To continue the operation, it is necessary for the JOG command to input the execution continue process (^V(=16H)) by the online command at intervals of 200ms. If not input, the error stop occurs.

Additionally, after the movement has started, the robot stops when any of the statues shown below arises.

- When software limit was reached.
- When stop signal was turned off.
- When STOP key on the programming box was pressed.
- When an online command (^C (=03H)) to interrupt execution was input.

The unit of the movement amount and operation type by command are shown below. JOG"pulse" units. Only the specified axis moves. JOGXY"mm" units. According to the robot configuration, the arm tip of the robot moves in the direction of the Cartesian coordinate system. JOGT"mm" units. According to the robot configuration, the hand attached to the arm tip of the robot moves.

SAMPLE	
Command:	@JOG 1+[cr/lf]
Response:	RUN[cr/lf] Movement start
	END[cr/lf] Movement end


Date	a file operation commands
5.1	Copy operations
	1.Copying a program
	Command format
	@COPY <program 1="" name="">TO <program 2="" name=""> [cr/lf]PGnTO</program></program>
	Response format
	RUN[cr/lf] ······ At prosess start END[cr/lf] ····· At prosess end Values Program name 1
	END[cr/lf] At prosess end Values Program name 1 Program name in copy source (32 characters or less consisting of alphanumeric characters and underscore) Program name 2
	END[cr/lf] At prosess end Values Program name 1 Program name in copy source (32 characters or less consisting of alphanumeric characters and underscore) Program name 2 Program name in copy destination (32 characters or less consisting of alphanumeric characters and underscore) n: Program number
	END[cr/lf] At prosess end Values Program name 1 Program name in copy source (32 characters or less consisting of alphanumeric characters and underscore) Program name 2
	END[cr/lf] At prosess end Values Program name 1 Program name in copy source (32 characters or less consisting of alphanumeric characters and underscore) Program name 2 Program name in copy destination (32 characters or less consisting of alphanumeric characters and underscore) n: Program number

2.Copying point data

Command format							
@COPY Pmmmmm-Pnnnn TO Pkkkkk[cr/lf]							
Response format							
RUN[cr/lf] ······ At prosess start							
END[cr/lf] ······ At prosess end							
Values mmmmm							
Meaning Copies the point data between Pmmmmm and Pnnnnn to Pkkkkk.							
SAMPLE							
Command: @COPY P101-P200 TO P1101[cr/lf]							
Response: RUN [cr/lf] Process start							
END [cr/lf] ····· Process end							

3. Copying point comments

@COPY	PCmm	mmm-PCnnnr	n TO	PCkkkkk[cr/lf]	
Respon	se forn	nat			
		nat ····· A	t pros	ess start	

SAMPLE	
Command:	@COPY PC101-PC200 TO PC1101[cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

5.2 Erase

1. Erasing a program

Command format					
0ERA	<program name=""> PGn</program>	[cr/lf]			

Response format

```
RUN[cr/lf] ······ At prosess start
END[cr/lf] ····· At prosess end
```

Values

Program nameProgram name to be erased (32 characters or less consisting of alphanumeric characters and underscore) n: Program number1 to 100

Meaning Erases the designated program.

0 . 0

SAMPLE	
Command:	@ERA <test1> [cr/lf]</test1>
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

2. Erasing point data

Command format
@ERA Pmmmmm-Pnnnnn[cr/lf]
Response format
RUN[cr/lf] ····· At prosess start
END[cr/lf] ······ At prosess end
Values mmmmm
SAMPLE
Command: @ERA P101-P200[cr/lf]
Response: RUN [cr/lf] ····· Process start
END [cr/lf] ····· Process end

0

12

13

3. Erasing point comments

.....

Command fo	rmat
@ERA PCmm	nmm-PCnnnnn[cr/lf]
Response for	mat
RUN[cr/lf]	······ At prosess start
END[cr/lf]	····· At prosess end

Meaning Erases the point comments between PCmmmmm and PCnnnnn.

SAMPLE	
Command:	@ERA PC101-PC200[cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

4. Erasing point name

Command format

@ERA PNmmmmm-PNnnnnn [cr/lf]

Response format

```
RUN[cr/lf] ····· At prosess start
END[cr/lf] ····· At prosess end
```

Values nnnnnLast point name number to be erased: 0 to 29999

Meaning Erases the point names between PNmmmmm and PNnnnnn.

SAMPLE	
Command:	@ERA PC101-PC200[cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

5. Erasing pallet data

Command format			
@ERA PLm[cr/lf]			

```
Response format
RUN[cr/lf] .... At prosess start
END[cr/lf] ····· At prosess end
```

Values mPallet number to be erased: 0 to 39

Erases the PLm pallet data. Meaning

SAMPLE	
Command:	@ERA PL1[cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

6. Erasing hand

Command format

@ERA Hm [cr/lf]

Response format	
------------------------	--

```
RUN[cr/lf] ····· At prosess start
END[cr/lf] ····· At prosess end
```

Values mHand number to be erased: 0 to 31

Meaning Erases the hand definition data of "Hm".

@ERA H2 [cr/lf]
RUN [cr/lf] ····· Process start
END [cr/lf] ····· Process end

7. Erasing shift

Command format @ERA Sm [cr/lf]

Response format

.....

```
RUN[cr/lf] ····· At prosess start
END[cr/lf] ····· At prosess end
```

Values mShift number to be erased: 0 to 39

Meaning Erases the shift data of "Sm".

SAMPLE	
Command:	@ERA S1 [cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] Process end

8. Erasing area check output setting

Command format

@ERA ACm [cr/lf]

Response format

```
RUN[cr/lf] .... At prosess start
END[cr/lf] ····· At prosess end
```

Values mArea check output setting number to be erased: 0 to 31

Meaning Erases the area check output setting of "ACm".

SAMPLE Command: @ERA AC3 [cr/lf] Response: RUN [cr/lf] Process start END [cr/lf] Process end

9. Erasing general-purpose Ethernet port

Command format @ERA GPm [cr/lf]

Response format

```
RUN[cr/lf] .... At prosess start
END[cr/lf] ····· At prosess end
```

mGeneral-purpose Ethernet port number to be erased: 0 to 15 Values

Meaning Erases the general-purpose Ethernet port of "GPm".

SAMPLE	
Command:	@ERA GP5 [cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

Command format			
@ren	<program 1="" name=""> PGn</program>	TO <program 2="" name=""> [cr/lf]</program>	

	Response	e format	
RUN[cr/lf] ····· At p		[] At	prosess start
	END[cr/	lf] At	prosess end
(Values	Program name 1	. Program name before renaming: shown with 32 characters
			less consisting of alphanumeric characters and $_$ (underscore)
		Program name ?	Program name after renaming, shown with 32 characters or le

Program name 2...... Program name after renaming: shown with 32 characters or less consisting of alphanumeric characters and _ (underscore) n: Program number.... 1 to 100

Meaning Changes the name of the specified program.

SAMPLE	
Command:	<pre>@REN <test1> TO <test2>[cr/lf]</test2></test1></pre>
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

Changing the program attribute 5.4

Command	format	
ØATTR	< <i>program name></i> PGn	TO s [cr/lf]

Respon	Response format				
OK[cr/	lf]				
Values	<i>Program name</i> Program name to change the attribute: shown with 32 characters or less consisting of alphanumeric characters and _ (underscore)				
	s: Attribute RW: Readable/writable RO: Not writable (read only)				
	H: Hidden n: Program number 1 to 100				
Meaning	Changes the attribute of the program specified by the <i><program name=""></program></i> or program number.				
SAMPL	E				
Comman Respon					

12

9

10

characters or

Initialization process

5.5

1. Initializing the memory area

Command format

@INIT memory area[cr/lf]

Response format

```
RUN[cr/lf] ····· At prosess start
END[cr/lf] ····· At prosess end
```

Val	

Memory area	Memory area to be initialized.
One of the following memo	ry areas is specified.
PGM	Initializes the program area.
PNT	Initializes the point data area.
SFT	Initializes the shift data area.
HND	Initializes the hand data area.
PLT	Initializes the pallet data area.
PCM	Initializes the point comment area.
PNM	Initializes the point name area.
ION	Initializes the input/output name area.
ACO	Initializes the area check output setting area.
GEP	Initializes the general-purpose Ethernet port setting area.
MEM	Initializes the above areas (PGM all data up to GEP).
PRM	Initializes the parameter area.
ALL	Initializes all areas (MEM+PRM).

Meaning Initializes the memory area.

SAMPLE	
Command:	@INIT PGM[cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

2. Initializing the communication port

		7
Comm	and format	
@INIT	communication port [cr/lf]	
		8
Respor	nse format	
RUN[c	r/lf] ······ At prosess start	_
END[C	r/lf] ····· At prosess end	
		9
Values	Communication portCommunication port to be initialized	
	Specify any of the ports shown below for the communication port.	
	CMUInitializes the RS-232C port.	10
	ETHInitializes the Ethernet port.	
Meaning	Initializes the communication port.	_
	For information about the communication port initial settings, refer to the YRCX user's	
	or operator's manual.	
SAMPI	LE	
Comman	nd: @INIT CMU [cr/lf]	
Respor	nse: RUN [cr/lf] ····· Process start	12
	END [cr/lf] Process end	

3. Initializing the alarm history

Command format

@INIT LOG[cr/lf]

Response format

.....

```
RUN[cr/lf] ······At prosess start
END[cr/lf] ······At prosess end
```

Meaning Initializes the alarm history.

SAMPLE	
Command:	@INIT LOG[cr/lf]
Response:	RUN [cr/lf] ····· Process start
	END [cr/lf] ····· Process end

Data readout processing

Command format

@READ read-out file[cr/lf]

Response format

Values

```
BEGIN [cr/lf] .....At process start
(Data output: The contents may vary depending on the read-out file.)
END [cr/lf] ....At process end
```

Read-out file Designates a read-out file name.

NOTE

n

10

5.6

• For more information about files, refer to the earlier Chapter 10 "Data file description".

Meaning Reads out the data from the designated file.

Online commands that are input through the RS-232C port have the same meaning as the following command.

SEND <read-out file> TO CMU

Commands via Ethernet have the same meaning as the following command.

• SEND < read-out file> TO ETH

Туре	Read-out file name	Definition format	
туре		All	Individual file
	All file	ALL	
	Program	PGM	<bbb>></bbb>
User memory	Point data	PNT	Pn
	Point comment	PCM	PCn
	Point name	PNM	PNn
	Parameter	PRM	/ccccccc/
User memory	Shift definition	SFT	Sn
	Hand definition	HND	Hn
	Pallet definition	PLT	PLn
	General Ethernet port	GEP	GPn
	Input/output name	ION	iNMn(n)
	Area check output	ACO	ACn
	Variable	VAR	abby
Variable, constant	Array variable	ARY	abby(x)
	Constant		"ccc"
	Program directory	DIR	< <bbb>></bbb>
Status	Parameter directory	DPM	
	Machine reference (sensor or stroke-end)	MRF	
	Machine reference (mark)	ARP	
	System configuration information	CFG	
	Controller	CNT	
	Robot	RBT	
	Driver	DRV	
	Option board	OPT	
	Self check	SCK	
	Alarm history	LOG	
	Remaining memory size	MEM	
	DI port	DI()	DIn()
	DO port	DO()	DOn()
	MO port	MO()	MOn()
	TO port	TO()	TOn()
Device	LO port	LO()	LOn()
Device	SI port	SI()	SIn()
	SO port	SO()	SOn()
	SIW port	SIW()	SIWn()
	SOW port	SOW()	SOWn()
Others	File end code	EOF	
a: Alphabetic character b: Al	phanumeric character or underscore ()	c: Alphanumeric char	acter or symbol

a: Alphabetic characterb: Alphanumeric character or underscore (_)c: Alphanumeric character or symboli: I/O typen: Numberx: Expression (Array argument)y: variable type

SAMPLE	
Command:	@READ PGM [cr/lf] Reads out all programs.
	@READ P100 [cr/lf] Reads out the point 100.
	<pre>@READ DINM2(0) [cr/lf] ···· Reads out the input/output name</pre>
	of DI2(0).

5.7

Data write processing

Command format

@WRITE write file[cr/lf]

Response format

Meaning

```
READY[cr/lf] ····· Input request display
OK [cr/lf] ····· After input is completed
```

NOTE

• For more information about files, refer to the earlier Chapter 10 "Data file description".

Respons	se format	
-	cr/lf]······ Input request display /lf] ····· After input is completed	ī
Values	<i>Write file</i> Designates a write file name.	
Meaning	Writes the data in the designated file. Online commands that are input through the RS-232C port have the same meaning as the following command.	
	• SEND CMU TO < <i>write file</i> >	
	Commands via Ethernet have the same meaning as the following command.SEND ETH TO <i><write file=""></write></i>	
designa	DO, MO, TO, LO, SO, SOW ports, an entire port (DO(), MO(), etc.) cannot be ated as a WRITE file.	Ī

• Some separate files (DOn(), MOn(), etc.) cannot be designated as a WRITE file. For details, refer to Chapter 10 "Data file description".

T		Defi	Definition format	
Туре	Write file name	All	Separate file	
User memory	All file	ALL		
	Program	PGM	<bbb>></bbb>	
	Point data	PNT	Pn	
	Point comment	PCM	PCn	
	Point name	PNM	PNn	
	Parameter	PRM	/ccccccc/	
	Shift definition	SFT	Sn	
	Hand definition	HND	Hn	
	Pallet definition	PLT	PLn	
	General Ethernet port	GEP	GPn	
	Input/output name	ION	iNMn(n)	
	Area check output	ACO	ACn	
Variable, constant	Variable	VAR	abby	
	Array variable	ARY	abby(x)	
Device	DO port		DOn()	
	MO port		MOn()	
	TO port		TOn()	
	LO port		LOn()	
	SO port		SOn()	
	SOW port		SOWn()	

a: Alphabetic character b: Alphanumeric character or underscore (_) c: Alphanumeric character or symbol i: I/O type n: Number x: Expression (Array argument) y: variable type

SAMPLE	
Command:	@WRITE PRM [cr/lf] Writes the label specified
	parameter.
	@WRITE P100 [cr/lf] ····· Writes the point 100.
	@WRITE DINM2(0)[cr/lf]Writes the input/output name of
	DI2(0).

12

7

6

6.1

12

ΝΟΤΕ

• To change only the year or month, the slash (/) following it can be omitted. Example:

6.2

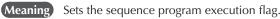
To set the year to 2016, enter 16(cr/lf).

To set the month to June, enter /06(cr/lf).

MEMO

Utility commands

Setting the sequence program execution flag


Command format

@SEQUENCE k[cr/lf]

Response format

OK[cr/lf]

Values kExecution flag / 0: disable, 1: enable, 3: enable (DO reset)

SAMPLE

Command:	@SEQUENCE	1[cr/lf]
Response:	OK[cr/lf]	

Setting the date

Command format

@DATE yy/mm/dd[cr/lf]

Response format

OK[cr/lf]

Values

s	yy/mm/dd	Date to be set. (year, month, day)
	уу	Lower 2 digits of the year (00 to 99)
	mm	Month (01 to 12)
	dd	Day (01 to 31)

Meaning Sets a date in the controller.

- The currently set values are used for the omitted items.
- If only [cr/lf] is transmitted, then the date remains unchanged.
- If an improbable date is entered, then "5.202: Data error" occurs.

SAMPLE 1

```
To change only the day,
//15[cr/lf] ..... Day is set to 15th.
```

SAMPLE 2

```
Command: @DATE 16/01/14[cr/lf]
Response: OK[cr/lf]
```

6.3	Setting the time	
	Command format	7
	@TIME hh:mm:ss[cr/lf]	
	Response format	8
	OK[cr/lf]	
	Values hh:mm:ssCurrent time hhhour (00 to 23)	9
	mm minute (00 to 59) sssecond (00 to 59)	10
	Meaning Sets the time of the controller.	
MEMO)	 The currently set values are used for the omitted items. If only [cr/lf] is transmitted, then the time remains unchanged. If an improbable time is entered, then "5.202: Data error" occurs. 	11
	SAMPLE 1	12
	To change only the minute, :20:[cr/lf] Minute is set to 20.	-
	SAMPLE 2	13
	Command: @TIME 10:21:35[cr/lf] Response: OK[cr/lf]	

Command format

@robot language[cr/lf]

Response format 1

```
OK[cr/lf] or NG=gg.bbb [cr/lf]
```

Response format 2

```
RUN[cr/lf] or NG=gg.bbb[cr/lf] ····· At process start
END[cr/lf] or NG=gg.bbb[cr/lf] ···· At process end
```

Values

s	OK, END	. Command ended correctly.
	NG	. An error occurred.
	RUN	. Command starts correctly.
	gg: Alarm group number	. 0 to 99
	bbb: Alarm classification number	. 0 to 999

Meaning Robot language commands can be executed.

- Only independently executable commands are executed.
- Command format depends on each command to be executed.

SAMPLE 1 Command: @SE

```
Command: @SET DO(20) [cr/lf]
Response: OK[cr/lf]
```

SAMPLE 2

```
Command: @MOVE P,P100,S=20[cr/lf]
Response: RUN [cr/lf] ····· Process start
END [cr/lf] ···· Process end
```

13

Command	format
---------	--------

^C (=03H)

Response format	

NG=1.8

Meaning Interrupts execution of the current command.

SAMPLE	
Command:	<pre>@MOVE P,P100,S=20[cr/lf]</pre>
	^C
Response:	NG=1.8[cr/lf]

Chapter 13 Appendix

1	Reserved word list13-1
2	Changes from conventional models 13-3

1 Reserved word list

The words shown below are reserved for robot language and cannot be used as identifiers (variables, etc.).

А	DATE	HND	MOVET
ABS	DBP	HOLD	MRF
ABSADJ	DEC	HOLDALL	MRKSET
ABSRPOS	DECEL	1	MSG
ACC	DEF	IDIST	MSGCLR
ACCEL	DEGRAD	IF	MSPEED
ACCESS	DELAY	IMP	MTRDUTY
ACO	DI	INCH	N
ALL	DIM	INCHT	NAME
ALM	DIR	INCHXY	NEXT
ALMRST	DIST	INIT	NOT
AND	DO	INPUT	0
ARCHP1	DPM	INT	OFF
ARCHP2	DRIVE	ION	OFFLINE
ARM	DRIVE	J	ON
ARMCND	DRV	JOG	ONLINE
ARMSEL	E	JOGT	OPEN
ARMTYP	ELSE	JOGXY	OPT
ARP	ELSEIF	JTOXY	OR
ARY	EMG	L	ORD
ASPEED	END	LEFT	ORGORD
ATN	ENDIF	LEFTY	ORGRTN
ATN2	EOF	LEN	ORIGIN
ATTR	EQV	LET	OUT
AXWGHT	ERA	LINEMODE	OUTPOS
В	ERL	LO	P
BIN	ERR	LOAD	P
BREAK	ERROR	LOC1	PATH
C	ETH	LOC2	PC
CALL	ETHSTS	LOC3	PCM
CASE	EXIT	LOC4	PDEF
CFG	EXITTASK	LOC5	PGM
CHANGE	F	LOC6	PGMTSK
CHGPRI	FN	LOCF	PGN
CHR	FOR	LOG	PLT
CLOSE	FREE	LSHIFT	PMOVE
CMU	G	М	PNM
CNT	GEP	MAINPG	PNT
CONT	GEPSTS	MCHREF	PPNT
CONTPLS	GO	MEM	PRINT
COPY	GOSUB	MID	PRM
COS	GOTO	MO	PSHFRC
CURPNT	Н	MOD	PSHJGSP
CURTQST	HALT	MODE	PSHMTD
CURTRQ	HALTALL	MOTOR	PSHRSLT
CUT	HAND	MOVE	PSHSPD
D	HEX	MOVEI	PSHTIME

PUSH	SET	SWI	WEIGHT
PWR	SETGEP	SYNCHK	WEIGHTG
R	SETPW	Т	WEND
RADDEG	SFT	TAG	WHERE
RBT	SGI	TAN	WHILE
READ	SGR	TASKS	WHRXY
REF	SHARED	TCHXY	WRITE
REM	SHIFT	TCOUNTER	X
REN	SI	TEACH	XOR
RESET	SID	THEN	XY
RESTART	SIN	TIM	XYTOJ
RESUME	SIW	TIME	Y
RETURN	SKIP	TIMER	YZ
RIGHT	SKIPTO	ТО	Z
RIGHTY	SO	TOLE	ZX
RSHIFT	SOD	TORQUE	
RUN	SOW	TSKECD	
RUNTO	SPEED	TSKMON	
S	SQR	TSKPGM	
S	START	V	
SCK	STEP	VAL	
SELECT	STOP	VAR	
SEND	STOPON	VEL	
SEQCMPL	STR	VER	
SEQUENCE	SUB	W	
SERVO	SUSPEND	WAIT	

Because the following names are used as system variable names, they cannot be used at the beginning of other variable names (n: numeric value).

ARMSEL	CHGWRK	CLOSE	CREWRK
CURTQST	ETHSTS	GEPSTS	HALTALL
HOLDALL	MOTOR	MOVET	MTRDUTY
OPEN	PGMTSK	PGN	PSHFRC
PSHJGSP	PSHMTD	PSHRSLT	PSHSPD
PSHTIME	PUSH	SETGEP	TSKPGM
WRKDEF	WEIGHTG		*

Variable name usage examples

Although keywords which are reserved as robot language words cannot be used as they are, they can be used as variable names if alphanumeric characters are added to them.

Example: "ABS" cannot be used, but "ABS1" or "ABSX" can be used.

Keywords reserved as system variables cannot be used at the beginning of other variable names, even if alphanumeric characters are added to them.

2 Changes from conventional models

Program name

For YRCX, the following two program names which have been special for conventional models (YRC, etc.) don't have a special meaning.

A) FUNCTIONB) _SELECT

1

2

A) FUNCTION

In conventional models (YRC, etc.), "FUNCTION" has been special program for registering a user function. YRCX doesn't have a user function and "FUNCTION" doesn't have a special meaning.

B) _SELECT

In conventional models (YRC, etc.), the "_SELECT" program has been selected and executed every time robot programs were reset.

In YRCX, the program specified at the main program number (or the program executed last if there is no specified program there) is selected and executed when robot programs are reset.

For details regarding the main program, refer to "12. Set main program" in "2.1 Program operations" in Chapter 12.

10

Ш

2

Multiple Robot Control

SAMPLE

In conventional models (YRC, etc.), robot has consisted of a main group (one main robot, main auxiliary axes) and a sub group (one sub robot, sub auxiliary axes).

In YRCX, robot consists of robot 1 to 4 (normal axes, auxiliary axes).

Due to this change, commands for each group have changed to ones for each robot.

For details regarding the command for each robot, refer to "2. Command list with a robot setting" in Chapter 5 of this manual for YRCX, and regarding the command for each group, refer to "Command list for each group" of the programming manual for conventional models (YRC, etc.), respectively.

Command for each group: conv	rention	al	mode	l (YRC,	etc.)		
MOVE P, P1·····	Axes	of	a ma	ain grou	o move	to	the
	positi	on	speci	fied by P1	•		
MOVE2 P, P5	Axes	of	a si	ub group	move	to	the
	positi	on	speci	fied by P5	•		
Command for each robot: YRCX	:						
MOVE P, P1·····	Axes	of	the	robot 1	move	to	the
	positi	on	specii	fied by P1	•		
MOVE[2] P, P5	Axes	of	the	robot 2	move	to	the
	positi	on	specii	fied by P5			

• The command with robot setting can be omitted a robot number. If it is omitted, robot 1 is specified.

3

	Conventional models	YRCX
Maximum number of task	8	16
Priority	17 to 47	1 to 63
Task definition	During the program	In another program
Starting tasks	Task is assigned in Task 1 automatically and placed in RUN status	Task is assigned in a specified task number and placed in RUN status
Command execution for Task 1 (restart, etc.)	Not executable	Executable

The differences between YRCX and conventional models (YRC, etc.) are shown below.

For details regarding the multi-tasking, refer to Chapter 6 "Multi-tasking" in this manual or in a programming manual for conventional models (YRC, etc.).

Robot Language 4

1. In YRCX, the robot languages shown below are added to ones of conventional models (YRC, etc.).

ARMSEL	CHGWRK	CLOSE	CREWRK
CURTQST	ETHSTS	GEPSTS	HALTALL
HOLDALL	MOTOR	MOVET	MTRDUTY
OPEN	PGMTSK	PGN	PSHFRC
PSHJGSP	PSHMTD	PSHRSLT	PSHSPD
PSHTIME	PUSH	SETGEP	TSKPGM
WRKDEF	WEIGHTG		

For details regarding the robot Language, refer to Chapter 8 "Robot Language Lists".

2. 1	These robot	languages †	for conventional	models (YRC,	etc.) becam	e unavailable in YRCX.
------	-------------	-------------	------------------	--------------	-------------	------------------------

ABSINIT	ABSINIT2	ABSRST	ABSRPOS2
ACCEL2	ARMCND2	ARMTYP2	ASPEED2
AXWGHT2	CHANGE2	CURTRQ2	DECEL2
DECLARE	DRIVE2	DRIVEI2	HAND2
JTOXY2	LEFTY2	MCHREF2	MOVE2
MOVEI2	ORGORD2	OUTPOS2	PMOVE2
RIGHTY2	SERVO2	SHIFT2	SPEED2
TOLE2	TORQUE2	TRQSTS	TRQSTS2
TRQTIME	TRQTIME2	WAIT ARM2	WEIGHT2
WHERE2	WHRXY2	XYTOJ2	_SYSFLG

For details regarding the robot Language, refer to "Robot Language Lists" of a programming manual for conventional models (YRC, etc.).

1. In YRCX, the online commands shown below are added to ones of conventional models (YRC, etc.).

RUNTO	SKIPTO	MRKSET	IDIST
INCHXY	INCHT	JOGXY	JOGT
TCHXY	SYNCHK	SEQCMPL	LOAD
MAINPG	MSGCLR	SETPW	ALMRST
? ALM	? CURPNT	? IDIST	? INPUT
? LONEMODE	? MAINPG	? MODE	? MSG
? MSPEED	? TSKECD		*

For details regarding the online commands, refer to Chapter 12 "Online commands".

2. These online commands for conventional models (YRC, etc.) became unavailable in YRCX.

AUTO	EMGRST	EXELV	MANUAL
? ARM	? CONFIG	? EXELVL	? OPSLOT
? SELFCHK	? WHRXYEX		

For details regarding the online commands, refer to "Online commands" of a programming manual for conventional models (YRC, etc.).

6 Data file

In YRCX, the data files shown below are added to ones of conventional models (YRC, etc.).

- 1. Point name file
- 2. General Ethernet port file
- 3. Input/output name file
- 4. Area check output file
- 5. System configuration information file
- 6. Version information file
- 7. Option board file
- 8. Self check file
- 9. Remaining memory size file

For details regarding the data files, refer to Chapter 10 "Data file description".

• "Alarm history file" replaced "Error message history file" and "Error message history details file" of conventional models.

• In YRCX, the point number ranges from 0 to 29999 (0 to 9999: Conventional models).

Index

Index

Α

Absolute reset 12-37
Acceleration coefficient
Acceleration setting 8-109, 8-121, 8-131
Acquiring return-to-origin status 12-23
Acquiring the access level 12-25
Acquiring the break point status 12-25
Acquiring the emergency stop status 12-32
Acquiring the mode status 12-26
Acquiring the remaining memory capacity 12-31
Acquiring the servo status 12-24
Acquiring the shift status 12-29, 12-30, 12-31, 12-33
Acquiring the tasks in RUN status 12-28
Acquiring the tasks in SUSPEND status 12-28
Acquiring the tasks operation status 12-29
Acquiring the version information 12-28
All file 10-34, 10-35
Arch motion setting
Area check output 10-32
Erase 12-46
Initializing 12-48
Read-out 12-50
Arithmetic assignment statement
Arithmetic operations 4-1
Arm lock output
Arm lock output variable 3-11
Arm lock output variables
Array subscript
Array variable file 10-55, 10-56
Array variables
Assignment statement
AUTO movement speed
Axis tip weight

В

Bit Settings	 7
J	

С

Cartesian coordinate format	4-5
CASE	8-190
Change the MANUAL mode speed	12-17
Changing the program attribute	12-47
Character constants	2-2

Character string

5	
Comparison	
Connection	
Link	8-85
Operations	
Character string assignment statement	
Circular interpolation movement	8-100, 8-145
Command list with a robot setting	5-2
Command Statement Format	1-5
Comment	1-5, 8-182
COMMON	1-3
Communication port	8-133, 8-137
Constant file	10-54
Control codes	12-55
Control multiple robots	5-1
CONT setting 8-97, 8-107, 8-119	, 8-129, 8-155, 8-157
Coordinate plane setting	8-110, 8-149
Copying point comments	12-42
Copying point data	12-41

D

Data file	10-1, 10-2
Data file types	10-1
Data format conversion	4-3
Data readout processing	12-50
Data write processing	12-51
Deceleration rate	8-39
Deceleration setting 8-1	09, 8-121, 8-131
Declares array variable	
Define point	8-166
Defines functions which can be used by the u	ıser 8-40
DI/DO conditional expressions	4-6
DI file	10-57, 10-58
DO file	10-59, 10-60
Dummy argument	8-213
Dynamic variables	
,	

Ε

EOF file	10-75
Erasing	12-42
Area check output setting	12-46
General-purpose Ethernet port	12-46
Hand	12-45
Pallet data	12-44
Point comments	12-43
Point data	12-43
Point name	12-44
Program	12-42
Shift	12-45

Error processing
Error recovery processing 8-185
Ethernet port communication file 10-77
Executes absolute movement of specified axes

F

Functions: in alphabetic order	
Functions: operation-specific .	

G

12-50
12-46
10-48
. 3-18

Η

Hand

Acquiring the sta	tus 12-30
Define	
Definition file	10-18, 10-19, 10-20, 10-21
Erase	
Left-handed syst	em 8-82
Right-handed sy	stem 8-188
Hand system flag	4-5, 8-101, 8-115, 8-125, 8-166, 10-5, 10-
21, 10-23	

IF
Block IF statement
Simple IF statement
Initializing 12-48
Alarm history 12-49
Communication port 12-49
Memory area 12-48
Integer constants 2-1
Internal output variable

J

Joint coordinate format	 4-5

Label	1-4
LABEL Statement	1-4
Left-hand system	
Linear interpolation movement	8-99, 8-114, 8-124, 8-145

Local variable	8-213
Local variables	3-18
LO file 10-0	63, 10-64
Logic operations	4-2

Μ

MANUAL mode operation 12-1	7
MO file 10-61, 10-6	2
Movement speed 8-20	9
Moves the specified robot axes in a relative manner 8-5	2
Multi-task	1

Ν

Numeric constants	 2-1

0

Online Command List	2-1
Operation speed8-	26
OUT enable position	43

Ρ

Pallet Definition file 10-22, 10-23, 10-24, 10-25 Erase 12-44 Palletizing 11-4, 11-10 Parallel output variable 3-9 Parameter directory file 10-38 Parameter file 10-12, 10-13, 10-14, 10-15 Ends the path setting 8-151 Specifies the motion path 8-145 Performs absolute movement8-97, 8-112, 8-122 Pick and place 11-12 Point comment file 10-8, 10-9, 10-10, 10-11 Point data Erase 12-43 Format 4-5

Point data variable
Point file 10-5
Port output setting 8-111, 8-150
Priority of arithmetic operation 4-3
Program
Сору 12-41
Erase 12-42
Stop
Switch
Temporarily stop
Program directory file 10-36, 10-37
Program execution wait
Program file 10-3, 10-4
Program level
Program Names 1-2
Program operations 12-9
PTP movement 8-48, 8-52, 8-97, 8-112, 8-122, 8-162, 8-176

R

Read-out file	8-191
Ready queues	. 6-3
Real constants	. 2-1
Reference commands	12-23
Relational operators	. 4-1
Rename program name	12-47
Reserved word list	. 13-1
Return-to-origin sequence	8-140
Right-handed system	8-188
RS-232C 11-18,	11-19

S

SEQUENCE 1	-2
Sequence function	-1
Sequence program	
Acquiring the execution status 12-2	27
Compiling 7	-3
Creating 7	-5
Executing 7	-4
Priority of logic operations 7	-8
Program capacity 7	-8
Programming method 7	-1
Scan time 7	-8
Setting the execution flag 12-5	52
Specifications7	-8
STEP execution 7	-4
SEQUENCE program 1	-2
Serial double word input	15
Serial double word output	16
Serial input variable	13
Serial output variable	14
Serial port communication file 10-7	76
· · · · · · · · · · · · · · · · · · ·	

Serial word input3-15Serial word output3-16Servo status8-193Setting the sequence program execution flag12-52Shift
Erase 12-45
Shift assignment statement
Shift coordinate
Definition file 10-16, 10-17
Shift variable
SI file 10-67, 10-68
SIW file 10-71, 10-72
SO file 10-69, 10-70
SOW file 10-73, 10-74
Static variables
STOPON condition setting 8-51, 8-56, 8-106, 8-118, 8-128,
8-156, 8-165
Sub-procedure8-29, 8-198, 8-213
Subroutine
System prior to shipment 5-1
System Variables 3-2, 3-7

Т

Task

Condition wait 6-4
Definition 6-1
Deleting 6-6
Number 8-211
Priority order 6-1
Priority ranking8-31, 8-211
Program example
Restart 8-184
Restarting 6-5
Scheduling
Sharing the data 6-8
Start 8-211
Starting 6-2
Status and transition
Stopping
Suspending 6-5
Temporarily stop 8-215
Terminate
Task status
NON EXISTENT
READY 6-2
RUN
STOP
SUSPEND
WAIT
Timer output variable
Tip weight
TO file

Tolerance	8-222
TO port	8-221
Type Conversions	3-6

U

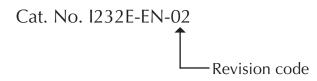
User program examples

Application 11-8	8
Basic operation 11-	1
User Variables 3-2	2
Using point numbers 11-2	2
Using shift coordinates 11-5	3

V

Valid range of variables	18
Value Pass-Along & Reference Pass-Along 3	8-6
Variable file 10-4	48
Variable Names 3	3-3
Variable Types 3	3-4

W


WAIT status	. 6-4
Write file	8-191

Χ

XY setting	
XY setting	I C-0

Revision history

A manual revision code appears as a suffix to the catalog number on the front cover manual.

The following table outlines the changes made to the manual during each revision.

Revision code	Date	Description
01	June 2016	Original production
01A	February 2018	Small corrections
02	April 2020	A new section "140. WEIGHTG" has been included to the "Chapter 8. Robot Language Lists". The sections "17. CURTQST", "18. CURTRQ", "65. MTRDUTY", "66. OFFLINE", "70. ONLINE" and "94. PUSH" from the "Chapter 8. Robot Language Lists" were updated. A new section "9. Work definition file" has been included to the "Chapter 10. Data file description". The section "12. Input/ output name file" from the "Chapter 10. Data file description" was updated.

Authorized Distributor: